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Abstract

Energy generation still produces CO2 and pushes the climate crisis. By grouping energy consumers

and prosumers into energy communities, these can share energy within the community and help to

reduce emissions. Due to weather conditions, fluctuations in generation of renewable energy are nat-

ural. There are certain flexibilities of renewable energy source like reducing the photovoltaic plants

production and controlling the consumption of heat pumps within a specific range. Along with energy

storage systems these flexibilities can be used to optimize the energy community. There are various

objectives for an optimization, but in this work the main goals are to minimize the total grid load on

the transformer and to smooth the load peaks. Within the scope of a project the optimization was im-

plemented as a mixed integer linear approach. This work tackles the aim of using a deep reinforcement

learning method to optimize energy communities. The method should learn to determine the flexibili-

ties of photovoltaic plants, heat pumps and batteries to archive the main optimization goals. On top of a

base implementation of the reinforcement learning optimization, various improvements are done. The

reinforcement learning optimization contains two important components, environment and agent. The

experiments are based on each other, and modifications are implemented in environment and agent of

the optimization. The results of the experiments are showing an enhancement of the reinforcement

learning optimization. To achieve a comparable optimization to the linear one, further modifications

and a change of training data are necessary. However, this thesis presents a working concept for the

use of deep reinforcement learning in the context of optimization in energy communities.
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Kurzfassung

Die Erzeugung von Energie produziert noch immer CO2 Emissionen und treibt damit die Klimakrise

weiter an. Verbraucher und Prosumer können in Energiegemeinschaften gruppiert werden. In den

Energiegemeinschaften kann die produzierte Energie verteilt werden und damit zu einer Emissionsre-

duktion beitragen. Schwankungen in der Produktion von erneuerbaren Strom treten aufgrund von

Wetterbedingungen natürlich auf. Es gibt gewisse Flexiblititäten bei erneuerbaren Energiequellen, wie

die Verringerung der Produktion durch Photovoltaik Anlagen oder die Kontrolle des Verbrauchs von

Wärmepumpen in einem vorgegebenen Bereich. Zusammen mit Energiespeichern können diese Flex-

ibilitäten genutzt werden um die Energiegemeinschaften zu optimieren. Für die Optimierung gibt es

verschiedene Ziele. In dieser Arbeit sind die Hauptziele die Minimierung der Netzleistung am Trans-

formator und die Glättung von Lastspitzen. Im Rahmen eines Projektes wurde die Optimierung als

gemischt-ganzzahliger linearer Ansatz umgesetzt. Das Ziel dieser Arbeit ist die Optimierung der En-

ergiegemeinschaften mit einer Deep Reinforcement Learning Methode. Die Flexibilitäten von Pho-

tovoltaik Anlagen, Wärmepumpen und Batterien sollen von der Methode bestimmt werden um die

Hauptziele der Optimierung zu erreichen. Ausgehend von einer Basisimplementation der Reinforce-

ment Learning Optimierung werden verschiedene Verbesserungen vorgenommen. Die Reinforcement

Learning Optimierung besteht aus zwei wichtigen Bestandteilen, der Environment und dem Agent. Die

Experimente bauen aufeinander auf undModifikationen sind in Environment undAgent implementiert.

Die Ergebnisse der Experimente zeigen eine Verbesserung der Reinforcement Learning Optimization.

Damit eine vergleichbare Optimierung zur linearen Optimierung erreicht werden kann, sind weitere

Modifikationen und ein Wechsel der Trainingsdaten nötig. Jedoch stellt diese Arbeit ein funktion-

ierendes Konzept für den Einsatz von Deep Reinforcement Learning im Kontext der Optimierung von

Energiegemeinschaften vor.
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Chapter 1

Introduction

In current times sustainable and affordable energy production is on everybody’s mind. Two of the

reasons for this are the climate crisis and the increasing electricity prices.

The climate crisis is a continuous process, which is now ongoing for years. Slowing down the

process can only effectively be managed by reducing the CO2 emissions [4].

Fossil fuels like coal, natural gas and oil still account for around 35% of the CO2 emissions from

electricity and heat production in the energy generation share all over the world. The highest emissions

are generated by coal-fired power plants. The most obvious solution for the CO2 emission reduction

would be to change from coal based energy production to renewable energy sources, like photovoltaic

(PV) plants, wind turbines and hydro generation. [5]

Although more and more renewable energy is generated, it does not cover the demand. After

the COVID-19 pandemic, the industry slowly recovered in 2021 and this resulted in increased energy

demand and rising electricity prices [6]. Due to the war in Ukraine the natural gas dependence on

Russia and therefore the increasing prices for the gas resulted into another increase of the electricity

costs in 2022 in Europe [7].

Integrating renewable energy sources into the electrical grid is not only beneficial for reduction of

the CO2 emissions, it also raises concerns. Uncertainty in weather, wind speed and solar irradiation

affects the renewable energy generation. This could result in voltage and frequency fluctations, low

inertia and fault ride through capability issues and makes it hard to maintain a flexible, stable and

reliable grid with renewable energy resources. Advanced control methodologies and energy storage

devices are two important countermeasures for these issues. [8]

The increasing electricity demand and the goal to reduce emissions will be grid expansion and

integrating more renewable energy sources. As grid expansion is cost intensive and the problems

with renewable energy sources are mentioned above, distributed local energy generation will spread.

1



2 Chapter 1. Introduction

Local energy communities (ECs) can help reducing the emissions and by sharing energy within the

community, the costs for electricity can be decreased. Not only these two points are in focus, also the

self-sufficiency and energy supply security are of interest for those communities. On the other hand, the

distribution systems operators represent other interests like the avoidance of grid congestion and the

deferral of network investments. This can be achieved by local balancing, load uniformity, activation of

flexible generation and demand during the day to avoid load peaks. However, fluctuations in demand

and generation are naturally due to renewable energy sources and weather conditions. To achieve the

goals of local balancing and load uniformity the flexibility of renewable energy sources and energy

storage systems can be used. In order to do this, an extensive optimization depending on the current

load, the weather, the demand and generation is necessary. [9]

In Austria renewable ECs (Erneuerbare Energie Gemeinschaften) are regulated by law. The ECs

are allowed to generate, store, consume and sell energy from renewable sources. Not only, the use of

renewable energy is an advantage of these ECs, also financial incentive as reduction of grid fee. [10]

However, the use of the renewable energy within the ECs are not guaranteed as there is currently no

optimization of the energy share, due to a lack of data. Participants do not share data about consumption

and production and there is currently - as of the implementation of the law - no other way to get

information about the availability of renewable energy within the EC.

In the context of this work ECs are a group of consumers and prosumers. The consumers contribute

mostly passively, as they only consume energy, whereas the prosumers do both, consume energy and

also produce energy with renewable energy sources. The settlement, used in the work, contains 20

households with different load profiles, five commercial buildings, two communal buildings and one

community battery. Ten of the households own a heat pump and four houses have a PV installation.

Besides the load profile the weather data is relevant, as the generation of PV energy and the demand

of the heat pumps depends on the weather.

1.1 Research Questions

Various goals of ECs are described in the previous section, which can be optimized. For this work, the

focus of the optimization is to minimize the total grid load and smoothing the peaks in the load of the

EC. The current implementation uses a mixed integer linear approach for the optimization. The goal

of this work is to investigate, if the realization can be done with a reinforcement learning (RL) method.

Accordingly the main research question is: ’Can the grid load be minimized and the peaks in the load

smoothed by optimizing an EC with a RL algorithm?’

Some additional questions are derived to enclose the scope of this thesis:
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• Which RL variant might solve the optimization problem best?

• Can the minimized load and the smoothed load peaks of the RL optimization be compared with

an already implemented mixed integer linear optimization?

• Are there further improvements for the RL method in order to get closer to the optimization goal

of minimizing the grid load and smoothing the peaks in the load?

1.2 Outline

In this master thesis, chapter 2 guides into the field of deep learning and RL in a common sense and spe-

cific into the energy sector, but also covers the given limitations within this work. Chapter 3 describes

the implementation of the RL optimization and its integration into the used framework. Afterwards the

results of different optimization cases are presented in chapter 4. The presented results are compared

and discussed in chapter 5. The thesis ends with a conclusion and an outlook for further works in

chapter 6.
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Chapter 2

State of the Art

This chapter gives an overview of deep learning, RL and the combination of both, deep RL. Besides

a general view on these topics, also a more specific overview on the usage of (deep) RL in the energy

sector is to be imparted. Afterwards the restrictions and limitations within this thesis shall be addressed

and the used framework is introduced.

2.1 Deep Learning

Rosenblatt makes the analogy between the network topology and the human brain already in 1961 [11].

Based on this analogy the following comparison is made. The brain cells are interconnected by synapses

which enable the exchange of information. During a lifespan these connections can change depending

on the experience of a person. As an example, the image of a flower can be captured by a persons eye.

Through nerves and synapses this image is transmitted into the brain. Depending on the knowledge

of the person, it can be categorized as either a specific kind of flower, a flower or no flower at all. This

setup is simplified illustrated on the right side of fig. 2.1. Transferring this example into deep learning,

the network topology for this sample is depicted on the left side of fig. 2.1. From the eye to the brain,

the image of the flower goes through multiple cells and synapses. Each of the passed cells will be called

a layer in deep learning. There are always at least three layers in deep learning which are summarized

as network. The input layer, the output layer and one or more so-called hidden layers. Starting with

the input layer, the comparison can be the image captured by the eye and the kind of flower recognized

by the brain will be the output layer. As the image passes cells between the input and the output, all

these cells in between will be called hidden layers. A further relation between the human brain and

deep learning will be the synapses and the weights. Due to experiences a person could learn the kind

of flower from a previous unknown flower by adaptation of the synapses. Same could be noticed in the

learning process of a network. The weights, which are connecting the layers, can be updated, which

5



6 Chapter 2. State of the Art

could result in changed handling of the inputs and therefore another output results [12].

Figure 2.1: Network topology for deep learning and the simplified structure of the human brain

Besides the layers, a neural network also contains a loss function. This function is a metric to mea-

sure how well the network approximates the output regarding the input. There are several functions

which can be used for the loss function, e.g. the mean squared error loss, the cross entropy or the mean

absolute error. [13]

The weights can be updated not only through the computations flow forward from input to output,

but also backward to optimize the loss function. For this purpose, the calculated gradients of the error

derivatives are back-propagated towards the input layer [12].

2.2 Reinforcement Learning

Not only deep learning can be compared with human environment, also RL can be. The interaction with

other people is shaped by the reaction and the behaviours of the counterpart. One is building up the

knowledge of conversations with learning by doing. Depending on the reaction of other persons one

can gauge if the participation in the talk is received well, and so the knowledge is updated with each

conversation. There are computational approaches to learn from interaction like the field of machine
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learning. This field is mainly divided into three sections. The focus of this thesis is RL, but before going

into more detail about this, a short overview about supervised and unsupervised learning will be given,

to distinguish between them. [1]

For supervised learning not only the input is provided in the training set but also the expected

output is given. For example a training set of images is only given with labels which are expected on

the output. This means that the system learns to label other but similar input correctly. [1] Using the

example of the flower, in the training set the image of the flower would be labeled with the flower’s

name.

