
Master’s Thesis

submitted by

Philipp-Sebastian Vogt, BSc

SIR LoCo - Smartphone Localization
Integration in ROS for Low-Cost Precision

Agriculture Robots

In partial fulfillment of the requirements for the degree of

Diplom-Ingenieur (Dipl.-Ing.)

Vienna, Austria, 2023

Study code: E066 504

Field of study: Embedded Systems

Supervisor: Univ.Prof. Dipl.-Ing. Dr.techn. Axel Jantsch

Co-Supervisor: Univ.Ass. Dipl.-Ing. Thomas Leopold, BSc

Copyright (C) 2023 Philipp-Sebastian Vogt, BSc

If you find this work useful, please cite it using the following BibTEX entry:

1 @Thesis{Vogt2023,

2 type = {Master’s Thesis},

3 author = {Philipp-Sebastian Vogt, BSc},

4 title = {SIR LoCo - Smartphone Localization Integration in ROS for Low-Cost
Precision Agriculture Robots},

5 school = {Vienna University of Technology (TU Wien)},

6 year = {2023},

7 address = {Gusshausstrasse 27--29 / 384, 1040 Wien},

8 month = {August},

9 }

Contact us:

philippvogt@gmx.at

This thesis is licensed under the following license: Attribution 4.0 International (CC BY 4.0)

You are free to:

1. Share — Copy and redistribute the material in any medium or format

2. Adapt — Remix, transform, and build upon the material for any purpose, even commercially.

This license is acceptable for Free Cultural Works.

The licensor cannot revoke these freedoms as long as you follow the license terms.

The entire license text is available at: https://creativecommons.org/licenses/by/4.0/legalcode

2

https://creativecommons.org/licenses/by/4.0/legalcode

Acknowledgments

I want to thank my supervisors, Univ.Prof. Dipl.-Ing. Dr.techn. Axel Jantsch and Univ.Ass. Dipl.-Ing. Thomas

Leopold, BSc, for supporting me during the whole thesis.

I would also thank my family, girlfriend, and friends, who supported me throughout the university.

3

Abstract

This thesis aims to evaluate and find a suitable way to localize farming robots and transmit other sensor

information from an Android smartphone to it. Multiple agriculture robots utilize expensive RTK receivers

and antennas, while old but still working smartphones are thrown away. With the results of this thesis, inmost

cases, an old smartphone could replace these expensive receivers and even do good to the environment by

upcycling otherwise produced electronic waste. The performance was evaluated with and without additional

hardware in five different scenarios to showcase different levels of complexity. Another benefit was utilizing

multiple other smartphone sensors, even further reducing the need for extra hardware and, therefore, the

overall cost and e-waste. One scenario even demonstrated the usage of a Linux subsystem on Android to run

even more complex software, while improving the control and accuracy of the active GNSS receiver. It was

possible to show that with the help of correction data, a horizontal localization error in the middle cm range

could be achieved.

4

Kurzfassung

Das Ziel dieser Arbeit war es einen Weg zu finden, landwirtschaftlich genutzten Roboter eine kostenef-

fiziente Möglichkeit zu bieten sich zu lokalisieren. Dabei war der Nachhaltigkeitsgedanke im Vordergrund um

nicht noch weitere Hardware zu benötigen. Durch die Nutzung eines alten Android Smartphones, welches

zusärtlich eine Vielzahl an Sensoren besitzt, kann dies realisiert werden. Das Smartphone kann GNSS Satel-

liten Signale empfangen und sich lokalisieren, jedoch nicht in einer ausreichenden Genauigkeit. Durch

die Evaluierung und Implementierung mehrer Verbesserungsmöglichkeiten, unter anderem Fehlerkorrektur-

daten des APOS, konnte die Fehlergenauigkeit in der Ebene bis in den Zentimeter Bereich verbessert werden.

Des weiteren konnte gezeigt werden, dass ein Linux Subsystem auf dem Smartphone installiert werden kann

und sogar USB Treiber für ein "Software Defined Radio" und einer aktiven GNSS Antenne im Bereich des

Möglichen liegen.

5

Contents

Acronyms 11

1 Introduction 14

1.1 Motivation . 14

1.2 Research Questions . 15

2 State of the Art 17

2.1 Implementation of a multi-band RTK receiver system with Arduino 17

2.2 Using Raw GNSS data on Android - GSA White Paper . 18

2.3 ROS Mobile . 19

3 Fundamentals 20

3.1 GPS . 20

3.2 SDR . 23

3.3 Android Tools and Libraries . 24

3.4 ROS . 25

4 Proposed System 28

4.1 Setup Cost Analysis . 28

4.2 Scenario Overview . 29

4.3 Scenario A and B . 30

4.4 Scenario C . 33

4.5 Scenario D . 35

4.6 Scenario E . 37

5 Results and Discussion 40

5.1 Results . 40

6

5.1.1 Scenario A and B . 40

5.1.2 Scenario C . 44

5.1.3 Scenario D . 47

5.1.4 Scenario E . 50

5.1.5 Scenario Comparison . 52

5.2 Discussion . 54

5.2.1 Obstacles and Failures . 55

6 Conclusion and Outlook 58

6.1 Conclusion . 58

6.2 Outlook . 59

A Config Files 65

A.1 Tmuxinator . 65

A.2 GNSS SDR TCP . 65

7

List of Tables

4.1 Cost Matrix . 29

5.1 Scenario A Power Consumption . 41

5.2 Statistical measures of Longitudinal and Latitudinal measurements 42

5.3 Scenario B Power Consumption . 43

5.4 Statistical measures of Longitudinal and Latitudinal measurements 43

5.5 Scenario C Android Power Consumption . 46

5.6 Statistical measures of Longitudinal and Latitudinal measurements 47

5.7 Statistical measures of Longitudinal and Latitudinal measurements 52

5.8 Scenario Comparison - Accuracy . 53

5.9 Scenario Comparison - Statistical Measures . 53

5.10 Scenario Comparison - Power Consumption . 54

5.11 Willeger’s Thesis Comparison (see Table 4.18[2, p. 95]) . 54

8

List of Figures

1.1 Robot Lost without GNSS . 15

1.2 Robot with Android can localize itself . 15

4.1 Scenario A and B: Overview . 30

4.2 Scenario C: Overview . 33

4.3 Scenario D: Overview . 36

4.4 Scenario E: Overview . 38

5.1 Oneplus Static . 41

5.2 Oneplus Static CDF . 41

5.3 Samsung Static . 42

5.4 Samsung Static CDF . 43

5.5 Static Map . 44

5.6 SDR Static . 44

5.7 SDR Static CDF . 45

5.8 Static Map with RTCM data . 45

5.9 energy consumption on vs off . 46

5.10 RTCM Static . 47

5.11 RTCM Static CDF . 48

5.12 RTCM Map . 48

5.13 RTCM Static GNSS Quality . 49

5.14 RTCM Static no SPS signals . 49

5.15 RTCM Static No SPS signals CDF . 50

5.16 RTCM Static . 50

5.17 RTCM Static CDF . 51

5.18 RTCM Map . 51

5.19 Variance of measurement before and after EKF . 52

9

5.20 hiccups during the start of the rtl driver on Android . 55

5.21 Oneplus RTCM Message Missing Information . 56

5.22 Oneplus RTK Observation . 56

10

Acronyms

AMCL Adaptive Monte Carlo Localization. 19

API Application Programming Interface. 24, 31

APOS Austrian Positioning Service. 22, 36, 48, 56

APT Advanced Packaging Tool. 25, 33

ASIC Application Specific Integrated Circuit. 59

BEV Bundesamt für Eich- und Vermessungswesen. 22

BKG Bundesamt für Kartographie und Geodäsie. 22

CDF Cumulative distribution function. 41, 42, 44, 47,

49, 52

CEP Circular error probable. 41, 53, 54, 58

CPU Central Processing Unit. 33

DC Direct Current. 34

DGPS Differential GPS. 17, 19, 21, 22

EKF Extended Kalman Filter. 26, 27, 30, 37, 52

GDB GNU Debugger. 56

GNSS Global Navigation Satellite System. 11, 14–27, 30,

31, 34–36, 38, 39, 46, 54, 59, 60

GNSS-SDR Global Navigation Satellite System (GNSS) Soft-

ware Defined Receiver. 17, 18, 23, 59

GPS Global Positioning System. 14, 19, 20, 34

GUI Graphical User Interface. 23

11

HTTP Hypertext Transfer Protocol. 22, 25

I/Q In-Phase & Quadrature. 23, 24, 33, 34

ICT Institute of Computer Technology. 14

IMU Inertia Measurement Unit. 16, 19, 26, 30, 31, 37,

39, 55

LoRaWAN Long Range Wide Area Network (WAN). 17

MSM Multiple Signal Message. 22, 36

MVVM Model View ViewModel. 19

NMEA National Marine Electronics Association. 17, 21,

25, 29, 30, 37, 38

NTRIP Networked Transport of Radio Technical Com-

mission for Maritime Services (RTCM) via Inter-

net Protocol. 18, 19, 22, 35–37, 56

PCB Printed Circuit Board. 17

PPP Precise Point Positioning. 18

QAM Quadrature Amplitude Modulation. 24

REP Robot Operating System (ROS) Enhancement

Proposals. 26, 30

RF Radio Frequency. 23, 24, 34

RINEX Receiver Independent Exchange Format. 21, 22

ROS Robot Operating System. 12, 18–20, 25, 26, 30, 31,

34–39, 60

RTCM Radio Technical Commission for Maritime Ser-

vices. 12, 18, 19, 21, 22, 35, 36, 56, 57

RTK Real Time Kinematic. 16, 17, 19, 21, 36, 47, 59

SC Special Committee. 21, 22

12

SDR Software Defined Radio. 15, 17, 20, 23, 33, 34, 52–

54, 58–60

SPS Single-Point Positioning. 47–50

TCP Transmission Control Protocol. 24, 25, 30, 34, 35

TPMS Tire Pressure Monitoring System. 60

TXCO Temperature Compensated Crystal Oscillator.

17, 24

USB Universal Serial Bus. 33, 34

VRS Virtual Reference Station. 23

WAN Wide Area Network. 12, 17

13

1 Introduction

This chapter will give a brief introduction andmotivation for the thesis. This includes a section for motivation

and a section for the research questions. The motivation section describes why and how the thesis was

done, while the research questions try to reduce the problem into more concrete and answerable questions.

Furthermore, the research question section will give a short reason why the smartphone selection was made

the way it was.

1.1 Motivation

The main idea of the thesis was the need for localization of a robot platform used in agriculture on a budget.

For example, the Acorn Precision Robot from Twisted Fields [1] or a farming robot under construction at

Institute of Computer Technology (ICT) called Vermin Collector. The robot should be capable of following

planned trajectories based on waypoints to a cm accuracy. This high accuracy is needed to follow the wheel

tracks on the field because even 10 cm off, the robot would destroy the crops. Most agricultural machines use a

satellite-based navigation system, a Global Navigation Satellite System (GNSS) like Global Positioning System

(GPS) or Galileo. Because single signal systems without correction are not precise enough, augmentation

methods were developed, which consist of additional hardware and software. This additional hardware adds

to the overall cost and would increase the quantity price of a robot. The other idea was to recycle or even

up-cycle old smartphones because a smartphone already comes with a GNSS receiver, sensors, and processing

power while having a small power consumption.

14

Figure 1.1: Robot Lost without GNSS

This led to the idea of implementing a system on Android that utilizes the GNSS receiver as well as sensors

of the smartphone that then get sent to the robot. Multiple research questions were defined to find the best

solution and will be described in the following Section 1.2.

Figure 1.2: Robot with Android can localize itself

1.2 Research Questions

Multiple research questions were defined to find the best solution and set the cornerstone of this thesis.

• How effective is the use of an Android smartphone for the localization of an agricultural robot measured

by resource consumption and accuracy?

• How different is the performance between smartphones with and without correction data?

• What is the performance gain (in accuracy) using an external GNSS antenna?

Multiple scenarios on two smartphones were selected to evaluate all questions based on availability and sus-

pected performance gain. For a baseline, two Android smartphones were selected, the Oneplus 6T because it

was my daily driver and the Samsung Galaxy S20 because of its Dual Frequency GNSS receiver and relatively

low price point. Then an external receiver with an active antenna was tested to establish if a Software De-

15

fined Radio (SDR) on Android would work and its performance. Because the GNSS signal alone cannot create

precise localization, correction data was applied, and a scenario for Real Time Kinematic (RTK) was created.

