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Kurzfassung

Menschen sind im Alltag mit Datenströmen (engl. “streams”) aus ihrer Umgebung konfron-
tiert und das Schließen (engl. “reasoning”) aus solchen Datenströmen ist für die menschliche
Intelligenz von zentraler Bedeutung. Moderne digitale Dienste, wie zum Beispiel Google und
Facebook, generieren in kürzester Zeit zahlreiche Daten die es maschinell zu verarbeiten gilt.
Im letzten Jahrzehnt hat sich innerhalb der Künstlichen Intelligenz eine Forschungsrichtung
dafür als besonders relevant hervorgehoben—das sogenannte Stream Reasoning. Vor kurzem
wurde der regel-basierte Formalismus LARS für das nicht-monotone daten-basierte Schlie-
ßen unter Anwendung der Antwortmengensemantik entwickelt. Syntaktisch sind LARS-
Programme nichts anderes als Logikprogramme mit Negation, die zusätzlich Operatoren
zum Ausdrücken zeitlicher Zusammenhänge erlauben, wobei der Fenster-Operator (engl.
“window operator”) von besonderem Interesse ist—dieser erlaubt es, relevante Zeitpunkte
auszuwählen. Da LARS fixe Zeitintervalle für die Evaluierung von Programmen voraussetzt,
ist der Formalismus in der aktuellen Form nicht flexibel genug, um konstruktivmit sich rasch
verändernden Daten umzugehen. Außerdem hat sich gezeigt, dass die von LARS verwende-
te und auf FLP-Redukten basierende Erweiterung der Antwortmengensemantik zirkuläre
Schlüsse zulässt, wie sie auch von anderen Erweiterungen der klassischen Antwortmengen-
semantik bereits bekannt sind. Diese Doktorarbeit behebt alle erwähnten Schwächen von
LARS und leistet einen Beitrag zu den Grundlagen des Stream Reasonings indem sie eine
operationale Fixpunktsemantik für eine flexible Variante von LARS entwickelt die korrekt
und konstruktiv in dem Sinne ist, dass Antwortmengen durch iterierte Anwendung eines
Fixpunktoperators erzeugt werden und dadurch frei von zirkulären Schlüssen sind.



Abstract

Reasoning over streams of input data is an essential part of human intelligence. During the
last decade stream reasoning has emerged as a research area within the AI-community with
many potential applications. In fact, the increased availability of streaming data via ser-
vices like Google and Facebook has raised the need for reasoning engines coping with data
that changes at high rate. Recently, the rule-based formalism LARS for non-monotonic
stream reasoning under the answer set semantics has been introduced. Syntactically, LARS
programs are logic programs with negation incorporating operators for temporal reason-
ing, most notably window operators for selecting relevant time points. Unfortunately, by
preselecting fixed intervals for the semantic evaluation of programs, the rigid semantics of
LARS programs is not flexible enough to constructively cope with rapidly changing data
dependencies. Moreover, we show that defining the answer set semantics of LARS in terms
of FLP reducts leads to undesirable circular justifications similar to other ASP extensions.
This thesis fixes all of the aforementioned shortcomings of LARS. More precisely, we con-
tribute to the foundations of stream reasoning by providing an operational fixed point
semantics for a fully flexible variant of LARS and we show that our semantics is sound
and constructive in the sense that answer sets are derivable bottom-up and free of circular
justifications.



Preface

This thesis is a synthesis of logic programming, temporal logic, and fixed point theory, all
of which are important areas of theoretical computer science.

A fixed point theorem is a result proving that a function f will have at least one fixed point
x with f(x) = x given some general properties of f . Fixed point theorems are ubiquitous in
mathematics and computer science. In topology, for instance, Brouwer’s famous fixed point
theorem, stating that every continuous function mapping a compact convex set to itself has
a fixed point, has wide applications across numerous fields of mathematics. In theoretical
computer science, on the other hand, the idea of bringing fixed points into the domain of
programming language semantics sprang from the fertile brains of Christopher Strachey
and Dana Scott in the late 1960s and early 1970s. More precisely, Dana Scott introduced
domain theory as a way to give semantics to the lambda calculus, which later evolved
into denotational semantics of programming languages, where the meaning of computer
programs is provided in terms of functions mapping input into output. The mathematical
basis is provided by the following well-known theorem due to BronisQlaw Knaster and Alfred
Tarksi.

Theorem 1 (Knaster-Tarski). A monotone operator on a complete lattice has a least fixed
point which is also its least prefixed point.

Logic programming evolved from automated theorem proving in the late 1960s and early
1970s when Robert Kowalski developed SLD-resolution as a variant of John Alan Robin-
son’s resolution rule and later collaborated with Alain Colmerauer in the development of
PROLOG, a declarative programming language based on Horn clause logic with appealing
computational properties for knowledge representation and reasoning in artificial intelli-
gence. A characteristic feature of logic programming is its top-down or goal-oriented pro-
cedural interpretation in terms of SLD-resolution on the syntactic side and its constructive
bottom-up semantic evaluation in terms of least fixed point computations on the semantic
side. More precisely, it was the idea of Robert Kowalski and Maarten H. van Emden in
the 1970s to use the Knaster-Tarksi theorem to give operational least model semantics to
logic programs in terms of least fixed points of the immediate consequence operator and
it is a key result in the theory of logic programming that SLD-resolution and least models
capture the same meaning of programs.

Classical first-order logic was initially introduced as a mathematical tool for precisely for-
malizing and analyzing mathematical theories which are monotone in their nature in the



sense that given a set of assumptions or axioms, the set of derivable conclusions mono-
tonically increases when adding new assumptions. In contrast, commonsense reasoning is
an inherently non-monotone form of logical reasoning for which classical first-order logic,
in its original form, is not an adequate formalism. In the last three decades much effort
has been investigated to capture essential parts of commonsense reasoning, with default
logic, autoepistemic logic, and logic programs with negation being the most prominent
formalisms today, the latter arguably being the most successful non-monotonic reasoning
and knowledge representation formalism with many practical applications. Logic program-
ming got more interesting and more complicated when an unary operator “∼” denoting
negation as failure (or default negation) has been added to the syntax of logic programs.
SLDNF-resolution is an extension of SLD-resolution which deals with negation as fail-
ure. In the late 1980s another interpretation of negation as failure was given by Michael
Gelfond and Vladimir Lifschitz via a translation to autoepistemic logic which led to the
fundamental notion of stable models or answer sets. Today, answer set programming is a
well-established logic programming dialect with many applications in AI-related subfields
such as, for example, planning, diagnosis, and abductive reasoning. Unfortunately, the
Knaster-Tarski theorem, which is at the core of the fixed point semantics of negation-free
logic programming, is not applicable to answer set programming as for this class of pro-
grams the immediate consequence operator is in general non-monotonic. It was Melvin
Fitting who in the late 1990s and early 2000s extended the Knaster-Tarski theorem to the
non-monotonic case. More precisely, Fitting realized that for answer set programming, the
non-monotone 2-valued immediate consequence operator, which is defined on the lattice of
2-valued interpretations, had to be replaced by amonotone 4-valued operator defined on the
bilattice of 4-valued interpretations or by a monotone 3-valued operator defined on consis-
tent pairs of interpretations. This idea was later reformulated within an abstract algebraic
framework called approximation fixed point theory by Marc Denecker, Victor Marek, and
MirosQlaw Truszczyński. It is the 3-valued Fitting operator which we adapt in this thesis to
the class of stream logic programs.

Temporal logic deals with sequences of events and it was the idea of Amir Pnueli in the
late 1970s to use linear-time temporal logic, in which time is modeled as a linear ordering,
for formal verification of computer programs.1 Temporal logic is a special kind of modal
logic giving semantics to expressions with tense like, for example, the sentence “I’m happy”
which may be true at some particular point in time. Temporal operators like “always” and
“eventually” allow the formal expression of temporal modalities. In stream reasoning, the
main topic of this thesis, the “window” operator enables the selection of relevant time
points for efficient reasoning from rapidly changing data.