Without knowing the output labeling, the principle is to find and learn hidden structure in the given

training set and apply it later on other data. This is called unsupervised learning. [1] Going back to

the example, the image would be unlabeled, and it could be a training set full of images with different

flowers, meaning that the algorithm learns to recognize a flower.

In contrast to supervised and unsupervised learning, RL does not need training data, instead the

essential features are trial-and-error search and rewards. The two defining parts of a RL system are the

agent and the environment, the latter represents the learning surrounding, e.g. a game or a simulation.

Through the learning process the agent interacts with the environment to maximize the reward. The

reward is given from the environment on performing an action at the state (see figure 2.2) and depends

on how good the action in the situation was. Nevertheless this procedure is challenging as it is a fine

line between exploration and exploitation. To tackle the goal of maximizing the reward the RL agent

should use actions from before, where the previous reward was high. In order to find such actions, the

agent needs to try actions it has not tried before. [1]

Environment

Agent

action reward state

Figure 2.2: Based on Sutton and Barto [1], the interaction of agent and environment in a RL system

Due to memory and computational complexity, there are some limitations in RL [14]. On the one

hand, this leads to limitations in the dimensions of states and actions, since tables are often used to

map from a given state to an action [14]. Beyond the inherently low-dimensional problem of RL, RL

is not sufficiently scalable [2]. In order to achieve a usable state of the environment for the agent,

feature engineering must be performed by a developer, resulting in a lack of scalability and therefore
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a limitation in complexity [2]. Development in deep learning provide new tools to overcome these

restrictions [14]. The combination of using deep learning along with RL defines the field of deep RL [2].

One of the first successful union of both methods is summarized in a paper of 2013 by using raw pixels

of Atari games for the state of the environment [15].

2.2.1 Components of Reinforcement Learning

In addition to the agent and the environment, RL also consists of four other elements, which are more

deeply explained in Sutton and Barto [1]. In the following a short overview of the policy, the reward

signal, the value function and the optional model of the environment are given and is based on Sutton

and Barto [1].

For each time step the agent not only receives the state from the environment but also a reward.

Over the long run, the agent wants to maximize the total reward, as the goal of the RL problem is

defined by the reward signal. Besides that, the reward signal is the primary basis for altering the policy.

Through a policy the states are mapped to actions in the states, so one could say the acting of the

agent at a given time is defined by a policy. This indicates that the policy is the core of RL and it

could be represented in various types as a simple function, a lookup table or a search process. A policy

that establishes the immediate path of RL is important, but secondarily so is the long-term path. The

advantage over the long run is specified by the value function. In that function the state which is most

likely to follow and the corresponding rewards are taken into account. Possibly the current state can

have low reward but a high value, if the following states have high rewards. This could be a faster way

to achieve the RL goal. Values could be defined as predictions of rewards, which is the reason why it is

harder to determine values than rewards, but makes the choice of the method to estimate values one of

the most important components in RL algorithms. The last element and an optional one is the model

of the environment. It is used for planning as it allows conclusions to be drawn about the behaviour

of the environment. If a RL problem is solved by using a model it is called model-based method. The

opposite to that would be model-free methods, which are simpler and trial-and-error based. [1]

2.2.2 Taxonomy of Reinforcement Learning

Depending on the perspective, RL can be categorized into various kinds [2]. Subsection 2.2.1 introduced

model-based and model-free methods. Additionally, value-based methods and policy-based methods, as

well as on-policy and off-policy methods, are discussed. A selected overview of the correlation between

the differentmethods can be seen in fig. 2.3 [2]. The boxes present the various categories and the ellipses

the concrete method. Proximal policy optimization (PPO) and trust region policy optimization (TRPO)

as a direct predecessor of PPO, both are gradient-based methods. To keep the scope of the work, only a
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limited amount of methods can introduced in more detail. Therefore the focus is on Q-Learning, deep

Q-network (DQN), deep deterministic policy gradient (DDPG) and asynchronous advantage actor-critic

(A3C) as they are already used in the energy sector. These methods are explained in section 2.3.

Figure 2.3: Selected overview of RL methods based on the book ’Deep Reinforcement Learning’ [2]

Value-based methods use a value function to calculate the expected return when starting in a state,

and the optimal policy has a corresponding function [14]. Through the corresponding function the

policy is implicit as well as dependent from the value function and picks the action with the maximum

value. The advantages of these methods are a small variance of the value function estimation, high

sample efficiency and rarity to get trapped in local optima. However there are also some disadvantages

like it can easily result in overestimation and usually cannot handle continuous action space. [2]

The policy-based methods do not maintain the value function and optimize the policy directly.

Using either gradient-based or gradient-free optimization the parameters of the policy are updated

to maximize the expected return [14]. Gradient-based optimization is mostly the method of choice

for deep RL algorithms, because it is suitable for continuous or high-dimensional action space [2, 14].

The most popular method is created by combining the merits of the value-based and the policy-based

method and is called actor-critic method [2]. To improve the sample efficiency the value-based method

is used and the policy-based method supports with learning the policy function to be suitable for dis-

crete or continuous action space [2]. Extending the standard policy gradients for stochastic policies

to deterministic policies has the advantage that deterministic policy gradients, other than stochastic
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policy gradients, only integrate over the state space, which requires fewer samples in problems with

larger action space [14].

With regards to the policy two further subcategories are possible, on-policy and off-policy (see

fig. 2.4). On-policy means that the policy interacting with the environment and the policy to improve

is the same policy. This requires the agent to engage with the environment. Off-policy is improving

a different policy than the policy that is used to generate the data. Which means that also different

agents can interact with the environment and the results can all be used to improve the policy. [2]

Figure 2.4: Selected methods with regards to of the policy based on Dong et al. [2]

2.3 Reinforcement Learning in Energy Sector

Following the introduction of RL, a state-of-the-art literature review in the energy sector is given.

2.3.1 Q-Learning

There are a few papers using the Q-learning algorithm. This methods aims to approximate the optimal

Q-value function by storing all state-action value pairs in a table, which is updated at each time step [1].

In ’A Q-learning Method for Scheduling Shared EVs under Uncertain User Demand and Wind Power

Supply’ [16], the authors introduce shared electrical vehicles (EVs) as perfect users for wind power,

however it is highly challenging because of the randomness in wind power supply and the user demand

to charge the vehicle. The approach is to have an operation center in the building, which collects the

local information about the wind power and the user demand. Each EV updates the state and chooses

an action separately. The algorithm implemented in the paper increases the rate of fulfilling the user

demand and keeps the usage of the wind power to a high level. [16]

The papers ’A Q-Learning Based Charging Scheduling Scheme for Electric Vehicles’ [17] and ’Real

Time Controlling Algorithm for Vehicle to Grid System under Price Uncertainties’ [18] are focused
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on Q-learning as well. In [17], the goal is to satisfy both EV users’ and grid operators’ needs and

convenient usage. The focus lays on the bidirectional interaction between vehicle and grid and use

time-of-use pricing, vehicle to grid capability and flexibility of charging as inputs [17]. In [18] the

algorithm enables the frequency regulation services and controls the EVs charging and discharging

according to the grid situation. The action space in all three papers is discrete and also the state space

is manageable, due to Q-Learning.

2.3.2 Deep Q-Learning

The combination of deep learning andQ-learning calledDQN is used in ’Multi agent deepQ-reinforcement

learning autonomous low voltage grid control’ [19]. In this paper, the authors simulate a low voltage

grid environment with pseudo-measured data of household loads, EV charging and PV generation pro-

files. The goal of the algorithm is to reduce the maximum capacity of the transformer and though this

also reduces the bidirectional power flow to the higher grid level. The results are promising and the

next steps would be to use double and duel Q-learning algorithms. [19]

In DQN algorithm, the states are taken as input to the neural network, the network calculates the

action values and chooses the maximum value as the output. This algorithm remains in a discrete

action space. DQN may lead to overestimation during the learning process, which can be challenged

by using a double deep Q-network (DDQN) with dueling network architecture. DDQN uses two neural

networks, one is the target network and the other the main network. The main network receives the

action with the highest value for the next state and also the Q-value of this action in the target network.

In dueling DQN the output not only depends on the value function, but also on a advantage function.

Where the value function relies on the current state, the advantage function also takes into account a

certain action relative to other actions. [20]

DQN and DDQN are used in the paper ’Integration of Electric Vehicles in Smart Grid using Deep

Reinforcement Learning’ [21]. The algorithm’s goal is maximizing the profit for the EV owner, by

controlling the charge and discharge operation depending on the electricity price. The results of the

DDQN method outperforms other state-of-the-art deep vehicle to grid systems. The randomness of

new energy power generation systems make it hard to predict actions a system could perform. [21]

Therefore in ’Dueling Double Q-learning based Real-time Energy Dispatch in Grid-connected Mi-

crogrids’ microgrid energy storage scheduling with wind power generation is discussed. The authors

use a DDQN method with dueling network structure, but without a coordination between multiple

agents. [20]

’Battery Control in a Smart EnergyNetwork usingDouble DuelingDeepQ-Networks’ aswell covers

the management of a storage system in a smart network. The proposed algorithm outperforms a model-
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based benchmark, and can be further improved using exogenous data and forecasting. [22]

The three developed algorithms share the use of a discrete action space.

2.3.3 Asynchronous Advantage Actor-Critic

Switching to a continuous action space is only possible by changing the category, as introduced in

subsection 2.2.2 so that an actor-critic method can be used. In [23] an A3C algorithm is used to solve the

problem of the anti-peak characteristics of wind power with good convergence, stability and timeliness.

A3C is based on the actor-critic method, however improves on it in three aspects. The network structure

is optimized, by putting actor and critic network together. Then a asynchronous training framework

is build up, which has a global network and a number of worker threads. Each thread is running

independently and updates the global network after a time. The last aspect is to optimize the critic

evaluation points. [23]

2.3.4 Deep Deterministic Policy Gradient

Another state-of-the-art method for continuous action spaces is DDPG. This algorithm again uses an

actor and a critic network, as well as a replay buffer and Q-target approach which is derived from

DQN [24].

There are various papers discussing DDPG in the energy sector. In one paper from Khooban and

Gheisarnejad the DDPG is used to regulate the control parameters to stabilize the frequency in micro-

grids and was evaluated to be adaptive enough to fulfill the requirements [24].

In the scope of hydrogen-based systems, the optimal operation of these systems often neglect build-

ing thermal dynamics. Taking that into account while investigating the optimal operation problem is

part of the paper ’Joint Optimization and Learning Approach for Smart Operation of Hydrogen-Based

Building Energy Systems’ and the authors also uses DDPG, but as an multi agent approach. Meaning

that not only one agent is running to train the networks, but multiple ones. [25]

Amulti agent DDPGmethod is also used by the authors of ’Multi-agent deep reinforcement learning-

based approach for optimization in microgrid clusters with renewable energy’. The goal is full usage

of the renewable energy, beside that the algorithm is also able to cope with generation and load uncer-

tainty. [26]

2.4 Limitations and Scope

In this work are certain limitations given due to the broad field of RL. The scope of this work is briefly

described in this section. The restrictions regarding the framework and simulation platform are de-
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scribed.