The smartphone also has multiple sensors for Inertia Measurement Unit (IMU) data, which could also be used

for sensor fusion to improve the signal further.

16

2 State of the Art

In the following chapter, other preceding research is reviewed and recapitulated. This should briefly overview

the already established state of the art. Some topics deal with satellite-based localization on a budget, some

topics go intomore detail while other topics explore the use of Android or lasers for localization of robots.

2.1 Implementation of amulti-bandRTKreceiver systemwithArduino

In [2], Willegger described a GNSS Receiver System consisting of a reference station and a rover. His thesis

aimed to implement an affordable system with off-the-shelf electronic components while archiving RTK-level

accuracy in the cm range. This was done with two µ-blox ZED-F9P boards, different active GNSS antennas,

Long Range WAN (LoRaWAN) antenna and transceivers, and custom-made Printed Circuit Board (PCB)s.

The reference station receives and decodes the GNSS signals via the GNSS module, then sends the correction

data with National Marine Electronics Association (NMEA) packages via LoRaWAN over the air to the rover,

which receives the signals and sends them to the GNSS module on itself. The GNSS modules contain a dual

frequency receiver to be able to process L1C/A and L2C signals. The conclusion of his thesis was the successful

implementation of a multi-frequency Differential GPS (DGPS) reference/rover system under 1000e .

GNSS-SDR - SDR integration

In [3], Fernandez et al. showed that a SDR could be combined with their software GNSS Software Defined

Receiver (GNSS-SDR) to receive GNSS signals and calculate localization data with it. The only problem they

found was the reference clock of the receiver. They concluded that the results would be better with a better

reference clock. They even proposed a calibration procedure for better accuracy. In the same year of the pub-

lication, in 2013, the RTL-SDR V3 has released with a Temperature Compensated Crystal Oscillator (TXCO),

which improved the performance significantly, they later concluded in [4].

17

Dual Frequency GPS Receiver Implementation in GNSS-SDR

In [5], Danielle Skufca modified the GNSS-SDR suite to enable dual frequency GNSS receiving capabilities.

Implementing ionospheric scintillation corrections for the pseudo ranges enables the localization with Precise

Point Positioning (PPP)which allowsmuch higher accuracy. The project is uploaded as a fork from the original

software to GitHub [6] and can be used for testing. Unfortunately, the software wasn’t merged back into its

upstream, leading to many features missing compared to the current release.

2.2 Using Raw GNSS data on Android - GSA White Paper

In [7], the European GNSS Supervisory Authority thoroughly explains in the first chapter of the paper, the

working principles of GNSS and gives calculation examples for signal decoding and error summation. In the

second chapter, the operational structure of the GNSS module of the Android operating system before and

after Android Version 7 (Nougat) is depicted. It shows how the GNSS signals traverse the software stack in

both scenarios. Also in this chapter are different calculation examples for pseudo-range generation and time

estimation. In this chapter’s last section, the authors highlight the reader Android apps that already utilize

the new Android feature for raw GNSS data. One is the RTCM converter described in Section 2.2.

GeolocPVT

In [8], Grenier and Renaudin showed that data on Android sub cm accuracy could be achieved with the intro-

duction of raw GNSS. They compared different RTCM Streams, their data consumption, and the break-even

point of accuracy and data usage for long-time dynamic tracking. The app is using GoGPS (see Section 3.3) to

calculate and decode all the GNSS and RTCM signals. While the source code is open-source, the app’s current

state doesn’t function anymore on more modern Android versions, at least on the phones I tried.

RTCM Converter

In [9], Privat et al. demonstrated the possibility of using an Android smartphone to receive raw GNSS mea-

surements, encoding these measurements into the RTCM format, and sending these messages over an Net-

worked Transport of RTCM via Internet Protocol (NTRIP) caster to a decoding software. With PPP WizLite,

another app, they also showed that PPP was possible on a smartphone. Unfortunately, this app is no longer

maintained and is a closed source, rendering it useless for further research. Fortunately, RTCM Converter

still functions on modern Android systems but is also a closed source.

RTKRCV ROS

In [10], Ferreira et al. showed that with modification to RTKLIB (see Section 3.1), the output format of the

software suite can be extended by ROS topics and messages. The authors also introduced a new output

format for velocity estimates, which further down the processing stream can be used for better localization

18

estimation with, e.g., a Kalman filter. This gives the advantages of the well-established software suite for

RTK localization in combination with ROS modules specially designed for robotic use, e.g., robot_localization

(see Section 3.4). The authors also intended the use of a modular antenna design and the possibility of a

user-friendly reconfiguration allowing users to use the software in no time.

International Standard GNSS Real-Time Data Formats and Protocols

In [11], Heo et al. describe the different positioning techniques like RTK or DGPS and the protocols they use.

The main discussed protocols are RTCM SC-104 and NTRIP. They reviewed the different "Addenums" of the

RTCM standard and analyzed the message types. They also found that the most used protocol for single-base

RTK systems is RTCM 3.0.

2.3 ROS Mobile

In [12], Rottmann et al. described and implemented a ROSAndroid application, which should display and send

data from a mobile phone to a robot. The software was designed with a specific pattern in mind. The Model

View ViewModel (MVVM) pattern enables developers to extend the existing code base easily. The app can

be configured to implement different modules for interacting (publishing and listening) to ROS topics. They

also showed different prototypes and the capability of their software with many examples, e.g., a joystick

module to publish cmd_vel messages or a GPS module to track the robot’s current position. This thesis used

this extensibility to implement a IMU and GNSS streamer module. See Section 4.3.

Outdoor Positioning of Robots with Indoor Methods

In [13] Supper et al. used indoor application-specific sensors to drive their so-called "Mathilda" robot in an

urban balcony garden without GNSS reception. They used the ROS package gmapping and Adaptive Monte

Carlo Localization (AMCL) to create a map representing the plants as obstacles and the fence of the balcony

as boundaries and to localize the robot with laser scanners with a probabilistic algorithm. The results showed,

that if no GNSS is available and the position of every obstacle is known beforehand, laser scanners can localize

the robot with an absolute distance error within 198.9mm.

19

3 Fundamentals

In the following section, important preceding topics and tools are explained. This includes the working prin-

ciples of GNSS, SDR, Android, and ROS. The GNSS section gives a brief introduction to satellite-based navi-

gation. The SDR section explains how a television receiver can be used to receive satellite signals, while the

Android section goes into useful tools for robotic use. In the last section ROS, the software suite for robotics

is briefly described.

3.1 GPS

Global Positioning System (GPS) is a satellite-based navigation system founded by the U.S. Department of

Defense in 1973. The goal was to achieve a positioning system for military troops worldwide. In the 1980s,

civilian use was permitted, which led to the navigation system we use today.

Mathematical Background

In [14], Bossert & Bossert describe the working principle of a satellite-based navigation system. In Equa-

tion (3.1) and Equation (3.2), they calculate the position of a receiver based on the propagation delay and

the position of 3 satellites in a two-dimensional plane. The calculations are drastically simplified and do not

account for signal delays, time dilation, or any other disturbance, but they give a good overview.

s0 = (x0, y0) Sat 0 Position

s1 = (x1, y1) Sat 1 Position

s2 = (x2, y2) Sat 2 Position

sn = (xn, yn) Receiver Position

t0, t1, t2 signal arrival times

τ0 signal sent time

c0 speed of light

(3.1)

20

(xn − x0)2 + (yn − y0)2 = (t0 − τ0) · c0
(xn − x1)2 + (yn − y1)2 = (t1 − τ0) · c0
(xn − x2)2 + (yn − y2)2 = (t2 − τ0) · c0

(3.2)

The Equation (3.2) then need to bemerged, e.g., with aNewton approximation, to get the final receiver position

sn.

DGPS

In [15] DGPS is described as an enhancement technology focusing on the augmentation of the received signals

by a "rover" and "base station" pair. The rover moves freely while the base station remains geographically

fixed with a known position. The main improvement this setup gains is the possibility to calculate error terms

corresponding to the atmosphere and other disturbances. This is done by calculating the resulting drift of the

fixed base station and correcting the rover signal by this drift if the base station is near the rover. This allows

for corrections and precision up to the decimeter range.

RTK

While RTK is also a differential GNSS method, it improves the accuracy to be in a centimeter range. This is

achieved by sending "code and carrier measurements" [16] from the base station to the rover. This allows the

rover to fix the phase ambiguities of the incoming signals. This allows the rover to converge to a position. If

a dual-frequency receiver is used, the convergence can be sped up.

NMEA 0183

The National Marine Electronics Association (NMEA) [17] is an organization with the goal of standardizing

protocols for nautical and marine electronics. One of these standards is the NMEA 0183 standard, which

describes electrical signals and communication data between systems. In [18], Langley describes the data

format, which consists of human-readable strings starting with a "$" symbol and a short, two parted identifier

of the transmitted package. The first half of the identifier describes the used satellite system, e.g., GP for GPS

and GA for Galileo. The second half represents the respective package data that follows, e.g., "$GAGGA..."

for a Galileo receiver, which transmits the "GGA"(GPS fixed data) package, which is one of the most used

packages. NMEA 0183 can be parsed by multiple software e.g. Matlab [19].

RTCM SC-104

Radio Technical Commission for Maritime Services (RTCM) is an organization for standardizing protocols for

marine telecommunication. One of their goals is to unify and standardize GNSS correction data. This standard

was called Special Committee (SC)-104. In [11] Heo et al. compared Receiver Independent Exchange Format

21

(RINEX)with RTCM and the different versions of RTCMSC-104 standard. The first versionwith DGPS support

was version 2.0, which focused on pseudo-range and correction data. Heo et al. also wrote that version 2.3 is

still widely used for DGPS or single-base RTK operations. The main drawback, according to Heo et al. is the

inflexibility of this format (lack of L1C or L5 support, Galileo support), version 3.0 was released with Galileo

support. Heo et al. also analyzed the sent packages of RTCM SC-104 version 3.0 data over NTRIP, a network

protocol to distribute GNSS correction data. In RTCM SC-104 version 3.2 Multiple Signal Message (MSM)

support was added, to reduce sent packages.

MSM

In Radio Technical Commission for Maritime Services (RTCM) Special Committee (SC)-104 version 3.2 MSM

support was added. The main benefit is an easier and more flexible way to send Galileo satellite observation

in high precision[20]. The MSM-7 allows for "Transmission of a complete set of RINEX observations with

extended resolution" (see [20] and RTCM STANDARD 10403.3), which allows post-processing software to be

more aligned with RINEX version 3.0 data, simplifying the data handling.

NTRIP

Networked Transport of RTCM via Internet Protocol (NTRIP) was developed by the German Bundesamt für

Kartographie und Geodäsie (BKG)[21] for the transport of RTCM data over a network. The idea was to

develop a method to transport GNSS data over Hypertext Transfer Protocol (HTTP) streaming standard while

being open source and non-proprietary. The protocol defines three roles of communication partners. The

NTRIP caster, the actual HTTP like server, accepts both NTRIP server and client requests and handles the

transmission of the data. The NTRIP server, which publishes data to a specified topic, so-called "mountpoints",

for clients to receive them and clients, which subscribe to these mountpoints.

YCCaster - NTRIP Caster

In [22] the developers of Hedgehack developed an application that receives, stores, and transmits NTRIP data.

This type of server is called an NTRIP Caster. A caster is needed as a middleman between the rover and the

calculation unit. The developers allow the use of the caster for personal and academic use.

APOS

The Austrian Positioning Service (APOS) is a service of the Austrian Bundesamt für Eich- und Vermes-

sungswesen (BEV) [23] which offers RTCM correction streams. The service is sold commercially as well as

free of charge for research or farming applications. The BEV offers an NTRIP caster with HTTP-basic authen-

tication for user management with different mountpoints in different price ranges, depending on the needed

accuracy and time of use. The data for these mountpoints are calculated based on fixed placed GNSS receivers

22

and the coordinates the client needs to initially send at the beginning of the connection. This technique is

called Virtual Reference Station (VRS).

RTKLIB

rtklib is open-source software written by Takasu et al. [24] for precise positioning with generic GNSS re-

ceivers. The software became the de facto standard for open-source projects with the requirement of high-

precision positioning. Multiple other applications use this software as a backbone e.g. see Section 2.2. The

software has two sets of software, one with Graphical User Interface (GUI) and one specifically designed for

headless, server applications. The software implements different solving algorithms for positioning with dif-

ferent precision (see Listing 3.1). This is archived with model-based correction based on Troposphere and

Ionosphere error models.

