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Abstract

We conducted an in-depth exploration of snap-through behavior in bistable Micro-
Electro-Mechanical Systems (MEMS), using piezoelectric microplates as our rep-
resentative system. Under several assumptions, including that the plate was thin
and homogeneous, models for the plate deflections were derived from von Karman
plate theory, coupled to a strain compatibility equation. The complexity of the
partial differential equation (PDE) system was managed through the Galerkin
method, transforming it into interconnected nonlinear ordinary differential equa-
tions (ODEs). Using a Python framework for numerical solutions, we investigated
the effects of various piezoelectric tones on snap-through behaviors. The nuanced
relationship between tone combinations and their impact on snap-through timing
was highlighted. Certain dual tones could accelerate, delay, enable, or completely
inhibit snap-through. These insights offer avenues for more controlled, efficient, and
innovative applications in MEMS devices, particularly where rapid snap-through is
essential.
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CHAPTER 1
Introduction

In the expansive landscape of microtechnology, Micro-Electro-Mechanical Systems
(MEMS) stand out as a landmark innovation. Over the past few decades, MEMS
have seamlessly woven themselves into the fabric of numerous applications. As
their name implies, MEMS devices are characterized by being on the scale of
micrometers, but their applications are anything but small [1].

The electro-mechanical basis of MEMS helps differentiate between the two main
categories of MEMS applications: sensors and actuators. Each rely on a different
approach to harness the potential of MEMS. Sensors, as their name implies, are
used to record mechanical and physical quantities such as acceleration, pressure,
and temperature as electrical signals. Actuators, on the other hand, use electrical
signals to induce mechanical motion [2] [3]. A great example of the applications
of actuators are MEMS speakers, in which an AC voltage causes an actuator to
vibrate an acoustic diaphragm that produces sound waves. MEMS speakers may
be able to outperform conventional speakers by being smaller, more energy efficient,
and having greater potential to be directly integrated with electronic circuits in
batches [4].

MEMS actuators are characterized by their deflection behavior, which is how the
shape of the actuator deforms with or without stimuli. These actuators can be
classified into two categories based on their deflection behavior at rest: monostable
and bistable [5]. Monostable actuators have a single stable deflection state. Due to
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the elastic nature of the actuator, the deflection will eventually return to this state
if there is ever a deviation from said state, barring any external stimuli. Bistable
MEMS actuators, on the other hand, have two stable deflection states which can
be on the scale of tens of micrometers as the result of a pre-stress of the actuator
material. These bistable deflections can be much larger than the deflections of
monostable actuators, which are typically on the scale of nanometers [6]. Given
that the purpose of actuators is to move in order to perform a task, a greater
deflection ability can be a significant advantage.

Since bistable MEMS devices have two stable states, these devices can switch
between these states in a process known as snap-through [7]. One way to achieve
these states is known as buckling. However, instead of harnessing the potential
benefits of snap-through’s change in deflection, much of the existing research has
been focused on mitigating or avoiding it [8]. A primary concern is the nonlinear
dynamics exhibited during the snap-through process, which makes this process
harder to predict and control. Therefore, a better understanding of the snap-through
process is needed to better utilize bistable MEMS devices.

To induce the snap-through, a transduction mechanism is needed to convert electri-
cal input signals into excitations that can trigger the snap-through. Several options
include electrostatic, magnetic, thermal, and piezoelectric methods. [9]. For this
project, we focus on the piezoelectric method, whereby a layer of piezoelectric
material is deposited onto the surface of the actuator. When a voltage signal is
applied to the piezoelectric layer, it changes the stress within the piezoelectric
material and thus the actuator as a whole, which then causes the deflection to
change. If the change in deflection is large enough, snap-through occurs. Existing
experimental research has demonstrated that the piezoelectric method has the
potential to be effective at inducing snap-through with low energy consumption [9]
[10] .

In this project, we aim to better understand the snap-through phenomenon in
piezoelectrically-induced bistable MEMS devices using a mathematical model and
numerical simulations. We consider the MEMS device to be a thin, square plate
subject to a given piezoelectric excitation. We assume that the material of the
plate is homogeneous, elastic, and isotropic. We set the pre-stress of the plate to
be at a level that induces bistability.
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To model the plate, we use von Karman plate theory to form a system of partial
differential equations (PDEs) that accounts for the nonlinearity due to large
deflections. We incorporate a piezoelectric layer by modeling the layer as a time-
dependent stress resultant that is added to the pre-stress resultant of the plate. An
analytic solution to this system is not feasible due to the nonlinearity, so we use
the Galerkin method to transform the PDE system into a set of coupled nonlinear
ordinary differential equations (ODEs). We then use a Python-based simulation
framework to numerically solve these ODEs via an explicit Runge-Kutta method
of order 5(4).

We model the piezoelectric stress resultant (piezo-stress) as either a single- or
dual-frequency tone. For the single-frequency tone, the piezo-stress is a sinusoidal
function of time with a given frequency and amplitude. For the dual-frequency
tone, the piezo-stress is the sum of two single-frequency tones, each with their own
frequency and amplitude. We then subject the system to a variety of these single-
or dual-frequency tones in order to analyze the resulting snap-through behavior.

In particular, we are interested in determining which piezo-stress tones efficiently
induce snap-through. Thus, we simulate the deflection of the plate over time for a
variety of piezo-stress tones and record how long it takes for snap-through to occur.
Faster snap-through is desirable for several reasons. One, by reducing the time it
takes for snap-through to occur, the MEMS device would be more responsive to the
input signal. Thus it becomes easier to trigger the snap-through at a desired time.
Two, the snap-through process is nonlinear, so the faster it occurs, the less time
there is for nonlinear effects to accumulate and the easier it is to predict the behavior
of the system. And three, the faster the snap-through occurs, the shorter the piezo
tone has to be active and thus less energy is needed to induce snap-through. Thus,
we can use the time it takes for snap-through to occur as a metric for the efficiency
of the piezo-stress tone. Furthermore, lower-amplitude tones require less energy
to produce, so we also consider the amplitude of the piezo-stress tone as a metric
for energy-efficiency. Thus, we aim to find low-amplitude piezo-stress tones that
quickly induce snap-through. Energy-efficiency presents us an especially important
motivation due to the push for devices such as MEMS to require less energy, to
allow for real-world devices to run longer with limited energy sources [10].

Existing computational research has explored the snap-through time of piezoelectric
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plates subject to a single-frequency piezo-stress tone [6]. However, the snap-through
time of piezoelectric plates subject to a dual-frequency piezo-stress tone had not
yet been explored. Thus, we address this opportunity by exploring the snap-
through time of piezoelectric plates subject to a dual-frequency piezo-stress tone,
to understand whether these more-complex tones can be more efficient at inducing
snap-through than single-frequency tones. In addition to varying the frequencies
and amplitudes of the tone, we also explore the effect of a phase difference between
the two frequencies of the overall tone. Lastly, also explore the effect of different
linear damping rates on the snap-through time to understand how the time is
effected as well as whether each dual-frequency tone remains efficient at inducing
snap-through.

