
Catching a Flying Dart using a Cable-Driven Parallel Robot

DIPLOMA THESIS

Conducted in partial fulfillment of the requirements for the degree of a

Diplom-Ingenieur (Dipl.-Ing.)

supervised by

Univ.-Prof. Dr. techn. Andreas Kugi
Dipl.-Ing. Ulrich Knechtelsdorfer BSc

Dipl.-Ing. Michael Schwegel BSc

submitted at the

TU Wien
Faculty of Electrical Engineering and Information Technology

Automation and Control Institute

by
Georg Feiler

Matriculation number 01525499

Vienna, August 2023

Complex Dynamical Systems Group
A-1040 Wien, Gußhausstr. 27–29, Internet: https://www.acin.tuwien.ac.at

Eidesstattliche Erklärung
Hiermit erkläre ich, dass die vorliegende Arbeit gemäß dem Code of Conduct - Regeln
zur Sicherung guter wissenschaftlicher Praxis (in der aktuellen Fassung des jeweiligen
Mitteilungsblattes der TU Wien), insbesondere ohne unzulässige Hilfe Dritter und ohne
Benutzung anderer als der angegebenen Hilfsmittel, angefertigt wurde. Die aus anderen
Quellen direkt oder indirekt übernommenen Daten und Konzepte sind unter Angabe der
Quelle gekennzeichnet. Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher
oder in ähnlicher Form in anderen Prüfungsverfahren vorgelegt.

Wien, August 2023

Georg Feiler

Preamble
This thesis is the second of two master’s theses dealing with the design and development
of a cable-driven robot technology demonstrator, which is able to catch a dart thrown by
a human such that the dart hits any desired scoring segment on the dartboard. From the
conceptualization phase to finishing both theses, the project required about 2 and a half
years to complete and I have truly put my heart and soul into it. While many challenges
had to be solved, I am very grateful and also a little proud that the design, assembly,
development and testing of the robot went relatively smoothly and that the final result
meets all requirements and expectations.

The experiences that I gathered while working on this project, but also while pursuing
my studies in electrical engineering and mechanical engineering, have been unique and
unforgettable. I want to express my deep and honest gratitude to numerous wonderful
individuals, that I had the pleasure of meeting, working and studying with, who have
shaped my life in many ways. All the generous, compassionate, creative and inspiring
people around me have made my journey enjoyable and have empowered me to grow
throughout my studies and have enable the successful completion of this project.

I want to thank Prof. Kugi for enabling this project and providing an environment
for research that is exciting, inspiring but at the same time meaningful and productive.
My deep gratitude belongs to Ulrich Knechtelsdorfer and Michael Schwegel for their
tireless support, their open ears and their dedication. I could not have wished for better
supervision and guidance. Thank you for your invaluable insights, your open-mindedness
and your patience with me. My sincere gratitude also belongs to Gerald Ebmer, Christian
Hartl-Nešić and Thomas Weingartshofer for their invaluable and generous help with
hardware and software related problems which saved me countless frustrating hours of
debugging.

I also want to express my deep gratitude for the limitless love and care from my family.
I want to thank my parents Maria and Gerhard for their unwavering support and for
never ceasing to believe in me. I want to thank my brother Martin for inspiring me and
my lovely girlfriend Luisa for her love and support along the way.

Last but not least, I would like to express my honest gratitude and sincere appreciation
to the fellow students that I had the honor of studying with and who have become good
friends in the process. Thank you Felix, Benjamin, Elias, Christopher and Jan for all the
inspiring conversations, your ideas and your advice.

While the future that lies ahead for my professional life is uncertain, I am looking
forward to the challenges and endeavours that the future might hold. I am grateful for all
the wonderful humans that I have the honor of travelling alongside on this journey.

Vienna, August 2023

I

Abstract
In the present work, a cable-driven parallel robot is employed to catch a flying dart thrown
by a human. The flight of the dart is captured in real-time by an infrared camera system
and a tournament dartboard is moved accordingly, such that the dart hits the desired
scoring segment on the dartboard.

An algorithm is developed to estimate the flight trajectory of the dart and predict the
impact location. For this purpose, the flight behavior of a dart thrown by an amateur
player is studied, and an aerodynamic model for the dart is developed. To move the
dartboard accordingly, a real-time trajectory generator is designed. The trajectories
generated by the trajectory generator are adapted by an input shaping algorithm, to
reduce structural vibrations induced by the dartboard motion due to reaction forces.
Finally, a trajectory following controller is designed and studied, which uses a cable force
distribution algorithm to resolve kinematic redundancies present in the cable-driven robot.

The individual components and algorithms employed in the control system are validated
separately via simulations. Furthermore, experiments are conducted to demonstrate the
effectiveness and reliability of the overall dart-catching robot system.

II

Kurzfassung
In dieser Arbeit wird ein paralleler Seilroboter angesteuert, um einen von einem Menschen
geworfenen fliegenden Dartpfeil zu fangen. Der Flug des Pfeils wird in Echtzeit von einem
infrarot Kamerasystem erfasst und eine Turnierdartscheibe wird entsprechend bewegt,
sodass der Dartpfeil das gewünschte Feld der Dartscheibe trifft.

Aus den während des Flugs gemessenen Positionen des Dartpfeils wird die Flugbahn
sowie der Auftreffort des Pfeils geschätzt. Dazu wird das Flugverhalten eines von ei-
nem Amateurspieler geworfenen Dartpfeils untersucht und modelliert. Um eine schnelle
Bewegung der Dartscheibe zur Zielpose zu ermöglichen, wird ein echtzeitfähiger Trajektori-
engenerator entworfen. Die somit berechnete Trajektorie wird in weiterer Folge angepasst,
um eine Anregung von Vibrationen des Roboters zu reduzieren. Ein Trajektorienfolgereg-
ler für den Seilroboter wird entworfen und näher untersucht, bei dem ein nichtlinearer
Algorithmus zur Berechnung der Seilkraftverteilung zum Einsatz kommt.

Die einzelnen Komponenten des Systems werden mithilfe von Simulationen validiert.
Anhand von Experimenten wird die Funktionsfähigkeit und Zuverlässigkeit des Gesamt-
systems demonstriert.

III

Contents
1 Introduction 1

1.1 Literature review . 1
1.2 Overview . 3
1.3 Structure of the thesis . 4

2 Mathematical robot model 6
2.1 Kinematics . 6

2.1.1 Inverse kinematics . 7
2.1.2 Forward kinematics . 8
2.1.3 Jacobian matrix . 9

2.2 Dynamics . 10

3 Controller Design 12
3.1 Cable force distribution . 12

3.1.1 Problem formulation . 12
3.1.2 Solution method . 13
3.1.3 Solution behavior . 15

3.2 Control structure . 17
3.3 Error dynamics and stability . 20

4 Trajectory generation 22
4.1 Problem formulation . 22
4.2 Literature review . 23
4.3 Trajectory generation algorithm . 25

4.3.1 Translation . 26
4.3.2 Rotation . 37
4.3.3 Filtering . 37

Moving average FIR filter . 37
IIR filter . 37

4.4 Simulation results . 38
4.4.1 Initial velocity . 38
4.4.2 Kinematic limits . 41
4.4.3 Profiles of velocity and acceleration 42
4.4.4 Filter behavior . 45

5 Input shaping for vibration reduction 47
5.1 Motivation . 47
5.2 Notch filter . 48
5.3 Zero vibration input shaping . 49

IV

Contents V

5.4 Robust input shaping . 50

6 Flight prediction 52
6.1 Overview . 52
6.2 Mathematical model . 53

6.2.1 Kinematics . 53
6.2.2 Dynamics . 55

6.3 Marker Assignment . 59
6.4 Observer Design . 62
6.5 Impact prediction . 64
6.6 Rotation planning . 66

7 Experimental results 68
7.1 Dartrobot experimental setup . 68
7.2 Controller tracking error . 70

7.2.1 Translation . 70
7.2.2 Rotation . 72

7.3 Vibration reduction . 76
7.4 Dart catching experiment . 80
7.5 Dart catching reliability . 87

8 Conclusion and outlook 88

A Appendix parameter values 90

List of Figures
1.1 Front view of the robot prototype developed in [10]. The white cables are

colored for better visibility. 2
1.2 Overview over the control system structure. 3

2.1 Robot geometry. 7
2.2 Free body diagram, see [10]. 10

3.1 Basis vectors er and eφ for cylindrical coordinates. 16
3.2 Solution behavior for τd = 145 N. 18
3.3 Solution behavior for τd = 50 N. 18
3.4 Structure of the control concept [10]. 20

4.1 Splitting the velocity into radial (er) and normal (e⊥) direction. 28
4.2 Velocity and acceleration profiles. 29
4.3 Applying the velocity limit by reducing âr. 33
4.4 Trajectories for different starting angles. Proposed OTG algorithm (solid

lines) compared to the optimal solution (dash-dotted lines). 40
4.5 Relative excess time required by the OTG algorithm. 40
4.6 Comparison of the behavior with different acceleration limits. 41
4.7 Trajectory for α0 = 120◦, vmax = 1 m/s and amax = 1 m/s2. 44
4.8 Behavior of different filters. 46

5.1 DFT of the acceleration for a typical motion. 47
5.2 Notch filter with fn = 6 Hz and different bandwidth values ∆f 49
5.3 ZV input shaping filter behavior. 50
5.4 ZVD input shaping filter behavior. 51

6.1 Internal steps of the flight prediction stage. 52
6.2 Dart geometry and optical marker location. 53
6.3 Parameterization of the dart orientation. 54
6.4 Switching between the handheld stage 1 and the airborne stage 2 56
6.5 Typical trajectory of a dart thrown by an amateur player. 56
6.6 Forces acting on the dart for small angles ϑ and ψ. 57
6.7 Marker assignment procedure without previous knowledge. 61
6.8 Marker assignment procedure with a state estimate ẑ. 61
6.9 Parameterization of the desired segment (e. g. triple 5) on the dartboard. 67
6.10 Rotation planning algorithm. 67

7.1 Experimental setup for catching a flying dart. 69

VI

List of Figures VII

7.2 (a) Dart with reflective tape. (b) Dart with spherical reflective markers. . 69
7.3 Experimental results: (a) Trajectory xC and yC . (b) Velocity ẋC and ẏC .

(c) Position error ex and ey. (d) Velocity error ėx and ėy. 71
7.4 Experimental results: (a) Task space force components in x-direction.

(b) Task space force components y-direction. (c) Cable forces τ . (d) Motor
torques T . 73

7.5 Experimental results: (a) Trajectory φ. (b) Angular velocity φ̇. (c) Position
error eφ. (d) Angular velocity error ėφ. 74

7.6 Experimental results: (a) Task space torque components. (b) Cable forces
τ . (c) Motor torques T . 75

7.7 Structural vibration of the CDPR. 77
7.8 Comparison of EE motion with different input shaping methods. (a) No

input shaping. (b) Notch filter. (c) ZV input shaping. 78
7.9 Effect of input shaping methods in time domain. (a) No input shaping. (b)

Notch filter. (c) ZV input shaping. 79
7.10 Effect of input shaping methods in frequency domain. (a) No input shaping.

(b) Notch filter. (c) ZV input shaping. 80
7.11 Experimental results: (a) Position tracking x. (b) Position tracking y.

(c) Position tracking z. (d) Angle tracking ϑ. (e) Angle tracking ψ. 82
7.12 Experimental results: (a) Velocity estimation ẋD. (b) Velocity estimation

ẏD. (c) Velocity estimation żD. (d) Angular velocity ω1. (e) Angular
velocity ω2. 84

7.13 Experimental results: (a) Dart impact prediction. (b) Dartboard motion
xC . (c) Dartboard motion yC . (d) Dartboard rotation φ. 85

7.14 Impact position of the dart. 86

List of Symbols

x ∈ Rnx pose of the end effector.
x̂ ∈ Rnx approximate solution for the end effector pose.
xd ∈ Rnx trajectory for the EE pose.
xset ∈ Rnx target set-point for the EE pose.
xC x-coordinate of point C.
yC y-coordinate of point C.
φ rotation angle of the end effector.
nq number of cables.
nx degrees of freedom (DOF).
nd input shaping FIR filter length.
nmk number of marker signals in the raw infrared camera data.
r radius of the end effector.
γ angle between the cable contact point and the vertical axis.
s cable winding direction.
l total cable length.
lr rolled cable length.
ls spare cable length.
lS dart shaft length between markers M and B.
lB dart barrel length between markers F and M .
lT dart tip length between markers F and the tip T .
lD distance from dart center of gravity D to marker F .
lac distance from dart center of gravity D to the aerodynamic center ac.
i ∈ N running index, cable index.
iF ∈ N index for the signal of marker F in the raw marker data.
j ∈ N measurement timestep index.
k ∈ N controller timestep index.
p value defining a p-norm.
pi filter pole.
t time.
tj time corresponding to the measurement step j.
q ∈ Rnq joint vector (cable lengths).
ϕik Rnx → Rnq mapping defining the inverse kinematic transformation.
ϕfk Rnq → Rnq mapping defining the forward kinematic transformation.
ϕ̂fk Rn

q → Rn
x approximation of ϕfk.

Jik ∈ Rnq×nx Jacobian matrix of the inverse kinematics.
JT+

ik ∈ Rnq×nx pseudoinverse of JT
ik.

VIII

List of Symbols IX

rAB ∈ R3 vector pointing from point B to point A.
rC ∈ R3 position vector pointing to point C.
eAB ∈ R3 unit vector in direction from point B to point A.
er ∈ R3 radial basis vector for polar coordinates.
eφ ∈ R3 azimuthal basis vector for polar coordinates.
e⊥ ∈ R2 normal basis vector in the xy-plane.
ex ∈ Rnx trajectory following error.
d ∈ Rnx wrench direction.
hA offset between winch and groove-plane in z direction.
hC offset between point C and groove-plane in z direction.
Fx force on the end effector in x-direction.
Ffi aerodynamic lift force on the dart.
Fdi aerodynamic damping force on the dart.
F R10 × R × R10 × R → R10 discrete-time transition function.
Mx torque on the end effector around x-axis.
τ cable force.
τ ∈ Rnq vector of cable forces.
τ min ∈ Rnq vector of minimum pretension cable forces.
τ max ∈ Rnq vector of maximum cable forces.
τ d ∈ Rnq vector of desired cable forces.
τ ∆ ∈ Rnq deviation from the desired cable forces.
τ ∗ Rnx → Rn

q cable force distribution function.
f ∈ Rnx vector of generalized forces (wrench) acting on the end effector.
fd ∈ Rnx desired wrench vector on the end effector.
f(z, u) R10 × R → R10 dynamical model for the dart.
fs sampling frequency of the robot controller.
f0 undamped natural frequency in Hz.
fn notch filter frequency in Hz.
∆f notch filter bandwidth in Hz.
Ts sample time of the robot controller.
Ti motor torque.
T ∈ Rnq vector of motor torques.
Td ∈ Rnq vector of desired motor torques.
Tw ∈ Rnq vector of winch inertia compensation torques.
ξ motor angle.
ξ vector of motor angles.
u motor voltage space vector.
u switching variable for the dart model.
i motor current space vector.
νw transmission ratio of the winch mechanism.
M ∈ Rnx×nx mass matrix.
MEE ∈ Rnx×nx end effector mass matrix.
C ∈ Rnx×nx Coriolis matrix.

