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Abstract

The heating of metal sheets is an important industrial process with various applications, e.g., for the
coating and drying of sheets, heat treatments or hot-forming. For these applications, induction heating
offers an efficient and clean way to generate the required heat from electrical energy directly inside the
sheet. Depending on the orientation of the magnetic field, one distinguishes between longitudinal flux
heating, where the magnetic flux is tangential to the sheet surface, and transverse flux heating, where
the magnetic flux is normal to the sheet surface. In both configurations, an important design parameter
is the frequency of the alternating coil current that creates the time varying magnetic field. Given that
the frequency selection drastically affects the system efficiency, this thesis investigates the choice of the
optimal frequency to obtain maximum electrical efficiency.

To start with, important physical and numerical concepts related to the efficient simulation of induc-
tion heating applications will be reviewed. Even though no general three-dimensional analytical solutions
are available for sheets due to the absence of rotational symmetries, different two-dimensional approaches
will be introduced to gain a deeper understanding of the frequency dependency of the efficiency. After-
wards, two- and three-dimensional numerical results obtained with the Finite Element Method will be
compared for both longitudinal and transverse flux heating. Here, investigating the validity of the com-
putationally economical two-dimensional simulations will be of central importance. Moreover, the most
important geometry and material parameters will be identified and their influence on optimal frequency
and efficiency will be analyzed.
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Nomenclature

Acronyms

AC Alternating Current
BC Boundary Condition
DC Direct Current
DOF Degree Of Freedom
FEM Finite Element Method
LFH Longitudinal Flux Heating
PDE Partial Differential Equation
rms root mean square
TFH Transverse Flux Heating

Symbols

E V/m electric field intensity
D As/m2 electric flux density
J A/m2 current density
qe As/m3 charge density
H A/m magnetic field intensity
B T magnetic flux density
v m/s velocity of the heated body
A Tm magnetic vector potential
V V electric scalar potential
µ Vs/Am magnetic permeability
µ0 Vs/Am vacuum permeability µ0 ≈ 4π × 10−7Vs/Am

µr - relative magnetic permeability
ν Am/Vs magnetic reluctivity
ϵ As/Vm electric permittivity
γ 1/Ωm electric conductivity
f Hz frequency
ω 1/s angular frequency
ϑ °C temperature
ρ kg/m3 density
cp J/(kgK) heat capacity
λ W/(mK) heat conductivity
P W (active) power
U V voltage
I A electric current
η - (electrical) efficiency
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Chapter 1

Introduction

In view of the urgent need to decarbonize industrial heating processes, induction heating is a key technol-
ogy. Induction heating uses an inductor coil excited by alternating current (AC) to induce currents in a
conductive material and thereby produces heat inside the material through resistive losses. In comparison
to other electro-heat technologies, e.g., resistance furnaces, the electrical energy is used for heat genera-
tion in a more efficient way: the heat is produced directly inside the target without any contact between
target and heating installation. Thus, heat losses to the environment are reduced and high efficiency of
the energy transformations can be achieved. Additionally, the rapid thermal start-up of the installations
saves energy in situations with varying production rates. Accurate control and excellent repeatability of
the process, combined with short heating times due to high power densities, allow full automation with
a small number of rejected workpieces, saving both resources and labor costs [1] [2].

This thesis focuses on the continuous heating of metal sheets. This procedure is used in numerous
processes and comprises coating and drying of sheets, heat treatments as well as intermediate heating
before milling. Accordingly, the desired temperature increases range from a few 10°C to 1200°C for hot-
forming [3]. While design techniques for induction furnaces have been established since the early 1900s,
the complete modelling of sheet heating processes is more challenging. First guidelines were developed
around 1950 [4] [5], but only with the development of advanced numerical tools and improved power
electronics the full potential of the heating setups could be exploited [2].

In that context, the frequency selection is of major importance, since it gives the possibility to control
the eddy current distribution inside the heated body and strongly affects the efficiency of the process.
This thesis aims at analyzing the most efficient coil excitation frequency for the induction heating of metal
sheets. In Chapter 2, we will introduce important concepts of electromagnetism and thermodynamics
needed for the understanding of the underlying physics. Furthermore, the two major setups for sheet
induction heating treated in this thesis are introduced. From a numerical point of view, the coupled
electromagnetic-heat problem is solved by the Finite Element Method (FEM). In this thesis, openCFS
[6], an open-source finite element-based multi-physics modelling and simulation tool, is used. For the
efficient simulation of electromagnetic phenomena in the context of induction heating, a number of specific
numerical techniques is required and will be presented in Chapter 3. Even though no complete analytical
solutions for general three-dimensional sheet induction heating setups are available, Chapter 4 deals with
a number of analytical approaches, which are useful for a qualitative understanding of the frequency
dependency of the efficiency and can help to interpret the simulation results. In Chapter 5, efficiency
curves over frequency for two- and three-dimensional simulations will be discussed. Chapter 6 investigates
the influence of different geometrical and material parameters on the efficiency and the optimal frequency.
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Chapter 2

Induction Heating: Physical and
Technical Basics

2.1 Electromagnetic Field

To understand how the currents are induced in the sheet and how their distribution depends on the
frequency, a good understanding of the underlying principles is necessary. Hence, the following section
aims at giving a short introduction to important electrodynamic concepts. The naming conventions from
[7] and [8] will be adopted.

The electric and magnetic fields are described by the Maxwell equations [9]

∇×H = J +
∂D

∂t
, (2.1)

∇×E = −∂B

∂t
, (2.2)

∇ ·D = qe, (2.3)

∇ ·B = 0. (2.4)

The generalized Ampère’s law (2.1) states that a time variable electric field or a stationary current density
causes a magnetic field. According to Faraday’s law (2.2), a magnetic field changing with time produces
an electric field. Gauss’ law (2.3) introduces the stationary electric charge as a source for the electric
field, while (2.4) prohibits the existence of stationary sources for the magnetic field.

In isotropic, linear materials the constitutive relations read

J = γ(E + v ×B), (2.5)

D = ϵE, (2.6)

B = µH = µrµ0H. (2.7)

In the general case, polarization and magnetization must be included. For small values of the magnetic
field intensity H, (2.7) is a linear relation. For ferromagnetic materials, there is a nonlinear relation
between B and H leading to the hysteresis curve. Further details can be found, e.g., in [10]. The
electric conductivity γ, the electric permittivity ϵ and the magnetic permeability µ are scalars only for
homogeneous isotropic media, while in general, they are tensors. In this thesis linear isotropic media are
assumed.
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Two electrodynamic potentials can be derived using the vector calculus identities for an arbitrary
scalar φ and a vector u [11]

∇× (∇φ) = 0, (2.8)

∇ · (∇× u) = 0. (2.9)

Since the B field must be divergence free according to (2.4), (2.9) can be used to define a magnetic vector
potential A

B = ∇×A. (2.10)

Inserting this relation in (2.2) yields

∇×
(
E +

∂A

∂t

)
= 0, (2.11)

while from (2.8) another scalar potential can be introduced. The so-called electric scalar potential V is
defined as

E = −∇V − ∂A

∂t
. (2.12)

Now the solution of the Maxwell equations is reduced to the computation of four field components.
However, these potentials are not unique. In fact, they can be modified with an arbitrary scalar function
Λ depending on time and space without changing the actual values of B and E

A′ = A−∇Λ, (2.13)

V ′ = V +
∂Λ

∂t
. (2.14)

This is a problem of the Gauge theory, which is described in depth in [11]. The so-called Coulomb gauge

∇ ·A = 0, (2.15)

is commonly used as an additional constraint to assure uniqueness. This is verified automatically in the
two-dimensional or axisymmetric case. Moreover, it is not necessary to explicitly impose this constraint
if we are only interested in the B field [7]. Another advantage is that V can be determined with the
methods of electrostatics even for time-dependent problems, because the equations for A and V decouple
[11]. In computational electromagnetics, the temporal gauge which consists of setting V = 0 is also
commonly used [12].

For induction heating, the displacement currents are neglected, because at low frequencies smaller
than those of the optical spectrum the dimensions of the studied regions are small compared to the
electromagnetic wavelengths [13]. In that case, the set of Maxwell equations (2.1) and (2.2) can be
combined with the constitutive laws (2.5) and (2.7) to the curl-curl equation for the magnetic vector
potential [7]

∇× ν∇×A = Ji − γ
∂A

∂t
+ γ(v ×∇×A). (2.16)

Here Ji represents the impressed current density, e.g., through current or voltage excitation and ν = 1/µ

is the magnetic reluctivity. The velocity term is neglected in the following. Note that for the eddy current
problem, E denotes the solenoidal part Es of the electric field intensity, obtained through the Helmholtz
decomposition of E into a solenoidal Es and an irrotational part Ei, E = Es +Ei. The irrotational part
is associated with the impressed current density Ji.
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n1 = n

n2 = −n

Figure 2.1: Interface between 2 domains with different material properties, image taken from [7].

Industrial settings often involve several materials with different magnetic or electric properties. Thus,
it is important to know how the electromagnetic field quantities behave at the interface between different
media. Let us consider the two domains Ω1 and Ω2 shown in Fig. 2.1, sharing a common interface. Field
values in the different domains are denoted by the respective index 1 or 2. The common normal vector
of the interface is denoted by n. The interface conditions can be derived by applying Gauss’ or Stoke’s
theorem to the integral forms of the Maxwell equations. Details on this procedure can be found in [7] or
[10].
From (2.4) follows the continuity of the normal component of B

n · (B1 −B2) = 0 =⇒ B1n = B2n, (2.17)

where the index n represents the normal component of the magnetic flux density at the interface. When
there is no surface current present, (2.1) results in the continuity of the tangential component of H

n× (H1 −H2) = 0 =⇒ H1t = H2t, (2.18)

with the index t indicating the tangential component of the magnetic field intensity at the interface. In
the absence of a time-varying magnetic field, it can be shown from (2.2) that the tangential component
of E is also continuous across boundaries.
Taking the divergence of (2.1), one can show by using identity (2.9) that the normal component of J

must be continuous
∇ · J = 0 =⇒ J1n = J2n. (2.19)

2.2 Skin Effect

At higher frequencies, the current density is not homogeneous over the cross section of a conductor, but
is concentrated at the surface and strongly decreases towards the internal part of the conductor. The
reason is the self induction of the conductor: according to Lenz’s law, the induced secondary current is
directed in the same direction as the primary current at the conductor surface while the induced current
flows in the opposite direction in the internal part [14].
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Figure 2.2: Infinite half plane for the derivation of the skin effect, image taken from [7].

For the infinite half plane shown in Fig. 2.2, the skin effect can be derived analytically, following [7]. The
electric field quantities are directed in x direction, while the magnetic field quantities are oriented along
the y-axis. There are spatial dependencies on the z-coordinate only. (2.1) and (2.2) reduce to:

−∂Hy

∂z
= Jx = γEx (2.20)

∂Ex

∂z
= −∂By

∂t
= −µ

∂Hy

∂t
(2.21)

For a harmonic excitation with angular frequency ω = 2πf , the equations can be transformed to the
frequency domain. Thus the following diffusion equation is obtained for the complex amplitude Ĥy by
combining (2.20) and (2.21)

∂2Ĥy

∂z2
= jωγµĤy = k2Ĥy, (2.22)

with k2 = jωγµ. The general ansatz for this differential equation is

Ĥy(z) = C1e
kz + C2e

−kz. (2.23)

Knowing that Ĥy must decrease with increasing distance from the surface z, C1 = 0 and with the
boundary condition at the plane surface Ĥy(z = 0) = H0, one obtains

Ĥy(z) = H0e
−kz. (2.24)

Defining the so-called skin penetration depth δ as

δ =
1√

πfγµ
, (2.25)

the solution for Hy can be written as

Hy(z, t) = H0e
−z/δ cos(ωt− z/δ). (2.26)

The solutions for By, Ex and Jy have the same form as (2.26). Hence, we can conclude that the skin
effect causes an exponential decay of the amplitude and an increase in the phase shift in the internal part
of the conductor. The skin depth δ gives the distance from the surface at which the amplitude of the
electromagnetic field quantities decreased by a factor 1/e. It depends both on the material parameters
and the frequency and is of major importance in induction heating because it gives an indication of the
distribution of power sources in the heated material. As a matter of fact, 86% of the Joule losses are
dissipated in the skin depth [15].
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2.3 Heat Equation

To get the temperature distribution in the sheet, the heat conduction in the material, and the heat transfer
at the sheet surface have to be modelled. In the following, the partial differential equation (PDE) for
the space-and time dependent temperature ϑ(x, t) will be derived and the relevant boundary conditions
will be stated following [16]. The movement of the sheet with velocity v can be taken into account by a
convective term, as shown in [17]. To derive this term we can use the Reynold’s transport theorem for
a moving material volume in the first law of thermodynamics [18]. The first law of thermodynamics for
the closed system Ω with boundary Γ is given by

dU

dt
= Q̇(t) + P (t), (2.27)

where the change in the total internal energy U is caused by the heat flux Q and the electrical or
mechanical power P . Note that the variation of the specific internal energy with temperature can be
expressed via the specific heat capacity cp,

du = cp(ϑ)dϑ. (2.28)

For an incompressible volume, the density ρ is constant. Now the Reynold’s transport theorem can be
applied to compute the time derivative of the total internal energy of the moving body and we can use
(2.28) to substitute the specific internal energy u,

dU

dt
=

d

dt

∫
Ω

ρu dΩ =

∫
Ω

∂(ρu)