4



CHAPTER 2
Mathematical Model

2.1 von Karman Plate Theory
z

y

x

h

L

L

Figure 2.1: Schematic of the square plate.

We consider a square plate as depicted in Figure 2.1 with side length L in the
x,y-directions and thickness h in the z-direction. We consider the plate to be
relatively thin, i.e. h ≪ L, and all the edges to be fixed in place. We allow the
plate to have a deflection w of such a plate in the z-direction, but we neglect any
displacements in the x,y-directions due to the fixed boundary conditions. As for
the material, we will assume that plate is entirely composed of silicon, and that
the silicon is linearly elastic and isotropic.

5



2.2. Airy Stress Function

By von Karman plate theory, the deflection w of such a plate in the z-direction
can be modeled with the following partial differential equation (PDE) [11] [6]

µ
∂2w

∂t2 + D∇4w − Nxx
∂2w

∂x2 − Nyy
∂2w

∂y2 − 2Nxy
∂2w

∂x∂y
= 0 (2.1)

where µ is the areal mass density µ = ρh with density ρ of the material. D is the
flexural rigidity, given by

D = Eh3

12(1 − ν2) (2.2)

where E is Young’s modulus and ν is Poisson’s ratio. For a silicon plate that
is isotropic and linearly thermoelastic, these properties have the values E =
165 × 109 Pa and ν = 0.22 [12]. Nxx, Nyy, and Nxy are then the stress resultants
which represent the in-plane stress of the system. Lastly, ∇4 is the two-dimensional
biharmonic operator, defined as

∇4 = ∂4

∂x4 + ∂4

∂y4 + 2 ∂4

∂2x∂2y
. (2.3)

Very importantly, Equation 2.1 highlights the direct relationship between the in-
plane forces and the plate’s deflection. By adjusting these stress resultants, which
represent the in-plane forces, one modifies the plate’s deflection behavior. However,
these stress resultants are currently unknowns, resulting in a underdetermination
of the system that needs to be addressed.

2.2 Airy Stress Function
To determine the stress resultants, we can model them using an Airy stress function
F = F (x, y) where [11]

Nxx = ∂2F

∂y2 ,

Nyy = ∂2F

∂x2 ,

Nxy = − ∂2F

∂x∂y
. (2.4)
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2.3. Non-Dimensionalisation of PDE

Accordingly, we obtain the Airy von Karman nonlinear PDE

µ
∂2w

∂t2 + D∇4w − ∂2F

∂y2
∂2w

∂x2 − ∂2F

∂x2
∂2w

∂y2 + 2 ∂2F

∂x∂y

∂2w

∂x∂y
= 0 (2.5)

This equation is coupled to a strain compatibility equation which imposes an
additional condition to the Airy function such that [13]

∇4F = Eh

�
∂2w

∂x∂y


2

− ∂2w

∂x2
∂2w

∂y2

 . (2.6)

To model the energy dissipation as a result of a change in the deflection of the
plate, we then add a linear damping term κµ∂w

∂t
to obtain

µ
∂2w

∂t2 + κµ
∂w

∂t
+ D∇4w − ∂2F

∂y2
∂2w

∂x2 − ∂2F

∂x2
∂2w

∂y2 + 2 ∂2F

∂x∂y

∂2w

∂x∂y
= 0 (2.7)

where κ is the damping rate. With this damping term, we assume that the damping
has a linear and homogeneous relation with the speed of deflection ∂w

∂t
.

2.3 Non-Dimensionalisation of PDE
To reduce the number of parameters and to make the system more generalizable,
a non-dimensionalization of the PDE was then performed. Thus, characteristic
quantities were needed for each of the parameters to serve as a suitable non-
dimensionalization factor. For the x and y dimensions, the side length L was the
characteristic length used to form the non-dimensional coordinates

x̄ = x

L
ȳ = y

L
(2.8)

For the deflection w however, the side length is relatively large compared to the
typically deflections, so the plate thickness h was more suitable for forming the
non-dimensional deflection

w̄ = w

h
(2.9)
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2.3. Non-Dimensionalisation of PDE

The characteristic time T can then provide a non-dimensional time

t̄ = t

T

To determine a expression for characteristic time T suitable for non-dimensionalization,
the first term of Equation 2.7 provided some insight. But first, we divided the
whole equation by the flexural rigidity D (units of kg m2 s−2) in order to have that
become incorportated into the non-dimensionalization of time.

µ

D

∂2w

∂t2 + κµ

D

∂w

∂t
+ ∇4w − 1

D

∂2F

∂y2
∂2w

∂x2 − 1
D

∂2F

∂x2
∂2w

∂y2 + 2
D

∂2F

∂x∂y

∂2w

∂x∂y
= 0 (2.10)

Now by substituting the non-dimensionalizations into the first term,

µ

D

∂2w

∂t2 = µ

D

∂2(hw̄)
∂(T t̄)2 = hµ

T 2D

∂2w̄

∂t̄2 (2.11)

and into the third term ∇4w

∇4w = h

L4 ∇4w̄, (2.12)

we then know the units of these terms must match, so

hµ

T 2D
= h

L4 (2.13)

µL4

D
= T 2 (2.14)

T =
�

µL4

D
(2.15)

As for the non-dimensionalization of the damping rate κ, this characteristic time
T can cancel out the unit of rate (per second) of the damping rate. By also
incorporating µ into this non-dimensionalization, we can further simplify the PDE.
Therefore, the non-dimensional damping rate is

κ̄ = κ
T

µ
(2.16)

8



2.4. Galerkin Method

For the terms with the Airy stress function, the 1/D coefficient can be cancelled
out by setting the non-dimensional Airy function to be

F̄ = F

D
(2.17)

Using these non-dimensionalizations, we then can then form the non-dimensional
PDE

¨̄w + κ̄ ˙̄w + ∇̄4w̄ − ∂2F̄

∂ȳ2
∂2w̄

∂x̄2 − ∂2F̄

∂x̄2
∂2w̄

∂ȳ2 + 2 ∂2F̄

∂x̄∂ȳ

∂2w̄

∂x̄∂ȳ
= 0. (2.18)

where ẅ and ẇ are the non-dimensionalized second and first time derivatives of w,
respectively. Furthermore, in cases where some stress resultant N (such as Nxx,
Nyy, etc) needs to be non-dimensionalized, the following equation can be used

N̄ = L2

D
N (2.19)

since the square spatial units of L2 cancels out the two spatial derivatives of N

as a function of F , as evidenced by Equation 2.4. To form a complete coupled
system, we also need a non-dimensional version of the strain compatibility relation
of Equation 2.6. Accordingly, using the definition D = Eh3/(12(1 − ν2)), the non
dimensional strain compatibility equation becomes