List of Symbols X

Λ ∈ Rnx×nq torque transmission matrix.
g gravitational acceleration.
g ∈ Rnx generalized gravity vector.
mEE mass of the end effector.
mD mass of the dart.
Iw mass moment of inertia of the winch system..
Iz,EE mass moment of inertia of the EE around the z-axis.
ID,⊥ mass moment of inertia of the dart perpendicular to the zD-axis.
ID,∥ mass moment of inertia of the dart around to the zD-axis.
KP ∈ Rnx×nx proportional controller gain matrix.
KD ∈ Rnx×nx derivative controller gain matrix.
K ∈ R10×9 Kalman gain matrix.
K constant in the input shaping filter.
rd ∈ R2 trajectory for the EE position.
r̂d ∈ R2 unfiltered position computed by the trajectory generator.
rset ∈ R2 target set-point for the EE position.
r∗ ∈ R2 time optimal trajectory for the EE position.
rp ∈ R2 dart impact position in the xy-plane.
vd ∈ R2 trajectory for the EE velocity.
v̂d ∈ R2 unfiltered acceleration computed by the trajectory generator.
v0 ∈ R2 initial velocity of the trajectory.
v∗ ∈ R2 time optimal trajectory for the EE velocity.
ad ∈ R2 trajectory for the EE acceleration.
âd ∈ R2 unfiltered acceleration computed by the trajectory generator.
a∗ ∈ R2 time optimal trajectory for the EE acceleration.
jd ∈ R2 trajectory for the EE jerk.
jstep resulting jerk for a step input.
φd trajectory for the EE rotation angle.
φset target set-point for the EE rotation angle.
ωd trajectory for the angular velocity of the EE.
ωmax angular velocity limit for the EE.
ω̇max angular acceleration limit for the EE.
ω̇n notch filter angular frequency in rad/s.
ω0 undamped natural angular frequency in rad/s.
ω1 angular velocity in the dart reference frame around xD-axis.
ω2 angular velocity in the dart reference frame around yD-axis.
vmax velocity limit for the EE.
amax acceleration limit for the EE.
G R2 × R2 × · · · → R2 mapping defining a filtering function.
vr radial component of the vector v.
v⊥ normal component of the vector v.
l̂r distance from the trajectory to the set-point.
Ω angular velocity in the local reference frame.

List of Symbols XI

Ωn normalized notch frequency in rad/sample.
α1, α2 damping factors for the trajectory generator.
t⊥ time to complete the velocity profile in normal direction.
tr,1 time to complete the velocity profile in case I .
t̃r,1 lower bound for the time tr,1.
NFIR length of the moving average FIR filter.
ci constant in the IIR filter transfer function.
Ci constant for the dynamic dart model.
n IIR filter order.
β coefficient for the notch filter.
H ∈ R2×2 impulse response matrix of the FIR filter.
Hn notch filter discrete-time transfer function.
I identity matrix.
ID inertia tensor in the dart reference frame.
G(s) IIR filter transfer function.
α0 initial angle of the trajectory.
topt optimal (minimal) duration of the trajectory.
tOTG duration of the trajectory generated by the proposed OTG algorithm.
∆trel relative excess time required by the OTG algorithm.
A amplitude of the structural vibration.
ζ damping ratio of the structural vibration.
Y raw measurement data from the infrared (IR) camera system.
y ∈ R9 marker measurement data.
ŷ ∈ R9 a-priori estimate of the marker measurement data.
z ∈ R10 kinematic state of the dart.
ẑ ∈ R10 a-priori estimate of the kinematic state of the dart.
ẑ+ ∈ R10 a-posteriori estimate of the kinematic state of the dart.
h R10 → R9 output function mapping a dart state to marker positions.
w R10 process noise/disturbance.
v R9 measurement noise/disturbance.
ϑ angle parameterizing the orientation of the dart.
ψ angle parameterizing the orientation of the dart.
RD ∈ SO(3) rotation matrix from the dart ref. frame to the inertial ref. frame.
R ∈ R9×9 measurement noise covariance matrix.
Q ∈ Q10×10 process noise covariance matrix.
P ∈ R10×10 a-priori estimate of the estimation error covariance matrix.
P+ ∈ R10×10 a-posteriori estimate of the estimation error covariance matrix.
Φ ∈ R10×10 transition matrix of the linearized system.
C ∈ R9×10 output matrix of the linearized system.
ac aerodynamic center of the dart.
E(·) expected value operator.
δj,k Kronecker symbol.

1 Introduction
Sports and competitions have always been great activities for testing skills, training
abilities and pushing the boundaries of what is physically possible while at the same time
bringing enjoyment and entertainment. While humans participate in sports since ancient
times [1], sports and competitions have been widely used across many different disciplines
of technology to demonstrate capabilities, train and improve the state-of-the-art and
develop new solutions for all kinds of problems. Sports and competitions are a useful tool
in the world of robotics to improve robot designs, algorithms and materials.

Many different sports have been used as benchmarks for robotic applications because
they usually require fast, precise and skillful motion. Among them are badminton [2],
tennis [3], archery [4], soccer [5] and ping-pong [6–9]. The sport of darts is particularly
interesting for robotic applications because it can be played indoors with a very small
amount of space and requires great levels of speed as well as precision. Furthermore,
it is very popular and commonly played all around the world. Consequently, the skills
and processes involved are easy to understand and communicate. This makes darts very
suitable for demonstrating the performance and capabilities of a robotic system.

In this work, a robot capable of catching a flying dart thrown by a human is developed.
The thesis builds upon the preceding work [10], where a cable-driven parallel robot
(CDPR) is developed and implemented which is capable of highly dynamic motion. The
end effector (EE) of the CDPR is equipped with a tournament dartboard. Figure 1.1
shows a photograph of the CDPR prototype.

An infrared (IR) camera system is used to track the position of a steel dart. In the
present work, the algorithms and components for tracking the flight-trajectory of the dart,
predicting the dart’s impact location and quickly moving the dartboard accordingly are
developed. The resulting control system is capable of automatically catching a flying dart
which is thrown at the dartboard, such that any desired scoring segment can be hit. Thus,
the aim of this thesis is to create a technology demonstrator for showing the performance
and precision of the CDPR as well as the employed algorithms and control strategy.

1.1 Literature review
In the literature, different aspects of the sport of darts have been used in the context
of robotics. In [11], the dart throwing motion is used as a benchmark application for a
hybrid variable stiffness actuator. The throwing motion itself is modelled and generalized
using reinforcement learning techniques in [12]. An assistive robotic trainer is presented
in [13], which gently guides a human thrower using a robotic actuator attached to the
human upper limb when throwing a dart.

In his master’s thesis [14], Linderoth presents a vision-based algorithm for tracking the
motion of a flying dart and predicting the dart’s impact location. The computer vision

1

1 Introduction 1.1 Literature review 2

wrench-closure
workspace

guiding
pulley

cable
spool

end effector

portable
emergency stop

electrical
cabinet

Figure 1.1: Front view of the robot prototype developed in [10]. The white cables are
colored for better visibility.

system is based on RGB cameras and the flight trajectory of the dart is tracked using a
Kalman filter.

The dart catching robot Mi5-Dartboard [15], which not only tracks the flight of the
dart but also moves the dartboard accordingly, is implemented by a joint team from
TU-Munich and ITQ GmbH as a technology demonstrator. The system uses RGB cameras
and a specialized pulsed lighting system to measure and track the position of the dart
and a gantry composed of industrial linear axes to move the dartboard.

Wolfslehner presents a high-speed hydraulic positioning system for a dartboard in his
master’s thesis [16]. Based on this system, the dart catching robot Magic Darts [17]
is implemented by a joint team from JKU-Linz, INRAS GmbH and the Linz Center of
Mechatronics (LCM). The system uses a radar-based measurement system for tracking
the position of the steel dart.

1 Introduction 1.2 Overview 3

Rober designs and implements a dart catching robot [18], based on a CDPR for moving
the dartboard and a commercial IR camera system for tracking the dart. The CDPR for
moving the dartboard is made from low-cost components and is used for entertainment
and educational purposes. The system implemented by Rober is similar to the system
presented in the present thesis and was used as inspiration.

1.2 Overview
The contents of this thesis encompass the control system required to catch a flying dart,
such that the dart hits the desired scoring segment on the dartboard. Figure 1.2 provides
an overview of the developed control system structure. The robot controller lies at the
heart of the resulting control system and is implemented on a real-time computer system.
All algorithms developed in this work are encompassed by the robot controller which
essentially coordinates all the necessary steps for catching the dart. In the following, the
interaction of the different elements and subsystems depicted in Figure 1.2 is explained,
to provide an overview of the developed control system architecture.

Ti,dxd

xset

Y

ẋd
ẍd

ξi

Robot Controller

xd
ẋd
ẍd Ti,d

Optical
Tracking

Trajectory
Generator

Input
Shaping Controller

Set-point
Generator

Flight
Prediction

Robot
Drivetrain

Safety
Checks

Figure 1.2: Overview over the control system structure.

The Optical Tracking system measures the spatial coordinates of three markers at-
tached to the dart and sends these measurements Y to the robot controller. In the first
step, the raw marker measurements are processed by the Flight Prediction algorithm,
which tracks the flight trajectory of the dart and computes the dart’s impact location on
the board. A suitable pose xset for catching the dart is calculated, which is used as a
set-point for the target pose of the EE. Alternatively, to execute predefined motions for
testing and demonstration purposes instead of catching a dart, a sequence of poses can be
generated by the Set-point Generator .

The Trajectory Generator algorithm uses the current set-point value to generate a
trajectory for the EE pose, velocity and acceleration xd, ẋd, ẍd. The created trajectory
adheres to predefined dynamical limits and hence this stage acts as a filter, which ensures
that the motion is sufficiently smooth and feasible within the dynamical capabilities of
the robot.

1 Introduction 1.3 Structure of the thesis 4

To minimize mechanical vibrations in the structural components of the robot, the
Input Shaping stage can optionally apply additional corrections to the trajectory and
shape it in a way, such that the dominant natural frequency of the robot frame is not
excited by the EE motion. Thus, unwanted oscillations are reduced.

The trajectory tracking Controller uses the desired trajectory xd, ẋd, ẍd and the
feedback provided by the motor angles ξi to calculate suitable motor torque values Ti,d
for each servomotor. The control algorithm not only has to ensure that the EE tracks the
trajectory as closely as possible but also that the cable forces remain within their limits.
Because cables can only transmit tensile forces, special care must be taken that the cables
always remain under tension and never become slack.

Finally, an additional stage of Safety Checks is applied to the motor torques Ti,d to
ensure that the values are admissible before forwarding them to the Robot Drivetrain .

The servomotor controllers inside the drivetrain operate in a cascaded torque control
and regulate the motor voltages and motor currents, such that the desired torques are
applied to the winches of the CDPR.

The whole process is repeated iteratively as long as the dart is in flight. Thus, the
system corrects uncertainties and disturbances and continuously adjusts the motion of
the EE as the dart approaches the dartboard.

While the optical tracking system, the robot controller and the servomotor controllers
operate as digital discrete time systems, they use different sample times and are not
synchronized. The IR camera system supports a maximum frame rate of 360 Hz and
transmits the most recent measurement data Y to the robot controller as soon as they
are available. The robot controller operates at a frequency of 8 kHz and the cascaded
servomotor controllers use a sampling frequency of 32 kHz.

1.3 Structure of the thesis
The structure of this thesis is based on the overview provided in Section 1.2 and visualized
in Figure 1.2. The individual components and elements are discussed in reverse order
starting with the robot hardware and concluding with the optical tracking of the dart.

First, in Chapter 2, a control-oriented model of the robot is presented which is the
foundation of the control strategy. The kinematics of the CDPR are briefly outlined in
Section 2.1 and in the following the dynamics are modelled in Section 2.2.

Based on the mathematical model, a control strategy is developed in Chapter 3. The
problem of distributing the cable forces, such that sufficient tension is ensured in all cables
is discussed in Section 3.1. Based on the solution of the force distribution problem, a
trajectory tracking controller is designed in Section 3.2.

Next, a trajectory generation strategy is developed in Chapter 4. Existing approaches
from the literature are examined in Section 4.2 and a trajectory generation algorithm is
designed in Section 4.3. Simulations demonstrating the effectiveness of the algorithm are
provided in Section 4.4.

Chapter 5 revolves around input shaping methods for vibration reduction. Here, different
input shaping techniques are discussed and compared.

A flight prediction algorithm for tracking the dart and predicting the dart’s impact

1 Introduction 1.3 Structure of the thesis 5

location is developed in Chapter 6. To introduce and outline the developed approach, an
overview of the steps involved in the algorithm is provided in Section 6.1. The mathematical
model used for describing the dart flight is explained in Section 6.2. Based on this model,
an observer for estimating the state of the dart is designed in Section 6.4. The procedure
for predicting the impact location from the dart state is outlined in Section 6.5.

In Chapter 7, the developed prototype is used to validate the individual components and
to demonstrate the effectiveness of the entire system. The experimental setup is presented
in Section 7.1 and the hardware components are briefly introduced. The trajectory
tracking error achieved by the controller is examined in Section 7.2. In Section 7.3 the
vibration reduction achieved by applying different input shaping methods is assessed
experimentally. The dart tracking and impact prediction performance is examined and
validated in Section 7.4. Finally, the reliability of the entire system is tested by catching
flying darts thrown by different amateur players such that they hit different segments on
the dartboard as desired in Section 7.5.

The work is concluded in Chapter 8 with a summary of the developed components
and the findings obtained during the designing the system. Furthermore, an outlook on
possible future improvements and extensions is provided.

2 Mathematical robot model
The mathematical robot model is the foundation for the subsequent development of a
controller. The robot used for positioning the dartboard was developed in the preceding
master’s thesis [10], where the CDPR concept is presented and studied. More information
and a detailed derivation of the kinematics and the dynamic model can be found therein.
A more general and in-depth discussion on kinematics and dynamic descriptions of cable
driven robots can be found in the book [19].

In Section 2.1, the kinematics of the robot used for positioning the dartboard are briefly
reviewed and the essential relations are established. Subsequently, in Section 2.2, the
equations of motion are presented.

2.1 Kinematics
The kinematics of a robotic system studies the motion of different parts of the robot using
the geometry and couplings of the individual components of the robot. To describe a pose
x ∈ Rnx of the planar manipulator, the Cartesian coordinates of the EE center-point xC

and yC and the EE rotation angle φ are used in the form

x =
�
xC yC φ

T
. (2.1)

Thus, the robot has nx = 3 degrees of freedom, two of which are translational and one is
rotational.

To actuate the CDPR, nq = 6 cables are utilized. The individual cable lengths li with
i = 1, . . . , 6 are actuated by electric motors and represent the joint coordinates. The
vector of joint coordinates q ∈ Rnq is obtained by collecting the cable lengths in the form

q =
�
l1 l2 . . . lnq

T
. (2.2)

For a CDPR, a number of nq = nx + 1 cables is required to completely restrain the robot
and ensure tension in all cables without relying on external forces such as gravity. For the
present robot, there are additional redundancies since nq > nx + 1 and hence the CDPR
is called redundantly restrained, see, e. g., [19].

Figure 2.1 provides an overview of the CDPR structure and geometry. The cable
geometry in the xy-plane is visualized in Figure 2.1(a). Each cable is fixed to the EE
and then wrapped (possibly more than once) around a circular fixture attached to the
EE in a groove. The cable detaches the circular EE tangentially at the contact point B
and spans to the winch anchor-point A. The cable wrapped around the EE is depicted in
Figure 2.1(b). Cables can be either wound in clockwise (CW) or counterclockwise (CCW)

6

2 Mathematical robot model 2.1 Kinematics 7

direction which is indicated by the wrapping direction s = −1 or s = 1, respectively, as
labelled in Figure 2.1(a).

To prevent collisions between the cables, the grooves are offset in z-direction by the
height hC as shown in Figure 2.1(c). To block any motion of the EE in z-direction and
prevent tilting around the x- and y-axis, the EE slides along a guiding surface. Stable
contact with the guiding surface is critical to achieve reliable guidance. For this purpose,
each cable anchor-point A is offset in negative z-direction by the height hA with respect
to the corresponding groove plane as illustrated in Figure 2.1(c).

y

xz

xC

zC

A6

A1

s1 = 1

s6 = −1

s3 = 1

yC

φ

C

A2

A5A4

A3

rC

s2 = −1

s4 = −1 s5 = 1

(a) Cable geometry in the xy-plane.

y

yC

xz

xC

zC

s = −1φ

C

B

lr

ls

r

−γ

φ + γ

(b) Cable wrapped around the EE.

groove plane

A

A′

rAB

B

C x

z

hA

hC

C ′ rBC

yguiding
surface

(c) Cable geometry in the xz-plane.

Figure 2.1: Robot geometry.