∂t
+∇ · (ρuv) dΩ = ρ

∫
Ω

cp
∂ϑ

∂t
+∇ · (cpϑv) dΩ. (2.29)

According to Fourier’s law, the heat flux density flowing into Ω for a heat conductivity λ(ϑ) is given by

dQ̇ = −q̇ndΓ = λ(ϑ)∇ϑndΓ. (2.30)

The negative sign comes from the convention that the normal vector n is oriented outwards. The total
heat flux is obtained from integration over the surface and application of the Gauss’ theorem to obtain
a volume integral,

Q̇ =

∫
Γ

−q̇n dΓ =

∫
Ω

∇ · (λ∇ϑ) dΩ. (2.31)

In induction heating, the power P is the dissipative power due to Joule losses in the conductor. Defining
a volumetric heat source q̇v, P can be written as

P =

∫
Ω

q̇v dΩ. (2.32)

Assuming a constant cp, 2.27 can be rewritten as

ρcp

∫
Ω

(
∂ϑ

∂t
+∇ · (ϑv)

)
dΩ =

∫
Ω

∇ · (λ∇ϑ) dΩ +

∫
Ω

q̇v dΩ. (2.33)

Finally, the heat conduction PDE for a body moving with velocity v states [19]

ρcp

(
∂ϑ

∂t
+ v · ∇ϑ

)
= ∇ · (λ∇ϑ) + q̇v. (2.34)

To obtain a unique temperature field, boundary conditions (BCs) have to be given at the surface Γ. One
possibility is to set a fixed temperature ϑ(x, t), e.g., at the inlet of the induction heater.
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A prescribed heat flux q̂ = −λ ∂ϑ
∂n is also possible, e.g., zero heat flux at the outlet of the induction

heater. To model contact with a different medium, e.g., in the case of convective heat transfer at the
surface of the sheet, a heat transfer BC can be stated. Then the heat flux is expressed as q̂ = α(ϑ−ϑF ),
where α is the heat transfer coefficient for convection and ϑF is the bulk temperature of the surrounding
fluid. In all these heat transfers, radiation is neglected.

2.4 Measures of Efficiency

The total efficiency of the induction heating process is the product of the electrical efficiency ηel and the
thermal efficiency ηp [15],

η = ηel · ηp. (2.35)

The thermal efficiency mainly depends on the thermal isolation of the process and on the heating time
t1,

ηp =

∫ t1
0

PE dt− ∫ t1
0

PV dt∫ t1
0

PE dt
, (2.36)

where PE is the power transferred to the heated body and PV are the heat power losses, e.g., radiation
or convection from the heated body or heat conduction to support structures [1]. ηp cannot be directly
influenced by the frequency, thus only the electrical efficiency ηel will be considered in the following. We
neglect the losses in all other electrical components, such as power converters or electric lines, as well as
eddy current losses in electrically conductive bodies in the vicinity of the inductor, e.g., metal support
beams, considering only the efficiency of the inductor-sheet system [1][8]. We then arrive at

ηel =
PJoule

PJoule + PInd
=

PJoule

P
, (2.37)

where PJoule are the Joule losses in the sheet acting as heat sources and PInd are the undesirable Joule
losses in the inductor coil. For the definition of the active power P and all other characteristic alternating
current AC quantities, we follow [20] and [21]. First we need to introduce the concept of root-mean-square
(rms) quantities. The rms current is the constant direct current (DC) that dissipates the same power
in a resistance than the alternating current over the same period. The same definition is valid for the
rms value of voltage. In a general way, the rms value of an electric quantity urms over a period T can be
computed by

urms =

√
1

T

∫ T

0

u2(t) dt (2.38)

The complex (rms) values of voltage Ûrms and current Îrms for sinusoidal conditions can be computed
from their respective complex amplitudes Û and Î by Ûrms = Û/

√
2 and Îrms = Î/

√
2. The complex

power Ŝ is defined as
Ŝ = ÛrmsÎ

∗
rms, (2.39)

where ∗ denotes the complex conjugate. The amplitude ||Ŝ|| of Ŝ is called apparent power. The real part
of Ŝ is called active power P = Re(Ŝ) and its complex part is referred to as reactive power Q = Im(Ŝ).
The power factor cos(φ) is given by

cos(φ) =
P

||Ŝ|| . (2.40)

A high value of the power factor is another important criterion for the selection of the optimum frequency
[22], because the electrical system has to be designed for the apparent power, while only the active power
P generates heat.
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2.5 Induction Heating Setups for Sheets

(a) Longitudinal flux heating (b) Transverse flux heating

Figure 2.3: Induction heating setups for metal sheets, images taken from [23].

There are 2 possibilities to arrange the inductor for the induction heating of metal sheets: the sheet can
be completely surrounded by the inductor (Longitudinal Flux Heating, LFH), shown in Fig. 2.3(a)) or the
inductor can be parallel to the sheet surface (Transverse Flux Heating, TFH), shown in Fig. 2.3(b)). The
respective names come from the direction of the magnetic field penetrating the sheet: in the longitudinal
case, it is oriented parallel to the sheet surface, while in the transverse case it is normal to the sheet
surface. The current path in the sheet is the "image" of the currents in the inductor, as can be seen from
Fig. 2.3.

In the longitudinal setup, a homogenous heating of the sheet is achieved. Contrarily, for the trans-
verse setup the current paths are concentrated at the sheet edges, as they have to change their direction
along the edge, causing higher Joule losses in this region. To achieve a homogeneous target temperature
distribution, the shape and dimensions of the inductor have to be adapted accordingly. In many cases nu-
merical simulations and optimization algorithms are applied to realize a certain temperature distribution
[3]. Still, the edge overheating problematic is one of the major disadvantages of TFH compared to LFH
[24]. Even when a certain optimal geometry has been found for achieving temperature uniformity, there
is low flexibility to adapt it to sheets of different sizes. Furthermore, the non-uniform shape of the heating
patter can produce significant mechanical deformation,vibration and noise. The aforementioned aspects
will lead to high initial investment costs, since they require advanced design techniques and specialized
electric components.

Empirically, good electrical efficiencies are achieved for LFH when choosing the ratio of sheet thickness
d to penetration depth δ, d/δ, between 2.5 and 5. For TFH this ratio generally is only between 0.05
and 0.3 [15]. From the definition of the skin penetration depth, (2.25), we can see that for the same
material parameters the ratio d/δ is proportional to

√
f , implying that in order to achieve optimal

efficiency based on the previously mentioned criteria, the resulting frequency for LFH will be 1-2 orders
of magnitude higher than for TFH. Hence, longitudinal flux heating is only used for sufficiently thick
sheets or materials with high magnetic permeability. For thin non-magnetic sheets, frequencies in the
range of radio-waves (>100kHz) are necessary. To produce such excitation frequencies, expensive power
converters are necessary and there are significantly higher losses in the electronic switches of the power
supply. Thus, for thin steel sheets, TFH has the advantage of a high electrical efficiency (up to 95%)
using much lower frequencies [24]. At the same time, the reactive power is smaller [25].
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Chapter 3

Numerical Methods for Induction
Heating Applications

The numerical solution of induction heating problems with the FEM is challenging: For one thing, the
eddy current problem needs to be solved in several domains with different permeability and conductivity,
namely the inductor, the sheet and the surrounding air. The curl-curl nature of the eddy-current problem
leads to issues, especially in 3D where the div-grad equation found in most applications modelled by FEM
is fundamentally different from the curl-curl equation and requires different treatment [26]. Thus, besides
deriving the weak formulation, we will need to have a close look at the requirements for the interpolation
functions. Moreover, the skin depth needs to be sufficiently resolved, leading to large differences in mesh
sizes between domains. Also, a proper excitation mode in the inductor is required, allowing for the
efficient determination of current and voltage at the ports to compute the active input power. Finally,
an efficient approach to couple the electromagnetic field computations to the heat equation in the sheet
is needed. The notation in this chapter follows [7] and [8].

3.1 Weak Formulation of the Eddy Current Problem

To analyze the requirements on the approximation functions for the eddy current problem, we will first
need to review some fundamental aspects of function spaces for FEM. In this regard, Sobolev spaces
are a central concept. Generally, these spaces are vector spaces whose elements are functions defined on
domains in Rn and whose partial derivatives satisfy certain integrability conditions [27]. They allow for
studying "weak" solutions of PDEs in cases where the strong form of the PDE has no solution. The
following definitions are taken from [27]. We consider a domain Ω in Rn.
A differential operator of degree α is denoted by Dα, such that

Dα = Dα1 · · ·Dαn with Dj =
∂

∂xj
. (3.1)

Another important vector space is the Lebesgue space Lp(Ω) of all p-integrable functions that fulfill the
condition ∫

Ω

|u(x)|p dx < ∞. (3.2)
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Before defining the Sobolev space, the concept of the weak derivative needs to be introduced. It
extends the derivative in the classical sense to functions that are not smooth enough to have a continuous
partial derivative of degree α. The weak derivative Dαu = vα is defined by∫

Ω

u(x)DαΦ(x) dx = (−1)|α|
∫
Ω

vαΦ(x) dx. (3.3)

Finally, the Sobolev space Wm,p(Ω) is defined as

Wm,p(Ω) = {u ∈ Lp(Ω), Dαu ∈ Lp, ∀α ≤ m}. (3.4)

A Sobolev space with p = 2 is called Hilbert space and denoted by Hm(Ω).
Now we need to define a proper Sobolev space for finding a solution to the weak form of the curl-curl

problem (2.16). A bounded domain has finite energy if the electromagnetic field quantities E and H are
square-integrable. Thus, the L2 space is an adequate choice [28]. We then define the functional space
based on the curl operator, knowing that the rotor of the weak solution must be part of the chosen L2

space. In the three-dimensional case it is defined in the general form as [28]

H(curl,Ω) = {u ∈ L2(Ω)3,∇× u ∈ L2(Ω)3}. (3.5)

Now we can derive the weak formulation of the eddy current problem for the magnetic vector potential
A following [7][8]. The computational domain Ω with boundary Γ is composed of the two subdomains
Ω1 and Ω2, and share a common interface Σ. It is the same as for the derivation of interface conditions
in Fig. 2.1. To start with, we reformulate the continuity conditions from Sec. 2.1 using A

(2.17) =⇒ A1 × n =A2 × n (3.6)

(2.18) =⇒ ν1n×∇×A1 =ν2n×∇×A1 (3.7)

(2.19) =⇒ γ1n · ∂A1

∂t
=γ2n · ∂A2

∂t
. (3.8)

Defining a jump operator for an arbitrary vector u as [u] = u1−u2, (3.6) can be rewritten as [A× n] = 0.
The requirement of divergence-free B field (2.4) gives the boundary condition

A× n = 0 on Γ. (3.9)

We now incorporate the above defined boundary condition on Γ and continuity condition on Σ into our
functional space for A, obtaining

HΣ
0 (curl,Ω) = {u ∈ L2(Ω)3,∇× u ∈ L2(Ω)3,u× n|Γ = 0, [u× n] |Σ = 0} (3.10)

The strong form of the curl-curl problem 2.16 is multiplied with a vector valued test function A′ ∈
HΣ

0 (curl,Ω) to give ∫
Ω

A′ · ∇ × ν∇×A dΩ +

∫
Ω

A′ · γ ∂A
∂t

dΩ =

∫
Ω

A′ · Ji dΩ. (3.11)

To transform this expression, Green’s first integral theorem in vector form can be used∫
Ω

(∇× u · ∇ × v − u · ∇ ×∇× v) dΩ =

∫
Γ

(u×∇× v) · n dΓ. (3.12)
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From that, the final variational form can be written as: Find A ∈ HΣ
0 (curl,Ω) such that∫

Ω

γA′ · ∂A
∂t

dΩ +

∫
Ω

∇×A′ · ν∇×A dΩ =

∫
Ω

A′ · Ji dΩ +

∫
Γ

(A′ × ν∇×A) · n dΓ, (3.13)

for any A′ ∈ HΣ
0 (curl,Ω). The boundary integral

∫
Γ
(A′ × ν∇×A) · n dΓ depends on the boundary

condition and vanishes for (3.9).
From the interface conditions (3.6) and (3.7), we can see that the tangential component of A must be

continuous, while its normal component may jump. In two-dimensional cases, this is not a problem since A

will only have a component pointing outwards of the 2D plane. In the three-dimensional case, though, this
jump in the normal component is problematic when using nodal finite elements to directly approximate
A, because all components are automatically continuous, which prohibits their use at interfaces between
different materials. Additionally, the divergence of the current is violated at a jump of conductivity when
the nodally interpolated vector potential is used [29]. One possibility is to introduce multiple nodes on
the interface [30], but this causes problems when the interfaces are not flat [31]. Other methods involve a
decomposition of the HΣ

0 (curl,Ω) space, but this can still lead to problems for jumps in permeability [32].
Since we expect both jumps in permeability and in conductivity between the different material regions
in our induction heating applications, another element type should be used.