∇̄4F̄ = 12(1 − ν2)
�

∂2w̄

∂x̄∂ȳ


2

− ∂2w̄

∂x̄2
∂2w̄

∂ȳ2

 (2.20)

2.4 Galerkin Method
Finding analytic solutions to the system of coupled nonlinear partial differential
equations (PDEs) of Equations 2.18 and 2.20 is challenging; thus, we use a numerical
approach to find the snap-through dynamics of the plate. We use a Galerkin method,
whereby we assume the solution to be of the form

w̄(t̄, x̄, ȳ) = qi(t̄)ϕi(x̄, ȳ) (2.21)

where qi(t) are the generalized coordinates and ϕi are the Galerkin basis functions.
This method allows us to transform the PDE system into a system of coupled
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2.4. Galerkin Method

non-linear ordinary differential equations (ODEs). We chose to use 4 basis functions,
in particular the modes ϕ1, ϕ2, ϕ3, ϕ4, which are shown in Figure 2.2. The decision
to use 4 basis functions is derived from a earlier work that also used the Galerkin
method to solve for the deflection of a plate based on von Karman theory [14].
This work indicated a significant difference in the results between using 1 versus 4
functions, but little difference between 4 and 9. Thus, under the assumption that
the use of more basis functions can better encapsulate the variety of deflection
behavior, but without having to make the simulation too complex by using too
many basis functions without much change in the results, the number of basis
functions was chosen to be 4. Similarly to that work [14], the basis functions were
set to be of the form

ϕi = (cos((j − 1)πx) − cos((j + 1)πx)(cos((k − 1)πy) − cos((k + 1)πy)

where the values of j, k for each basis function are shown in Table 2.1

Figure 2.2: The basis functions ϕi corresponding to the 4 modes
of the plate.
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2.4. Galerkin Method

Table 2.1: Basis Function Indices

Basis Function ϕi j k
1 1 1
2 1 2
3 2 1
4 2 2

For each mode i, the maximum deflection wi over time is given by

wi(t) = qi max
x̄,ȳ∈[0,1]

ϕi(x̄, ȳ) (2.22)

This maximum deflection is useful for representing the deflection of the plate in a
particular mode as one scalar value at a given time. The values of the maximums
of the basis functions are detailed in Table 2.2.

Table 2.2: Maximum values of the basis functions ϕi

Mode i maxx̄,ȳ∈[0,1] ϕi(x̄, ȳ)
1 4.00000
2 3.07919
3 3.07919
4 2.37036

We ascertain the Airy function F̄ by dividing it into a homogeneous F̄homog portion
and inhomogeneous F̄inhomog portion as follows

F̄ = F̄homog + F̄inhomog (2.23)

For the homogeneous portion, we introduce a constant pre-stress resultant N (0) and
a time-dependent piezo-stress resultant N (p)(t̄), where the second spatial derivatives
of the stress resultant Nhomog corresponding to the homogeneous portion have the
following form

Nx̄x̄ = Nȳȳ = N (0) + N (p)(t) (2.24)
Nx̄ȳ = 0 (2.25)

11



2.4. Galerkin Method

By Equation 2.4, these derivatives imply that

∂2F̄homog

∂x̄2 = ∂2F̄homog

∂y2 = N (0) + N (p)(t̄) (2.26)

∂2F̄homog

∂x̄∂ȳ
= 0 (2.27)

And thus F̄homog is of the form

F̄homog = x̄2 + ȳ2

2


N (0) + N (p)(t̄)

�
As for the inhomogeneous portion F̄inhomog, we set this to be

F̄inhomog = fijkqi(t̄)qj(t̄)ϕk(x̄, ȳ) (2.28)

where the coefficients fijk are determined by inserting F̄inhomog into the strain
compatibility Equation 2.20. Therefore, the Airy function is then

F̄ = x̄2 + ȳ2

2


N (0) + N (p)(t̄)

�
+ fijkqi(t̄)qj(t̄)ϕk(x̄, ȳ) (2.29)

By inserting this Airy function (Equation 2.29) as well as the Galerkin representation
of the deflection (Equation 2.21) into the non-dimensional PDE of Equation 2.18,
we then obtain the following second-order system of ODEs

Mij q̈j + κ̄Mij q̇j +


Kij + CijN

(0) + CijN
(p)(t̄)

�
qj + Gijklqjqkql = 0 (2.30)

This system is contains four matrices/tensors. Mij is the mass matrix which
encapsulates the areal mass density of the system, and this matrix has the coefficient
values

Mij =
	

Ω
ϕiϕjdΩ (2.31)

where the plate domain is Ω = [0, 1] × [0, 1]. Kij is the stiffness matrix which
represents the resistance of the plate to deformation, and this matrix has the
coefficient values

Kij =
	

Ω
ϕi

�
∂4

∂x̄4 ϕj + ∂4

∂ȳ4 ϕj + 2 ∂4

∂2x̄∂2ȳ
ϕj



dΩ. (2.32)
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2.4. Galerkin Method

Cij is the curvature matrix which shifts the stiffness of the modes due to the pre-
and piezo-stress , and this matrix has the coefficient values

Cij = −
	

Ω
ϕi

�
∂2

∂x̄2 ϕj + ∂2

∂ȳ2 ϕj



dΩ. (2.33)

Gijkl is the coupling tensor which describes the coupling between modes and
themselves or other modes, and this tensor has the coefficient values

Gijkl = −fjkm

	
Ω

ϕi

�
∂2ϕm

∂ȳ2
∂2ϕl

∂x̄2 + ∂2ϕm

∂x̄2
∂2ϕl

∂ȳ2 − 2∂2ϕm

∂x̄∂ȳ

∂2ϕl

∂x̄∂x̄



dΩ. (2.34)
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CHAPTER 3
Numerical Solution

3.1 Non-Dimensionalisation of Simulation
Parameters

In order to be able to directly compare with the results of a previous work that
dealt with a similar system, the values of the parameters used in the simulation
were chosen in order to match those of the reference work [6]. The parameters used
in that work for most of its simulations are given in Table 3.1 in dimensional form.

Table 3.1: Reference Dimensional Simulation Parameters from [6]

Parameter Value
Side Length L 700 µm
Thickness h 3.5 µm

Young’s Modulus E 165 GPa
Density ρ 2330.0 kg m−3

Damping Rate κ 700 kg m−2 s−1

Critical Stress Ncr −66.55 N m−1

Simulation Time τ 300 µs

For the Critical Stress Ncr in particular, the value is determined from [6] to be

Ncr = −16π2D

3L2 . (3.1)

14



3.2. Derivation of 1st Order ODE Systems

The critical stress represents the value of the pre-stress at which the plate begins
to buckle, that is, begin to deviate from zero deflection.