2.1.1 Inverse kinematics
In the so-called inverse kinematics problem, the EE pose x is known and the cable
lengths i. e. joint coordinates q are sought. Hence, the inverse kinematics problem can
be formulated in the form of the so-called inverse kinematic transformation function

2 Mathematical robot model 2.1 Kinematics 8

ϕik : Rnx → Rnq which can be written in the form

q = ϕik(x) . (2.3)

To solve the inverse kinematics problem, the vectors rAB and rBC , depicted in Figure 2.1(c),
can be calculated from the robot geometry and the EE position xC and yC as shown in
[10]. The cable length in contact with the EE can be partitioned into the spare length
ls and the rolled cable length lr as depicted in Figure 2.1(b). The spare cable length ls
is a design parameter and can be chosen freely. The pose-dependent length lr can be
calculated using the relation

lr = −sr(φ + γ) , (2.4)

where the angle γ is obtained from the relation

γ = atan2

rT

BCex, rT
BCey

�
, (2.5)

utilizing the four-quadrant arc-tangent function [20]. Finally, the total cable length for
each cable is obtained in the form

l = ∥rAB∥2 + lr + ls . (2.6)

Repeating this computation for all nq cables yields the inverse kinematics transformation
function ϕik(x) from (2.3). The inverse kinematic transformation is straightforward,
computationally inexpensive to evaluate and always has a unique solution for physically
feasible poses. Infeasible poses, where one of the winches lies inside the EE disk yield
conjugated complex solutions which are not physically relevant.

2.1.2 Forward kinematics
In the so-called forward- or direct kinematic problem, the joint coordinates q are available
and the EE pose x is to be determined. Similarly to the inverse kinematics, the forward
kinematic problem can be formulated using the forward kinematic transformation function
ϕfk : Rnq → Rnx which can be written in the form

x = ϕfk(q) . (2.7)

In contrast to the inverse kinematics problem, the forward kinematic problem is over-
determined because the robot is kinematically over-constrained since nq > nx. For parallel
manipulators such as the present CDPR, the forward kinematics problem is in general
much more complicated than the inverse kinematics problem while the opposite holds
true for serial kinematic robots [21].

In the case of CDPRs, it can be shown that the inverse kinematic transformation
function always has a unique solution while the forward kinematic transformation function
might have one, multiple or infinitely many solutions for given joint coordinates q as a
result of the over constrained nature of this robot type [19]. In a real robot implementation,
an exact solution for the forward kinematics transformation usually does not exist due to
the presence of measurement errors which causes the measured joint coordinates q to be
infeasible.

2 Mathematical robot model 2.1 Kinematics 9

In the preceding master’s thesis [10], an approximate solution algorithm in the form

x̂ = ϕ̂fk(q) (2.8)

is developed, which is used in the present work. The pose x̂ denotes the approximate
solution for the forward kinematic transformation function given any joint vector q. The
algorithm formulates the forward kinematic problem as the intersection of modified involute
curves which is computed by numerically solving a nonlinear least-squares problem. The
algorithm is robust with respect to noise and converges reliably within the whole reachable
workspace of the CDPR prototype as demonstrated in [10].

2.1.3 Jacobian matrix
To find a relation between the joint space velocity q̇ and the task space velocity x,
Equation (2.3) can be differentiated with respect to time. This yields

dq(t)
dt

= dϕik(x(t))
dt

= ∂ϕik
∂x� �� �

Jik(x)

dx
dt

q̇ = Jikẋ ,

(2.9)

with the Jacobian matrix of the inverse kinematics Jik(x) ∈ Rnq×nx . Note, that Jik is
rectangular and thus cannot be inverted. Due to the kinematically over-constrained design
of the present CDPR, the joint coordinates q and the joint velocities q̇ must be compliant
with the kinematic constraints and cannot be chosen arbitrarily.

The collection of forces and torques acting on the EE in the task space is commonly
referred to as wrench in the literature [19, 22]. For the employed CDPR, the task space
wrench f is defined as

f =
�
Fx Fy Mz

T
, (2.10)

where Fx and Fy denote the forces in x- and y-direction, respectively, and Mz denotes the
torque around the z-axis.

The cable force vector τ ∈ �
R+�nq collects the individual cable forces τi and reads

as τ = [τ1, . . . , τnq]T. Note, that the cable forces are required to be positive due to the
constraint that cables can only transmit pulling forces and the convention that pulling
forces are considered positive.

The relation between cable forces and task space wrench is given by the transpose of
the Jacobian of the inverse kinematics in the form

f = −JT
ikτ , (2.11)

as a result of the duality of velocities and forces, see [10, 19]. The minus sign in
Equation (2.11) is a result of the convention that pulling forces are considered positive as
elaborated in more detail in [10].

2 Mathematical robot model 2.2 Dynamics 10

2.2 Dynamics
The CDPR is mathematically modelled and a control oriented dynamical model of the
robot is derived in the preceding thesis [10]. In this section, the governing equations of
motion are briefly presented and the essential relations which are important for developing
a control concept are discussed.

To analyze the dynamics of the CDPR, all moving masses contained in the system
must be considered. The robot consists of the EE and the winch mechanisms which are
connected via cables. The EE has the mass mEE and the moment of inertia with respect
to the z-axis IEE,z. Each winch mechanism can be described using the moment of inertia
Iw with respect to the motor axis, which accounts for the inertia of all rotating parts
inside the winch mechanism. For the sake of simplicity, it is assumed that all winches are
identical and consequently possess the same inertia. The motor angle of each winch is
denoted ξi and all motor angles are collected in the vector of motor angles ξ. Similarly,
the motor torques are denoted Ti and collected in the vector of motor torques T. Due
to their low mass in comparison to the other components of the robot, the cables are
assumed to be massless.

The CDPR is a multibody system which can be converted to single body subsystems
by separating the winches and the EE at the cables. Figure 2.2 depicts the resulting
free-body diagram for the winches and the EE.

x

y

z

end effectorwinch

Iw

IEE,z

τiTi

τi

ξ̈i

mEE

mEEg

Figure 2.2: Free body diagram, see [10].

The winches convert the rotary motion of the servomotors to a linear motion i. e. a
change in cable lengths. Thus, the angular motor velocities ξ̇ are related to the cable
velocities q̇ in the form

q̇ = νwξ̇ , (2.12)

where νw denotes the so-called winch transmission ratio.
The balance of angular momentum for the winch subsystem reads as

Iwξ̈ = T + νwτ , (2.13)

Similarly, the balance of momentum for the EE can be written in the form

MEEẍ = f − g = −JT
ikτ − g , (2.14)

2 Mathematical robot model 2.2 Dynamics 11

with the mass matrix

MEE =

mEE 0 0
0 mEE 0
0 0 IEE,z

 . (2.15)

The vector g contains the gravitational force acting on the EE, i. e.

g =
�
0 mEEg 0

T
, (2.16)

where g denotes the gravitational acceleration.
By differentiating relation (2.12) with respect to time and substituting into Equa-

tion (2.13), then solving for τ and inserting into (2.14), the equations of motion�
MEE + Iw

ν2
w

JT
ikJik

�
� �� �

M(x)

ẍ +
�

Iw
ν2

w
JT

ikJ̇ik

�
� �� �

C(x,ẋ)

ẋ + g = 1
νw

JT
ik� �� �

Λ(x)

T (2.17)

can be obtained. Here, M(x) denotes the positive definite mass matrix, C(x, ẋ) denotes
the Coriolis matrix and Λ(x) the so-called torque transformation matrix.

3 Controller Design
In this chapter, a trajectory following control strategy is designed based on the mathe-
matical model presented in Chapter 2. The work extends the preceding master’s thesis
[10] and elaborates on the control structure and provides additional details with respect
to its limits, capabilities and implementation.

CDPRs exhibit the inherent constraint that sufficient tension must be guaranteed in all
cables at all times, which must be ensured by the control strategy. For this purpose, a
cable force distribution algorithm is discussed in Section 3.1. This algorithm is then used
in Section 3.2 to develop a controller for the robot. The error dynamics of the closed loop
are derived in Section 3.3 and the stability is assessed. To demonstrate and validate the
controller performance, experiments are conducted on the CDPR prototype in Section 7.2.

3.1 Cable force distribution
3.1.1 Problem formulation
To ensure tension in all cables of a CDPR, the kinematic redundancies can be exploited.
The wrench f created as a result of the cable forces is given by the relation (2.11). Because
the cable forces required to achieve a given wrench are not unique, the null space of
JT

ik can be utilized to achieve positive cable forces. In the completely restrained case,
where nq = nx + 1, the null space is 1-dimensional and the problem can be solved using
comparatively simple algorithms as discussed in [23].

For a redundantly restrained CDPR, such as the present robot prototype where nq >
nx + 1, additional redundancies must be resolved. To achieve a smooth motion of the EE
along a smooth desired trajectory xd(t) ∈ Rnx , the force distribution must be chosen such
that the forces are continuous along the trajectory. This can be achieved by formulating
the cable force distribution problem as an optimization problem using a p-norm in the
form

min
τ

∥τ − τ d∥p

s.t. τ min ≤ τ ≤ τ max,

fd = −JT
ikτ .

(3.1)

Here, the desired cable pre-tension forces τ d can be chosen as a design parameter. The
limits for the cable forces τ min and τ max as well as the resulting task space wrench fd are
enforced as constraints.

It can be shown, that the solution τ ∗ of the optimization problem from Eq. (3.1) is
unique and continuous for a continuous trajectory for 2 ≤ p < ∞ and thus, this formulation
is suitable for the use in a CDPR [24, 25].

12

3 Controller Design 3.1 Cable force distribution 13

Choosing larger values of p causes the most stressed cable to have a larger contribution
to the objective function value of the optimization problem from Eq. (3.1). This leads to
smaller values of the force in the most stressed cable and is usually considered a more
efficient utilization of the force transmission capabilities of the cables. However, larger
values of p can introduce numerical issues. For handling high numbers of p, a specialized
gradient method is proposed by Verhoeven in [24], which is computationally expensive
and uses a sophisticated scaling strategy to minimize numerical errors. Therein, numerical
results up to p = 9 are examined. A closed-form solution for p = 2 is presented by Pott et
al. in [26], which is very computationally efficient and numerically robust.

An in-depth comparison of different numerical algorithms for solving (3.1) using different
p-norms can be found in [19].

3.1.2 Solution method
In this work, the optimization problem from (3.1) using p = 2 is employed to solve the
underconstrained cable force distribution problem with high numerical robustness and
stability. Hence, the cable force distribution function τ ∗ : Rnx → Rnq can be defined in
the form

τ ∗(fd) = arg min
τ

∥τ − τ d∥2

s.t. τ min ≤ τ ≤ τ max,

fd = −JT
ikτ .

(3.2)

To solve the optimization problem from Eq. (3.2), the so-called improved closed-form
method by Pott [27] is employed. This method is an extension of the closed-form approach
presented in [26] and it is very computationally efficient. Thus, the algorithm is particularly
well suited for use in a real-time control system with short cycle times. Furthermore, the
algorithm uses an iterative scheme to resolve all constraints which has a strictly bounded
limit for the number of iterations. Thus, the execution time on a real-time computer
system is strictly bounded.

In the following, the individual steps of the algorithm are briefly outlined and the
behavior for the present CDPR is investigated.

The basic idea behind the method is to use the Moore-Penrose pseudoinverse to obtain a
solution which satisfies the constraint fd = −JT

ikτ while minimizing the objective function
∥τ − τ d∥2. Such a solution can be found by separating the cable forces into the desired
pre-tension forces τ d and a deviation τ ∆ from these forces in the form

τ = τ d + τ ∆ . (3.3)

The wrench exerted on the EE by τ d can be subtracted from the desired total wrench
fd and a solution for τ ∆ can be computed which exerts the remaining force on the EE
such that the total wrench is equal to fd. Hence, a solution for the cable forces is obtained
in the form

τ ∆ = −JT+
ik (fd + JT

ikτ d) , (3.4)
using the pseudoinverse of the Jacobian transpose JT+

ik which reads as

JT+
ik = (JikJT

ik)−1Jik . (3.5)

3 Controller Design 3.1 Cable force distribution 14

Combining Eqs. (3.3) and (3.4) yields an expression for the cable forces

τ = τ d − JT+
ik (fd + JT

ikτ d) , (3.6)

which does not necessarily satisfy the constraints τ min ≤ τ ≤ τ max. Thus, any violation of
these constraints must be subsequently resolved. For this purpose, the cable force τi which
violates the respective limit by the largest magnitude is fixed to the corresponding limit.
As a consequence, the number of redundancies decreases and the problem can be reduced
to a force distribution problem with nq − 1 cables. This procedure is repeated iteratively
until either a valid solution is found which satisfies τ min ≤ τ ≤ τ max or the problem can
no longer be reduced because there are no more redundancies but Eq. (3.6) still does not
satisfy the limits. In the latter case, the algorithm fails to find a valid solution.

The individual steps of the cable force distribution method are summarized in Algo-
rithm 3.1.

Algorithm 3.1: Improved closed-form method [27]
Input: fd (desired wrench)

τ d (desired cable tension)
τ min, τ max (cable force limits)
JT

ik (Jacobian transpose)
Output: τ ∗ (optimal cable forces)

nx ← Number of rows of JT
ik;

nq ← Number of columns of JT
ik;

repeat
Step 1: Calculate τ using Eq. (3.6);
if τ min ≤ τ ≤ τ max then

τ ∗ ← τ ;
return τ ∗ ⇒ (Feasible solution found!)

end
Step 2: Find i for which τi violates the limits most;
τlim ← most violated limit τmin or τmax;
τ∗

i ← τlim ;
Step 3: Remove i-th cable to reduce problem:�
JT

ik

i

← i-th column of JT
ik ;

fd ← fd +
�
JT

ik

i
τlim ;

JT
ik ← remove i-th column from JT

ik ;
nq ← nq − 1;

until nq < nx;

No feasible solution found!

The strategy employed in the improved closed-form method for resolving violations
of the cable force limits is based on the assumption, that the cable which violates the

3 Controller Design 3.1 Cable force distribution 15

constraints most must be fixed at the respective limit in the optimal solution of Eq. (3.2).
Hence, the most violated inequality constraint is assumed to be active and acts as an
equality constraint. To justify this assumption, the author of [27] suggests using

τ d = 1
2(τ min + τ max) = τ m . (3.7)

This choice guarantees symmetry of the forces τ ∆ with respect to the cable force limits
and ensures the best possible behavior with respect to finding a feasible solution. For any
other choice of τ d, there is a bias towards either selecting the lower or upper inequality
constraints as active constraints prematurely. Thus, feasible solutions where different
inequality constraints are active can be excluded although they might exist. Because the
limits which are closer to τ d are preferred by the algorithm, the method always assumes
that those inequality constraints are active, which correspond to solutions which have lower
objective function values. Alternative solutions where other combinations of inequality
constraints are active, i. e. other cables are at the limit, are discarded. These prematurely
discarded combinations of active constraints might be feasible solutions but always yield
larger cost function values than the preferred combinations of active constraints.

For this reason, the algorithm might fail to find a feasible force distribution but it will
never return a sub-optimal or non-feasible solution. In other words, if the algorithm finds
a solution then this solution is guaranteed to be optimal. However, it is possible that the
algorithm fails to find a feasible solution even though it exists.

3.1.3 Solution behavior
In this section, the behavior of the improved closed-form method is investigated via
numerical simulations. As previously discussed in Section 3.1.2, the behavior of the
algorithm with respect to finding a feasible solution depends on the choice of τ d. The
method was originally conceived for τ d = τ m, see Eq. (3.7), and any other choice of τ d
negatively impacts the ability of the method to find feasible solutions. Using τ d = τ m is
a reasonable compromise for choosing the desired cable pre-tension force since an equal
distance from the lower and upper limits results in a balanced distribution of forces.
However, from a practical perspective τ m might be unnecessarily large and result in
unnecessarily large standstill torques in the driving motors when the robot is at rest
and the EE is not moving. These large standstill torques cause high standstill currents
and result in unnecessarily large losses in the driving motors and power electronics. In
particular, for the task at hand when catching a flying dart, the peak acceleration of the
CDPR is of primary importance. This peak acceleration must be provided by the robot
only for a short amount of time while the dart is in the air and the dartboard is moved
to the impact location of the dart and not continuously during operation. Thus, the
upper force limits τ max originate from the peak torque limits of the drivetrain whereas
the desired torque τ d must be chosen such that it can be continuously provided by the
electric drive system. Commonly, the continuous torque ratings of electric motors are
limited by thermal effects and considerably lower than the peak torques, which can be
provided for a short duration of time due to the thermal time constants present in the
system. Hence, choosing τ d = τ m might either violate the rated continuous power of the
electric drive system or restrict the choice of τ max.