2.4.1 Limitations in reinforcement learning

Most of the presented papers in section 2.3 and likewise the book of Sutton and Barto [1] and Z. Ding et

al. [2] are describing the RL problem additionally as markov decision process (MDP). MDPs model the

process of sequential decision making and are a mathematical abstraction of the problem. The naming

for agent and environment as well as fig. 2.2 stem from the MDPs as a conceptual framework to define

the problem of learning through interaction in order to fulfill a goal [1]. However, it is important to note

that MDPs do not have significant relevance for this thesis as the RL problem is primarily addressed

within the context of simulation, as the framework to work with is predefined.

Additionally, considering the amount of different (deep) RL methods available, it would exceed the

scope of the thesis to address each algorithm comprehensively and discuss the presented methods in

detail. In section 2.3 an broad overview of various methods used in the relevant literature is provided

and the individual advantages and disadvantages of the methods are highlighted. This approach aims

to highlight the rationale behind the choice of the specific method used in the implementation.

2.4.2 Used Framework

Testing grid infrastructure in the real world is often difficult, because it could affect critical infrastruc-

ture, has a direct impact on the residents, and due to the privacy laws in Europe data availability and

resolution are strictly limited. To provide the possibility to test and demonstrate complete smart cities

with a full integration of components, a framework to model and simulate grid infrastructure called

Bifrost was developed. [27]

Bifrost’s core functions as the central component are responsible for managing the simulation loop

and maintaining the current state of the settlement. Other modules, like building model and weather

models, can connect to the core and influence the simulation result by adjusting the dynamic state. The

simulation loop of the core calls all registered modules in a deterministic order. [28]

In chapter 1, the problem of fluctuations in demand and generation due to renewable energy sources

and weather conditions has already been discussed as well as some suggested solutions, like ECs and

the optimization of these to balance the load.

As part of the research project cFlex (Community Flexibility in Regional Local Energy Systems)

a mixed integer linear optimization within the EC controller has been developed. The cFlex project

is funded by the Austrian Climate and Energy Fund (KLIEN) and carried out as part of the research

program "Energieforschung (e!MISSION) 2018" (FFG #87657).
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This Bifrost EC controller module can be used for simulating ECs and as a testing mechanism

to minimize and smooth grid load. The controller predicts the consumption and production of the

participants of the community, hands the prediction over to the community batteries and buildings,

gets back the possible flexibility for each and adapts these, depending on some given restrictions from

a higher level controller. [28]

Since the publication of the paper regarding the EC controller the development of the module is on-

going. Currently, the predicted values are passed on to a mixed integer linear programming method to

enhance grid load optimization. The simulated ECs for this optimization includes uncontrollable loads

(e.g. household consumption), batteries, heat pumps and PVs. Thereby the flexibility is composed of

the range of the batteries, controlling of the heat pump consumption and cutting of the PV production.

The scope of this thesis is to compare the mixed integer linear approach for the optimization in

the EC controller of the cFlex project with a RL approach. As a result, the simulation tool is limited

to Bifrost, and an application programming interface (API) is provided for interaction with the EC

controller. This thesis aims to compare and discuss the results obtained without optimization, with the

mixed integer linear optimization method, and with the RL method.



Chapter 3

Methodology

This chapter gives an overview about the problem to solve and a detailed view into the implemented

solution. This approach is further divided into the choice of the used RL method, the structure of and

interaction between the environment and agent.

3.1 Overview

The proposed concept within this work is accompanied and carried out in the scope of the research

project AI-flex: Autonomous AI for cellular energy systems increasing flexibilities provided by sector cou-

pling and distributed storage1.

Due to the project setting, the framework to use is already given and introduced in section 2.4.2. In

this section, Bifrost as simulation platform and the associated EC controller module are described. The

interaction of the EC controller with the Bifrost core is depicted in fig. 3.1. Within the simulation loop,

the core calls the EC controller. The control unit of the controller requests predictions and calls the

optimization. Here, the control unit queries the prediction of energy consumption and production and

passes these values over to the optimization process. Once the flexibilities for the variable resources

are computed, the optimized schedule is transmitted back to the control unit. The dynamic data of

the Bifrost state is adjusted accordingly and returned to the core. Subsequently the Bifrost building

model is called from the cores’ simulation loop and the components of the settlement like households,

commercial buildings and batteries are adapting the state optimized by the EC controller in order to

archive the optimization goal.

Upon finalization of the cFlex project, the optimization process for the EC within the controller re-

1The project AI-flex has received funding in the framework of the joint programming initiative ERA-Net Smart
Energy Systems’ focus initiative Digital Transformation for the Energy Transition, with support from the European
Union’s Horizon 2020 research and innovation program under grant agreement No 883973. For more Information visit
https://www.hsbi.de/forschung/forschungsprojekte/aktuelle-projekte-fb-3/haubrock-ai-flex
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Figure 3.1: Interaction of the Bifrost core with the EC optimization

lied on a mixed integer linear programming approach. This methodology requires a substantial amount

of code to represent the constraints and bounds for each variable. Additionally, these restrictions must

be formulated as mixed integer linear problems, thereby requiring further effort. Reducing the manual

complexity could be done with RL, whereas deep RL might be better, as it is possible to reduce manual

feature extraction with deep learning [2] (see section 2.2). This leads to the main research questions,

to investigate if the optimization of ECs, with the goal to minimize the grid load and to smooth load

peaks, can be fulfilled with a RL approach (see section 1.1). For realization, the mixed integer linear

optimization should be replaced by the RL optimization and the other surroundings in the EC controller

stay the same.

3.2 Constraints and Bounds

In the mixed integer linear optimization, various types of energy resources, along with their predicted

energy span as well as flexibilities, constraints and bounds are already predefined. In this section the

relevant elements are introduced to provide a clearer understanding for the subsequent sections.

The four different types of energy appliances are PV systems, heat pumps, batteries and uncon-

trollable loads,. The latter summarize all remaining loads within the simulated EC. For each of these

resources a predicted energy value exists for each time step. Positive values indicate energy production,

while negative values indicate energy consumption. The flexibility operates in the exact opposite man-
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ner. In this case, a positive value represents a reduction in production, while a negative value indicates

a reduction of consumption.

For a better differentiation of the constraints and bounds a designation scheme is used. Therefore

the first two letters specify the energy resource (PV : PV system, HP : heat pump, BA: battery), after a

dash, either a c for constraint or a b for a bound with a unique number follows. For example the first

constraint of the heat pump would be HP-c1.

PV Systems can only produce energy and never consume it. The flexibility (F) of this resource can

only reduce the production as the produced energy mainly depends on weather conditions.

• PV-c1 The production of the PV system can only be reduced to zero and not more than the

predicted energy (PE) (see eq. (3.1)).

• PV-b1 The PV system only can produce energy, so the flexibility value needs to remain positive

(see eq. (3.2))

F ≤ −PE (3.1)

F ≥ 0 (3.2)

Heat pumps can only consume energy and never produce it. The consumption of the energy can

be delayed or brought forward, which results in positive and negative flexibility for this resource.

• HP-c1 The consumption cannot exceed the maximum energy demand (MED), but the predicted

energy must be considered (see eq. (3.3)).

• HP-c2 A heat pump can only consume energy, but can reduce the predicted energy demand to

zero (see eq. (3.4)).

• HP-c3 The highest allowed demand (HAD) restricts the flexibility range. So the consumption of

the heat pump after applying the flexibility to the predicted value needs to be below this limit

(see eq. (3.5)).

• HP-c4 The lowest allowed demand (LAD) defines the lower limit of the flexibility range. The

predicted energy can only be reduced by the flexibility till this limit is reached (see eq. (3.6)).

F ≤ MED − PE (3.3)

−F ≤ PE (3.4)

F ≤ HAD − PE (3.5)

F ≥ LAD − PE (3.6)
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Batteries can consume and produce energy depending on the state of charge. However this results

in a flexibility range from negative to positive values.

• BA-c1 The battery can only be charged till the total capacity (ToC) is reached in consideration

of the stored energy (SE) (see eq. (3.7)).

• BA-c2 The battery can only supply energy until it is empty (see eq. (3.8)).

• BA-b1The consumption cannot exceed the maximum energy demand of the battery (see eq. (3.9))

• BA-b2 The production cannot exceed the maximum energy supply (MES) (see eq. (3.8)).

F ≤ ToC − SE (3.7)

F ≥ −SE (3.8)

F ≤ MED (3.9)

F ≥ MES (3.10)

Uncontrollable Loads can consume energy. Every energy resource which does not belong to one

of the above are allocated here. As this resource is uncontrollable they do not have a flexibility.

3.3 Reinforcement Learning Method

The wide field of RL makes it necessary to limit the considered number of methods to stay within the

scope of this work. As a result of the literature review in section 2.3 the methods to evaluate have been

reduced to the following: Q-learning, DQN, A3C and DDPG.

The results of the papers using Q-learning are promising. However, due to the Q-table the amount

of states and actions are limited. To overcome this limitation, Q-learning can be combined with deep

learning. This DQN method and its variants DDQN and dueling DQN is already used for smart grid

applications like controlling batteries [21] or integrating EVs into the grid [22]. Both, Q-learning and

DQN, are value-based methods and therefore limited to a discrete action space [2].

In this work, the state contains, among others elements, the predicted energy values, while the

flexibilities are defining the actions that can be taken. This implies an continuous action space for the

chosen method. Due to this, Q-learning and DQN are excluded from the potential methods. This leaves

the actor-critic methods, A3C and DDPG, for consideration.

A3C uses an asynchronous training framework with different threads [23]. This results in a com-

plexity that would exceed the scope of this work. After excluding all but one of the methods considered,

only DDPG remains. This method is derived from DQN and consists of an actor and a critic network

as well as a replay buffer [24]. The critic network learns using the same Q function as in DQN while
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the actor network learns the policy function [2]. For updating the actor network a policy gradient al-

gorithm is used, which applies the Q-value of the critic [2]. During the training process the balance

of exploration and exploitation needs to be maintained, which is realized by adding noise to the ac-

tions [2]. For improving the stability of learning, a copy of the actor and critic network is used for

calculating the target values [29].

3.4 Environment

An interface needs to be provided for the interaction between the RL agent and the simulation tool, be-

cause the predictions and relevant simulation parameters cannot be handled directly by the agent. This

interface is offered by a customized environmentwithin the RL optimization. The Bifrost state is handed

over to the EC controller, which ensures the prediction of values for the optimization. TheEC state is

based on the Bifrost state, but contains also predictions and is reduced to the relevant information for

the optimization. The interface handles the conversion of the EC state and predictions regarding the

environment state as well as the re-conversion with the optimized values. Additionally the evaluation

of the last action is taking place in the environment, better known as the reward function. In the con-

text of this chapter, the environment class is introduced. This includes an introduction of the chosen

environment state and chosen actions and a deeper insight into the relevant functions.

