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Kurzfassung

Visual Question Answering (VQA) stellt Machine Learning (ML) Systeme vor die Aufgabe,
eine über ein Bild gestellte Frage in natürlicher Sprache zu beantworten. Um diese
Aufgabe zu erfüllen, benötigen ML Systeme nicht nur ein gemeinsames Verständnis
von Bild- und Textdaten, sondern müssen auch in der Lage sein, komplexe Abfolgen
von Gedankenschritten durchzuführen. Neural-Symbolic Ansätze für VQA nutzen Deep
Learning zur visuellen Wahrnehmung und erstellen eine symbolische Repräsentation der
Information, die im Eingabe-Bild und der Eingabe-Frage enthalten ist. Auf Basis dieser
Repräsentation wird Reasoning rein symbolisch durchgeführt, um die Antwort auf die
Eingabe-Frage herzuleiten. Zu den Vorteilen von Neural-Symbolic Ansätzen gehören ihre
Nachvollziehbarkeit, ihre Konsistenz, und ihre Erweiterbarkeit dank ihres modularen
Aufbaus. Aktuelle VQA Ansätze, die Reasoning rein symbolisch durchführen, haben
jedoch die Limitierung, dass die von ihnen zur visuellen Wahrnehmung verwendeten ML
Modelle für den aktuell verwendeten Datensatz trainiert oder fine-tuned werden müssen.

Zur Erforschung eines Ansatzes, mit dem diese Limitierung beseitigt werden kann,
designen und implementieren wir die GS-VQA Pipeline für Neural-Symbolic VQA am
GQA Datensatz, einem aktuellen und generalistischen Datensatz mit detailreichen Bildern
und vielseitigen Fragen mit einer großen Anzahl an möglichen Antworten. Die Pipeline
baut auf den jüngsten Erfolgen auf, die Architekturen und Trainings-Strategien von
Large Language Models (LLMs) auf multi-modale Vision Language Models (VLMs)
anzuwenden. Durch die effiziente und effektive Nutzung dieser VLMs ist GS-VQA in
der Lage, VQA zero-shot – also ohne das Training oder Fine-Tuning von Modellen am
behandelten Datensatz – durchzuführen. GS-VQA kann 39.50% der Fragen aus GQAs
test-dev Set korrekt beantworten. Im Vergleich dazu erreicht das aktuell beste zero-shot
Modell für VQA am selben Set eine Accuracy von 49.00%. Wir implementieren und
evaluieren zudem mehrere Erweiterungen zur GS-VQA Pipeline, die den Prozentsatz der
korrekt beantworteten Fragen auf 40.55% erhöhen.
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Abstract

Visual Question Answering (VQA) presents the following task to machine learning (ML)
systems: given an image and a natural-language question about the image, provide
an accurate natural-language answer. Performing this task requires not just a joint
understanding of vision and text, but also the ability to follow complex chains of reasoning
operations. Neural-symbolic approaches to VQA use deep learning for perception,
producing a symbolic representation of the information contained within the input image
and question, and then perform reasoning on this representation purely symbolically.
These approaches are able to reason transparently, behave consistently, and be extended
easily due to their compositional structure. However, current VQA pipelines that perform
reasoning purely symbolically require the training of purpose-built models for visual
perception on the dataset at hand.

To explore a way to remove this limitation, we design and implement the GS-VQA pipeline
for neural-symbolic VQA on GQA, a challenging and generalist dataset with images
depicting complex visual scenes, and diverse questions with a large number of possible
answers. The pipeline builds on the recent successes in adapting the model architectures
and training regimes of large language models (LLMs) to multi-modal vision-language
models (VLMs). By using these VLMs efficiently and effectively, GS-VQA is able to
perform VQA in a zero-shot manner, that is, without the training or fine-tuning of models
to the current dataset. Of the questions in the test-dev set of GQA, GS-VQA is able to
answer 39.50% correctly, compared to the 49.00% achieved by the current best zero-shot
approach for GQA. We also implement and evaluate multiple extensions to the core
pipeline architecture, which improve the answer accuracy further to 40.55%.
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CHAPTER 1
Introduction

Take a look at the image and question in Figure 1.1. To you, it is probably trivial to
conclude that the answer to the question is “yellow”, but to a machine learning (ML)
system, finding the right answer presents a major challenge.

Visual Question Answering (VQA) formalises the task that you just performed: given an
image and a natural-language question about the image, provide an accurate natural-
language answer [AAL+15]. While the task is easily explained and performed by humans,
its implications for ML systems are profound: apart from a joint understanding of the
vision and text data presented to it as input, a ML system for VQA must be able to
combine multiple reasoning operations to arrive at the correct answer. These reasoning
operations are both complex and diverse, and include filtering (“What do the red cars
have in common?”), spatial reasoning (“What color are the shoes of the man standing
behind a lamppost?”), comparisons (“Is the picture on the left taller than the one on the
right?”), and counting (“How many motorcycles do you see?”).

Figure 1.1: An example of a VQA task (Image Source: Visual Genome [KZG+17])
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1. Introduction

In recent years, a large variety of approaches have been introduced for the VQA task.
Neural-symbolic approaches [YWG+18; APP+20; EHO+22] use deep learning for per-
ception, producing a symbolic representation of the information contained within the
input image and question, and then perform reasoning on this representation purely
symbolically. Since the semantics of the reasoning formalism are known, the way in
which an answer is reached is transparent [EHO+22]. Compared to end-to-end models
that produce an answer in a single forward pass of some neural network, neural-symbolic
approaches also benefit from consistency and compositionality: Since reasoning operations
are performed symbolically, they are guaranteed to behave in a consistent manner (e.g.,
counting always obeys the rules of arithmetic). And since the perceptive component of a
neural-symbolic VQA system can be composed of multiple neural networks contributing
different parts of the symbolic representation, advancements in specific computer vision
(CV) or natural language processing (NLP) disciplines (object detection, classification,
translation, etc.) can be directly applied to yield a more accurate symbolic representation
of the input text or image.

One such advancement is the adaptation of the Transformer [VSP+17] neural network
architecture and training on vast amounts of data with task-agnostic pre-training objec-
tives from large language models (LLMs) to multi-modal vision-language models (VLMs).
As with LLMs for language tasks, this has led to models that can be applied to a wide
variety of vision and vision-language tasks in a zero-shot manner, i.e., without training
or fine-tuning the model for the task or dataset at hand.

1.1 Motivation & Problem Statement
Since the tasks supported by the strong multi-modal understanding of state-of-the-art
VLMs include those required by the visual perception component of a neural-symbolic
VQA pipeline, it is natural to wonder if the two and their benefits can be combined to
yield a system that can perform zero-shot visual question answering with transparent,
symbolic reasoning. More concretely, we pose the following main research question (RQ):

(RQ) What accuracy can be achieved on a current VQA benchmark dataset with a
zero-shot neural-symbolic VQA pipeline that uses VLMs for visual perception?

The construction and evaluation of such a neural-symbolic VQA pipeline is thus the main
goal of this thesis. Furthermore, we seek to answer multiple auxiliary research questions
(ARQs) to gain deeper insight into the capabilities and limitations of the pipeline:

(ARQ1) Is the runtime performance of such a pipeline on consumer hardware suitable
for human interactive use?

(ARQ2) How much would the answer accuracy of the pipeline improve if the used
VLMs were more thoroughly pre-trained for understanding attributes (color, shape, etc.)
and relations (holding, to the left of, etc.)?

2



1.2. Approach

(ARQ3) Making use of the compositionality of neural-symbolic VQA approaches, how
can the visual perception component be modified/extended to improve the pipeline? In
particular, how is the accuracy of the pipeline affected by (1) the explicit computation of
spatial relations between objects, and (2) the integration of LLMs to judge the plausibility
of object relations?

1.1.1 Scope
With a sprawling number of datasets presenting many variations of the core VQA task,
we concentrate our efforts on one recent and generalist VQA challenge, the GQA [HM19]
dataset. Also, since the focus of this thesis lies on the visual perception and reasoning
aspects of the VQA task, we omit the translation of the natural language question into a
symbolic representation, directly using the so-called semantic question representation of
GQA as a starting point (see Section 2.2.1 for an explanation of this representation).

1.2 Approach
To answer the research questions presented in the previous section, we design the GS-VQA
neural-symbolic pipeline for zero-shot VQA with four components:

• Concept Extraction: Determines the information—object classes (car, person, etc.),
attributes (color, shape, etc.) and relations (holding, to the left of, etc.)—required
to answer the input question

• Scene Processing: Performs the visual perception, i.e., extracts the required infor-
mation from the input image using VLMs

• ASP Encoding: Produces a symbolic representation of the input question and the
extracted image information in the answer set programming (ASP) formalism

• ASP Solving: Uses rules defining the semantics of the available reasoning operations
to solve the encoded ASP program and determine the answer to the input question

We implement this pipeline using current VLMs for object detection (OWL-ViT [MGS+22])
and general vision-language understanding (CLIP [RKH+21]), and the Potsdam Answer
Set Solving Collection (Potassco) [GKK+19]. To permit the analysis of research questions
ARQ2 and ARQ3, extensions of the base implementation of the pipeline are built. Finally,
we thoroughly evaluate the accuracy and runtime performance of the pipeline and its
extensions and put them into context with the results of state-of-the-art VQA approaches
of various types (neural-symbolic, end-to-end, trained, zero-shot, etc.).

We find our approach suitable for representing the benefits and drawbacks of combining
neural-symbolic VQA with VLMs by using the employed VLMs efficiently and effectively.
Through the selective extraction of only the image information relevant to the input
question, we are able to use current resource-intensive VLMs while keeping the pipeline

3



1. Introduction

runtime in check. And with a non-deterministic ASP encoding of the extracted informa-
tion, we are able to capture the uncertainty of the VLMs’ predictions in the reasoning
process. Together with the experiments and analysis for the auxiliary research questions
2 and 3, we can give an accurate picture of the feasibility of zero-shot neural-symbolic
VQA with VLMs today, and the expected development in the near future.

1.3 Outline
In Chapter 2, we introduce the background knowledge required to follow the remainder
of the thesis, which includes VQA, the GQA dataset, ASP, VLMs, and scene graph
generation. For each of these topics, we also discuss the works from the literature most
related to this thesis. Afterwards, in Chapter 3 we give a birds-eye view on the design
of the GS-VQA pipeline and present its components, their responsibilities, and the flow
of information between them with one continuous example. Chapter 4 then provides
the full implementation details of the pipeline components introduced in the previous
chapter, followed by the implementation details on the proposed pipeline extensions in
Chapter 5. In Chapter 6 we discuss the details of our evaluation methodology, present
the obtained results, and discuss their implications. Finally, in Chapter 7, we summarize
our results, discuss the limitations of the current implementation of the GS-VQA pipeline,
and provide an outlook into future enhancements.

4



CHAPTER 2
Background & Related Work

In this chapter, we give an introduction into several topics that are needed to understand
the remainder of the thesis: visual question answering (VQA), the GQA [HM19] dataset,
answer set programming (ASP), vision-language models (VLMs), and scene graph gen-
eration. For each topic, we also review the literature that relates most closely to the
objectives of this work.

2.1 Visual Question Answering
VQA is a task combining computer vision (CV) and natural language processing (NLP)
in which a model is provided with a natural-language question relating to an image, and
must answer the question with the image as context (an example image and question pair
is depicted in Figure 2.1). The task was proposed by Antol et al. in their equally named
paper from 2015, in which they provide a benchmark dataset with roughly 250k images
and 760k questions [AAL+15]. Due to the fact that VQA is a challenging multi-modal
task that additionally requires a model to be able to perform (often multi-step) reasoning,
since its introduction a large number of vastly different solution approaches have been
explored, and various benchmark datasets with enhancements or alternations of the
original task have been introduced. Apart from being a challenging study in reasoning and
multi-modal machine learning, VQA has use-cases in the medical field, assistance systems
for the visually impaired, video surveillance, education, and advertising [BBM+21].

2.1.1 Neural-Symbolic VQA
Neural-symbolic approaches for VQA mix neural networks for object detection, classifica-
tion, and question parsing with symbolic evaluation for the reasoning process. In contrast
to approaches based purely on multi-modal deep learning (which will be discussed in
Section 2.1.2), the reasoning process is (to varying degrees) explainable: if the neural-
symbolic pipeline arrives at the wrong answer, one can determine whether and how the

5



2. Background & Related Work

Figure 2.1: A VQA example demonstrating the requirements perception (red), reasoning
(blue), and external information retrieval (orange) (Image Source: artbma.org)

pipeline misinterpreted the question or misclassified a certain entity in the image. Of this
paradigm, two distinct flavours have emerged: one extracts a symbolic representation
from both image and question and performs reasoning purely symbolically, while the
other builds only a symbolic representation of the reasoning steps implied by the question
and implements some or all of these reasoning steps with neural networks. Since our
work falls into the former category, we consider it under the name “neural-symbolic VQA”
and discuss it in this section, while we name the latter category “question-symbolic VQA”
and discuss it in Section 2.1.2 afterwards.

The term “neural-symbolic VQA” was established by Yi et al. [YWG+18] in 2018 with a
VQA pipeline of the same name. An illustration of the pipeline is given in Figure 2.2.
Their NS-VQA pipeline extracts a “structural scene representation” (a list of all objects
detected in the image—commonly also called scene—, together with their attributes and
position) from the input image. It then translates the provided question into a structured
representation of the reasoning steps needed to answer the question in the form of a
functional program, and executes this program on the structural scene representation
to obtain an answer. The authors show excellent results on the CLEVR [JHvdM+17a]
dataset, a benchmark dataset with complex questions involving multiple reasoning steps
about synthetic scenes generated in Blender1. However, the visually uncluttered scenes
of CLEVR, intentionally crafted to simplify visual perception, hide a drawback of the
approach of Yi et al.: its reasoning process is not able to deal well with imperfect detection
and classification of objects in the scene. For example, given the question “Which color
does the object next to the small blue box have?”, if the box in question is identified as
large rather than small by NS-VQA’s scene parser, the reasoning will not find an answer.

1https://www.blender.org/
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2.1. Visual Question Answering

Figure 2.2: The original Neural-Symbolic VQA pipeline with symbolic question and image
representations and a purely symbolic reasoning process (Source: [YWG+18, Figure 2])

Since then, Amizadeh et al. [APP+20] and Eiter et al. [EHO+22] have improved on
NS-VQA’s approach with logic-based reasoning processes, the former based on what
the authors call “Differentiable First-Order Logic (∇-FOL)”, the latter based on ASP, a
formalism that is discussed in detail in Section 2.3. These reasoning processes are able to
consider not just the most probable prediction of a scene object’s class, attributes, and
relations, but rather the entire vector of probabilities as output by the object detection
and attribute/relation classifier networks that form the VQA pipeline’s visual perception
component. Continuing the example from above, these approaches would not simply
view the detected box as “large”, but, e.g., as “large” with a likelihood of 0.8, and “small”
with a likelihood of 0.2. Together with all the other information gathered from the scene,
they might therefore still conclude that the box is in fact the “small blue box” referenced
by the question.

The GS-VQA pipeline presented in this thesis builds on this benefit of the ASP-based
reasoning approach of Eiter et al., but improves on the approach in multiple ways.
First and foremost, while the object detection in Eiter et al.’s pipeline requires training
on images from the benchmark dataset (CLEVR in their case), GS-VQA is zero-shot:
through the use of pre-trained VLMs (discussed in more detail in Section 2.4), no training
is required to detect objects and extract their classes, attributes, and relations from the
scene. Second, as Eiter et al. have shown that even for the small set of object classes of
CLEVR, considering all options for each detected object in the ASP reasoning process can
yield excessive runtimes, we implement a question-driven partial scene graph extraction
method to allow the ASP reasoning approach to scale to the much larger space of object
classes, attributes, and relations in datasets like GQA [HM19] (scene graphs are discussed
in Section 2.5, while our approach to partial scene graph extraction is outlined in Section
3.3).

7



2. Background & Related Work

2.1.2 Other Approaches

Apart from neural-symbolic ones, a large variety of other approaches to VQA exist, which
we categorize into end-to-end networks, question-symbolic approaches, and zero-shot
approaches. Note that this overview should not be seen as a complete taxonomy: We
refer to a survey by Zakari et al. [ZOW+22] for a more detailed categorization of the
published approaches to VQA.

End-to-End Networks

The most straightforward approach to tackling the VQA task is to encode both image
and question into feature vectors that are then used as input to some neural network
that produces the answer to the question. In the literature dealing with this end-to-end
machine learning approach, the image is most commonly encoded as output features of
a convolutional neural network (CNN), though the features of objects as detected by
a network like Faster R-CNN [RHG+15] are also widely used. The question is usually
encoded by the hidden states of an uni- or bi-directional Long Short-Term Memory
(LSTM) [HS97] network. The primary difference between models lies in the architecture
of the final answer-generating network. The shape of the output also varies from
multi-class classification of a known list of answer candidates, over binary classification
of (question, image, answer)-triplets, to generation of sentence-long natural language
answers, depending on personal choice of the researchers and the characteristics of the
used benchmark dataset.

For the answer-generating network, early approaches either simply concatenate the image
and question features or use some more elaborate form of combination like Multimodal
Compact Bilinear pooling (MCB) [FPY+16], and then process these combined inputs with
a fully-connected network [AAL+15] or some form of attention-based network [LYB+16;
YHG+16].

Unfortunately, these early approaches have been shown to struggle with questions that
have long reasoning chains or require short-term memory (for example, for an attribute
comparison between two objects). Instead, they often exploit biases in the training
data to derive their answers [ABP16]. This manifests itself in models ignoring large
parts of the input question, not changing their answer across different input images, and
experiencing a significant drop in performance when evaluated on a dataset that controls
for biases [JHvdM+17a].

To improve the reasoning capabilities for VQA, multiple architectures have emerged
that more explicitly integrate the multi-step nature of the reasoning process into their
architecture. One such architecture, Memory, Attention, and Composition (MAC) [HM18],
is built on a recurrent cell architecture where each MAC cell represents one reasoning step.
Each of these steps updates a control state representing the reasoning action to perform
with the question as context, selectively (based on control state and memory) extracts
information from the image, and integrates this information with the cell’s memory to

8



2.1. Visual Question Answering

form a new partial result. The final cell memory is then plugged into a fully-connected
classifier to determine the network’s answer.