3 Controller Design 3.1 Cable force distribution 16

For this reason, the impact of decreasing the target cable force τ d is studied in the
following. In addition, the so-called wrench-feasible workspace is investigated for wrenches
with different magnitude and direction to gain more insight into the capabilities of the
CDPR under the given force limits. The wrench-feasible workspace for a given wrench fd
is defined as the set of all EE poses x, for which the optimization problem from Eq. (3.2)
is feasible.

Different desired wrenches fd are applied to the EE for this purpose. These wrenches
are chosen in the form

fd = fd d , (3.8)

where the magnitude of the resulting wrench is given by the scalar fd and the direction is
specified by d. For the directions, a cylindrical coordinate system centered at the origin is
used as depicted in Figure 3.1.

rC

C

x

y

z

er

eφ

Figure 3.1: Basis vectors er and eφ for cylindrical coordinates.

The radial basis vector er and the azimutal basis vector eφ are given by

er = 1�
x2

C + y2
C

xC

yC

0

 , eφ = 1�
x2

C + y2
C

−yC

xC

0

 . (3.9)

The improved closed-form method as described in Algorithm 3.1 is applied to find the
region, where a feasible force distribution τ ∗ can be successfully found by the algorithm
for each desired wrench fd. To find the regions in which the algorithm fails to find a
feasible solution even though one exists, the Matlab function lsqlin is used to solve the
optimization problem from Eq. (3.2). This command implements the trust-region method
described in [28].

The dimensions and the cable force limits of the prototype CDPR developed in [10] are
used. The cable force limits are identical for all cables and can be written in the form

τ min = 1τmin τ max = 1τmax (3.10)
τmin = 10 N τmax = 280 N . (3.11)

For analyzing the behavior of the algorithm, different values for the desired cable
tension τ d are chosen. Here, equal desired tension forces are selected for all cables such
that τ d = 1τd. Figure 3.2 presents the results for τd = τm = 145 N. For comparison,
Figure 3.3 shows the behavior of the algorithm, when the desired cable tension is reduced

3 Controller Design 3.2 Control structure 17

to τd = 50 N. The wrench-feasible workspace i. e. the set of EE poses for which the desired
wrench fd is feasible is visualized using different shades of green color in Figures 3.2 and
3.3. The regions in which the force distribution algorithm fails to find a feasible solution
are highlighted using shades of red in Figures 3.2 and 3.3.

The wrench-feasible workspace in radial outward direction er contracts quickly for
larger magnitudes fd of the desired wrench. This is visualized by the green regions in
Figures 3.2(a) and 3.3(a). In comparison, the three side-lobes of the wrench-feasible
workspace in tangential direction eφ become more and more curved when the magnitude
fd of the desired wrench is increased as shown in Figures 3.2(b) and 3.3(b).

When the desired cable tension is chosen as τd = τm = 145 N, the algorithm performs
well and only fails in very few cases close to the border of the wrench-feasible workspace
as indicated by the red regions in Figure 3.2. In the case of wrenches in radially outward
direction er, the algorithm only fails to find a feasible cable force distribution in a single
point located in the bottom right region of Figure 3.2(a) for fd = 200 N. This could
potentially be caused by numerical issues. In comparison, the algorithm fails to find a
feasible cable force distribution for wrenches in tangential direction eφ close to the border
of the wrench-feasible workspace as depicted in Figure 3.2(b). This confirms that the
assumption employed in choosing the active constraints does not hold in general, even for
the special choice τd = τm.

When the desired tension force τd is reduced, the algorithm still performs well for
wrenches in radial outwards direction er. Figure 3.3(a) shows that the algorithm only fails
to find a feasible solution close to the borders of the wrench-feasible workspace for larger
amplitudes of the desired wrench fd. For smaller amplitudes of fd, the improved closed-
form method succeeds in finding the optimal solution in almost the entire wrench-feasible
workspace.

In comparison, for wrenches in tangential direction eφ there exist larger regions where
the algorithm fails to find a feasible force distribution. These regions are visualized in
Figure 3.3(b) and extend closer to the center of the workspace.

In conclusion, the studies performed in this section show that the effective wrench-
feasible workspace shrinks when decreasing the desired cable tension τd due to the inability
of the cable force distribution algorithm to find all feasible cable force distributions. The
quantitative results suggest that for the present CDPR prototype a reduction to τd = 50 N
yields a practically useful workspace for wrenches with a magnitude of up to fd ≈ 300 N.

3.2 Control structure
In this section, a controller for the CDPR is designed based on the cable force distribution
algorithm from Section 3.1 and the control-oriented dynamical robot model outlined in
Section 2.2.

The controller follows a desired trajectory in the task space given by xd(t) ∈ Rnx and
stabilizes the trajectory tracking error defined as

ex =
�
ex ey eφ

T
= x − xd . (3.12)

3 Controller Design 3.2 Control structure 18

feasible
failed

fd in N 100 200 300 400

A1A2

A3

A4 A5

A6

(a) Radial outward direction: d = er.

feasible
failed

fd in N 100 200 300 400

A1A2

A3

A4 A5

A6

(b) Tangential direction: d = eφ.

Figure 3.2: Solution behavior for τd = 145 N.

feasible
failed

fd in N 100 200 300 400

A1A2

A3

A4 A5

A6

(a) Radial outward direction: d = er.

feasible
failed

fd in N 100 200 300 400

A1A2

A3

A4 A5

A6

(b) Tangential direction: d = eφ.

Figure 3.3: Solution behavior for τd = 50 N.

3 Controller Design 3.2 Control structure 19

To design a control law for the CDPR, the robot can be treated as two separate subsys-
tems. The first subsystem is formed by the EE and the second subsystem encompasses
the nq winches. These two subsystems are coupled via cables as visualized in Figure 2.2.

By applying the force distribution function τ ∗(fd) from Eq. (3.2), a desired wrench fd
can be exerted on the EE while ensuring that the cables remain under sufficient tension.
Hence, the force distribution algorithm serves as a tool to handle the unilateral constraint
that the cables can only transmit pulling forces from the winches to the EE. With this
in mind, a control strategy can be designed for the two subsystems separately. Then
the individual strategies can be combined by making use of the cable force distribution
algorithm.

The so-called PD+ control concept, introduced in [29], is a variation of the very popular
computed torque control scheme. It is composed of a control loop with proportional
and derivative feedback (PD) with an additional compensation, which feeds forward the
nominal joint forces [30]. Such a controller is developed in two steps. In the first step,
a PD+ controller for the EE subsystem is designed. Subsequently in the second step, a
compensation for the inertial forces caused by the winch subsystem is added.

For the first step, only the EE subsystem is considered. A PD+ control law in task space
for the EE subsystem is obtained by rearranging Eq. (2.14). This yields the expression

fd = MEEẍd + g − KPex − KDėx (3.13)

for the desired wrench fd acting on the EE. Here, the inertial forces of the EE given
by MEEẍd, as well as the gravitational forces g acting on the EE are compensated. In
addition, the gain matrices KP and KD denote the P (proportional) and D (derivative)
components of the controller, respectively.

In a second step, compensation terms for the inertial forces caused by the winches are
obtained by differentiating the relation from Eq. (2.12) and inserting into Eq. (2.13). This
yields the expression

Tw = Iw
νw


J̇ikẋd + Jikẍd

�
, (3.14)

where Tw denotes the torques necessary to overcome the inertial forces of the winches
and achieve the desired acceleration.

Finally, the winch inertia compensation term from Eq. (3.14) can be combined with
the PD+ controller for the EE from Eq. (3.13) by applying the cable force distribution
function τ ∗(fd) and respecting the winch transmission ratio νw. This yields the control
law

Td = −νw τ ∗����
Force
Dist.


MEEẍd + g − KPex − KDėx� �� �

PD+ for EE
Eq. (3.13)

�
+ Iw

νw


J̇ikẋd + Jikẍd

�
� �� �

Winch Inertia
Compensation

, (3.15)

where the control variable Td denotes the desired motor torque. The desired motor torque
acts as an input for the cascaded torque control in which the motor voltage ui and current
ii for each motor are controlled such that the desired torque can be established.

Figure 3.4 provides an overview of the resulting control structure and visualizes the
aforementioned individual components of the control scheme.

3 Controller Design 3.3 Error dynamics and stability 20

xd

Controller

ui

ii

T

ξ

Current
Sensing

Robot Drivetrain

Electric
Motors

Motor
Controller

x̂

fd

νwτ ∗

Td

PD+ for EE Force
Dist.

Forward Kinematics

−
Robot

Dynamics

+
Winch Inertia
Compensation

Figure 3.4: Structure of the control concept [10].

It should be noted, that the pose x of the EE is not directly accessible as a measurement
but has to be calculated from the winch angles ξ instead. For this purpose, the forward
kinematics is used, which is discussed in detail in [10]. The estimated EE pose using the
forward kinematics is denoted x̂.

The controller relies on solving the optimization problem from Eq. (3.2) to guarantee
appropriate cable forces. Hence, in case no feasible cable force distribution τ ∗(fd) can
be found, the robot must be halted to prevent any damage to the cable system due to
inadequate cable forces. To prevent this from happening, special care must be taken that
the desired trajectory xd(t) is feasible within the dynamical capabilities of the CDPR. This
is no trivial task because the set of feasible wrenches is not straightforward to compute and
varies significantly within the workspace. To solve this problem for the present application,
a real-time capable trajectory generation algorithm which limits the desired velocity ẋd
and acceleration ẍd is presented in Chapter 4.

3.3 Error dynamics and stability
To gain insight into the behavior of the closed-loop system, the error dynamics are derived
and analyzed. In the following, it is assumed that the measurement noise is small and as
a consequence x̂ = x. Furthermore, it is assumed that the dynamics of the motor torques
in the drivetrain are significantly faster than the robot dynamics. Hence, the dynamics
of the inner control loop of the cascaded torque control can be neglected and it can be
assumed that T = Td.

Substituting the control law from Eq. (3.15) into the equations of motion from Eq. (2.17)
yields the error dynamics in the form

M(x)ëx + (C(x, ẋ) + KD)ėx + KPex = 0 . (3.16)

The nonlinear ordinary differential equations from Eq. (3.16) governing the error system
are well known for a PD+ controller in the literature [30, 31]. Furthermore, due to the
dependence on the trajectory xd, the error system is non-autonomous. Via a suitable

3 Controller Design 3.3 Error dynamics and stability 21

choice of the controller parameters KP and KD, the error dynamics can be adjusted as
desired. Thus, the PD+ control scheme in task space can be interpreted as a mechanical
compliance controller where the mechanical compliance of the robot along the trajectory
can be directly adjusted via the controller parameters. The expression (C(x, ẋ) + KD)
can be interpreted as mechanical damping of the error system and similarly the term KP
can be associated with the mechanical stiffness of the error system.

It can be shown that the trajectory tracking error ex, described by Eq.(3.16), is globally
asymptotically stable for a symmetric and positive definite choice of KP and a positive
definite choice of KD. A proof can be found in [30] using an appropriate Lyapunov
function and the theorem of Matrosov. The controller parameters used in the CDPR
prototype are chosen constant and diagonal in the form

KP =

KP 0 0
0 KP 0
0 0 KP,φ

 , KD =

KD 0 0
0 KD 0
0 0 KD,φ

 (3.17)

as described in [10]. Note, that the global asymptotic stability of the PD+ controller is
retained, even if the controller matrices KP and KD are chosen time-variant. Thus, the
controller can be designed such that the error dynamics are constant and independent of
the EE pose x if this behavior is desired.

4 Trajectory generation
The problem of generating a suitable trajectory for the motion of a robot is a fundamental
challenge in robotics. Depending on the application, the constraints and requirements can
vary greatly. For example, for some applications the geometric path might be given and a
temporal parameterization of that path might be sought. In other cases, the planning of
the geometrical path and the time scaling might be necessary and additional constraints
such as obstacles might be of interest. An in-depth discussion on motion planning in
general and different trajectory generation schemes can be found in [32].

In this chapter, the trajectory generation problem for the present task of catching a
flying dart using a CDPR is tackled. First, in Section 4.1 the problem is formulated
for the specific task at hand. Second, related work from the literature is reviewed and
discussed in Section 4.2. Third, a real-time capable online trajectory generation algorithm
(OTG) is proposed based on similar work from the literature in Section 4.3. Finally, in
Section 4.4 simulations are conducted to assess and demonstrate the effectiveness and
practicality of the presented algorithm.

4.1 Problem formulation
In the chosen system architecture, outlined in Section 1.2 and visualized in Figure 1.2, the
trajectory generator receives a set-point xset[k] for the EE pose at each timestep k and
is required to generate a sufficiently smooth trajectory (xd[k], ẋd[k], ẍd[k]) as an output.
The control system is implemented as a discrete time system with the sample time Ts.
Hence, all time signals are represented by sequences using the time index k = 0, 1, 2, . . .,
such that x[k] = x(kTs).

The set-point xset[k] corresponds to the current prediction of the dart impact location
and is frequently updated as the dart approaches the dartboard and the prediction is
refined. The accuracy of the estimate increases throughout the flight of the dart. In
particular during the early stage of the flight, large changes of xset[k] are possible.

For this reason, the trajectory generator must be able to adapt the trajectory in real-time
and must be robust with respect to large changes in the set-point xset[k]. Furthermore,
the adapted and re-planned trajectory must be smooth up to the second derivative and
thus smoothly continue the previously generated values for (xd[k − 1], ẋd[k − 1], ẍd[k − 1])
and eventually end with the set-point pose at rest, i. e. (xset[j], 0, 0).

As explained in Chapter 3, the required forces and torques acting on the EE must be
feasible within the cable force limits. Thus, the trajectory generation algorithm must
incorporate limits for the EE motion such that the trajectory can be successfully tracked
by the controller.

These considerations can be summarized as stated in Problem 4.1, to formulate the
trajectory generation problem for the present application:

22

4 Trajectory generation 4.2 Literature review 23

Problem 4.1. Given the previous trajectory history (xd[i], ẋd[i], ẍd[i]) where i =
0, 1, . . . , k − 1, calculate the current trajectory values (xd[k], ẋd[k], ẍd[k]) such that
the trajectory transitions in finite time to (xset[k], 0, 0), subject to constraints on the
velocity ẋd and the acceleration ẍd.

In addition, the Objectives 4.1 are chosen for the specific task of catching a dart.

Objectives 4.1. The online trajectory generator should satisfy the following objectives:

O1 The trajectory should not oscillate or spiral around the set-point xset.

O2 The algorithm should be computationally efficient and enable high sampling fre-
quencies of fs > 1 kHz.

O3 The trajectory should be time-optimal for straight motions, e. g. when the set-point
xset is constant and the trajectory starts with zero velocity and zero acceleration.

The problem statement from Problem 4.1 is relatively general and can be interpreted
as a filtering task. In essence, the trajectory generator acts as a filter which smooths
the non-continuous set-point values xset[j] and thus ensures that the trajectory can be
tracked by the controller. To ensure that the trajectory generation algorithm is well
suited for the present application, the additional objectives from Objectives 4.1 should be
fulfilled by the algorithm. In particular, O1 should guarantee that the trajectory does
not excessively spiral or oscillate just before catching the dart. Shortly before the dart
impact, the impact prediction is relatively accurate and only minor changes are expected.
In addition, O2 is chosen to achieve a high controller sampling frequency which is critical
for a fast response of the robot. To achieve fast positioning of the dartboard in the early
stage of catching the dart, Objective O3 is introduced. Thus, it is guaranteed that the
initial coarse positioning of the dartboard is very time-efficient, when the impact location
of the dart has been computed for the first time.

Similar problems frequently arise in many different robotic applications and, thus, there
exist many approaches in the literature to solve the present trajectory generation problem.
In Section 4.2, different strategies from the literature are reviewed and investigated.
Thereafter, in Section 4.3, a suitable algorithm for the dart catching application is
designed.

4.2 Literature review
The research field of trajectory generation and motion planning is a very broad topic and
there exists a vast variety of literature on the subject [33]. This section aims at providing
a brief overview of different approaches to tackle the problem and different solutions for
very similar problems found in the literature.

Whenever a robot is required to react quickly to an external unforeseen sensor input,
the need for online trajectory generation (OTG) arises [34]. This covers a very wide range
of applications, from human-robot interaction where a human provides unforeseeable

4 Trajectory generation 4.2 Literature review 24

input, to demanding industrial processes such as tracking applications where sensor input
can change quickly and spontaneously.