3.4.1 State and Action Space

The environment state contains 14 values, which are explained in the following:

• Weather (3 values)

• Simulation time (4 values)

• PV energy (1 value)

• Battery (2 values)

• Heat pump (3 values)

• Uncontrollable load energy (1 value)

Each energy resource type is joined to one state representation to simplify the environment state.

For example, eight heat pumps are represented as one in the environment state.

Weather For a better optimization of PV systems and heat pumps, the current temperature as well

as the direct and diffuse solar irradiation is provided.

Simulation time The Bifrost simulation time is divided into day and weekday. To allow the RL

system to use day-specific information, such as the weather and the season, the day is extracted out
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of the time. Load-specific fluctuations are more likely to depend on the weekday. To convert day and

weekday into cyclic data in the range [-1,1] for a suitable input for a neural network, trigonometric

encoding is used [30]. Both, day and weekday, are then represented by two values, calculated of the

original value using sin(x) and cos(x).

PV energy The relevant information about the PV system to extract out of the EC state and pre-

diction is the predicted production of the system in the next time step.

Battery For the battery no predicted energy is available, as it can fully be used as flexibility. Thus,

the values of the current time step are taken into account. Using the ToC and SE the state of charge

(SoC) of the battery is calculated and also the measured energy is used in the state.

Heat pump The associated details regarding the heat pumps are once more the predicted energy.

Besides that, also HAD and LAD are relevant as both give the range for the energy consumption in the

next time step.

Uncontrollable load energy For the uncontrollable loads only the predicted consumption and

production for the next time step is relevant. The predicted energy for all uncontrollable loads are

summed up into one state value.

The actions are representing the flexibility values. The flexibility can only be modified for the PVs,

batteries and heat pumps. Like for the state also for the action space each energy resource type is joined

into one appearance. This leads to a representation of the action space by three continuous values with

kWh as unit and their associated range:

• Battery flexibility with range [-1,1]

• PV flexibility with range [0,1]

• Heat pump flexibility with range [-1,1]

3.4.2 Conversion of States

This subsection explains the conversion between the EC and environment state in more detail and gives

a brief insight into the normalization of the state.

The main difference between the two states is the representation of energy resources. In the en-

vironmental state, each resource type is represented once instead of individually representing each

resource. This is achieved by combining the corresponding values from the EC state. Additionally, the

day and weekday are derived from the timestamp provided by Bifrost. Table 3.1 lists all environment

state variables along with their corresponding EC variables, as well as the units of the EC values.

The unit of values can influence the result of the neural network. To avoid this dependence normal-
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Environment State EC State EC Unit

Weather - temperature temperature °C

Weather - direct solar irradiation direct solar irradiation W/m2

Weather - diffuse solar irradiation diffuse solar irradiation W/m2

Time - day sin Unix timestamp seconds

Time - day cos Unix timestamp seconds

Time - weekday sin Unix timestamp seconds

Time - weekday cos Unix timestamp seconds

PV - energy predicted energy kWh

Battery - energy measured energy kWh

Battery - SoC SE kWh

Heat pump - energy predicted energy kWh

Heat pump - LAD LAD kWh

Heat pump - HAD HAD kWh

Load - energy predicted energy kWh

Table 3.1: Variable conversion from EC state to environment state

ization can be used, which results in the acceleration of the learning phase of the network. Normaliza-

tion transforms the data into a smaller range. In order to preserve the size ratio in the original data, the

min-max normalization can be used. This linear transformation needs to know the current minimum

and maximum value as well as the normalized range. The equation for calculating the normalized value

is shown in eq. (3.11). [31]

valuenorm = minnorm +
maxnorm −minnorm

maxvalue −minvalue
∗ (value−minvalue) (3.11)

In this work the range [-1,1] is used for the normalized data and the min-max normalization. For

the de-normalization of the actions, eq. (3.11) is transposed to calculate the value in the original range.

The values in the environment state are all normalized with a few exceptions. No range is given

for temperature, so a well-presented normalization is not possible. The maximum value for the solar

irradiation is supplied by [32]. Also the time is not normalized, since sin(x) and cos(x) are already been

applied by the conversion from the EC state and the range [-1,1] for the values is guaranteed. The

upper bound for the uncontrollable energy load is unknown. To allow a scalability of the optimization

for the normalization of the uncontrollable loads the maximum calculated load (MCL) is calculated.

This calculations depends on the number of buildings and a theoretically maximum power demand per
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building (assumed to be 25 kWh). The MCL is calculated for each time step by multiplying the number

of buildings with the theoretically maximum power consumption. The range of the value as well as the

normalization range for each variable are shown in table 3.2.

Variable Value Range Normalization Range

Weather - direct solar irradiation [0, 1361] [0, 1]

Weather - diffuse solar irradiation [0, 1361] [0, 1]

PV - energy [MES, 0] [-1, 0]

Battery - energy [MES, MED] [-1, 1]

Battery - SoC [0, ToC] [0, 1]

Heat pump - energy [0, MED] [0, 1]

Heat pump - LAD [-MED, MED] [-1, 1]

Heat pump - HAD [0, MED] [0, 1]

Load - energy [0, MCL] [0, 1]

Table 3.2: Overview of the variables to be normalized with their value range and normalization range

After normalizing the environment state, it is ready for further use in RL optimization. However,

the results of the optimization have to be converted again, as they have to be fed back into Bifrost to

apply them to the simulation. To do this, the flexibilities are converted from the normalization domain

to the value range (see table 3.3). It should also be noted that for the environmental state, all energy

resources of the same type are merged. So, in order to generate the EC state from the actions in the

last step, they must be divided. Each individual resource receives a percentage of the total flexibility

of all resources of the same type. For the PV systems, the percentage depends on the MES for each

resource compared to the total MES over all PV plants. Similarly, for the batteries is the ToC used and

for heat pumps the MED. Before the state is returned to Bifrost, the results are checked to see if they

fall between the limits introduced in section 3.2.

Action Value Range Normalization Range

Battery flexibility [MES, MED] [-1, 1]

PV flexibility [0, -MES] [0, 1]

Heat pump flexibility [-MED, MED] [-1, 1]

Table 3.3: Overview of the actions with their value range as well as the normalization range
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3.4.3 Reward Function

Another essential component in RL is the reward function. It is environment-specific, since the behavior

of the optimization is defined here and cannot be located in the agent.

In this implementation, the reward calculation is divided into two parts, because of the given se-

quence of the simulation. In the first part, the actions are evaluated with respect to the constraints

given in section 3.2. Therefore, the flexibility reward is introduced and set to zero at the beginning

of the transformation from the actions to the EC state. A negative flexibility reward is added for each

violation, and if not for a resource, the flexibility reward is increased. After the optimized EC state has

been returned to the Bifrost core, the next simulation step is performed and then the optimization of

the next time step is requested.

The new environment state and the previous one are used to judge the actions regarding to the

optimization goals. One of them is to minimize the total grid load of the EC towards a setpoint, which

is a certain power level the optimization tries to reach. This setpoint is assumed to be zero in this work,

since the EC then means less work for the grid operator. The other objective is to smooth peaks in the

grid load. For this purpose, the latter and the current environment state are compared and analyzed.

The optimization goals are evaluated individually. If the restrictions are met, a positive reward is added,

otherwise a negative one.

For the total reward returned to the agent, the flexibility reward and the reward from the optimiza-

tion goals are summed up.

3.5 Reinforcement Learning Agent

The selected RL method (see section 3.3) is implemented as the agent and consists of three main compo-

nents: the actor and critic network as well as the replay buffer. In this section the design of the separate

components are explained and the interaction between them to build the DDPG agent.

3.5.1 Components

Layers and activation functions are used to build up the actor and critic network, but the network

structure for both differ.

Due to the hidden layers in the network is it necessary to use an activation function to calculate

the non-linear hidden layer values . In the literature it is recommended to use the rectified linear unit

(ReLU) function, where no negative output values are possible (see eq. (3.12)). Depending on the output

expectation of the network, an activation function is also applied here. [33]
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g(z) = max{0, z} (3.12)

Actor network - The input size for the actor network is defined by the size of the environment

state and has an output for each continuous action. The selection of the activation function of the

outputs depends on the expected actions. The flexibility of the PV system can only reach positive

values, so a sigmoid function is chosen. The output values for that function are in the range [0,1]. Both,

battery and heat pump flexibility, can reach positive and negative values, which makes a output range

[-1,1] appropriate. Thus the decision is made to use the hyperbolic tangent (tanh) function. The exact

structure of the actor network is depicted in fig. 3.2. Depending of the point of view, the numbers on the

lines have two representations. The layer, where the arrow points towards, expects the given number

as input variables. For example, the hidden layer expects 300 input variables. The layer, where the line

starts, represents the other point of view. In this case, the number represents the number of neurons.

To provide the 300 input variables for the hidden layer, the layer before needs also 300 neurons.

Figure 3.2: Structure of the actor network

Critic network - The whole critic network is shown in fig. 3.3. The aim of the network is to

directly estimate the Q-function [2], for this reason it is not necessary to attach an activation function

to the output layer. For predicting the Q-value, the environment state and the actions are necessary,

this results in two input layers. To achieve one output value, both branches of the network are later

added and further processed.

Figure 3.3: Structure of the critic network

Replay buffer - Samples are not independently distributed in the system, but most algorithms

assume the opposite [29]. DQN addresses this issue by introducing a replay buffer, which is also used

in DDPG [29]. Therefore, with each time step, a sample is saved in a predefined structure (state, action,

reward, new state). If the buffer is full, the oldest sample is discarded [29].
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Noise - For exploration in the training process the Ornstein-Uhlenbeck process [34] is used as

suggested from Lillicrap et al [29].

3.5.2 Implementation

The implementation of the DDPG agent is derived from the corresponding paper [29]. At initialization,

the replay buffer, an actor and a critic network are created, as well as a copy of them, called target

network. To connect the environment with the agent, the latter must provide some functions.

In the training process the model is saved and can be loaded afterwards. Therefore saving and

loading, each has a own function. Also the replay buffer needs to be updated at each time step, so there

is a function to handle this update. The two main functions of the agent are learn and choose_action.

Based on the current state, three actions determined by the actor network. In the training process

some noise is calculated based on Ornstein-Uhlenbeck [34] and added to the original actions, in that

way exploration is provided. For the learning process various steps are necessary. The target networks

are used to get the Q-value and to calculate the target value. These networks are used to gain stability

in the training process [29]. The target value is then used to calculate the loss with the mean squared

error function. By reducing the loss the critic network is updated, while the update of the actor network

is based on a policy gradient algorithm using the Q-value of the critic network. After performing this

steps, both target networks are updated.

3.6 Interaction of method with the framework

The last step towards a fully working RL optimization for ECs is to link the environment and the agent.

The DDPG algorithm published in the associated paper [29] has the following execution order. First

the state is received, then the action is selected and executed and the reward is observed. These infor-

mation are then used for the learning process. In the given framework, the request for an optimization

of the current time step is requested from Bifrost via the EC controller. This makes it necessary to

slightly change the order for the algorithm. However, also the possibility to change the RL method

should be enabled.