3.2 Edge Elements

To reformulate the previously discussed aspects on interface and boundary conditions in a mathematically
consistent way, we can say that the finite elements must be conforming in H(curl,Ω). We use three-
dimensional vectorial finite elements so the corresponding space of polynomials on Ω is a subspace of
the space of infinitely often continuously differentiable functions C∞(Ω)3. Then, for any u ∈ C∞(Ω)3,
we can define an interpolate Πu. The interpolates are denoted by Π1u on an element 1 and by Π2u

on an element 2, where element 1 and element 2 share a common face F . Then we can state that a
finite element is conforming in H(curl) if and only if the tangential components of Π1u and Π2u are the
same on F [33]. Without going deeper into the theoretical framework mainly developed by Nedelec [33],
one can state that edge elements having their degrees of freedom on the edge of the element verify this
condition. According to [7], the approximation of the vector potential A with edge finite elements of first
kind can be written as

A ≈
ne∑
k=1

EkAk, (3.14)

where ne is the total edge number and Ek the edge shape function of the k-th edge. The actual unknown
Ak is defined as the integral of the magnetic vector potential along the edge k,

Ak =

∫
k

A · ds. (3.15)

The edge shape function is constructed from the Lagrange shape functions of the nodes i and j constituting
the edge k,

Ek = (Ni∇Nj −Nj∇Ni) . (3.16)

First order edge elements are divergence-free. However this does not mean that the computed fields
are automatically divergent-free, since (surface) divergences may occur between two adjoining elements,
as the normal component of the field may jump. Thus, some kind of gauging is still required if we are
directly interested in the magnetic vector potential [31].
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For obtaining the linear system from the weak form (3.13), we follow [7] and apply the same dis-
cretization used for A to the test function A′, getting

ne∑
k=1

ne∑
l=1

(∫
Ω

γEk ·El dΩȦk +

∫
Ω

ν (∇×El) · (∇×Ek)Ak dΩ−
∫
Ω

El · Ji dΩ

)
= 0. (3.17)

The linear system is given by
MAȦ+KAA = f , (3.18)

where the time derivative can be discretized, using, e.g., the trapezoidal method. The harmonic case for
an angular frequency ω can be written in the form of

(MA + jωKA)A = f . (3.19)

Evaluating the bilinear forms from (3.17) on an element Ωe, leads to the following structure of the system
matrices:

MA = [mpq] ; mpq =

∫
Ωe

γEp ·Eq dΩ, (3.20)

KA = [kpq] ; kpq =

∫
Ωe

ν
(
Bcurl

p

)T

Bcurl
q dΩ, (3.21)

f = [fp] ; fp =

∫
Ωe

Ep · Ji dΩ. (3.22)

The discretized curl operator Bcurl
p is given by

Bcurl
p = ∇×Ep. (3.23)

Edge elements can lead to bad conditioning of the system matrices and cause decelerated conver-
gence for some linear system solvers, e.g., those based on the conjugate gradient (CG) method [34].
Consequently, the linear solver must be chosen with great care to assure good numerical efficiency. One
possibility to avoid this problem is to add a fictive conductivity γ′ in the non-conducting domains [32].

3.3 Non-Conforming Interfaces

The skin effect is comparable to a boundary-layer problem. Thus, it is necessary to mesh the skin depth in
the inductor and the sheet with a very fine mesh, while the surrounding air can be discretized in a coarser
way. However, the use of conforming grids might lead to strongly distorted elements near the interfaces.
Therefore it can be advantageous to use non-conforming interfaces, where conservation properties of the
solution across the intersection interface are exploited.

The problem setup is shown in Fig. 3.1: the computational domain Ω is composed of two subdomains
Ω1 and Ω2 with different discretizations and sharing the interface Γi. n is the common normal vector on
ΓI. The outer boundary ∂Ω can be split into a part where only Dirichlet BCs are imposed, denoted by
Γe and a part with only Neumann BCs Γn. A first approach is the classical mortar method, described,
e.g., in [35], which introduces a Lagrange multiplier g defined only on ΓI and representing the flux of the
solution across the boundary ΓI. The continuity on the interface is enforced in a weak sense by defining
the test function g′ on the interface and adding an additional equation of the form∫

ΓI

g′ (u1 − u2) dΓ. (3.24)
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Figure 3.1: Non conforming interface between 2 computational regions Ω1 and Ω2 with different grids,
image taken from [8].

This does not only have the disadvantage of adding a further unknown to the system, thus increasing
the computational effort, but also the formulation of appropriate Lagrange multipliers for the magnetic
vector potential is challenging.

A second technique used for non-conforming interfaces is the so-called Nitsche method, originally
introduced in [36] to impose Dirichlet BCs in a weak sense. It has the advantage of not requiring any
additional degrees of freedom (DOFs) and leading to symmetric system matrices. From this point on,
we adopt the approach from [8], as this corresponds to the implementation of non-conforming interfaces
for edge elements in openCFS. However, the following derivation is application-oriented. Further details
regarding the mathematical background, such as indications on function spaces and error measures, can
be found in [8].

To start with, we define jump- and average operators across the common facet F of 2 elements T1

and T2 belonging to Ω1 and Ω2 respectively. The jump operator for an arbitrary vector valued quantity
u is redefined on element level as

[u] =

{{}u|T1 − u|T2 , if F ̸⊂ ∂Ω

u|T , if F ⊂ ∂Ω.
(3.25)

Equally, the average operator is defined as

{u}ν =

{{}ν̄1u|T1 + ν̄2u|T2 , if F ̸⊂ ∂Ω

u|T , if F ⊂ ∂Ω,
(3.26)

with the coefficients

ν̄1 =
ν1

ν1 + ν2
and ν̄2 =

ν2
ν1 + ν2

. (3.27)

The basic idea is to impose the continuity conditions (3.6) and (3.7) by adding additional integral
terms, thus enforcing the continuity of the unknown in a weak sense. Starting from (3.13), we neglect
Dirichlet BCs, such that the last term on the right-hand side only contains entries for the non-conforming
interface. Taking into account (3.7) ν1∇×A1 × n = ν2∇×A2 × n, the boundary term on a common
facet F can be rewritten as

−
∫
F

{∇ ×A× n}ν · [A′] . (3.28)

We then add a similar term, switching unknown and test function to symmetrize the system

−
∫
F

{∇ ×A′ × n}ν · [A] . (3.29)
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Finally, the so-called penalty term defined by the Nitsche parameter β is added to assure the condition
(3.6) n×A1 = n×A2

β

∫
F

ν̄p2E
hE

[n×A] · [n×A′] , (3.30)

where hE denotes a characteristic element length scale and pE the element order. In the absence of
Dirichlet boundary conditions, the above defined surface terms only have contributions on the non-
conforming interface. Denoting by FI

h the set of faces on the interface ΓI, the total weak form (3.13) can
be rewritten as ∫

Ω

∇×A′ · ν∇×A+ κ

∫
Ω

γA′ ·A−
∑

F∈FI
h

∫
F

{∇ ×A× n}ν · [A′]−

∑
F∈FI

h

∫
F

{∇ ×A′ × n}ν · [A] +
∑

F∈FI
h

β

∫
F

ν̄p2E
hE

[n×A] · [n×A′] =
∫
Ω

A′ · Ji.

(3.31)

κ indicates the analysis type (static, harmonic transient) κ ∈ {0, γ∂/∂t, jωγ}, so the formulation is valid
for all analysis types.

The fully discretized linear system takes the form[
K11 0

0 K22

][
u1

u2

]
+ κ

[
M11 0

0 M22

][
u1

u2

]
+

[
KΓ1

KΓ1Γ2

KΓ2Γ1
KΓ2

][
u1

u2

]
=

[
f1

f2

]
. (3.32)

Note that the stiffness matrices K11 and K22, as well as the mass matrices M11 and M22 are com-
puted separately on the 2 subdomains Ω1 and Ω2. Given that KΓ2Γ1

= (KΓ1Γ2
)
T , the linear system is

symmetric.
The coupling matrices have to be evaluated on an intersection grid, which is composed of lines in

the 2D case and surfaces in the 3D case. For straight interfaces, the intersection can be computed
from comparing the ranges of all coordinates of elements on the interface. For structured 3D hexaedral
elements, the computation is also straight-forward since for axiparallel surface grids, the intersection
of two elements will also be an axiparallel quadrilateral. For curved interfaces, the procedure is more
complicated, since the elements are possibly not coplanar and projections are required [37]. In any case
the intersection grid just determines the position of the integration points, the shape functions are still
evaluated on the respective interface sides Γ1 and Γ2 [8].

3.4 Inductor Excitation

In the numerical simulation of induction heating setups, the power input comes from prescribing a certain
current or voltage at the ports of the inductor. A very simple approach to model the excitation current
in the case of negligible skin effect is the loading with a constant current density [7]. The setup is shown
in Fig. 3.2(a) and is only valid for thin wires and a high filling factor (dense arrangement of the wires).
In that case, the coil consisting of several wires can be reduced to a cylinder. The total current density
can be computed from

Ji =
IN

κΓc
eJ, (3.33)

where I is the total current through the coil, N the number of turns, κ the filling factor and Γc the cross
section of the hollow cylinder. This expression can directly be inserted into the right-hand-side of the
weak formulation of the curl-curl problem (3.13). In simulation, the conductivity of the coil region is set
to zero, since we assume that the individual wires are isolated from each other and we do not compute
eddy currents in that region.
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(a) Current density excitation, image taken
from [7].

(b) Domain definition, image taken from [8].

Figure 3.2: Different inductor excitation modes.

For efficiency computations, this approach is not applicable because it does not allow the computation
of the frequency dependent resistance of the inductor. It is possible to consider the skin-effect in the
conductor region even in the temporally gauged formulation of the eddy current problem, where the
electric scalar potential is set to V = 0. The total current can be split into an impressed and an eddy
current part, but this is computationally very inefficient, because the DOFs of the inductor will be coupled
to all other DOFs of the other regions [8]. Furthermore, the numerical stability is rather inferior [38].

Thus, we need to consider formulations of the eddy current problem without the temporal gauge.
The following derivations regarding the so-called A − V,A formulation are all taken from [8]. With the
definition of the scalar electric potential (2.12), the ungauged strong form of the eddy current problem is
obtained as

∇× ν∇×A+ γ
∂A

∂t
+ γ∇V = Ji. (3.34)

V is non-zero only in conducting regions. Since we have an additional unknown, we also need a second
equation. The divergence-free property of the total current density

−∇ ·
(
γ∇V + γ

∂A

∂t

)
= 0, (3.35)

can be used. Before deriving the respective weak forms, we take a closer look at the computational
domain, shown in Fig. 3.2(b). The domain Ω is divided into 3 subdomains: an inductor domain ΩC,
a non-conducting domain ΩI (air) and a conducting domain ΩP where eddy currents are induced. The
outer boundary is denoted by ∂Ω and the conductor region ΩC shares only the electric ports Γ+ and
Γ− with ∂Ω. The magnetic boundary and interface conditions for (3.34) are the same as in the previous
points, but we also have the electric BC n×E = 0 on ∂Ω. Using (2.12), this can be rewritten as

n×E = n×
(
−∇V − ∂A

∂t

)
= 0 on ∂Ω. (3.36)

This is equivalent to setting the two terms to zero individually. The second term ∂A
∂t is always zero on

∂Ω when using edge elements. The first condition ∇V = 0 is equivalent to a constant electric scalar
potential

V = V0 = const on ∂Ω. (3.37)
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As a consequence, the weak forms of (3.34) and (3.35) can be formulated as: Find A ∈ H0(curl,Ω)

and V ∈ W̃ = {w ∈ H1(Ω)|w|Γ+ = V+, w|Γ− = V−} such that∫
Ω

∇×A · ν∇×A′ dΩ +

∫
ΩC,P

γ
∂A

∂t
·A′ dΩ +

∫
ΩC

γ∇V ·A′ dΩ =

∫
ΩC

Ji ·A′ dΩ (3.38)

−
∫
ΩC

γ
∂A

∂t
· ∇V ′ dΩ−

∫
ΩC

γ∇V · ∇V ′ dΩ = 0 (3.39)

∀A′ ∈ H0(curl,Ω), ∀V ′ ∈ H1
0 (Ω)

It can be shown that fixing the Dirichlet values of V with a voltage U(t), e.g., by prescribing

V |Γ+ = U(t) V |Γ+ = 0, (3.40)

matches the definition of voltage based on power P = U(t)I(t) [12].
To make the computation of field values in the inductor more efficient, a modified A−V,A formulation

is developed in [8]. It is based on the fact that the electric field strength on ΩC does not depend on the
values of V on ΩC/{Γ+ ∪ Γ−} if the boundary conditions VΓ+ = U(t) and VΓ+ = 0 are fulfilled and
V ∈ H1(Ω) [12].

The obvious way of determining a solution for V verifying the conditions stated above is solving the
electric flow problem given in its weak form by: Find Ṽ ∈ H1(Ω) such that∫

ΩC

γ∇Ṽ · ∇Ṽ ′ dΩ = 0, ∀Ṽ ′ ∈ H1
0 (Ω). (3.41)

Considering that this PDE is linear, it is possible to use the voltage U(t) as a multiplication factor for the
solution of (3.41) with unit boundary conditions V0Γ+ = 1 and V0Γ+ = 0, redefining Ṽ as Ṽ = U(t)Ṽ0.

For voltage excitation, one can now simply replace V with the precomputed Ṽ0 in (3.38) on ΩC. The
divergence of the total current density in the conductor is

∇ · J = −∇ ·
(
γU(t)∇Ṽ0 + γ

∂A

∂t

)
. (3.42)

For a prescribed voltage U(t) it is zero, since the term containing A is zero when using edge elements
and the second term is zero through (3.41).