In this thesis, I use tools and ideas from the aforementioned areas to provide a fixed point
semantics to a class of answer set programs geared towards non-monotonic temporal rea-
soning about data streams. The idea came to me at the beginning of 2015 when I stumbled
upon the first conference paper of Harald Beck, Thomas Eiter, and Minh Dao-Tran at TU
Vienna on stream reasoning. I was unsatisfied with their semantics relying on fixed inter-

1For his seminal work introducing temporal logic into computing science, Pnueli was awarded the the 1996
Turing Award.
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vals for the evaluation of programs as the philosophy behind stream reasoning is to cope
with rapidly changing data. To my own surprise, using dynamic intervals in the semantic
evaluation of programs turned out to be highly non-trivial. I’ve essentially finished the
paper on stream reasoning in the first half of 2015 and then forgot about it for the next
four years. In the years that followed I was mainly interested in analogical reasoning which
should have been the topic of my thesis. However, in 2019 I decided to submit the paper on
stream reasoning to the prestigious Artificial Intelligence journal and after its acceptance,
my advisor Professor Matthias Baaz encouraged me—since I was doing the research on the
paper on my own—to translate the paper into this short 27 pages thesis. I must thank
Matthias Baaz for his financial and moral support during the years 2015-2020. In times
where it is customary for students in the computer science department to finish their PhD
studies with as many as 10–20 research papers (including numerous repetitions and “in-
finitely” many collaborators), you supported my independent research without exploiting
me. In all those years at TU Vienna, you were the only person to use the words “creative
freedom”—without you I would have never dared to do a PhD at TU Vienna. Thank you!

Finally, I want to acknowledge support of the Austrian Science Fund (FWF) under grant
P31063-N35.

Vienna, Austria
August 12, 2021

F



Eidesstattliche Erklärung
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1 Introduction

Reasoning over streams of input data is an essential part of human intelligence. During the
last decade, stream reasoning has emerged as a research area within the AI-community with
many potential applications, e.g., web of things, smart cities, and social media analysis (cf.
[9, 25, 1]). In fact, the increased availability of streaming data via services like Google and
Facebook has raised the need for reasoning engines coping with data that changes at high
rate.

Logic programs are rule-based systems with the rules and facts being written in a sublan-
guage of predicate logic extended by a unary operator “∼” denoting negation-as-failure (or
default negation) [8]. While each monotone (i.e., negation-free) logic program has a unique
least Herbrand model (with the least model semantics [31] being the accepted semantics for
this class of programs), for general logic programs a large number of different purely declar-
ative semantics exist. Many of it have been introduced some 30 years ago, among them the
answer set semantics [20] and the well-founded semantics [32]. The well-founded semantics,
because of its nice computational properties (computing the unique well-founded model is
tractable), plays an important role in database theory. However, with the emergence of
efficient solvers such as DLV [22], Smodels [29], Cmodels [21], and Clasp [19], programming
under answer set semantics led to a predominant declarative problem solving paradigm,
called answer set programming (or ASP) [24, 23]. Answer set programming has a wide
range of applications and has been successfully applied to various AI-related subfields such
as planning and diagnosis (for a survey see [7, 13, 4]). Driven by this practical needs, a
large number of extensions of classical answer set programs have been proposed, e.g. ag-
gregates (cf. [16, 17, 27]), choice rules [26], dl-atoms [14], and general external atoms [15].
For excellent introductions to the field of answer set programming we refer the reader to
[7, 4, 13].

Beck et al. [5] introduced LARS, a Logic-based framework for Analytic Reasoning over
Streams, where the semantics of LARS has been defined in terms of FLP-style answer sets
[17]. Syntactically, LARS programs are logic programs with negation as failure incorporat-
ing operators for temporal reasoning, most notably window operators for selecting relevant
time points. Unfortunately, by preselecting fixed intervals for the semantic evaluation of
programs, the rigid semantics of LARS programs is not flexible enough to constructively
cope with rapidly changing data dependencies. For example, sentences of the form “a holds
at time point t if b holds at every relevant time point” are not expressible within LARS (cf.
Example 3), as the interval of “relevant” time points changes dynamically, whereas LARS
preselects a static interval. Our first step therefore is to refine and simplify Beck et al’s [5]

1



1 Introduction

semantics in Section 2.4 by employing dynamic time intervals.

Extensions of the answer set semantics adhere to minimal models or, even more restricting,
to models free of unfoundedness. However, FLP-answer sets of stream logic programs may
permit undesirable circular justifications similar to other ASP extensions (cf. [28, 2]). Fixed
point semantics of logic programs (cf. [18]), on the other hand, are constructive by nature,
which suggests to define a fixed point semantics for stream logic programs targeted for
foundedness, by recasting suitable operators in such a way that the FLP semantics can be
reconstructed or refined, in the sense that a subset of the respective answer sets are selected
(sound “approximation”). The benefit is twofold: by coinciding semantics, we get operable
fixed point constructions, and by refined semantics, we obtain a sound approximation that
is constructive. For this we recast two well-known fixed point operators from ordinary
to stream logic programs, namely the van Emden-Kowalski operator [31] and the Fitting
operator [18]. This task turns out to be non-trivial due to the intricate properties of
windows [3, 5] and other modal operators occurring in rule heads. We show that the so
obtained operators inherit the following characteristic properties: models of a program are
characterized by the prefixed points of its associated van Emden-Kowalski operator, and
the Fitting operator is monotone with respect to a suitable ordering which guarantees the
existence of certain least fixed points, namely the so obtained constructive answer sets. We
then show the constructiveness of our fixed point semantics in terms of level mappings [28].
Specifically, we prove that our semantics captures those answer sets which possess a level
mapping or, equivalently, which are free of circular justifications, which is regarded as a
positive feature.

The rest of the thesis is structured as follows. In Section 2, we define the syntax and
semantics of stream logic programs first in the vein of [5] (Section 2.3) followed by our
refined semantics in Section 2.4. Sections 3 and 4 constitute the main part of the thesis.
More precisely, in Section 3.1, we define a novel (partial) model operator for the evaluation
of rule heads, and, in Sections 3.2 and 3.3, we recast the well-known van Emden-Kowalski
operator TP and the Fitting operator ΦP from ordinary to stream logic programs and prove
some non-trivial properties. In Section 4, we then define a fixed point semantics for stream
logic programs in terms of the (extended) Fitting operator and prove in our Main Theorem
16 the soundness of our approach. Afterwards, in Section 5, we characterize our semantics
in terms of level mappings and conclude that our semantics is sound, constructive, and free
of circular justifications.
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2 Stream Logic Programs

We denote the set N∪{∞} by N∞. A partially ordered set (or poset) is a pair �L,≤� where
L is a set and ≤ is a reflexive, antisymmetric, and transitive binary relation on L. A lattice
is a poset �L,≤� where every pair of elements x, y ∈ L has a unique greatest lower bound
and least upper bound in L. We call �L,≤� complete if every subset has a greatest lower
bound and a least upper bound. For any two elements x, y ∈ L, we define the interval
[x, y] = {z ∈ L | x ≤ z ≤ y}. Given a mapping f : L → L, we call x ∈ L a prefixed point of
f if f(x) ≤ x, and we call x a fixed point of f if f(x) = x. Moreover, we call f monotone if
x ≤ y implies f(x) ≤ f(y), for all x, y ∈ L. In case f has a least fixed point, we denote it by
lfp f . Moreover, for a mapping g : L× L → L we denote by g(−, y) the function mapping
every x ∈ L to g(x, y) ∈ L.

2.1 Streams and Windows

In the rest of the thesis, Σ will denote a finite nonempty set of propositional atoms con-
taining the special symbol �.

A formula (over Σ) is defined by the grammar

α ::= a | ¬α | α ∧ α | α ∨ α | α → α | ♦α | �α | @tα | �[
,r]α

where a ∈ Σ, t ≥ 1, and �, r ∈ N∞, � ≤ r. We call α (i) �-free if it does not contain �; (ii)
monotone if it does not contain ¬,→,�; and (iii) normal if it does not contain ¬,∨,→,♦.