Listing 3.1: RTKLIB Quality Table (taken from [25])

1 1: Fixed, solution by carrier-based relative positioning and the

2 integer ambiguity is properly resolved.

3 2: Float, solution by carrier-based relative positioning but the

4 integer ambiguity is not resolved.

5 3: Reserved

6 4: DGPS, solution by code-based DGPS solutions or single point

7 positioning with SBAS corrections

8 5: Single, solution by single-point positioning

GNSS-SDR

GNSS Software Defined Receiver (GNSS-SDR) is a software developed by Fernandez et al. [26] and is an open-

source software for exploring GNSS signals and all processing stages needed to calculate an accurate position

(see Section 2.1). The software is sectioned into different modules that can be controlled and configured

individually and swapped with different modules. This allows for custom modules as well as for a variety of

different configurations. Multiple different input modules are available, one of which is a module to interface

with SDR. The software is written in C++, which allows for cross-compilation.

3.2 SDR

Software Defined Radio (SDR) is a Radio Frequency (RF) receiver that converts RF signals into In-Phase &

Quadrature (I/Q) signals. The use cases range from television reception to satellite communication, which

mostly lies in the capability to control the receiver with software, hence the name Software Defined Radio

(SDR).

23

I/Q Signals

According to Franks [27, p. 82] and [27, p. 196] every signal can be represented in I/Q form as shown in Equa-

tion (3.3). The I component of the signal is the cos term on the left side and the Q component is represented

by the right part.

A(t) · cos(2πft+ θ(t)) = cos(2πft) ·A(t) · θ(t)− sin(2πft) ·A(t) · θ(t) (3.3)

According to different sources([28], [29] and [30]) the main benefit of I/Q signals is the easy post-processing of

the signal while still having phase information of the signal. This is needed because almost all RF modulations

rely on phase information. Especially for phase-dependent measurements, like GNSS signals or Quadrature

Amplitude Modulation (QAM) signals, this information is crucial. With this representation, multiple modu-

lation techniques can be decoded.

rtl-sdr Software

Osmocom developed software called rtl-sdr[31] to interface with DVB-T USB dongles to receive RF signals.

These USB devices are based on the RTL2832U[32] microchip. The software became the de facto standard

for hobbyists in amateur radio. It allows the user to send the received signals to different applications over

Transmission Control Protocol (TCP) or sockets as well as to control the peripheral.

RTL-SDR V3 Dongle

The RTL-SDR V3 USB peripheral[33] is a successor of DVB-T sticks explicitly designed with amateur radio

applications in mind. The two biggest improvements compared with other systems are the integrated Bias-

T as well as the Temperature Compensated Crystal Oscillator (TXCO). With this addition connecting active

antennas becamemuch easier as well as receiving time-critical signals became possible (see Section 2.1).

3.3 Android Tools and Libraries

Android as an operating system for smartphones comes with a variety of libraries from Google and third-

party developers. To debug applications also multiple tools for the platform exist. Most smartphones come

with multiple sensors which can be utilized by the Android Application Programming Interface (API). One

of these sensors is a multiple sources GNSS receiver which got raw data API specifically for precision and

research-related applications, as in Section 2.2 ([7]) described.

24

Google Measurement Tools

In [34] google developed a test framework for GNSS measurement analysis for Android devices. The repos-

itory consists of an Android application called GNSSLogger and NMEAUtils which are written in Matlab.

The Matlab scripts calculate multiple statistics given an NMEA file, which can be generated in the Android

app.

Termux

Termux [35] is a Linux simulator for Android which supports different distributions and allows for cross-

compilation of software. It simulates a Linux shell without rooting the phone, and therefore without voiding

the warranty of the smartphone. All requirements can be downloaded and are managed by Advanced Pack-

aging Tool (APT), the software managing tool of Debian-based distributions. To specify which distribution is

used, PRoot Distro was written to simplify the setup process.

PRoot Distro

The software PRoot Distro [36] allows the installation of custom kernel and Linux distributions over the com-

mand line. This is needed because most software packages have dependencies and need a specific distribution

to work properly.

GoGPS

GoGPS [37] is an open-source project to analyze GNSS signals based on Matlab and on Java[38]. While the

Matlab version is still being developed, the Java version of this softwarewas abandoned by the developers. The

Java version was a key component of the Android software GeolocPVT (see Section 2.2) and was integrable

into an Android app.

Battery Historian

Battery Historian [39] is an application written by Google to analyze the power consumption of running apps

on Android based on the system debug report. The application is started with docker and exposes a HTTP

website on a specified TCP port. On the website, all running applications with processor utilization and power

consumption can be analyzed. All permissions and peripheral usage are shown, as well as network perfor-

mance. This allows Android developers to experiment and improve their software and to locate problems

with other simultaneously running apps.

3.4 ROS

Robot Operating System (ROS) is a software ecosystem written by Quigley et al. [40] to allow developers to

write decentralized software for robots. The communications between modules, the building block for robot

25

operations, is done via a publisher-subscriber pattern managed by so-called "Topics". ROS became the de-

facto standard for academic robots because of the support in the community and its open-source nature. The

tutorials for newcomers are easy to follow, which lowers the initial hurdle for developers.

REP

On the ROS website [41] the developers declare a format for standardization after the model of Pythons PEP,

the ROS Enhancement Proposals (REP). This standardization is needed because ROS is based on a module

written by multiple developers and without a clear interface definition and data representation the inter-

working of these modules wouldn’t be possible. The most important REPs for data handling are REP103 and

REP105.

REP 103

REP103[42] with the title "Standard Units of Measure and Coordinate Conventions" defines all units and

coordinate conventions as the name implies. This is important because all sensors, e.g. for localization, need

to have a coordinate reference system to define the position of the sensor on the robot itself. Also, the way

to describe the variance and covariance of a sensor is defined.

REP 105

In REP105[43] with the title "Coordinate Frames for Mobile Platforms" the way how to coordinate frames

need to be specified is defined. This is needed, to ensure the correct position transformation of parts of the

robot to their position regarding the world map or the start of operation.

Protobuf

Protobuf is used for the serialization and deserialization of data. The library comes with a code generator

binary, which generates classes in a selected language (e.g. C++ or Java) given an abstract message format.

Multiple other open-source projects use Protobuf for data transfer out of their software to give developers an

easy way to extend and use the library.

robot localization

In [44] Moore and Stouch presented a ROS module which utilizes a Extended Kalman Filter (EKF) for sensor

fusion to allow mobile robots to estimate a better overall state given multiple different data sources. They

showed that sensor fusion of IMU and GNSS data leads to better localization of the robot, hence the name of

the ROS package ros_localization.

26

Kalman Filter

In [45] Kalman described a state estimator that uses the probability distribution of different (sensor) signals to

estimate the correct values. According to [46] the state estimator works, because values with a lower differ-

ence between them have a smaller standard deviation, indicating a better observation of the actual measured

value. The whole filter relies on an iterative process to constantly improve the estimated state of the system.

The whole filter utilizes five key algorithms to archive its functionality. For a more detailed explanation, see

[46].

Extended Kalman Filter An Extended Kalman Filter (EKF) is a nonlinear version of a Kalman filter [47]

according to Ribeiro. The extended version linearizes the inputs to work even without linear inputs. This is

needed because GNSS signals typically are of non-linear nature.

27

4 Proposed System

In this chapter, the measurement setup for accuracy and power, the different scenarios, and the underlying

components are discussed and explained. In the scenario overview, the full name of each scenario is explained

and then shortened for easier recognition throughout the thesis. Every scenario Is then explained in more

detail with a block diagram as overview and code snippets for the essential parts of the system.

4.1 Setup Cost Analysis

For the cost analysis, multiple scenarios were assumed. In Table 4.1 the different scenarios are evaluated

regarding cost. The costs are taken from Geizhals, a price comparison website, and Refurbed, a website

for refurbished devices. The smartphone selection was mainly driven by my personal daily driver phone

(Oneplus) as well as a modern yet affordable Samsung one with a dual frequency GNSS receiver. The RTL-SDR

V3 can be bought cheaper from a reseller but might be a replica or fake one so we used a trusted source.

The reference system consists of a ZED-F9P RTK and a u-blox ANN-MB-00 antenna, which is the minimum

hardware to receive GNSS signals. The cost of this system doesn’t include the extra time and hardware to

integrate the module into a system, nor does it include a computer platform to use or relay the data.

28

Scenario A Scenario B Scenario C Scenario D Scenario E Reference System

Oneplus 6T

176,99€
✓ ✓

Samsung Galaxy S20 Plus

Refurbed: 290,99€

(New: 549,99€)

✓ ✓ ✓

RTL-SDR V3

59,99€
✓

ZED-F9P RTK

209,99€
✓

u blox ANN-MB-00

56,40€
✓ ✓

APOS Subscription

Free

(200€ per month, if not for farming or academic use)

✓ ✓

Total Cost 176,99€ 290,99€ 293,38€ 290,99€ 290,99€ 266.39€

Table 4.1: Cost Matrix

Measurement Setup

For the measurements of all scenarios described in Section 4.2, the smartphones were placed alone on a hard

surface, and the measurement was started. The weather conditions were nearly the same on both locations

and days. The first measurement location was a tree stump inside my garden; the second was on the roof of

the electrical engineering faculty at TU Wien.

Localization Accuracy

For accuracy, the tool "measurement tools" from Google [34] (see Section 3.3) was used. Because of the

different origins of the NMEA files, only the Matlab files from the repository were adapted and used. The

NMEA 0183 file format was selected as a comparison format because it has a lot of information for post-

processing while still being easy to collect from the different platforms. The Matlab scripts were uploaded to

Matlab Online[48] for easier file handling between systems.

4.2 Scenario Overview

The following sections describe the multiple scenarios, and important implementation details are discussed.

The scenarios were labeled to improve readability. The labels are:

• Scenario A: Oneplus GNSS data via ROS Mobile to ROS (see Figure 4.1)

• Scenario B: Samsung GNSS data via ROS Mobile to ROS (see Figure 4.1)

29

• Scenario C: Oneplus GNSS-SDR with SDR and active antenna to ROS (see Figure 4.2)

• Scenario D: Samsung RTCM stream via rtkcrv to ROS (see Figure 4.3)

• Scenario E: Samsung RTCM stream via rtkcrv to ROS with robot_localization module with EKF (see

Figure 4.4)

4.3 Scenario A and B

In Figure 4.1, both Scenario A and B are depicted. They share the same experimental setup, only with different

phones as the main component. On the smartphone, the modified version of ROSMobile (see Section 4.3) runs

and sends GNSS and IMU data via TCP to the ROS master. A NMEA file was saved for comparison with other

setups. This was done with the app GNSSLogger described in Section 3.3.

Figure 4.1: Scenario A and B: Overview

ROS Mobile

ROSMobile, as described in Section 2.3, is an Android app for communication with a ROS robot. It builds upon

ROSJava, a ROS interface, and implementation to interact with the ROS framework in the Java programming

language. This is needed because ROS is written in C++ and Python, while Android only supports Java.

The app was developed with easy expandability in mind. The developers created a tutorial on how to create

new so-called "widgets". During the development of the widgets, both REP 103 (see Section 3.4) and REP

105 (see Section 3.4) were consolidated for correct unit handling and data creation. To ensure the correct

interoperability with other ROS modules, e.g., the robot_localization module, it was needed to comply with

these standards.

30

4.3.0.1 Custom Widget - GNSS Sender

To extract the sensor data for GNSS from the Android API, a custom ROS Mobile widget was created. The

widget was written in Java and added to the existing source code inside a private git branch. The main

challenge, the interfacing, and networking with ROS, was already solved by the creators of ROS Mobile,

which is why this framework was chosen. The main task to transfer GNSS data from the smartphone to the

robot was to register a "LocationListener", an Android API defined Listener, and to convert the resulting data

into a ROS message, both shown in Listing 4.1.

Listing 4.1: Code Snippet GNSS Widget

9 public void onLocationChanged(Location location) {

10 GPSSenderData data = new GPSSenderData(location.getLatitude(), location.

getLongitude(), location.getAltitude(), location.getAccuracy());

11 data.setTopic(topic);

12 rosDomain.publishData(data);

13 }

14 ...