Another recent approach, which will be discussed in more detail in Section 2.4, is the
direct use of VLMs for VQA. These models consist of multiple uni- and multi-modal
Transformers [VSP+17] and use a variety of pre-training tasks on large amounts of data
to gain strong multi-model understanding, which can then be used to perform a variety
of vision-language tasks, VQA among them [TB19; LLX+22]. Through the multi-layered
use of self- and cross-attention present in the Transformer architecture, VLMs are able
to focus on different parts of the input at different times and thereby perform multi-step
reasoning.

Question-Symbolic Approaches

Rather than extracting a symbolic representation from both the input question and the
input image and reasoning on those, question-symbolic VQA approaches only extract the
former, usually in the form of some programmatic specification of the reasoning steps
needed to arrive at the question’s answer.

Johnson et al. [JHvdM+17b] take inspiration from the concept of neural network modules
[ARD+16], and use a functional program specification extracted from the input question
to assemble a question-specific network from smaller modules. Each possible reasoning
operation in the functional program has its own module, which consist of a small number
of convolutional layers with input- and output-shapes designed to allow the modules to
be chained together. The leaves of the assembled tree of modules accept the input image,
while a classifier at the root produces the final answer.

Instead of performing all reasoning through composable neural network modules, ViperGPT
[SMV23] and CodeVQA [SNK+23] “out-source” only some reasoning steps. Both use a
large language model (LLM) to translate the input question into a valid Python program,
which enables them to represent many reasoning operations like comparisons, counting,
and negation, through their respective Python primitives. Operations relating to the
input image (finding all objects of a certain class, checking if an attribute applies to an
object in the scene, etc.) are delegated to VLMs (these models are discussed further in
Section 2.4.3).

Zero-Shot Models

Most of the models discussed above require the training of at least some component
in their architecture on a training dataset to achieve good results on the test dataset,
and do not generalize well to unseen object classes, attributes, or relation types. This
severely limits their usability, since they will likely encounter unseen concepts and thus
under-perform in general-purpose use. Also, training data for special-purpose tasks takes
a lot of effort to generate.

9



2. Background & Related Work

The exception are VLMs like BLIP-2 [LLS+23] and SimVLM [WYY+22] that have
gained a sufficiently strong vision-language understanding through their pre-training
regimes to generalize well to multiple different datasets, as well as approaches that use
these VLMs as components, for example ViperGPT [SMV23], CodeVQA [SNK+23], and
PnP-VQA [TLL+22].

2.1.3 Datasets
Since the release of the original VQA dataset [AAL+15], a large variety of alternative
benchmark datasets have been introduced. These broadly fall into two categories:
generalistic VQA datasets that seek to alleviate the original dataset’s flaws and improve
on its scope and challenge, and those that specialize on a certain “flavour” of VQA.

Generalist Datasets

The original VQA [AAL+15] dataset uses the MS COCO [LMB+14] dataset as an
image source, which contains visually complex real-world photos with multiple objects.
Questions are written by Amazon Mechanical Turk2 workers, and for each question, 10
answers from unique workers are collected to capture the uncertainty ingrained in the
task (for the color of an object, “white”, “eggshell”, and “off-white” might all be correct).
Unfortunately, the dataset suffers from strong language biases that can be exploited
by models to answer questions without properly attending to the input image, leading
to an inflated sense of the amount of reasoning that these models are actually able to
perform [ABP16; GKS+17]. These biases often arise from an imbalanced distribution
of the image data (for example, 41% of questions starting with “What sport is” can be
correctly answered with “tennis”, implying that in the images depicting sport scenes in
MS COCO, tennis is over-represented), or flaws in the question collection process (for
example, blindly answering “yes” to questions starting with “Do you see a ...” yields 87%
accuracy, since, if people are tasked to write questions about a given image, they tend to
question about things present, rather than absent, in the image).

The second iteration of the VQA dataset (VQA v2.0 [GKS+17]) attempts to balance
the original dataset by finding for each (image, question, answer) triple (I, Q, A) from
the original dataset a “similar” image I ′ that leads to a different answer A′. As an
indicator of the similarity of two images, the ℓ2-distance between their embedding
vectors as returned by a VGGNet [SZ15] CNN is used (i.e., for two embedding vectors
x⃗, y⃗, ℓ2 =

��
i(xi − yi)2). As a result, the dataset has roughly 1.1M (image, question)

pairs, approximately twice the number of pairs in the original version. While this
approach perfectly balances the answer distribution for binary question types, it leaves
the distributions of open questions largely unbalanced [HM19].

By following a rigorously analytical approach, the CLEVR [JHvdM+17a] dataset takes
avoiding question-conditional bias even further. Instead of using real-world images,

2https://www.mturk.com/

10



2.1. Visual Question Answering

CLEVR renders simple artificial scenes of objects of 3 shapes, 2 sizes, 2 materials, and 8
colors from generated scene graphs (the concept of a scene graph is discussed in more
detail in Section 2.5). For those scenes, questions are then constructed by instantiating
90 different question families, each of which consists of a functional program template
that describes the steps of reasoning required to answer the question, and multiple
text templates representing different ways of wording the question in natural language.
Intelligent sampling ensures that each question family (i.e., questions sharing the same
linguistic structure) has a roughly uniform answer distribution, and that ill-posed or
degenerate questions are avoided. The composition of questions from functional reasoning
operations enables the efficient construction of long and complex questions, and the
analysis of a model’s performance for specific modes of reasoning (spatial, counting, etc.).

While CLEVR provides a bias-controlled dataset with questions requiring multi-step
reasoning, its challenge is somewhat artificial: question-answering skills demonstrated on
the rendered scenes of CLEVR, with their visual simplicity, and their limited number
of object attributes and relations between them, may not map reliably to “real-world”
use-cases. By drawing on the scene graph annotated images of the Visual Genome
project [KZG+17], the GQA [HM19] dataset improves on these deficiencies. GQA also
instantiates question families represented by a functional program specification and
multiple text templates, but the scenes on which they are instantiated, being annotated
real-world images, contain a much richer variety of object classes, attributes, and relations.
Also, the real-world images contain significantly more visual noise, which makes the
detection of objects and attributes in the scene far less trivial. Since GQA is the dataset
of choice for this thesis, it is discussed in more detail in Section 2.2.

Specialist Datasets

A number of datasets modify the general “reasoning about images” premise from the
original VQA dataset and focus on particular modes of reasoning, visual or textual
comprehension skills, or areas of application.

In addition to reasoning about the information contained in the input images themselves,
questions in the Outside-Knowledge VQA (OK-VQA) [MRF+19] and Fact-Based VQA
(FVQA) [WWS+18] datasets require a model to draw on “common-sense” knowledge
to arrive at the correct answer. Models therefore need to be able to access external
knowledge bases, or have factual knowledge ingrained through their training regimes.

Regarding comprehension skills, generalist datasets usually require models to detect
objects (trees, cars, people, etc.) and their attributes, and to understand a natural-
language question written in English. Models like TextVQA [SNS+19] and DocVQA
[MKJ21] break with the first convention by requiring models to also detect and reason
about text in the input image, while datasets with questions in a language with drastically
different structure like Japanese [SRM18] and Chinese [GMZ+15] break with the second.

Finally, datasets for specific areas of application include ones for radiology images
[LGB+18], and ones asking questions about data visualisations [KPC+18].

11
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2.2 The GQA Dataset
As already alluded to in Section 2.1.3, a wide variety of VQA datasets have sprung up
since the release of the “original” VQA dataset by Antol et al. [AAL+15], improving on
issues of their predecessors or specialising into fragments of the generalist VQA task. For
this thesis, we use the GQA [HM19] dataset, a state-of-the-art generalist dataset that has
seen wide adoption in the recent literature [APP+20; SMV23; LNR+20; LLS+23]. The
dataset contains over 22M open and binary questions, which are complex in structure,
involve a wide variety of reasoning skills, and have a large number of possible answers
(1,878 to be exact). A reduced set of 1.7M questions is provided that controls for question-
conditional biases in both open and binary questions, and thus presents an ideal basis
for comparison of zero-shot and trained VQA pipelines, since trained models can exploit
those biases to a far lesser degree than in previous datasets [AAL+15; GKS+17]. The
questions cover more than 100,000 images from the Visual Genome [KZG+17] dataset
that present real-world scenes with a wide variety of object classes, attributes, and
relations. Unlike the synthetic and overly simplistic images used in datasets like CLEVR
[JHvdM+17a], these natural images provide a realistic testing ground for the capabilities
of zero-shot VLMs in the context of VQA.

Apart from these general beneficial properties of the dataset, GQA comes with two types
of supplementary data that greatly aid in the development of the GS-VQA pipeline:
First, each natural-language question from the test/validation/test-dev splits comes with
a structured representation of its required reasoning steps, referred to as a “semantic
representation” by the authors. This enables us to focus on the visual perception and
reasoning aspects of the VQA task and leave the zero-shot translation of natural language
into structured specifications to future research (look at OpenAI Codex [CTJ+21] for a
recent example of LLMs for code generation and at ViperGPT [SMV23] for an application
of the model to VQA). Second, a Visual Genome scene graph is provided for every image
in the test/validation splits of the dataset, which allows us to verify soundness of our
ASP encoding under perfect visual information during development, as has been done
by Amizadeh et al. [APP+20] for their ∇-FOL. While we discuss the semantic question
representation below, scene graphs and their generation are described in more detail in
Section 2.5.

2.2.1 Semantic Question Representation

While in principle natural-language questions could be directly translated into an ASP
encoding, we exclude this translation from the focus of this thesis. Instead, we use
the already structured semantic question representation of GQA as a pipeline input
and translate it into the ASP Question Encoding. For this reason, we give here a brief
overview over the format of this semantic question representation, illustrated the example
question: “Do the umpire and the person holding the green baseball bat have the same
pose?”. The semantic representation of this question is depicted textually and graphically
in Figure 2.3.
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select: umpire select: baseball bat

filter color: green

relate: person,holding,s

same pose

select: umpire  select: baseball bat  filter color: green 
relate: person,holding,s  same pose

Figure 2.3: The GQA semantic representation for the question “Do the umpire and the
person holding the green baseball bat have the same pose?”

From this example, it is apparent that questions reference three kinds of concepts: object
classes (helmet, umpire, person), attributes (pose, standing), and relations (wearing, to
the left of). Note that classes form an ontological hierarchy (e.g., an umpire is also a
person), and that we distinguish attribute categories (e.g., pose, color) from their concrete
attribute values (e.g., standing, red).

The semantic representation itself can be seen as a pre-order traversal of a tree of
reasoning operations. Most of these operations, such as select, filter, and relate,
take as input a set of objects (or all objects in the scene, if no operation precedes them)
and return another set of objects. Terminal operations such as query, choose, and
same take as input one or multiple sets of objects and return a concrete value, which
might be an attribute value, a relation, or a boolean. Some of these terminal operations
implicitly expect only a single object as input. The complete set of operations will be
discussed in more detail in Section 4.4.1.

2.2.2 Variety & Structure
Compared to its spiritual successor CLEVR [JHvdM+17a], GQA’s scenes contain a vastly
increased range of object classes, attributes, and relation types: Whereas CLEVR has 3
object classes (cubes, spheres, and cylinders), objects in GQA are part of 1,740 classes
(camera, burger, etc.), which are themselves organised into a hierarchy of 60 categories,
or higher-order classes (device, food, etc.). The full range of categories can be seen in
Figure 2.4a. Instead of CLEVR’s 12 different attribute values grouped into 3 attribute
categories (size, color, and material), GQA objects have 620 different attribute values
grouped into more than 30 attribute categories (color, tone, cleanliness, texture, etc.).
Finally, rather than having only four elementary spatial relations (left, right, in front,
behind), GQA contains 330 different relations, both spatial ones (near, next to, etc.) and
semantic ones (wearing, holding, etc.).
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(a) (b)

Figure 2.4: (a) The hierarchy of GQA’s 60 object categories (b) The distribution of
GQA’s questions across 23 question types (Source: [HM19, Supp. Material, Figure 1&2])

The questions in GQA are instantiated from 117 template question groups categorized
into 23 types, each group containing a semantic representation, a set of natural-language
rephrases that express those same semantics, and a pair of long and short answers. Figure
2.4b shows the distribution of the instantiated question across the 23 question types.

2.2.3 Other Works evaluated on GQA
Due to the popularity of GQA, a number of recent papers spanning a wide range of
approaches to VQA have evaluated their work on the dataset. These include other
neural-symbolic approaches [APP+20], question-symbolic approaches [LNR+20; SMV23;
SNK+23], end-to-end networks [HM18; TB19; NDT+22], and VLMs [JCS+22; LLS+23].
Their performance will be used as a basis for comparison in Chapter 6.

2.3 Answer Set Programming
ASP is a declarative, non-monotonic logic programming (LP) formalism. The idea of a
declarative problem solving approach is succinctly described by Gebser et al. as follows:

“Rather than solving a problem by telling a computer how to solve the problem,
the idea is simply to describe what the problem is and leave its solution to the
computer.” [GKK+12]

A problem description in ASP is a program, a finite collection of rules that, in their most
basic, propositional variant, have the form [BET11]:

a :− b1, ..., bm, not c1, ..., not cn. (2.1)
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Here, a, bi, cj are atoms, elementary propositions that may be true or false, while not cj

denotes the weak negation of atom cj . Atoms and their weak negations form the set of
literals. a is also called the head of rule r (denoted head(r)), while the literals to the
right of :− represent the body of the rule (body(r), split into body+(r) and body−(r) for
the positive and negative (weak-negated) literals).

A rule r is the justification to derive the truth of head(r) if all literals in body(r) can be
derived as true. A weak negation not cj is true if cj cannot be derived from the rules of
the program (hence weak negation is often also referred to as “negation as failure”). A
rule without a body (i.e., of the form d :− .) is called a fact, and communicates that d
can always be derived.

A solution to an ASP program P , as the name would already suggest, is called an answer
set. Let S be an interpretation, i.e., a subset of the atoms of P. If P does not contain
weak negation (i.e., for all rules r ∈ P , body−(r) = ∅), then S is the answer set of P if S
is the minimal closed set under P. That is, S is the minimal set such that:

∀r ∈ P : body+(r) ∈ S ⇒ head(r) ∈ S (2.2)

Intuitively, S contains all atoms that can be derived from the information in program P .
If P does contain weak negation though, this bottom-up construction of the answer set
does not work, since we do not know which atoms can be eventually derived, and thus
not verify the conditions for applying any of the rules containing weak negation [BET11].
Instead, a certain interpretation S is assumed (which places an assumption on which
atoms can, and importantly also cannot, be derived). Under this assumption, all rules
that contain not cj for some cj ∈ S cannot be invoked, and can thus be removed from
P. For all remaining rules with some weak negation not cj , the negated atom cj must
not be in S, since otherwise the rule would have been discarded in the previous step. It
can therefore be safely assumed that not cj evaluates to true, and the literal not cj can
be removed from the rule without affecting its usability. The resulting program without
weak negation is called the Gelfond-Lifschitz reduct PS of P.

An interpretation S is then the answer set of P if it is the minimal closed set under
the Gelfond-Lifschitz reduct PS . Intuitively, S containing all atoms derivable from the
information in PS verifies the assumptions in S about which atom can/cannot be derived.

It is important to realise that the answer sets of an ASP program behave non-monotonically,
that is, previously drawn conclusions may have to be changed as new facts or rules are
added to the program. This is a direct consequence of weak negation, which becomes
apparent with the following program as a minimal example:

a :− b, not c. (2.3)
b. (2.4)
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This program trivially has the answer set {a, b}. However, if the fact c. is added to
the program, the rule used to establish the truth of a can no longer be applied, so this
previously established conclusion has to be retracted, leaving {b, c} as the new answer
set.

2.3.1 Programs with Predicates

A crucial extension of the just introduced formalism is to allow for predicates rather than
just atoms. In this variant of ASP, rules have the form:

A :− B1, ..., Bm, not C1, ..., not Cn. (2.5)

where A, Bi, Cj are atomic formulas in the language [BET11], meaning they take the
form R(s1, ..., sk), where R is a predicate of arity k, and each s is either a constant (often
denoted by a, b, c, ...) or a variable (often written as X, Y, Z, ...). Answer sets of such a
program P with predicates are then defined in terms of its grounding grnd(P) over the
Herbrand universe (i.e., the program obtained by replacing each rule with variables with
all its instantiations over the constants). This then leads to the ASP solving process
depicted in Figure 2.5.

Figure 2.5: The ASP solving process with predicates (Source: [GKK+12, p. 3])

In practice, ASP solvers do not replace P by grnd(P), since this generally leads to an
exponential blow-up of the program size. Rather, they employ various optimization
techniques to produce “a possibly small propositional program, not necessarily a subset
of grnd(P), that is equivalent to P, that is, has the same answer sets” [BET11].

To then solve the propositional grounding of P , ASP solvers commonly employ techniques
introduced in SAT solving (backtracking search, clause learning, etc.), but extended by
the additional considerations implied by the foundedness condition of answer sets (i.e.,
that every atom that is true must be derived by a rule in the program).
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2.3.2 Extensions

Depending on the chosen solver, various extensions to the ASP formalism are available. In
the following, only those that are most relevant to this thesis will be introduced. A precise
explanation of the semantics and the translation of these constructs into simpler ASP
variants are provided by Gebser et al. [GKK+12; GKK+19], and Leone et al. [LPF+06].

Choice & Cardinality Rules

Falling back to the propositional variant of ASP for simplicity, a choice rule has the form:

{a1, a2, ..., ao} :− b1, ..., bm, not c1, ..., not cn. (2.6)

This rule expresses that any subset of {a1, a2, ..., ao} may be included in an answer set,
provided the body literals are true. Cardinality rules are a natural extension of this
concept, stipulating that at least l and at most k of the atoms in the rule head must be
included in an answer set if the rule body is satisfied:

l {a1, a2, ..., ao} k :− b1, ..., bm, not c1, ..., not cn. (2.7)

Integrity Constraints

For some problems, it may be desirable to enforce that a scenario does not occur. This
can be achieved with integrity constraints, which differ from regular rules simply by their
lack of a rule head:

:− b1, ..., bm, not c1, ..., not cn. (2.8)

A constraint like that of Equation 2.8 enforces that all interpretations that satisfy its
rule body are ruled out as answer sets.