This splits the RL optimization into two main parts with two helper functions, which can be seen

in fig. 3.4. The evaluation of the previous action is defining the first section, as this can only happen

after applying the action to the simulation step. For that, the information about the current and last

state as well as the previous action are used to calculate the reward and use it for the learning process

of the RL agent. In the second part the actions for the current simulation step are chosen and applied

to the simulation. The two helper function converting the EC state in the environment state and vice
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Figure 3.4: Sequence diagram of interaction between framework, environment and RL agent

versa.

By this, the RL method is well integrated into the Bifrost framework. The experiment details and

results with the RL optimization are listed in the next chapter, followed by a comparison and discussion

of the results.
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Training and Results

In this chapter the different variations within the training process of the RL optimization are intro-

duced and also the results are presented. Not only the results of the RL optimization variants, but also

the non optimized and linear optimized simulation results are presented to make a comparison of all

optimizations possible.

4.1 Experiments

The baseline simulation is the implementation described in chapter 3. However, there are approaches

to improve the baseline result by adjusting the agent or environment in the implementation, which are

based on literature or additional considerations. The various experiments and corresponding arguments

for simulation are introduced as part of this section, whereas the combination is shown in fig. 4.1.

Figure 4.1: Overview of the dependence of the experiment variations

In order to not exceed the scope of the work, each experiment is simulated for training around

10.5 months and the first evaluation is based on that result. For the simulation are load profiles for

27
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all buildings and weather data necessary. The limitation of 10.5 months is predefined by a lack of data

availability. Due to the characteristics of RL this procedural is possible, as the model learns the behavior

and tries to improve it with every time step. The best experiment results is then used for verification

and validation. For this, the optimization is trained for one year, and evaluated with another year,

where load profiles and weather data are different from the training year.

4.1.1 Baseline

The baseline of the RL optimization is the basic implementation of the environment and agent described

in chapter 3. For a better comparison with the non optimized and the linear optimized case, the same

settlement configuration is used. This settlement contains 20 households with different load profiles,

depending on the residents, five commercial buildings, two communal buildings and one community

battery. From all households, ten households own a heat pump and there are four PV installations. The

parameters for the DDPG agent are shown in table 4.1.

Parameter Value

Batch size 64

γ 0.95

τ 0.001

Learning rate - actor 0.0001

Learning rate - critic 0.001

Buffer size 100000

Gradient-based optimization Adam [35]

Table 4.1: Baseline parameters of the DDPG agent

4.1.2 Replace State Normalization

In section 3.4.2, the used min-max normalization for the input variables as well as their value range

are explained. The min-max normalization is not ideal for the simulation, due to a few reasons. First,

the temperature is not normalized, because there is no range given. On the other side, the used ranges

for the normalization are not necessarily the maximal reached value for a variable, but the maximum

possible value. This could result in inaccuracies. Another method to normalize the input states for the

DDPG agent is batch normalization. This technique ensures effective learning across different types of

units by normalizing the samples in a batch to unit mean and variance [29]. For both actor and critic

network the min-max normalization is replaced by a batch normalization before the input layer (see
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fig. 4.2 and fig. 4.3). The normalization of the input actions on the critic network is not necessary, as

the action values are already in a normalized range. The numbers on the lines represent the expected

input for the following layer, and the number of neurons the layer where the line starts.

Figure 4.2: Structure of the actor network after replacing the input state normalization

Figure 4.3: Structure of the critic network after replacing the input state normalization

4.1.3 Batch Normalization

In the paper regarding DDPG, the performance of this algorithm with and without batch normalization

between the layers is compared. The result is that the use of batch normalization improves the perfor-

mance. For this normalization the samples in a batch are normalized to unit mean and variance, but

also guarantees balanced layer input to minimize covariance shift during training. [29]

Due to the outcome of the paper, one training variant is to add batch normalization to the neural

network of the agent. The exact network layout of actor and critic are shown in fig. 4.4 and fig. 4.5.

Figure 4.4: Structure of the actor network with batch normalization

4.1.4 Separate PV Systems

For the baseline, each resource type is added to one representing variable in the environment state.

This works quite well for the battery and heat pump, but some accuracy is lost for the PV systems. The
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Figure 4.5: Structure of the critic network with batch normalization

energy production of a PV plant depends not only on the solar irradiation, but also on the orientation

of the plant and the angle of irradiance. For this reason, one attempt is to adjust the environment state

so that each PV system represents its own.

4.1.5 Dependent Reward Function

To achieve the optimization goal, the actions are judged by a reward function. One goal is to minimize

the total grid load of the EC and another aim is to smooth peaks in the grid load. Meeting the restrictions

adds a positive, constant number to the total reward, otherwise a negative, constant number is added.

The implementation of the reward function is described in detail in section 3.4.3.

For this experiment the reward function is adjusted, whereas the flexibility reward is not changed.

This makes it easier to determine if an adjustment improves the RL optimization. To make the reward

dependent from the grid load and peak, the constant numbers are replaced by calculations and there

are two different experiment variants, separated in 1 and 2.

The deviation is calculated by subtracting the setpoint with the current grid load and getting the

absolute value of it. The absolute value is used, as the difference from the setpoint is relevant and not

the sign of the grid load. For smoothing peaks, the change is calculated by subtracting the previous

grid load from the current one and again using the absolute value. Depending on the restriction, the

reward is added to or subtracted from the total reward.

• 1 - In this experiment variant, the calculation of both rewards, deviation and change, are not

longer fixed to a constant number. The calculation of the rewards is chosen in a way, that the

reward for a value close to an expected good value has almost the same weight as before. This

keeps the range of the reward more equal, but still judges outliers harder. For example, a peak of

20 kW is punished with a higher negative reward than a peak of 10 kW.

• 2 - This experiment variant is based on 1, but the calculation of the deviation reward is changed

slightly. Instead of treating the negative and positive reward equally, the calculation for the

positive reward is adjusted. This is done for the purpose of highlighting the low grid loads more.
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Besides the two different variants (1 and 2), the experiment is again spitted into two variants. This

is done in order to evaluate the impact of separate PV systems in the environment state more in detail.

In further usage, the experiment 1a refers to using a joined PV state and variant 1. 1b and 2b refer

to experiments of variant 1 or 2, by using the extension of separate PV systems.

4.1.6 Verification and Validation

The best experiment result is used for the verification and validation of the RL optimization. T ensure

that the training data is different than the verification data, the generation of load profiles for the build-

ings is necessary. As base for the generation, the load profiles of SimBench [36] are used. Depending

on the building type, matching profiles are chosen and then scaled to approx. the same yearly demand.

Besides changing the load profiles, also the weather data is changed. However, there is no generation

necessary, as the data is available from the cFlex project. The weather data is used for the prediction of

the PV systems and heat pumps.

After the training process, the RL optimization is switched from training to evaluation mode and

the trained model is used to hand over to the optimization. The data for running the simulation with no

and mixed integer linear optimization is used to run the evaluation, as this makes possible to compare

the results of all three optimization cases directly.

4.2 Result of optimization cases

In this section the results of the experiments as well as the no and linear optimization results are in-

troduced. All simulations are made with the same settlement and same weather data. In section 4.1.1

the used settlement is already explained. The settlement contains 20 households, differentiated by load

profiles, where ten households own a heat pump and four a PV installation. Besides the private build-

ings, five commercial and two communal buildings are part of the settlement as well as a community

battery.

In some figures, the results for several simulation results are combined. To simplify the references

for each result a unique identifier is introduced and listed in table 4.2.

The focus of the results lies on the key performance indicators (KPIs), the graph of the transformer

power and the distribution of the power and power difference on the transformer. For the RL optimiza-

tions a plot of the total reward over the whole learning process is added. The following should give a

brief overview to the different result representations to support a better understanding.

KPIs - The possibility of comparing different optimization results is achieved by creating KPIs.

These are predefined values, which are recorded during the simulation or calculated based on simula-
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Optimization Case Unique Identifier

No Optimization NoOpt

Mixed Integer Linear Optimization LinOpt

RL Optimization - Baseline Base

RL Optimization - Replace Normalization Norm

RL Optimization - Batch Normalization BatchN

RL Optimization - Separate PV Systems SepPV

RL Optimization - Dependent Reward 1a Re1a

RL Optimization - Dependent Reward 1b Re1b

RL Optimization - Dependent Reward 2b Re2b

RL Optimization - Verification and Validation RLOpt

Table 4.2: Overview of the optimization case and the corresponding unique identifier

tion values afterwards. The KPIs used in this thesis are already defined for the cFlex project. A few KPIs

are derived from Nikolaos et. al. [37] and referenced as (R...) in table 4.3. Table 4.3 gives an overview

of the used KPIs and their explanation. The KPIs are divided into three groups (Power, Unitless and

Energy), where the unit is specified. The values of the energy group are always related to the supply or

demand loads of the EC and summed up for the entire time horizon. For a better readability the table

can be found on page 36.

Violin Plots - To combine box plots and density graph in a visual representation, Hintze and

Nelson [3] introduced 1998 the violin plot. An example of the graph is depicted in fig. 4.6. The outline

of the violin-alike graph presents the distribution of the values. A wider section of the density graph

indicates a higher accumulation of values, where as a narrower section indicates a lower accumulation

of values. The white circle represents the median out of all values. The black bar in the middle is limited

by the first and third quartile and represents the interquartile range (IQR). [3]

Power Graph - The power on the EC’s transformer is plotted over the entire time horizon. This

representation makes it possible to evaluate the appearance of peaks. The abscissa refers the time and

the ordinate represents the transformer power in kW .

Reward Plot - The total reward is plotted for each time step and is represented by summing up all

positive and negative step rewards. Using the curve assumptions regarding the learning process of the

RL agent can be made.

For a clear arrangement the tables and figures with the results are from page 37 to page 43.
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Figure 4.6: Explanation of the violin plot based on [3]

4.2.1 No Optimization (NoOpt)

This subsection represent the results of the EC’s simulation, when no optimization is contributed. With-

out optimization the battery is unused, which is represented by the KPIs battery_energy_demand_sum

and battery_energy_supply_sum both being zero in table 4.4. In this table, also all the other KPIs of

NoOpt are listed. The plotted transformer power is visible in fig. 4.7a as blue curve. The violin plot in

fig. 4.9 visualizes the distribution of transformer power. The density of values are the highest at around

24 kW and 44 kW, however at 36 kW is a distribution valley. The second violin plot for this simulation

case is the distribution of transformer power difference in fig. 4.11.

4.2.2 Mixed Integer Linear Optimization (LinOpt)

The results of the mixed integer linear optimization developed in the cFlex project are presented in this

subsection. The red line in fig. 4.7a represents the transformer power over the entire time horizon. The

corresponding KPIs are listed in table 4.4. The distribution of transformer power is depicted as violin

plot in fig. 4.9 and the distribution of the power difference is in fig. 4.11.