15 public Message toRosMessage(Publisher<Message> publisher, BaseEntity widget) {

16 NavSatFix message = (NavSatFix) publisher.newMessage();

17 message.setLatitude(this.latitude);

18 message.setAltitude(this.altitude);

19 message.setLongitude(this.longitude);

20 message.getStatus().setStatus(NavSatStatus.STATUS_FIX);

21 message.getStatus().setService(NavSatStatus.SERVICE_GPS);

22

23 message.setPositionCovarianceType(NavSatFix.COVARIANCE_TYPE_APPROXIMATED);

24 double covariance = deviation*deviation;

25 double[] tmpCov = {covariance,0,0, 0,covariance,0, 0,0,covariance};

26 message.setPositionCovariance(tmpCov);

27 ...

4.3.0.2 Custom Widget - IMU Sender

For sensor fusion and to utilizemultiple sensors of theAndroid system, an IMU senderwidgetwas also created.

The framework ROS Mobile was already multithreaded, which made the parallel execution of both widgets

easier. The ROS IMU message consists of three different Android sensors, an accelerometer, a rotation sensor,

and a gyroscope, all with different refresh rates, which made the data flow handling difficult. This was solved

by only sending a ROS IMU message when all data was available, discarding all other data if a sensor has a

much higher refresh rate. To mitigate this, the same sensor delay was chosen for all sensors. Fortunately,

the Android API already comes with functions to calculate vectors and quaternions, simplifying the data

31

conversion immensely. The code snippet in Listing 4.2 provides a brief overview of the code.

Listing 4.2: Code Snippet IMU Widget

1 ...

2 mSensorManager = (SensorManager) getContext()

3 .getSystemService(Context.SENSOR_SERVICE);

4 Sensor mSensorAcc = mSensorManager

5 .getDefaultSensor(Sensor.TYPE_ACCELEROMETER);

6 Sensor mSensorRot = mSensorManager

7 .getDefaultSensor(Sensor.TYPE_ROTATION_VECTOR);

8 Sensor mSensorGyr = mSensorManager

9 .getDefaultSensor(Sensor.TYPE_GYROSCOPE);

10

11 mSensorManager.registerListener(imuEventListener, mSensorAcc,

12 SensorManager.SENSOR_DELAY_NORMAL);

13

14 mSensorManager.registerListener(imuEventListener, mSensorRot,

15 SensorManager.SENSOR_DELAY_NORMAL);

16

17 mSensorManager.registerListener(imuEventListener, mSensorGyr,

18 SensorManager.SENSOR_DELAY_NORMAL);

19

20 ...

21 public boolean readyToSend(){

22 return gyro.readyToSend() && rot.readyToSend()&& acc.readyToSend();

23 }

24 ...

25 public Message toRosMessage(Publisher<Message> publisher, BaseEntity widget) {

26 IMUSenderEntity senderWidget = (IMUSenderEntity) widget;

27

28 Imu message = (Imu) publisher.newMessage();

29 message.setAngularVelocity(gyro.getVector()

30 .toVector3Message(message.getAngularVelocity()));

31 message.setOrientation(rot.getQuaternion()

32 .toQuaternionMessage(message.getOrientation()));

33 message.setLinearAcceleration(acc.getVector()

34 .toVector3Message(message.getLinearAcceleration()));

35 ...

32

4.4 Scenario C

In Figure 4.2, only the IMU data is sent to the robot via ROS Mobile, while the GNSS information is received

with an active antenna, an SDR, and GNSS-SDR. The android smartphone uses a driver called SDR driver from

Signalware Ltd [49] to communicate with the SDR and to send the received I/Q (see Section 3.2) data via TCP

to GNSS-SDR. The software stack then calculates the estimated position and sends it to ROS over a custom,

with a protobuf serialized data format. There is a particular ROS module (see Section 4.4) that decodes and

deserializes the message and publishes the location to the correct ROS topic.

Figure 4.2: Scenario C: Overview

Android Ubuntu

For GNSS-SDR to compile properly, a Ubuntu system was needed. This is caused by the many different de-

pendencies of libraries to compile the software. This led to the usage of termux (see Section 3.3), a Linux

distribution command shell simulator. This allowed the use of APT, a package manager for Debian-based

distributions, to install the compiler and all dependencies for arm64, the Central Processing Unit (CPU) archi-

tecture of most Android smartphones. To ensure the correct distribution was configured, PRoot Distro (also

see Section 3.3) was used to create a Ubuntu 20.04 system needed for GNSS-SDR. Unfortunately, drivers for

Universal Serial Bus (USB) peripherals are not supported inside the simulated Linux environment, which led

to the need for a network-enabled Android rtl-sdr driver.

33

Android rtl-sdr driver

rtl_tcp_andro- [50] is an Android application to handle the interfacing with USB-based SDR devices and

sending the data over TCP to another application. This app was chosen because it uses the rtl_tcp data

format, widely supported by GNSS applications, and is compatible with a GNSS-SDR input module. The driver

and TCP connection can be started from the termux command line with a command depicted in Listing 4.3.

The software registers the "iqsrc://" protocol to start with the driver’s "Intent", an Android background task.

The port must match the configuration of GNSS-SDR, and the frequency must be set to 1 575 420 000Hz =

1.575 42GHz the frequency of the L1C band of GPS. The sampling rate is set to 2MHz, which is recommended

in the tutorial of GNSS-SDR [4].

Listing 4.3: driver start command

1 am start "iqsrc://-a 127.0.0.1 -p 14423 -f 1575420000 -g 0 -s 2000000"

Antenna

In [2, p. 95], Willegger concluded that "The highest accuracy was gained with the Taoglas A.80 antenna and

the second best was with the µ-blox ANN-MB antenna." Due to the significant price difference between the

two antennas, the cheaper one, the µ-Block ANN-MB was chosen. The antenna is an active one, which led to

the need for a bias tee, a power supply, by offsetting the RF signal by an Direct Current (DC) offset. This led

to the use of the RTL-SDR V3, which comes with an integrated bias tee.

GNSS SDR

The software GNSS-SDR was downloaded into the termux environment and all dependencies were installed.

Then the software was compiled which took approx. 30min. The software then was configured with the

configuration of the example for rtl_tcp input. A small snippet of the configuration can be seen in List-

ing 4.4 (see full config in Listing A.2). The "SIGNAL_SOURCE" module supports the RtlTcp signals sent by

the rtl_tcp_andro- software, which sends the I/Q signals received as complex values via TCP on port 14423

(must be the same as defined in Listing 4.3) over the network.

Listing 4.4: Portion of GNSS-SDR Configuration

1 ;######### SIGNAL_SOURCE CONFIG ############

2 SignalSource.implementation=RtlTcp_Signal_Source

3 SignalSource.address=127.0.0.1

4 SignalSource.port=14423

After a successful sanity test on a Linux machine with the RTL-SDR V3 and active GNSS antenna directly

connected to it, a way to extract the data and send them to ROS was needed. Fortunately, GNSS-SDR defines

34

several interfaces to interact with other software. The output module, called PVT, of the software stack defines

a Protobuf interface which allows generating software to receive with the help of a code generator (Protobuf

definition file can be seen in Listing 4.5). The last piece was the data transfer from this interface to ROS. This

was done in a custom ROS module written explicitly for this task.

Custom GNSS-SDR ROS module - Protobuf deserializer

The custom ROS module was necessary because GNSS-SDR only defines files and GNSS receiver-related

streams as output. Only the Protobuf interface can quickly receive the data in another application. The

Protobuf definition file snippet can be seen in Listing 4.5.

Listing 4.5: Portion of GNSS-SDR Protobuf(included in [4])

1 double latitude = 17; // Latitude, in deg. Positive: North

2 double longitude = 18; // Longitude, in deg. Positive: East

3 double height = 19; // Height, in m

With the help of the Protobuf code generator (see Section 3.4), a message class can be generated in C++ code.

This code, in combination with the Protobuf library, can then be included in the compilation process of the

ROS module to allow to receive the GNSS-SDR data over TCP. The GNSS-SDR data is then available and can

be processed and sent as a ROS message via ROS topic. A small code snippet of the reception and converting

can be seen in Listing 4.6. The class "gnss_sdr::MonitorPvt gnss_msg;" is the auto-generated Protobuf class

and "sensor_msgs::NavSatFix ros_msg;" is the outgoing ROS message.

Listing 4.6: Code Snippet GNSS-SDR to ROS Converter

1 gnss_sdr::MonitorPvt gnss_msg{};

2 gnss_msg.ParseFromString(message_);

3 sensor_msgs::NavSatFix ros_msg;

4

5 ros_msg.latitude = gnss_msg.latitude();

6 ros_msg.longitude = gnss_msg.longitude();

7 ros_msg.altitude = gnss_msg.height();

8 ros_msg.position_covariance = {

9 gnss_msg.cov_xx(), gnss_msg.cov_xy(), gnss_msg.cov_zx(),

10 gnss_msg.cov_xy(), gnss_msg.cov_yy(), gnss_msg.cov_yz(),

11 gnss_msg.cov_zx(), gnss_msg.cov_yz(), gnss_msg.cov_zz()};

4.5 Scenario D

In Figure 4.3, a different approach was taken by streaming raw GNSS observation data via RTCM Converter

to a custom ROS module called rtkrcv_ros (see Section 2.2). The Android app connects to a NTRIP caster via

35

TCP and acts as a NTRIP server. The ROS module connects to this caster as the client and to two different

casters for correction data as well as ephemeris data (see Section 5.2.1). The module then calculates a location

estimation based on all the data received from the streams with a certain quality/uncertainty (see Listing 3.1).

The result is then published as ROS topic for other modules to be used.

Because of some missing RTCM MSM data on the Oneplus smartphone, only the Samsung smartphone was

usable for this scenario (see Section 5.2.1).

Figure 4.3: Scenario D: Overview

RTCM Streamer

In [9], Privat et al. present an Android app that uses the introduced raw GNSS functionality of Android (see

Section 2.2 and Section 2.2) to sent raw GNSS observations over NTRIP to a caster. In Scenario D, this caster

was the self-hosted one called YCCaster. The application needs to be configured with the casters IP and port

as well as the used mountpoint. The app acts as a server in the NTRIP standard because it publishes data to

a mountpoint.

Other NTRIP Mountpoints

Because the rtklib algorithm needs RTK correction data, the Austrian Positioning Service (APOS) mountpoint

was added. An estimate must be sent at connection time to get correction data valid for the rover’s position to

allow APOS to calculate the correct correction data. This is configured in the configuration of the rtkcrv_ros

module. Also, a third NTRIP mountpoint with ephemeris data was added. This data describes the positioning

of the satellites, which is needed to calculate the position of the rover based on signal run-time.

36

YCCaster

Most NTRIP casters are only commercially available, which was not feasible for a low-cost robot. Other

casters only allow sending production data and no debugging or developing clients. If a client makes too

many reconnects, it gets banned from the caster, which is also not ideal. Hosting the caster on a private

server with free software is the best possibility. This is doable with YCCaster[22], which can be configured to

be password protected if the robot must connect from an external network. The free version only supports

limited simultaneous connections, which doesn’t impact a single demonstration robot.

rtkcrv ROS module

With rtkcrv_ros Ferreira et al. [10](also see Section 2.2) made the librtk tool suite usable for ROS. This mod-

ified version of the binary allows the output to be a ROS topic. The configuration only differs in the output

parameters, as seen in Listing 4.7.

Listing 4.7: rtkcrv config snippet

1 inpstr1-type =ntripcli

2 inpstr2-type =ntripcli

3 inpstr3-type =ntripcli

4 inpstr1-path =user:pass@localhost:2101/MY_MOUNTPOINT

5 inpstr2-path =APOS_USER:APOS_PW@217.13.180.215:2201/APOS_Standard

6 inpstr3-path =user@pass@ntrip.use-snip.com/RTCM3EPH

7 inpstr1-format =rtcm3

8 inpstr2-format =rtcm3

9 inpstr3-format =rtcm3

10 inpstr2-nmeareq =latlon

11 inpstr2-nmealat =48.210033

12 inpstr2-nmealon =16.363449

13 outstr1-type =ros # CUSTOM OUTPUT TYPE

14 outstr2-type =file

15 outstr1-path =gps # ROS TOPIC

16 outstr2-path =rtkrcv.nmea

17 outstr1-format =vel_enu # CUSTOM OUTPUT FORMAT

18 outstr2-format =nmea

4.6 Scenario E

In Figure 4.4, scenario D was copied and expanded by a robot_localization ROS module which performs

signal filtering by utilizing an EKF and the IMU data from the phone. For the correct data format, the rtkcrv

module wasmodified to generate NMEAmessages as output, and amodule, was added to convert these NMEA

37

messages into ROS GPS-Fix messages consumable by the robot_localization module.