Weak Constraints & Optimization

In optimization, the goal is not simply to find any (or all) interpretations S that are
answer sets, but to find those that are optimal, with respect to the weak constraints of the
program. In contrast to the strong integrity constraints just presented, weak constraints
may be violated by an answer set, but this violation contributes a term tuple (t1, t2, ..., to)
with an associated weight w to a cost function:

:∼ b1, ..., bm, not c1, ..., not cn. [w, (t1, t2, ..., to)] (2.9)

An answer set is then optimal if the sum of weights of all contributed tuples is minimal
(note that set semantics apply, i.e., if the same tuple is contributed twice, its weight is
counted only once).
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2.3.3 Other Works using ASP for VQA
Using logic-based formalisms for neural-symbolic VQA is still a relatively unexplored area
of research. As such, only two other approaches have been proposed: most closely related,
Eiter et al. [EHO+22] use ASP to tackle the CLEVR dataset, while Amizadeh et al.
[APP+20] perform reasoning in what the authors call “Differentiable First-Order Logic
(∇-FOL)” to answer the questions of GQA. Looking beyond the VQA task, other neural-
symbolic formalisms integrating neural network output into ASP [YIL20] or ProbLog
[MDK+18] have also been introduced.

2.4 Vision-Language Models
In the field of natural language processing (NLP), the training of models on vast amounts
of raw text with so-called pre-train objectives that are agnostic to any specific downstream
task has enabled immense improvements in language understanding [RKH+21]. This
development has reached a point where LLMs perform competitively to or even better
than purpose-built models when applied with minimal fine-tuning [DCL+19] or even zero-
shot [BMR+20] to a variety of downstream tasks (translation, named entity recognition,
causal language modeling, text classification, question answering, etc.).

VLMs, as their name would suggest, adapt the approach of task-agnostic pre-training
on large quantities of data to (image, text) pairs, enabling multi-modal understanding
that can again be applied to a wide range of tasks (open-vocabulary image classification,
object detection, image-text matching (ITM), image captioning, VQA, etc.). Among
the state-of-the-art models in this space are CLIP [RKH+21], SimVLM [WYY+22], and
BLIP(-2) [LLX+22; LLS+23].

In the following sub-sections, we discuss the two VLM tasks that are used by the GS-VQA
pipeline (ITM, open-vocabulary object detection), along with the models we employ for
them (CLIP, OWL-ViT [MGS+22]).

2.4.1 CLIP for Open-Vocabulary Image Classification
CLIP [RKH+21] consists of an image and a text encoder that encode their respective
inputs into a joint embedding space (which is 512- to 1024-dimensional, depending on the
implementation). The image encoder either follows the ResNet [HZR+16] architecture or
that of the Vision Transformer (ViT) [DBK+21], while the text encoder is a Transformer
[VSP+17].

To train CLIP, Radford et al. used only one contrastive pre-training objective: When
presented with a batch of n (image, text) pairs from the training data, CLIP is tasked to
determine the correct n pairings of images and texts from the n2 possible ones of the
batch. To pair an image to a text (and vice-versa), it encodes the images and texts from
the batch into their shared embedding space and then determines for each image/text
embedding the respective text/image embedding that is “closest” in the embedding space
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Figure 2.6: (1) A summary of CLIP’s architecture and pre-training approach (2-3) Using
CLIP for open-vocabulary image classification (Source: [RKH+21, Figure 1])

by cosine similarity. Pre-training then optimizes a symmetric (i.e. considering both
pairing of text to image and the other way around) cross-entropy loss on these similarities.
The process is illustrated in step (1) of Figure 2.6.

This pre-training procedure produces the desirable property that semantically similar
images and texts, i.e., images that show the same thing that the texts describe, have
a high cosine similarity in CLIP’s embedding space, while dissimilar images and texts,
i.e., those that depict and describe different concepts, have a comparatively low cosine
similarity.

To utilize this property for open-vocabulary image classification (i.e., classification in
which the classes are not hard-wired into the model architecture), one can compute the
cosine similarity between an image and a textual prompt for each class of interest, e.g.,
“a photo of a {class}”, where {class} is instantiated to “plane”, “car”, “dog”, etc.,
and pick the class which maximizes this similarity. This approach is already described
by Radford et al. [RKH+21] and shown in steps (2-3) of Figure 2.6.

2.4.2 OWL-ViT for Open-Vocabulary Object Detection
Vision Transformer for Open-World Localization (OWL-ViT) [MGS+22] is both a model
in its own right and recipe for adapting VLMs trained with image-text contrastive
pre-training (like CLIP) to the task of open-vocabulary object detection.

The architecture of OWL-ViT is depicted in Figure 2.7. It has as its basis the text and
image encoders of a contrastively pre-trained VLM, though with the restriction that the
image encoder must be based on the Vision Transformer to allow for the modifications
that follow. A ViT splits its input image into a sequence of small (originally 16 × 16
pixel) patches, runs them through a linear projection, and concatenates the resulting
patch embeddings with a learnable position embedding. This sequence of embedding
vectors is used as input to a Transformer encoder, which produces a sequence of output
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Figure 2.7: OWL-ViT’s approach of adapting the text and image encoders of a con-
trastively pre-trained VLM (left) to perform open-vocabulary object detection (right)
(Source: [MGS+22, Figure 1])

vectors of the same length. For the encoder in contrastively trained VLMs like CLIP, a
final pooling and projection layer is then used to combine these output vectors into an
embedding for the entire image.

OWL-ViT removes these final pooling and projection layers, and instead transforms
the sequence of output vectors from the ViT encoder in two ways: First, each vector is
projected into the embedding space shared with the text encoder. This enables OWL-ViT
to determine the similarity of each ViT output vector to the embedding of one or multiple
textual descriptions of object classes (“cat”, “dog”, “car”, etc.), using cosine similarity as
CLIP does for image-level classification. Second, each vector is projected into a bounding
box. The maximum number of detected objects is thus limited by the sequence length of
the ViT (which is not a problem in practice, since 224 × 224 images split into 16 × 16
patches already yield a sequence length of 196). An object is detected when the maximum
(softmax-normalized) cosine similarity between it and one of the object classes exceeds a
user-specified threshold.

2.4.3 Other Works using VLMs for VQA

Instead of CLIP’s contrastive pre-training objective, many VLMs use objectives that
require text generation: both BLIP [LLX+22] and SimVLM [WYY+22] train with
some form of Language Modeling (LM) objective that maximizes the likelihood of an
image-conditioned Transformer decoder generating the corresponding image caption
autoregressively. Such VLMs can, sometimes with minor architectural adjustments, be
used directly for VQA.

This capability is built upon by ViperGPT [SMV23], which uses an LLM to transform
a natural-language question into Python code that adheres to a provided API. Some
of the API’s functions are implemented using VLMs like X-VLM [ZZL22] and BLIP-2
[LLS+23] for object detection, classification, and VQA with sub-questions of the original
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question (using an example from ViperGPT’s website3, the question “What color is the
counter?” is translated into code that first uses object detection to find the bounding
box of a counter in the image, which is then presented to BLIP as an image crop with
the question “What color is this?”).

PnP-VQA [TLL+22] also uses LLMs and VLMs, though in a different way: in a multi-
step process, it employs BLIP and a modified variant of GradCAM [SCD+17] to sample
patches of the input image that are most relevant to the question, and generate textual
captions for those patches. These captions, along with the question, are then used as
input to an LLM that generates the answer.

Combining the approaches of ViperGPT and PnP-VQA, CodeVQA [SNK+23] also uses
an LLM to transform a question into Python code (though with a much more concise
API than ViperGPT), but employs the technique of PnP-VQA to implement its API’s
function for answering sub-questions.

2.5 Scene Graph Generation
A lot of research in visual perception has focused on the objects in an image, be it the
classification of an entire image according to its principal depicted object [DDS+09],
or the detection of objects and their location in the scene, either as bounding boxes
[RHG+15; RF18] or more detailed segmentation masks [RFB15; BKC17]. In recent years,
foundation models have been introduced that show strong zero-shot performance on these
tasks [JHvdM+17a; MGS+22; KMR+23].

However, for the purpose of neural-symbolic VQA, information about the class and
position of the objects in the scene is not sufficient. Rather, as we have seen in Section
2.2, questions in state-of-the-art VQA datasets like GQA [HM19] additionally require
an understanding of the attributes of objects (a “green baseball bat”) and the relations
between them (a “person holding a baseball bat”). Scene graphs, originally introduced
under this term in 2015 by Johnson et al. [JKS+15] for the purpose of image retrieval,
model the object classes, attributes, and relations depicted in an image as a directed,
sparse graph. Formally, Johnson et al. define a scene graph as follows: “Given a set of
object classes C, a set of attribute types A, and a set of relationship types R, we define
a scene graph G to be a tuple G = (O, E) where O = {o1, ..., on} is a set of objects and
E ⊆ O × R × O is a set of edges. Each object has the form oi = (ci, Ai) where ci ∈ C
is the class of the object and Ai ∈ A are the attributes of the object.” [JKS+15]. An
exemplary scene graph is shown in Figure 2.8.

Since the introduction of the scene graph concept, benchmark datasets with scene-graph-
annotated images and models for scene graph generation (SGG) have been developed. Of
the datasets, Visual Genome [KZG+17] is of particular note for its scope (108,077 images
annotated with more than 3.8M objects, more than 2.8M attributes, and more than 2.3M

3https://viper.cs.columbia.edu/, accessed 08.07.2023
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relations) and variety (33k different object categories, 68k unique attributes, 42k unique
relations). It also forms the basis for the visual components of the GQA [HM19] dataset.

Models for SGG mostly focus on relation prediction, using already established approaches
for object detection and often disregarding object attributes entirely [XZC+17; LKB+16].
Lu et al. [LKB+16] use R-CNN to generate object proposals, for which they then
use an object and a relation classification CNN to determine the visual likelihood of
(subject, relation, object) triplets applying to pairs of the proposed objects. A language
module is then used to alter these likelihoods based on semantic plausibility (e.g.,
dampening the likelihood of (dog, drive, car) because it is unlikely to occur). Yang et al.
[YLL+18] also use the idea of semantic plausibility, first constructing a full graph of all
objects detected by Faster R-CNN [RHG+15], then pruning the edges between objects
that are unlikely to be related. This sparse graph is processed by an attentional graph
convolution network (aGCN) to obtain the final scene graph. Xu et al. [XZC+17] too
extract object proposals from the image via Faster R-CNN, but process them using
recurrent neural networks (RNNs). Additionally, their model learns to iteratively improve
its predictions via message passing.

While—to the best of our knowledge—no foundation model for zero-shot SGG exists yet,
Kan et al. [KCY21] have recently explored integrating commonsense knowledge contained
in an external knowledge base to improve performance on unseen (subject, relation, object)
triplets.

Figure 2.8: An example of a scene graph (Source: [JKS+15, Figure 2])
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2.5.1 Other Works using SGG for VQA
While we are not aware of any VQA model that generates and uses a symbolic scene
graph as generated by the models discussed above, multiple models use intermediary
representations of the outputs eventually produced by SGG. Liang et al.’s LRTA [LNR+20]
and Amizadeh et al.’s pipeline [APP+20] both run existing object detection models on
the input image and then determine attributes and relations with classifiers taking
single objects or object pairs as input. LRTA directly uses the vector outputs of its
detection and classification models as input to its neural execution engine based on
graph convolution, and only converts them to a symbolic form for human readability.
Amizadeh et al. integrate the scene graph information as “visual oracles” into their ∇-FOL
formalism, which return the likelihood of a predicate representing class-, attribute-, or
relation-membership applying to an object or a pair of objects.

Related are also the structural scene representations extracted from an input image by
Yi et al. [YWG+18] and Eiter et al. [EHO+22]. These too contain the objects in the
scene, their attributes, and their relations among each other. However, since objects
in the CLEVR [JHvdM+17a] dataset used by these papers have a small number of
classes and attributes, and are related only via fundamental spatial relations (“left”, “in
front of”, etc.), the papers can mostly rely on object detection by encoding all attribute
combinations as classes and determining the relations from the object’s bounding boxes.
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CHAPTER 3
Design: The GS-VQA Pipeline

This chapter gives a birds-eye view on the architecture of the GS-VQA pipeline for zero-
shot VQA. The pipeline is depicted in Figure 3.1 with a concrete example: a 500 × 334
image showing a scene of a baseball game, and the question “Is the umpire to the right or
to the left of the standing person that is wearing a helmet?”. In the following sections, the
four components of the pipeline—Concept Extraction, Scene Processing, ASP Encoding,
and ASP Solving, by order of execution—will be introduced using this example. The full
implementation details of each component will then be elaborated in Chapter 4.

3.1 Pipeline Inputs
As expected for the VQA task, the inputs to the pipeline are an image and a question
that is to be answered with the image as context. We focus on the visual perception
and reasoning aspects of the VQA task and thus directly use the semantic question
representation of GQA (introduced in Section 2.2.1) as an input to the GS-VQA pipeline.
It is obvious that real-world use-cases or even other VQA benchmark datasets would
not come with such a semantic representation for each question, in which case various
trained models [JHvdM+17b; HAR+17; YWG+18] or zero-shot models [SMV23] could
be used to generate it.

Looking at the example from Figure 3.1, the pipeline inputs are the depicted im-
age, along with the following semantic representation: select: helmet → relate:
person,wearing,s → filter pose: standing → choose rel: umpire,
to the left of|to the right of,s.
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    GS-VQA Pipeline

Image

Object Detection

Required Concepts
(Classes, Attributes,

Relations)

Concept Extraction
Classes

helmet
person
umpire

Attributes
standing

Relations
wearing

to the left of
to the right of

Scene Processing

Object Detection

helmet
umpire

Concept Classification

standing: 0.05

wearing: 0.90

ASP Encoding

Question Encoding

Scene Encoding

scene(0).
select(1, 0, helmet).
relate(2, 1, person, wearing, subject).
filter_any(3, 2, standing).
choose_rel(4, 3, umpire, to_the_left_of,    
to_the_right_of, subject).
end(4).

object(o1).
has_obj_weight(o1, 1971).
has_attr(o1, class, person).
has_attr(o1, class, baseball_player).
has_attr(o1, name, baseball_player).

has_attr(o1, hposition, middle).
has_attr(o1, vposition, middle).

{has_attr(o1, pose, standing)}.
:~ has_attr(o1, pose, standing). [83]
:~ not has_attr(o1, pose, standing). [2525]

{has_rel(o1, wearing, o2)}.
:~ has_rel(o1, wearing, o2). [105]
:~ not has_rel(o1, wearing, o2). [2302]

ASP Theory
state(TO,ID) :- select(TO, TI, CLASS), state(TI,
ID), has_attr(ID, class, CLASS).

state(TO,ID) :- filter_any(TO, TI, VALUE), state(TI,
ID), has_attr(ID, ATTR, VALUE).

A
SP Solver

Answer

to the left

Question

Is the umpire to the right or to the left of the standing person that is wearing a helmet?
select: helmet -> relate: person,wearing,s -> filter pose: standing -> choose rel: umpire,to the left of|to the right of,s

Figure 3.1: An overview over the full GS-VQA pipeline

3.2 Concept Extraction

In keeping with the paradigm of neural-symbolic VQA, the GS-VQA pipeline encodes both
the input question and the input image symbolically. Encoding the relevant information
contained in the input scene requires extracting it from that scene in the first place
though. The obvious solution to this problem is SGG, variations of which have already
been used by multiple neural-symbolic models (see Section 2.5.1 for further details).

However, in contrast to the works discussed in Section 2.5.1, the zero-shot nature of the
GS-VQA pipeline introduces a problem for constructing a complete scene graph of visually
complex (or, less euphemistically, cluttered) scenes: due to their general-purpose nature,
inference with the VLMs that GS-VQA uses for SGG is far more resource-intensive than
with the purpose-built trained models used by, e.g., Yi et al.’s NS-VQA [YWG+18] or
Amizadeh et al.’s pipeline [APP+20]. As such, constructing a full scene graph in which
likelihoods for all possible classes, attributes, and relations in the dataset are present for
every detected object in the scene is untenable if we want to maintain an inference time
that a human user might find acceptable.
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3.3. Scene Processing

To resolve this issue, the GS-VQA pipeline resorts to question-driven partial scene graph
extraction, extracting only the information from the scene that is relevant for answering
the question at hand. Determining which object classes, attributes, and relations are
relevant from the semantic representation of the input question is precisely the role of the
Concept Extraction component. Conceptually, the component outputs a tuple (C, A, R),
where C is a set of classes, A a set of attribute categories, and R a set of relations (the
actual format is a bit more intricate to cover certain edge cases and will be described in
Section 4.2). For the example question from Figure 3.1, the tuple is ({helmet, umpire,
person}, {pose}, {wearing, to the left of, to the right of}).

3.3 Scene Processing
Using the (C, A, R) output tuple from the Concept Extraction component, the Scene
Processing component (shown in Figure 3.2) has the task of extracting a question-driven
partial scene graph. We deviate here a bit from the formal scene graph representation intro-
duced in Section 2.5, and represent the graph as a list O of objects oi = (id, s, B, c, Ao, Ro),
each having a unique identifier id, a score s between 0 and 1 denoting the Scene Process-
ing’s confidence in the object detection, a bounding box B, and a class c that is either in
C or a sub-class of maximal specificity of a class in C. This last property ensures that
each object cannot, for example, be detected as just a “person”, but must be detected
as a maximally specific class like “baseball player”. It also means that the scene graph
contains only objects of classes that are deemed relevant to answering the question (hence
the description as a “partial” scene graph). In addition to this information, for each
possible value of each attribute category in A, the objects include a likelihood between 0
and 1 of that attribute value applying to the object (attribute likelihoods Ao). Finally,
for each relation r ∈ R and each other detected object oj , oi includes a likelihood between
0 and 1 that r applies with oi as the subject and oj as the object (relation likelihoods
Ro).