4.2.3 RL Optimization - Baseline (Base)

The parameter and setup for the baseline simulation of the RL optimization are introduced in sec-

tion 4.1.1. For this simulation no additional improvements are done. The KPIs of this experiment can

be found in table 4.4. The power difference distribution in fig. 4.11 shows a large range from around -60

kW to 50 kW between changes. In fig. 4.9 the power distribution is visualised. Whereas the transformer

power is plotted in fig. 4.7b as blue line. The reward function of this RL optimization experiment can

be found on page 43 (see fig. 4.13a).
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4.2.4 RL Optimization - Replace Normalization (Norm)

In section 4.1.2 the implementation changes in the RL optimization compared to the baseline case are

explained. The previous min-max-normalization for the input state is now replaced by a batch normal-

ization at the state input of the actor and critic network. The load at the transformer is plotted as red

line in fig. 4.7b. In fig. 4.13b the total reward over the time is visible. It can see that the reward goes

down and then slightly up again. The violin plots are showing the transformer power distribution (see

fig. 4.9) and the transformer power difference distribution (see fig. 4.11). The KPIs for this optimization

are listed in table 4.4.

4.2.5 RL Optimization - Batch Normalization (BatchN)

For this experiment, batch normalization is added in between layers with the expecation of improving

performance. More details and visualised structure of neural networks shown in section 4.1.3. The

mostly falling reward graph is shown in fig. 4.13c. In fig. 4.9 the distribution of power is visualised and

fig. 4.11 shows the power difference distribution on the transformer. To ease comparison reason the

transformer power is in three graphs: fig. 4.7c (red), fig. 4.7d (blue) and fig. 4.7e. Concrete numbers of

the KPIs are listed in table 4.4.

4.2.6 RL Optimization - Separate PV Systems (SepPV)

The original implementation of the environment state represents the PV systems in a EC as one variable.

By aiming to achieve more accuracy the PV systems are representing themselves in the state, because

the orientation and angle of irradiance is different for each PV plant. The experiment is described in

more detail in section 4.1.4. In order to easily compare the result of the transformer performance, there

are two diagrams showing the result: fig. 4.7d (red) and fig. 4.8a (blue). In the violin plot fig. 4.10 the

power distribution is shown and in fig. 4.12 the power difference distribution. The reward function (see

fig. 4.13d) stays on a equal level most of the time. The load average for SepPV is 37.56 kW and depicted

with the other KPIs in table 4.5.

4.2.7 RL Optimization - Dependent Reward 1a (Re1a)

There are three different experiments regarding the adjustment of the reward. The basis for the reward

changes for this experiment is BatchN. More about the adjustments is introduced in section 4.1.5. In

this case, 7.86 kW are supplied from the EC to the grid. This KPI and the others are listed in table 4.5.

Figure 4.7e shows in red the transformer power of Re1a. The distribution of power is depicted in fig. 4.10

and the distribution of power difference in fig. 4.12. The reward function is plotted in fig. 4.13e.
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4.2.8 RL Optimization - Dependent Reward 1b (Re1b)

This experiment is based on SepPV and is one of three different experiments regarding the reward

(see section 4.1.5). The KPIs are listed in table 4.5. For later comparison two diagrams are showing

the transformer power: fig. 4.8a (red) and fig. 4.8b (blue). The reward function (see fig. 4.13f) almost

keeps a certain level after dropping down. In fig. 4.10 the power distribution and in fig. 4.12 the power

difference distribution are depicted as violin plots.

4.2.9 RL Optimization - Dependent Reward 2b (Re2b)

This third experiment of the dependent rewards (see section 4.1.5) is based on Re1b and therefore also

have separate PV systems. The KPIs are shown in table 4.5. In two violin plots the distribution of

power (see fig. 4.10) and distribution of power difference (see fig. 4.12) are shown. In fig. 4.13g the

reward function is plotted and after a short drop into the negative range, the total reward increases

into the higher positive range. The transformer load is shown in red in fig. 4.8b.

4.2.10 RL Optimization - Verification and Validation (RLOpt)

The RLOpt is done with the same implementation as Re2b. In section 4.1.6 the generation of data for

the training process is explained. The model is then trained and used with the same scenario and data

as the mixed integer linear optimization and all the experiments. The KPIs, transformer load graph and

violin plots are captured during the evaluation phase by using the trained model. The reward function

(see fig. 4.13h) is plotted during the training phase, as it is more significant. The power peak is at 94.70

kW and can be found, with all the other KPIs, in table 4.5. The load on the transformer is plotted in

fig. 4.8c in blue and in fig. 4.8d in red. The power distribution is shown in fig. 4.10 and the power

difference distribution in fig. 4.12.
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KPI Description
Po

w
er

[k
W

]

transformer_power_supply_peak Peak supply power at the EC’s transformer.

transformer_power_demand_peak Peak demand power at the EC’s transformer.

transformer_load_average Mean power at the EC’s transformer.

transformer_load_standard_deviation Standard deviation of load at the transformer.

transformer_load_interquartile_range Range between the 25th and 75th percentiles
of load values, representing the middle 50% of
data.

transformer_load_median Median load value out of all EC’s transformer
power values over the entire time horizon.

transformer_load_diff_standard_deviation Standard deviation of power changes at the
transformer.

transformer_load_diff_interquartile_range Range between the 25th and 75th percentiles of
the power changes set, representing the middle
50% of data.

Un
itl

es
s[

%]

transformer_load_factor (R1.1.2) Fluctuation of load consumption at the
transformer. mean(power)/max(power)

average_self_consumption_rate (R4.1.1) Amount of local generated renewable
energy which is consumed locally. Averaged
over the entire time horizon.

average_self_sufficiency_rate (R4.1.2) Amount of total load covered by local
renewable production. Averaged over the entire
time horizon.

En
er

gy
[M

W
h]

transformer_energy_demand_sum Total demand load at the EC’s transformer over
the entire time horizon.

transformer_energy_supply_sum Total supply load at the EC’s transformer over
the entire time horizon.

community_energy_demand_sum Total demand load over the time horizon.

community_energy_supply_sum Total supply load over the time horizon.

uncontrollable_energy_demand_sum Total uncontrollable demand load over the time
horizon.

heatpump_energy_demand_sum Total heat pump demand load over the time
horizon.

photovoltaic_energy_supply_sum Total PV supply load over the time horizon.

battery_energy_demand_sum Total battery demand load over the time hori-
zon.

battery_energy_demand_sum Total battery supply load over the time horizon.

Table 4.3: Overview and Explanation of the used KPIs



4.2. Result of optimization cases 37

KPI NoOpt LinOpt Base Norm BatchN

Po
w

er
[k

W
]

transformer_power_supply_peak 0.00 0.00 0.00 0.00 -3.29

transformer_power_demand_peak 84.70 85.57 92.57 102.56 101.00

transformer_load_average 35.25 36.55 38.53 38.40 38.55

transformer_load_standard_deviation 14.58 13.12 13.09 13.24 13.68

transformer_load_interquartile_range 23.26 20.80 20.25 20.40 20.37

transformer_load_median 33.38 34.87 37.07 36.87 37.28

transformer_load_diff_standard_deviation 3.68 3.55 5.36 5.59 7.68

transformer_load_diff_interquartile_range 4.29 4.22 6.22 6.35 8.59

Un
itl

es
s[

%] transformer_load_factor 41.6 42.7 41.6 37.4 38.2

average_self_consumption_rate 100.0 100.0 100.0 100.0 99.5

average_self_sufficiency_rate 10.6 6.0 0.2 0.6 0.1

En
er

gy
[M

W
h]

transformer_energy_demand_sum 272.42 282.43 297.77 296.75 297.95

transformer_energy_supply_sum 0.00 0.00 0.00 0.00 -0.002

community_energy_demand_sum 291.30 293.34 292.08 292.55 299.06

community_energy_supply_sum -25.68 -17.74 -1.20 -2.69 -8.02

uncontrollable_energy_demand_sum 141.49 141.49 141.49 141.49 141.49

heatpump_energy_demand_sum 149.80 149.80 149.85 149.85 149.85

photovoltaic_energy_supply_sum -25.68 -15.75 -0.46 -1.57 -0.32

battery_energy_demand_sum 0.00 2.04 0.74 1.21 7.72

battery_energy_supply_sum 0.00 -1.99 -0.74 -1.12 -7.70

Table 4.4: KPIs for no optimization, mixed integer linear optimization and RL optimization cases: base-
line, replace normalization and batch normalization
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KPI SepPV Re1a Re1b Re2b RLOpt

Po
w

er
[k

W
]

transformer_power_supply_peak 0.00 -7.86 0.00 -3.06 0.00

transformer_power_demand_peak 95.88 94.57 94.70 101.60 94.70

transformer_load_average 37.56 38.40 37.82 37.55 37.84

transformer_load_standard_deviation 13.63 14.20 13.49 13.74 13.30

transformer_load_interquartile_range 21.08 21.14 20.96 21.20 20.75

transformer_load_median 35.55 37.03 36.02 35.64 35.92

transformer_load_diff_standard_deviation 5.96 7.48 5.92 6.47 4.86

transformer_load_diff_interquartile_range 6.44 8.29 6.59 6.93 5.52

Un
itl

es
s[

%] transformer_load_factor 39.2 40.6 39.9 37.0 40.0

average_self_consumption_rate 100.0 99.3 100.0 100.0 100.0

average_self_sufficiency_rate 3.3 0.6 2.4 3.3 2.2

En
er

gy
[M

W
h]

transformer_energy_demand_sum 290.29 296.80 292.28 290.17 292.44

transformer_energy_supply_sum 0.00 -0.006 0.00 -0.001 0.00

community_energy_demand_sum 294.15 299.90 292.52 295.05 291.25

community_energy_supply_sum -10.72 -10.01 -8.12 -11.75 -5.68

uncontrollable_energy_demand_sum 141.49 141.49 141.49 141.49 141.49

heatpump_energy_demand_sum 149.76 149.75 149.85 149.76 149.76

photovoltaic_energy_supply_sum -7.92 -1.41 -5.94 -8.03 -5.68

battery_energy_demand_sum 2.89 8.65 2.18 3.80 0.00

battery_energy_supply_sum -2.80 -8.60 -2.18 -3.72 0.00

Table 4.5: KPIs for RL optimization cases: separate PV systems, dependent reward combinations and
the verification
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(a) NoOpt and LinOp

(b) Base and Norm

(c) Norm and BatchN

(d) BatchN and SepPV

(e) BatchN and Re1a

Figure 4.7: Transformer Load for NoOpt, LinOpt, Base, Norm, BatchN, SepPV and Re1a
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(a) SepPV and Re1b

(b) Re1b and Re2b

(c) LinOpt and RLOpt

(d) RLOpt and Re2b

Figure 4.8: Transformer Load for Re1b, Re2b and RLOpt
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Figure 4.9: Power distribution on the transformer for no optimization, mixed integer linear optimization
and RL optimization cases: baseline, replace normalization and batch normalization

Figure 4.10: Power distribution on the transformer for RL optimization cases: separate PV systems,
dependent reward combinations and verification
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Figure 4.11: Power difference distribution on the transformer for no optimization, mixed integer linear
optimization and RL optimization cases: baseline, replace normalization and batch normalization

Figure 4.12: Power difference distribution on the transformer for RL optimization cases: separate PV
systems, dependent reward combinations and verification



4.2. Result of optimization cases 43

(a) Base (b) Norm

(c) BatchN (d) SepPV

(e) Re1a (f) Re1b

(g) Re2b (h) RLOpt: Training process

Figure 4.13: Reward Functions of RL optimization
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Chapter 5

Discussion

The results from chapter 4 are discussed in this chapter. To provide a fundament for comparing the

results, the used characteristics are presented. The discussion of the experiment results and the valida-

tion results are considered separately. The results of the experiments are captured during the learning

process and can be compared to each other. The validation is done in evaluation mode based on the

best experiment result and is compared with the mixed integer linear optimization and no optimization

results.