A stream (over Σ) is an infinite sequence I = I1I2 . . . of subsets of Σ, i.e., It ⊆ Σ for all time
points t ≥ 1. We call a stream J = J1J2 . . . a substream of I, in symbols J ⊆ I, if Jt ⊆ It for
all t ≥ 1. In the sequel, we omit empty sets in a sequence and write, e.g., I1I3 instead of
I1∅I3∅∅ . . ., and we denote the empty sequence ∅∅ . . . simply by ∅. We define the support of
I, in symbols supp I, to be the tightest interval [t1, t2] containing {t ≥ 1 | It �= ∅}; formally,
t1 = min{t ≥ 1 | It �= ∅} and t2 = max{t ≥ 1 | It �= ∅} in case I �= ∅, and supp ∅ = ∅.

A window1 is a function [−] mapping every stream I = I1I2 . . . to the substream I[�, r; t] =
Imax{0,t−
} . . . It+r of I, where �, r ∈ N∞, � ≤ r. Note that [−] and supp are monotone

1Beck et al. [5] employed more sophisticated windows and called them window functions; for simplicity, we
consider here only the windows defined above and note that our results are independent of the particular
choice of windows.
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2 Stream Logic Programs

functions, that is, I ⊆ J implies I[�, r; t] ⊆ J[�, r; t] and supp I ⊆ suppJ, for all �, r ∈ N∞

and t ≥ 1.

2.2 Syntax

A (stream logic) program P is a finite nonempty set of rules of the form

α ←− β1, . . . , βj ,∼βj+1, . . . ,∼βk, k ≥ j ≥ 1, (2.1)

where α is a normal t-formula, β1, . . . , βk are formulas, and ∼ denotes negation-as-failure
[8]. We will often write

r←− in expressions of the form (2.1) to make the name of the
rule explicit. For convenience, we define for a rule r of the form (2.1), H(r) = α, and
B(r) = β1 ∧ . . . ∧ βj ∧ ¬βj+1 ∧ . . . ∧ ¬βk. As is customary in logic programming, we will
interpret every finite set A of formulas as the conjunction

�
A over all formulas in A. We call

a rule r a fact if B(r) = �, and we call r ordinary if α, β1, . . . , βk ∈ Σ. Moreover, we define
H(P) to be the conjunction of all rule heads occurring in P, that is, H(P) =

�
r∈P H(r).

2.3 Semantics of Beck et al. (2018)

We now recall the FLP-style answer set semantics [17] as defined in [5] and we show that
their semantics yields counter-intuitive answer sets (cf. Example 2).

Let T be an interval in N and let B ⊆ Σ be a finite set, called the background data. We
define the entailment relation |=B, with respect to B, for all streams I, a ∈ Σ − {�},
formulas α, β, and all time points t ∈ T :

1. I, T, t |=B �;

2. I, T, t |=B a if a ∈ It ∪B;

3. I, T, t |=B ¬α if I, T, t �|=B α;

4. I, T, t |=B α ∧ β if I, T, t |=B α and I, T, t |=B β;

5. I, T, t |=B α ∨ β if I, T, t |=B α or I, T, t |=B β;

6. I, T, t |=B α → β if I, T, t �|=B α or I, T, t |=B β;

7. I, T, t |=B ♦α if I, T, t
 |=B α, for some t
 ∈ T ;

8. I, T, t |=B �α if I, T, t
 |=B α, for all t
 ∈ T ;

9. I, T, t |=B @t�α if I, T, t
 |=B α, and t
 ∈ T ;

4



2 Stream Logic Programs

10. I, T, t |=B �[
,r]α if I[�, r; t], T, t |=B α.

In case I, T, t |=B α, we call I a (t, T )-model of α.

We wish to evaluate P with respect to some fixed stream D, called the data stream. We call
a stream I an interpretation stream for D if D ⊆ I, and we say that such an interpretation
stream I is a (t, T )-model of P if I, T, t |=B B(r) → H(r), for all rules r ∈ P . The reduct of
P with respect to I and T at time point t is given by

PI,T,t = {r ∈ P | I, T, t |=B B(r)}.

Definition 1. Let T be a closed interval in N and let t ∈ T . An interpretation stream I
for D is a (t, T )-answer stream of P (for D) if I is a (t, T )-model of PI,T,t and there is no
(t, T )-model J of PI,T,t (for D) with J � I.

Note that the minimality condition in Definition 1 is given with respect to the same interval
T , which is crucial. In fact, the following example shows that as a consequence of Definition
1, trivial programs may have infinitely many answer streams which is counter-intuitive from
an answer set programming perspective.

Example 2. The ordinary program P consisting of a single fact a has the single answer
set {a}. Given some arbitrary time point t ≥ 1 for the evaluation of P within the LARS
context defined above, we therefore expect P to have the single answer stream {a}t. Un-
fortunately, under Beck et al’s [5] semantics, P has infinitely many answer streams: the
(t, [t, t])-answer stream {a}t, the (t, [t, t+1])-answer stream {a}t∅t+1, the (t, [t, t+2])-answer
stream {a}t∅t+1∅t+2 and so on.

The reason for the existence of the infinitely many answer streams for the trivial program
in Example 2 is the preselection of the fixed interval T in Definition 1 for the semantic
evaluation of programs. As a negative consequence of this choice, which appears to be
an artificial simplification of the semantics of programs, is that some specifications which
occur in practice cannot be expressed within the LARS language as is demonstrated by the
following example.

Example 3. Let T be some interval and let t ∈ T be some time point. According to
Definition 1, the statement “a holds at t if b holds at every time point in T” is formalized
by the single rule a ←− �b evaluated at time point t. Now consider the slightly different
statement “a holds at t if b holds at every relevant time point in the support2 of the
input data.” As natural as this statement seems, it is not expressible within the LARS
language. The intuitive reason is that the support function is flexible and depends on the

2Recall from Section 2.2 that the support of a stream is given by the tightest interval containing all
non-empty (i.e., relevant) time points.
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2 Stream Logic Programs

data, whereas the preselected interval T is fixed by the programmer and therefore does not
depend on the data. In a sense, preselecting fixed intervals for the semantic evaluation of
programs contradicts the very idea of stream reasoning which aims at coping with data
that changes at a high rate by incorporating window operators on a syntactic level for
selecting relevant time points. Arguably, it is therefore more natural to formalize the first
statement by the rule a ←− �T�b thus syntactically encoding the restricted interval T , and
interpreting a ←− �b as a formalization of the second statement (cf. Example 8).

2.4 Refined Semantics

We refine the FLP-style semantics of [5] (cf. Definition 1) by employing dynamic intervals.
For this we first refine the entailment relation by using the support function in the definition
of � and ♦ for dynamically computing intervals instead of the fixed interval T used by [5]:

1. I, t |=B ♦α if I, t
 |=B α, for some t
 ∈ supp I;

2. I, t |=B �α if I, t
 |=B α, for all t
 ∈ supp I;

3. I, t |=B @t�α if I, t
 |=B α, for t
 ≥ 1.

In case I, t |=B α, we call I a t-model of α, and we call α t-consistent (resp., t-inconsistent)
if α has at least one (resp., no) t-model. For convenience, we call α a t-formula if α is
t-consistent.

Example 4. The formula �[0,0]@2a is 1-inconsistent since @2 is a reference to time point 2
which is outside the scope of the window �[0,0] evaluated at time point 1. More precisely, let
I = I1I2 . . . be an arbitrary stream and compute I[0, 0; 1] = I1 which implies I1, 2 �|=B a—so
I is not a 1-model of α.

Remark 5. Note that t-inconsistency of normal formulas can be easily verified by a syn-
tactic check as in the example above and in the rest of the thesis we assume that (normal)
formulas occurring in rule heads are t-consistent, for all relevant t.

We can now refine and simplify the definition of answer streams by omitting the reference
to interval T which gives a more natural minimality condition.

Definition 6. An interpretation stream I for D is a t-answer stream of P (for D) if I is a
substream minimal t-model of PI,t.