Illustrating this with the example from Figure 3.1, the Scene Processing might produce
a list O = [o1, o2, ..., on] with one object o1 being the striking player. Its example scene
graph entry is shown in Listing 3.1.

The Scene Processing component consists of two sub-components that both make use of
VLMs and run one after the other to build the output described above. First, the Object
Detection sub-component uses OWL-ViT [MGS+22] to detect the objects in O with their
scores s, bounding boxes B, and classes c, and assigns each of them a unique id. The
Concept Classification sub-component then takes this list of detected objects and uses
CLIP [RKH+21] to supplement the attribute and relation likelihoods Ao, Ro.
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3. Design: The GS-VQA Pipeline

1 (
2 "o1",
3 0.1392,
4 {"x": 150, "y": 80, "w": 110, "h": 210},
5 "baseball player",
6 {"pose": {"standing": 0.92, "sitting": 0.003, ...}},
7 {
8 "o2": {
9 "wearing": 0.900,

10 "to the left of": 0.523,
11 "to the right of": 0.542
12 },
13 ...
14 }
15 )

Listing 3.1: An example scene graph entry for the striking baseball player from Figure 3.1

Scene Processing

Object Detection

helm
et

um
pire

person

Concept Classification

Attributes
Relations

standing: 0.92 standing: 0.85

standing: 0.05

standing: 0.1

to the left of: 0.95
wearing: 0.90

wearing: 0.02

Is the umpire to the right or to the left of the standing person that is wearing a helmet?

Figure 3.2: An overview over the Scene Processing component
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3.4 ASP Encoding
As already mentioned in Section 3.2, the GS-VQA pipeline constructs symbolic encodings
of both the input question and the input image, which will respectively be called Question
Encoding and Scene Encoding hereafter. Like the VQA pipeline by Eiter et al. [EHO+22],
GS-VQA uses ASP as the symbolic formalism for the encodings, which not only provides
a mature ecosystem of tooling and solvers (in contrast to custom logic formalisms like
∇-FOL [APP+20]), but more importantly, allows us to capture the uncertainty in the
class, attribute, and relation predictions of the Scene Processing component.

So while the Question Encoding is a rather straightforward translation of the input
question’s semantic representation into a sequence of ASP facts, the Scene Encoding
makes use of choice rules and weak constraints to allow the ASP Solver to take the Scene
Processing’s confidence in detected objects and the likelihoods of attributes and relations
into account. With choice rules, the ASP Solver can include or omit object attributes
and relations from an answer set. For either of these options, a weak constraint then
adds a weight inversely proportional to the likelihood of that attribute/relation applying
or not applying to the object, respectively. This way, it is possible to consider negative
cases, i.e., an object not having a certain attribute/relation.

3.5 ASP Solving
Equipped with an ASP Theory containing the rules that describe the semantics of the
reasoning operations in the Question Encoding, the ASP Solving component takes the
Question and Scene Encodings as inputs to determine the answer in the most likely
model. Since weak constraints in the Scene Encoding turn the ASP evaluation into
an optimization problem, a time limit is imposed, after which the current best answer
is returned. The answers returned are succinct ASP atoms, in contrast to some VQA
approaches that can generate full-sentence answers (see, for example, LRTA [LNR+20]).
In the case that no answer can be derived (which can only happen if no object is found
by the Object Detection for one of the classes required by the input question), UNSAT is
returned.
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CHAPTER 4
Implementation

In this chapter, we describe the full implementation details of the components of the
GS-VQA pipeline that were introduced conceptually in the previous chapter. Since the
general flow of information has already been laid out in Chapter 3, and it is difficult to
cover the edge-cases of all components in one continuous example, each section in this
chapter will use one or multiple disjoint examples to illustrate its explanations.

4.1 Preprocessing
Like other works in the literature [APP+20], we ignore a particular set of questions in
GQA that are not answerable with the information contained in the ground-truth scene
graph of the corresponding image. These questions refer to the image as a whole, rather
than objects within it, and all start with a select: scene operation. Examples for
this set of questions are: “Which place is it?”, “Is it an outdoors scene?”, and “What is
the image showing?”.

Furthermore, we singularize plural object classes since the semantic representation of
GQA uses singular/plural inconsistently: for example, the question “Is there a pepper
or a potato that is not red?” has the operation select: potatoes in its semantic
representation.

4.2 Concept Extraction
As noted in the architectural overview in Section 3.2, the Concept Extraction component’s
job is to produce a tuple (C, A, R) with the classes, attributes and relations relevant to
answering the question. Table 4.1 contains all operations that can occur in the GQA
semantic question representation and the classes, attributes, or relations extracted from
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them. However, we have to explain some particularities that complicate the simplified
picture presented in Section 3.2.

First, we have to fix some notation: Let C be the set of all classes in the current dataset
(GQA in our case). Accordingly, let A be the set of all attribute categories, V be the set
of all attribute values, and R be the set of all relations in the dataset. Furthermore, let
cv : A → 2V be the mapping of attribute categories to the attribute values included in
that category.

Regarding classes, certain questions reference objects whose class is not restricted by any
operation of the question. For example, for the question “What is the man holding?”, the
object in question is only restricted by its holding relation to an object of class man,
but could be of any class. In GQA’s semantic question representation, these cases all
contain a relate operation without class restriction (e.g., relate: _,holding,o).
To signify to the Object Detection component that objects of all possible classes in the
scene could be of relevance, a special all class is introduced and added to C in these
cases. As such, strictly speaking C ⊆ C ∪ {all}, though we will include all in C for
simplicity in the remainder of this thesis. Note that GQA does not have questions like
“What is blue?” that do not contain a relation operation but still require all objects in the
scene, though it would be easy to add support for them with a select: _ operation
for which the special all class is added to C as well.

For the attributes, the distinction between attribute categories and attribute values
introduced in Section 2.2 comes into play. Usually, operations in GQA’s semantic
question representation that work with attributes contain both a category and the
relevant value(s) of that category (if any). However, GQA contains some attribute values
that are not associated with any category (Table 4.1 contains some examples: burnt,
healthy, dried). For these, operation variants without a category exist (e.g., filter:
burnt instead of filter color: red). To handle these standalone values, the set
A is actually split into two sets Ac, Av, where attribute categories extracted from the
semantic question representation are added to Ac, while relevant standalone values are
added to Av. The information passed to the Scene Processing component is therefore
actually (C, Ac, Av, R), with Ac ⊆ A, Av ⊆ V, and R ⊆ R. To declutter the notation in
the succeeding sections, we consider standalone values to be part of the any attribute
category, which is considered included in A.

Similar to the situation for classes, there is one operation that requires all attribute
categories to be considered. The common operation, which appears in questions like
“What do the plate and the silver watch have in common?”, has as its answer the attribute
category for which its two input objects have the same value. If one such operation
occurs in the input question, we set Ac = A.

We note that the extraction is not yet as efficient as it could be: for certain operations
like filter color: red, we know that only a specific value (red) of the attribute
category (color) is relevant to the question, but add the entire category to Ac regardless.
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Category Operation Extracted Concepts
Select select: person person (C)

Filter

filter color: red color (Ac)
filter color: not(red) color (Ac)
filter: burnt burnt (Av)
filter: not(burnt) burnt (Av)

Relate
relate: person,holding,s person (C), holding (R)
relate: _,holding,o all (C), holding (R)
relate: person,same_pose,_ person (C), pose (Ac)

Query
query: color color (Ac)
query: name –

Verify
verify color: red color (Ac)
verify: burnt burnt (Av)
verify rel: shorts,wearing,o shorts (C), wearing (R)

Choose

choose color: red|blue color (Ac)
choose: dried|wet dried (Av), wet (Av)
choose rel: bat,holding|wearing,o bat (C), holding (R), wearing (R)
choose less healthy
(analogous for more)

healthy (Av)

choose healthier healthy (Av)
Exist exist –

Different/
Same

same color
(analogous for different)

color (Ac)

same: color
(analogous for different)

color (Ac)

Common common A (Ac)
And and –
Or or –

Table 4.1: The extracted concepts from each operation in GQA’s semantic question
representation. Classes are denoted with (C), attribute categories with (Ac), standalone
values with (Av), and relations with (R)

4.3 Scene Processing
Having identified the concepts relevant to answering a question as a (C, Ac, Av, R)
tuple in the Concept Extraction component, we now have to actually construct the
partial scene graph that contains this information from the input image. Refining the
informal notions of Section 3.3, this partial scene graph is represented as a list O of
objects oi = (id, s, B, c, Ao, Ro), each having a unique identifier id ∈ I for some set
of alphanumeric identifiers I, a detection confidence score s ∈ [0, 1], a bounding box
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B = (x, y, w, h) : R4
≥0, a class c ∈ C, attribute likelihoods Ao : A → (V → [0, 1]),

and relation likelihoods Ro : I → (R → [0, 1]). As already alluded to in Section 3.3,
constructing the graph is done in two stages.

First, the Object Detection sub-component detects objects and their bounding boxes in
the scene that conform to one of the classes in C. Second, the Concept Classification
sub-component takes these objects as input and supplements the likelihoods for attributes
and relations applying to them.

4.3.1 Object Detection
For object detection, we use OWL-ViT [MGS+22], which is capable of operating in an
open-vocabulary manner, i.e., the classes for which it should detect objects can vary
from invocation to invocation without any modifications to the model. Given a list of
class labels to detect, OWL-ViT returns a list of object detections, each with the class
label c ∈ C it was detected as, a detection confidence score s ∈ [0, 1], and a bounding
box B = (x, y, w, h) : R4

≥0, where (x, y) are the coordinates of the top-left corner of the
bounding box (with the top-left corner of the image having coordinates (0, 0)), and w
and h are the width and height of the bounding box.

We process the classes in C in a multi-staged manner, in the order of class specificity
according to a given hierarchy, here GQA’s as depicted in Figure 2.4a. As an example to
illustrate the explanations below, we assume that we have extracted the following set C
of relevant classes from an input question: C = {vehicle,van,driver,all}.

1. As a first step, OWL-ViT is used to detect objects with classes of maximal specificity
(i.e., classes without sub-classes in the hierarchy), in this case van and driver.
We directly use the class names as labels for OWL-ViT, and do not transform them
to, e.g., “a photo of a {class}”. As a clean-up step, objects whose bounding boxes
overlap by more than a threshold tbbox1 and have the same class c are combined,
i.e., they are returned as one with the smallest bounding box enclosing both original
boxes and the higher of the two object’s detection confidence scores. The number
of objects returned is limited in two ways: First, only objects for which OWL-ViT’s
detection confidence score exceeds a certain threshold ts are returned. Second, if
more than k1 objects are detected for a class with a confidence score exceeding ts,
only the top k1 objects (sorted by confidence score) are returned. The result is a
list of object proposals O1 = [(s1, B1, c1), (s2, B2, c2), ...].

2. In the second step, for each class higher up in the class hierarchy, objects of all sub-
classes of maximal specificity of that class are detected. Like in step 1, the threshold
ts applies, and the maximum number of objects returned for one higher-order class
is limited by a separate threshold k2. While OWL-ViT would also directly accept
the higher-order class for detection, we require for each detected object a class of
maximal specificity in case that it becomes the target of a query: name operation
(for example, GQA expects questions like “What thing is the man holding?” to be
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answered with “burger” and not simply “food”). Another benefit to detecting the
sub-classes of maximal specificity is that some higher-order classes are rather vague
and therefore difficult for OWL-ViT to detect (for example, OWL-ViT struggles
with detecting objects of class “watercraft”, but is rather adept at detecting a
“boat”). Note that this approach requires the class hierarchy for the current dataset,
which we deem an acceptable compromise, since regular SGG or open-vocabulary
object detection for all classes in the dataset would require at least the complete
list of possible classes in any case.
For our example, OWL-ViT would be run with all sub-classes of maximal specificity
of the higher-order class vehicle: minivan, jeep, locomotive, bus, van,
etc. The list of returned object proposals O∗

2 is merged with the list of objects
O1 detected in the first step to yield the step output list O2 in the following way:
if the bounding boxes of an object in O1 and O∗

2 overlap by more than a certain
percentage threshold tbbox2, and the classes of the two objects have a common
ancestor/higher-order class, the object from O1 is included in O2, and the object
from O∗

2 is discarded. This ensures that objects are not considered multiple times,
and that objects that might feasibly belong to multiple classes of maximal specificity
(e.g., van and minivan) are considered under a class of maximal specificity implied
by the question.

3. The third and final step runs only if the special all class is included in C. In this
case, OWL-ViT is run once more, this time with all classes of maximum specificity
in the hierarchy. Again the threshold ts applies, and the length of the list O∗

3 of
object proposals returned by this run is limited by a threshold k3. The list of new
objects O∗

3 is merged with the existing list O2 in exactly the same manner as was
done in step 2, yielding the final list of object proposals O3.

Finally, each object proposal in O3 is assigned a unique identifier id ∈ I to yield the list
of partial scene graph objects O = [(id1, s1, B1, c1), (id2, s2, B2, c2), ...].

4.3.2 Concept Classification
Taking the list of partial scene graph objects O from the Object Detection sub-component,
the Concept Classification sub-component uses CLIP [RKH+21] to supplement for each
object the attribute and relation likelihoods Ao, Ro according to the question-relevant
attribute categories Ac, attribute values Av, and relations R from the Concept Extraction
component.

Attribute Likelihoods

To determine the attribute likelihoods Ao,i for each object oi = (idi, si, Bi, ci) ∈ O, a
crop of the image area under its bounding box Bi is created. Since especially small
objects often need context to be identified even by humans (e.g., an image crop of the
bounding box of a wooden table leg would just show an indeterminate brown block),
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we add padding to all four sides of the bounding box before creating the image crop.
The padding pw added to the left and right sides of the bounding boxes is determined
from the box width wbbox and the image width wimage as follows, with the top/bottom
padding determined analogously:

pw =
�
1 − tanh


2 wbbox

wimage

��
∗ wbbox (4.1)

This formulation ensures that the bounding boxes of small objects (relative to the image
size) are padded by a large amount relative to their size (up to wbbox/hbbox on each
side in the limit) to provide the required context around the objects, but the amount of
padding decreases quickly as object size increases. To build the attribute likelihoods Ao,i,
we need for each attribute value in Av and each attribute value of each attribute category
in Ac (so each attribute value a ∈ Av ∪ {a′ | ac ∈ Ac, a′ ∈ cv(ac)}) a number in [0, 1] that
represents the likelihood of that attribute value applying to object oi. As introduced in
Section 2.4.1, we can calculate the cosine similarity between CLIP’s embedding of the
padded object crop and the embedding of a textual prompt to get an indication of the
semantic similarity between these two: prompts “fitting” the image crop will have higher
cosine similarities than prompts that don’t. However, this concept of semantic similarity
requires a point of reference: what constitutes a “high” cosine similarity with a prompt
embedding varies from image to image.

Taking inspiration from a paper by Sarri and Rodriguez-Fernandez [SR21], we use a
modified version of their “target vs. neutral” approach to introduce this frame of reference:
We introduce a neutral prompt, i.e., one that we are sure applies to the current object oi.
The neutral prompt follows the schema “a blurry photo of {a/an} {ci}” (for example, if
ci = van, the neutral prompt would be “a blurry photo of a van”). We then build for
each attribute value a a modified version more specific to that value, the target prompt,
which follows the schema “a blurry photo of {a/an} {a} {ci}”. For example, for a = red,
the target prompt would be “a blurry photo of a red van”.

If the additional information added to the target prompt actually applies to the object,
CLIP should return a higher cosine similarity between its embedding and the object
crop than between the neutral prompt embedding and the object crop. Conversely, if
the additional information does not apply to the object, the cosine similarity should
be lower than for the neutral prompt. We can therefore frame the computation of the
likelihood of attribute value a applying to object oi as a binary classification problem
between “applies” and “does not apply”, represented by the target and neutral prompts,
respectively. To obtain values in [0, 1], we simply compute the softmax over the cosine
similarity values between the two prompts and the object crop. More formally, let fCLIP(x)
be the embedding vector of an image or a text prompt x as returned by CLIP’s image
or text encoder (which are already normalized). Furthermore, let pt, pn be the target
and neutral prompts, and I the object crop. We compute the likelihood of attribute a
applying as softmax (fCLIP(I) · fCLIP(pt), fCLIP(I) · fCLIP(pn))0.
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Relation Likelihoods

For the relation likelihoods Ro,i of each object oi, we use the same “target vs. neutral”
approach as for attributes. Between oi and every other object oj = (idj , sj , Bj , cj) ∈
O \ {oi}, we determine the smallest bounding box enclosing the two objects’ original
boxes, and use the crop of the image area under that bounding box. For each relation
r ∈ R, the neutral prompt follows the schema “{ci} and {cj}”, while the target prompt
adheres to the schema “{ci} {r} {cj}”. For example, if ci = woman, cj = van, and
r = driving, then the neutral prompt would be “woman and van”, and the target
prompt would be “woman driving van”.

Alternative Approaches

Another approach discussed by Sarri and Rodriguez-Fernandez [SR21] is “target vs.
contrary”. Rather than using a neutral prompt that applies to the current object with
certainty, a prompt containing the opposite of the current concept, i.e., its antonym, is
used. For example, for the target prompt “a blurry photo of a wet dog”, the contrary
prompt would be “a blurry photo of a dry dog”. In theory, this approach emphasises the
difference between the two prompts more than “target vs. neutral”, which should lead to
a greater deviation in cosine similarities. However, it is difficult to apply to our use-case,
since the opposite of a concept is not always clear. For many attribute categories like
material, pose, etc., there is no conceptual opposite (e.g., what would the opposite of
brick as in “a brick house” be?), or the opposite is unclear (e.g., what is the opposite
of standing: sitting or walking?). For relations, the opposite would have to be
formed by prepending “not”, as in “woman driving van” vs. “woman not driving van”.
In many cases, this makes little sense as a legitimate image caption and relies on the
assumption that CLIP has a good understanding of negation.