An excitation with a total current I is only possible in a weak sense by using the weak form of the
total current density as an additional constraint:∫

ΩC

γ
∂A

∂t
· ∇Ṽ ′

0 dΩ + U(t)

∫
ΩC

γ∇Ṽ0 · ∇Ṽ ′
0 dΩ = I. (3.43)

3.5 Heat Coupling

The Joule losses due to the resistance of the sheet are volumetric heat sources q̇v for the heat problem
derived in Sec. 2.3. Neglecting hysteresis losses, the instantaneous Joule losses are given by the relation

q̇v = J ·E. (3.44)

Since we do not have any impressed current density Ji in the sheet, we can use (2.5) to express the Joule
losses as

q̇v = γE ·E. (3.45)
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As already stated when defining the eddy current problem, we neglect the velocity of the sheet for the
electromagnetic problem and only take it into account through the convective term in the heat equation,
since in the sheet velocity range for our applications this term is dominant. Finally, using the definition
of E through the magnetic vector potential, we can rewrite the instantaneous Joule losses (in a gauged
formulation) as

q̇v = γ
∂A

∂t
· ∂A
∂t

. (3.46)

To realize this coupling in an efficient way, we presume that the time scale for the eddy current problem
is notably smaller than the characteristic heat diffusion time scale, so we average the Joule losses over
an eddy current time cycle [19]. As a matter of fact, the excitation frequency according to Sec. 2.5 is in
the range of 1-100 kHz, while the empirical time constant for the heating of steel sheets is in the order of
magnitude of 1 · 10−1s [8].

To take the period average from (3.46), integration over one period T is necessary

q̄v =
1

T

∫ T

0

γ
∂A

∂t
· ∂A
∂t

dt. (3.47)

We have a harmonic excitation with the excitation frequency ω and a period T = 2π
ω . Only the real

part of (3.46) contributes to the Joule losses. Hence, using the complex amplitude Â and its conjugate
complex Â∗, the integral can be rewritten as

q̄v =
ω

2π
γω2

∫ 2π
ω

0

[
1

2

(
Âejωt + Â∗e−jωt

)]2
dt. (3.48)

Since we are integrating over one period, the terms with e2jωt and e−2jωt vanish and the simplified form
of the period averaged Joule losses is given by

q̄v =
1

2
γω2Â · Â∗ =

1

2
γω2|Â|2. (3.49)

The weak form for the thermal problem is obtained from (2.34), assuming a static regime and using
the time averaged Joule losses q̄v as volumetric heat sources [19]. It states: Find the temperature ϑ such
that ∫

Ω

∇ϑ′ · (λ∇ϑ) dΩ +

∫
Ω

ϑ′ρcpv · ∇ϑ dΩ−
∫
Γ

ϑ′∇ϑ · n dΓ =

∫
Ω

ϑ′q̄v dΩ, (3.50)

for all test functions ϑ′. The boundary term
∫
Γ
ϑ′∇ϑ · n dΓ is evaluated depending on the boundary

conditions discussed in Sec. 2.3.
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Chapter 4

Analytical Solution Approaches

Preceding the advent of numerical simulation tools, a great variety of analytical design methods for
induction heating appliances were developed [39]. Unfortunately, they mostly exploit the rotational
symmetry of the setup, e.g., for induction furnaces [40]. To obtain quantitatively accurate results for
the case of (thin) metal sheets, one has to rely on numerical methods. Still, an attempt will be made to
present some analytical solutions that can be helpful in understanding the dependency of the efficiency
on the frequency and various system parameters.

4.1 Preliminary Considerations on Efficiency

At first, we need to reconsider the notion of electrical efficiency (2.37) to gain a more intuitive under-
standing of the dependencies that can be useful to interpret simulation results. The schematic induction
heating setup in Fig. 4.1 can be considered as a transformer analogy, defining the inductor as primary coil
and the sheet as closed secondary circuit [22]. However, inside the coil the total magnetic flux Φ divides
into one air gap component Φgap and one component within the sheet Φsheet that induces a voltage in the
sheet and produces the desired heating through Joule losses. Since Φgap represents an important part of
the total flux and results in purely reactive power, the power factor of induction heating setups is always
low, in some cases even smaller than 0.1 [41]. Moreover, a significant part of the magnetomotive force
NI of the inductor is delivered outside of the coil in the return flux path.

Φ

NI

Φgap

Φsheet

Figure 4.1: Inductor-sheet system for N coils and an excitation current I, image adapted from [1].
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This effect is particularly pronounced for the "short" coils used in LFH and TFH setups. For cylindrical
workpieces, there are formulas for the computation of the equivalent magnetic reluctances for the air gap
and return path derived from the reluctance of an empty coil of infinite axial length [40]. For LFH and
TFH setups, the field line distribution around the inductor is not rotationally symmetric, so we need to
find a different approach.

Neglecting stray and return path losses, the efficiency can be reformulated as

η =
Rsheet

Rsheet +Rind
, (4.1)

where Rsheet is the resistance associated with the Joule losses in the sheet, while Rind describes the resistive
losses in the inductor. While this chapter is mainly concerned with the description of the sheet resistance
Rsheet, a few aspects regarding the resistance of the inductor should not be left unmentioned. In the
context of this thesis, hollow water-cooled conductors of rectangular cross-section are used. Evidently,
the resistance in the inductor will also depend on the skin effect so that for high frequencies the AC
resistance depends on the perimeter of the inductor cross section rather than on its area. Approximate
formulas describing this effect have been known for some time and have been successfully employed in
various applications, such as white-box modelling of power transformers of arbitrary cross-sections [42].
For thin rectangular conductors, where the height is much larger than the width, these formulas work well
and even a one-dimensional analytical solution can be derived [43]. However, for aspect ratios close to 1,
as in our case, the two-dimensional edge effects have to be taken into account and an analytical solution is
challenging to find, mainly due to the difficulty of stating consistent BCs [44]. Commonly used solutions
are correction factors for the one-dimensional case [45] or empirical formulas derived from extensive FEM
parameter studies [46]. These approaches are either cumbersome to use or have a restricted validity
range, so for a qualitative understanding, we will just assume an inverse dependency on the skin depth
in the inductor, namely Rsheet ∼ 1/δ [15] [47].

4.2 Plates of Finite Thickness

In Sec. 2.2, the diffusion equation describing the propagation of the electromagnetic field quantities for
the infinite half-plane was solved to illustrate the skin effect and introduce the notion of skin depth. For
the heating of metal sheets one needs to take into account the finite thickness of the heated objects. We
need to reconsider the solution found in (2.26) under the angle that we now also have an air region below
the plate, following [48]. In the first place, we assume a homogeneous field intensity at the top surface of
a plate of finite thickness, corresponding to unilateral heating. As already discussed, the induced sheet
currents are the inverse image of the inductor currents and will have significant values only below the
inductor. Hence, to get an approximate expression for the frequency dependency of the induced Joule
losses, the system can be reduced to considering the effect of two infinitely long conductors placed above
and below the sheet and directed along the x-axis [24]. In this simplified situation, LFH and TFH heating
principles differ only by the direction of the conductor currents and can be obtained from the unilateral
case using superposition according to Fig. 4.2. For LFH, the inductor currents above and below the
sheet are oriented in opposite directions, leading to a magnetic field in the same direction on both sides
of the sheet. For TFH, the currents are oriented in the same direction and the magnetic field is oriented
in the opposite direction on the two sides of the sheet. Again, only harmonic excitations are considered.
To simplify the notation, we denote the amplitude Ĥy simply by Hy.
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Figure 4.2: Different current configurations: a unilateral heating, b bilateral heating with currents in the
same direction, c bilateral heating with currents in the opposite direction, image adapted from [48].

In the plate region, where the eddy currents are induced, (2.22) still holds

∂2Hy

∂z2
= k2Hy. (4.2)

Neglecting the displacement current density in the non-conducting air region below the plate we find for
this region (denoted by index 1)

∂2H1y

∂z2
= 0. (4.3)

In the sheet we need to account for reflected waves, so the complete ansatz for the magnetic field
intensity has to be used in (4.2)

Hy(z) = C1e
kz + C2e

−kz. (4.4)

For the air region below the plate, it is sufficient to use the ansatz

H1y(z) = C3e
−k1z, (4.5)

since no reflected waves will appear in this case. Inserting this ansatz in (4.3), it trivially follows that
C3 = 0 and H1y = 0. Using the boundary condition Hy(z = 0) = H0 as well as the continuity of the
tangential component of H at the bottom of the plate Hy(z = d) = 0, one obtains the equations for the
integration constants

C1 + C2 = H0, (4.6)

C1e
−kd + C2e

kd = 0. (4.7)

Based on this, the field intensity inside the plate can be written as

Hy = H0
e−kz − e−2kdekx

1− e−2kd
. (4.8)

Replacing the exponential functions with hyperbolic ones, this simplifies to

Hy = H0
sinh [k(d− z)]

sinh(kd)
. (4.9)
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From Maxwell’s law, we can easily obtain the electric field intensity, namely

E =
1

γ
∇×H, (4.10)

which in our case reduces to
Ex = − 1

γ

∂Hy

∂z
. (4.11)

Using the expression found in (4.9), the electric field intensity is given by

Ex = H0
k

γ

cosh [k(d− z)]

sinh(kd)
. (4.12)

Based on these relations, we can derive the fields for the case of bilateral heating, depicted in Fig. 4.2.
In the case of currents in the same direction, as encountered in TFH, the electric field intensities E′

0 and
E′′

0 have equal amplitude and phase, while the magnetic field intensities H ′
0 and H ′′

0 are opposed. Inside
the plate, the currents will also flow in the same direction. Thus, at an arbitrary point at a distance z

from the sheet surface, there will be superposition of the electromagnetic field intensities E′ and E′′ as
well as H ′ and H ′′

Hy = H ′
y −H ′′

y , (4.13)

Ex = E′
x + E′′

x . (4.14)

To account for symmetry, H ′
y = H ′′

y in the middle of the plate, such that we have Hy(z = d/2) = 0.
Based on (4.9), the individual components H ′ and H ′′ can be written as

H ′
y = H0

sinh [k(d− z)]

sinh(kd)
, (4.15)

H ′′
y = H0

sinh (kz)

sinh(kd)
. (4.16)

This can be inserted into (4.13) and after some mathematical transformations, one finds

H ′
y = H0

sinh
[
k
(
d
2 − z

)]
sinh

(
k d
2

) . (4.17)

For induction heating, we are mainly interested in the current density distribution Jx(z) in the plate,
which when using (4.11) and Jx = γEx is given by

Jx = H0k
cosh

[
k
(
d
2 − z

)]
sinh

(
k d
2

) . (4.18)

In order to get results for practical applications, we have to compute the norm of the complex functions
derived above. For the current density this yields

|J |
|J0| =

√
cosh

(
d−2z

δ

)
+ cos

(
d−2z

δ

)
cosh

(
d
δ

)− cos
(
d
δ

) , (4.19)

where the eddy current density |J0| on the surface is given by |J0| =
√
2H0

δ and δ again denotes the skin
penetration depth defined in (2.25). The resulting Joule loss power densities can be computed from

p =
1

2γ
J2. (4.20)
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The total heating power P in the plate can be obtained by plugging (4.19) into (4.20) and integrating
over the sheet thickness d

P =

∫ d

0

p dz

=
1

γ

(
H0

δ

)2 ∫ d

0

cosh
(
d−2z

δ

)
+ cos

(
d−2z

δ

)
cosh

(
d
δ

)
+ cos

(
d
δ

) dz

=
H2

0

2δγ

sinh
(
d
δ

)
+ sin

(
d
δ

)
cosh

(
d
δ

)− cos
(
d
δ

) . (4.21)

For the case of opposite currents, corresponding to the LFH case, the electric field intensities E′
0 and

E′′
0 have opposite directions, while the magnetic field intensities H ′

0 and H ′′
0 are equal in amplitude and

phase and the resulting field quantities can be written as

Hy = H ′
y +H ′′

y , (4.22)

Ex = E′
x − E′′

x . (4.23)

Using the same approach as before, the resulting absolute value of the current density can be found as

|J |
|J0| =

√
cosh

(
d−2z

δ

)− cos
(
d−2z

δ

)
cosh

(
d
δ

)− cos
(
d
δ

) . (4.24)

The total heating power is given by

P =
H2

0

2δγ

sinh
(
d
δ

)− sin
(
d
δ

)
cosh

(
d
δ

)
+ cos

(
d
δ

) . (4.25)

Comparing (4.21) and (4.25), one can see that they only differ by the second factor depending on the
ratio d/δ, which can be denoted by λTFH and λLFH respectively

λTFH =
sinh

(
d
δ

)
+ sin

(
d
δ

)
cosh

(
d
δ

)− cos
(
d
δ

) , (4.26)

λLFH =
sinh

(
d
δ

)− sin
(
d
δ

)
cosh

(
d
δ

)
+ cos

(
d
δ

) . (4.27)

Comparing the eddy current distributions over the plate thickness in Fig. 4.3, one can see that for
TFH, the current distribution is practically constant for ratios of d/δ below one, while for LFH, the
distribution is very uneven, with vanishing currents in the middle of the plate. The zero current density
in the plate centre results from enforcing symmetry in (4.23). When a homogeneous heating of the plate
over thickness direction is required, it can be of advantage to use TFH.