Example 7. The ordinary program P of Example 2 consisting of the single fact a has the
single t-answer stream {a}t as expected.

6



2 Stream Logic Programs

Example 8. The second statement in Example 3 is formalized according to Definition 6
by the rule a ←− �b as desired. For the first statement in Example 3, we need to distinguish
two cases: (i) in case T is a subinterval of suppD, we can formalize the first statement via
a ←− �T�b as desired; however, (ii) if T is not a subinterval of suppD, then we need to
add auxiliary symbols to D as in Proposition 2 below.

We now illustrate the above concepts in more detail with the following running example.

Example 9. Consider the program P consisting of the following rules:

@2a
r1←− ∼@7c �[1,∞]�c

r3←− ∼@2a

�[∞,0]�a
r2←− ∼c �[2,3]�(a ∧ b)

r4←− �[0,1]♦c,�d.

Let the background data B consist of the single proposition d, and let the data stream D
be given by

D = {a}1{a, b}5{c}10.
That is, the propositions a and b hold at time point 5 and so on. Then, the 5-answer
streams of P (for D) are given by:

I = {a}1{a, b}3{a, b, c}4{a, b, c}5{a, b, c}6{a, b, c}7{a, b, c}8{c}9{c}10;
J = {a}1{a}2{a}3{a}4{a, b}5{c}10.

For instance, we verify that I is indeed a 5-answer stream of P. First of all, note that I is
a 5-model of P (for D): (i) as c holds in I at time points 5 and 7, we have I, 5 �|=B ∼@7c
and I, 5 �|=B ∼c which implies I, 5 |=B r1 and I, 5 |=B r2; (ii) as c holds at every time point
in the interval [4, 10], we have I, 5 |=B �[1,∞]�c which implies I, 5 |=B r3; and (iii) as a and
b hold at every time point in [3, 8], we have I, 5 |=B �[2,3]�(a∧ b) which implies I, 5 |=B r4.

Now we argue that I is a minimal 5-model of PI,5 = {r3, r4}. To this end, suppose
I
 = I
1I
2 . . . is a 5-model of PI,5 for D with D ⊆ I
 ⊆ I. Then, since I
, 5 |=B B(r3) and
I
, 5 |=B B(r4), for I


 to be a 5-model of P we must have I
, 5 |=B H(r3) and I
, 5 |=B H(r4);
but this is equivalent to I
[1,∞; 5], t |=B c, for all t ∈ [4, 10], and I
[2, 3; 5], t
 |=B a ∧ b, for
all t
 ∈ [3, 8] where I
[1,∞; 5] = I 
4 . . . I 
10 and I
[2, 3; 5] = I 
3 . . . I 
8, respectively. That is,
we have c ∈ I 
t, for all t ∈ [4, 10], and a, b ∈ I 
t� , for all t
 ∈ [3, 8]—but this, together with
D ⊆ I
 ⊆ I, immediately implies I
 = I which shows that I is indeed a minimal 5-model of
PI,5 and therefore a 5-answer stream of P .

It is important to emphasize that we can capture Beck et al’s [5] semantics as follows.

Proposition 2. Let T = [t1, t2] be an interval and let t ∈ T be some time point. An inter-
pretation stream I for D is a (t, T )-answer stream of P if, and only if, I ∪ {#}t1 . . . {#}t2
is a t-answer stream of

�TP ∪ {@t# | t ∈ T},

7



2 Stream Logic Programs

where # is a special symbol not occurring in Σ and �TP consists of all rules of the form

�T r = �Tα ←− �Tβ1, . . . ,�Tβj ,∼�T βj+1, . . . ,∼�T βk, r ∈ P.

At this point, we have successfully extended the FLP-style answer set semantics from
ordinary to stream logic programs by refining Beck et al’s [5] semantics. Unfortunately,
as for other program extensions (cf. [28, 2]), our FLP-style semantics may permit circular
justifications as is demonstrated by the following example.

Example 10. Consider the program R consisting of the following two rules:

a
r1←− �b

b
r2←− �a.

We argue that the t-model {a, b}t of R is a t-answer stream of R, for every t ≥ 1 (and
D = B = ∅): (i) The empty stream ∅ is not a t-model of R{a,b}t,t = R since both rules fire
in ∅; (ii) the stream {a}t is not a t-model of R since r2 fires; (iii) the stream {b}t is not a
t-model of R since r1 fires. This shows that {a, b}t is indeed a subset minimal t-model of
R{a,b}t,t and, hence, a t-answer stream of R.

In the next two sections, we will develop the tools for formalizing the reasoning in Example
9 in an operational setting (cf. Example 18), while avoiding circular justifications.

8



3 Fixed Point Operators

In this section, we recast the following well-known fixed point operators from ordinary to
stream logic programs: (i) the van Emden-Kowalski operator TP [31], and (ii) the Fitting
operator ΦP [18]. This task turns out to be non-trivial due to the intricate properties of
windows and other modal operators occurring in rule heads.

In the rest of the thesis, let I be a stream, let D be some data stream, let B be
some background data, and let t ≥ 1 be some fixed time point.

3.1 The Model Operator

In this subsection, we define an operator for the evaluation of rule heads. Specifically, given
a normal t-formula α, we wish to construct a t-model of α which is in some sense minimal
with respect to a given stream I (cf. Theorem 9).

Definition 11. For normal t-formulas α and β, and for a ∈ Σ, we define the partial model
operator MI,t at time point t and with respect to I, inductively as follows:

MI,t(a) =

�
{a}t if a �∈ B,

∅ if a ∈ B;

MI,t(α ∧ β) = MI,t(α) ∪MI,t(β);

MI,t(�α) =
�

t�∈supp I

MI,t�(α);

MI,t(@t�α) = MI,t�(α);

MI,t(�[
,r]α) = MI[
,r;t],t(α).

Finally, define the model operator MMI,t to be the twofold application of MI,t, that is,

MMI,t(α) = MMI,t(α),t(α).

One can easily derive the following computation rules for the model operator:

MMI,t(a) = MI,t(a);

MMI,t(@t�α) = MMI,t�(α);

MMI,t(�[
,r]α) = MMI[
,r;t],t(α).

9



3 Fixed Point Operators

In case α is �-free, we will often write Mt(α) instead of MI,t(α) to indicate that the
evaluation of MI,t does not depend on I.

Example 12. Let α be the �-free normal 1-formula �[0,0]@1a ∧@2b, and compute

M∅,1(�[0,0]@1a ∧@2b) = M∅[0,0;1],1(a) ∪M∅,2(b) = {a}1{b}2
which is a 1-model of α. On the other hand, for the normal 1-formula β = �a∧b containing
�, we obtain

M∅,1(�a ∧ b) = M∅,1(�a) ∪M∅,1(b) = M∅,1(b) = {b}1
which is not a 1-model of β; however, by applying M∅,1 twice, we do obtain a 1-model of β:

MM∅,1(�a ∧ b) = M{b}1,1(�a ∧ b) = M{b}1,1(a) ∪M{b}1,1(b) = {a, b}1.
Intuitively, to obtain a 1-model of β, we have to apply M∅,1 twice as the subformula b induces
an expansion of the support of the generated stream which has to be taken into account
for the generation of a 1-model for �a (note that conjunctions are treated separately by
the partial model operator).

Example 12 indicates that � requires a special treatment. In fact, if α is �-free then MI,t

does not depend on I and, consequently, in this case MI,t(α) and MMI,t(α) coincide which
simplifies the matters significantly.

Proposition 3. For every �-free normal t-formula α, MI,t(α) = MJ,t(α) holds for all
streams I and J; consequently, MI,t(α) = MMI,t(α).

Proof. By definition of the partial model operator, MI,t(α) depends on I only if α contains
�. The second assertion follows from the first with J = MI,t(α) and MMI,t(α) = MJ,t(α).

In the next two propositions, we show some monotonicity properties of the (partial) model
operator.