In their ViperGPT model, Surís et al. [SMV23] use an approach for attribute classification
that we will call “target vs. ensemble”. Instead of computing the likelihood of an attribute
value applying to an object with a single binary classification, this approach uses multiple
binary classifications, each between a target prompt and a contrastive prompt randomly
sampled from a set of alternative attribute values. The final score reported for the
target attribute value is the mean of these classification results. For example, with the
target attribute value red, the target prompt might be “a red van”, and the contrastive
prompts might be “a blue van”, “a burning van”, “a large van”, and so on. Since most
of the attribute values used as contrastive samples likely do not apply to the current
object, and should therefore be further away from the object crop than a neutral “a van”
prompt in CLIP’s embedding space, this approach again has the benefit of emphasising
the difference between each pair of prompts. It also does not require an opposite to every
target attribute, but the obvious disadvantage is computational cost, since the number
of prompts that need to be processed is considerably higher.
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Prompt Engineering

To experiment with multiple prompt schemas and find the optimal one for the “target vs.
neutral” prompting approach, we build evaluation datasets in the following way:

1. We randomly sample 50,000 questions from GQA’s validation set. We then extract
from these questions, by the same principles as followed in the Concept Extraction
component, the question-relevant attribute values and relations.

2. We sample an image crop for each attribute value and relation as follows:

• For each attribute value, we randomly choose one object to which this value
applies from the ground-truth scene graph of the image associated with the
question. For this object, we create a padded image crop from the image area
under its bounding box as is done in the Concept Classification sub-component.

• For relations, we similarly sample two objects from the ground-truth scene
graph that are connected by that relation and obtain an image crop of the
combined bounding box.

These pairs of (attribute value, image crop) and (relation, image crop) form our
datasets of positive samples, where we know that the attribute value/relation
applies to the object(s) depicted in the image crop.

3. We shuffle the two positive datasets: For each (attribute value, image crop) pair
we randomly select an image crop from a different pair where the underlying object
does not have the attribute value in the associated ground truth scene graph; the
positive (relation, image crop) pairs are treated accordingly. Through this, we
obtain for each of the two positive datasets a negative one of equal size, where the
attribute value/relation of each sample does not apply to the object(s) depicted in
the image crop.

4. Finally, we combine the positive and negative datasets, yielding a total of 27,470
samples for attribute classification, and 47,634 samples for relation classification.

We test multiple schemas for target (representing the positive class, i.e., the attribute
value/relation applying to the object depicted in the image crop) and neutral (representing
the negative class) prompts for classification with CLIP [RKH+21] as described in
Section 2.4.1 and choose the one obtaining the highest accuracy for the remainder of our
evaluations. For attributes, the best-performing target prompt schema is “a blurry photo
of {a/an} {a} {ci}”, while for relations, the best schema is “{ci} {r} {cj}”. The results
for all explored schemas for attribute and relation classification are shown in the Tables
4.2 and 4.3, respectively. As can be seen from the tables, the impact of prompt choice
for our use case is small, especially for attribute classification: from the lowest- to the
highest-performing prompt schema, the difference in accuracy is 1.25 percentage points for
attributes, and 2.52 percentage points for relations. Curiously, for some prompt schemas
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we observe a higher-than-average precision value coupled with a lower-than-average recall
value, and vice-versa. This would indicate that for these prompt schemas, the threshold
for classifying an attribute/relation as “applies” needs to be adjusted away from 0.5 to
achieve optimal accuracy.

Schema Accuracy Precision Recall
“a bad photo of {a/an} {a} {ci}” 0.6583 0.6728 0.6165
“a blurry photo of {a/an} {a} {ci}” 0.6590 0.6620 0.6495
“a pixelated photo of {a/an} {a} {ci}” 0.6512 0.6492 0.6577
“a low resolution photo of {a/an} {a} {ci}” 0.6555 0.6572 0.6499
“a photo of {a/an} {a} {ci}” 0.6522 0.6621 0.6215
“{a/an} {a} {ci}” 0.6533 0.6650 0.6178
“{a} {ci}” 0.6465 0.6776 0.5591
“itap of {a/an} {a} {ci}” 0.6529 0.6741 0.5918
“a bad picture of {a/an} {a} {ci}” 0.6561 0.6673 0.6227
“a blurry picture of {a/an} {a} {ci}” 0.6549 0.6564 0.6501
“a pixelated picture of {a/an} {a} {ci}” 0.6551 0.6518 0.6660
“a low resolution picture of {a/an} {a} {ci}” 0.6571 0.6593 0.6502
“a picture of {a/an} {a} {ci}” 0.6560 0.6568 0.6534

Table 4.2: Results of the evaluation of various attribute prompt schemas, with a being
the current attribute value and ci the class of the current object oi

As a point of reference, using the same method we extract from our 50,000 sampled
questions a dataset of 97,246 (class, image crop) entries, again split 50/50 into posi-
tive/negative samples. Using the target prompt schema “a photo of {a/an} {ci}” and
the neutral prompt schema “a photo of an object”, CLIP achieves an accuracy of 0.8287,
i.e., it is able to correctly identify class membership or non-membership for 82.87% of
samples. These experiments highlight an important finding that has already been made
elsewhere in the literature [ZZL22; ZZZ+23]: current state-of-the-art VLMs have a strong
understanding of object classes, but less so of attributes, and even less of relations between
objects. In Chapter 5, we explore multiple approaches for alleviating this performance
gap.

Performance Considerations

The fact that image and text embeddings in CLIP can be computed in isolation allows for
some optimization to improve the runtime of the Scene Processing component. During
both attribute and relation likelihood computation, we compute the embeddings of the
image crops and the neutral prompts for each object or pair of objects only once, and then
re-use them with the embeddings of different target prompts for binary classification.
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Schema Accuracy Precision Recall
“a bad photo of {a/an} {ci} {r} {a/an} {cj}” 0.5469 0.5384 0.6569
“a blurry photo of {a/an} {ci} {r} {a/an} {cj}” 0.5380 0.5290 0.6939
“a pixelated photo of {a/an} {ci} {r} {a/an} {cj}” 0.5533 0.5495 0.5922
“a low resolution photo of {a/an} {ci} {r} {a/an} {cj}” 0.5482 0.5476 0.5542
“a photo of {a/an} {ci} {r} {a/an} {cj}” 0.5544 0.5430 0.6880
“{a/an} {ci} {r} {a/an} {cj}” 0.5493 0.5367 0.7213
“{ci} {r} {cj}” 0.5632 0.5530 0.6590
“itap of {a/an} {ci} {r} {a/an} {cj}” 0.5415 0.5403 0.5562
“a bad picture of {a/an} {ci} {r} {a/an} {cj}” 0.5431 0.5359 0.6429
“a blurry picture of {a/an} {ci} {r} {a/an} {cj}” 0.5395 0.5316 0.6656
“a pixelated picture of {a/an} {ci} {r} {a/an} {cj}” 0.5524 0.5493 0.5834
“a low resolution picture of {a/an} {ci} {r} {a/an} {cj}” 0.5499 0.5495 0.5541
“a picture of {a/an} {ci} {r} {a/an} {cj}” 0.5583 0.5469 0.6799

Table 4.3: Results of the evaluation of various relation prompt schemas, with r being the
current relation and ci, cj the classes of the current objects oi, oj

For the computation of relation likelihoods, we apply one further optimization: since the
number of object pairs (oi, oj) is quadratic in the number of objects in O, the number
of combined object bounding boxes whose corresponding image crops we would have
to embed is also quadratic in |O|. However, many object pairs have highly overlapping
combined bounding boxes (as an example, consider the input image from Figure 3.2: the
combined bounding box of the umpire and the striking player, and the combined box of
the umpire and the player’s helmet, will be nearly identical). We therefore merge object
pair bounding boxes that overlap by more than a certain percentage threshold tbbox3 and
re-use them for all affected object pairs.

4.4 ASP Encoding
4.4.1 Question Encoding
The Question Encoding is strongly inspired by the one that Eiter et al.’s pipeline [EHO+22]
uses as a translation of the semantic representations of natural-language questions from
the CLEVR [JHvdM+17a] dataset. Each operation in the semantic representation of the
question is—in general—translated into one ASP fact, although additional facts might
be inserted to enforce certain properties that are implicit in the semantic representation
of GQA (e.g. uniqueness, inverted criteria).
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Figure 4.1: The Question Encoding for the question “Do the umpire and the person
holding the green baseball bat have the same pose?”

We illustrate the encoding with the example question “Do the umpire and the person
holding the green baseball bat have the same pose?”, whose semantic representation is
shown in Figure 2.3. The corresponding ASP Question Encoding is presented in Figure
4.1.

From the example it can be seen that the structure of the tree of reasoning operations in
the semantic representation is encoded using step indices. Each predicate encoding an
operation takes as first argument the index of its output step, then one or more indices
of its input step(s), followed by the remaining arguments specific to the operation. If an
operation has no predecessor in the semantic representation, a scene() fact is inserted,
and an end() fact is always added for the last step index. The mapping of all operations
from the GQA semantic representation to their corresponding Question Encoding facts
is shown in Table 4.4.

4.4.2 Scene Encoding
As explained in detail in Section 4.3, the Scene Processing component outputs a partial
scene graph represented as a list O of objects oi = (idi, si, Bi, ci, Ao,i, Ro,i), each having
a unique identifier idi ∈ I, a score si ∈ [0, 1], a bounding box Bi = (x, y, w, h) : R4

≥0,
a class ci ∈ C, attribute likelihoods Ao,i : A → (V → [0, 1]), and relation likelihoods
Ro,i : I → (R → [0, 1]). The information for each object oi is converted into a set of ASP
facts and constraints as described in the following paragraphs. As an example, we use the
scene graph entry of a striking baseball player presented in Listing 3.1 from Section 3.3.

Objects: To start off, we add an object(idi) fact to the encoding to establish the
existence of the object in the scene. To be able to select the object that the Object
Detection component has the most confidence in when filtering a set of qualifying

41



4. Implementation

objects with the unique() operation, we add a fact has_obj_weight(idi, wo), where
wo = ⌊min(−1000 · ln(si), 5000)⌋. The formulation of wo is taken from NeurASP [YIL20]
and ensures that the “higher-is-better” score si is correctly adapted to a “lower-is-better”
weight for the unique() operation (see Equation 4.51). So, for our example object, the
added facts would be:

object(o1). (4.2)
has_obj_weight(o1, 1971). (4.3)

Classes: For the object’s class ci and all of its parent classes (if any), we add a fact
has_attr(idi, class, ci). This allows the object to be considered not just for operations
filtering on its specific class, but also the parent classes it belongs to. Additionally, we add
a fact has_attr(idi, name, ci). Questions in GQA that inquire the type of a certain object
(e.g., “Who is wearing a shirt?”) always have query: name as the terminal operation,
and the expected answer is the object’s most specific class. Having has_attr(idi, name, ci)
in the encoding allows us to easily identify the most specific class of the object for these
cases. For our example object, the added facts are thus:

has_attr(o1, class, alive). (4.4)
has_attr(o1, class, person). (4.5)
has_attr(o1, class, baseball_player). (4.6)
has_attr(o1, name, baseball_player). (4.7)

Attributes: For each attribute value v in category a in Ao,i, we add the choice rule
{has_attr(idi, a, v)}., which ensures that the ASP solver can consider both the case where
the attribute value applies to the object, and the case where it doesn’t. To include the
likelihoods of those two cases into the consideration, we add the weak constraints :∼
has_attr(idi, a, v). [wv+ , (idi, a, v)] and :∼ not has_attr(idi, a, v). [wv− , (idi, a, v)], where
wv+ = ⌊min(−1000 · ln(sv), 5000)⌋ and wv− = ⌊min(−1000 · ln(1 − sv), 5000)⌋, sv being
the likelihood of v applying to the object according to Ao,i. For the example object and
the standing attribute value of the pose category, we therefore add the following rules
and constraints to the encoding:

{has_attr(o1, pose, standing)}. (4.8)
:∼ has_attr(o1, pose, standing). [83, (o1, pose, standing)] (4.9)
:∼ not has_attr(o1, pose, standing). [2525, (o1, pose, standing)] (4.10)

Additionally, we add facts for the two attribute categories that are explicitly excluded
from Scene Processing, hposition and vposition, whose value for each object is
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directly derived from the bounding box Bi. We divide the input image horizontally and
vertically into thirds. For hposition, the object gets the value left, middle, or
right if the center of its bounding box falls within the left, middle, or right horizontal
third of the input image. Analogously for vposition, the object gets the value top,
middle, or bottom if the center of its bounding box falls within the upper, middle, or
lower vertical third of the input image. For our example object, given its bounding box
center of (205, 185) and the 500 × 334 dimensions of its corresponding input image, this
yields the following facts:

has_attr(o1, hposition, middle). (4.11)
has_attr(o1, vposition, middle). (4.12)

Relations: For each other object oj = (idj , sj , Bj , cj , Ao,j , Ro,j) ∈ O \ {oi} and re-
lation r in Ro,i, we proceed like we do for attribute values. We add the choice rule
{has_rel(idi, r, idj)}., and the weak constraints :∼ has_rel(idi, r, idj). [wr+ , (idi, r, idj)]
and :∼ not has_rel(idi, r, idj). [wr− , (idi, r, idj)]. Here, wr+ = ⌊min(−1000 · ln(sr), 5000)⌋
and wr− = ⌊min(−1000 · ln(1 − sr), 5000)⌋, sr being the likelihood of r applying with oi

as subject and oj as object according to Ro,i. For the example object as subject, o2 as
object, and the wearing relation, we therefore extend our encoding as follows:

{has_rel(o1, wearing, o2)}. (4.13)
:∼ has_rel(o1, wearing, o2). [105, (o1, wearing, o2)] (4.14)
:∼ not has_rel(o1, wearing, o2). [2302, (o1, wearing, o2)] (4.15)

4.4.3 ASP Theory
The ASP Theory consists of a set of rules that—in contrast to the Question and Scene
Encoding—do not change from question to question and encode the semantics of each of
the reasoning operations that can appear as part of the Question Encoding. To keep the
rules compact, we introduce a couple of variable short-hands: Ti and To are variables
representing input/output step references, I represents an object id, C a class, A an
attribute category, V an attribute value, and R a relation.

Base Operations

Scene: The scene() operation simply returns all objects in the scene as encoded by the
Scene Encoding. Its single ASP rule is defined as follows:

state(To, I) :− scene(To), object(I). (4.16)
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End: The end() operation converts the different possible answer types coming from its
input step into a common ans() predicate. Its rules are simple in structure:

ans(V ) :− end(To), attr_value(To, V ). (4.17)
ans(A) :− end(To), attr(To, A). (4.18)
ans(R) :− end(To), rel(To, R). (4.19)
ans(B) :− end(To), bool(To, B). (4.20)

(4.21)

We add an integrity constraint that forbids solutions in which no ans() predicate can be
derived:

:− not ans(_). (4.22)

Intermediary Operations

Select: The select() operation restricts its input set of objects to those that are members
of a certain class. Its ASP rule is as follows:

state(To, I) :− select(To, Ti, C), state(Ti, I), has_attr(I, class, C). (4.23)

Filter: Similarly to the select() operation, the filter() operation restricts its input
objects to those that have a specific value for a certain attribute category. For cases
in which it is not known which category the filtered value belongs to, the analogous
filter_any() operation is used. We present only the rule for the former, since the latter
is identical except for the restriction to an attribute category:

state(To, I) :− filter(To, Ti, A, V ), state(Ti, I), has_attr(I, A, V ). (4.24)

Relate: Relate operations return objects connected to some input object through
either a relation or a common attribute value. The relate() operation covers the case
of connection through a relation, and additionally requires that the connected objects
belong to a certain class. We only present the rule variant in which the input object
is the object of the relation, and the connected object is the subject; the variant with
swapped subject/object positions is analogous:

state(To, I2) :− relate(To, Ti, C, R, subject), state(Ti, I1),
has_attr(I2, class, C), has_rel(I2, R, I1).

(4.25)
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The relate_any() operation does not restrict the class of the connected objects, and its
rules are the same as those for relate() except for the omission of the has_attr(I2, class, C)
restriction.

The case of connection through a common attribute value is covered by the relate_attr()
operation, whose sole rule is presented below:

state(To, I2) :− relate_attr(To, Ti, C, A), state(Ti, I1),
has_attr(I1, A, V ), has_attr(I2, class, C),
has_attr(I2, A, V ), I1 ̸= I2.

(4.26)

Compare: The compare() operation takes two steps, an attribute value, and a mode
as input. It checks if one of the input objects from the two input steps (respectively
assumed unique) has the attribute value, and the other one does not. If so, it returns
the object having the attribute value if the mode is true, and the object not having the
attribute value if the mode is false. We present the rules for the mode true below,
the rules for the mode false are analogous:

state(To, I1) :− compare(To, Ti1, Ti2, V, true), state(Ti1, I1), state(Ti2, I2),
has_attr(I1, _, V ), not has_attr(I2, _, V ).

(4.27)

state(To, I2) :− compare(To, Ti1, Ti2, V, true), state(Ti1, I1), state(Ti2, I2),
not has_attr(I1, _, V ), has_attr(I2, _, V ).

(4.28)

Terminal Operations

Query: The query() operation returns the value of a specific attribute category for
its input object (it implicitly assumes only one input object is present). Its rule is
accompanied by a cardinality rule (shown in simplified form in Equation 4.30) that
ensures that the optimization must assign exactly one value for the attribute category
to the object. As with other operation-specific cardinality rules that follow, we do
not enforce this constraint in general, since it may be beneficial to consider multiple
similar attribute values (e.g., brown, beige) to apply to an object, for example for filter
operations. The added rules are shown below:

attr_value(To, V ) :− query(To, Ti, A), state(Ti, I), has_attr(I, A, V ). (4.29)

{has_attr(I, A, V ) : is_attr_value(A, V )} = 1 :− query(To, Ti, A), state(Ti, I). (4.30)

Verify: Verify operations return a boolean that indicates whether the input object
(assumed unique) is connected through a specific relation to some object with a certain
class (verify_rel()), or has a specific attribute value (verify_attr()). Of the rules for
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verify_rel(), we present only the case in which the input object is in the object position
of the relation; the case for the subject position is analogous:

bool(To, yes) :− verify_rel(To, Ti, C, R, subject), state(Ti, I1),
has_attr(I2, class, C), has_rel(I2, R, I1).