Figure 4.4: Scenario E: Overview

Customized rtkcrv ROS module

Because robot_localization only accepts the NavSat_Fix message format and rtkcrv_ros only supports a cus-

tom output message, the code was modified, and a new ROS module was added to accommodate these

discrepancies. The new format is from the type "NMEA_Sentence" which is published on the ROS topic

"nmea_sentence" which then gets consumed by the added ROS module nmea_navsat_fix. The new config for

the modified module can be seen in Listing 4.8 (other fields are the same as Listing 4.7).

Listing 4.8: Custom parameter for rtkcrv

1 outstr1-type =ros # ROS OUTPUT TYPE

2 outstr1-path =nmea_sentence # ROS TOPIC

3 outstr1-format =nmea_psv # MY CUSTOM ROS FORMAT

ROS NMEA driver

After the newly generated output of the rtkcrv module is from type "NMEA_SENTENCE", a NMEA parser

was needed to convert the data into a NavSat_Fix, needed by the robot_localization module. This module

only requires the input and output topic specified during boot, shown in Listing A.1.

ROS Localization

The last step in the data flow is the filtering step, which is performed by the robot_localization module written

byMoore et al. [44] (also see Section 3.4). This ROS package consists of multiple modules. A module for GNSS

38

filtering and for sensor fusion. These modules need three different ROS messages as inputs, IMU data, Odom

data, and GNSS data. For the configuration of these modules, the example file "dual_ekf_navsat_example.yml"

was modified and used, as well as the Odom data simulated (see Listing A.1). The other two inputs came from

the ROSMobile app and from the nmea_navsat_fixmodule. The robot_localization then estimates the position

and the results are published at a ROS topic for further use.

39

5 Results and Discussion

In this chapter, the scenarios’ results will be discussed, and some problems and difficulties during the develop-

ment and implementation phase are summarized. In the first part, the results of every scenario are analyzed

and then compared. In the discussion section, a summary of the results is given, and obstacles and failures

are shortly described.

5.1 Results

This section evaluates and compares the measurement results of the five different scenarios. All scenarios

consist of multiple figures representing various errors and error distributions, while other figures show power

consumption and the position of the measurement in relation to a satellite map.

5.1.1 Scenario A and B

As in Figure 4.1 depicted, the measurement setup of Scenario A and B is the same, only on two separate

phones, for comparison both measurements were taken at the same time to ensure the optimal comparability

of both collected data sets. For this, the software GNSS Logger was started simultaneously, and an NMEA

file was created. This file was processed with the Google Measurement Tools suite (see Section 3.3) multiple

graphics were created. For a better visual representation of the data, a map with both data sets was also gen-

erated; see Figure 5.5.

5.1.1.1 Secenario A

Figure 5.1 shows the Longitudinal and Latitudinal error of all measurement points to the actual position.

All measurement points are temporally separated by the measurement frequency of the Android phone in

connection with other delays in the measurement chain. The curve of the line indicates a drift of the position

in both latitude and longitude directions.

40

Figure 5.1: Oneplus Static

Figure 5.2 shows the Cumulative distribution function (CDF) of the error, which indicates A) an offset to the

true position, visible at the immediate jump on the left-hand side at approx. 3.65m. The noticeable step

at approx. 4.5m shows a stable phase during the measurements. 50% of all measurements, also called the

Circular error probable (CEP), are within a range of 5.02m. 95% of all measurements are within a radius of

5.45m.

Figure 5.2: Oneplus Static CDF

Table 5.1 shows the power consumption of the Oneplus 6T smartphone during GNSS measurement. The

power consumption was extracted from the Android debug report and analyzed with battery historian (see

Section 3.3). Because of fluctuation, the average values during the measurement were taken.

avg. Voltage avg. Discharge avg. Power

4.07V 875mA 3.561W

Table 5.1: Scenario A Power Consumption

In Table 5.2, the mean and standard deviation of the longitudinal and latitudinal signals in degrees and the

41

mean and standard deviation of the distance error in meters can be seen. The horizontal components of the

distance error are shown, as well as the absolute distance error marked as Dist in the table. The mean distance

error of 4.82m and a standard deviation of 0.513m show a subpar accuracy of scenario A.

Lon/Lat/Dist Mean[deg] Std[deg] Mean[m] Std[m]

Lat 48.251579 3.921e-06 4.673 0.436

Lon 16.349675 1.132e-05 0.898 0.841

Dist X X 4.824 0.513

Table 5.2: Statistical measures of Longitudinal and Latitudinal measurements

5.1.1.2 Scenario B

Figure 5.3 shows the Longitudinal and Latitudinal error of all measurement points to the actual position. The

measurement starts not far from the correct position but drifts off by multiple meters over time. The path of

the measurements follows roughly a line, which indicates bad longtime behavior.

Figure 5.3: Samsung Static

In Figure 5.4, the CDF shows gradually increasing error. This continuously increasing error without steps

indicates no stable position during the measurement. 50% of all measurement points are within a 2.39m

radius. 95% are in a radius of 3.26m and the biggest error recorded was 3.34m off the target.

42

Figure 5.4: Samsung Static CDF

Table 5.3 shows the measured power consumption. The measuring procedure was identical to the measure-

ment of Table 5.1, which occurred simultaneously. The extracted debug report was also analyzed with battery

historian (see Section 3.3).

avg. Voltage avg. Discharge avg. Power

4.1V 1074mA 4.403W

Table 5.3: Scenario B Power Consumption

In Table 5.4, the mean and standard deviation of the distance error and the longitudinal and latitudinal error

can be seen. The distance error means of 2.15mwith a standard deviation of 0.947m compared with Table 5.2

of scenario A shows a better absolute accuracy, but worse repeatability.

Lon/Lat/Dist Mean[deg] Std[deg] Mean[m] Std[m]

Lat 48.251553 7.258190e-06 1.893 0.807

Lon 16.349676 7.128428e-06 1.006 0.529

Dist X X 2.152 0.947

Table 5.4: Statistical measures of Longitudinal and Latitudinal measurements

In Figure 5.5, both Figure 5.1 and Figure 5.3 are plotted on a satellite photograph of the position. The small

green dot at the start of the red line was the actual position of both smartphones. The difference in accuracy

between scenario A (blue), the Oneplus phone, and scenario B (red), the Samsung phone, is clearly visible.

While red starts at the correct location and drifts away over time, blue doesn’t even find the correct position

at all.

43

Figure 5.5: Static Map

5.1.2 Scenario C

In Figure 5.6 the localization error of scenario C is plotted. The measurement points are drifting over time in

a circular path, which indicates a semi-stable state of error. The distance between the actual position and the

start of the detected points indicate a constant offset, which if the signal always behaves this way, could be

calculated.

Figure 5.6: SDR Static

Figure 5.7 shows the CDF of the horizontal error of scenario C. The first 20% of signals are at least 1.5m

away, which indicates a constant offset to the target. 50% of all signals are inside a radius of 1.97m. If a

constant correction of 1.5m towards the original target would be added, 50% of all signals would be inside

a radius of 0.47m.

44

Figure 5.7: SDR Static CDF

Figure 5.8 shows the same image as Figure 5.5, but in addition with a yellow path, the measurements of

Scenario C. This allows for better visualization and comparison with the other scenarios. The yellow line

represents the new signal while the blue signal is the Oneplus smartphone (Scenario A) and the red signal

is the Samsung smartphone (Scenario B). The biggest difference between the previously discussed scenarios

and Scenario C is the circular path of Scenario C. This curl could allow for first mitigation with a constant

offset to the signal as described prior.

Figure 5.8: Static Map with RTCM data

In Table 5.5 the power consumption of the Android app can be seen. The main difference between Sce-

nario A and C (both measured on the Oneplus smartphone) is the app and the attached USB peripheral. The

measuring setup was the same as scenario A, so the debug report was extracted and analyzed with battery

historian.

45

avg. Voltage avg. Discharge avg. Power

3.37V 1239mA 4.175W

Table 5.5: Scenario C Android Power Consumption

For the energy consumption of the RTL-SDR V3 a USB power meter was used. The AVHzY CT-2 was selected

because it can handle USB communication during the measurement and for its availability(it was already at

the institute and ready to use). During the first measurements, it came apparent that the RTL-SDR V3 needs

so much power that a simultaneous measurement and function test on the smartphone itself isn’t feasible (see

Section 5.2.1). So for the power measurement, a PC USB port was used. The result of the measurement can

be seen in Figure 5.9.

Figure 5.9: energy consumption on vs off

Figure 5.9 clearly shows the different energy consumption during receiving vs the idle state. On the left side,

a GNSS signal is measured with an active antenna, which also uses power fed by the internal bias tee of the

RTL-SDR. On the right side of the image, the idle power consumption can be seen. The interesting part of

the measurement is the significant voltage drop of 0.08V from 4.97V to 4.89V. Also the current draw of

0.31A during receiving to 0.07A during idle is significant. This results in a power draw of 1.516W during

receiving and an idle power draw of 0.348W.

In Table 5.6 the mean and standard deviation in meters and degrees of the positioning error can be seen. A

mean of 2.015m and a standard deviation of 0.515m improves compared to scenario B the standard deviation

with a factor of 2.

46

Lon/Lat/Dist Mean[deg] Std[deg] Mean[m] Std[m]

Lat 48.251528 5.118886e-06 -0.917 0.569

Lon 16.349686 6.392644e-06 1.715 0.475

Dist X X 2.015 0.515

Table 5.6: Statistical measures of Longitudinal and Latitudinal measurements

5.1.3 Scenario D

For scenario D a completely different approach was selected, see Figure 4.3. The processing of the GNSS sig-

nals was transferred to the ROS system, which was necessary because of the complexity of all components.

On Android, an RTCM Streamer app was used, which sends all GNSS signals as NMEA messages over NTRIP

to a caster. This signal then gets pulled by another application in combination with APOS correction streams

and ephemeris streams.

In Figure 5.10 the horizontal error is plotted. The start of the measurement is around 5m away. The signal

converges after some time to the correct position. This behavior was expected, because the librtk library

needs some time to switch from only Single-Point Positioning (SPS) to float or fix, all three states of the RTK

algorithm (see Section 3.1). This was also verified in Figure 5.13 and led to Section 5.1.3.1. The signals then

curl around the correct position, indicating a switch to float.

Figure 5.10: RTCM Static

Figure 5.11 shows the CDF of the signals error. The 50% mark at 1.08m and the 67% mark at 1.63m com-

pared with the worst mark at 7.08m shows the quality difference between SPS mode and RTK mode.

47

Figure 5.11: RTCM Static CDF

In Figure 5.12 the previously plotted graph (see Figure 5.10) can be seen drawn on a satellite image. The

smartphone was placed on a bench at the new electrical engineering building. There the initial SPS position

is clearly visible as random and spare placed measurement points. This observation led to the analysis of the

signal quality as shown in Figure 5.13.

Figure 5.12: RTCM Map

Figure 5.13 shows the quality of the signals the rtklib algorithm calculated for each measurement point (see

Section 3.1). The left bar indicates the initial state of the output data with only SPS precision, comparable with

the signal quality of scenario B. After 16-17 measurements, the algorithm converges and finds solutions with

the APOS correction data, indicated by the other two bars. Most of the solutions only archive float quality with

sparse fix quality signals in between, which could indicate a bad antenna quality. Because only the float and

fix signals should be analyzed, the SPS signals were removed with a Matlab script, see Section 5.1.3.1.

48

Figure 5.13: RTCM Static GNSS Quality

5.1.3.1 Initial Setup Inaccuracy Mitigation

After identifying the signal quality difference and the effect on the overall quality of the SPS signals, a Matlab

script was written to only analyze the remaining signals. This improved the maximal error significantly.

In Figure 5.14 only float and fix quality signals are plotted. In comparison with Figure 5.10 the measured

points drift in a circle over time, which indicates a convergence of the rtk algorithm. Because the previous

analysis showed very few "fix" signals and more "float" signals, the algorithm tries to converge most of the

time.

Figure 5.14: RTCM Static no SPS signals

In Figure 5.15 the CDF of the filtered signal can be seen. It clearly shows an improvement of the worst

error of 2.53m compared with Figure 5.11 which was 7.08m. The 50% error also improves marginally to

1.01m.

49

Figure 5.15: RTCM Static No SPS signals CDF

A power consumption measurement was done but because a constant USB connection was necessary, it is

not conclusive. So it was not included.