By using the non-dimensionalization equations from Section 2.3 on the values in
Table 3.1, we then arrived at the non-dimensional simulation parameters listed
in Table 3.2. From here on, consider all stated parameters and results to be in
non-dimensional form unless otherwise specified.

Table 3.2: Non-Dimensional Simulation Parameters

Parameter Value
Damping Rate κ̄ 4.889

Critical Stress N̄cr -52.64
Simulation Time τ̄ 5.3

3.2 Derivation of 1st Order ODE Systems
To reconstruct the system of equations of the system from the second-order ODE
form of Equation 2.30 into a form that is solvable by methods, we represent
the system as two sets of first-order ODEs. One set is based on the generalized
coordinate (position) qj with time derivative q̇j , and the other based on the velocity
q̇j with time derivative q̈j (for modes j ∈ {1, 2, 3, 4}. Since the time derivative of
position is simply velocity, the ODE for the position qj is

∂

∂t
qj = q̇j, (3.2)

Next, we obtain the ODE for the velocity q̇j by finding an expression for its time
derivative q̈j. To do this, we first multiply the left side of each term of Equation
2.30 by the inverse (M−1)mi of the mass matrix Mij as follows

(M−1)miMij q̈j + κ(M−1)miMij q̇j

+


(M−1)miKij + (M−1)miCijN

(0) + (M−1)miCijN
(p)(t)

�
qj

+ (M−1)miGijklqjqkql = 0 (3.3)

Rearranging the terms of the equation such that only the q̈m term is on the left
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3.2. Derivation of 1st Order ODE Systems

side, the equation becomes

(M−1)miMij q̈m = −


(M−1)miKij + (M−1)miCijN

(0) + (M−1)miCijN
(p)(t)

�
qj

− (M−1)miGijklqjqkql − κ(M−1)miMij q̇j, (3.4)

and with the mass matrix and its inverse then forming the Dirac delta function

(M−1)miMij = δm
j (3.5)

we obtain

δm
j q̈j = −



(M−1)miKij + (M−1)miCijN

(0) + (M−1)miCijN
(p)(t)

�
qm

− (M−1)miGijklqjqkql − κδm
j q̇j (3.6)

Then by applying the delta functions, the system of ODEs for mode m in a suitable
form for numerical integration are then given by

∂

∂t
qm = q̇m (3.7)

∂

∂t
q̇m = −



(M−1)miKij + (M−1)miCijN

(0) + (M−1)miCijN
(p)(t)

�
qj

− (M−1)miGijklqjqkql − κq̇m (3.8)

where Equation 3.7 is an ODE of the position qm and Equation 3.8 is an ODE of
the velocity q̇m. Since there are four modes, this results in a total of 4 × 2 = 8
equations. To record the state of this overall system, we arranged a state vector in
the format of

s⃗ =



q1
q̇1
q2
q̇2
q3
q̇3
q4
q̇4


(3.9)

with position elements qi for each node of the system in the even indices, and a
velocity elements q̇i for each node of the system in the odd indicies.
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3.3. Python Framework

3.3 Python Framework
The function integrate.solve_ivp from the Python package SciPy 1.8.0

was used to solve the system of ODEs. Upon providing a RHS (right hand side)
function for the ODE system as well as a numerical method, tolerance values, a time
range, and other parameters, the function returned a solution to the ODE system
that we then processed to determine the deflection over time corresponding to each
of the modes of the system. The numerical method used was the Runga-Kutta
method of order (4)5, hereby referred to as RK45. The RHS function of the system
returns the time derivative of the state vector (Equation 3.9) at a given time t.

The coefficient matrices Mij, Cij, Kij and tensor Gijkl were calculated using the
Python package SymPy 1.11.1. The results were then saved for later use within
the RHS function. To implement the RHS function, the derivatives of the position
and velocity elements were needed, which were calculated using the Python package
NumPy 1.22.3 and the system as shown in Equations 3.7 and 3.8. To lower
the execution time, some time-independent components of the system were pre-
calculated outside of the RHS function and then referenced as needed. Algorithm
1 provides pseudocode for the pre-calculation when the system is initialized as a
Python class. Then the Call function is the aforementioned RHS function.
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3.3. Python Framework

Algorithm 3.1: von Karman Plate

Data: mass_matrix, damping_rate, stiffness_matrix, curvature_matrix,
coupling_tensor, n0_vec, n_piezo

Result: Initialized vonKarmanAiry object

1 nmodes ← shape of first dimension of mass_matrix

2 ndim ← 2 × nmodes

3 norder ← 2

4 pos_indices ← even indices in range ndim

5 vel_indices ← odd indices in range ndim

6 Save matrices
mass_matrix, stiffness_matrix, curvature_matrix, coupling_tensor

7 Save vector n0_vec as static_stress_vec

8 Save scalar damping_rate

9 static_stress_curvature_matrix ←
diagonal(static_stress_vec) × curvature_matrix

10 inverse_mass_matrix ← inverse(mass_matrix)

11 Precompute terms

12 Function Call(time, state_vector):
13 Separate state_vector into position_vector and velocity_vector

14 if n_piezo_signal is None then
15 n_piezo_signal_at_t ← 0

16 else
17 n_piezo_signal_at_t ← n_piezo_signal(time)

18 end

19 Update at_t_piezo_stress_matrix

20 Update at_t_piezo_stress_term_inverse_mass

21 Compute velocity_derivative

22 Update state_derivative

23 return state_derivative
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3.4. Convergence Analysis

3.4 Convergence Analysis
To use the RK45 solver, we needed to specify the relative tolerance (rtol) and
absolute tolerance (atol) values. Furthermore, we needed to ensure that the solver
was converging to a solution. Thus, we performed a convergence analysis of the
solver by fixing the value of the atol to be 10−8 and varying the rtol from 10−4

to 10−10 while running reference simulations in non-dimensional form. These
reference simulations modeled the piezo stress resultant to be a sinusoidal tone
with amplitude N

(p)
0 = 10 and frequency fp = 0.1, and the rest of the parameters

were set to their non-dimensionalized values as listed in Table 3.2.

The results of the convergence analysis are shown in Figure 3.1. For each value of
rtol, a reference simulation was run, and the following L2-norm was taken between
the entire series of mode 1 deflections of the simulation with that rtol and the
previous simulation (with the previous, higher rtol value). This L2-norm was then
plotted against the rtol value on a log-log scale in Figure 3.1. As the rtol decreases,
the L2-norm decreases, indicating that the solution is converging to a solution.
Based on this analysis, we chose to use a rtol value of 10−8 for the rest of the
simulations.

Figure 3.1: Convergence of RK45 as rtol decreases
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3.5. Event Detection

Next, we performed the same process, but with the rtol fixed at 10−8 and varying
the atol from 10−4 to 10−10. The results of this analysis are shown in Figure 3.2. As
the atol decreases, the L2-norm decreases, indicating that the solution is converging
to a solution. Based on this analysis, we chose to use an atol value of 10−8 for the
rest of the simulations.