(4.31)

bool(To, yes) :− verify_attr(To, Ti, A, V ), state(Ti, I), has_attr(I, A, V ). (4.32)

For all of these rules, a dual one exists that forces the operation output to no if the
conditions for yes are not fulfilled. The one for verify_attr() is shown below:

bool(To, no) :− verify_attr(To, Ti, A, V ), not bool(To, yes). (4.33)

Choose: Choose operations are similar to Verify operations, but rather than asking
if a certain relation or attribute value is present for the input object (again assumed
unique), they ask which of two options is present. Of the rules for choose_rel(), we again
show only the case in which the input object is in the object position. Also, only the rule
for one of the two options is presented, since the other (R2 or V2) is analogous:

rel(To, R1) :− choose_rel(To, Ti, C, R1, R2, subject), state(Ti, I1),
has_attr(I2, class, C), has_rel(I2, R1, I1).

(4.34)

attr_value(To, V1) :− choose_attr(To, Ti, A, V1, V2), state(Ti, I),
has_attr(I, A, V1).

(4.35)

For both choose_rel() and choose_attr(), we again use cardinality rules to enforce that
only one of the two options can apply:

{has_rel(I2, R1, I1) : has_attr(I2, class, C); has_rel(I2, R2, I1) :
has_attr(I2, class, C)} = 1 :− choose_rel(To, Ti, C, R1, R2, subject), state(Ti, I1).

(4.36)

{has_attr(I, A, V1); has_attr(I, A, V2)} = 1 :− choose_attr(To, Ti, A, V1, V2),
state(Ti, I).

(4.37)

Exist: The Exist operation returns whether or not an input object exists:

bool(To, yes) :− exist(To, Ti), state(Ti, I). (4.38)

Like for the Verify operations, a dual rule is added that outputs no if the rule outputting
yes does not apply.
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Different/Same: The Different/Same operations come in two distinct variations: The
all_different() and all_same() operations take one step and an attribute category as
input and check if across all objects from the input step, their sets of attribute values for
the input category are pairwise disjoint (for all_different()), or identical (for all_same()):

bool(To, no) :− all_different(To, Ti, A), state(Ti, I1), state(Ti, I2),
has_attr(I1, A, V ), has_attr(I2, A, V ), I1 ̸= I2.

(4.39)

bool(To, no) :− all_same(To, Ti, A), state(Ti, I1), state(Ti, I2),
has_attr(I1, A, V ), not has_attr(I2, A, V ), I1 ̸= I2.

(4.40)

The other variant of the Different/Same operations, two_different() and two_same(),
have two input steps and check whether for the input objects from those steps (respectively
assumed unique), their sets of attribute values for an attribute category are disjoint (for
two_different()), or identical (for two_same()):

bool(To, no) :− two_different(To, Ti1, Ti2, A), state(Ti1, I1), state(Ti2, I2),
has_attr(I1, A, V ), has_attr(I2, A, V ).

(4.41)

bool(To, no) :− two_same(To, Ti1, Ti2, A), state(Ti1, I1), state(Ti2, I2),
has_attr(I1, A, V ), not has_attr(I2, A, V ).

(4.42)

bool(To, no) :− two_same(To, Ti1, Ti2, A), state(Ti1, I1), state(Ti2, I2),
not has_attr(I1, A, V ), has_attr(I2, A, V ).

(4.43)

Like for the other terminal operations returning booleans, a dual rule exists for each of
the rules above.

Common: The Common operation has two input steps and returns an attribute
category for which the input objects from those steps (respectively assumed unique) have
a common value:

attr(To, A) :− common(To, Ti1, Ti2), state(Ti1, I1), state(Ti2, I2),
has_attr(I1, A, V ), has_attr(I2, A, V ).

(4.44)

Utility Operations

Boolean: There are two Boolean operations that combine the boolean output(s) of
terminal operation steps as expected according to boolean arithmetic, and():

bool(To, yes) :− and(To, Ti1, Ti2), bool(Ti1, yes), bool(Ti2, yes). (4.45)
bool(To, no) :− and(To, Ti1, Ti2), not bool(To, yes). (4.46)
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And or():

bool(To, yes) :− or(To, Ti1, Ti2), bool(Ti1, yes). (4.47)
bool(To, yes) :− or(To, Ti1, Ti2), bool(Ti2, yes). (4.48)
bool(To, no) :− or(To, Ti1, Ti2), not bool(To, yes). (4.49)

Unique: The Unique operation forces only one of its input objects objects to be
returned, the one with the lowest weight:

{state(To, I) : state(Ti, I)} = 1 :− unique(To, Ti). (4.50)

:∼ unique(To, Ti), state(To, I), has_obj_weight(I, W ).[W, (To, I)] (4.51)

Negate: The Negate operation has two input steps and returns all those input objects
from the first step that are not present in the second one:

state(To, I) :− negate(To, Ti1, Ti2), state(Ti1, I), not state(Ti2, I). (4.52)

4.5 ASP Solving
To actually solve the problems represented by the ASP programs that the ASP Encoding
component produces, we use the clingo system of the Potsdam Answer Set Solving
Collection (Potassco) [GKK+19], which consists of the gringo grounder and the clasp
solver. We use the system in its standard configuration, i.e., with no changes to the
optimization mode & strategy, heuristics, etc. Since the use of weak constraints turns
our ASP programs into optimization problems, we enforce a timeout tASP, after which
optimization is stopped and the current best answer set is returned.
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Category Operation Resulting Fact(s)
Select select: person select(To, Ti, person).

Filter

filter color: red filter(To, Ti, color, red).
filter color: not(red) filter(To1, Ti, color, burnt).

negate(To2, Ti, To1).
filter: burnt filter_any(To, Ti, burnt).
filter: not(burnt) filter_any(To1, Ti, burnt).

negate(To2, Ti, To1).

Relate
relate: person,holding,s relate(To, Ti, person, holding, subject).
relate: _,holding,o relate_any(To, Ti, holding, object).
relate: person,same_pose,_ relate_attr(To, Ti, person, pose).

Query query: color unique(To1, Ti).
query(To2, To1, color).

Verify

verify color: red unique(To1, Ti).
verify_attr(To2, To1, color, red).

verify: burnt unique(To1, Ti).
verify_attr(To2, To1, any, burnt).

verify rel: shorts,wearing,o unique(To1, Ti).
verify_rel(To2, To1, shorts, wearing, object).

Choose

choose color: red|blue unique(To1, Ti).
choose_attr(To2, To1, color, red, blue).

choose: dried|wet unique(To1, Ti).
choose_attr(To2, To1, any, dried, wet).

choose rel: bat,near|in,o unique(To1, Ti).
choose_rel(To2, To1, bat, near, in, object).

choose less healthy
(analogous for more)

unique(To1, Ti1).
unique(To2, Ti2).
compare(To3, To1, To2, healthy, false).
query(To4, To3, name).

choose healthier unique(To1, Ti1).
unique(To2, Ti2).
compare(To3, To1, To2, healthy, true).
query(To4, To3, name).

Exist exist exist(To, Ti).

Different/
Same

same color
(analogous for different)

unique(To1, Ti1).
unique(To2, Ti2).
two_same(To3, To1, To2, color).

same: color
(analogous for different)

all_same(To, Ti, color).

Common
common unique(To1, Ti1).

unique(To2, Ti2).
common(To3, To1, To2).

And and and(To, Ti1, Ti2).
Or or or(To, Ti1, Ti2).

Table 4.4: The Question Encoding for each operation from GQA’s semantic representation
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CHAPTER 5
Extensions

One of the key benefits of the neural-symbolic approach to VQA is compositionality.
Since symbolic information rather than neural network embeddings is used as an interface
between the components of the pipeline, those components can be modified, exchanged,
and augmented without having to reconfigure or retrain all others. In this chapter, we
discuss three such modifications to the core GS-VQA pipeline as described in Chapters 3
and 4, which all aim to improve the pipeline’s handling of object attributes and relations.

5.1 Fine-tuning of CLIP
As we have seen in Section 4.3.2, state-of-the-art VLMs have a far weaker understanding
of attributes and relations than they have of object classes. With this extension, we
fine-tune the CLIP model that we use for concept classification on image crops depicting
objects, and captions containing attributes or relations applying to the depicted objects.
Instead of adding a new classification head on top of CLIP’s vision and text encoders,
we tune CLIP with the same constrastive pre-training objective that was used in its
initial training and continue using the “target vs. neutral” prompting technique that
we describe in Section 4.3.2. While training one or more classification heads on top of
CLIP’s encoders would likely result in a higher accuracy, it would essentially equate the
construction of a purpose-built concept classification model through transfer learning.
Combining purpose-built concept classification models with symbolic reasoning in a
probabilistic logic formalism has already been implemented and evaluated on GQA by
Amizadeh et al. [APP+20], so we know what answer accuracy to expect. By directly
fine-tuning CLIP with its original pre-training objective, we get an indication of the
performance improvements for VQA that could be achieved if current VLMs added
more attribute and relation captions to their training data, without any changes to the
architecture of the VLM or the GS-VQA pipeline.
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Figure 5.1: The development of training and validation loss over 3 epochs of fine-tuning
CLIP (ViT-B/32)

To obtain the data for fine-tuning, we proceed similarly as in Section 4.3.2 for prompt
engineering. We extract from all questions in GQA’s balanced training dataset, by the
same principles as followed in the Concept Extraction component, the attribute values
and relations relevant to the question. For each attribute value, we randomly choose
one object in the ground-truth scene graph of the image associated with the question
and create an image crop from the image area under its bounding box. For relations,
we similarly sample two objects from the ground-truth scene graph that are connected
by that relation and obtain an image crop of the combined bounding box. Each of the
resulting image crops is paired with a textual label, either “{a} {ci}” (e.g., “red van”) for
crops obtained from attributes or “{ci} {r} {cj}” (e.g., “woman driving wan”) for crops
obtained from relations. The result is a training dataset of 708,469 (image, text) pairs,
in which the texts correctly describe either an attribute or a relation of the object(s)
depicted in the image, and correspond to concepts represented in the questions of GQA’s
training set. We equally pre-process a random sample of 10,000 questions from GQA’s
validation set to obtain a small validation dataset for frequent evaluation during the
fine-tuning process.

We then fine-tune CLIP on the training dataset with the same symmetric cross entropy
loss that was used for pre-training the model. We use a linear learning-rate schedule with
a maximum learning rate of 2 · 10−7 and a warm-up ratio of 25%, and train the model for
three epochs with a mini-batch size of 32. These values were obtained through manual
experimentation: for higher learning rates, we observed overfitting on the training set,
while lower learning rates yielded higher loss values on both training and validation set.
Figure 5.1 shows the development of the training and validation loss over the course of
training.
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To have the tuned model perform at its best for the “target vs. neutral” prompting
schema, we again evaluate the model for attribute and relation classification using multiple
prompt schemas as in Section 4.3.2. Table 5.1 shows the performance improvement with
the respective highest-accuracy prompt schema between the baseline and the fine-tuned
model.

Concept Type Highest-Accuracy Schema Acc P R Acc ↑

Attributes
Base “a blurry photo of {a/an} {a} {ci}” 65.90% 0.662 0.650

3.05%
FT “a pixelated picture of a {a/an} {a} {ci}” 68.95% 0.684 0.705

Relations
Base “{ci} {r} {cj}” 56.32% 0.553 0.659

3.52%
FT “{a/an} {ci} {r} {a/an} {cj}” 59.84% 0.578 0.733

Table 5.1: The accuracy (Acc), precision (P), and recall (R) on the prompt-engineering
datasets from Section 4.3.2 for the highest-accuracy prompt schemas of the base and
fine-tuned (FT) CLIP models

5.2 Explicit Handling of Spatial Relations

As can be seen in Figure 5.2, the overwhelming majority of the most frequently occurring
relations in GQA are of a spatial nature. In this extension, we take inspiration from
ViperGPT [SMV23], whose LLM-based code generation maps many spatial relations
to pure-Python computations on the bounding boxes of the affected objects. For the
spatial relations occurring in more than 10,000 questions, we omit the “target vs. neu-
tral” prompting used in the Concept Classification sub-component and instead directly
determine the relation likelihoods from the bounding boxes of the object pairs. Since we
do not have a three-dimensional representation of the objects in the scene, but only their
two-dimensional bounding boxes, this is of course a stark simplification of the semantics
of these relations, since they depend not only on the relative object positions in the image
plane, but also on the camera viewpoint and context [JHvdM+17a]. However, given the
baseline performance of CLIP for relation classification (see [ZZZ+23] and Section 4.3.2),
this change might still bring an improvement to the performance of the pipeline for VQA.

We split the relevant spatial relations into two types: proximity relations (on, near,
of, in, in front of, behind, next to, with) and directional relations (to the
left of, to the right of, on top of, above, below). For proximity relations,
we determine the likelihood of relation r applying between objects oi, oj by the ℓ2-distance
of the centers of their bounding boxes. That is, for bounding boxes Bi = (xi, yi, wi, hi)
and Bj = (xj , yj , wj , hj) and image dimensions (iw, ih), we compute:

1 −
�

((xi + wi/2) − (xj + wj/2))2 + ((yi + hi/2) − (yj + hj/2))2�
i2
w + i2

h

(5.1)
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Figure 5.2: The most frequent relations in the GQA dataset, excluding to the
left/right of (Source: [HM19, Supp. Material, Figure 1])

For directional relations, we set the likelihood of relation r applying from object oi to
object oj to 1 if the center of the bounding box of oi is further in the direction indicated
by the relation than the center of the bounding box of oj , otherwise to 0.

5.3 Relation Classification with LLMs
For many (oi, r, oj) triples, we can derive a lot of information about the likelihood of
the relation holding between the two objects just from the textual representation of the
relation and the objects’ classes. As a human, we assign a low likelihood to the relation
“a dog driving a suitcase” without ever looking at the image crop of the two objects
in question. LLMs pre-trained on enormous corpora of text allow us to capture this
intuitive notion of a relation between two objects “making sense” and to combine it with
the multi-modal understanding of VLMs to achieve more exact relation classifications.

To obtain a numeric representation of how likely (or rather, unlikely) an LLM judges
a given (oi, r, oj) triple to apply, we use perplexity (PPL), which for auto-regressive
language models is defined as the exponential of the average negative log likelihood of
each token given its preceding context [Mie19], or more formally:

PPL = 2− 1
n

�n

i=1 log pθ(xi|x<i) (5.2)

where x = (x1, x2, ..., xn) is the tokenization of the input string and pθ is the likelihood our
model assigns to a token xi given the preceding tokens x<i = {x1, x2, ..., xi−1}. For fixed-
length causal language models like those based on the Transformer [VSP+17] Decoder
(e.g., GPT-3 [BMR+20]), pθ(xi|x<i) has to be approximated by pθ(xi|xi−1, xi−2, ..., xi−lω ),
where lω is the maximum context length of the model. When using perplexity as an
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evaluation metric on an an entire test corpus that far exceeds the maximum context
length of the model, a sliding window approach is used. For our purpose, where x is
always a single sentence fragment, this does not present a problem.

For each (oi, r, oj) triple (oi = (idi, si, Bi, ci), oj = (idj , sj , Bj , cj)) processed during
relation likelihood computation in the Scene Processing component, we compute the
perplexity PPLi,r,j of the phrase “{a/an} {ci} {r} {a/an} {cj}” with the OPT [ZRG+22]
causal language model. As with cosine similarities between CLIP-embeddings of images
and text, the perplexity value of a text requires a frame of reference to judge if it is high
or low for the used language model.

For this use-case, we cannot use the “target vs. neutral” prompt scheme that we employ
for CLIP, since a generic relation like “and” in a neutral prompt like “a man and a car”
would produce a lower perplexity in many cases even when the relation in the target
prompt is actually plausible for the given objects, e.g. “a man driving a car”. With any
noun as the preceding context (“a man”), predicting the word “and” as the next token
is a valid choice in almost all cases, so the language model will assign a relatively high
likelihood to it.

Instead, we use the “target vs. ensemble” scheme: we sample nllm relations from all
possible relations in the dataset. For each pair of object classes cm, cn appearing on
objects in the scene graph, we then pre-compute the perplexity of the phrase “{a/an}
{cm} {rk} {a/an} {cn}” for each relation rk in the nllm sampled ones, and determine
the mean of these perplexities PPLm,n. For the triple (oi, r, oj), we then determine the
relation likelihood lllm as judged by the LLM using the pre-computed mean perplexity
for the classes of oi, oj : lllm = 1 − softmax(PPLi,r,j , PPLi,j)0. The combined relation
likelihood is then pllm · lllm +(1−pllm) · lvlm, where lvlm is the original relation likelihood as
determined with the approach described in Section 4.3.2, and pllm is a mixing parameter.
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CHAPTER 6
Evaluation

In this chapter, we perform evaluations on the GS-VQA pipeline and its extensions to
answer the research questions posed in Section 1.1 in the introduction of this thesis. We
first describe the modalities under which the evaluations are performed, and then discuss
the results in the context of each research question individually.

6.1 Evaluation Modalities
We evaluate the GS-VQA pipeline and its extensions presented in Chapter 5 on the
balanced test-dev set of GQA [HM19] (“testdev_balanced_questions.json” in version 1.2
of the GQA questions download1), which contains 12,578 questions. Of those, we exclude
157, or 1.248%, for the reasons given in Section 4.1. While GQA also provides a regular
test set, it does not contain the semantic question representations that we take as input
instead of the natural language questions. Fortunately, for this reason among others,
models are commonly evaluated on the test-dev set in the literature [APP+20; SMV23;
TLL+22; LLS+23; SNK+23], which allows us to put our results into context with the
state-of-the-art. Like for the test set, the images in the test-dev are disjoint from those
in the Visual Genome [KZG+17] dataset, ensuring that models using Visual Genome as
part of their training data (like OWL-ViT [MGS+22]) do not achieve artificially good
results.