Regarding the optimal frequency, the curve of the characteristic coefficients λLFH and λTFH in Fig. 4.2
gives some qualitative insights. For LFH, λLFH is maximal at a ratio of d/δ = 2.7 approximately, while
for a further increase of the d/δ ratio, the coefficient goes to 1. An estimate of the optimal frequency
can be obtained from this relation. For TFH, one can only see that the λTFH value decreases with
increasing ratios d/δ, asymptotically approaching the value of 1 as well. Theoretically λTFH would go
to infinity for d/δ approaching zero, but this is not physical. Hence, we cannot deduce any optimal
d/δ ratio. Furthermore, in TFH (at least for lower frequencies) we have a vertical component of the
magnetic field passing through the plate. This cannot be modelled with the chosen approach, such that
the solutions derived in this section can only give approximate qualitative relations for the TFH case.
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Figure 4.3: Analytical eddy current density scaled by maximum eddy current density over dimensionless
sheet thickness coordinate.
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Figure 4.4: Comparison of the characteristic coefficients λLFH and λTFH over different ratios of d/δ.

Still, the indicated empirical ranges of the d/δ ratios introduced in Sec. 2.5 can be justified by the
comparison of λLFH and λTFH.

4.3 Straight Current Filament over Plate of Infinite Thickness

In the cases considered previously, the magnetic field distribution at the surface was a known quantity and
we only derived its propagation into the plate. In induction heating setups, though, the magnetic field
quantities at the plate surface are not known a priori and have to be determined based on the arrangement
of the conductors. Analytical solutions are available for the case of a straight current filament parallel to
the plate. In theory, results ca be obtained for arbitrary conductor configurations, using the superposition
principle. Another advantage of this approach is that stray and return path losses will be automatically
taken into account by this solution, since the distribution of the magnetic field around the conductor is
evaluated.
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We assume a plate of infinite thickness, a simplification that will be justified later through comparison to
numerical results, obtained with the computational model from Fig. 4.5(b). The derivation follows [13]
and [49]. This time we are also interested in the field variation above the plate, so the coordinate system
is rotated as compared to the previous layouts, as shown in Fig. 4.5(a). The field values change not only
in the direction of the plate thickness, but also in the x direction parallel to the plate surface. Thus, the
separation of variables method has to be used and it is favourable to use the magnetic vector potential
A, as A has a single component in z-direction.

x

y

z

I

h

(a) Filament carrying a current I at a distance h from a
plate of infinite thickness, image adapted from [49].

(b) Computational model with conductor of
width bind and sheet thickness d. Orange in-
ner inductor part is water. Sheet in yellow.

Figure 4.5: Models for a current filament over a plate.

Denoting by 1 the air region above the plate and by 2 the conducting plate region, the diffusion
equations for the magnetic vector potential are obtained by

∇2A1z = 0, (4.28)

∇2A2z = k2A2z = jp2A2z, (4.29)

with p2 = ωµγ. The solution for A must be symmetric with respect to the y-axis. In the air region
1, there is a superposition of the fields from the current filament and the induced eddy currents in the
plate. In the plate region 2, y < 0 and the solution has to vanish for y → −∞. The following ansatz
formulations for the magnetic vector potential fulfill the physical behaviour described above

A1(x, y) =

∫ ∞

0

(
C1e

my + C2e
−my

)
cos(mx) dm, (4.30)

A2(x, y) =

∫ ∞

0

C3e
qmy cos(mx) dm. (4.31)

Here, m (with dimension 1/m) is the constant of the separation of variables, while q is an additional
variable for the sheet region defined by q =

√
m2 + jp2.

The components of the magnetic flux density can obtained by

Bx =
∂A

∂y
, (4.32)

By = −∂A

∂x
. (4.33)
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Taking into account the sign convention for y, the term emy in (4.30) describes the field due to the current
filament. Consequently, Ampere’s law for the current filament can be used to determine C1, namely

B1(x, y) =
µ0I

2πr
, (4.34)

with r =
√
x2 + (b− y)2 as the distance from the filament. For the region between the filament and the

plate, the condition (4.34) can be evaluated using (4.32) and (4.33) to give

C1 =
µ0I

2π

e−hm

m
. (4.35)

To determine C2 and C3, the interface conditions described in Sec. 2.1 have to be used

B1y = B2y, (4.36)
1

µ0
B1x =

1

µ
B2x. (4.37)

Defining the relative permeability µr = µ2/µ0, the integration constants can be obtained as

C2 =
µ0I

2π

µrm− q

µrm+ q

e−hm

m
, (4.38)

C3 = µ2
µ0I

π

1

µrm+ q
e−hm. (4.39)

Hence, the magnetic vector potential in the air and sheet region are given by

A1(x, y) =
µ0I

2π

∫ ∞

0

(
emy

m
+

µrm− q

µrm+ q

e−my

m

)
e−hm cos(mx) dm, (4.40)

A2(x, y) =
µ2I

π

∫ ∞

0

e−hmeqy

µrm+ q
cos(mx) dm. (4.41)

The period-averaged Joule losses in the plate can be evaluated using the time-averaged Poynting vector

S =
1

2
E ×H∗, (4.42)

where H∗ is the complex conjugate of the magnetic field intensity. To obtain the total complex power
losses P + jQ in the plate, we need to integrate the projection of the Poynting vector in y-direction
(pointing into the plate) over the surface

P + jQ =
1

2

∫ ∞

−∞
(E ×H∗) · ey dx. (4.43)

In the following, ex, ey and ez denote the unitary coordinate vectors. To transform (4.43) into an
expression that can be easily evaluated with numerical tools, we express the Poynting vector in terms of
the current density, which only has a component in z-direction

J = −∂A2

∂t
= −jωγA2. (4.44)

Using (4.44), the magnetic field intensity can be computed as

H =
1

µ
∇×A2 = −j

1

ωµγ
∇× J . (4.45)
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Evaluating this for the vector components, the complex conjugate H∗ of the magnetic field intensity is
obtained as

H∗ = j
1

ωµγ

(
∂J∗

∂y
ex − ∂J∗

∂x
ey

)
. (4.46)

The electric field intensity is obtained from J by division through the conductivity γ

E =
J

γ
ez. (4.47)

Substituting (4.46) and (4.47) into (4.44) yields

P + jQ =
j

γp2

∫ ∞

0

J
∂J∗

∂y
dx. (4.48)

Substituting the expression (4.44) in (4.48), an integral containing the product of two Fourier integrals
is obtained that can be reduced to a single integral using Parseval’s formula. The final expression for the
complex losses is

P + jQ = j
p2I2

2πγ

∫ ∞

0

q∗e−2mh

(µrm+ q)(murm+ q∗)
dx, (4.49)

with q∗ as the complex conjugate of q. The sheet resistance Rsheet can be directly computed from P ,
using P = RsheetI

2.
In order to check to what extent the derived analytical formula is useful in the context of induction

heating of metal sheets, the analytical results are compared with numerical computations for the model
shown in Fig. 4.5(b). As for all other considered induction heating setups in this thesis, a hollow, water-
cooled inductor is used. Even though the sheet thickness is not infinite, it can be assumed that a metal
plate whose thickness is greater than the skin depth at the given frequency will act essentially like a
semi-infinite solid [49]. For the used material parameters (γ = 9 ·1051/(Ωm) and µr = 10) the skin depth
has the value δ =3.75mm at the minimum frequency of f =2kHz, so from a sheet thickness of d = 4mm on
this assumption should be verified. First, the agreement between the analytically computed total losses
P and the Joule losses in the sheet for different distances h were analyzed. Two different formulations
for the current excitation are compared. For the A-formulation, the current density is constant over the
inductor cross section, in analogy to the stranded coil approximation described in
Sec. 3.4. In the modified AV formulation, the skin effect in the inductor is taken into account. As
shown in Fig. 4.6, there is a considerable difference between the analytical and numerical solution. An
increasing distance leads to slight improvements, since the impact of the conductor geometry becomes less
important if the conductor is further away from the plate. The difference between A and AV formulation
is only noticeable for a coupling height of h = 10mm and frequencies above 50kHz. In that case,
the currents will be strongly concentrated near the outer conductor surface, leading to slightly higher
Joule losses in the sheet. From Fig. 4.7(a) it can be concluded that the previously stated assumption
regarding the infinite sheet approximation is valid. In fact, from a sheet thickness of 5mm on, the
curves for the numerically computed Joule losses are practically overlapping. The main reason for the
important difference between analytical and numerical solution can be seen from Fig. 4.7(b): the limit
for the validity of the analytical model resides in the finite spatial extension of the conductors. In other
words, the current filament approximation can only be used for very small inductor widths and starts to
converge towards the analytical results only for bind smaller than 1mm. Hence, 2D analytical solutions
for the eddy currents induced in plates by current filaments are useful only to gain a qualitative overview
on the problem. Also, one can see the large increase in complexity of the analytical solution even for the
simplest possible two-dimensional case for sheet induction heating when the field distribution around the
inductor is resolved.

26



104 105
0

5

10

15

20

25

30

35

40

45

50

Frequency f in Hz

J
ou

le
L
os
se
s
in

W
/m

h = 10mm, A h = 10mm, modified AV h = 10mm, analytical
h = 20mm, A h = 20mm, modified AV h = 20mm, analytical
h = 30mm, A h = 30mm, modified AV h = 30mm, analytical

Figure 4.6: Influence of the distance between filament and plate for bind = 5mm and d = 5mm.

To sum things up, the difficulty to obtain a realistic value for the sheet resistance combined with the issues
related to the analytical inductor resistance computations discussed in Sec. 4.1, stress the importance of
numerical tools in the design of sheet heating applications.
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(a) Influence of the sheet thickness d for bind = 5mm.
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Figure 4.7: Models for a current filament over a plate.
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Chapter 5

Efficiency Curves from Numerical
Simulation

Now we want to obtain the actual efficiency curves for a LFH and a TFH setup. Two-dimensional (2D)
and three-dimensional (3D) results are compared to see when the turning of the current at the sheet edge
needs to be taken into account.

5.1 Computational Models

To start with, the assumptions used in the computational models will be discussed. Furthermore, the
two and three-dimensional models will be validated through mesh convergence studies.

5.1.1 2D Models

The underlying assumptions for the two-dimensional model are that the sheet and the inductor have
infinite length, such that the current is never turning in the sheet. In that case, the same setup of Fig.
5.1 can be used for both LFH and TFH. For the preparatory computations of this section, the coil is
excited with a current of amplitude Î = 60A. The geometric dimensions and the material parameters
used in the simulations are listed in Tab. 5.1 and Tab. 5.2 respectively.

Table 5.1: Geometry data for the LFH and TFH case according to Fig. 5.1, all dimensions in mm.

Setup bind hind tind lind d hcoupling

Longitudinal 15 25 1.5 150 2 10
Transverse 15 25 1.5 40 2 10

Table 5.2: Linear material parameters for the simulations.

Material electric conductivity permeability
(in (Ωm)−1) (in Vs/(Am))

steel 9 · 105 1.2566 · 10−5

air 0 1.2566 · 10−6

copper 5.67 · 107 1.2566 · 10−6
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Figure 5.1: Setup with all relevant geometric dimensions.

(a) Longitudinal Flux Heat-
ing.

(b) Transverse Flux Heating.

Figure 5.2: Comparison of magnetic field lines and current orientation for steel sheet heating setups.

The difference between the setups arises from the boundary conditions and the orientation of the
current in the inductor. Modelling just a quarter of the setup is possible due to the 2 symmetry lines
of the problem that can be seen from the magnetic field computations for the full model without any
symmetry BCs in Fig. 5.2. Here the different flux situations are realized just by the orientation of
the current: For the longitudinal case, one has to imagine a coil surrounding the sheet, while for the
transverse case, there are inductors parallel to the sheet below and above the sheet.

When the magnetic field lines are tangential to the boundary, the boundary condition B · n = 0 (for
a normal vector n) needs to be imposed. This corresponds to the x-y-plane for the longitudinal case and
to the y-z-plane for the transverse case. For the other symmetry planes, the natural boundary condition
B · t = 0 (for a tangent vector t) applies.

In the following, we will conduct some studies to find the optimal mesh settings for the 2D case. The
structured mesh for the relevant regions is shown in Fig. 5.4(a). Since we are using edge elements with
magnetic vector potential A, the problem is pseudo-3D. Actually, A is normal to the 2D mesh plane, but
it is constant in this direction, given that we consider a setup of infinite width. Thus, it is sufficient to
just extrude the mesh with a single element in y-direction.
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Figure 5.3: Convergence study of the integrated Joule losses in the sheet for different air domain sizes,
lref = lind for the length ratio and lref = d+ 2hcoupling + 2hind for the height ratio.

Integrated Joule losses in the sheet are the evaluated quantity for the convergence study since they
are one of the input values for the computation of the efficiency. They are evaluated at a single frequency,
namely a value close to the optimal efficient frequency that will be determined in the next section. For
the LFH case, the evaluation frequency is 50kHz, for the TFH setup 5kHz. Note that it is sufficient to
conduct one study for both setups, as due to the symmetry considerations discussed in the previous point
the mesh structure is exactly the same for the longitudinal and the transverse case. In a first step, we
need to determine the minimal size of the air domain to get reliable results. The dimensions of the air
domain are shown in Fig. 5.5(a). For the 2D case, the actual air width is not important, given that we
only have a pseudo-3D problem. A sheet width of 1m is chosen such that we immediately get the results
in W/m. Two separate convergence studies were conducted for the size of the air domain with respect to
the inductor dimensions. The results are shown in Fig. 5.3. For the air length ratio in Fig. 5.3(a), the
inductor length lref = lind is chosen for reference. A length ratio of 6 is sufficient to achieve a converged
result. The reference for the air height ratio as shown in Fig. 5.3(b) is the total height of the setup, given
by lref = d+ 2hcoupling + 2hind. A height ratio of 8 is chosen in the following.