5.1 Analysis of the Characteristics

The characteristics form the basis for the discussion of the results. The results, presented in section 4.2,

focus on the KPIs, the transformer performance graph, and the distribution of power and power dif-

ference at the transformer. The expectations and limitations of the characteristics are presented in this

section.

The KPIs can be used as an indicator of the quality and performance of the optimization. To keep

the scope of this work, a few KPIs are selected for discussion. The KPIs taken into focus and their

expected behavior are briefly introduced:

• transformer_power_demand_peak - The peak value of the power demand at the transformer

is the highest peak of the entire time horizon. With regards to the goals of the optimization,

reducing and smoothing the grid load, the power demand peak should be reduced.

• transformer_load_average - Ideally, the use of optimization does not significantly change the

average load value. Due to the reduction of PV plants, it might happen that the average load

increases.

• transformer_load_diff_standard_deviation - The transformer load makes the season visible

45
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over the entire time horizon. The average power is higher in winter than in summer. To correct

this trend, the standard deviation of the load changes are compared. A sub-goal of the opti-

mization is to smooth the transformer’s grid load. This goal can be represented by reducing the

standard deviation of the power changes in transformer load.

• transformer_load_factor - The load factor is increased when the difference between peak load

and average load is reduced. A higher load factor would mean the reduction of power peaks.

However, due to the learning process in the experiments more and higher load peaks are expected

at the beginning of the time horizon.

• average_self_consumption_rate - With the goal of reducing the grid load to a certain target

value, it is assumed that the grid feed-in is also reduced. This should increase self-consumption.

• average_self_sufficiency_rate - Under ideal circumstances, the self-sufficiency rate would in-

crease. Since the regulation of PV systems means a reduction in PV output power, the self-

sufficiency rate may reduced.

Related to the KPIs violin plots are showing the distribution of transformer power and power differ-

ence. These violin plots containing a lot of information which are explained in more detail in section 4.2,

but should be summarized for the specific use of the distribution results. Therefore fig. 4.6 is adjusted

and the specific figure for the explanation of the distribution of transformer power is shown in fig. 5.1.

The transformer power distribution plot represents the KPI transformer_power_demand_peak visually

as the top of black vertical line. The size of the IQR is visible and comparable as the black bar in the

violin plot. Whereas the white dot repesents the median value for the specific plot. The expectation

by using optimization is, that the IQR gets smaller and the median value is reduced or equal compared

to the un-optimized simulation. To reduce the production of energy in the PV systems can have the

opposite effect. Due to the optimization, a high accumulation of values should be in lower value range.

The density of high power values shall be reduced. The density is represented by outline.

Figure 5.1: Explanation of the distribution of transformer power

The power difference is the difference between consecutive load values. The corresponding violin
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plot shows the difference and the density of values. Ideally the median stays at zero, and the accumu-

lation of values is limited to zero proximity.

The goals of the optimization are reducing and smoothing the grid load. Comparing the transformer

power over the entire time horizon gives a good overview of how flat the curve is. The KPIs give total

numbers, however in the experiments the RL agent is still in the training process and learns the policy.

Due to that, peaks at the beginning of the load curve are more likely. To compare the graphs, the

appearance of peaks after the first third of the time horizon are relevant as well as the the height of

peaks. For the validation the focus shifts away from the load curve and towards the KPIs. For better

comparison of the graphs, always two of them are plotted together in one coordinate system.

In RL, the reward function provides a metric to make assumptions regarding the learning process.

An ideal reward curve would rise at some point, reach a certain level and stay to the level. The rising

of the function is equal to the fact that the agent learns its behavior.

For a better understanding of the compared results, some of the figures from page 37 to page 43 are

edited and zoomed in for specific cases.

5.2 Experiments

In this section the results of the experiments introduced in section 4.1 are discussed based on the char-

acteristics of section 5.1. The sequential variants (see fig. 4.1) are compared with each other as this

provides an overview of the quality of the improvements. For a better understanding the discussion of

the experiments is structured in three parts: KPIs, transformer load graph and reward function.

5.2.1 Discussion of KPIs

In section 5.1 the KPIs to consider are explained. Based on these KPIs the results of the experiments are

discussed in this section. The KPIs for RL Optimization - Baseline (Base), RL Optimization - Replace

Normalization (Norm) and RL Optimization - Batch Normalization (BatchN) can be found in table 4.4,

whereas RL Optimization - Separate PV Systems (SepPV), RL Optimization - Dependent Reward 1a

(Re1a), RL Optimization - Dependent Reward 1b (Re1b) and RL Optimization - Dependent Reward 2b

(Re2b) placed in table 4.5.

The selected KPIs to compare are in table 5.1 for all experiments to create a better overview for the

discussion.

For transformer_power_demand_peak the lowest value (92.57 kWh) is at the Base experiment,

whereas the highest value is 102.56 kW for Norm. In contrast to the first experiments (Norm and

BatchN), the experiment with separation of the PV systems (SepPV) has a decreased peak. However,



48 Chapter 5. Discussion

due to the behavior of the learning process in the experiment, this value could also be a peak in the

first third of the time horizon and not that meaningful. For this reason the load graphs are compared

in section 5.2.2.

KPI Base Norm BatchN SepPV Re1a Re1b Re2b

Po
w

er
[k

W
] transformer_power_demand_peak 92.57 102.56 101.00 95.88 94.57 94.70 101.60

transformer_load_average 38.53 38.40 38.55 37.56 38.40 37.82 37.55

transformer_load
_diff_standard_deviation

5.36 5.59 7.68 5.96 7.48 5.92 6.47

Un
itl

es
s[

%] transformer_load_factor 41.6 37.4 38.2 39.2 40.6 39.9 37.0

average_self_consumption_rate 100.0 100.0 99.5 100.0 99.3 100.0 100.0

average_self_sufficiency_rate 0.2 0.6 0.1 3.3 0.6 2.4 3.3

Table 5.1: Selected KPIs for RL optimization experiments

The improvements due to the separation of the PV systems in the environment state can also be

observed by the KPIs transformer_load_average, transformer_load_diff_standard_deviation and aver-

age_self_sufficiency_rate.

The transformer_load_average is lower for SepPV, Re1b and Re2b compared to the other experiment

results. An explanation for this behavior can be the possibility to control the PV plants more accurate

due to the separation the PV systems in the environment state. By the gain of accuracy the average

load is reduced.

Transformer_load_diff_standard_deviation provides a comparison without the seasonal trend. A

low value for this KPI represents a smoother grid load. The lowest value has Base with 5.36 kW. How-

ever, in the later discussion it can be seen, that this experiment has some downsides. By comparing

all experiments with separate PV system handling (SepPV, Re1b and Re2b) with the hierarchical prior

experiment (BatchN) it can be seen, that the separate PV systems improves the previous variant.

The average_self_sufficiency_rate is significant higher for SepPV, Re1b and Re2b, which are the

only experiments with separate PV systems. This also is due to the accuracy profit at separate PV

systems as previously explained.

Feed energy into the grid in combination with the total energy demand, can have an impact on the

average_self_consumption_rate. This can be seen in the results for BatchN and Re1a. In Re2b energy

is also fed into the grid, but the total energy demand is also lower. This affects the self consumption

rate less and results in 100% like for all the experiments without a energy feed in the grid.

The transformer_load_factor is not descriptive for the experiments, due to the fact that all peaks of
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the time horizon are taken into account. A low load factor is characterised by a high difference between

peak load and average load. Due to the learning process during the experiments, it only makes sense

to compare this KPI for the verification.

However, as the results are taken while training, the KPIs might be not so expressive. The distri-

bution of power and power difference gives a better overview of the density trend. The distribution

of power for Base, Norm and BatchN can be found in fig. 4.9, and the power difference distribution

for these experiments in fig. 4.11. For SepPV, Re1a, Re1b and Re2b the power distribution is visible in

fig. 4.10 and the distribution of power difference in fig. 4.12. For a better understanding of the discus-

sion, the compared plots are summarized in fig. 5.2.

Figure 5.2: Power distribution on the transformer for discussed experiments

The light blue box in fig. 5.2, should make it easier to show the density difference between BatchN

and SepPV. Since the density graph is symmetrical, it is sufficient to consider only one side. SepPV

looks more like a ’Christmas tree’, with a higher accumulation of lower values. Compared to this, the

density of BatchN is distributed more equally over all values. The other experiments with separate

PV systems (Re1b and Re2b) are also more ’Christmas tree’ shaped. The conclusion from the previous

discussed KPIs, that the results for the experiments with separate PV systems are better than for the

other, remains valid and is supported by this observation. The white dot for each violin plot represents

the median value and with the grey dotted line, the median of Base is drawn above the other results.

Using this line, makes visible that the median value for SepPV, Re1b and Re2b is lower than for Base.

Again, this supports the previous conclusion. The peak of each violin plot is represented by the previous

discussed transformer_power_demand_peak, and therefore not considered further. Due to the learning

process of the optimization in the experiments, high peaks can appear somewhere in the beginning and

thereby bias the results regaring peaks. This is the reason why the power difference distribution results

are not discussed for the experiments.
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5.2.2 Discussion of Transformer Load Graphs

For the experiments, the graph of the transformer power gives a good overview about the height and

amount of peaks. Due the training process only the curve of the last two thirds of the time horizon

is considers. For an better comparison of the graphs, always two of them are plotted together in one

coordinate system. An detailed explanation to the transformer load graphs can be found in section 5.1.

The first modification on the baseline (Base) is the replacement of the input normalization (Norm).

In fig. 5.3 a transformer power graph prepared for the discussion can be seen. The amount of peaks are

quite the same, but the peak height of Base (blue) are often highter than for Norm (red). A few example

of these peaks are marked with black arrows.

Figure 5.3: Transformer Power of Base and Norm prepared for discussion

In addition to the modified normalization (Norm), in BatchN the neural networks are adjusted with

additional batch normalization in between the layers. To provide a better visualisation of the compared

result of the transformer power graph in fig. 5.4 some relevant areas are surrounded by a orange box.

For BatchN (red) the appearance of peaks is slightly higher, whereas the height seems to be similar to

Norm (blue).

Figure 5.4: Transformer Power of Norm and BatchN prepared for discussion

However, by separating the PV state into a representation of each PV plant on its own, the graph
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of the transformer load is improved. In fig. 5.5 the graphs are prepared with a orange box and black

arrows, to support the readability of the graphs. The amount of peaks of SepPV are a lot less (orange

box) and also the height of the peaks is reduced (black arrows).