Figure 3.2: Convergence of RK45 as atol decreases

3.5 Event Detection
In our study, a significant emphasis was placed on understanding the precursor
behaviors leading to the initial snap-through event during each simulation. Recog-
nizing the value of optimizing computational resources and time, we incorporated an
event detection algorithm specifically tailored for the scipy.integrate.solve_ivp
function. This algorithm was designed to detect and halt the simulation once the
mode 1 maximum deflection w1 reached zero, signaling the occurrence of the first
snap-through event.

Upon testing, it was observed that the event detection mechanism readily identified
the initial snap-through event in each simulation. Moreover, the implementation
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3.5. Event Detection

of the event detection algorithm led to a reduction in the time needed to run
the simulation, roughly proportional to the time of the first snap-through event
divided by the total simulation time without this event detection. For example,
in a simulation lasting 4 time units, the event detection algorithm reduced the
simulation time by approximately 50% when the first snap-through event occurred
at 2 time units.

Owing to its efficiency and accuracy, the event detection algorithm became our
tool of choice for simulations where the primary focus was the behavior leading
up to the first snap-through event. However, in scenarios demanding insights into
behaviors post the initial snap-through, we refrained from deploying the event
detection algorithm, permitting the simulation to run for its complete duration.
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CHAPTER 4
System Analysis

4.1 Bifurcation of Static Deflections
In the broader context of our dynamic ODE system analysis, it is essential to
first address the static behaviors inherent to the system. By analyzing the static
aspects, we can establish the bistability of the system and identify the stable static
deflections of the system. These static deflections serve as the starting point for
the dynamic simulations, which can then perturbed to initiate the snap-through
events.

To derive the equation representing the static portion of the system of Equations 3.7
and 3.8, we eliminated the time-dependent terms, which included the piezo-stress
term and the terms with time derivatives. This exclusion leads to a simplified
equation that encapsulates the position of the static system

0 = −


(M−1)miKij + (M−1)miCijN

(0)
�

qj − (M−1)miGijklqjqkql. (4.1)

Within the purview of this equation, the only variables that are not predetermined
are the generalized deflections, denoted by qi, and the pre-stress resultant, symbol-
ized by N (0). Thus, a significant implication is that by identifying the roots of this
equation, one can ascertain the stable static deflections of the system, contingent
on a specified pre-stress resultant.
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4.1. Bifurcation of Static Deflections

To pinpoint these roots with precision, we utilized the scipy.optimize.root
function. Due to the need for providing the function with an starting point, initial
approximations of qi = 4 and qi = −4 were selected (non-dimensional). These
served to determine positive and negative static deflections, respectively. With these
initial values guiding the computational process, the function adeptly identified
the roots, which were the system’s stable static deflections.

Figure 4.1: Bifurcation diagram of the static system.

In Figure 4.1, we present the bifurcation diagram of the static system. The x-axis
illustrates the pre-stress resultant N (0) as a ratio of the critical stress Ncr, while
the y-axis marks the static maximum deflection wi of mode i for a given pre-stress
condition (all non-dimensional). This static deflection is given by finding the
roots of Equation 4.1 in generalized coordinates qi, then multiplying them by the
maximum of the basis function of the corresponding mode, as detailed by Equation
2.22. Each distinct mode of the system is depicted through a separate curve for
clarity, labeled by the corresponding mode ϕ. The blue curve represents the first
mode, the green curve represents and second and third modes, and the red curve
represents the fourth mode.
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4.2. Static Deflection Verification

For scenarios where N (0) is less than Ncr, the static deflection of the first mode
is at the origin, a fact evident from the blue curve. Upon reaching N (0) = Ncr, a
bifurcation in the deflection of the first mode emerges, signifying buckling. This
observation further substantiates that our chosen non-dimensional value of Ncr

has been computed accurately. Following this threshold, i.e., for N (0) > Ncr, the
primary mode of the system deflects statically in one of two states, distinctly
represented by the upper and lower blue trajectories.

An intriguing point of note is at N (0) = 1.1Ncr, delineated by the intermittent
orange line. Here, the system adopts a bistable stance, evidenced by the static
deflection possibilities demarcated by the orange markers at w = ±0.7059787
(non-dimensional). We will use this value of the pre-stress, N (0) = 1.1Ncr for our
dynamic simulations, since it exhibits the bistable behavior in the first mode that
is necessary for snap-through, while the static deflection of the rest of the modes
remains at zero. This is desirable in order to simplify the snap-through behavior of
the system by primarily focusing on the first mode.

4.2 Static Deflection Verification
Transitioning from our analysis of the static system, we simulate the dynamic
system. Leveraging the full dynamic system provides an avenue to verify the stable
behavior at the observed static deflections. especially when the system begins its
journey from the aforementioned static deflection points without any piezo-stress
interference. For mode 1, its initial position was set to match the generalized
coordinate equivalent of the static deflections, specifically at w = ±0.7059787. To
add a realistic adjustment, we introduced a very small perturbation to every mode’s
position, equivalent to the non-dimensional representation of 1 nm.
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4.2. Static Deflection Verification

Figure 4.2: Bistable states of the system for N (0) = 1.1Ncr

The ensuing system behavior is captured in Figure 4.2. Plots (a) and (b) show the
maximum mode 1 deflection of the plate over time in non-dimensional units for
the positive and negatively states respectively, whereas plots (c) and (d) illustrate
how the plate is shaped in these states. Commencing from either the positive
or negative static deflection points with the additional small perturbation, the
deflection remained stable at that deflection, with only minor oscillations observed
due to the perturbation. This behavior fortifies the assertion that the identified
static deflection points are indeed resilient and stable points within the dynamic
framework. Thus, the positive static deflection of mode 1 (w1 = 0.7059787) will be
used as the starting point for the snap-through simulations, with the addition of
the small perturbation in the deflection of all modes to represent a more realistic
scenario due to external disturbances.
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CHAPTER 5
Results

5.1 Piezoelectric Excitation
To model the application of a single continuous piezoelectric excitation to the
system (for instance as the result of a voltage signal), the piezo stress resultant
was defined to be a single-frequency tone (single tone) of the form

N
(p)
single(t) = N

(p)
0 sin(2πfpt), t ≥ 0 (5.1)

where the amplitude N
(p)
0 and frequency fp were constant over time, but their

values were altered in different simulations to test to the system’s response to a
variety of possible tones. By using a sine-based tone, we can maintain that the
tone is zero at t = 0 and avoid discontinuity.