For the mesh refinement study in Fig. 5.4(b), the characteristic length is the circumferential element
size of the inductor cross section. All other grid sizes are chosen proportional to this reference length.
Note that a bias is applied in the sheet and in the inductor, where we need to resolve the skin depth,
because otherwise an acceptable convergence rate cannot be realized.

(a) Structured mesh of inductor
and sheet.
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Figure 5.4: Mesh refinement study for the 2D setup.
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5.1.2 3D Models
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(a) Air domain dimensions.
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(b) Definition of 3D geometry parameters.

Figure 5.5: Definition of geometry parameters for the 3D setup.

For the 3D models, the geometry of the inductor in y-direction is taken into account, so different
models are required for the longitudinal and transverse setup, even though the same symmetries and
boundary conditions are applied. In 3D, another symmetry can be applied for the magnetic problem
as well as for the heat problem, namely the symmetry with respect to the y-z-plane, as shown in Fig.
5.5. Pyramid elements are not implemented in openCFS, such that transitions between hexahedral (hex)
and tetrahedral (tet) elements are not possible in a conforming way. The regions where the skin depth
must be resolved should be meshed with hexahedral elements. Close to the surface there will be elements
with a very high aspect ratio for the mesh size in depth direction (y-direction) compared to the mesh
size in the cross-sectional direction (in the x-z plane). For transformations from the reference elements
to the physical space for the curl operator, a division by the element Jacobian is necessary. Tetrahedral
elements have a much smaller Jacobian compared to hexahedral ones, so for unfavourable aspect ratios
they are more liable to cause numerical difficulties. Moreover, regarding non-conforming interfaces, the
most accurate results are obtained for hex-hex combinations. Hence, an all hexahedral mesh was created.
For LFH, the turn of the inductor is always located outside of the sheet, so a fully conforming hex mesh
is possible, as shown in Fig. 5.6(a). For TFH, a fully conforming mesh is only possible when the turn is
located outside of the sheet, but since in general this is not realized, a non-conforming mesh is necessary.
However, one must take care not to put the non-conforming interface at a point with a permeability
jump, since this might cause inaccurate results. Thus, a good solution is to locate the non-conforming
interface in the middle of the air-gap between inductor and sheet. The top part with the inductor and
the bottom part with the sheet can be meshed separately in a fully structured way. A top view of the
upper part of the mesh with the inductor can be seen in Fig. 5.6(b).

In the 3D case, the optimal air width as defined in Fig. 5.5(a) also needs to be determined. The same
procedure as for the 2D case is adopted, fixing the air width and height to the optimal values chosen
according to Fig. 5.3 and varying the air domain width. The reference value for the computation of the
air width ratio is the total inductor length, given by wsheet+2lbend, as defined in Fig. 5.5(b). Comparing
the maximum changes in the values of the integrated Joule losses of the studies for the 2D air dimensions
in Fig. 5.5(a) with the ones for the air width according to Fig. 5.7, the changes are less important and
the additional gain in precision is small compared to the increase in computational resources. In the end,
an air width ratio of 1.5 is chosen because from that value on the curve is flattening out.
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(a) Lateral view of the mesh for the longitu-
dinal setup.

(b) Top view of the mesh for the transverse
setup.

Figure 5.6: Structured hex meshes for the 3D simulations.
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Figure 5.7: Convergence study of the integrated Joule losses in the sheet for different air width ratios
wair/lref , with lref = wsheet + 2lbend.

For the 3D mesh refinement we proceed in an analogous way as for the 2D case, but this time also
a refinement in depth direction is required. Especially the turns and the sheet edges have to be meshed
with a sufficient number of elements since the change in the direction of the currents needs to be resolved.
For a good convergence rate, it is favourable to apply a bias in the sheet width direction, such that we
have smaller elements close to the edge and larger elements towards the middle of the sheet, where no
significant gradients in y-direction occur. The results are shown in Fig. 5.8.
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(b) h-refinement study TFH.

Figure 5.8: Mesh-refinement study for 3D models, using lowest order elements.
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One of the most important questions regarding modelling is the validity range of the reduction of the
full 3D setup to the computationally cheaper 2D case. While this question will be analyzed through direct
comparison of efficiency curves and field values in the next section, an interesting point is the influence of
the sheet width on the electromagnetic results, namely from what sheet width on the assumption of an
infinite sheet is justified. The evaluated criterion is the convergence of the integrated Joule losses, as well
as the x component of the magnetic flux density Bx, at the surface of the sheet, close to its centre, where
the disturbances from the edge have disappeared and the 2D assumption should be valid. In literature,
the region where the influence of edge effects on the electromagnetic field values is negligible is referred
to as the regular zone. For TFH it is fully developed from ratios of wsheet/lind > 2 [47]. Given that
lind = 0.15m for the TFH setup, this agrees reasonably well with the results of the magnetic flux density
at the sheet surface, shown in Fig. 5.10(b), where from wsheet = 0.5m on, the value of Bx is close to the
2D one, while for wsheet = 0.25m, there is still a significant difference. A similar convergence behaviour is
obtained for the magnetic flux density in the LFH setup, shown in Fig. 5.9(b). For the integrated Joule
losses plotted in Fig. 5.9(a) and Fig. 5.10(a), convergence is much slower and the actual 2D values are
not reached within a reasonable value range of the sheet width. On the one hand, this is caused by the
increased Joule losses close to the edges, on the other hand, the active power input to the system is also
higher for the 3D case due to the presence of the turn.
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(b) Magnetic flux density.

Figure 5.9: Influence of the sheet width for LFH with comparison to the values from 2D computations.

0.4 0.6 0.8 1 1.2 1.4

8.4

8.5

8.6

8.7

8.8

8.9

9

9.1

9.2

Sheet Width in m

J
ou

le
L
os
se
s
in

W
/m

2D Reference

(a) Integrated Joule losses.

0.4 0.6 0.8 1 1.2 1.4

1

2

3

4

5

·10−3

Sheet Width in m

M
a
gn

et
ic

F
lu
x
D
en
si
ty

B
x
in

T

2D Reference

(b) Magnetic flux density.

Figure 5.10: Influence of the sheet width for TFH with comparison to the values from 2D computations.
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5.2 Results

In the following, the electromagnetic field quantities will be computed over a wider frequency range,
such that curves for the electrical efficiency and the power factor over the excitation frequency can be
obtained. Furthermore, the field values in the sheet will be analyzed at different frequencies, to evaluate
the impact of the skin effect and understand its influence on the efficiency measures. 2D and 3D results
will be directly compared. In industrial induction heating applications, input powers ranging from 1kW
to 10MW and frequencies in the range from 50Hz to 1MHz can be found [1]. To obtain more realistic
power values, the excitation current is increased to Î = 2.5kA.

5.2.1 Longitudinal Flux Heating

The curves for the electrical efficiency measures are given in Fig. 5.11. To compute the efficiency curves,
100 frequency points with logarithmic distribution were computed. Based on that, an interval for the
optimal frequency could be derived. Within this interval, the values given in Tab. 5.3 were determined,
with a frequency resolution of 50Hz. For the electrical efficiency η, there is no clear maximum because
after reaching a certain maximal value it is practically constant. The power factor has a distinct maximum
and consequently is the best indicator for the optimal frequency in this case. As indicated in Sec. 2.5,
the value of the maximum power factor is small for LFH setups.

Table 5.3: Optimal efficiency values for LFH setup.

Setup f in kHz η in % cos(φ)

2D 50.1 93.1 0.154
3D 49.9 92.9 0.160
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Figure 5.11: Electrical efficiency η and power factor cos(φ) over the excitation frequency for LFH.
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The flattening out of the efficiency curve can be directly obtained from the analytical formula for
the Joule losses in the sheet for inverse currents (4.25): the frequency dependency is

√
fλLFH. The

proportionality from the square root of the frequency f comes from the inverse dependency on the skin
depth δ. As discussed in Sec. 4.1, the inductor resistance has a similar dependency. Consequently, once
λLFH approaches a fixed value, there will be no further increase in efficiency. In fact, there is even a slight
efficiency decrease for higher frequencies because some secondary influences on the inductor resistance
lead to higher losses in the coil [1]. In the 3D case, this effect is more pronounced, because the turn
located outside of the sheet contributes to the coil losses without further increasing the Joule losses in
the sheet.

The curves for the 2D and 3D case are practically overlapping over the whole frequency range and
also the difference between the optimal frequencies and maximum efficiency values are negligible, which
is plausible since no important 3D effects are expected in the LFH case. As predicted by Fig. 2.3(a),
the sheet currents are circulating in the x-z-plane. The turning of the currents near the sheet edge is
illustrated in Fig. 5.12. It can be seen that a deviation from the 2D current profile, which can only have
a y-component, is occurring only in a section near the sheet edge of 1/20 of the sheet width.

|J| in A/m2

Figure 5.12: Sheet current density distribution for LFH at f = 50kHz, detailed view of the current path
at the sheet edge.

In Fig. 5.13, the electromagnetic field quantities are evaluated over the sheet thickness for different
frequencies. As shown analytically in Fig. 4.3(a), the eddy current density in the middle of the sheet is
vanishing, with the maximum value at the sheet surface. For f = 5kHz, the skin depth is δ = 2.37mm
and the ratio d/δ is smaller than 1, so the magnetic flux density is practically constant over the sheet
thickness. For higher frequencies, the distribution of the magnetic flux density will become increasingly
uneven due to the skin effect. For frequencies one order of magnitude higher than the optimal frequency,
there is even a negative magnetic flux density and a negative eddy current density towards the plate
centre. No significant differences between the 2D and 3D computations can be detected.

The distribution of the field values over the length of the sheet is shown in Fig. 5.14. In the area
between the inductor wires, the current density is constant for the optimal frequency, as visualized in
Fig. 5.14(b).
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Consequently, the induced power density is homogeneously distributed over the coil length without any
significant peaks, which is favourable as there is a limit for the maximum power density that can be
securely transferred to the sheet. Exceeding that limit, the resulting electromagnetic forces can lead to
significant mechanical effects, such as vibrations or noise emission [47]. The qualitative behaviour of the
x-component of the magnetic flux density is the same as for the current density Jy.
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Figure 5.13: Comparison of field results from 2D and 3D computations over sheet thickness for LFH,
for different frequencies. The field quantities are evaluated right below the inductor centre, close to the
middle of the sheet. The sheet surface is at z = 1mm.
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Figure 5.14: Field results from 2D computations over sheet length for LFH, for different frequencies. The
field quantities are evaluated at the sheet surface at z = 1mm. The symmetry plane is at x = 0mm.
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5.2.2 Transverse Flux Heating

For TFH setups, there is a clear maximum of the electrical efficiency besides the maximum of the power
factor, as can be seen from Fig. 5.15. According to Tab. 5.4, the maximum power factor and maximum
efficiency are not occurring at the same frequency, even though the deviations for the optimal values are
negligibly small. Compared to the efficiency curves for the longitudinal case in Fig. 5.11, the differences
between the 2D and 3D computations are much more important. This is expected, since the turning of
the current at the sheet edge below the inductor turn introduces 3D effects over a large part of the sheet
width, which cannot be modelled by the infinite sheet width assumption of the 2D setup.

Table 5.4: Optimal efficiency values for TFH setup.

Setup Maximum η Maximum cos(φ)
f in kHz η in % cos(φ) f in kHz η in % cos(φ)

2D 5.1 93.8 0.394 3.85 93.6 0.399
3D 5.3 93.2 0.365 4.65 93.1 0.369
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Figure 5.15: Electrical efficiency η and power factor cos(φ) over the excitation frequency for TFH.

The currents in the sheet are the inverse image of the currents in the inductor, which is also illustrated
in Fig. 5.16. They follow the shape of the turn and they are mainly concentrated below the inductor.
Regarding the distribution of the field quantities over the sheet thickness Fig. 5.17, the x-component of
the magnetic flux density is vanishing in the centre of the plate, as predicted analytically by applying
symmetry considerations to the case of currents of same direction on both sides of the sheet in (4.13).
For ratios of d/δ smaller than 1, the eddy current density is constant over the sheet thickness as could
also be shown based on analytical results in Fig. 4.3(b).
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|J| in A/m2

Figure 5.16: Current path in the sheet for TFH at f = 5kHz, view in z-direction.
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Figure 5.17: Comparison of field results from 2D and 3D computations over sheet thickness for TFH,
for different frequencies. The field quantities are evaluated right below the inductor centre, close to the
middle of the sheet. The sheet surface is at z = 1mm.