Proposition 4. For every normal t-formula α and all streams I and J, I ⊆ J implies
MI,t(α) ⊆ MJ,t(α) and MMI,t(α) ⊆ MMJ,t(α). Moreover, A ⊆ B implies MI,t(A) ⊆
MI,t(B) and MMI,t(A) ⊆ MMI,t(B), for all finite sets A and B of normal t-formulas.

Proof. The first inclusion can be shown by a straightforward structural induction on α, so
we prove here only the case α = �β, for some normal t-formula β:

MI,t(�β) =
�

t�∈supp I

MI,t�(β) ⊆
�

t�∈suppJ

MI,t�(β)
IH⊆

�
t�∈suppJ

MJ,t�(β) = MJ,t(�β).

10
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The second inclusion, MMI,t(α) ⊆ MMJ,t(α), is a direct consequence of the first. Finally,
the second part of the proposition is an immediate consequence of the first part and the
definition of the (partial) model operator.

Proposition 5. For every normal t-formula α, suppMI,t(α) = suppMMI,t(α) and

MI,t(α) ⊆ MMI,t(α).

Proof. The first identity can be proved by a straightforward structural induction on α.

We prove the inclusion by structural induction on α. The only non-trivial case is α = �β,
for some normal t-formula β:

MI,t(�β) =
�

t�∈supp I

MI,t�(β)

IH⊆
�

t�∈supp I

MMI,t�(β)

=
�

t�∈supp I

MMI,t� (β),t�(β)

⊆
�

t�∈supp I

MMI,t(�β),t�(β)

⊆
�

t�∈supp I

MMI,t(�β),t�(�β)

=
�

t�∈supp I

MMI,t�(�β)

= MMI,t(�β)

where the second and third inclusion follows from Proposition 4 together with

MI,t�(β) ⊆ MI,t(�β) for all t
 ∈ supp I,

and the last equality holds since:

MMI,t(�β) = MMI,t�(�β) for all t
 ∈ supp I. (3.1)

To prove (3.1), first note that, by definition, MI,t(�β) = MI,t�(�β) holds for all t
 ∈ supp I;
consequently:

MMI,t(�β) = MMI,t(�β),t(�β)

=
�

t��∈suppMI,t(�β)

MMI,t(�β),t��(β)

=
�

t��∈suppMI,t� (�β)

MMI,t� (�β),t��(β)

= MMI,t� (�β),t�(�β)

= MMI,t�(�β).

11
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It will often be convenient to separate a proof into a �-free and a general case. Therefore
we define the translation αI,t of α with respect to I at time point t to be the homomorphic
extension to all normal t-formulas of:

(�α)I,t =
�

t�∈supp I

@t�αI,t�

(�[
,r]α)I,t = �[
,r]αI[
,r;t],t

where we interpret the empty conjunction in (�α)∅,t as �. Intuitively, .I,t eliminates every
� occurring in α while preserving the meaning of α in the following sense.

Proposition 6. For every normal t-formula α, and for all streams I and J with supp I =
suppJ, we have I, t |=B α if, and only if, I, t |=B αJ,t.

Proof. A straightforward structural induction on α.

Interestingly, the next proposition shows that we can simulate the model operator by the
partial model operator applied to an appropriate translation of the input formula.

Proposition 7. For every normal t-formula α, MI,t(α) = MI,t(αI,t) and, consequently,
MMI,t(α) = MI,t(αM,t) with M = MI,t(α).

Proof. The first identity can be proved by a straightforward structural induction on α, and
the second identity follows from the first, i.e., MMI,t(α) = MM,t(α) = MI,t(αM,t).

Monotone formulas inherit their name from the following property.

Proposition 8. For every monotone formula α, I, t |=B α implies J, t |=B α, for all
streams I ⊆ J.

We are now ready to prove our first theorem which shows that MMI,t(α) is a t-model of α
which is in some sense “minimal” (with respect to I).

Theorem 9. For every normal t-formula α, MMI,t(α) is a t-model of α, that is,

MMI,t(α), t |=B α.

In case α is �-free, a single application of MI,t suffices, that is, MI,t(α), t |=B α. Moreover,
if I is a t-model of α, then MMI,t(α) ⊆ I.

12
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Proof. We start with the second assertion and prove by structural induction on α that in
case α is �-free, MI,t(α), t |=B α. The induction hypothesis α = a ∈ Σ, and the case α =
@t�β are straightforward. In what follows, let β and γ denote normal t-formulas. For α =
β∧γ, we have MI,t(β∧γ) = MI,t(β)∪MI,t(γ) and, by induction hypothesis, MI,t(β), t |=B β
and MI,t(γ), t |=B γ. Since β and γ are �-free, we have MI,t(β) ∪MI,t(γ), t |=B β ∧ γ as a
consequence of Proposition 8 (recall that�-free normal formulas are monotone). Finally, for
α = �[
,r]β we have MI,t(�[
,r]β) = MI,t(β) and, by induction hypothesis, MI,t(β), t |=B β.
Since �[
,r]β is t-consistent by assumption, MI,t(β) = MI,t(β)[�, r; t] (cf. Remark 5 and 13)
and, hence, MI,t(β)[�, r; t], t |=B β which is equivalent to MI,t(�[
,r]β), t |=B �[
,r]β.

We now turn to the general case and prove that MMI,t(α), t |=B α holds for any normal
t-formula α, by first translating α into a �-free formula, and then referring to the first part
of the proof. Let M = MI,t(α). Since αM,t is �-free, we know from the first part of the
proof that

MI,t(αM,t), t |=B αM,t. (3.2)

By Proposition 7,

MMI,t(α) = MI,t(αM,t). (3.3)

From (3.2) and (3.3) we infer

MMI,t(α), t |=B αM,t.

Now since suppM = suppMMI,t(α) (cf. Proposition 5), Proposition 6 proves our claim.

Finally, a straightforward structural induction on α shows MMI,t(α) ⊆ I.

Remark 13. We want to emphasize that the requirement in Theorem 9 of α being t-
consistent is essential. For instance, reconsider the 1-inconsistent normal formula α =
�[0,0]@2a of Remark 5, and compute MMI,1(α) = {a}2 which is not a 1-model of α.

3.2 The van Emden-Kowalski Operator

We are now ready to extend the well-known van Emden-Kowalski operator to the class of
stream logic programs.

Definition 14. We define the van Emden-Kowalski operator TP,D,t of P (for D at time
point t), for every stream I, by

TP,D,t(I) = D ∪MMI,t({H(r) | r ∈ P : I, t |=B B(r)}).

13
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As for ordinary logic programs [31], prefixed points of the van Emden-Kowalski operator
TP,D,t characterize the models of P (for D at time point t).

Theorem 10. A stream I is a t-model of P if, and only if, I is a prefixed point of TP,D,t.

Proof. Suppose I is a t-model of P and note that this is equivalent to

I, t |=B H(PI,t). (3.4)

Moreover, note that we can rewrite the van Emden-Kowalski operator more compactly as

TP,D,t(I) = D ∪MMI,t(H(PI,t)).

So we have to show MMI,t(H(PI,t)) ⊆ I (recall that D ⊆ I holds by assumption), but this
follows directly from (3.4) together with the last part of Theorem 9.

For the other direction, we show that MMI,t(H(PI,t)) ⊆ I implies I, t |=B H(PI,t). Let
M = MI,t(H(PI,t)). By Proposition 5,

M = MI,t(H(PI,t)) ⊆ MMI,t(H(PI,t)) = MM,t(H(PI,t)) ⊆ I. (3.5)

On the other hand, M ⊆ I and Proposition 4 imply

MM,t(H(PI,t)) ⊆ MI,t(H(PI,t)). (3.6)

Consequently, from (3.5) and (3.6) we infer

MI,t(H(PI,t)) = MMI,t(H(PI,t)). (3.7)

Intuitively, (3.7) means that in case MMI,t(H(PI,t)) ⊆ I, one application of MI,t suffices
(cf. Theorem 9 and Example 12). Moreover, Proposition 7 implies

MI,t(H(PI,t)) = MI,t(H(PI,t)I,t) ⊆ I. (3.8)

Since MI,t(H(PI,t)I,t) is a t-model of H(PI,t)I,t (cf. Theorem 9),

MI,t(H(PI,t)I,t) ⊆ I

holds by (3.8), and H(PI,t)I,t is monotone, Proposition 8 and (3.8) imply

I, t |=B H(PI,t)I,t. (3.9)

Finally, Proposition 6 and (3.9) imply I, t |=B H(PI,t).