In the dual-frequency tone case (dual tone), the piezo stress was redefined as the
sum of two single tones as follows

N
(p)
dual(t) = N

(p)
1 (t) + N

(p)
2 (t), t ≥ 0 (5.2)

where tone 1 was defined to be a single tone of the form

N
(p)
1 (t) = N

(p)
0,1 sin(2πfp,1t), t ≥ 0 (5.3)
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5.2. Single Tone

and tone 2 was defined to be a single tone of the form

N
(p)
2 (t) = N

(p)
0,2 sin(2πfp,2t + φp), t ≥ 0 (5.4)

where φp is a phase shift between the two tones. However, unless stated otherwise,
φp was set to be zero. In each batch of simulations, tone 1 was typically set
to a specific frequency and amplitude. Tone 2 was then varied in frequency and
amplitude to test the system’s response to a variety of possible tones. This variation
is done between one simulation and another. The frequency and amplitude of tone
2 however remain constant over time within each individual simulation.

5.2 Single Tone
Once a piezo tone is applied to the system, the maximum mode 1 deflection w1 of
the plate can deviate significantly from its static state over time. One such example
is illustrated in Figure 5.1

Figure 5.1: Single Piezo Tone with fp = 21.0 and N
(p)
0 = 0.98:

Trajectory of Maximum Mode 1 Deflection over Time

This trajectory indicates that such a tone causes snap-through at approximately
t = 0.5, when the maximum mode 1 deflection w1 first reaches zero. Ultimately, the
plate deflection then reaches a oscillatory behavior near its negative stable deflection
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5.2. Single Tone

point, with a frequency of oscillation that matches the piezo frequency fp = 21.0.
In this overall behavior, two regions of interest become immediately apparent, the
first being the time that leads to snap-through initiation, and the second being the
post snap behavior. Since we are primarily interested in snap-through time, we
will focus on the first region going forward.

Although the trajectory of the maximum modal deflection of the plate over time is
insightful, to better understand the behavior of the system for a wide variety of
applied piezo tones, it became useful to plot the initial snap time of the system
on a 2D map of piezo tones of different frequencies and amplitudes as defined by
Equation 5.1.

Figure 5.2: Single Piezo Tone: Map of Initial Snap Times of Mode
1

Figure 5.2 illustrates this 2D map for single piezo tones with some frequency
fp ∈ (0.01, 28.11) and N

(p)
0 ∈ (0, 1.1). These bounds in particular were chosen

so that these results could be directly compared with the results of a previous
work, which they very closely match [6]. Each ppint represents a simulation with a
different piezo tone, and the color of the pixel represents the time until the system
had the first snap-through. If the points is white (lack of color points), then no
snap-through occurred during the entire simulation time duration. The orange line
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5.2. Single Tone

represents the boundary between the snap and no-snap regions for this map in
particular, and serves as a useful reference for comparing this map to other maps
with different conditions.

The three vertical dashed green lines then mark the eigenfrequencies of each mode
of the system. These eigenfrequencies line up with the bottom of each of the three
"tongue" formations in the map. The eigenfrequency feigen,1 = 1.99581 of the first
mode marks the tongue on the left, the eigenfrequency feigen,2,3 = 16.69734 of
the second and third modes marks the tongue on the in middle, and then the
eigenfrequency feigen,4 = 27.49158 of the fourth mode marks the tongue on the
right.

To better understand how each mode contributes to the overall deflection behavior
of the plate, we can define the participation factor for each mode to be

λi = ⟨|qi(t)|⟩
q1(0) (5.5)

where ⟨|qi(t)|⟩ is the absolute value of the deflection of the mode averaged over time.
Accordingly, this is a measure of how much each mode is deflecting on average
compared to the initial deflection q1(0) of mode 1 .
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5.2. Single Tone

Figure 5.3: Single Piezo Tone: Maps of Modal Participation Factor.
Mode 1 (a), Mode 2 (b), Mode 3 (c), and Mode 4 (d).

By plotting the participation of each mode over the same domain as 5.2, we then
obtain Figure 5.3. These plots clearly illustrate that mode 1 dominates the behavior
for the left tongue, modes 2/3 for the middle, and mode 4 for the right. This
matches the observed eigenfrequency correlation. One aspect to note is that for
these simulations, the event detection system described in 3.5 was used, so if a
snap-through occurred, then the time series collected for that simulation stopped
at the snap time. So these modal participation factors only take into account the
deflection behavior up to the time of snap-through, as we were primarily interested
in observing which modes contribute most to the initiation of snap-through.
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5.2. Single Tone

Figure 5.4: Single Piezo Tone: Map of Small Initial Snap Times
(t ≤ 1)

Figure 5.4 is based on the same data as Figure 5.2, but only snap-throughs at the
smaller time regime of t ≤ 1 are displayed. It is evident that the tongues for modes
2/3 and mode 4 almost vanish, while the mode 1 tongue is mostly retained. This
suggests that, for these particular conditions, mode 1 is the main contributor to a
rapid snap-through, while the other modes may contribute to slower snap-through
times.
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5.3. Eigenfrequency-Matched Dual Tones

Figure 5.5: Single Piezo Tone: Map of Initial Snap Times for a
Larger Domain

Figure 5.5 extends the simulation domain from Figure 5.2 to double the possible
frequencies and double the possible amplitudes. Now, the simulations are shown
for the application of single piezo tones with some frequency fp ∈ (0.01, 56.22) and
N

(p)
0 ∈ (0, 2.2). For frequencies past the tongue of mode 4 (f ⪆ 35), no further

tongues appear, and larger and larger amplitudes are needed for those frequencies
of piezo tones to induce snap-through, as an approximately linear boundary of
the mode 1 tongue forms to separate itself from the no snap region. Due to the
lack of additional features and the high amplitude needed to induce snap-through,
this higher frequency piezo regime appeared less promising for finding new ways to
efficiently induce snap-through than the original domain from Figure 5.2. Thus we
focused on the domain of Figure 5.2 as a reference for comparison going forward.

5.3 Eigenfrequency-Matched Dual Tones
With the single tone case examined, the many possibilities with dual tones provided
a method for examining the effects of more complex tones, while still being able
to compare to the single tone case. The first case examined was the case where
the frequency one of the two tones was fixed at one of the eigenfrequencies of the
modes, at a variety of amplitudes. The other tone was then varied in frequency
and amplitude to produce maps (varied from one simulation to another; the
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frequency/amplitude were constant within each simulation). The results of these
cases are shown in Figure 5.6.

Figure 5.6: Eigenfrequency-Matched Fixed Tones: Dual Tone Maps
of Initial Snap Times

In Figure 5.6, 15 sets of maps are shown. Each has a different fixed tone corre-
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5.3. Eigenfrequency-Matched Dual Tones

sponding to the red star marked on each plot. The first column from the left has
fixed tones with frequencies matching the mode 1 eigenfrequency, whereas the
second column matches that of mode 2/3, and the third column matches mode 4.
Each row then shows a different amplitude of this fixed tone, from N

(p)
0,f = 0.05 at

the bottom to N
(p)
0,f = 0.8 at the top. Figure 5.7 shows the positions of the fixed

tones annotated on the single-tone map of Figure 5.2.