To enable a robot to follow the generated trajectory, different kinds of limits can be
implemented. To optimize the trajectory for given hardware components, the joint torques
can be used as dynamic constraints [35]. On the other hand, it might be desirable to
implement purely kinematic constraints, e. g. for velocity and acceleration, which can be
done either in joint space or in task space. For example, in a human-robot interaction
scenario it might be necessary to constrain the maximum EE velocity and acceleration in
task space. Thus, the motion of the tool attached to the EE can be constrained to ensure
safe operation [36].

The approaches found in the literature can be classified in three main groups as
elaborated in [36]:

1) Direct approaches: These strategies define and compute a whole trajectory profile
until the target state. Often a sequence of piece-wise polynomials is used which
allows for a synthesis of trajectories with the desired starting and end states. In [37],
quintic polynomials are adapted in rapid succession to quickly position a ping-pong
racket. A heuristic hybrid approach presented in [38] uses a fast trajectory for coarse
positioning and a fine-tuned polynomial to reach the desired target state.
Time-optimal trajectories can be generated by constructing so-called S-curves [20],
which follow constant jerk, acceleration and velocity limits. Such trajectories are
designed in joint space and usually consider kinematic constraints for the joint
trajectories. The method shown in [39] uses decision trees to construct synchronized
time-optimal S-curve trajectories for multiple joints with the desired start and end
states. A joint space trajectory generation method considering the robot dynamics
and thus incorporating kinetic limits is presented in [34].

2) Indirect approaches: The idea of these approaches is to consider the trajectory
generation problem a dynamic control or a filtering problem. Thus, not the entire
trajectory is constructed but only the next timestep is considered with the aim of
driving the trajectory towards the target set-point. Since only the next timestep is
considered, these approaches are inherently well-suited for online implementation
due to their comparably low computational effort.
In [40], a so-called α-β-γ filter is used to generate a smooth trajectory for grasping a
moving object tracked via an optical measurement system. A cascade of FIR-filters
is used in [41] to generate a trajectory, while [42] presents a method which uses
an adaptive FIR filter to generate a jerk-limited trajectory from an acceleration
limited trajectory. Using a nonlinear filter structure, the method presented in [43] is
able to generate near time-optimal trajectories in a single dimension. The method
developed by Lloyd in [44] generates trajectories in 3D Euclidean space which are
subject to limits of the ∞-norm of velocity and acceleration by splitting the motion
into components and treating each component independently. Huber et al. [36]
present a method for the online trajectory generation of both 3D translation and
rotation in Euclidean space with a focus on human-robot interaction scenarios.

4 Trajectory generation 4.3 Trajectory generation algorithm 25

A nonlinear filter is designed in [45] to generate a trajectory for a unicycle-like
mobile robot.

3) Optimization based approaches: By formulating the trajectory generation
task as a dynamical optimization problem, time-optimal trajectories satisfying the
desired constraints can be synthesised. However, these approaches are usually
very computationally expensive and difficult to implement online with low cycle
times. Depending on the goal at hand, there exist many different approaches and
strategies. Works such as [35], aim at reducing tracking error and motion time
by considering the robot’s dynamics and using a numerical solver. These methods
feature trajectory planning times of several seconds and are thus designed for offline
trajectory generation.
On the other hand, there exist real-time capable optimization based methods such
as [46]. In this work, a model predictive control structure is used for trajectory
planning in a ball-catching scenario.
There also exist analytical optimization based techniques for trajectory generation
such as [47]. The problem studied by Akulenko in this work originates from aviation
and deals with the optimal trajectory for moving a particle to the desired state with
limited acceleration but no velocity limits.

Upon closer investigation, it was found that only the algorithm presented by Lloyd [44]
formally satisfies the Objectives 4.1 when solving Problem 4.1. However, the algorithm
proposed by Lloyd only allows limits in the ∞-norm of velocity and acceleration.

Some other indirect approaches, such as the work of Huber et al. [36], satisfy the
objectives in most scenarios but tend to generate spiral motions in some cases. Thus, the
Objective O1 is violated. An example of such a scenario is shown in Figure 4.6(a).

Most of the direct approaches found in the literature generate a trajectory in joint
space which is not suitable for the chosen control structure. Approaches using quintic
polynomials violate O3 because the generated trajectories are not time-optimal for straight
motions.

Using an optimization based approach while still satisfying O2 is difficult, due to the
large computational effort involved. The analytical optimization based approach from
[47] is promising in terms of high computational efficiency but lacks a velocity limit.

For this reason, a novel trajectory generation algorithm is designed in the following.

4.3 Trajectory generation algorithm
In this section, a real-time capable trajectory generating algorithm is designed to solve
Problem 4.1 while fulfilling the Objectives 4.1. According to the classification outlined
in Section 4.2, the developed strategy can be considered an indirect approach because
the problem is treated as a control task and only the next timestep of the trajectory is
considered. For this purpose, a nonlinear switching algorithm is designed which discretely
switches between two different states to generate the trajectory values (xd[k], ẋd[k], ẍd[k]).
The algorithm is presented in the following and the algorithm’s behavior is investigated
thereafter in Section 4.4 via simulations.

4 Trajectory generation 4.3 Trajectory generation algorithm 26

The proposed method is inspired by the works of Lloyd [44] and Huber et al. [36]. The
trajectory for the pose xd[k] can be partitioned in a trajectory for the EE position rd[k]
and a trajectory for the EE rotation angle φd[k] in the form

xd =

xd
yd
φd

 =
�

rd
φd

�
, xset =

xset
yset
φset

 =
�

rset
φset

�
. (4.1)

The translation and the rotation of the EE are considered independently from each other
and, thus, the trajectories rd[k] and φd[k] are generated independently. For the control
strategy outlined in Chapter 3, the trajectory must be generated in the task space. To
limit the motion of the EE, kinematic limits in the form

∥vd∥2 ≤ vmax ∥ad∥2 ≤ amax ∥jd∥2 ≤ Mr < ∞ (4.2)
|ωd| ≤ ωmax |ω̇d| ≤ ω̇max |ω̈d| ≤ Mφ < ∞ (4.3)

are prescribed as constraints. Here, the desired EE velocity ṙd is denoted vd, the desired
EE acceleration r̈d is denoted ad and the EE jerk ...r d is denoted jd along the trajectory.
Furthermore, ωd denotes the desired angular velocity φ̇d. Enforcing dynamical limits
associated with the cable force limits is a difficult task for the CDPR and challenging to
implement online. For this reason, the kinematic limits vmax, amax, ωmax and ω̇max are
chosen constant. The values for the kinematic limits must be chosen appropriately, to
allow the controller outlined in Chapter 3 to track the desired trajectory. In addition, the
jerk ∥jd∥2 and the angular jerk |ω̈d| must be bounded by a finite constant for all motions.
The acceleration ∥ad∥2 and the angular acceleration ω̇d directly impact the motor torques
Td. Thus, by limiting the rate of change of the accelerations to a finite value, the rate
of change of the torques Ṫd is also finite. This allows the cascaded motor controllers to
more accurately track the desired torque values and minimizes unwanted oscillations in
the drive-trains.

4.3.1 Translation
Consider the known position rd[k − 1], velocity vd[k − 1] and acceleration ad[k − 1] from
the previous timestep k − 1. Because the acceleration of the previous timestep is known,
the position and velocity can be computed via integration neglecting higher order terms
in the form

vd[k] = vd[k − 1] + ad[k − 1]Ts (4.4)

rd[k] = rd[k − 1] + vd[k − 1]Ts + 1
2ad[k − 1]T 2

s . (4.5)

Thus, the aim of the OTG algorithm is to determine a suitable acceleration ad[k] for
the current timestep k to continue the trajectory. By choosing the acceleration for each
timestep, the trajectory is fully defined and the position and velocity values for the
following timestep can be computed via integration using Eqs. (4.4) and (4.5). This
procedure can be repeated iteratively to generate the trajectory.

4 Trajectory generation 4.3 Trajectory generation algorithm 27

Computing a new acceleration value from scratch at each timestep in general does not
yield a trajectory with bounded jerk. Hence, to limit the jerk and obtain a sufficiently
smooth trajectory, the desired acceleration values âd[k] are computed and then filtered to
obtain the actual acceleration values ad[k]. Thus, the chosen acceleration value ad[k] is
obtained by applying a filtering function G to the sequence of acceleration values âd[j]
where j = 0, . . . , k in the form

ad[k] = G(âd[k], âd[k − 1], . . . , âd[0]) . (4.6)

Different kinds of filters and different filter orders can be applied to achieve the desired
smoothness properties and achieve bounded derivatives of any desired order. Two different
filtering methods are investigated in Section 4.3.3 and are implemented on the prototype
robot.

The structure of the proposed OTG algorithm can be outlined by the following three
steps which are repeated at each timestep k:

Step 1 Compute rd[k] and vd[k] via integration using Eqs. (4.4) and (4.5).

Step 2 Determine the desired acceleration for the current step âd[k].

Step 3 Filter the acceleration âd[k] to obtain ad[k] using Eq. (4.6).

To find a suitable desired acceleration âd[k] in Step 2 , a series of assumptions and
approximations is applied in the following. The proposed method for computing the
acceleration âd[k] can be divided into six steps which are described in detail in the
following. To decouple the filtering operation applied in Step 3 from the computation
of âd[k], the algorithm uses the unfiltered trajectory velocity v̂d[k] and the unfiltered
position r̂d[k] which are computed via integration from Eqs. (4.5) and (4.4), respectively.
Thus, all quantities (·) denoted with the symbol (̂·) refer to the trajectory with unbounded
jerk, which is generated independently. This trajectory is filtered to obtain a closely
related trajectory with bounded jerk. In the following, the timestep k is omitted from all
intermediate variables which are computed within each timestep but are not stored or
used beyond a timestep.

I.) Local coordinate system

First, the velocity v̂d[k] is separated into two components as depicted in Figure 4.1. A
local coordinate system with the basis vectors er and e⊥ is defined, such that

er = rset[k] − r̂d[k]
∥rset[k] − r̂d[k]∥2

, 0 = e⊥ · er , v̂d[k] · e⊥ ≥ 0 . (4.7)

For the special case that l̂r = ∥rset[k] − r̂d[k]∥2 = 0, the trajectory position equals the
desired set-point position. If the velocity v̂d[k] = 0 at the same time, the target set-point
is reached and the algorithm terminates. Otherwise, if v̂d[k] ̸= 0, then er = v̂d[k]

∥v̂d[k]∥2
is

used. Note that e⊥ is chosen such that it points in the direction of motion to ensure that
v̂⊥ ≥ 0.

4 Trajectory generation 4.3 Trajectory generation algorithm 28

x

y

z

er

e⊥

rset[k]

r̂d[k]

v̂d[k]

l̂r

v̂⊥e⊥

v̂rer

Ω

Figure 4.1: Splitting the velocity into radial (er) and normal (e⊥) direction.

In the local coordinate system formed by e⊥ and er, the velocity v̂d(t) reads as

v̂d(t) = v̂⊥e⊥ + vrer . (4.8)

Note that the local coordinate system rotates with the angular velocity Ω given by

Ω = v̂⊥
l̂r

. (4.9)

For this reason, the basis vectors e⊥(t) and er(t) are functions of time. Thus, the total
acceleration âtot is obtained in the form

âtot(t) = dv̂d
dt

= dv̂⊥
dt� �� �
â⊥

e⊥ + dv̂r

dt����
âr

er + v̂⊥
de⊥
dt� �� �

Ωer

+v̂r
der

dt����
−Ωe⊥

. (4.10)

Substituting Eq. (4.9) into Eq. (4.10) yields the expression

âtot(t) =


â⊥ − v̂rv̂⊥
l̂r

�
e⊥ +


âr + v̂2

⊥
l̂r

�
er . (4.11)

Due to the rotation of the local coordinate system, the additional acceleration terms
− v̂r v̂⊥

l̂r
and v̂2

⊥
l̂r

in Eq. (4.11) arise in the non-inertial reference frame formed by e⊥ and er.

II.) Profiles for velocity and acceleration

Second, the target profiles depicted in Figure 4.2 are chosen for the velocities v̂⊥(t) and
v̂r(t) and the accelerations â⊥(t) and âr(t) within the local coordinate system.

In the normal direction e⊥, the profiles for v̂⊥(t) and â⊥(t) assume a linear reduction
of the velocity until the velocity v̂⊥ reaches zero at the time t⊥, as shown in Figure 4.2(a).
For the radial direction er, a triangular velocity profile for v̂r(t) is assumed. Here, a
distinction is made between the two cases visualized in Figures 4.2(b) and 4.2(c). In the
first case shown in Figure 4.2(b), the radial velocity linearly increases in the acceleration
phase labelled A and subsequently linearly decreases in the braking phase labelled B
until the radial velocity v̂r reaches a value of zero at the time tr,1. During the motion, the

4 Trajectory generation 4.3 Trajectory generation algorithm 29

v̂⊥[k] v̂⊥(t)

t

−â⊥

a⊥(t)
t

t⊥

(a) Profiles in e⊥.

v̂r[k]

v̂r(t)
l̂r

A B
t

−âr

âr
âr(t)

t

tr,1
tA tB

(b) Acceleration case I .

v̂r[k] v̂r(t)

l̂r

t

−âr

âr(t)
t

tr,2

(c) Braking case II .

Figure 4.2: Velocity and acceleration profiles.

trajectory covers a distance of l̂r in the direction er of the local coordinate system. This
case is referred to as acceleration case I in the following.

In contrast, in the second case shown in Figure 4.2(c), only a linear decrease of the
velocity v̂r is assumed until it reaches zero at the time tr,2. Similarly to the previous case,
the trajectory covers a distance of l̂r in direction er during the motion. Subsequently, this
case is referred to as braking case II .

Based on the assumed velocity profiles from Figure 4.2, the times t⊥, tr,1 and tr,2 are
computed in the following. The time t⊥ depicted in Figure 4.2(a) depends on the velocity
v̂⊥[k] and the acceleration â⊥ and can be written in the form

t⊥ = v̂⊥[k]
â⊥

. (4.12)

The duration tr,1 of the motion in the acceleration case I described by the profiles
depicted in Figure 4.2(b) is fully defined by the starting velocity v̂r[k], the acceleration
âr and the distance l̂r. Consider partitioning tr,1 into the duration tA of the acceleration
phase A and the duration tB of the braking phase B , such that

tr,1 = tA + tB . (4.13)

Because the velocity v̂r must reach zero at the time tr,1, the relation

v̂r[k] + tAâr − tB âr = 0 (4.14)

holds. In addition, the covered distance l̂r can be expressed as

l̂r = v̂r[k]tA + 1
2 ârt2

A + 1
2 ârt2

B . (4.15)

Combining Eqs. (4.13)-(4.15) leads to the expression

tr,1 =
−v̂r[k] +

�
4l̂râr + 2v̂2

r [k]
âr

, (4.16)

4 Trajectory generation 4.3 Trajectory generation algorithm 30

for the total duration of the motion.
The time tr,2 required to complete the motion for the braking case II shown in

Figure 4.2(c) and the corresponding acceleration âr are fully defined by the velocity v̂r[k]
and the distance l̂r. In this case, the relations

tr,2 = 2l̂r
v̂r[k] , âr = v̂2

r [k]
2l̂r

(4.17)

are obtained.

III.) Desired acceleration

Third, the previously derived durations t⊥, tr,1 and tr,2 are utilized to calculate a suitable
acceleration âd[k]. The acceleration case I and the braking case II are treated separately.
In general, due to the acceleration limit amax from Eq. (4.2), the velocity profiles from
Figure 4.2 might not be feasible. When following the velocity profiles v̂⊥(t) and v̂r(t),
the corresponding acceleration âd(t) is given by Eq. (4.11). As explained previously,
the additional acceleration terms − v̂r v̂⊥

l̂r
and v̂2

⊥
l̂r

in Eq. (4.11) arise due to the rotating
reference frame formed by e⊥ and er. These additional accelerations can be arbitrarily
large because the distance l̂r in the denominator can be arbitrarily small. Thus, the
velocity and acceleration profiles from Figure 4.2 are used as approximations and the
desired acceleration â[k] is defined as

âd[k] = â⊥e⊥ + ârer , (4.18)

by neglecting the nonlinear acceleration terms. The definition from Eq (4.18) is motivated
by objective O3 from Objectives 4.1. For the special case of straight motions, the velocity
v̂⊥ ≡ 0. Thus, in this case the nonlinear acceleration terms are identical to zero and the
acceleration âd defined in Eq (4.18) is identical to the acceleration âtot from (4.11). As a
result, the triangular velocity profiles from Figures 4.2(b) and 4.2(c) are feasible given the
acceleration limit amax. Because triangular velocity profiles are time-optimal for straight
motions subject to acceleration constraints [20], objective O3 is satisfied.