Example 15. Reconsider the program P of Example 9 consisting of the following rules:

@2a
r1←− ∼@7c �[1,∞]�c

r3←− ∼@2a

�[∞,0]�a
r2←− ∼c �[2,3]�(a ∧ b)

r4←− �[0,1]♦c,�d.

14
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We have argued in Example 9 that the interpretation stream

I = {a}1{a, b}3{a, b, c}4{a, b, c}5{a, b, c}6{a, b, c}7{a, b, c}8{c}9{c}10
of P for D = {a}1{a, b}5{c}10 and B = {d} is a 5-model of P . Now we want to rigorously
prove that I is a 5-model of P by showing that I is a prefixed point of TP,D,5. We compute:

M = MI,5({H(r3),H(r4)})
= MI,5(�[1,∞]�c ∧�[2,3]�(a ∧ b))

= MI,5(�[1,∞]�c) ∪MI,5(�[2,3]�(a ∧ b))

=
�

t∈supp I[1,∞;5]

MI[1,∞;5],t(c) ∪
�

t∈supp I[2,3;5]

MI[2,3;5],t(a ∧ b)

= {a, b}3{a, b, c}4{a, b, c}5{a, b, c}6{a, b, c}7{a, b, c}8{c}9{c}10
and

TP,D,5(I) = D ∪MMI,5({H(r3),H(r4)})
= D ∪MM,5(�[1,∞]�c) ∪MM,5(�[2,3]�(a ∧ b))

= D ∪
�

t∈suppM[1,∞;5]

MM[1,∞;5],t(c) ∪
�

t∈suppM[2,3;5]

MM[2,3;5],t(a ∧ b)

= D ∪M

= {a}1{a, b}3{a, b, c}4{a, b, c}5{a, b, c}6{a, b, c}7{a, b, c}8{c}9{c}10
= I.

3.3 The Fitting Operator

In the presence of negation, the van Emden-Kowalski operator is non-monotonic and cannot
be iterated bottom-up. We therefore extend the (3-valued) Fitting operator [18] from
ordinary to stream logic programs as follows. Firstly, we define a 3-valued stream to be
a pair of streams (I,J) with I ⊆ J or, equivalently, a sequence of pairs (I1, J1)(I2, J2) . . .
with It ⊆ Jt for all t ≥ 1, with the intuitive meaning that every a ∈ It (resp., a �∈ Jt) is
true (resp., false) at time point t, whereas every a ∈ Jt − It is undefined at t.

We then define the precision ordering1 ⊆p on the set of all 3-valued streams by

(I,J) ⊆p (I

,J
) ⇐⇒ I ⊆ I
 and J
 ⊆ J.

Intuitively, (I,J) ⊆p (I
,J
) means that (I
,J
) is a “tighter” interval inside (I,J). The
maximal elements with respect to ⊆p are exactly the (2-valued) streams where we identify
each stream I with (I, I). Note that since distinct streams have no upper bound with
respect to the precision ordering, the set of all 3-valued streams is not a lattice.

We extend the entailment relation to 3-valued streams as follows.
1The precision ordering corresponds to the knowledge ordering ≤k in [18]; cf. [12].
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Definition 16. For every 3-valued stream (I,J) and formula α,

(I,J), t |=B α ⇐⇒ K, t |=B α for every K ∈ [I,J].

The intuition behind Definition 16 is as follows. Recall that a formula α containing ¬,→,
or � may be non-monotone in the sense of Proposition 8, and in this case we have to take
all possible extensions K ∈ [I,J] of I into account.

Now define the Fitting operator ΦP,D,t of P for D at time point t, for every 3-valued stream
(I,J), by

ΦP,D,t(I,J) = D ∪MMI,t({H(r) | r ∈ P : (I,J), t |=B B(r)}).

The only difference between ΦP,D,t and TP,D,t is that ΦP,D,t evaluates the body of a
rule in a 3-valued stream, which guarantees the monotonicity of ΦP,D,t with respect to
the precision ordering (cf. Proposition 12). As for ordinary logic programs, the Fitting
operator encapsulates the van Emden-Kowalski operator.

Proposition 11. For every stream I, ΦP,D,t(I, I) = TP,D,t(I).
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In this section, we define a fixed point semantics for the class of stream logic programs in
terms of the Fitting operator defined above. More precisely, we first show that the Fitting
operator is monotone with respect to the precision ordering, and conclude that certain
least fixed points, the so-called ΦP,D,t-answer streams, exist (cf. Definition 17). Then, we
compare our constructive semantics to the FLP-style semantics of [5] (cf. Theorem 16 and
Theorem 17).

Proposition 12. The Fitting operator ΦP,D,t is monotone with respect to the precision
ordering.

Proof. Let (I,J) and (I
,J
) be 3-valued streams with (I,J) ⊆p (I
,J
). For an arbitrary
rule r ∈ P, (I,J), t |=B B(r) implies (I
,J
), t |=B B(r) as a direct consequence of Definition
16. Finally, Proposition 4 implies ΦP,D,t(I,J) ⊆ ΦP,D,t(I


,J
).

A consequence of Proposition 12 is that in case I is a t-model of P , ΦP,D,t(−, I) is a
monotone operator on the complete lattice [∅, I], since for every K ∈ [∅, I],

ΦP,D,t(K, I) ⊆ ΦP,D,t(I, I) = TP,D,t(I) ⊆ I

holds by Proposition 11 and Theorem 10.

Define the operator Φ†
P,D,t on the set of all t-models of P by

Φ†
P,D,t(I) = lfpΦP,D,t(−, I).

The soundness of Φ†
P,D,t is justified by the well-known Knaster-Tarski theorem which guar-

antees the existence of least fixed points of monotone operators on complete lattices.

We are now ready to formulate our fixed point semantics.

Definition 17. We call every t-model I of P (for D) a ΦP,D,t-answer stream if I is a fixed

point of Φ†
P,D,t.

For readers not familiar with the fixed point theory of logic programming, we briefly recall
the basic intuitions behind Definition 17 in the setting of ordinary logic programs. For
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the moment, let P be an ordinary program, and let I be an interpretation of P. The
Gelfond-Lifschitz reduct of P with respect to I is defined by1

PI =
�
H(r) ←− B+(r) | r ∈ P : I ∩ B−(r) = ∅� .

We call I an answer set [20] of P if I is the least model of PI , which coincides with lfpTPI .
So the computation of answer sets according to [20] is a two-step process, and [18] showed
how these two steps can be emulated by a single (monotone) operator, namely the Fitting
operator ΦP . Specifically, the identity ΦP(−, I) = TPI implies that I is an answer set of
P if and only if I is the least fixed point of ΦP(−, I) or, equivalently, if I is a fixed point of

Φ†
P . It is now clear that Definition 17 is an extension of the ordinary answer set semantics

to stream logic programs.

Proposition 13. For an ordinary program P, I is an answer set of P if, and only if,
I = It = I is a t-answer stream of P, for every t ≥ 1.

We illustrate our fixed point semantics with the following example.

Example 18. Reconsider the program P of Example 9 consisting of the following rules:

@2a
r1←− ∼@7c �[1,∞]�c

r3←− ∼@2a

�[∞,0]�a
r2←− ∼c �[2,3]�(a ∧ b)

r4←− �[0,1]♦c,�d.