Figure 5.7: Eigenfrequency-Matched Fixed Tones of Interest An-
notated on Single-Tone Map

From Figure 5.6, we observed that as the amplitude of the fixed tone increases,
generally a greater proportion of the map exhibits snap-through behavior, corre-
sponding to more combinations of tones being able to induce snap-through within
the simulation time. And once amplitude exceeds the values indicated by the orange
border (the snap boundary from the single tone map), most dual tones begin to
exhibit snap-through at some point, as illustrating by the reduction of the white
regions. However, some "holes" were observed to form, in particular between the 0.2
to 0.4 amplitudes of fixed tones at the mode 2/3 (plot (k) to plot (h)) and mode 4
eigenfrequencies (plot (l) to plot (i)), where a pocket of non-snap-inducing tones (in
white) are surrounded by snap-inducing tones (non-white). This is surprising be-
cause there a tones with lower amplitudes than the holes that induce snap-through.
Thus, increasing the amplitude does not guarantee that snap-through will occur or
continue to occur.

Furthermore, for plot (m) where the fixed portion of the tone is (fp,f = feigen,1, N
(p)
0,f =

0.05) , some curious vertical lines with higher snap time results appeared. This is
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examined more closely in Section 5.5.

To better understand the relative effect on snap-through time by the application
of these additional fixed tones, we can plot the difference in snap-through time
between the single tone case and the dual tone case. This is shown in Figure 5.8.
This figure shows that for the fixed tone at the eigenfrequency of mode 1, the
snap-through time is reduced for a large range of frequencies and amplitudes of
the other tone. This is especially true for the lower frequency range of the other
tone. For the fixed tones at the eigenfrequency of mode 2/3 or 4, the snap-through
time is reduced for a large range of frequencies and amplitudes of the other tone,
but the effect is not as strong as for the mode 1 case.
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Figure 5.8: Eigenfrequency-Matched Fixed Tones: Dual Tone Maps
of Difference in Snap Times from Single Tones
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Figure 5.9: Eigenfrequency-Matched Fixed Tones: Dual Tone Maps
of Small Initial Snap Times t ≤ 1

Figure 5.9 shows the snap times t ≤ 1 instead of the full simulation time. In doing
so, we see more refined detail on the vertical line formations in plots (m) and (c).
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Figure 5.10: Eigenfrequency-Matched Fixed Tones: Dual Tone
Map of Mode 1 Participation Factor
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Figure 5.11: Eigenfrequency-Matched Fixed Tones: Dual Tone
Map of Mode 2/3 Participation Factor

39



5.3. Eigenfrequency-Matched Dual Tones

Figure 5.12: Eigenfrequency-Matched Fixed Tones: Dual Tone
Map of Mode 4 Participation Factor

Figures 5.10, 5.11, and 5.12 all show the participation factors for modes 1, 2/3, and
4 respectively. Modes 2/3 are shown together as one set of plots because these two
modes exhibit the same participation factors. Here, we can see that for fixed tones
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outside of the tongues, the participation of each mode mostly remains within its
respective tongue region. However, once the fixed tone is with the tongue regions,
the corresponding modal participation factor is amplified and "spills" onto other
portions of the maps, indicating that this modes are playing a significant role in
the deflection behavior exhibited by these particular dual tones.

5.4 Dual Tone Snap-Time Modulation
When looking at individual combinations of dual tones from the previous maps, we
see four especially intriguing possibilities of behavior. One, for some combinations
of fixed and variable tone, the snap-through time is reduced compared to the times
for each tone alone. Two, there are cases where snap now occurs within the time
frame of the simulation, whereas it did not occur for each tone alone. Three, there
are cases where snap-through time is increased compared to each tone alone. Four,
there are cases where snap-through does not occur within the time frame of the
simulation, whereas it did occur for each tone alone. The following figures highlight
examples of each of these four cases. Each of these figures plots the position of the
two components of the dual tone on the single tone map for reference (left), the
maximum deflection over time as a response to each tone and their combination
(middle), and the value of the combined dual tone over time (right).

5.4.1 Faster Snap-Through

Figure 5.13: Dual Tone: Faster Snap-Through

Figure 5.13 demonstrates an example of snap-through becoming faster through the
combination of tones each with different frequencies and amplitudes. Tone 1 (fp =
feigen,1, N

(p)
0 = 0.4) snaps at approximately t = 2 and Tone 2 (fp = 22.5, N

(p)
0 = 1.0)
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snaps at approximately t = 2.5, but their combination snaps at just less than
t = 0.5.

5.4.2 Emergent Snap-Through

Figure 5.14: Dual Tone: Emergent Snap-Through

Figure 5.14 illustrates an example of emergent snap-through occurring through
the combination of tones. Both Tone 1 (fp = feigen,4, N

(p)
0 = 0.2) and Tone 2

(fp = 21, N
(p)
0 = 0.95) don’t fully snap-through within the simulation time, and

instead oscillate near their positive static equilibrium. However, their combination
snaps at just less than t = 0.5, and then settles in an oscillatory state near the
negative static equilibrium.

5.4.3 Slower Snap-Through

Figure 5.15: Dual Tone: Slower Snap-Through

Figure 5.15 , however, demonstrates an example of snap-through becoming slower
through the combination of tones. Tone 1 (fp = feigen,2,3, N

(p)
0 = 0.4) snaps at

approximately t = 2 and Tone 2 (fp = 14.15, N
(p)
0 = 0.485) snaps at approximately

t = 2.5 However, their combination snaps at about t = 4. Here, the tones effects
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on the deflection seem to interfere with each other and cause this extended time
until the first snap-through.

5.4.4 No Snap-Through

Figure 5.16: Dual Tone: No Snap-Through

In contrast to the previous cases, Figure 5.16 demonstrates an example of snap-
through being completely prevented during the simulation time through the combi-
nation of tones. Tone 1 (fp = feigen,2,3, N

(p)
0 = 0.6) snaps at approximately t = 1.5

and Tone 2 (fp = 23, N
(p)
0 = 0.95) snaps at approximately t = 1.75 However, their

combination exhibits no snap-through at all, although it does cause the deflection
to become quite close to doing so at about t = 0.5
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5.5 Mode 1 Eigenfrequency Dual Tone Closeup

(a) Initial Snap Time (b) Initial Small Snap Times t ≤ 1

Figure 5.17: Dual Tones with Fixed Tones Matching feigen,1: Maps
of Snap Times for Low Frequencies/Amplitudes
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Figure 5.17 depicts a closeup of the dual tone plots with the fixed tone frequency
matching feigen,1, and with N

(p)
0,f ∈ (0.01, 0.05). The bounds of the map have

between constrains to the lower frequencies of fp,v ∈ (0, 10) and lower amplitudes of
N

(p)
0,f ∈ (0.0, 0.4), in order to observe finer details in this region. In particular, the

roughly vertical regions of longer initial snap time that form as the fixed amplitude
to 0.05 is increased is of particular interest. Furthermore, these regions appear
to exhibit fairly periodic behavior relative to frequency. And especially at the
amplitude of 0.04, fractal-like formations become apparent.