All evaluation runs use the larger ViT-L/14 variant of OWL-ViT for object detection
and the smaller ViT-B/32 variant of CLIP [RKH+21], which we have found to work
better than the ViT-L/14 CLIP variant for our use-case during optimization on the
GQA validation set. The exact values for all parameters introduced in Chapters 4 and 5
that were used during evaluation are listed in Table 6.1. If no other reason is specified

1https://downloads.cs.stanford.edu/nlp/data/gqa/questions1.2.zip
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in the remainder of this chapter, the parameter values were obtained through manual
optimization to maximize the answer accuracy on the GQA validation set.

As a host system for the evaluations, we use a workstation with an Intel Core i7-12700K
CPU, 32GB of RAM, and an NVIDIA GeForce RTX 3080 Ti GPU with 12GB of video
memory.

Parameter Description Value
tbbox1 Bounding box overlap threshold for merging objects in

the results of object detection model mdetection

0.6

tbbox2 Bounding box overlap threshold for considering objects
as duplicates in step 2 and 3 of the Object Detection
sub-component

0.7

tbbox3 Bounding box overlap threshold for combining object
pair boxes in the relation likelihood computation of the
Concept Classification sub-component

0.7

ts Confidence score threshold for the object detection model
mdetection

0.03

k1 Maximum number of objects returned per class in step 1
of the Object Detection sub-component

5

k2 Maximum number of objects returned per higher-order
class in step 2 of the Object Detection sub-component

5

k3 Maximum number of objects returned in step 3 of the
Object Detection sub-component

25

mdetection Model used for the Object Detection sub-component OWL-ViT (ViT-L/14)
mclassification Model used for the Concept Classification sub-component CLIP (ViT-B/32)
tASP Time-out for the ASP solver 10s
nllm Number of sampled relations for the “target vs. ensemble”

scheme used in the extension described in Section 5.3
25

pllm Mixing parameter between the LLM and VLM likelihoods of
a relation in the extension described in Section 5.3

0.5

Table 6.1: Settings for the evaluations performed with GS-VQAbase

6.2 (RQ) Zero-Shot Pipeline Accuracy
To answer our main research question, “What accuracy can be achieved on a current
VQA benchmark dataset with a zero-shot neural-symbolic VQA pipeline that uses VLMs
for visual perception?”, we process the test-dev set of GQA with the base version of the
GS-VQA pipeline without any of the modifications described in Chapter 5 (GS-VQAbase).
The accuracy of this pipeline variant, i.e., the percentage of questions for which the
pipeline generates exactly the right answer, is presented in Table 6.2 in comparison with
state-of-the-art fine-tuned and zero-shot models. Note that with the exception of the
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model by Amizadeh et al. [APP+20], the results are not perfectly comparable, since the
other models directly take natural language questions as input, and the translation from
natural language into the structured question representation that GS-VQA uses presents
an additional potential source of inaccuracy.

Model Category GQA Accuracy

Fine-tuned

Amizadeh et al. [APP+20] Neural-Symbolic 51.9%
MAC [HM18] End-to-End 55.4%
LXMERT [TB19] End-to-End 60.0%
CRF [NDT+22] End-to-End 72.1%

Zero-shot

FewVLM [JCS+22] End-to-End 29.3%
GS-VQAbase (Ours) Neural-Symbolic 39.5%
PnP-VQA [TLL+22] Semi-Symbolic† 42.3%
BLIP-2 [LLS+23] End-to-End 44.7%
ViperGPT [SMV23] Question-Symbolic 48.1%
CodeVQA▲ [SNK+23] Question-Symbolic 49.0%

Table 6.2: Comparison of GS-VQA’s accuracy on the test-dev set of GQA with that of
state-of-the-art approaches for VQA
†PnP-VQA neither fully fits the “Neural-Symbolic” category, since it doesn’t perform its reasoning purely
symbolically, nor the Question-Symbolic category, since it extracts a symbolic representation of the image,
not the question.
▲Since CodeVQA provides some expert-annotated sample programs to its code generation component, it
is technically few-shot. However, since our pipeline excludes the translation of the input question into a
structured representation entirely, we group it with the zero-shot models.

GS-VQA answers 39.5% of all questions of GQA’s test-dev set correctly, with the current
best zero-shot VQA model, CodeVQA [SNK+23], obtaining an accuracy of 49.0%. So while
GS-VQA does not achieve state-of-the-art performance, it establishes the combination of
VLMs and symbolic reasoning as a viable approach for zero-shot VQA. For context, we
also note that CodeVQA and ViperGPT [SMV23] both translate input questions into
Python code that may contain queries to another VQA model. The performance of the
model used for this purpose (PnP-VQA [TLL+22] and BLIP-2 [LLS+23], respectively)
should therefore be considered as their baseline. To the best of our knowledge, no other
zero-shot model performing purely symbolical reasoning has been evaluated on GQA yet.

In Table 6.3, we present the accuracy of the GS-VQA pipeline and its variants on fragments
of the GQA test-dev that either belong to a specific question type (binary, i.e., answered
with “yes”/“no”, or open), or include a specific reasoning operation. Looking at the data
for GS-VQAbase, we see that the accuracy on binary questions is considerably higher
than that on open questions. This result is both consistent with the literature [APP+20]
and expected, since the space of possible answers for binary questions is significantly
smaller. From the accuracy results of all questions containing a certain operation, we
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can similarly derive the expected result that the operations with the highest number of
possible outputs (common(): all possible attribute categories; relate_any(): all possible
objects in the scene; query_attr(): all possible values for an attribute category) generally
lead to the lowest accuracy values.

GS-VQAbase GS-VQAft GS-VQAsr GS-VQAllm

By Question Type
All 39.50% 41.46% 40.55% 39.84%
Binary 55.13% 57.76% 56.87% 55.02%
Open 30.64% 32.23% 31.31% 31.24%

By Operation
select() 39.50% 41.46% 40.55% 39.84%
filter() 41.56% 43.71% 42.65% 41.69%
filter_any() 40.64% 40.22% 40.92% 38.56%
relate() 36.88% 38.58% 37.82% 37.58%
relate_any() 8.59% 7.61% 8.77% 7.73%
relate_attr() 24.00% 24.00% 24.00% 26.00%
compare() 39.13% 30.43% 39.13% 47.83%
query_attr() 23.43% 23.61% 23.99% 23.43%
query_name() 33.75% 38.51% 33.64% 35.96%
verify_attr() 56.81% 61.46% 56.48% 56.06%
verify_rel() 53.84% 55.66% 62.94% 55.53%
choose_attr() 62.49% 65.70% 61.71% 62.71%
choose_rel() 49.76% 47.87% 66.35% 52.61%
exist() 55.52% 58.01% 56.85% 55.52%
two_same() 50.00% 42.48% 50.00% 49.35%
two_different() 41.30% 40.58% 41.30% 41.30%
all_same() 76.19% 80.95% 76.19% 76.19%
all_different() 60.00% 60.00% 60.00% 60.00%
common() 6.25% 14.58% 5.21% 7.29%
and() 53.62% 56.46% 53.17% 52.80%
or() 52.80% 56.03% 52.80% 52.80%

Table 6.3: The accuracy of the GS-VQA pipeline on the GQA test-dev set, shown
split by question type and operation occurrence. The values stated are for the pipeline
without extensions (GS-VQAbase), with fine-tuning of the Scene Processing component
(GS-VQAft), with explicit handling of spatial relations (GS-VQAsr), and with LLM
integration for relation classification (GS-VQAllm)
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Figure 6.1: Semantic similarity (cosine similarity of MPNet text embeddings) between
the official answers of GQA’s test-dev set and the answers generated by GS-VQAbase

6.2.1 Answer Similarity

One limitation of the GQA dataset, in contrast to datasets like VQA v2.0 [GKS+17], is
that it only contains one valid answer per question. In combination with the granularity
of GQA’s set of possible object classes, attribute values, etc., and the nuance of natural
language, this limitation means that a model might generate answers that are not exactly
equal to the official one, but semantically similar enough to be judged valid by a human.
To approximately quantify this effect, we compute for each open question in GQA’s
test-dev set the cosine similarity between the embeddings of the answer generated by
GS-VQAbase and the question’s ground-truth answer (to compute the embeddings, we
use the MPNet [STQ+20] model provided by the Sentence-Transformers [RG19] library).
The distribution of semantic similarity between pipeline and ground-truth answers is
shown in Figure 6.1.

Of all 7,928 open questions, 2,429 have a semantic similarity of exactly 1.00: these are
the 30.64% of open questions for which GS-VQAbase gives the exact answer. For the
294 questions that the pipeline is unable to answer (and therefore generates the answer
“UNSAT”), we manually set the similarity value to 0.00. The semantic similarity between
pipeline and ground-truth answers for the remaining questions is widely spread between
these two extremes.

Through manual inspection of the results, we determine the semantic similarity threshold
above which a human would judge the generated answers as equal or at least very close to
the ground-truth answer to be approximately 0.65. Similarity values below this threshold
are achievable by answers that simply lie in the same category as the ground-truth one
(e.g. white/blue, concrete/aluminium). One undesirable type of answer remains above
this threshold however: antonyms, i.e., semantic opposites of the ground-truth answer
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(narrow/wide, clean/dirty, etc.). After filtering these with the NLTK2 Python library,
we arrive at 602 questions (7.59% of all open questions) whose pipeline answers are
synonyms of (small/little, purse/handbag, skateboarder/skater, etc.), close in meaning to
(kitten/cat, cauliflower/broccoli, brown/beige, etc.), or more specific versions of (car/suv,
table/dining table, game controller/wii controller, etc.) the ground-truth answer. We note
though that a threshold on semantic similarity is not a perfect technique for separating
“similar” answers from obviously wrong ones, and produces a few outliers: for example,
gown/dress fall below the threshold, while office chair/desk exceed it. Together with the
fact that equality in meaning is an intuitive concept, the results of this analysis should
serve only as an estimate of the extent to which answers similar to the ground-truth one
are generated.

6.3 (ARQ1) Runtime Performance

To answer our first auxiliary research question, “Is the runtime performance of such
a pipeline on consumer hardware suitable for human interactive use?”, we analyze the
evaluation run of GS-VQAbase on GQA’s test-dev set whose accuracy results are discussed
in the previous section. The system it was performed on, as described in Section 6.1, uses
only hardware readily available to enthusiast consumers. On this machine, the evaluation
run of GS-VQAbase takes 3 hours and 26 minutes. The median pipeline runtime per
question is 719 milliseconds, which would be more than sufficient for using the pipeline
in systems with human interaction, e.g., chat-bots or assistance systems.

Figure 6.2: The runtimes for evaluating the questions of GQA’s test-dev set; outliers
with a runtime of > 4s are not shown; the median on the full test-dev set (including
outliers) is shown in red

2https://www.nltk.org/howto/wordnet.html#synsets
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A histogram of the runtimes on the test-dev questions is depicted in Figure 6.2, with the
median runtime highlighted in red. We have omitted 266 outliers with a runtime greater
than 4 seconds from the graph, 33 of which run into the ASP solving timeout tASP of 10
seconds. Without exception, these outliers with excessive runtimes either include the
relate_any() or the common() operation. This behaviour is explained by the fact that
the two operations require either the detection of objects of all possible classes or the
classification of all possible attribute values for each detected object. Apart from the
longer processing time for the Scene Processing component, these requirements lead to
significantly larger ASP Scene Encodings and thus a longer solving time. These results
highlight the importance of the partial scene graph extraction of GS-VQA for making the
use of zero-shot VLMs feasible, as without it, all questions would experience the same
runtimes as the outliers for which the number of question-relevant classes or attributes
cannot be restricted.

6.4 (ARQ2) Improved VLM Understanding of Attributes
and Relations

For our second auxiliary research question, “How much would the answer accuracy of the
pipeline improve if the used VLMs were more thoroughly pre-trained for understanding
attributes and relations?”, we process GQA’s test-dev set with the GS-VQA pipeline
modified as described in Section 5.1 (GS-VQAft). We leave the architecture of the
pipeline unchanged, but replace the CLIP model used in GS-VQAbase with one that
was fine-tuned on 708,469 (image, text) pairs extracted from GQA’s training set. The
texts in those pairs describe object attributes or relations depicted in the image. As
the fine-tuning is done with the same pre-training objective as used in CLIP’s original
construction, and the model and pipeline architecture remain unchanged, we get an
indication of the effect that improved attribute and relation understanding of the used
VLM has on the actual answer accuracy of the pipeline.

From Table 5.1, we know that the fine-tuned CLIP model is 3.05%/3.52% more accurate
at judging if an attribute applies to an object or a relation applies between two objects,
respectively. In the results on the test-dev set shown in Table 6.3, we see this improved
understanding result in a 1.96% increase in answer accuracy for the entire pipeline. This
indicates that the pipeline performance scales well with improvements of the underlying
VLMs used for visual perception. If future efforts on vision-language pre-training explicitly
include better understanding of object attributes and relations in their training targets
(as is already explored by models like X-VLM [ZZL22]), the performance of the pipeline
would improve even further, as Section 5.1 showed that fine-tuning the model on a small
(compared to the overall amount of training data for state-of-the-art VLMs), albeit
task-specific, attribute and relations dataset still leaves a lot of room for improvement.
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6.5 (ARQ3) Spatial Relation and LLM Extensions
In this section, we answer our third auxiliary research question, “How is the accuracy of
the pipeline affected by (1) the explicit computation of spatial relations between objects, and
(2) the integration of LLMs to judge the plausibility of object relations?”, by evaluating
the GS-VQA pipeline with the extensions described in Sections 5.2 and 5.3.

6.5.1 Explicit Handling of Spatial Relations
From the data in Table 6.3, we see that directly determining the likelihoods for all spatial
relations occurring more than 10,000 times in the GQA dataset through bounding box
computations (GS-VQAsr) yields a 1.05% increase in overall answer accuracy compared
to the baseline GS-VQAbase. Looking at just those questions of GQA’s test-dev set
that contain at least one relation operation (relate(), relate_any(), verify_rel(), or
choose_rel()), the accuracy improves by 2.05% from 32.87% to 34.92%. Including all
spatial relations, and not just the most common ones, would increase this performance
improvement further, but it would most likely not change it from a small, though
noticeable, to a drastic one. The composition of questions into multiple reasoning
operations comes into play here: Improving on just the handling of relations might
mean that the right object is identified by a relate() operation, but if the successive
query_attr() operation returns the wrong attribute value, the answer to the question is
still wrong. In this sense, the overall performance of the pipeline is dependent on its
“weakest link”.

We note that we chose not to integrate the explicit handling of spatial relations into the
base version of the pipeline, even though it involves no training or fine-tuning of models
on the current dataset, for the following reason: In its current form, the behaviour for
every handled spatial relation is hard-coded. Therefore, for evaluating the pipeline on a
new dataset, the pipeline logic would have to be adjusted to cover the spatial relations
that commonly occur in that dataset. To use the explicit handling of spatial relations in
a dataset-agnostic manner, we could either add implementations for the finite set of all
spatial relations in the corpus of the English language (which might be too large a set to
be practical), or have a model tasked with the extraction of a semantic representation
from the natural-language input question translate the various different wordings for
spatial relations into a reduced set (e.g., left/right/above/below for directional ones,
near/far for proximity ones).

6.5.2 Relation Classification with LLMs
Finally, in Table 6.3 we see that integrating LLMs as a second component to judge
the likelihood of a relation applying between two objects (GS-VQAllm) only improves
the answer accuracy on the test-dev set slightly by 0.34% compared to GS-VQAbase
(or 0.47% when only questions containing a relation operation are considered). We
suspect one reason for this to be the fact that the most frequent relations in GQA are
largely spatial in nature (see Figure 5.2), which are plausible between almost any pair of
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object classes. A second might be the quality of the LLM used: choosing a model by
optimizing the accuracy achieved on the validation set of GQA, we observed models with
more than 1 billion parameters (OPT-1.3b [ZRG+22], GPT-Neo 1.3b [BGW+21], etc.)
achieving a 1 − 2% higher accuracy than smaller models like GPT2 124m [RWC+19].
State-of-the-art LLMs regularly exceed 40 billion parameters (which we couldn’t evaluate
with our restricted hardware setup), and so could show improved results.

In its current state though, the performance gains do not justify the added architectural
complexity and increased runtime of this extension. Regarding the latter point, while the
median runtime increases from 719 milliseconds to 897, the mean runtime jumps from
993 milliseconds to 3,533. Since the “target vs. ensemble” scheme used in this extension
requires the processing of a significant number of prompts for every combination of object
classes occurring in the detected objects for the current question, questions that require
a large number of object classes to be detected (or in the extreme case of relate_any(),
all of them) are doubly affected: once by their large scene graphs, and a second time by
the processing overhead induced by the LLM extension. Outliers therefore become more
extreme, and the pipeline runtime less consistent.
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CHAPTER 7
Conclusion and Future Work

In this chapter, we summarize the contributions of this thesis and the answers obtained
for the research questions introduced in Chapter 1. We then address the limitations of
our implementation, and propose topics for potential future work.

7.1 Summary

This thesis documents the design and implementation of the GS-VQA pipeline for zero-
shot neural-symbolic VQA on the GQA [HM19] benchmark dataset. For visual perception,
the pipeline uses the OWL-ViT [MGS+22] VLM for open-vocabulary object detection
and the CLIP [RKH+21] VLM for attribute and relation understanding to build a partial
scene graph of the input image, containing only those objects, attributes, and relations
relevant to the input question (as determined from the question’s semantic representation).
We use a multi-stage approach to object detection to handle the hierarchy among object
classes (e.g., “food” vs. “burger”), and “target vs. neutral” prompting to determine the
likelihood of an attribute or relation applying to an object or between a pair of objects.

The partial scene graph and the semantic question representation are then encoded
into an ASP formulation, making use of weak constraints to model the uncertainty
of visual perception. Together with an ASP Theory formalizing the semantics of the
various reasoning operations that can occur in an input question and its derived Question
Encoding, the thereby created ASP program is solved with the Potsdam Answer Set
Solving Collection [GKK+19], yielding the pipeline’s answer to the input question.

We evaluate this implementation of the GS-VQA pipeline on the test-dev set of the
GQA dataset to obtain the following answers to the research questions set out in the
introduction of the thesis.

67



7. Conclusion and Future Work

(RQ) What accuracy can be achieved on a current VQA benchmark dataset with a
zero-shot neural-symbolic VQA pipeline that uses VLMs for visual perception?