We have argued in Example 9 that the interpretation stream

I = {a}1{a, b}3{a, b, c}4{a, b, c}5{a, b, c}6{a, b, c}7{a, b, c}8{c}9{c}10
of P for D = {a}1{a, b}5{c}10 and B = {d} is a 5-answer stream of P. We now want
to apply our tools from above to rigorously prove that I is a ΦP,D,5-answer stream by

computing Φ†
P,D,5(I) bottom-up as follows. We start the computation with I0 = ∅:

ΦP,D,5(∅, I) = D ∪MM∅,5(H(r3)) = D ∪MM∅,5(�[1,∞]�c) = D ∪MM∅[1,∞;5],5(�c) = D

where the last equality follows from ∅[1,∞; 5] = ∅ and MM∅,5(�c) = ∅. Then we continue
the computation with I1 = D:

ΦP,D,5(I1, I) = D ∪MMI1,5(H(r3))

= D ∪MMI1,5(�[1,∞]�c)

= D ∪MMI1[1,∞;5],5(�c)

= D ∪MMI1[1,∞;5],5(�c),5(�c)

= D ∪M{c}4...{c}10,5(�c)

= D ∪ {c}4 . . . {c}10
= {a}1{c}4{a, b, c}5{c}6{c}7{c}8{c}9{c}10
= I2.

1Here B−(r) denotes the negated atoms in the body of r, and B+(r) denotes B(r)− B−(r).
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4 Fixed Point Semantics

For the third iteration, we first compute

M = MI2,5({H(r3),H(r4)})
= MI2,5(�[1,∞]�c ∧�[2,3]�(a ∧ b))

= MI2,5(�[1,∞]�c) ∪MI2,5(�[2,3]�(a ∧ b))

= MI2[1,∞;5],5(�c) ∪MI2[2,3;5],5(�(a ∧ b))

= {a, b}3{a, b, c}4{a, b, c}5{a, b, c}6{a, b, c}7{a, b, c}8{c}9{c}10
and then:

ΦP,D,5(I2, I) = D ∪MMI2,5({H(r3),H(r4)})
= D ∪MMI2,5(�[1,∞]�c ∧�[2,3]�(a ∧ b))

= D ∪MM,5(�[1,∞]�c) ∪MM,5(�[2,3]�(a ∧ b))

= D ∪MM[1,∞;5](�c) ∪MM[2,3;5],5(�(a ∧ b))

= D ∪M

= {a}1{a, b}3{a, b, c}4{a, b, c}5{a, b, c}6{a, b, c}7{a, b, c}8{c}9{c}10
= I3.

Finally, we verify that I = I3 is a fixed point of (cf. Example 15 and Proposition 11):

ΦP,D,5(I, I) = TP,D,5(I) = I.

In summary, the above computations show that I is a fixed point of Φ†
P,D,5 or, equivalently,

a ΦP,D,5-answer stream.

We now wish to relate our fixed point semantics from above to the FLP-style semantics of
[5] presented in Section 2. Firstly, we prove some auxiliary lemmas.

Lemma 14. Let (I,J) be a 3-valued stream, and let K ∈ [I,J]. Then, ΦPK,t,D,t(I,J) =
ΦP,D,t(I,J).

Proof. Define P(I,J),t = {r ∈ P | (I,J), t |=B B(r)}. As a direct consequence of 3-valued
entailment (cf. Definition 16), we have the following inclusions:

P(I,J),t ⊆ PK,t ⊆ P . (4.1)

By the monotonicity of MMI,t (cf. Proposition 4), ΦR,D,t(I,J) ⊆ ΦP,D,t(I,J) holds when-
ever R ⊆ P, for all programs P and R. Therefore, we can conclude from (4.1):

ΦP(I,J),t,D,t(I,J) ⊆ ΦPK,t,D,t(I,J) ⊆ ΦP,D,t(I,J). (4.2)

Note that by definition, we have ΦP(I,J),t,D,t(I,J) = ΦP,D,t(I,J) which together with (4.2)
entails ΦPK,t,D,t(I,J) = ΦP,D,t(I,J).
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4 Fixed Point Semantics

Lemma 15. For every prefixed point K ⊆ I of TP,D,t, Φ
†
P,D,t(I) ⊆ K.

Proof. We compute Φ†
P,D,t(I) bottom-up. Clearly, K0 = ∅ ⊆ I. Since ΦP,D,t(−, I) is

monotone, we have

K1 = ΦP,D,t(∅, I) ⊆ ΦP,D,t(K,K) = TP,D,t(K) ⊆ K.

Similarly, we can compute K2 = ΦP,D,t(K1, I) ⊆ K and so on, which shows that the limit

Φ†
P,D,t(I) is contained in K, i.e., Φ†

P,D,t(I) ⊆ K.

We are now ready to prove the main result of this thesis.

Theorem 16. Every ΦP,D,t-answer stream is a t-answer stream of P.

Proof. By assumption, we have Φ†
P,D,t(I) = I which implies

Φ†
PI,t,D,t

(I) = I (4.3)

by Lemma 14, that is, I is a ΦPI,t,D,t-answer stream. Since every ΦPI,t,D,t-answer stream is

a t-model of PI,t, it remains to show that I is a minimal t-model of PI,t. For this suppose
there exists some stream K with K � I such that K is a t-model of PI,t. Then, by Theorem
10, we have TPI,t,D,t(K) ⊆ K � I which implies

Φ†
PI,t,D,t

(I) ⊆ K � I

by Lemma 15—a contradiction to (4.3).

Theorem 16 shows that our fixed point semantics is sound with respect to our FLP-style
semantics. However, the next example shows that the converse of Theorem 16 fails in
general.

Example 19. Reconsider the program R of Example 10 consisting of the rules

a
r1←− �b

b
r2←− �a.

In Example 10 we have seen that {a, b}t is a t-answer stream of R, for every t ≥ 1 (and
D = B = ∅). On the other hand, we have ΦR,t(∅, {a, b}t) = ∅ which shows that {a, b}t is
not a ΦR,t-answer stream.
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5 Level Mappings

In this section, we define level mappings for stream logic programs in the vein of [28], and
prove in Theorem 17 that ΦP,D,t-answer streams characterize those t-models which posses
a level mapping or, equivalently, which are free of circular justifications.

Firstly, we recast the notion of a partitioning to stream logic programs.

Definition 20. A partitioning of a stream I is a sequence of streams S = (S0,S1, . . . ,Sm),
m ≥ 1, where S0 = ∅, S1 ∪ . . . ∪ Sm = I, Si �= ∅ for every i ≥ 1, and Si ∩ Sj = ∅ for every
i �= j �= 0.

We now define level mappings over such partitionings.

Definition 21. A t-level mapping of a stream I with respect to P (for D) is a partitioning
S = (S0,S1, . . . ,Sm) of I such that for all 1 ≤ i ≤ m,

Si ⊆ D ∪MMS1∪...∪Si−1,t({H(r) | r ∈ P : (S1 ∪ . . . ∪ Si−1, I), t |=B B(r)}). (5.1)

We call S a total t-level mapping of I if in addition I = S0 ∪ . . . ∪ Sm is a t-model of P .

The intuition behind Definition 21 is as follows. A partitioning S = (S0,S1, . . . ,Sm) with
Si = Si,1Si,2 . . ., 1 ≤ i ≤ m, is a t-level mapping of I if each proposition a ∈ Si,ti (i.e.,
a holds in level i at time point ti) is non-circularly justified by the rules in P , i.e., either
a ∈ Dti or there exists a rule r in P justifying a at time point ti, that is, a occurs in the
head of r and the body of r “fires” in a level smaller than i. For S to be called total, we
additionally require S1 ∪ . . .∪Sm = I to contain every proposition occurring in a rule head
which is derivable from I, i.e., D∪MMI,t(H(PI,t)) ⊆ I which, by Theorem 10, is equivalent
to I being a t-model of P . Clearly, a stream I possessing a t-level mapping is free of circular
justifications.