It can be shown, that for a time-optimal motion subject to acceleration and velocity
constraints, either the velocity constraint or the acceleration constraint must be active at
all times [48]. This means that the acceleration must be at its limit ∥âd∥2 = amax unless
the velocity limit is reached. For this reason, the relation

â2
⊥ + â2

r = a2
max (4.19)

must hold. The acceleration components â⊥ and âr must be chosen such that the motion
satisfies objective O1 , i. e. that the trajectory does not spiral or oscillate. For this purpose,
the deceleration â⊥ must be chosen sufficiently large such that Ω from Eq. (4.9) decreases
sufficiently fast such that the trajectory does not spiral around the set-point rset.

For the acceleration case I , a choice of â⊥ and âr is obtained by assuming that

t⊥ = α1t̃r,1 , α1 ≤ 1 , (4.20)

4 Trajectory generation 4.3 Trajectory generation algorithm 31

where t̃r,1 denotes a lower bound for the duration tr,1 and the dimensionless quantity α1
is introduced as an additional damping. A lower bound for tr,1 is given by

t̃r,1 = min
v̂r

tr,1 =

�
2l̂r
âr

. (4.21)

Note that the lower bound t̃r,1 corresponds to the special case of the acceleration case I
visualized in Figure 4.2(b) where the starting velocity v̂r has a value such that tA = 0
and consequently the acceleration phase A vanishes. Substituting Eqs. (4.21), (4.20)
and (4.12) into (4.19) and solving for âr yields an expression for the acceleration case I
denoted âr,1 in the form

âr,1 = − v̂⊥[k]2

4l̂rα2
1

+

 !!�a2
max + v̂4

⊥[k]
16l̂2rα4

1
. (4.22)

By inserting Eq. (4.22) into Eq. (4.19) and rearranging, the component â⊥ can be calculated
for the acceleration case I in the form

â⊥,1 = −
�

a2
max − â2

r . (4.23)

Here, a suitable choice for â⊥ in the acceleration case Î is denoted â⊥,1. Hence, with
Eqs. (4.22), (4.23) and (4.18), a closed-form expression for the desired acceleration âd[k]
for the acceleration case I is found.

For the braking case II , the desired acceleration âr, given by Eq. (4.17) for following
the profile from Figure 4.2(c) might not be feasible due to the acceleration limit amax.
Note, that these cases can arise even for the special case of motions in a straight line,
where v̂⊥ ≡ 0. This corresponds to scenarios, where the set-point position rset[k] is too
close to the current trajectory position r̂d[k] and the current velocity component v̂r[k] is
too large to reach the set-point without overshooting.

To find an appropriate desired acceleration â⊥,2 for the direction e⊥, a similar strategy
to the previous case is chosen. It is assumed that

t⊥ = α2tr,2 , α2 ≤ 1 . (4.24)

Here, the dimensionless quantity α2 is introduced to promote a sufficiently fast reduction
of v̂⊥ to avoid spiralling motions. Substituting Eqs. (4.12) and (4.17) into Eq. (4.24)
yields an expression for â⊥ in the form

â⊥,2 = − v̂⊥[k]v̂r[k]
2l̂rα2

. (4.25)

A suitable component â⊥,2 for the braking case II can be calculated using Eq. (4.17).
To ensure that the chosen desired acceleration complies with the acceleration constraint

from Eq. (4.2), a limit can be enforced in the form

âd,lim = âd
∥âd∥2

min{amax, ∥âd∥2} . (4.26)

4 Trajectory generation 4.3 Trajectory generation algorithm 32

By choosing sufficiently small constant values for α1 and α2, the algorithm satisfies
Objectives 4.1. However, the required time for reaching the set-point can be reduced by
adapting α1[k] and α2[k] at each timestep using the heuristic update law

α1[k] = α2[k] = min
�∥v̂[k]∥2

6v̂r[k] , 1
�

. (4.27)

Here, the damping factors α1[k] and α2[k] are varied between 1 and 1
6 depending on v̂r[k].

The motivation for the choice of Eq. (4.27) is to improve the behavior of the algorithm
for small values of v̂r[k]. To obtain a closed-form expression for âr,1, the dependence on
v̂r was removed by using t̃r,1 from Eq. (4.21) instead of tr,1 from Eq. (4.16). However,
for small values of v̂r[k] the value t̃r,1 is a poor approximation of tr,1. This leads to the
issue that the algorithm overly weighs braking in e⊥ direction instead of accelerating in
er direction. To counteract this bias, the damping α1[k] and α2[k] can be increased for
small values of v̂r[k]. While the algorithm performs well even for a constant choice of α1
and α2, the chosen law from Eq. (4.27) was found to significantly improve the behavior
with respect to the motion time of the generated trajectories.

IV.) Velocity limit

So far, an appropriate acceleration vector was computed, which satisfies the acceleration
constraint from Eq. (4.2) for both the acceleration case I and the braking case II . In
the following, the velocity limit is incorporated into the algorithm. If the velocity in the
next timestep v̂d[k + 1] would violate the velocity limit vmax, the acceleration must be
adapted to prevent this violation. The acceleration component â⊥, acting in direction e⊥,
always opposes the velocity component v̂⊥. Thus, the component â⊥ acts against any
spiralling motion and is critical to satisfy objective O1. At the same time, the component
â⊥ corresponds to a reduction of v̂⊥ and does not contribute to violating the velocity
limit.

As a result, the possible violation of the velocity limit can be resolved by reducing the
velocity component ârTs while leaving the velocity component â⊥Ts unchanged. In case of
a violation of the velocity limit in the next timestep ∥v̂d[k + 1]∥2 > vmax, the acceleration
âr can be chosen such that

∥v̂d[k + 1]∥2 = ∥v̂d[k] + â⊥Ts + ârerTs∥2 = vmax , (4.28)

as visualized in Figure 4.3.
Considering the component â⊥ fixed and solving Eq. (4.28) for âr yields a quadratic

equation which has two real solutions. Because the acceleration component âr must be
positive, the negative solution can be discarded. Thus, the solution for the acceleration
component âr can be written in the form

âr = 1
Ts

�
−p · er +

�
(p · er)2 + v2

max − ∥p∥2
2

�
, p = v̂d[k] + â⊥Ts . (4.29)

The solution from Eq. (4.29) is visualized with green arrows in Figure 4.3 and the
resulting limited velocity for the next timestep v̂d[k + 1] is depicted with a purple circle.

4 Trajectory generation 4.3 Trajectory generation algorithm 33

x

y

z
er

e⊥
rset[k]

r̂d[k]

v̂d[k]
v̂d[k + 1]

l̂r

∥v̂d∥2 ≤ vmax âdTs

ârTs

â⊥Ts

Figure 4.3: Applying the velocity limit by reducing âr.

V.) Switching between cases I and II

To switch between the previously discussed acceleration case I and braking case II , a
suitable switching criterion is necessary. The criterion must decide if the set-point rset
is sufficiently far away such that the trajectory should accelerate towards it or if it is
necessary to brake to reach rset with zero velocity without overshooting, if possible.

The proposed switching criterion assumes at first that the acceleration case I will be
active. In this case, the desired acceleration âd,1 is given by

âd,1[k] = â⊥,1e⊥ + âr,1er , (4.30)

where âr,1 can be calculated using Eq. (4.22) and â⊥,1 can be obtained from Eq. (4.23).
The idea behind the proposed switching method is to verify if using the braking case II

will be possible in the next timestep k + 1 without violating the acceleration limit amax or
not. In case the acceleration limit will be violated when applying the braking case II in
the next timestep k + 1, the braking case II must be chosen in the current timestep k to
prevent overshooting the set-point rset in the future. Otherwise it is safe to choose the
acceleration case I for the current timestep k because braking at a later time will be
sufficient.

Using the acceleration âd,1 from Eq. (4.30), the velocity v̂d[k + 1] and the position
r̂d[k + 1] in the next timestep read as

v̂d[k + 1] = v̂d[k] + âd,1Ts , (4.31)

r̂d[k + 1] = r̂d[k] + v̂d[k]Ts + 1
2 âd,1T 2

s . (4.32)

A new local coordinate system defined by the basis vectors er[k + 1] and e⊥[k + 1] can be
created for the next timestep using Eq. (4.7). Separating v̂d[k + 1] into the components
v̂⊥[k + 1] and v̂r[k + 1] and substituting into Eqs. (4.17) and (4.25) yields the desired
acceleration âd,2[k + 1] for braking in the next timestep in the form

âd,2[k + 1] = − v̂⊥[k + 1]v̂r[k + 1]
2l̂r[k + 1]α2

e⊥[k + 1] + v̂2
r [k + 1]

2l̂r[k + 1]
er[k + 1] . (4.33)

4 Trajectory generation 4.3 Trajectory generation algorithm 34

The Euclidean norm of the required acceleration ∥âd,2[k + 1]∥2 reads as

∥âd,2[k + 1]∥2 = |v̂r[k + 1]|
2l̂r[k + 1]

�
v̂2

⊥[k + 1]
α2

2
+ v̂2

r [k + 1] . (4.34)

If the acceleration ∥âd,2[k +1]∥2 ≤ amax, the acceleration case I is selected for the current
timestep k. Otherwise if ∥âd,2[k + 1]∥2 > amax, the braking case II is chosen for timestep
k.

VI.) Termination

Because the proposed OTG algorithm computes the trajectory via numerical integration
using Eqs. (4.4) and (4.5), small numerical errors can accumulate which can potentially
cause the trajectory to oscillate when reaching the set-point and coming to a halt. To
prevent these oscillations and enabling the trajectory to exactly reach the set-point even
in the presence of numerical errors, a final termination condition is introduced. When the
trajectory position is close enough to the set-point and the velocity is small enough to
reach zero in the next sampling interval, the acceleration is chosen such that the velocity
is identical to zero in the next iteration. Thus, the acceleration âd[k] is chosen in the form

âd[k] = − v̂d[k]
Ts

. (4.35)

Summary

The complete algorithm derived and presented in this section is summarized in Algo-
rithm 4.1. The individual operations of the algorithm are computationally inexpensive
and straightforward to implement on a real-time computer system. The idea behind the
algorithm is to compute a suitable acceleration âd[k] at each timestep. Subsequently,
the acceleration âd is filtered to obtain a sufficiently smooth sequence of ad, which fully
defines the trajectory. For this purpose, the components of âd[k] are computed in a local
coordinate system. Thus, the choice of âd[k] is transformed to a representation, where the
acceleration is defined by the choice of the dimensionless damping quantities α1[k] and
α2[k]. These quantities regulate the convergence of the trajectory in normal direction and,
thus, specify the trade-off between the deviation from a straight line and the convergence
to the goal position.

4 Trajectory generation 4.3 Trajectory generation algorithm 35

Algorithm 4.1: Proposed online trajectory generator (OTG).
Input: rset[k] (desired set-point)

amax, vmax (maximum acceleration, velocity)
Ts (sample time)
(rd, vd, ad)[k − 1] (previous trajectory values)
(r̂d, v̂d, âd)[k − 1] (previous unfiltered values)
G(·) : R2 → R2 (filtering function)

Output: (rd, vd, ad)[k] (current trajectory values)
(r̂d, v̂d, âd)[k] (current unfiltered values)

/* Step 1 Compute rd[k], r̂d[k] and vd[k], v̂d[k] via integration */
vd[k] = vd[k − 1] + ad[k − 1]Ts ; // See Eq. (4.4)
v̂d[k] = v̂d[k − 1] + âd[k − 1]Ts ; // See Eq. (4.4)
rd[k] = rd[k − 1] + vd[k − 1]Ts + 1

2ad[k − 1]T 2
s ; // See Eq. (4.5)

r̂d[k] = r̂d[k − 1] + v̂d[k − 1]Ts + 1
2 âd[k − 1]T 2

s ; // See Eq. (4.5)

/* Step 2 Determine the acceleration âd[k] */
// Create a local coordinate system
l̂r ← ∥rset[k] − r̂d[k]∥2;
if l̂r = 0 then

if v̂d[k] = 0 then
// The set-point is reached
â[k] ← 0;
Goto Step 3 ;

else
er ← v̂d[k]

∥v̂d[k]∥2
;

Calculate e⊥ according to (4.7);
end

else
Calculate er and e⊥ according to (4.7);

end
v̂r[k] ← v̂d[k] · er;
v̂⊥[k] ← v̂d[k] · e⊥;
// Compute the acceleration for acceleration case I
α1 ← Choose damping value using Eq. (4.27);
âr,1 ← Eq. (4.22);
â⊥,1 ← Eq. (4.23);
âd[k] = â⊥,1e⊥ + âr,1er; // See Eq. (4.30)
v̂d[k + 1] ← v̂d[k] + âd[k]Ts;
if ∥v̂d[k + 1]∥2 > vmax then

// Limit acceleration so the velocity limit is not violated
âr ← Eq. (4.29);
âd[k] = â⊥,1e⊥ + ârer;

end
...

4 Trajectory generation 4.3 Trajectory generation algorithm 36

...
// Compute next velocity and position for the acceleration case I
v̂d[k + 1] ← v̂d[k] + âd[k]Ts;
r̂d[k + 1] ← r̂d[k] + v̂d[k]Ts + 1

2 âd[k]T 2
s ;

Calculate er[k + 1] and e⊥[k + 1] according to (4.7);
v̂r[k + 1] ← v̂d[k + 1] · er[k + 1];
v̂⊥[k + 1] ← v̂d[k + 1] · e⊥[k + 1];
// Check if braking is still possible in the next step, if we choose

the acceleration case I in the current step
α2 ← Choose damping value using Eq. (4.27);
athresh ← ∥âd,2[k + 1]∥2 from Eq. (4.34);
if athresh > amax then

// Choose braking case II
â⊥,2 ← Eq. (4.25);
âr,2 ← Eq. (4.17);
âd ← âr,2er + â⊥,2e⊥;
// Limit acceleration if necessary
âd[k] ← âd

∥âd∥2
min{amax, ∥âd∥2} ; // See Eq. (4.26)

end
// Termination of the trajectory
if ∥v̂d[k]∥2 ≤ amaxTs and l̂r ≤ 3

2amaxT 2
s then

// The set-point can be reached in the next timestep
âd[k] ← − v̂d[k]

Ts
; // See Eq. (4.35)

if ∥v̂d[k]∥2 = 0 then
// The set-point is reached
âd[k] ← 0;
v̂d[k] ← 0;
r̂d[k] ← rset[k];

end
end

/* Step 3 Filter âd to obtain ad */
ad[k] ← G(âd[k]) ; // Apply filtering function

4 Trajectory generation 4.3 Trajectory generation algorithm 37

4.3.2 Rotation
Because the CDPR possesses one rotational degree-of-freedom (DOF), the trajectory
planning problem is 1-dimensional. This case can be interpreted as a special case of the
2-dimensional trajectory planning problem and the algorithm presented in Section 4.3.1
can be employed. In this case, any quantity (·) in the normal direction denoted (·)⊥ is
identical to zero. Thus, the unfiltered trajectory with unbounded jerk is always time
optimal as stated by objective O3 from Objectives 4.1.

4.3.3 Filtering
The proposed OTG algorithm uses a filter in Step 3 , to transform the trajectory with
unbounded jerk, given by (âd, v̂d, r̂d) to a trajectory with limited jerk given by (ad, vd,
rd). Depending on the filter type and the filter order applied in this step, the desired
smoothness, i. e. the number of continuous derivatives of the trajectory, can be chosen. In
the following, two different filters are discussed, which are implemented on the prototype
robot.