5.1.4 Scenario E

In Scenario E (see Figure 4.4) the available IMU data of the smartphone should be used to improve the local-

ization accuracy even further. For this, the IMU data was also streamed to ROS, and the robot_localization

module (see Section 3.4) was used. For comparison reasons, the output files of scenario D which are still

available in scenario E as intermediate files were recorded. The following measurements are the intermediate

data because the used nmea_navsat_driver has a programming error. For more information see Section 5.2.1.

In Figure 5.16 the same measurement setup of Figure 5.14 was used, only the measurement duration was

extended. The SPS signals are already removed, to allow the comparison between the two measurement runs.

The signal points clearly converge to the correct position and only deviate from it by a small margin. This

indicates a good convergence of the rtk algorithm.

Figure 5.16: RTCM Static

50

Figure 5.17 shows a accuracy in the sub-meter range with a 50% error of 0.55m. This result is even better

than scenario D, Figure 5.15. This could have multiple reasons, for example, the measurement duration was

longer. The weather could also have an impact on the results. For further discussions of scenario D, the

comparison results of scenario E are taken.

Figure 5.17: RTCM Static CDF

In Figure 5.18 the plot of Figure 5.16 on a satellite photograph can be seen. The lack of contrast indicates good

accuracy because if multiple features would be visible, the error would be bigger.

Figure 5.18: RTCM Map

In Table 5.7 themean and standard deviation of the horizontal distance error can be seen. Themean of 0.585m

with a standard deviation of 0.37m is a drastic improvement compared to the other scenarios.

51

Lon/Lat/Dist Mean[deg] Std[deg] Mean[m] Std[m]

Lat 48.196291 3.651275e-06 -0.018 0.406

Lon 16.369488 6.904178e-06 0.228 0.513

Dist X X 0.585 0.369

Table 5.7: Statistical measures of Longitudinal and Latitudinal measurements

5.1.4.1 Variance Comparison before and after the EKF

In Figure 4.4, a nmea_navsat_driver ROS module was added because the modified rtkcrv_ros module gen-

erated NMEA messages. Unfortunately, the nmea_navsat_driver ROS module doesn’t compute the correct

Variance. The module sends 16 as calculated Variance, as shown on the right site in Figure 5.19. The

robot_localization module relies on correctly calculated Variance because of the working principle (see Sec-

tion 3.4) of the underlying EKF. The calculated Variance after the filter stage is around 4.3, which is 4 times

smaller or the square root of the initial Variance. This would greatly improve if the input variance was calcu-

lated correctly.

Figure 5.19: Variance of measurement before and after EKF

5.1.5 Scenario Comparison

The results of all CDF error plots are summarized in Table 5.8. For scenario D the intermediate results of

scenario E were used. The table shows a big difference between the Oneplus and the Samsung smartphone.

This was expected because the Samsung smartphone has a dual-frequency GNSS receiver. This and a pos-

sible better antenna result in a noticeable accuracy increase. The active antenna with the SDR and gnss-sdr

52

software performed even better, but only around 40 cm in accuracy. A bigger increase was unexpected but

the small increase could be explained because the SDR can only receive on one frequency, while the Samsung

smartphone can reduce the error with dual-frequency GNSS. The biggest improvement could be archived with

the Samsung smartphone in combination with rtklib and APOS correction data. The improvement between

scenarios C and D of 4 times the accuracy (comparing the 50% values).

cdf error Scenario A Scenario B Scenario C Scenario Da

50%(CEP) 5.02m 2.39m 1.97m 0.55m

67% 5.07m 2.66m 2.20m 0.76m

95% 5.41m 3.26m 2.90m 1.15m

Table 5.8: Scenario Comparison - Accuracy
a As described in Section 5.1.4 the data of scenario E with the setup of scenario D was used.

In Table 5.9, the mean and the standard deviation of the distance error of each scenario are shown. Scenario

A has the biggest mean, indicating the least accuracy of all scenarios. Scenario B has a much better mean and

a higher standard deviation, indicating worse repeatability and longtime accuracy. Scenario C improves the

standard deviation by almost 100% while improving the mean only marginally. The best error performance

has scenario D which reduces the mean error by a factor of 4 while still improving the standard deviation of

the error.

Scenario Mean[m] Std[m]

Scenario A 4.824 0.513

Scenario B 2.152 0.947

Scenario C 2.015 0.515

Scenario Da 0.585 0.369

Table 5.9: Scenario Comparison - Statistical Measures
a As described in Section 5.1.4, the data of scenario E with the setup of scenario D was used.

For power consumption, scenario A would be the best. The Oneplus only needs 2.561W to function, while

the Samsung smartphone needs 4.403W for the same measurement. This could be explained by the more

complicated dual-frequency receiver and the resulting calculation overhead. Scenario C, which was measured

with the Oneplus smartphone, showed a much higher power draw of 4.403W, of which around 1.516W

were drawn by the USB peripheral. For scenario D, a power measurement was not conclusive, because of the

constant USB connection between the smartphone and the PC. It would also be not valid because most of the

calculations were "outsourced" from the Android device to the ROS master.

53

Scenario avg. Voltage avg. Discharge avg. Power

Scenario A 4.07V 875mA 3.561W

Scenario B 4.1V 1074mA 4.403W

Scenario C - overall 3.37V 1239mA 4.175W

Scenario C - SDR 4.89V 310mA 1.516W

Table 5.10: Scenario Comparison - Power Consumption

5.2 Discussion

Section 5.1.5 showed the best result in terms of accuracy with scenario D, using a dual-frequency GNSS re-

ceiving capable smartphone (here the Samsung Galaxy S20 Plus) and the librtk tool suite. The best results

were archived with the modifications of Ferreira et al. [10] and myself.

In terms of power consumption, the Oneplus smartphone would be the best, but in combination with its local-

ization performance not worth the savings of only 0.842W compared with the Samsung smartphone.

Description σ Northing σ Easting

Scenario D 0.406m 0.513m

ANN-MB RTK 0.5m 0.01m 0.01m

ANN-MB RTK 1.5m 1.90m 1.03m

HX CHX600A DGPS 1.5m 1.08m 0.58m

HX CH6601A RTK 1.5m 0.32m 0.3m

A.80 RTK 1.5m 0.87m 1.12m

Table 5.11: Willeger’s Thesis Comparison (see Table 4.18[2, p. 95])

In comparison with Willeggers thesis results shown in Table 4.18[2, p. 95] of his thesis and in Table 5.11,

most measurements of Willeger are outperformed by the results of scenario D. Only the RTK 0.5m measure-

ments of Willegger with a standard deviation of 0.01m in easting and northing direction and some RTK 1.5m

measurements, beat Scenario D. Scenario D has a standard deviation in the northing direction of 0.406m

and a standard deviation in the easting direction of 0.513m, which is comparable with his measurement "HX

CH6601A RTK 1.5m" with approx.0.3m standard deviation in both directions. It outperforms "CH7603A RTK

5m" with a sigma in easting of 0.47m and a sigma in northing of 0.98m. Willeger also compared his results

with the thesis of Svaton [51] in Table 1.2[2, p. 22], which had a CEP of at best 0.97m with a standard devi-

ation of 1.01m. Also, this measurement was beaten by scenario D.

Scenario C showed the possibility to extend and improve the accuracy of an integrated GNSS receiver by

adding an inexpensive SDR with an active antenna. When comparing scenario A with a mean of error of

54

4.824m and the same smartphone but with the external antenna with a mean of error of 2.015m, the accu-

racy could be improved by a factor of 2.

The thesis also showed the possibility of utilizing different sensors of an Android smartphone for usage in

robotics. Scenarios A, B, and E showed the usefulness of smartphone-integrated sensors, e.g., IMU measure-

ments, for sensor fusion to improve robot localization.

5.2.1 Obstacles and Failures

The following section will address multiple obstacles that arose during development, implementation, and

testing. Most of the failures were caused by a lack of information about the topic or missing documentation

of the used software. Some software was even deprecated, so no support could be found.

RTL-SDR Consumption - Power Hiccups

During the power measurement of the RTL-SDR V3 with the VHzY CT-2 connected to the smartphone a

hiccup happened. On the start of the driver via Intent, the current consumption exceeded the maximum of

the USB port of the smartphone which led to a power hiccup, as seen in Figure 5.20. This further led to the

conclusion of the need for a possible active power between the smartphone and the rtl-sdr. Fortunately, the

active hub was unnecessary, as shown in Figure 5.9.

Figure 5.20: hiccups during the start of the rtl driver on Android

RTCM Converter - Incorrect RTCM MSM data

During the testing of scenario D, a lot of time went into debugging the RTCM 3message stream of the Oneplus

smartphone over the NTRIP caster. rtklib decoded the MSM just fine (see Figure 5.21) but some information

55

wasmissing (see Figure 5.22), so no fix could be acquired. This led to the test setup only including the Samsung

smartphone.

Figure 5.21: Oneplus RTCM Message Missing Information

Figure 5.22: Oneplus RTK Observation

RTCM Converter - Missing ephemeris data

While implementing the experiment described in Section 5.1.3, a significant obstacle was identifying the

problem of the missing ephemeris data while running rtkcrv_ros. After configuring the rover stream to the

android-generated one and the base station stream to the APOS one, the software showed all observations fine

but couldn’t detect correct satellite positions. The few debugging messages that could be retrieved were not

helpful, so I debugged the program with GNU Debugger (GDB). After many hours of debugging, it became

clear that some information was still missing. This lead to the inside of including a third RTCM stream

with ephemeris data only. This service was also unavailable by APOS, so a third NTRIP caster was needed,

preferably a free one. Multiple free casters are available, so I initially used rtk2go. After the first successful

test, I discovered the AGBs of the caster do not allow development rovers. This led to the switch to the

56

ntrip.use-snip.com caster, which permitted development use.

GeolocPVT - Tests

The app described in Section 2.2 led to a rabbit hole of tests and, unfortunately, many dead ends. I tried to

use the app on both smartphones without success. After an intense debugging session in android studio, I

concluded that the current state of the open-source software in its GitLab repository is not working. During

the refactoring/rework of the app, the in the paper described RTCM streamwas deactivated, andmany options

were disabled. It also led to the experiments with GoGPS (see Section 3.3), which ultimately also led to a dead

end (see Section 5.2.1).

GoGPS - Implementation Nightmare

After discovering this open software (see Section 3.3 and Section 2.2), I decided to implement it also into ros

mobile (see Section 2.3). In hindsight, I should have listened to Grenier and Renaudin [8] when they described

GoGPSwith "The GoGPS Java port does not offer any documentation for implementing the library.". The sheer

amount of needed work to implement this into the existing ros mobile app wasn’t feasible. Beginning with

version compatibility issues encountered after porting the Gradle-enabled library to the ros source code was

time-consuming to resolve, yet alone the time needed to understand the partially broken implementation of

the library inside the GeolocPVT source code.

robot_localization - nmea_navsat Module variance calculations wrong

Figure 5.19 showed that the nmea_navsat_driver module has a bug when calculating the incoming NMEA

data/signals variance. The module constantly outputs 16m as variance, which directly influences the perfor-

mance of the EKF. The Filter, which weights the input data according to its variance, gives an improved to

its input data, but compared with Scenario D, much worse performance. Because of timing constraints, the

module was not analyzed or fixed.

57

6 Conclusion and Outlook

This chapter gives a conclusion of this thesis and its outlook. The research questions are restated and answered

in the conclusion section. In the outlook section, multiple improvements are shortly depicted, which weren’t

possible to implement due to time constraints.

6.1 Conclusion

This thesis aimed to answer multiple research questions regarding the usability of Android smartphones for

localization purposes and the accuracy of this localization. The first research question asked: "How effective is

the use of an Android smartphone for the localization of an agricultural robot measured by resource consumption

and accuracy?". This can be answered with the previously done comparison in Section 5.2, which showed

that especially scenario E (see Section 5.1.4) is almost as accurate and, therefore, comparable with Willeger’s

findings. Furthermore is, the resource consumption on a monetary level substantially lower, while the pro-

cessing capabilities are substantially higher. All Scenarios showed promising power and resource efficiency

of Android for robotic applications.

The second research question: "How different is the performance between smartphones with and without cor-

rection data?" is also answered with the comparison of scenario B (see Section 5.1.1) with scenario D (see

Section 4.5) in Table 5.8. The results of the Samsung scenarios showed a significant difference between un-

corrected (2.39m) and corrected (0.55m) signals regarding the CEP. This showed the importance of a good

post-processing stack and the need for correction data for high-precision farming robots.