Note that we can rewrite (5.1) more compactly as

Si ⊆ ΦP,D,t(S1 ∪ . . . ∪ Si−1, I) (5.2)

which shows the direct relationship between t-level mappings and the Fitting operator.
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5 Level Mappings

Example 22. Once again, reconsider the program P of Example 9. In Example 18 we
have seen that

I = {a}1{a, b}3{a, b, c}4{a, b, c}5{a, b, c}6{a, b, c}7{a, b, c}8{c}9{c}10
is a ΦP,D,5-answer stream forD = {a}1{a, b}5{c}10. We construct the total 5-level mapping
S = (S0,S1,S2,S3) of I for P as follows:1

S0 = I0 = ∅
S1 = I1 − I0 = D = {a}1{a, b}5{c}10
S2 = I2 − I1 = {c}4{c}5{c}6{c}7{c}8{c}9
S3 = I3 − I2 = {a, b}3{a, b}4{a, b}6{a, b}7{a, b}8

where I0 = ∅, I1 = D, I2, and I3 = I are the intermediate results in the bottom-up compu-
tation of Φ†

P,D,5(I) (cf. Example 18).

We can characterize the ΦP,D,t-answer streams in terms of t-level mappings as follows.

Theorem 17. A stream I is a ΦP,D,t-answer stream if, and only if, there is a total t-level
mapping S of I with respect to P.

Proof. For the direction from left to right, we construct the total t-level mapping S of the
ΦP,D,t-answer stream I as in Example 22. Let I0 = ∅, I1, . . . , Im = I be the intermediate

results of the bottom-up computation of Φ†
P,D,t(I) = I, i.e.,

ΦP,D,t(Ii−1, I) = Ii, 1 ≤ i ≤ m,

and define S0 = ∅ and Si = Ii − Ii−1, for all 1 ≤ i ≤ m. By construction, we have
Ii = S1 ∪ . . . ∪ Si, for all 1 ≤ i ≤ m, which directly yields the inclusion in (5.2); moreover,
since I is a t-model of P, S is a total t-level mapping of I with respect to P.

For the opposite direction, let S = (S0,S1, . . . ,Sm), m ≥ 1, be a total t-level mapping of
I with respect to P. We need to show that I =

	
S, with

	
S = S1 ∪ . . . ∪ Sm, is a fixed

point of Φ†
P,D,t. Since S is total, I is a t-model of P, so we have by (5.2), the monotonicity

of ΦP,D,t (cf. Proposition 12), Proposition 11, and Theorem 10:

I =
�

S ⊆ ΦP,D,t(S1 ∪ . . . ∪ Sm−1, I)

⊆ ΦP,D,t

��
S, I

�
= ΦP,D,t(I, I) = TP,D,t(I) ⊆ I.

So I is a fixed point of ΦP,D,t(−, I) and it remains to show that there is no fixed point
K � I of ΦP,D,t(−, I). Suppose, towards a contradiction, that for some K � I,

ΦP,D,t(K, I) = K. (5.3)

1By “−” we mean here the point-wise relative complement, e.g., {a}1{b}2 − {b}2 = {a}1.
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5 Level Mappings

Since K � I there is some i, 1 ≤ i ≤ m, such that S1 ∪ . . . ∪ Si−1 ⊆ K ⊆ S1 ∪ . . . ∪ Si. So
by (5.2) and Proposition 12 we have

Si ⊆ ΦP,D,t(S1 ∪ . . . ∪ Si−1, I) ⊆ ΦP,D,t(K, I) = K.

Consequently,

K = ΦP,D,t(K, I)

⊆ ΦP,D,t(S1 ∪ . . . ∪ Si, I)

⊆ ΦP,D,t(S1 ∪ . . . ∪ Si−1 ∪K, I)

= ΦP,D,t(K, I)

= K,

which implies

ΦP,D,t(S1 ∪ . . . ∪ Si, I) = K. (5.4)

From (5.2), (5.4), and the monotonicity of ΦP,D,t (cf. Proposition 12) we infer

Si−1 ⊆ ΦP,D,t(S1 ∪ . . . ∪ Si−2, I) ⊆ ΦP,D,t(S1 ∪ . . . ∪ Si, I) = K;

Si+1 ⊆ ΦP,D,t(S1 ∪ . . . ∪ Si, I) = K.

Hence, Sj ⊆ K for all 1 ≤ j ≤ m, and so
	

S ⊆ K � I—a contradiction to
	

S = I.

Example 23. Reconsider the program R of Example 10 consisting of the following two
rules:

a ←− �b

b ←− �a.

In Example 10 we have seen that for every t ≥ 1, I = {a, b}t is a t-answer stream of R.
Note that a and b are circularly justified in R. As I is not a ΦP,D,t-answer stream (cf.
Example 19), there is no total t-level mapping of I by Theorem 17.

Note that Theorem 17 together with Theorem 16 (and Example 19) characterize our se-
mantics as the strict constructive subclass of our FLP-style semantics.
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6 Conclusion

This thesis contributed to the foundations of stream reasoning [9, 25, 1] by providing a
sound and constructive extension of the answer set semantics from ordinary to stream logic
programs. For this we refined the FLP-style semantics of [5]. Moreover, we extended the
van Emden-Kowalski and Fitting operators from ordinary to stream logic programs. As a
result of our investigations, we obtained constructive semantics of stream logic programs
with nice properties. More precisely, it turned out that our fixed point semantics can be
characterized in terms of level mappings or, equivalently, is free of circular justifications,
which is regarded as a positive feature. Moreover, the algebraic nature of our fixed point
semantics yields computational proofs which are satisfactory from a mathematical point of
view.

As our fixed point semantics hinges on the (extended) Fitting operator, it can be reformu-
lated within the algebraic framework of Approximation Fixed Point Theory (AFT) [12, 10],
which is grounded in the work of Fitting on bilattices in logic programming (cf. [18]), and
which captures a number of related (non-monotonic) formalisms (e.g., [11] and [2]). In the
future, we wish to apply the full framework of AFT to LARS, which provides a well-founded
semantics [32], a notion of strong and uniform equivalence [30], a bottom-up semantics for
disjunctive programs [2], and a recently introduced algebraic notion of groundedness [6].
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[12] M. Denecker, V. Marek, and M. Truszczyński. Ultimate approximation and its appli-
cation in nonmonotonic knowledge representation systems. Information and Compu-
tation, 192(1):84–121, 2004.

[13] T. Eiter, G. Ianni, and T. Krennwallner. Answer set programming: a primer. In Rea-
soning Web. Semantic Technologies for Information Systems, volume 5689 of Lecture
Notes in Computer Science, pages 40–110. Springer, Heidelberg, 2009.

[14] T. Eiter, G. Ianni, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining answer
set programming with description logics for the Semantic Web. Artificial Intelligence,
172(12-13):1495–1539, Aug. 2008.

[15] T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. A uniform integration of higher-
order reasoning and external evaluations in answer-set programming. In L. P. Kael-
bling and A. Saffiotti, editors, Proc. 19th International Joint Conference on Artificial
Intelligence, pages 90–96, 2005.

[16] W. Faber, N. Leone, and G. Pfeifer. Recursive aggregates in disjunctive logic programs:
semantics and complexity. In J. Alferes and J. Leite, editors, JELIA 2004, LNCS 3229,
pages 200–212. Springer, Berlin, 2004.

[17] W. Faber, G. Pfeifer, and N. Leone. Semantics and complexity of recursive aggregates
in answer set programming. Artificial Intelligence, 175(1):278–298, 2011.

[18] M. Fitting. Fixpoint semantics for logic programming—a survey. Theoretical Computer
Science, 278(1-2):25–51, 2002.

[19] M. Gebser, B. Kaufmann, and T. Schaub. Conflict-driven answer set solving: from
theory to practice. Artificial Intelligence, 187-188(C):52–89, 2012.

[20] M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9(3-4):365–385, 1991.

[21] E. Giunchiglia, Y. Lierler, and M. Maratea. Answer set programming based on propo-
sitional satisfiability. Journal of Automated Reasoning, 36(4):345–377, 2006.

[22] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello.
The DLV system for knowledge representation and reasoning. ACM Transactions on
Computational Logic, 7(3):499–562, 2006.

[23] V. Lifschitz. Answer set programming and plan generation. Artificial Intelligence,
138:39–54, 2002.
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[j1] Antić, C., 2014, On cascade products of answer set programs, Theory and Practice of
Logic Programming, vol. 14, no. 4-5, pp. 711–723.
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