Moving average FIR filter

To achieve time-optimal motion with limited jerk, a moving average FIR filter can be used
[42] to filter the acceleration âd. This filter converts a rectangular acceleration profile to a
trapezoidal acceleration profile. To ensure time-optimality with an arbitrary acceleration
profile, the filter length must be dynamically adapted as discussed in detail in [42]. In the
present work, a moving average FIR filter with constant length is employed. The filter
length is chosen in such a way, that the desired jerk jstep is reached, for a step-change
from âd[k − 1] = 0 to ∥âd[k]∥2 = amax. Thus, the static filter length nFIR is given by the
relation

NFIR =
�

amax
jstepTs

�
, (4.36)

where ⌈·⌉ denotes the ceiling operator which rounds to the next full integer. The resulting
moving average FIR filter can be defined via its impulse response matrix H[k] which reads
as

H[k] =
� 1

NFIR
I, 0 ≤ k < NFIR

0, otherwise ,
(4.37)

where I denotes the identity matrix. The behavior of this filter is presented and discussed
via simulations in Section 4.4.4.

IIR filter

To achieve a smooth motion and further reduce oscillations in the robot drivetrain, an IIR
filter of order n can be employed alternatively. This filter smooths the acceleration profile
and ensures that the filtered acceleration ad is n − 1 times continuously differentiable.
Such a filter can be designed using the continuous-time transfer function

G(s) = c0
sn + cn−1sn−1 + · · · + c1s + c0

. (4.38)

4 Trajectory generation 4.4 Simulation results 38

Here, the filter coefficients ci can be calculated by choosing appropriate poles for the
transfer function from Eq. (4.38). To implement the filter on the robot controller, the
continuous-time transfer function G(s) can be converted to a continuous-time state space
system and subsequently discretized. Thus, a discrete-time state-space system is obtained
which can be easily implemented on the robot control system. In the following, the
behavior of an IIR filter with n = 3 is investigated in the Section 4.4.4.

4.4 Simulation results
To assess the effectiveness of the proposed OTG algorithm, simulations for different
scenarios are conducted to investigate the behavior of the algorithm. First, in Section 4.4.1,
the behavior and performance of the OTG algorithm for generating a trajectory with
different initial velocities is investigated. Second, the impact of the kinematic limits
vmax and amax on the behavior of the trajectories is studied in Section 4.4.2. Third, the
temporal profiles of velocity and acceleration are examined in Section 4.4.3. Fourth, in
Section 4.4.4 the behavior of the two different filters outlined in Section 4.3.3 is discussed.

The proposed OTG algorithm initially generates an acceleration-limited trajectory
(r̂d, v̂d, âd) in Step 1 and Step 2 of the algorithm and subsequently uses a filter in
Step 3 to obtain a jerk-limited trajectory (rd, vd, ad). For this reason, the acceleration-
limited and jerk-limited trajectories are studied separately. In Sections 4.4.1, 4.4.2
and 4.4.3, the filtering step conducted in Step 3 of the algorithm is omitted and the
acceleration-limited trajectories are investigated. Subsequently, in Section 4.4.4 the effect
of the filtering in Step 3 is discussed.

For all simulations conducted in the following, the proposed OTG algorithm operates
using a sampling frequency of fs = 8 kHz. This sampling frequency is also used by the
robot controller of the prototype hardware.

4.4.1 Initial velocity
To study the behavior of the proposed OTG algorithm, different motions in 2D Euclidean
space with different initial conditions are compared to each other. This corresponds to
adapting a trajectory during a motion, where the velocity is non-zero and the adapted
target set-point causes the trajectory to change the direction of motion. In this section,
the acceleration-limited trajectories (r̂d, v̂d, âd) generated by the algorithm are examined
and the filtering conducted in Step 3 is omitted.

To investigate the performance and quality of the trajectories generated by the proposed
algorithm, the time-optimal trajectories are used as a reference for comparison. The time-
optimal solution for each motion is computed offline using the Rockit numerical framework
based on CasADi and IPOPT. For this purpose, the trajectory generation problem stated

4 Trajectory generation 4.4 Simulation results 39

in Problem 4.1 is formulated as a dynamic optimization problem in the form

min
a(t)

� T

0
1dt

s.t. ṙ = v, r(0) = r0, r(T) = rset,

v̇ = a, v(0) = v0, v(T) = 0,

∥v∥2 ≤ vmax,

∥a∥2 ≤ amax .

(4.39)

Here, the vectors r, v ∈ R2. The optimal solution a∗(t) and the corresponding time-
optimal trajectory r∗(t), v∗(t) of the optimal control problem from Eq. (4.39) are computed
numerically on a grid of 200 points in time. The required computation time for each
optimal trajectory ranges from approximately 0.5 s to 5 s. Hence, the optimal solution
cannot be used in the real-time environment but only offline for reference.

Figure 4.4 shows the geometric path of the trajectories for different starting velocities
in the xy-plane. Here, the trajectories generated by the proposed OTG algorithm are
shown with solid lines while the optimal solution is depicted using dash-dotted lines for
comparison. The initial velocity v0 is chosen as

v0 =
�
cos α0
sin α0

�
m/s , (4.40)

with different angles α0 ∈ [0, π]. The boundary conditions and the constraints are chosen
as

r0 = 0m , rset = [1, 0]Tm , vmax = 1 m/s , amax = 1 m/s2 , (4.41)

for the trajectories presented in Figure 4.4. The geometric paths of the trajectories, which
are generated by the proposed OTG algorithm are generally similar to the optimal paths.
For all starting angles, the proposed OTG algorithm produces smooth trajectories without
any overshooting or unnecessary spiral motion. For the straight path with α0 = 180◦,
the trajectory generated by the OTG algorithm matches the optimal trajectory. To
quantify the performance with respect to the time required to reach the target set-point
rset, the optimal time for each trajectory topt is compared to the necessary time tOTG
for completing the trajectory generated by the OTG algorithm. The relative excess time
∆trel is defined as

∆trel = tOTG − topt
topt

, (4.42)

and computed for a range of trajectories with different starting angles as defined in
Eq. (4.40). The resulting relative excess time in relation to the starting angle α0 is
visualized in Figure 4.5. The results from Figure 4.5 show that the OTG algorithm
generates time-optimal motion profiles for straight motions i. e. for the cases α0 = 0◦ and
α0 = 180◦. For all other motions, the resulting trajectory requires around 3-5% more time
than the optimal trajectory to complete each motion.

4 Trajectory generation 4.4 Simulation results 40

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

r0
rset

x in m

y
in

m

α0 = 30◦
α0 = 60◦
α0 = 90◦
α0 = 120◦
α0 = 150◦
α0 = 180◦

Figure 4.4: Trajectories for different starting angles. Proposed OTG algorithm (solid lines)
compared to the optimal solution (dash-dotted lines).

0 30 60 90 120 150 180

0

2

4

6

α0 in deg

ex
ce

ss
tim

e
∆

t r
el

in
%

Figure 4.5: Relative excess time required by the OTG algorithm.

4 Trajectory generation 4.4 Simulation results 41

4.4.2 Kinematic limits
In this section, the behavior of the OTG algorithm and the resulting trajectory for different
kinematic limits vmax and amax is investigated. The proposed OTG is compared to the
time-optimal solution of the optimization problem Eq. (4.39) and the OTG algorithm
proposed by Huber et al. [36], found in the literature. The filtering in Step 3 of the
algorithm is omitted for a better comparison.

A comparison of the generated trajectories with two different acceleration limits amax is
shown in Figure 4.6. The initial velocity for both motions is chosen with a magnitude
of 1 m/s and an angle of α0 = 45◦, see Eq. (4.40). For the first motion, depicted in

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

−0.1

0

0.1

0.2

0.3

r0

rset

x in m

y
in

m

Time-optimal
Proposed OTG
Huber et al. [36]

(a) Trajectories for α0 = 45◦, vmax = 1 m/s and amax = 1 m/s2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
−0.2

−0.1

0

0.1

0.2

0.3

r0

rset

x in m

y
in

m

Time-optimal
Proposed OTG
Huber et al. [36]

(b) Trajectories for α0 = 45◦, vmax = 1 m/s and amax = 2 m/s2.

Figure 4.6: Comparison of the behavior with different acceleration limits.

Figure 4.6(a), the constraints are chosen as stated in Eq. (4.41). For this choice, the
velocity constraint ∥v∥2 ≤ vmax is never active for any of the generated trajectories. Thus,

4 Trajectory generation 4.4 Simulation results 42

the motion in this case is dominated by the acceleration constraint ∥a∥2 ≤ amax = 1 m/s2.
For the second motion shown in Figure 4.6(b), the acceleration limit amax = 2 m/s2

is chosen. For this choice, the trajectories reach the velocity limit vmax and as a result
the motion in this case is dominated by the velocity constraint. The results visualized in
Figure 4.6 demonstrate the different behavior of the trajectories for motions dominated
by the acceleration constraint compared to motions dominated by the velocity constraint.
When the acceleration limit is the dominant limit, the time-optimal trajectory r∗(t)
describes an arc with relatively constant curvature. Towards the end of the motion, close
to the target set-point, the curvature of the optimal trajectory slightly increases as the
velocity is reduced to reach the target set-point with zero velocity. This behavior is visible
in Figure 4.6(a). On the other hand, for a motion which is dominated by the velocity
constraint, the time-optimal trajectory exhibits a larger curvature at the beginning of the
trajectory and subsequently extends almost in a straight path towards the set-point. This
is a result of reaching the velocity limit during the motion. When the velocity limit is
reached, the optimal trajectory r∗(t) comprises paths with lower curvature which reduce
the distance covered by the trajectory. This behavior can be observed in Figure 4.6(b).

For both, a dominating acceleration limit and a dominating velocity limit, the trajectory
generated by the proposed OTG algorithm shows small deviations from the optimal
trajectory. In comparison, the algorithm proposed by Huber et al. generates a trajectory
which spirals around the target set-point when the motion is dominated by the acceleration
limit as shown in Figure 4.6(a). In the presence of a sufficiently small velocity limit, the
algorithm proposed by Huber et al. is well-behaved and produces trajectories which are
close to the optimal trajectory as depicted in Figure 4.6(b). It should be noted that the
primary focus of the work presented by Huber et al. lies in planning algorithms for both
position and orientation of a robot in a human-robot interaction scenario where the velocity
limit is usually dominant. Thus, the algorithm can be used in a range of applications even
despite generating spiralling trajectories for motions without a sufficiently small velocity
limit. However, for the dart catching application which is investigated in the present work,
the OTG algorithm proposed by Huber et al. is not suitable.

4.4.3 Profiles of velocity and acceleration
In this section, the behavior of the velocities and accelerations of the trajectories generated
by the proposed OTG algorithm are analyzed in more detail. For this purpose, the
boundary conditions and constraints from Eq. (4.41) are used and the starting velocity
is chosen with a magnitude of 1 m/s and an angle of 120◦ as defined in Eq. (4.40). The
optimal solution (a∗, v∗, r∗) of the corresponding dynamical optimization problem from
Eq. (4.39) is computed numerically and compared to the acceleration limited trajectory (â,
v̂, r̂), which is generated by the proposed OTG algorithm. Here, the filtering in Step 3
of the algorithm is omitted.

Figure 4.7 visualizes the results for the motion. Here, the geometric path of the optimal
solution r∗ is compared to the geometric path r̂ generated by the proposed OTG in
Figure 4.7(a). In addition, the corresponding acceleration vectors a∗ and â are shown at
equidistant times as arrows in the xy-plane. To compare the temporal evolution of the
time-optimal velocity vector v∗ to the evolution of the velocity vector v̂ generated by the

4 Trajectory generation 4.4 Simulation results 43

proposed OTG algorithm, the Euclidean norm and the angle αv is computed for both
vector quantities. Here, the angle αv of the vector quantity v in the xy-plane in defined as

αv = atan2(vy, vx) (4.43)

using the four-quadrant arc-tangent function, [20]. The velocity profiles ∥v∗∥2 and ∥v̂∥2
are depicted in Figure 4.7(b), while the profiles of αv∗ and αv̂ are shown in Figure 4.7(c).
Similarly, the acceleration profiles ∥a∗∥2 and ∥â∥2 are visualized in Figure 4.7(d) whereas
the profiles of αa∗ and αâ are shown in Figure 4.7(e). The results for the present motion
demonstrate the behavior and subtle nuances of the optimal solution of the control problem
from Eq. (4.39). The motion can be divided into 4 sections which are labelled 1 - 4
in Figure 4.7. A necessary condition for a time-optimal motion subject to kinematic
constraints is, that at least one constraint is always active [48]. In other words, the optimal
motion will always keep the control variable i. e. acceleration at its limit ∥a∗∥2 = amax
until a different state, i. e. the velocity v∗, reaches the corresponding limit. For the present
motion, it is possible to steer the point mass in such a way, that the acceleration stays
at its limit even when the velocity reaches the limit ∥v∗∥2 = vmax. To achieve this, the
optimal trajectory r∗ follows a path which initially curves with a relatively small radius of
curvature in section 1 , as depicted in Figure 4.7(a), while the velocity ∥v∗∥2 decreases
as shown in Figure 4.7(b). When the velocity is at its lowest magnitude between 1
and 2 , the rate of change of the direction αv∗ reaches its maximum value as visible in
Figure 4.7(c).

Subsequently, in Section 2 , the velocity of the optimal trajectory increases and the
rate of change of the direction αv∗ decreases as the trajectory prematurely stops changing
the direction of motion towards the target set-point rset. In section 3 , the velocity limit
∥v∗∥2 = vmax is reached by the optimal trajectory, but the acceleration ∥a∗∥2 stays at the
limit value to complete the turn towards the target set-point and to continue changing
the direction of motion αv∗ . Thus, the direction αa∗ of the acceleration changes direction
in Section 3 . Finally, in Section 4 , the velocity along the optimal trajectory reduces to
reach the target set-point rset with zero velocity. This is achieved by rapidly changing the
direction αa∗ of the acceleration.

In summary, reaching the velocity limit vmax must be anticipated to generate the
time-optimal trajectory. As a consequence, the optimal trajectory follows a path which is
not oriented towards the set-point in Sections 1 and 2 . Only when the velocity limit
is reached in Section 3 , the velocity of the optimal trajectory is oriented towards the
set-point.

Due to its structure, the proposed OTG algorithm does not anticipate reaching the
velocity limit and consequently cannot generate the complex maneuver which is conducted
by the time-optimal trajectory. Thus, the magnitude of the acceleration ∥â∥2 is reduced by
the algorithm, when the velocity limit ∥v̂∥2 = vmax is reached. Despite this limitation, the
trajectory generated by the proposed OTG qualitatively approximates the time-optimal
trajectory well and produces a time-efficient sub-optimal trajectory.

4 Trajectory generation 4.4 Simulation results 44

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

1

2

3

4

r0 rset

x in m

y
in

m
r∗
r̂
a∗
â

(a)

0

0.5

1

1 2 3 4∥v
∥ 2

in
m

/s

∥v∗∥2
∥v̂∥2

−50

0

50

100

α
v

in
de

g

αv∗
αv̂

0

0.5

1

∥a
∥ 2

in
m

/s
2 ∥a∗∥2

∥â∥2

0 0.5 1 1.5 2 2.5 3

−100

0

100

time in s

α
a

in
de

g

αa∗
αâ

(b)

(c)

(d)

(e)

Figure 4.7: Trajectory for α0 = 120◦, vmax = 1 m/s and amax = 1 m/s2.

4 Trajectory generation 4.4 Simulation results 45

4.4.4 Filter behavior
In this section, the impact of the filtering performed in Step 3 of the proposed OTG
algorithm is discussed. For this purpose, the two filter types outlined in Section 4.3.3 are
parameterized such that they are suitable for use in the dart catching application using
the prototype robot. More analysis on designing and using filtering algorithms to obtain
smooth trajectories can be found in [41–43].

The linear time-invariant filters are applied to the acceleration âd to obtain ad in
Step 3 of the proposed OTG algorithm. The corresponding velocities v̂, v and positions
r̂, r are computed via integration using Eqs. (4.4) and (4.5) in Step 1 . Due to linearity,
the order of these operations could also be swapped without changing the results. In other
words, integrating first and then filtering yields the same results as filtering first and then
integrating.

To analyze the filter behavior, a typical motion for catching a dart is chosen. Here, the
boundary conditions and kinematic limits are chosen as

r0 = 0m , rset = [0.3, 0]Tm , vmax = 2.5 m/s , amax = 30 m/s2 , (4.44)

which corresponds to a motion of the dartboard by more than a full radius of the dartboard
in x-direction. This is equivalent of catching a dart, which would miss the dartboard,
such that it hits the bulls-eye. The FIR filter from Eq. (4.37) is used with a filter length
NFIR given by Eq. (4.36). The desired jerk is chosen as jstep = 3000 m/s3, which results
in a filter length of NFIR = 80 samples at a sampling frequency of fs = 8 kHz. Thus, the
moving average FIR filter averages over a period of 10 ms.