5.6 Non-Eigenfrequency-Matched Dual Tone

Figure 5.18: Non-Eigenfrequency-Matched Fixed Tones: Map of
Initial Snap Times of Dual Tone
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5.7. Phase-Shifted Dual Tone

Figure 5.18 depicts plots of maps where the fixed portion of the dual tone
had frequencies not at the eigenfrequencies of the system, but instead at fp ∈
{5, 10, 15, 20, 25}. Figure 5.19 shows the positions of the fixed tones annotated on
the single-tone map of Figure 5.2.

Figure 5.19: Non-Eigenfrequency-Matched Fixed Tones of Interest
Annotated on Single-Tone Map

Many of the plots depict patterns similar to those observed from the case of
eigenfrequency matching, but some notable differences emerge. For the column of
plot (d), another tongue-like formation appears to emerge as the fixed amplitude
increases, with this formation being centered around the fixed frequency.

5.7 Phase-Shifted Dual Tone
To study how a phase difference between the two components of a dual tone would
affect the resulting snap-through time, each of the phases φ ∈

�
π
4 , π

2 , π
�

were
individually incorporated into the fixed tone, and then the 2d maps were made
once again for each case, as illustrated in Figures 5.20, 5.21, 5.22
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5.7. Phase-Shifted Dual Tone

Figure 5.20: Phase Shift = π
4 : Maps of Dual Tone Initial Snap

Times

47



5.7. Phase-Shifted Dual Tone

Figure 5.21: Phase Shift = π
2 : Maps of Dual Tone Initial Snap

Times
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5.7. Phase-Shifted Dual Tone

Figure 5.22: Phase Shift = π: Maps of Dual Tone Initial Snap
Times

One of the most intriguing features of these plots appears in Figure 5.22 for a case
of a phase shift of π. For the fp,f = feigen,2,3, a very narrow vertical line appears at
the eigenfrequency, and along this line the snap-through times are rather long or
even don’t occur at all. This appears to be the result of the phase shift causing
each half of the tone to nearly cancel the other out when their frequencies match
rather precisely. Comparing these plots to the case of no-phase-shift as was the
case with Figure 5.6, we see the greatest differences in the snap-time profile of the
plot when the two frequencies of the dual tone are closer in value.
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5.8. Damping-Dependence

5.8 Damping-Dependence
To study how the snap-through time of the dual tones would change as the
damping ratio was altered, simulations were run for three additional damping ratios
in additional to the normal setting. These include damping ratios of 0.5κ, 0.25κ,
and 2κ.

Figure 5.23: Damping = 0.5κ: Maps of Dual Tone Initial Snap
Times
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5.8. Damping-Dependence

Figure 5.24: Damping = 0.25κ: Maps of Dual Tone Initial Snap
Times
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5.8. Damping-Dependence

Figure 5.25: Damping = 2κ: Maps of Dual Tone Initial Snap
Times

From Figures 5.23, 5.24, and 5.25 we can see that as the damping increases, most
of the plots appear to shift upwards, indicating that a higher amplitude tone is
needed to overcome this higher damping and induce snap for at a given frequency.
Similarly, as the damping decreases, most of the plots appear to shift downwards,
indicating that the amplitude no longer needs to be as high to induce snap for at
a given frequency. For a damping of 0.25κ in particular, the plot (m) where the
fixed portion of tone has (fp,f = feigen,1, N

(p)
0,f = 0.05) exhibits a very short snap

time across all of the low amplitudes in that domain.
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CHAPTER 6
Conclusion

This study set out to explore the effect of piezoelectric excitations of dual-frequency
tones,on snap-through behavior within the microplate system. The single tone case
provided a fundamental understanding which served as a basis for more complex
dual tone simulations. Our results underscore the intricate relationships between
tone combinations and the resulting snap-through behavior. Specifically, there were
instances where combinations of dual tones induced more rapid snap-through times,
delayed snap-through, enabled emergent snap-through, or even prevented snap-
through entirely. Understanding how to cause snap-through quickly is particularly
important, since this makes the snap-through more responsive to input signals,
which may be very useful for real-world devices. Furthermore, a faster snap-through
may require less energy overall since the input signal for the piezoelectric excitation
(such as a voltage signal) could be run for a shorter amount of time. Thus, the
variety of ways in which snap-through time can be altered by dual tones illustrates
which tones are more promising (quicker or emergent snap), or better to avoid
(slower or no snap).

A major observation is that an increase in the amplitude of a fixed tone does not
necessarily equate to consistent snap-through occurrence. There are scenarios,
particularly between certain amplitude ranges of fixed tones at eigenfrequencies,
where increasing the amplitude led to pockets of non-snap-inducing excitation
parameters. This goes against the idea that higher amplitudes more readily
instigate snap-through. Instead, a more nuanced approach is needed to calibrate
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the amplitude to avoid these pockets.

When looking into the phase-shifted dual tones, the introduction of a phase
difference had more of an effect on the snap-through time when the two frequencies
of the dual tone were closer in value, since this could cause either constructive
or destructive interference of the overall tone, and result in a faster or slower
snap-through time. Thus, if the phase difference were to be hard to control for
some real-world application, then it may be more suitable to use dual tones with
significantly different frequencies. However, if one desires to use similar-frequency
dual tones, then care is needed in order to select the right phase difference to cause
constructive interference of the overall tone in order to quickly induce snap-through.

Furthermore, the damping-shifted dual tones displayed expected trends: increased
damping required higher amplitude tones to achieve snap-through, while reduced
damping showed the opposite. This finding has significant implications for the design
of systems where control over snap-through behavior is crucial. The damping must
be accurately understood in order to predict which amplitude of tone is necessary
to induce snap-through. This is important for energy savings, since by minimizing
the amplitude while still quickly snap-through, one needs less energy to maintain
the tone (via a voltage signal for instance).

In essence, this research has made it evident that the simple act of combining two
tones in a system can lead to a myriad of complex outcomes, especially in terms of
increasing or decreasing the snap-through time. Understanding these behaviors,
particularly in the context of snap-through dynamics, provides a pathway for
more controlled, efficient, and targeted applications in real-world scenarios where
rapid snap-through is crucial. Whether in the design of sound-generating devices,
mechanical switches, or other applications, the findings of this study could help
support innovative approaches that take advantage of these intricate dual-tone
interactions. Future approaches to expand upon this study could include examining
microplate shapes other that a square shape. This could include a circular shape
or even a ring shape similar to designs for MEMS speakers [4].
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