The reason for the different curvature of the eddy current density plots between Fig. 5.17(b) and Fig.
4.3(b) can be derived when considering the distribution of the magnetic flux density components over the
sheet length Fig. 5.18: the analytical model from Sec. 4.2 considers only components of the magnetic
field in x-direction. However, at ratios d/δ smaller than 1, there is an important magnetic flux normal
to the plate surface, the so-called "transverse flux". For higher frequencies, the induced currents in the
sheet cause an opposite magnetic field in the z-direction, such that the useful transverse magnetic flux
between the inductors becomes practically zero, as it is the case for f = 50kHz in Fig. 5.18(b). At that
point, the situation of the field values in the plate becomes similar to that of the longitudinal case, with a
reorientation of the magnetic flux density parallel to the sheet surface, as the sheet becomes less and less
transparent to the magnetic field due to the skin effect. Similarly, the distribution of the eddy currents
inside the sheet is more uneven, with a maximum close to the sheet surface.
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For the eddy current distribution over the sheet length Fig. 5.19(a), one notices a strong concentration
of the currents below the inductor. In the centre between the inductors the current density component
Jy has to completely vanish, given that the currents in the two inductor branches must be opposed. In
fact, for a qualitative description of the situation, the total current distribution in the sheet is commonly
reduced to a constant current density circulating in the sheet in a cross-section of dimensions sheet
thickness times inductor width [47]. This agrees well with the simulation results. Fig. 5.19(b) illustrates
the notion of regular zone introduced previously: for a third of the plate width, the current density has
only a y-component. In that region, the field values over the sheet length and thickness can be described
by the 2D model, an assumption that is confirmed by the good accordance between 2D and 3D results
in Fig. 5.17.
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Figure 5.18: Magnetic Flux density from 2D computations over sheet length for TFH, for different
frequencies. The field quantities are evaluated at the sheet surface at z = 1mm. The symmetry plane is
at x = 0mm.

Closer towards the sheet edges, the currents are turning, resulting in currents in x-direction of maxi-
mum values as large as one half of the Jy currents. This reorientation of the sheet currents close to the
sheet edge leads to an important current density concentration as visualized in Fig. 5.16, resulting in
the potentially problematic edge overheating effects. One important design parameter in that regard is
the position of the bend centre relative to the sheet edge. The optimal frequency and maximum attained
efficiency for different bend positions lbend (as defined in Fig. 5.5) are studied in Fig. 5.20. For a better
interpretation of the results, it should be noted that the turn radius is equal to lind/2 = 75mm, so that
for lbend > 75mm, the turn is located completely outside the sheet. Concerning the optimal frequency,
no clear trend could be found, as the values are distributed more or less randomly in the range between
5.2KHz and 5.6KHz. The maximal electrical efficiency is reached for lbend = 0mm, with a strong decrease
the more the turn is located outside of the sheet. In that case, a large portion of the inductor is not
located in the sheet plane and consequently does not contribute to the Joule losses, while it is still causing
an increasing electrical resistance.
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Figure 5.19: Current density over sheet length (2D computations) and sheet width (3D computations)
for TFH. The symmetry plane is at x = 0mm and y = 0mm respectively.
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Figure 5.20: Influence of the bend position lbend on the electrical efficiency.

For a complete investigation of edge effects in TFH, a heat simulation must be conducted. Now, the
sheet velocity must be taken into account due to the advection term of the heat PDE. A sheet velocity
in x-direction of vx = 0.1m/s is chosen, the other simulation parameters are summarized in Tab. 5.5.

Table 5.5: Parameters for the thermal simulation in the sheet.
density heat conduction heat capacity heat transfer inlet bulk

coefficient temperature temperature
(in kg/m3) (in W/(mK)) (in J/(kgK)) (in W/(m

2
K)) (in °C) (in °C)

7860 510 15 15 20 20
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The inlet temperature is fixed, while at the outlet and at all symmetry planes, zero heat flux is set.
For the contact surfaces with the air region, convective heat transport with a constant heat transfer
coefficient is assumed. The advection term breaks the symmetry with respect to the y-z-plane, so that
the temperature field has to be computed on the half model instead of the quarter one. The results for
the temperature field Fig. 5.21 show a clear temperature maximum close to the sheet edge. To analyze
the effect of the bend position on edge overheating, the temperature distributions along the sheet width
were compared in Fig. 5.22 for different bend positions. If the edge of the turn is located inside the
sheet, the lowest edge overheating is observed and the the maximum temperature is found at a certain
distance from the sheet edge. Moving the bend outside of the sheet, the maximum temperature increases
up to a bend position of one half of the bend radius, while for larger values of lbend, the maximum is
decreasing again. Hence, the strongest concentration of eddy currents at the sheet edge is not appearing
when the bend is placed completely inside the sheet plane, but when half of the turn is located outside
of the sheet. As already mentioned, the currents inside the sheet are the mirror of the inductor currents.
However, when the turn is located outside of the sheet, the sheet currents will still be forced to turn at
the sheet edge.

Now, the turning will start closer to the sheet edge and the corresponding eddy current density will
be higher. This can deduced from Fig. 5.22(a): for lbend = 0mm, the temperature increase starts already
at a width coordinate y = 0.18m, whereas for lbend = 37.5mm, there is a steeper temperature rise only
from y = 0.22m on. The decrease of the maximum temperature for bend positions further away from the
sheet is caused by the drop in electrical efficiency. In this context it should be noted that a reasonable
edge overheating is sometimes desired, since the sheet edges are cooling faster than the rest; an effect
that could not be taken into account by our assumption of a uniform inlet temperature. Still, for our case
the best compromise for a high electrical efficiency and a homogeneous temperature distribution were
obtained for a bend position of lbend = 0mm, where the bend is lying completely in the sheet plane. This
configuration will also be used for the parameter studies in the next chapter.

Sheet Temperature in °C

Figure 5.21: Temperature distribution at the sheet surface for TFH.
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Figure 5.22: Influence of the bend position lbend on the temperature distribution at the sheet surface.
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Chapter 6

Influence of Geometry and Material on
Efficiency

In this chapter, the dependencies of the optimal frequency and maximum efficiency will be studied for
geometric design parameters and sheet data, namely the sheet thickness and its material parameters.
For LFH, only 2D computations were performed, since the results found previously do not indicate any
important 3D effects in that case, so that the optimal frequency prediction is assumed to be valid also
for the full 3D setup. For TFH, though, the effects in the edge region have a noticeable impact on the
efficiency curves, so the 2D results were compared with 3D computations. In the 2D case, the optimization
algorithm of golden section search [50] was used to find the optimal frequency with an accuracy of 0.1%.
For the 3D results, if used, a reduced frequency interval was introduced, typically ranging from the
2D optimal frequency to a frequency value 30% higher than the optimal frequency with a frequency
resolution of 50Hz. In the conducted studies the frequencies in the 3D case were always higher than their
2D equivalents; if the optimum was found at an interval boundary, the study domain was extended.

6.1 Longitudinal Flux Heating

Considering the results from Sec. 4.2, in particular Fig. 4.2, the optimal efficiency is reached approxi-
mately for a ratio d/δ=2.7, from which an approximate of the optimal efficiency can be derived as

fopt ≈ 7.29

πd2µγ
. (6.1)

This formula is used only to check if the qualitative dependencies are the same for the numerical results, an
accurate prediction over the whole parameter range cannot be expected from such a simplified approach.
As discussed in Sec. 2.5, the d/δ values used in industrial sheet heating applications vary over a wider
range. For the heating of a cylindrical body inside a coil, the following estimate of the maximum efficiency
can be obtained from (4.1) [1]

ηopt ≈ 1

1 + α
√

γ
γiµ

, (6.2)

where α is the coupling ratio defined as ratio between the internal diameter of the inductor and the
external diameter of the heated cylinder and γi is the conductivity of the inductor. Even though the
definition of α cannot be directly transferred to the case of sheets, experimental data in [1] proves that
the qualitative behaviour is the same for slabs. The default settings in the following parameter studies
are those from Tab. 5.1 for the geometry and Tab. 5.2 for the material data.
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For the influence of the sheet thickness Fig. 6.1, the optimal frequency varies with 1
d2 . The maximum

efficiency is constant which corresponds to the results found in [51]. The small fluctuations are due to
the fact that for LFH the maximum power factor has to be used for determining the optimal efficiency
because the efficiency curve does not have a distinct maximum. In some cases, the maximum power
factor is reached for slightly lower frequencies than the plateau for the maximal efficiency, causing some
oscillations in the maximum efficiency results. The increase of the power factor for larger sheet thicknesses
can be explained by the frequency dependency of the reactances in the system. Higher sheet thicknesses
lead to lower optimal frequencies, smaller reactive power and imply a higher power factor.

With an increasing coupling height, the optimal frequency diminishes, while the maximum efficiency
and power factor are also decreasing, as shown in Fig. 6.2. In the case of a coil surrounding the sheet,
the influence of the coupling height on the magnetic field strength should be very small. The efficiency
decrease is rather related to the higher stray losses in the larger air gap and to higher return path losses.
Generally, the coupling height is chosen as small as possible, but there are always constraints to assure
the safe transport of the sheets through the inductor and to avoid collisions. The chosen security margin
depends on the sheet velocity, temperature increase, thermal expansion coefficient and also on the general
process layout, e.g., the distance to other processing steps [15].
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Figure 6.1: Influence of sheet thickness d on efficiency for LFH.
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Figure 6.2: Influence of coupling height hcoupling on efficiency for LFH.
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Regarding the dependency on the sheet conductivity and permeability in Fig. 6.3 and Fig. 6.4, we
have an inverse dependency of the optimal frequency on the respective material parameter in both cases,
as described in (6.1). A ratio of 30 was chosen between the highest conductivity or permeability value
and the lowest one, to obtain a comparable sensitivity estimate. A higher sheet conductivity decreases
the sheet resistance and the efficiency, while a higher permeability increases the efficiency as predicted in
(6.2).
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Figure 6.3: Influence of conductivity γ on efficiency for LFH.

5 10 15 20 25 30

0

100

200

300

400

500

Relative permeability µr

O
p
ti
m
al

F
re
q
u
en
cy

f
in

k
H
z

2D Simulation Approximate Formula

(a) Optimal frequency.

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Relative permeability µr

O
p
ti
m
al

η
,
co
s(
φ
)

η cos(φ)

(b) Efficiency and power factor at optimal
frequency.

Figure 6.4: Influence of relative permeability µr on efficiency for LFH.

6.2 Transverse Flux Heating

6.2.1 Parameter studies

The relevant geometry parameters for TFH have been known since the 1940s [5]. As the conventions are
slightly different from the ones chosen in Fig. 5.1, new reference dimensions in accordance with TFH
literature are defined in Fig. 6.5, namely the pole pitch t and the height of the air gap hgap. The sheet
thickness d and the inductor width bind are measured as before. If not stated differently, the default
parameters from Tab. 6.1 are used.
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Figure 6.5: Setup with all relevant geometric dimensions.

Table 6.1: Reference Dimensions TFH, dimensions defined as in Fig. 6.5, all dimensions in mm.

Name Pole pitch Air gap Inductor Width Sheet thickness
Symbol t hgap bind d

Value 150 20 15 1.5

Various empirical formulas for the optimal frequency can be found in literature, but unfortunately
they are valid only for a very specific combination of parameters and do not take into account all geometry
influences [47] [24]. A reasonable first estimate of the efficient frequency can be found in [47],

fopt ≈ 1.52

µ0γdt
. (6.3)

For d/δ << 1 , the current in the sheet is mainly induced by the normal (transverse) magnetic flux
density between the inductors as shown in Fig. 5.18(b). According to Faraday’s law, the induced tension
in the sheet depends on

Uind = −NdΦ

dt
, (6.4)

where N = 2 for both-sided inductors and Φ denotes the total magnetic flux defined by the surface
integral Φ =

∫
S
B · dS. Considering the 2 inductors as 2 parallel circular current loops having a radius

of half the pole pitch t/2, the total inductance L = NΦ
I is given by

L =
π

2
µ0

t

2
, (6.5)

under the assumption that t
2 >> hgap [52]. This expression is also valid for the case of an iron core

between the current loops with a correction factor for the higher flux, so the presence of the sheet should
not affect the qualitative behaviour. So for the same current I, a higher pole pitch increases the efficiency
and power factor as can be seen in Fig. 6.6(b). The optimal frequency behaves as predicted by (6.3).

If the assumption for t
2 >> hgap is no longer satisfied, (6.5) is changed to [52]

L =
π

2
µ0

t4

16h3
gap

. (6.6)
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Therefore, the induced current in the sheet will be reduced for high values of hgap. Moreover, the stray
losses and return path losses will increase. For a single-sided inductor the principle is the same as for the
current filament described in Sec. 4.3. This explains the decrease of efficiency and power factor in Fig.
6.7 for higher values of hgap.

Given that the electric current density is almost constant over the sheet thickness below the inductor,
as observed in Sec. 5.2.2, the sheet resistance will depend on 1

dbind
. This results in the efficiency decrease

for larger sheet thicknesses seen in Fig. 6.8(b). Through the analytical considerations in Sec. 4.2 no
optimal d/δ ratio could be found, still it is evident that the transverse flux configuration is only obtained
for ratios d/δ well below 1 where the sheet is sufficiently transparent to the magnetic flux in vertical
direction. Hence, the optimal frequency in Fig. 6.8(a) must decrease for sheets of higher thickness, which
also agrees with (6.3). The efficiency increase for larger inductors in Fig. 6.9 cannot be explained by
considering the sheet resistance. In fact, when evaluating the total efficiency according to (4.1), there is
no direct dependency on bind because it appears both in the expression for Rsheet and Rind. In contrast, a
bigger inductor width decreases the stray losses, as the field lines in the air gap will be conducted through
the air over longer distances [47], leading to a smaller stray flux.
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Figure 6.6: Influence of pole pitch t on efficiency for TFH.
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Figure 6.7: Influence of air gap hgap on efficiency for TFH.
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Figure 6.8: Influence of sheet thickness d on efficiency for TFH.
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Figure 6.9: Influence of inductor width bind on efficiency for TFH.