The GS-VQA pipeline answers 39.5% of all questions of GQA’s test-dev set correctly
(55.13% of the binary questions, 30.64% of the open ones), with the current best zero-shot
VQA model, CodeVQA [SNK+23], obtaining an accuracy of 49.0%. GS-VQA therefore
does not achieve state-of-the-art performance, but establishes the combination of VLMs
and symbolic reasoning as a viable approach for zero-shot VQA that can be built upon
in the future.

(ARQ1) Is the runtime performance of such a pipeline on consumer hardware suitable
for human interactive use?

In an evaluation run on the test-dev set of GQA, performed on a workstation with an
Intel Core i7-12700K CPU, 32GB of RAM, and an NVIDIA GeForce RTX 3080 Ti GPU,
the pipeline achieved a median runtime per question of 719 milliseconds, which would
be more than sufficient for using the pipeline in systems with human interaction, e.g.,
chat-bots or assistance systems.

(ARQ2) How much would the answer accuracy of the pipeline improve if the used
VLMs were more thoroughly pre-trained for understanding attributes (color, shape, etc.)
and relations (holding, to the left of, etc.)?

We fine-tune CLIP on 708,469 (image, text) pairs in which the texts describe object
attributes or relations depicted in the image, extracted from GQA’s training set. Fine-
tuning is done with the same contrastive pre-training objective as used in CLIP’s original
construction. This way, we are able to simulate the improvements for VQA that could
be achieved if current VLMs added more attribute and relation captions to their training
data, without any changes to the architecture of the VLM or the GS-VQA pipeline.

The fine-tuned CLIP model is 3.05%/3.52% more accurate at judging if an attribute
applies to an object or a relation applies between two objects, respectively, using the
“target vs. neutral” classification scheme employed by the GS-VQA pipeline. This
improved understanding results in a 1.96% increase in answer accuracy on GQA’s test-
dev set when the tuned CLIP model is integrated into the otherwise unchanged GS-VQA
pipeline. This indicates that the pipeline performance scales well with improvements of
the underlying VLMs used for visual perception.

(ARQ3) Making use of the compositionality of neural-symbolic VQA approaches, how
can the visual perception component be modified/extended to improve the pipeline? In
particular, how is the accuracy of the pipeline affected by (1) the explicit computation of
spatial relations between objects, and (2) the integration of LLMs to judge the plausibility
of object relations?

Directly determining the likelihoods for all spatial relations occurring more than 10,000
times in the GQA dataset through bounding box computations yields a 1.05% increase
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in overall answer accuracy compared to the base version of the GS-VQA pipeline. The
accuracy on questions containing at least one relation operation improves by 2.05% from
32.87% to 34.92%. If the translation of a natural language input question into its semantic
representation were implemented in such a way that all possible wordings for spatial
relations are converted to a reduced set (e.g., left/right/above/below for directional
relations, near/far for proximity ones), this extension could be practical to implement
and provide a noticeable boost to answer accuracy.

In contrast, integrating LLMs into the GS-VQA pipeline as a second component to
judge the likelihood of a relation applying between two objects only improves the answer
accuracy on the test-dev set slightly by 0.34% (or 0.47% when only questions containing
a relation operation are considered). These minimal performance gains do not justify the
added architectural complexity and increased runtime of this extension.

7.2 Limitations
Our results come with a few limitations that we address here, along with suggestions for
removing them.

Semantic question representation as input. As we focus on the visual perception
and reasoning aspects of the VQA task, we directly use the semantic question representa-
tion of GQA as an input to the GS-VQA pipeline. This introduces two restrictions.

First, as already discussed in Chapter 6, it limits the comparability of the performance
results of the pipeline with the results from the literature, since the translation from
natural language question to semantic representation adds an additional source of errors.

Second, it constrains the real-world use or the evaluation of the pipeline on other VQA
benchmark datasets that do not come with this semantic representation or a similar one.
However, various works from the literature have already presented both approaches that
require training [JHvdM+17b; HAR+17; YWG+18; APP+20], in some cases on only a
few hundred sample questions, or zero-shot approaches [SMV23; SNK+23] that perform
the translation from natural language to structured representation with high accuracy
and could be adopted to remove this limitation.

Class and attribute ontology as context. To avoid inconsistent class assignments to
objects and to cover open-ended operations like relate_any() and common(), the GS-VQA
pipeline requires the hierarchy of possible object classes and the list of possible attribute
values and their categories for the current task as context. We view this limitation as
rather minor, since much of this information would be required in an open-vocabulary
setting anyway (e.g., the list of classes for object detection), and the required information
can be obtained far more easily than the effort required to train purpose-built models for
object detection and attribute/relation classification from scratch for the task at hand. It
does however limit the use of the pipeline for unconstrained, “anything goes” VQA. For
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this open-ended use-case, one approach that could be pursued is using LLMs to generate
the required information, e.g., sub-classes for higher-order classes, and attribute values
for attribute categories.

Reasoning operations of GQA. As the GS-VQA pipeline has been developed with
GQA as a benchmark dataset in mind, its supported reasoning operations are tailored to
this dataset. The pipeline therefore misses some reasoning operations that one would
commonly expect an intelligent agent to be able to perform in the VQA context, like
counting (or mathematical reasoning in general), comprehending text visible in the input
image, and drawing on external knowledge. Thanks to the modular nature of the pipeline
though, many of these capabilities could be added in the future. For example, Eiter et al.
[EHO+22] implement counting in their ASP encoding for the CLEVR [JHvdM+17a]
dataset, where this operation is present.

7.3 Future Work
Apart from removing the limitations discussed in the previous section, we present here
an outlook on further enhancements to the GS-VQA pipeline that could be explored in
the future.

Newer VLMs. With the astounding pace of research in vision-language models in
recent years, the OWL-ViT and CLIP models used for object detection and concept
classification have already been surpassed by newer models like BLIP-2 [LLS+23], X-VLM
[ZZL22], and F-VLM [KCG+23] in many vision-language understanding tasks. Adopting
them into the Scene Processing component could yield more accurate partial scene graphs
and thereby improve VQA accuracy.

Optimization of operations. Especially the relate_any() and common() operations
cause performance issues and inaccurate answers due to the large search space that they
induce. Potential improvements could involve intelligently reducing the size of the partial
scene graphs by restricting the considered object classes and attribute categories, or
improving the ASP encoding for faster optimization.

Further evaluation. Apart from the intuitive answer accuracy, additional evaluation
modalities have been introduced in the VQA literature. GQA’s consistency, validity,
and plausibility metrics indicate the degree to which the model contradicts itself with
the answers to related questions, produces answers in the question scope (e.g., gives
any color as answer to a color question), and gives answers that “make sense” (e.g.,
does not answer “purple” when asked about the color of an apple). VQA [AAL+15]
and VQA v2.0 [GKS+17] provide 10 answers per question from unique Mechanical Turk
workers, allowing for multiple similar answers to be considered correct. Evaluating the
GS-VQA pipeline under these modalities would give even more insight into its strengths
and weaknesses.
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APPENDIX A
Complete ASP Theory

This appendix presents the ASP theory that is discussed in Section 4.4.3 in its entirety.
Listing A.1 follows the ASP syntax accepted by the tools of the Potsdam Answer Set
Solving Collection [GKK+19].

Listing A.1: The complete ASP theory in Potassco ASP syntax
1 % ========== Scene Graph Definitions ==========
2 #defined is_attr/1.
3 #defined is_attr_value/2.
4 #defined object/1.
5 #defined has_obj_weight/2.
6 #defined has_attr/3.
7 #defined has_rel/3.
8
9 % ========== Base Operations ==========

10 % ---------- scene ----------
11 #defined scene/1.
12
13 state(TO,ID) :- scene(TO), object(ID).
14
15 % ---------- end ----------
16 #defined end/1.
17
18 ans(V) :- end(TO), attr_value(TO,V).
19 ans(A) :- end(TO), attr(TO,A).
20 ans(R) :- end(TO), rel(TO,R).
21 ans(B) :- end(TO), bool(TO,B).
22
23 % ---------- ans ----------
24 % At least one answer must be derivable
25 :- not ans(_).
26 #show ans/1.
27
28
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29 % ========== Intermediary Operations ==========
30 % ---------- select ----------
31 #defined select/3.
32
33 state(TO,ID) :- select(TO, TI, CLASS), state(TI, ID), has_attr(ID, class,

�→ CLASS).
34
35 % ---------- filter ----------
36 #defined filter/4.
37
38 state(TO,ID) :- filter(TO, TI, ATTR, VALUE), state(TI, ID), has_attr(ID,

�→ ATTR, VALUE).
39
40 #defined filter_any/3.
41
42 state(TO,ID) :- filter_any(TO, TI, VALUE), state(TI, ID), has_attr(ID, _,

�→ VALUE).
43
44 % ---------- relate ----------
45 #defined relate/5.
46
47 state(TO, ID’) :- relate(TO, TI, CLASS, REL, subject), state(TI, ID),

�→ has_attr(ID’, class, CLASS), has_rel(ID’, REL, ID).
48 state(TO, ID’) :- relate(TO, TI, CLASS, REL, object), state(TI, ID),

�→ has_attr(ID’, class, CLASS), has_rel(ID, REL, ID’).
49
50 % relate_any
51 #defined relate_any/4.
52
53 state(TO, ID’) :- relate_any(TO, TI, REL, subject), state(TI, ID),

�→ has_rel(ID’, REL, ID).
54 state(TO, ID’) :- relate_any(TO, TI, REL, object), state(TI, ID), has_rel

�→ (ID, REL, ID’).
55
56 % relate_attr
57 #defined relate_attr/4.
58
59 state(TO, ID’) :- relate_attr(TO, TI, CLASS, ATTR), state(TI, ID),

�→ has_attr(ID, ATTR, VALUE), has_attr(ID’, class, CLASS), has_attr(ID
�→ ’, ATTR, VALUE), ID!=ID’.

60
61 % ---------- compare ----------
62 #defined compare/5.
63
64 state(TO,ID) :- compare(TO, TI0, TI1, VALUE, true), state(TI0, ID), state

�→ (TI1, ID’), has_attr(ID, _, VALUE), not has_attr(ID’, _, VALUE).
65 state(TO,ID’) :- compare(TO, TI0, TI1, VALUE, true), state(TI0, ID),

�→ state(TI1, ID’), not has_attr(ID, _, VALUE), has_attr(ID’, _, VALUE
�→ ).

66
67 state(TO,ID’) :- compare(TO, TI0, TI1, VALUE, false), state(TI0, ID),

�→ state(TI1, ID’), has_attr(ID, _, VALUE), not has_attr(ID’, _, VALUE
�→ ).
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68 state(TO,ID) :- compare(TO, TI0, TI1, VALUE, false), state(TI0, ID),
�→ state(TI1, ID’), not has_attr(ID, _, VALUE), has_attr(ID’, _, VALUE
�→ ).

69
70
71 % ========== Terminal Operations ==========
72 % ---------- query ----------
73 #defined query/3.
74
75 { has_attr(ID, ATTR, VALUE) : is_attr_value(ATTR, VALUE)} = 1 :- query(TO,

�→ TI, ATTR), state(TI, ID), ATTR != name, ATTR != class, ATTR !=
�→ hposition, ATTR != vposition.

76 attr_value(TO,VALUE) :- query(TO, TI, ATTR), state(TI, ID), has_attr(ID,
�→ ATTR, VALUE).

77
78 % ---------- verify ----------
79 % verify_rel
80 #defined verify_rel/5.
81
82 bool(TO, yes) :- verify_rel(TO, TI, CLASS, REL, subject), state(TI, ID),

�→ has_attr(ID’, class, CLASS), has_rel(ID’, REL, ID).
83 bool(TO,no) :- verify_rel(TO, TI, CLASS, REL, subject), not bool(TO,yes).
84
85 bool(TO, yes) :- verify_rel(TO, TI, CLASS, REL, object), state(TI, ID),

�→ has_attr(ID’, class, CLASS), has_rel(ID, REL, ID’).
86 bool(TO,no) :- verify_rel(TO, TI, CLASS, REL, object), not bool(TO,yes).
87
88 % verify_attr
89 #defined verify_attr/4.
90
91 bool(TO, yes) :- verify_attr(TO, TI, ATTR, VALUE), state(TI, ID),

�→ has_attr(ID, ATTR, VALUE).
92 bool(TO,no) :- verify_attr(TO, TI, ATTR, VALUE), not bool(TO,yes).
93
94 % ---------- choose ----------
95 % choose_rel
96 #defined choose_rel/6.
97 {has_rel(ID’, REL, ID): has_attr(ID’, class, CLASS); has_rel(ID’, REL’,

�→ ID): has_attr(ID’, class, CLASS)} = 1 :- choose_rel(TO, TI, CLASS,
�→ REL, REL’, subject), state(TI, ID).

98 rel(TO, REL) :- choose_rel(TO, TI, CLASS, REL, REL’, subject), state(TI,
�→ ID), has_attr(ID’, class, CLASS), has_rel(ID’, REL, ID).

99 rel(TO, REL’) :- choose_rel(TO, TI, CLASS, REL, REL’, subject), state(TI,
�→ ID), has_attr(ID’, class, CLASS), has_rel(ID’, REL’, ID).

100
101 {has_rel(ID, REL, ID’): has_attr(ID’, class, CLASS); has_rel(ID, REL’, ID’

�→ ): has_attr(ID’, class, CLASS)} = 1 :- choose_rel(TO, TI, CLASS,
�→ REL, REL’, object), state(TI, ID).

102 rel(TO, REL) :- choose_rel(TO, TI, CLASS, REL, REL’, object), state(TI,
�→ ID), has_attr(ID’, class, CLASS), has_rel(ID, REL, ID’).

103 rel(TO, REL’) :- choose_rel(TO, TI, CLASS, REL, REL’, object), state(TI,
�→ ID), has_attr(ID’, class, CLASS), has_rel(ID, REL’, ID’).

104
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105 % choose_attr
106 #defined choose_attr/5.
107 {has_attr(ID, ATTR, VALUE); has_attr(ID, ATTR, VALUE’)} = 1 :-

�→ choose_attr(TO, TI, ATTR, VALUE, VALUE’), state(TI, ID).
108 attr_value(TO, VALUE) :- choose_attr(TO, TI, ATTR, VALUE, VALUE’), state(

�→ TI, ID), has_attr(ID, ATTR, VALUE).
109 attr_value(TO, VALUE’) :- choose_attr(TO, TI, ATTR, VALUE, VALUE’), state

�→ (TI, ID), has_attr(ID, ATTR, VALUE’).
110
111 % ---------- exist ----------
112 #defined exist/2.
113
114 bool(TO,yes) :- exist(TO, TI), state(TI,ID).
115 bool(TO,no) :- exist(TO, TI), not bool(TO,yes).
116
117 % ---------- different, same ----------
118 % all_different
119 #defined all_different/3.
120
121 bool(TO,no) :- all_different(TO, TI, ATTR), state(TI, ID), state(TI, ID’),

�→ has_attr(ID, ATTR, VALUE), has_attr(ID’, ATTR, VALUE), ID != ID’.
122 bool(TO,yes) :- all_different(TO, TI, ATTR), not bool(TO,no).
123
124 % all_same
125 #defined all_same/3.
126
127 bool(TO,no) :- all_same(TO, TI, ATTR), state(TI, ID), state(TI, ID’),

�→ has_attr(ID, ATTR, VALUE), not has_attr(ID’, ATTR, VALUE), ID != ID
�→ ’.

128 bool(TO,yes) :- all_same(TO, TI, ATTR), not bool(TO,no).
129
130 % two_different
131 #defined two_different/4.
132
133 bool(TO,no) :- two_different(TO, TI0, TI1, ATTR), state(TI0, ID), state(

�→ TI1, ID’), has_attr(ID, ATTR, VALUE), has_attr(ID’, ATTR, VALUE).
134 bool(TO,yes) :- two_different(TO, TI0, TI1, ATTR), not bool(TO,no).
135
136 % two_same
137 #defined two_same/4.
138
139 bool(TO,no) :- two_same(TO, TI0, TI1, ATTR), state(TI0, ID), state(TI1,

�→ ID’), has_attr(ID, ATTR, VALUE), not has_attr(ID’, ATTR, VALUE).
140 bool(TO,no) :- two_same(TO, TI0, TI1, ATTR), state(TI0, ID), state(TI1,

�→ ID’), not has_attr(ID, ATTR, VALUE), has_attr(ID’, ATTR, VALUE).
141 bool(TO,yes) :- two_same(TO, TI0, TI1, ATTR), not bool(TO,no).
142
143 % ---------- common ----------
144 #defined common/3.
145
146 attr(TO, ATTR) :- common(TO, TI0, TI1), state(TI0, ID), state(TI1, ID’),

�→ has_attr(ID, ATTR, VALUE), has_attr(ID’, ATTR, VALUE), ATTR != name
�→ , ATTR != class, ATTR != hposition, ATTR != vposition.
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147 {attr(TO, ATTR): is_attr(ATTR)} = 1 :- common(TO, TI0, TI1).
148
149
150 % ========== Utility Operations ==========
151 % ---------- boolean ----------
152 % and
153 #defined and/3.
154
155 bool(TO,yes) :- and(TO, TI0, TI1), bool(TI0,yes), bool(TI1,yes).
156 bool(TO,no) :- and(TO, TI0, TI1), not bool(TO,yes).
157
158 % or
159 #defined or/3.
160
161 bool(TO,yes) :- or(TO, TI0, TI1), bool(TI0,yes).
162 bool(TO,yes) :- or(TO, TI0, TI1), bool(TI1,yes).
163 bool(TO,no) :- or(TO, TI0, TI1), not bool(TO,yes).
164
165 % ---------- unique ----------
166 #defined unique/2.
167
168 {state(TO,ID): state(TI,ID)} = 1 :- unique(TO, TI).
169 :~ unique(TO, TI), state(TO,ID), has_obj_weight(ID, P). [P, (TO, ID)]
170
171 % ---------- negate ----------
172 #defined negate/3.
173 state(TO, ID) :- negate(TO, TI0, TI1), state(TI0, ID), not state(TI1, ID).

�→
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