The third research question is concerned with: " What is the performance gain (in accuracy) using an exter-

nal GNSS antenna?". This can be answered with the comparison between scenario A (see Section 5.1.1) and

scenario C (see Section 5.1.2) in Table 5.8. Using the external antenna with an attached SDR and another

post-processing stack resulted in a significant performance gain. The CEP of the Oneplus smartphone de-

58

creased from 5.02m without an active external antenna to 1.97m with an active antenna. This showed the

importance of an external, active antenna for accurate localization without correction data.

This thesis showed the potential of recycled Android smartphones for agricultural robots regarding localiza-

tion and as a sensor platform. Especially scenario C (see Section 4.4) showed the possibility of using a Linux

subsystem on the smartphone to port or write software for Linux without using the Android libraries or pro-

gramming language constraints to Java or Kotlin.

The thesis also showed that even with a good post-processing stack and correction data, a smartphone’s

RTK mode is still not as good as an Application Specific Integrated Circuit (ASIC) implementation regarding

localization accuracy.

6.2 Outlook

In this section, multiple improvements are described in their subsection. Some of them describe already feasi-

ble improvements but with moderate time and resource requirements, which wasn’t possible to do during this

thesis. While other improvements should be possible, but weren’t tested to be at least feasible. These ’spec-

ulative’ improvements are the ANT+ integration in Android and the dual frequency approach with internal

and external antennae.

Fix of Variance for robot_localization module

To get scenario E to work, either the nmea_navsat_driver module needs to be repaired to calculate the correct

variance or another way needs to be found to transfer the localization data from the RTKLIB ROS module

into the robot_localization module. This could improve the accuracy of the localization.

Multiple Antenna Setup

With a dual SDR e.g., LimeSDR [52] or Hack-RF[53] ionosphere free/dual frequency GNSS-SDR setup could be

achieved. This would increase the cost significantly (approx. e 300 for the HackRF), so it was not considered.

In [10], Ferreira et al. describe this setup in combination with pose estimation, the gain pose information, and

the robot’s direction based on the GNSS signals.

GNSS-SDR controller for ROS

To control the GNSS-SDR software, an API exists for a developer to configure, start and stop the GNSS-SDR

pipeline. Multiple examples are already implemented, e.g., [54]. This API could be used to develop a ROS

59

node or adapt the "translation" node described in Section 4.4 to control the pipeline, gain debug and status

information, and other data. Because of time constraints, this controlling node was not implemented.

Utilizing the Android ANT+ receiving capabilities

The tested Samsung S20+ includes an ANT+ interface. This allows a developer to integrate all ANT+ Sensors

into an Android App (see [55]). ANT+ is a communication standard to exchange health and geobased informa-

tion between sensors and receivers. Interesting for use in robotics would be tire sensors called Tire Pressure

Monitoring System (TPMS) and geo beacons, e.g., the Garmin chirp (the chirp is no longer manufactured, see

[56]). The chirp would have allowed the implementation of a way-point system, and the TPMS could be used

to track the tire pressure of a robot.

GNSS-SDR - utilizing dual-frequency with internal and external receivers

It would be interesting if a fusion of the Android GNSS data of the L1C band and the data of the external SDR

receiver on the L5 could be archived. This would allow upgrading even older smartphones to dual-frequency

receivers, increasing the accuracy.

ROS Mobile - Utilizing the Smartphone’s Touch Display to show Status Information

Another promising application for the smartphone on the robot would be a status screen for multiple impor-

tant information. This could be realized by adding another custom Widget that subscribes to various topics

and publishes actions to control the ROS robot.

60

Bibliography

[1] Twisted-Fields, Twisted-Fields/acorn-precision-farming-rover: Source code for Acorn, the precision farming

rover by Twisted Fields. [Online]. Available: https://github.com/Twisted-Fields/

acorn-precision-farming-rover (visited on 06/16/2023).

[2] E. Willegger, “Implementation of a multi-band RTK receiver system with Arduino,” en, Accepted: 2020-

09-22T07:35:26Z Journal Abbreviation: Implementierung eines Multiband-RTK-Empfängersystems mit

Arduino, Thesis, Wien, 2020. (visited on 01/10/2023).

[3] C. Fernández-Prades, J. Arribas, and P. Closas, “Turning a Television into a GNSS Receiver,” Sep. 2013.

[4] C. Fernández-Prades, GNSS-SDR operation with a Realtek RTL2832U USB dongle DVB-T receiver, en, Jun.

2016. [Online]. Available: https://gnss-sdr.org/docs/tutorials/gnss-sdr-

operation- realtek- rtl2832u- usb- dongle- dvb- t- receiver/ (visited on

03/31/2023).

[5] D. Skufca, “Dual Frequency GPS Receiver Implementation in GNSS-SDR,” en, ECE Senior Capstone

Project, vol. 2018 Tech Notes,

[6] D. Skufca, GitHub - dskufca/SrDesign: All code for senior design project, i.e. a copy of GNSS-SDR plus our

adaptations of it. [Online]. Available: https://github.com/dskufca/SrDesign (visited

on 02/28/2023).

[7] European GNSS Supervisory Authority., Using GNSS raw measurements on Android devices: white paper.

en. LU: Publications Office, 2017. (visited on 03/16/2023).

[8] A. Grenier and V. Renaudin, “Efficient Use of SSR RTCM Streams For Real-Time Precise Point Position-

ing on Smartphones,” in 2019 16th Workshop on Positioning, Navigation and Communications (WPNC),

ISSN: 2164-9758, Oct. 2019, pp. 1–6.

[9] A. Privat, M. Pascaud, and D. Laurichesse, “Innovative smartphone applications for Precise Point Po-

sitioning,” en, in 2018 SpaceOps Conference, Marseille, France: American Institute of Aeronautics and

Astronautics, May 2018. (visited on 03/16/2023).

[10] A. Ferreira, B. Matias, J. Almeida, and E. Silva, “Real-time GNSS precise positioning: RTKLIB for ROS,”

International Journal of Advanced Robotic Systems, vol. 17, p. 172 988 142 090 452, May 2020.

61

https://github.com/Twisted-Fields/acorn-precision-farming-rover
https://github.com/Twisted-Fields/acorn-precision-farming-rover
https://gnss-sdr.org/docs/tutorials/gnss-sdr-operation-realtek-rtl2832u-usb-dongle-dvb-t-receiver/
https://gnss-sdr.org/docs/tutorials/gnss-sdr-operation-realtek-rtl2832u-usb-dongle-dvb-t-receiver/
https://github.com/dskufca/SrDesign

[11] Y. Heo, T. Yan, S. Lim, and C. Rizos, “International standard GNSS real-time data formats and protocols,”

Jan. 2009.

[12] N. Rottmann, N. Studt, F. Ernst, and E. Rueckert, ROS-Mobile: An Android application for the Robot

Operating System, arXiv:2011.02781 [cs], Nov. 2020. [Online]. Available: http://arxiv.org/

abs/2011.02781 (visited on 08/30/2022).

[13] G. Supper, N. Barta, A. Gronauer, and V.Motsch, “Localization accuracy of a robot platform using indoor

positioning methods in a realistic outdoor setting,” Die Bodenkultur: Journal of Land Management, Food

and Environment, vol. 72, pp. 133–139, Jun. 2022.

[14] “Das Navigationssystem,” ger, in Mathematik der digitalen Medien: präzise - verständlich - einleuchtend,

ser. Lehrbuch Studium, 2., durchgesehene Auflage, Berlin: VDE VERLAG GmbH, 2017, pp. 13–54.

[15] Differential GPS - Navipedia. [Online]. Available: https://gssc.esa.int/navipedia/

index.php/Differential_GPS (visited on 05/14/2023).

[16] RTK Fundamentals - Navipedia. [Online]. Available: https://gssc.esa.int/navipedia/

index.php/RTK_Fundamentals (visited on 05/14/2023).

[17] NMEA, NMEA, en. [Online]. Available: https://www.nmea.org/ (visited on 06/29/2023).

[18] R. Langley, “NMEA 0183 : A GPS Receiver Interface Standard,” 2004. (visited on 06/29/2023).

[19] Matlab, Parse data from standard and manufacturer-specific NMEA sentences sent from marine electronic

devices - MATLAB - MathWorks Deutschland. [Online]. Available: https://de.mathworks.

com/help/nav/ref/nmeaparser-system-object.html (visited on 06/29/2023).

[20] tersus, New additions in RTCM3 and what is MSM. [Online]. Available: https://www.tersus-

gnss.com/tech_blog/new-additions-in-rtcm3-and-What-is-msm (visited on

07/03/2023).

[21] BKG, Real-Time. [Online]. Available: https://igs.bkg.bund.de/ntrip/ (visited on

07/03/2023).

[22] Hedgehack, YCCaster. [Online]. Available: https://yccaster.com/ (visited on 03/16/2023).

[23] BEV, APOS - Austrian Positioning Service, de. [Online]. Available: https://www.bev.gv.at/

Services/Produkte/Grundlagenvermessung/APOS.html (visited on 07/03/2023).

[24] T. Takasu, RTKLIB: An Open Source Program Package for GNSS Positioning. [Online]. Available:https:

//rtklib.com/ (visited on 03/16/2023).

[25] T. Takasu, RTKLIB Manual, 2013. [Online]. Available: https://www.rtklib.com/prog/

manual_2.4.2.pdf.

[26] C. Fernández–Prades, J. Arribas, P. Closas, C. Avilés, and L. Esteve, “GNSS-SDR: An Open Source Tool

For Researchers and Developers,” in Proc. 24th Intl. Tech. Meeting Sat. Div. Inst. Navig., Portland, Oregon,

Sep. 2011, pp. 780–794.

[27] L. E. Franks, Signal theory (Information theory series). Englewood Cliffs, N.J: Prentice-Hall, 1969.

62

http://arxiv.org/abs/2011.02781
http://arxiv.org/abs/2011.02781
https://gssc.esa.int/navipedia/index.php/Differential_GPS
https://gssc.esa.int/navipedia/index.php/Differential_GPS
https://gssc.esa.int/navipedia/index.php/RTK_Fundamentals
https://gssc.esa.int/navipedia/index.php/RTK_Fundamentals
https://www.nmea.org/
https://de.mathworks.com/help/nav/ref/nmeaparser-system-object.html
https://de.mathworks.com/help/nav/ref/nmeaparser-system-object.html
https://www.tersus-gnss.com/tech_blog/new-additions-in-rtcm3-and-What-is-msm
https://www.tersus-gnss.com/tech_blog/new-additions-in-rtcm3-and-What-is-msm
https://igs.bkg.bund.de/ntrip/
https://yccaster.com/
https://www.bev.gv.at/Services/Produkte/Grundlagenvermessung/APOS.html
https://www.bev.gv.at/Services/Produkte/Grundlagenvermessung/APOS.html
https://rtklib.com/
https://rtklib.com/
https://www.rtklib.com/prog/manual_2.4.2.pdf
https://www.rtklib.com/prog/manual_2.4.2.pdf

[28] G. Wade, Signal Coding and Processing, 2nd ed. Cambridge: Cambridge University Press, 1994. (visited

on 07/03/2023).

[29] J. Kirkhorn, “Introduction to IQ-demodulation of RF-data,” Ifbt, Ntnu, vol. 15, 1999.

[30] D.-I. (C. Wolff, In-phase & Quadrature- Verfahren - Radar Basics, de, Publisher: Dipl.-Ing. (FH) Christian

Wolff. [Online]. Available: https://www.radartutorial.eu/10.processing/sp06.

de.html (visited on 02/15/2023).

[31] osmocom, Rtl-sdr - rtl-sdr - Open Source Mobile Communications. [Online]. Available: https://

osmocom.org/projects/rtl-sdr/wiki (visited on 02/16/2023).

[32] , RTL2832 Datasheet. [Online]. Available: https://z3d9b7u8.stackpathcdn.com/pdf-

down/R/T/L/RTL2832-Realtek.pdf (visited on 02/15/2023).

[33] RTL-SDR Blog V.3. Dongles User Guide, en-US, Aug. 2016. [Online]. Available: https://www.rtl-

sdr.com/rtl-sdr-blog-v-3-dongles-user-guide/ (visited on 02/15/2023).

[34] GPS Measurement Tools, original-date: 2016-09-03T01:06:41Z, Jan. 2023. [Online]. Available: https:

//github.com/google/gps-measurement-tools (visited on 01/26/2023).

[35] termux, Termux, en. [Online]. Available: https://termux.dev/en/ (visited on 07/04/2023).

[36] termux, PRoot Distro, original-date: 2020-07-20T20:46:15Z, Jul. 2023. [Online]. Available: https://

github.com/termux/proot-distro (visited on 07/04/2023).