Regarding the agreement between the 2D and 3D simulations, it can be concluded that even if there are
significant insecurities in the prediction of the optimal frequency with the 3D values always 10-20% higher
than their 2D equivalent, the prediction of the maximum electrical efficiency is quite accurate with less
than 1.5% maximum absolute deviation over the whole considered parameter range. More importantly,
when evaluating the 3D efficiency at the optimal frequency predicted by the 2D computations, absolute
differences of only 0.8-1.5% are obtained. Around the optimal frequency, the electrical efficiency is
almost constant over a wide range of frequency values, so even for large differences in frequency, the
efficiency variation can still be small. For the power factor the maximum is more pronounced, with a
more important decrease for frequency values higher than the maximum. In consequence, the deviation
from the 2D prediction is higher, reaching up to 3.5%. In general, the lower efficiency of the 3D setup is
due to the increased losses in the turn. According to Fig. 5.15, the power factor is stronger affected by
this.

48



As discussed in Sec. 5.2.2, the maximum of the power factor (cos(φ) criterion) does not exactly
coincide with the maximum of the the electrical efficiency (η criterion). This question was analyzed using
two-dimensional simulations in Fig. 6.10, for different pole pitches and different sheet thicknesses. The
variation of the optimal frequency over the pole pitch is higher for the η criterion than for the cos(φ)

criterion, a result that was also found in Ref. [25]. For the case studied in Ref. [25] with a sheet thickness
of 0.8mm, there is a similar intersection of the frequency curves as for d =0.75mm in Fig. 6.10(a). In
general, the difference in the frequency and efficiency results between the two different criteria increase
in cases with low electrical efficiency.
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Figure 6.10: Comparison of differences between frequency of maximum efficiency (η criterion) and fre-
quency of maximum power factor (cos(φ) criterion) for different pole pitches t and different sheet thickness
d for TFH.

The dependency on the material parameters is only studied for the 2D case. For the influence of the
conductivity on the optimal efficiency, a similar relation as for the LFH case applies [47],

ηopt ∼ 1

1 +
√

γ
γi

. (6.7)

This agrees well with the efficiency decrease in Fig. 6.11(a), while the behaviour of the optimal frequency
Fig. 6.9(b) is also described reasonably well by the empirical formula (6.3). A special property of TFH
is that the efficiency changes in a certain frequency range around the optimal frequency are small and
that within these frequencies it is not sensitive to changes in the magnetic permeability of the material
[3]. For an increase of the relative permeability from 1 to 30 in Fig. 6.12, the change of the optimal
frequency is only 12.5%, while for an increase by the same factor of the electric conductivity, the optimal
frequency is divided by a factor 7. Similarly, the diminution in maximum efficiency is below 1%, which
agrees well with the results found in literature, e.g., in [53].

Only linear material parameters have been considered in the above parameter studies. Relevant non-
linearities in the context of the optimal frequency are the hysteretic B-H curve as well as the temperature
dependency of the electric conductivity and the permeability.
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Figure 6.11: Influence of conductivity γ on efficiency for TFH.
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Figure 6.12: Influence of relative permeability µr on efficiency for TFH.

For metals, the linear temperature coefficient for the electric resistivity α is in the range 0.0015 to
0.006 [54], so for maximum temperature increases around 1000°C, one can expect a significant increase
in the sheet resistance, which will also have an impact on the efficiency results. When temperatures near
the Curie point of the material are reached, a drop of the permeability to µr = 1 occurs [55]. In addition
to the material nonlinearities, the inhomogenous temperature field, as well as the magnetic forces will
lead to mechanical deformations in the TFH case, changing the coupling height and thus also affecting
the efficiency. To evaluate the fully nonlinear magnetic-thermal-mechanic coupling, the operating point,
namely input power and frequency, must be known. It is determined by the desired temperature profile
and not always known in the early design stage. Hence, a determination of the optimal frequency including
all non-linearities is barely possible, besides the fact that the computational cost of evaluating all these
iterative couplings over a wide frequency range will quickly become prohibitive.

Simulation results for TFH taking into account material nonlinearities in [55] and [56] lead to the
following conclusions: As already suggested by 6.12, the results are not sensitive to changes in the mag-
netic permeability. Therefore, sheets of different permeabilities can be heated without any adjustments
of the equipment. However, a strong influence of the conductivity changes can be expected, so once the
operating point is known, the efficiency results should be counter-checked using a temperature dependent
conductivity.
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6.2.2 Presence of a Core

The inductors can be embedded in a magnetic yoke, that with its higher magnetic permeability reduces
the reluctances in the magnetic circuit and leads to a higher magnetic flux. While for highly conducting
materials such as aluminum or copper, satisfactory efficiencies can only be achieved using a core, the
sheets with moderate conductivity treated in this thesis can also be heated using a setup without flux
concentrators [47]. Nevertheless, a comparison of the dependency of efficiency and optimal frequency
with and without the presence of a core will be given in the following.

From a direct comparison of the efficiency curves in Fig. 6.13, it follows that the optimal frequency
for the case without core is about twice as high as in the setup with core, as stated in [47]. For the
electrical efficiency, there is no significant difference, but the power factor is about 20% higher.
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Figure 6.13: Comparison of the influence of a magnetic core on the curves for electrical efficiency η
and power factor cos(φ) over the excitation frequency for TFH. Optimal frequency: with core: 2.25kHz,
without core: 6.02KHz.

For the setup with a core in Fig. 6.14(a), the magnetic flux will be strongly concentrated between
the inductors, which can be seen from the induced current profile in the sheet depicted in Fig. 6.14(b),
where the current is strongly concentrated below the conductors in the case with core. Hence, return
path losses become negligible and stray losses are reduced [47], which explains the huge difference in the
power factor values.

In all parameter studies 6.15-6.18, the qualitative dependency, of the efficiency values is the same
with or without core and the previous explanations remain valid. Overall, the optimal frequency is
approximately twice as high for the setup without core and there is a significant difference in the maximum
power factor value while the efficiency differences are very small. For the influence of pole pitch and sheet
thickness, Fig. 6.15 and Fig. 6.17 respectively, the behaviour of the optimal frequency is also the same.
However, for the case of an increasing air gap height in Fig. 6.7(a), the optimal frequency decreases for
the case without core and increases for the case with core. Similar results can be found in literature,
comparing, e.g., [5] for the setup with core and [3] for a sensitivity study without core. As already
mentioned, a larger air gap leads to a lower magnetic flux through the sheet, while simultaneously
causing higher stray and return path losses.
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(a) Geometry of the TFH setup with mag-
netic core (core in yellow).
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Figure 6.14: TFH Setup with core.

Due to the concentration of the magnetic flux by the core, there will be a fundamentally different weighting
of these effects as compared to the case without core, which can lead to an inverse efficiency trend. Varying
the inductor width bind Fig. 6.18, the frequency is almost constant for the case with core, but increases
for the case without core. It should also be noted that there is a minor influence of the coupling height
hcoupling and inductor width bind on the frequency as compared to a change in pole pitch or sheet thickness.
In particular, these parameters are not contained in the empirical formula (6.3), so it can be expected that
their influence is either difficult to quantify in a universal way or that it can be neglected in comparison
to other parameters.
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Figure 6.15: Influence of pole pitch t on efficiency for TFH, with and without magnetic core.
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Figure 6.16: Influence of air gap hgap on efficiency for TFH, with and without magnetic core.
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Figure 6.17: Influence of sheet thickness d on efficiency for TFH, with and without magnetic core.
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Figure 6.18: Influence of inductor width bind on efficiency for TFH, with and without magnetic core.
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6.2.3 Multiple Conductors

In Fig. 6.9, it could be shown that better efficiency results can be achieved when choosing a higher
inductor width bind. However, conductors with high width to height ratios cannot be used in real setups
because the required bending radius cannot be realized. One has to subdivide the single conductor into
several smaller conductors. In terms of heating power conveyed to the sheet this does not make much
difference, but for efficiency considerations, the resistance of the inductor is of high importance and it
depends on the aspect ratio of the rectangular cross section, as discussed in Sec. 4.1. In the following, we
will compare a setup with a single conductor to a setup with three separate conductors and investigate
to what extent the results found for the single inductor can be applied to multiple inductors.

For the considered example, a single conductor of width bind = 50mm, excited by a current of
Î =2.5kA, was subdivided into three conductors of width bind = 15mm with a current of Î =0.833kA. The
wall thickness is the same in both cases, tind =1.5mm. Of course, this is not exactly equivalent, because
the total conducting surface area will be different in the two cases, but modifying the wall thickness
would also affect the results, so we assume that the comparison is representative nonetheless.

For the direct comparison of the efficiency curves Fig. 6.19, it can be concluded that the differences
from an optimal frequency point of view are very small and also the maximum electrical efficiency for the
multiple conductor case is only 1% lower. The lower efficiency can be explained by a resistance increase
due to the proximity effect [57]. This effect causes a redistribution of the current density in the conductor
due to the electromagnetic field of other nearby conductors carrying an AC [1]. The differences in the
power factor are more pronounced: in the optimal frequency range, the curve of the single conductor
is located between the three curves of the multi-conductor setup, where the middle conductor has the
lowest power factor, while the power factor curves of the outer conductors are practically overlapping
over the entire frequency range. The proximity effect is responsible for the lower power factor in the
middle conductor: for two conductors with currents flowing in the same direction, the maximum current
density occurs on the far-side of the conductors, with a minimum on the faces in front of each other [1]
as visualized in Fig. 6.20. In the case of three conductors, this will imply a higher phase-shift for the
middle conductor, explaining its lower power factor.

Another important point are edge effects: from Fig. 6.20(a) it can be seen that the current density
is concentrated at the edges of the rectangular conductor, which was already discussed in Sec. 4.1. In
the part of the cross section far away from the edges, there is no gradient in circumferential direction but
only in thickness direction. For the multi-conductor case in Fig. 6.20(b), there is a superposition of the
proximity effect and edge effects, so the maxima are less pronounced for the inner edges.

According to Fig. 6.21, the resulting inhomogeneous current distribution over the inductor width
causes a peak in the induced sheet current density for the multi-conductor case, when comparing it to
the single-conductor setup. All in all, it can be concluded that the single conductor case offers a good
estimate for the efficiency parameters of the multi-inductor setup, but if the exact current distribution
over the inductor width is needed, the additional inductor cross sections should be modelled.
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Chapter 7

Conclusion and Outlook

In this thesis, the question of the optimal excitation frequency for the two most important induction
heating setups for metal sheets, longitudinal flux heating and transverse flux heating, has been analyzed.
Numerical results found by the Finite Element Method have been used to obtain efficiency curves over
a wide frequency range and derive the optimal frequency. Furthermore, the dependency of the optimal
frequency on various relevant parameters could be validated using analytical models and empirical for-
mulas from literature. In the following, the results of this thesis will be discussed from the point of view
of the design process of induction heating applications.

Two-dimensional simulations are computationally efficient and yield usable estimates for the optimal
frequency, the maximum electrical efficiency and the power factor. On a standard notebook, finding
the optimal efficiency for an arbitrary two-dimensional setup takes barely 2 minutes, with a maximum
memory consumption of 500MB. For longitudinal flux heating, it could be shown that the efficiency curves
for the two-dimensional and three-dimensional computations are practically overlapping, since there are
no significant three-dimensional effects in that case. By contrast, for transverse flux heating, the turning
of the sheet current along the edge leads to eddy current concentrations and deviations from the two-
dimensional current profile. As a consequence, the optimal frequency for the three-dimensional case is up
to 20% higher than the value obtained by two-dimensional computations. Nevertheless, the prediction
of the maximum efficiency value is sufficiently accurate with deviations of less than 2% for the studied
parameter range. Furthermore, for the determination of the optimal frequency, material nonlinearities
and mechanical deformations are neglected because the evaluation of the iterative couplings for a full
three-dimensional model over a wide frequency range is computationally too expensive. Additionally,
when assessing the accuracy of the frequency prediction, one has to take into account the coil-supply
system. In fact, in induction heating installations, the coils are supplied by resonant inverters, consisting
of thyristors, MOSFET or IGBT switches and also contain a capacitor bank to compensate the reactive
power required by the coil [24]. Thus, the resonant frequency also depends on this capacitance, so
that in general it is not possible to prescribe arbitrary values of the excitation frequency. To conclude,
we can say that in an initial design phase, the optimal frequency obtained by linear two-dimensional
computations is sufficient. In most cases, technical specifications of the electrical system, as well as
unknown disturbances in the real plant, such as the influence of metal supports on the magnetic field or
changes in the temperature of the surrounding air, will cause higher deviations than those induced by
reducing the complexity of the computational model.
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Once the optimal frequency is known, the coupled magnetic-thermal problem can be solved for the
full three-dimensional model taking into account all relevant material nonlinearities to get a realistic
prediction of the temperature distribution in the sheet. For transverse flux heating setups with high
power densities and large temperature gradients, the mechanical deformations should also be evaluated.

In the last two chapters, especially for transverse flux heating, it was shown that there is a strong
dependency of the efficiency on geometry parameters, e.g., pole pitch or bend position. In order to realize
a well-designed setup, combining a high electrical efficiency and a homogeneous temperature distribution,
it can be advantageous to formulate a constrained optimization problem for several parameters and not
only the excitation frequency. The objective functions to be minimized can be either efficiency based or
enforce a certain temperature profile. A large number of optimization techniques for induction heating
problems has been developed to which a good introduction can be found in [58] and [59]. Nonetheless,
the results from this thesis are a prerequisite for the formulation of suitable constraints on the frequency.
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