Figure 5.5: Transformer Power of BatchN and SepPV prepared for discussion

The graph for the comparison of BatchN and Re1a can be found on page 39 in fig. 4.7e. In the

first half of the time horizon Re1a outperforms BatchN. However, in the second half the appearance of

peaks is increased. This indicates that adding batch normalization to the neural network is not a single

solution, improvements on the environment are also necessary.

One improvement on the environment side is the separation of the PV systems. Applying the reward

changes of Re1a to the adjusted state representation results in the experiment Re1b. By comparing Re1b

with SepPV it is visible that the appearance of peaks as well as the height of peaks are reduced in most

cases. In fig. 5.6 some cases are marked with black arrows.

Figure 5.6: Transformer Power of SepPV and Re1b prepared for discussion

In the last experiment (Re2b) the reward is further adjusted. In fig. 5.7 various peaks are marked

with arrows. It can be seen, that the height of the peaks are reduced, due to the changes done for Re2b.

Especially at the end of the time horizon are less peaks than for Re1b.
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Figure 5.7: Transformer Power of Re1b and Re2b prepared for discussion

5.2.3 Discussion of Reward Functions

The learning behavior of the RL agent can be assessed by the plots of the reward function (see sec-

tion 5.1). The time horizon is represented as steps in these reward plots, where every step is 15 minutes

of the simulation. The different plots can be compared easily as the y-axis scale is the same for most of

them.

The worst and best reward functions of all experiments in fig. 5.8. BatchN is the worst, because

the total reward is mostly falling down. This is especially noticeable when comparing with Re2b. The

reward function of Re2b is the only where the total reward reaches positive values.

(a) BatchN (b) Re2b

Figure 5.8: Reward functions, worst and best case

There are two experiments, where the total reward is after a drop quite equal (see fig. 5.9). The

learning process does not seem to be good for SepPV and Re1b, but the discussion of KPIs and trans-

former load graphs are still showing an improvement for both cases. Besides that, both experiments

lay the basis for Re2b, where the reward function is outstanding and also the other results are good.

The reward plots for Base, Norm and Re1a are showing that the agent is learning (see fig. 5.10).

The learning process is visualised by a rising total reward, and this happens in all three cases. After a

falling curve, the total reward is rising. Not as clear and high as for Re2b, but still visible.

In section 5.2.2 it is already described that the optimization cannot only be improved by adjusting
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(a) SepPV (b) Re1b

Figure 5.9: Reward functions with equal level

(a) Base (b) Norm (c) Re1a

Figure 5.10: Reward functions with light learning process

the agent, but also the environment. With regards to the reward function, only separating the PV

systems does not have a good result. However, additional reward changes to make the reward more

dependant from the grid load and peaks, results in a good reward function.

5.3 Discussion of RL optimization

In this section the results of the verification simulation with the RL optimization are discussed. For

that reason the results are compared with NoOpt and LinOpt as well as with Re2b, as this was the best

experiment result. For the training data, the load profiles of SimBench [36] where used and scaled to a

approx. same yearly demand (see section 4.1.6). Nevertheless, comparing the 10.5 month demand of the

training data with the evaluation demand (292.44 MWh, see table 4.5), the demand of the training data

is approx. 30 MWh higher. This may happen due to the fact, that the seasonality was not taken into

account for scaling the data. Besides that, the model learns in the training process to avoid the usage of

the battery and so the battery is not used in the verification. This behavior in the training could also be

triggered by the load profiles as the uncontrollable load are quite higher than for the evaluation data.

Like for the discussion of the experiments, the results are prepared for the discussion to assist

understanding. The complete results can be found in chapter 4. The result of RLOpt should be first

compared to the NoOpt and LinOpt cases. Afterwards a short comparison with Re2b is done, as RLOpt
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is based on this experiment.

The transformer load of RLOpt has more and higher peaks than the mixed integer linear optimiza-

tion (LinOpt). In fig. 5.11 a area of more peaks in visualised with a orange box, and with arrows some

peaks, which are higher for RLOpt are marked.

Figure 5.11: Transformer Power of RLOpt and LinOpt prepared for discussion

Comparing the transformer power graphs LinOpt is not necessary better than NoOpt. Some of

the peaks, which are present for LinOpt but not NoOpt are marked with black arrows in fig. 5.12. For

RLOpt, the conclusion is that this optimization does not outperform neither LinOpt nor NoOpt when

comparing the transformer load diagrams.

Figure 5.12: Transformer Power of NoOpt and LinOpt prepared for discussion

KPI NoOpt LinOpt RLOpt Re2b

Po
w

er
[k

W
] transformer_power_demand_peak 84.70 85.57 94.70 101.60

transformer_load_average 35.25 36.55 37.84 37.55

transformer_load_diff_standard_deviation 3.68 3.55 4.86 6.47

Un
itl

es
s[

%] transformer_load_factor 41.6 42.7 40.0 37.0

average_self_consumption_rate 100.0 100.0 100.0 100.0

average_self_sufficiency_rate 10.6 6.0 2.2 3.3

Table 5.2: Selected KPIs for RL optimization validation

The KPIs to consider are listed int table 5.2. Comparing the results for RLOpt and LinOpt, the mixed

integer linear optimization is still better than the RL optimization. However, the gap between the values
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is not that high and can probably further reduced with more modification at the RL optimization.

As RLOpt is based on the experiment Re2b, these results are compared to see possible improvements

due to the separate training process.

The KPI transformer_power_demand_peak is lower for RLOpt (94.70 kW) then for Re2b (101.60

kW) (see table 5.2). The violin plots of the power distribution visualise the lower demand and supply

quite well. Figure 5.13 shows the prepared plot, where the green line highlights the power demand and

supply peak on the transformer. The lower peaks for RLOpt indicate that distinction between learning

and evaluation phase have an effect on the height of the peaks at the transformer.

Figure 5.13: Power distribution on the transformer of RLOpt and Re2b

The load graph over the entire time horizon is plotted in fig. 5.14. The orange box indicated the

first third of the time horizon. Comparing RLOpt and Re2b supports the assumption in section 5.1, that

the transformer power in the experiments is not comparable in the first third of the time horizon, due

to the behavior of the learning process. Re2b shows are lot more peaks in this area than RLOpt. In the

remaining part of the graph, the peaks for RLOpt are less height than for Re2b, which is highlighted

with black arrows.

Figure 5.14: Transformer Power of RLOpt and Re2b prepared for discussion
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Chapter 6

Conclusion and Outlook

This chapter summarizes the work and briefly discusses the results in terms of the research questions.

An outlook on further steps will be given.

6.1 Conclusion

In this section, a short recap of the results and discussions of the RL optimization with regards to the

research questions are given.

’Can the grid load be minimized and the peaks in the load smoothed by optimizing an EC with a RL

algorithm?’ is the main research question, which can be considered together with ’Can the minimized

load and the smoothed load peaks of the RL optimization be compared with an already implemented

mixed integer linear optimization?’, as both are related. In section 5.3, the comparison between the

linear and RL approach is discussed. The used configuration for RL optimization is behind the mixed

integer linear optimization. However, the RL approach is already working, and tries to optimize the

EC. Some further improvements are presented in section 6.2.

In the literature review of RL methods in the energy sector (see section 2.3), different algorithm are

introduced with with their respective advantages and disadvantages. Based on the outlined methods

in section 3.3, the decision for the chosen method explained. This satisfies the question: ’Which RL

variant might solve the optimization problem best?’

The remaining research question is ’Are there further improvements for the RL method in order

to get closer to the optimization goal of minimizing the grid load and smoothing the peaks in the

load?’. The short answer is yes. The long one, can be found in different sections. In section 4.1 some

improvements are described and the results of these experiments are later discussed. In this discussion

(see section 5.2) it can be seen that the implementation for Base can be further improved by modifying

the environment and/or agent. The amount of all possible improvements would go beyond the scope
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of this work, therefore further suggestions can be found in section 6.2.

Presuming the results of the RL optimization are closer to the mixed integer linear optimization, the

following could be assumed based on further improvements. The optimization is currently only used

in a simulation. The results of the experiments suggest an easy usage of the RL optimization within

a real EC without an extended learning phase before hand, as positive optimization results are visible

after the first third. This could simplify the transition from simulation to real practice, as the barrier

for EC members to use it is lowered when no year-long training process is necessary.

6.2 Outlook

The possibilities of algorithms to be implemented and experiments that can be carried out are nearly

endless. In order to keep the scope of this thesis, the considered experiments and improvements are

limited. Other possible improvements are outlined in this section. The RL optimization of this work can

be improved by adjusting two components, environment and agent. Both aspects should be considered

briefly in the following, starting with the environment.

Looking back at the results, it is obvious that an enhancement of the RL optimization is possible

by adjusting the reward. Making modification to the reward function could result in a faster learning

process, a smoother or lower grid load. Another way of using the reward for further improvements

could be to prefer one flexibility over another. For example, due to such a prioritization it can be

ensured that the battery is fully charged before the energy production of the PV system is reduced.

Due to that, the EC could increase the self sufficiency rate and ensure the usage of most of the PV

energy. Additionally, new assets that provide flexibility can be implemented. Depending on the asset

behavior, results may differ and the load could be minimized and peaks be smoothed more.

Further improvements are also possible in relation to the agent. Here the network of the actor and

critic could be further improved, for example by adding more layers as it is currently a simple network

to get started with. Improving the whole RL optimization could also be possible by changing the RL

method. Important to mention is that the new method necessary needs to provide the possibility of a

continuous action space. A guide to integrate the new RL agent into the implementation of this thesis

is provided in section 6.2.1.

Besides changes in the implementation, there are a few more possible improvements that can be

done. Due to the limited time for data generation within this thesis and a lack of data availability, the

results of the RL optimization (RLOpt) are not comparable with the mixed integer linear optimization.

Improving this data by using more realistic data could enhance the learning process for the model and

result in better results.
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However, this thesis presents a working concept to use RL in combination with the EC controller

concept and simulation in Bifrost.

6.2.1 Cookbook to exchange RL agent

In section 3.6 the interaction of the DDPG agent, the environment and the Bifrost framework is ex-

plained in more detail. Trying to keep the agent API as close as possible to the common one makes it

easy to exchange the current agent with another RL agent. In the following an overview of the related

code changes is given to simplify the exchange. Compared to common implementations the execution

order of the whole environment and agent interaction is slightly changed. The sequence diagram is

depicted in fig. 3.4.

The agent needs the following functions:

• __init__(): The initialization of the agent, its components and basic parameters happens in this

function. If wanted, also the loading of an available model can be done.

• remember(): Can be used if the chosen RL algorithm works with a buffer to save the current

sample consisting of state, action, reward and new state.

• learn(): It is the heart of the agent as the learning process is implemented here.

• choose_action(): Depending on the current state, the action is chosen by the agent in this function.

• load_model(): Loads a pre-saved model

• save_model(): Saves the current model
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