[37] E. Realini and M. Reguzzoni, “goGPS: Open Source Software for Enhancing the Accuracy of Low-cost

Receivers by Single-frequency Relative Kinematic Positioning,” Measurement Science and Technology,

vol. 24, p. 115 010, Oct. 2013.

[38] goGPS, GitHub - goGPS-Project/goGPS_java: goGPS Java is a GNSS observation processing library. [On-

line]. Available: https://github.com/goGPS- Project/goGPS_Java (visited on

02/15/2023).

[39] Battery Historian, original-date: 2014-06-20T21:28:26Z, Jan. 2023. [Online]. Available: https://

github.com/google/battery-historian (visited on 01/26/2023).

[40] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A. Y. Ng, et al., “ROS: An open-

source Robot Operating System,” in ICRA workshop on open source software, Issue: 3.2, vol. 3, Kobe,

Japan, 2009, p. 5.

[41] REP REP 0 – Index of ROS Enhancement Proposals (REPs) – REP 0 – REP 0 – Index of ROS Enhancement

Proposals (REPs) (ROS.org). [Online]. Available: https://ros.org/reps/rep-0000.html

(visited on 05/23/2023).

[42] REP 103 – Standard Units of Measure and Coordinate Conventions (ROS.org), Dec. 2014. [Online]. Avail-

able: https://www.ros.org/reps/rep-0103.html (visited on 03/14/2023).

[43] REP 105 – Coordinate Frames for Mobile Platforms (ROS.org), Oct. 2010. [Online]. Available: https:

//www.ros.org/reps/rep-0105.html (visited on 03/14/2023).

63

https://www.radartutorial.eu/10.processing/sp06.de.html
https://www.radartutorial.eu/10.processing/sp06.de.html
https://osmocom.org/projects/rtl-sdr/wiki
https://osmocom.org/projects/rtl-sdr/wiki
https://z3d9b7u8.stackpathcdn.com/pdf-down/R/T/L/RTL2832-Realtek.pdf
https://z3d9b7u8.stackpathcdn.com/pdf-down/R/T/L/RTL2832-Realtek.pdf
https://www.rtl-sdr.com/rtl-sdr-blog-v-3-dongles-user-guide/
https://www.rtl-sdr.com/rtl-sdr-blog-v-3-dongles-user-guide/
https://github.com/google/gps-measurement-tools
https://github.com/google/gps-measurement-tools
https://termux.dev/en/
https://github.com/termux/proot-distro
https://github.com/termux/proot-distro
https://github.com/goGPS-Project/goGPS_Java
https://github.com/google/battery-historian
https://github.com/google/battery-historian
https://ros.org/reps/rep-0000.html
https://www.ros.org/reps/rep-0103.html
https://www.ros.org/reps/rep-0105.html
https://www.ros.org/reps/rep-0105.html

[44] T. Moore and D. Stouch, “A Generalized Extended Kalman Filter Implementation for the Robot Op-

erating System,” in Proceedings of the 13th International Conference on Intelligent Autonomous Systems

(IAS-13), Springer, Jul. 2014.

[45] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,” Journal of Basic Engineer-

ing, vol. 82, no. 1, pp. 35–45, Mar. 1960. (visited on 07/03/2023).

[46] A. Becker (www.kalmanfilter.net), Online Kalman Filter Tutorial, en. [Online]. Available: https://

www.kalmanfilter.net/ (visited on 07/03/2023).

[47] M. I. Ribeiro, “Kalman and extended kalman filters: Concept, derivation and properties,” Institute for

Systems and Robotics, vol. 43, no. 46, pp. 3736–3741, 2004.

[48] MATLAB Online, de. [Online]. Available: https : / / de . mathworks . com / products /

matlab-online.html (visited on 04/04/2023).

[49] S. Ltd, SDR driver – Apps bei Google Play, de. [Online]. Available: https://play.google.com/

store/apps/details?id=marto.rtl_tcp_andro&hl=de (visited on 04/04/2023).

[50] S. Ltd, Rtl_sdr Adroid Driver, original-date: 2013-01-09T21:41:19Z, Jun. 2023. [Online]. Available:https:

//github.com/signalwareltd/rtl_tcp_andro- (visited on 07/04/2023).

[51] M. Svatoň, “Low-cost implementation of Differential GPS using Arduino,” 2016. (visited on 07/06/2023).

[52] LimeSDR XTRX, en. [Online]. Available: https://www.crowdsupply.com/lime-micro/

limesdr-xtrx (visited on 03/06/2023).

[53] G. S. GADGETS,HackRF One - Great Scott Gadgets. [Online]. Available:https://greatscottgadgets.

com/hackrf/one/ (visited on 06/16/2023).

[54] Á. C. Juan, Acebrianjuan/gnss-sdr-monitor, original-date: 2018-06-21T16:11:08Z, Feb. 2023. [Online].

Available: https://github.com/acebrianjuan/gnss-sdr-monitor (visited on

03/07/2023).

[55] Garmin, Starting Your Project - THIS IS ANT. [Online]. Available: https://www.thisisant.

com/developer/ant/starting-your-project/#75_tab (visited on 06/16/2023).

[56] Garmin, Welche Outdoor-Handgeräte sind mit Chirp kompatibel? | Garmin Support-Center. [Online].

Available:https://support.garmin.com/de-AT/?faq=jxvkyfWfoD3ASnb1inWk19

(visited on 06/16/2023).

64

https://www.kalmanfilter.net/
https://www.kalmanfilter.net/
https://de.mathworks.com/products/matlab-online.html
https://de.mathworks.com/products/matlab-online.html
https://play.google.com/store/apps/details?id=marto.rtl_tcp_andro&hl=de
https://play.google.com/store/apps/details?id=marto.rtl_tcp_andro&hl=de
https://github.com/signalwareltd/rtl_tcp_andro-
https://github.com/signalwareltd/rtl_tcp_andro-
https://www.crowdsupply.com/lime-micro/limesdr-xtrx
https://www.crowdsupply.com/lime-micro/limesdr-xtrx
https://greatscottgadgets.com/hackrf/one/
https://greatscottgadgets.com/hackrf/one/
https://github.com/acebrianjuan/gnss-sdr-monitor
https://www.thisisant.com/developer/ant/starting-your-project/#75_tab
https://www.thisisant.com/developer/ant/starting-your-project/#75_tab
https://support.garmin.com/de-AT/?faq=jxvkyfWfoD3ASnb1inWk19

A Config Files

A.1 Tmuxinator

Listing A.1: Tmuxinator

1 # ~/.tmuxinator/measurement.yml

2

3 name: measurement

4 root: ~/SETUP

5

6 pre_window: source ~/catkin_ws/devel/setup.zsh

7

8 windows:

9 - core:

10 layout: tiled

11 panes:

12 - roscore

13 - ~/Downloads/gnirehtet-rust-linux64/gnirehtet run

14 - cd ~/ntrip_caster && ./yccaster

15 - sleep 2 && rosrun rtkrcv_ros rtkrcv_ros_node -o Single_antenna.conf

16 - sleep 2 && rosrun nmea_navsat_driver nmea_topic_driver fix:=gps/fix

17 - sleep 2 && roslaunch vermin_base dual_ekf_navsat_example.launch

18 - sleep 3 && rostopic pub /odometry/wheel nav_msgs/Odometry -f odom.yml

-r 1

A.2 GNSS SDR TCP

Listing A.2: GNSS-SDR TCP config

1 [GNSS-SDR]

2

65

3 ;######### GLOBAL OPTIONS ##################

4 GNSS-SDR.internal_fs_sps=2000000

5

6 ;######### SIGNAL_SOURCE CONFIG ############

7 SignalSource.implementation=RtlTcp_Signal_Source

8 SignalSource.address=127.0.0.1

9 SignalSource.port=14423

10 SignalSource.item_type=gr_complex

11 SignalSource.sampling_frequency=2000000

12 SignalSource.freq=1575420000

13 SignalSource.gain=40

14 SignalSource.rf_gain=40

15 SignalSource.if_gain=30

16 SignalSource.AGC_enabled=false

17 SignalSource.samples=0

18 SignalSource.repeat=false

19 SignalSource.dump=false

20 SignalSource.dump_filename=../data/signal_source.dat

21 SignalSource.enable_throttle_control=false

22 SignalSource.swap_iq=false

23

24 ;######### SIGNAL_CONDITIONER CONFIG ############

25 SignalConditioner.implementation=Pass_Through

26

27 ;######### CHANNELS GLOBAL CONFIG ############

28 Channels_1C.count=8

29 Channels_1B.count=0

30 Channels.in_acquisition=1

31 Channel.signal=1C

32

33 ;######### ACQUISITION GLOBAL CONFIG ############

34 Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition

35 Acquisition_1C.item_type=gr_complex

36 Acquisition_1C.coherent_integration_time_ms=1

37 Acquisition_1C.pfa=0.01

38 Acquisition_1C.doppler_max=5000

39 Acquisition_1C.doppler_step=250

40 Acquisition_1C.dump=false

41 Acquisition_1C.dump_filename=./acq_dump.dat

42

66

43 ;######### TRACKING GPS CONFIG ############

44 Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking

45 Tracking_1C.item_type=gr_complex

46 Tracking_1C.dump=false

47 Tracking_1C.dump_filename=./tracking_ch_

48 Tracking_1C.pll_bw_hz=35.0;

49 Tracking_1C.dll_bw_hz=1.5;

50 Tracking_1C.pll_bw_narrow_hz=2.5;

51 Tracking_1C.dll_bw_narrow_hz=0.5;

52 Tracking_1C.extend_correlation_symbols=1;

53 Tracking_1C.dll_filter_order=2;

54 Tracking_1C.pll_filter_order=3;

55 Tracking_1C.early_late_space_chips=0.5;

56 Tracking_1C.early_late_space_narrow_chips=0.25

57

58 ;######### TELEMETRY DECODER GPS CONFIG ############

59 TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder

60 TelemetryDecoder_1C.dump=false

61

62 ;######### OBSERVABLES CONFIG ############

63 Observables.implementation=Hybrid_Observables

64 Observables.dump=false

65 Observables.dump_filename=./observables.dat

66 Observables.enable_carrier_smoothing=false

67 Observables.smoothing_factor=200

68

69 ;######### PVT CONFIG ############

70 PVT.implementation=RTKLIB_PVT

71 PVT.positioning_mode=PPP_Static ; options: Single, Static, Kinematic,

PPP_Static, PPP_Kinematic

72 PVT.iono_model=Broadcast ; options: OFF, Broadcast, SBAS, Iono-Free-LC,

Estimate_STEC, IONEX

73 PVT.trop_model=Saastamoinen ; options: OFF, Saastamoinen, SBAS, Estimate_ZTD,

Estimate_ZTD_Grad

74 PVT.enable_rx_clock_correction=false

75 PVT.output_rate_ms=100

76 PVT.rinexobs_rate_ms=100

77 PVT.display_rate_ms=500

78 PVT.dump_filename=./PVT

79 PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea;

67

80 PVT.flag_nmea_tty_port=false;

81 PVT.nmea_dump_devname=/dev/pts/4

82 PVT.dump=false

83 PVT.flag_rtcm_server=true

84 PVT.flag_rtcm_tty_port=false

85 PVT.rtcm_dump_devname=/dev/pts/1

68

Erklärung

Hiermit erkläre ich, dass die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als

der angegebenen Hilfsmittel angefertigt wurde. Die aus anderen Quellen oder indirekt übernommenen Daten und

Konzepte sind unter Angabe der Quelle gekennzeichnet.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder in ähnlicher Form in anderen Prüfungsver-

fahren vorgelegt.

Wien, am 17.08.2023

[Philipp-Sebastian Vogt]

	Acronyms
	Introduction
	Motivation
	Research Questions

	State of the Art
	Implementation of a multi-band RTK receiver system with Arduino
	Using Raw GNSS data on Android - GSA White Paper
	ROS Mobile

	Fundamentals
	GPS
	SDR
	Android Tools and Libraries
	ROS

	Proposed System
	Setup Cost Analysis
	Scenario Overview
	Scenario A and B
	Scenario C
	Scenario D
	Scenario E

	Results and Discussion
	Results
	Scenario A and B
	Scenario C
	Scenario D
	Scenario E
	Scenario Comparison

	Discussion
	Obstacles and Failures

	Conclusion and Outlook
	Conclusion
	Outlook

	Config Files
	Tmuxinator
	GNSS SDR TCP