To compute the coefficients ci for the IIR filter from Eq. (4.38), a filter order n = 3 is
selected and the poles of the transfer function G(s) are chosen as

p1 = p2 = p3 = −400 s−1 . (4.45)

The resulting profiles of velocity v, acceleration a and jerk j in x-direction are compared
to each other in Figure 4.8. Here, the values for the jerk j[k] are computed from the
acceleration values a[k] at each timestep k using the backwards difference quotient

j[k] = a[k] − a[k − 1]
Ts

, (4.46)

with the sample time Ts = 1
fs

= 125 µs. Figure 4.8(a) depicts the velocity profiles
generated by the proposed OTG for different filters. The unfiltered velocity profile v̂x has
a trapezoidal shape, while the velocities of the filtered trajectories vx,F IR and vx,IIR are
smoothed by the respective filtering operations. The acceleration profiles generated by the
algorithm are shown in Figure 4.8(b). Here, the unfiltered acceleration âx is piece-wise
constant and switches between the limit amax, zero, and −amax. The filtered accelerations
ax,F IR and ax,IIR demonstrate the step-response of the FIR and IIR filters, respectively.
The FIR filter has a trapezoidal step response while the third order IIR filter exhibits
third order low-pass behavior. With the chosen parameters for the filters, the rise-time of
the FIR filter is 10 ms while the rise-time of the IIR filter has a value of approximately

4 Trajectory generation 4.4 Simulation results 46

0

1

2
v

in
m

/
s

v̂x
vx,IIR
vx,F IR

−20

0

20

a
in

m
/s

2

âx
ax,IIR
ax,F IR

0 0.05 0.1 0.15 0.2 0.25

−2000

0

2000

time in s

j
in

m
/
s3

jx,IIR

jx,F IR

(a)

(b)

(c)

Figure 4.8: Behavior of different filters.

20 ms. Consequently, the motion requires an additional time of 10 ms when applying the
FIR filter and an additional time of approximately 20 ms in the case of the IIR filter.

Figure 4.8(c) visualizes the jerk profiles of the motion when using the FIR and IIR
filters, respectively. These profiles correspond to the impluse responses of the filters. The
jerk jx,F IR has the shape of rectangular pulses while the jerk pulses exhibit a smoother
shape jx,IIR. For the chosen filter parameters, the peak jerk values when using the FIR
filter and the IIR filter are similar.

5 Input shaping for vibration reduction

5.1 Motivation
Due to its mechanical design, the experimental prototype CDPR setup shown in Figure 1.1
is prone to structural vibrations. These vibrations are excited by the reaction forces caused
by the rapid acceleration of the tournament dartboard, which is attached to the EE. The
natural resonant frequencies of the structural components of the robot are investigated
and measured in Section 7.3, where one dominant eigenfrequency at approximately 6 Hz
can be observed. This resonant frequency corresponds to a sideways oscillation mode of
the robot frame in x-direction and is a result of the large height to width ratio of the robot
structure and the comparably low stiffness of the support structure. The aspect ratio of
the robot structure was chosen to satisfy the design objectives of a lightweight mobile
robot that can catch darts at the official tournament regulation height. Figure 5.1 shows
the discrete Fourier transform (DFT) of the acceleration for the motion generated by the
trajectory generator presented in Section 4.3 for the boundary conditions and limits

r0 = 0m , rset = [0.1, 0]Tm , vmax = 2.5 m/s , amax = 30 m/s2 . (5.1)

The motion defined by Eq. (5.1) is a typical positioning task for catching a dart.

0 10 20 30 40 50 60 70 80 90 100

0

1

2
resonant frequency

frequency in Hz

|D
FT

(a
)|

in
m

/
s2

âx
ax,IIR
ax,F IR

Figure 5.1: DFT of the acceleration for a typical motion.

The DFT of the accelerations depicted in Figure 5.1 show that the filters presented
in Section 4.3.3 which are used to limit the jerk along the trajectory effectively reduce
high frequency components in the acceleration of the EE. However, the primary frequency
content in the range of 0 Hz-15 Hz is almost unaffected by this filtering. In addition, the
dominant structural resonance frequency (6 Hz) lies in this range and is therefore strongly
excited by the EE motion.

47

5 Input shaping for vibration reduction 5.2 Notch filter 48

For this reason, it is desirable to reduce the mechanical oscillations via a suitable control
method. In general, a vibration reduction can be achieved either by feedback control or by
feedforward control of the EE motion [49]. For feedback vibration control, the vibration
of the mechanical structure must be measured or observed and the EE must be moved
accordingly to actively reduce vibrations. In a feedback vibration control scheme, special
care must be taken to ensure stability of the closed-loop system, which can be challenging
due to uncertainties in the system and spillover effects of unmodelled system dynamics.
In contrast, feedforward vibration control methods inherently do not cause any stability
issues for a stable system. For this reason, feedforward control is employed in the present
work.

A popular and widely used approach for feedforward vibration control is so-called
input shaping [50], where the actuator motion is shaped in such a way, that oscillations
are avoided or compensated. There exist a variety of real-time capable input shaping
techniques in the literature, see, e. g., [50, 51]. In this work, three different input shaping
strategies are investigated and implemented. First, in Section 5.2, the possibility of using a
notch-filter for removing resonant frequency components and thereby shaping the control
signal is discussed. Second, the so-called zero vibration (ZV) input shaping method is
investigated and compared to the notch-filter in Section 5.3. Third, in Section 5.4, the
possibility of using more robust input shaping strategies is briefly outlined.

5.2 Notch filter
A so-called notch filter is a filter which is designed to remove a specific undesirable
frequency from a signal. By applying a notch filter to the trajectory (r, v, a), the resonant
frequency component of the acceleration can be attenuated. Thus, a notch filter can be
used to shape the trajectory of the EE and reduce structural vibrations.

A digital second order IIR notch filter with a single notch, located at the normalized
angular frequency Ωn, can be synthesized using the discrete-time transfer function [52]

Hn(z) = β
1 − 2 cos Ωnz−1 + z−2

1 − 2β cos Ωnz−1 + (2β − 1)z−2 . (5.2)

Here, the coefficient β influences the bandwidth i. e. sharpness of the resulting notch. The
normalized angular frequency Ωn of the notch is obtained by normalizing the angular
frequency ωn = 2πfn using the sampling frequency fs of the system in the form

Ωn = ωn

fs
= 2πfn

fs
. (5.3)

The relation of the −3dB bandwidth ∆f and the coefficient β is given by

β = tan
�

π
∆f

fs

�
. (5.4)

Using relations from Eq. (5.2)-(5.4), a notch filter with a notch frequency of fn = 6 Hz
and any desired bandwidth ∆f can be designed. These formulas are implemented in
Matlab in the form of the iirnotch command. Figure 5.2 visualizes the impact of the filter

5 Input shaping for vibration reduction 5.3 Zero vibration input shaping 49

bandwidth on the behavior of the notch filter. The step response for different bandwidth
values ∆f is shown in Figure 5.2(a). In comparison, the dependence of the frequency
response on the bandwidth is depicted in Figure 5.2(b). Due to the reciprocal relation of
the time domain and the frequency domain, a smaller filter bandwidth in the frequency
domain corresponds to a longer duration of the step response in the time domain. The
step response of the notch filter can be interpreted as a step, which is superimposed with
an additional compensation of the notch frequency. The smaller the bandwidth of the
compensated notch frequency, the higher the damping of the compensation signal on top
of the step signal.

0 0.1 0.2 0.3 0.4

0

0.5

1

time in s

A
m

pl
itu

de

∆f = 5 Hz
∆f = 10 Hz
∆f = 15 Hz

(a) Step response.

0 20 40 60 80

0

0.5

1

6

−3dB

frequency in Hz

|H
n
(z

)|
∆f = 5 Hz
∆f = 10 Hz
∆f = 15 Hz

(b) Frequency response.

Figure 5.2: Notch filter with fn = 6 Hz and different bandwidth values ∆f .

A notch bandwidth of ∆f = 10 Hz is chosen to obtain a suitable settling time of the
filter. Thus, a reasonably fast response of the filter can be achieved without excessive
ringing.

5.3 Zero vibration input shaping
The basic idea behind the zero vibration input shaping method is to split the desired input
signal into two steps, where the second step is delayed by half the period of the resonant
frequency of the system. Thus, any vibration induced by the first step is cancelled by the
second step of the signal [53]. The method is based on the vibration model of a damped
linear oscillator, with the impulse response y(t) given by

y(t) = A
ω0�

1 − ζ2 e−ζω0t sin
�

tω0

�
1 − ζ2

�
. (5.5)

Here, A is the amplitude of the impulse excitation, ω0 = 2πf0 denotes the undamped
angular frequency and ζ the damping ratio of the oscillator. For the present application,
the input corresponds to the reaction force caused by the acceleration of the EE and the
output corresponds to the displacement of the structural frame of the prototype robot.

5 Input shaping for vibration reduction 5.4 Robust input shaping 50

Based on the vibration model from Eq. (5.5), a discrete time ZV input shaping filter can
be realized in the form of a linear FIR filter with the transfer function

HZV(z) = 1
1 + K

+ K

1 + K
z−nd , (5.6)

nd =
�

2fs

f0
�

1 − ζ2

�
, K = e

−ζπ√
1−ζ2 , (5.7)

where ⌊·⌉ denotes the rounding operator which rounds to the nearest integer. A detailed
derivation of the method and a discussion of its advantages, shortcomings and possible
extensions can be found in [53].

Using Eqs. (5.6) and (5.7), a ZV input shaping filter can be designed for the dominating
structural resonance discussed in Section 7.3. Here, the values f0 = 6 Hz and ζ = 0.03 are
applied for the prototype robot and a sampling frequency of fs = 8 kHz is used. Figure 5.3
shows behavior of the resulting ZV input shaping filter.

0 0.1 0.2 0.3 0.4

0

0.5

1

1
1+K

K
1+K

time in s

A
m

pl
itu

de

(a) Step response.

6 18 30 42 54 66
0

0.5

1

f in Hz

|H
ZV

(z
)|

(b) Frequency response.

Figure 5.3: ZV input shaping filter behavior.

The step response depicted in Figure 5.3(a) shows the two separate delayed steps
conducted by the input shaping algorithm. With the parameters used for the prototype
robot, the delay has a duration of 83 ms.

The frequency response of the input shaper shows, that the frequency content of the
resonant frequency (6 Hz) and all uneven multiples is removed. Any even multiple of the
resonant frequency is unaffected by the input shaping filter. Note that |H(z)| is slightly
larger than zero at the resonance frequency because only a damped oscillation with the
exact damping ζ is exactly cancelled by the filter.

5.4 Robust input shaping
Both the notch filter presented in Section 5.2 and the ZV input shaping discussed in
Section 5.3 rely on a precise model of the vibrations, in particular of the frequency of the

5 Input shaping for vibration reduction 5.4 Robust input shaping 51

oscillation. In the literature, there exist a variety of alternative input shaping methods
which offer greater robustness to parameter uncertainties. Singer and Seering [53] present
an extension of the ZV method by setting the derivative of the frequency response to zero
at the resonance frequency. The resulting input shaper is referred to as zero vibration
derivative (ZVD) method and requires separating the input signal into three steps. This
concept can be extended to methods with more steps, to gain even more robustness to
uncertain or changing parameters.

Based on the vibration model from Eq. (5.5), a ZVD input shaper can be implemented
as a digital FIR filter in the form

HZVD(z) = 1
1 + 2K + K2 + 2K

1 + 2K + K2 z−nd + K2

1 + 2K + K2 z−2nd , (5.8)

with K and nd from Eq. (5.7). The resulting step response and frequency response for the
ZVD input shaper using f0 = 6 Hz and ζ = 0.03 is shown in Figure 5.4. Here, the step
response shown in Figure 5.4(a) shows that the step is separated into three separate steps
which require a total duration of 167 ms to complete the shaped signal. The frequency
response depicted in Figure 5.4(b) shows the cancellation of the resonant frequency (6 Hz)
and all uneven multiples, where the derivative of |HZVD(z)| with respect to the frequency
is also zero.

0 0.1 0.2 0.3 0.4

0

0.5

1

1
1+2K+K2

2K
1+2K+K2

K2

1+2K+K2

time in s

A
m

pl
itu

de

(a) Step response.

6 18 30 42 54 66

0

0.5

1

frequency in Hz

|H
ZV

D
(z

)|

(b) Frequency response.

Figure 5.4: ZVD input shaping filter behavior.

There also exist similar methods with three and more steps, which offer higher robustness
to parameter uncertainties by not aiming for full cancellation of the vibration but a desired
tolerable attenuation of vibrations across a wider frequency range [54]. A comparison of
the performance of different robust input shaping methods can be found in [51]. With any
input shaping method, there is an inherent trade-off between the robustness with respect
to parameter uncertainties and the duration of the shaped input signal. To achieve a
higher robustness, a longer duration of the shaped signal is required. For the application
of catching a dart, robust input shaping techniques demand a relatively long duration of
the shaped signals and are therefore considered impractical.

6 Flight prediction

6.1 Overview
In this chapter, the flight prediction algorithm is outlined. This algorithm uses the
measurement data provided by the optical tracking system to track the flight of the dart
and predict the impact location. The goal of the algorithm is to compute a target set-point
xset for the robot pose, such that the dartboard can be positioned accordingly and the
dart hits the desired segment on the dartboard.

The developed architecture of the flight prediction algorithm consists of four intermediate
steps as shown in Figure 6.1. These steps are briefly outlined in the following and elaborated
in more detail in the subsequent sections.

Flight Prediction

Impact
Prediction

Optical
Tracking

Marker
Assignment

Rotation
Planning

desired
segment

Observer
xsetY y ẑ+

ŷ

r̂p

Figure 6.1: Internal steps of the flight prediction stage.

The Optical Tracking system is used to capture the position of three reflective mark-
ers, which are attached to the dart. The flight prediction algorithm receives the raw
measurement data Y from the optical tracking system. This data contains the coor-
dinates of all optical markers which were detected in the current frame. First, in the
Marker Assignment step, the raw measurement data Y is processed and the optical
marker coordinates y, which correspond to the dart, are identified and extracted from
the raw data. Second, the Observer uses the measured data y and a mathematical
model of the dart dynamics to compute an estimate ẑ+ of the dart state. If available,
a prediction of the expected marker positions ŷ is provided to the marker assignment
algorithm to increase reliability in case marker signals are missing in the raw tracking
data. In the third step, the model of the dart is used for the Impact Prediction . Fourth,
the predicted impact position r̂p and the desired segment on the dartboard are used
to compute a suitable combination of rotation and translation of the dartboard in the
Rotation Planning step. Thus, a set-point for the pose xset is obtained.

52

6 Flight prediction 6.2 Mathematical model 53

6.2 Mathematical model
In the following, a mathematical model of the dart is presented. The hardware components
employed in the prototype robot are discussed in Section 7.1. The geometry of the dart
and the individual components are depicted in Figure 6.2. Here, the locations of the three
optical markers, which are used to track the dart, are illustrated in orange color.

F

M
B

T

lS
lB

lD

lT

D

yD

zD

x

y

z

xD

flights shaft
barrel

tip

dartboard

Figure 6.2: Dart geometry and optical marker location.

The center of mass of the dart is denoted D and lies inside the so-called barrel of the
dart. The three markers are denoted F , M and B and the sharp point at the end of the
so-called tip of the dart is denoted T . In the rear part of the dart, the so-called flights are
installed, which stabilize the orientation of the dart in the air.

6.2.1 Kinematics
To model the motion and flight trajectory of the dart, the dart is considered a rigid body
and any deformations are neglected. Furthermore, the spin of the dart around the zD-axis
and the influence of the angular spin velocity on the flight trajectory is assumed to be
insignificant. Thus, the rotation of the dart around the zD-axis is neglected and the model
for the dart has 5 degrees-of-freedom (DOFs), i. e. 3 DOFs of translation and 2 DOFs
of rotation. Note, that for the chosen marker placement shown in Figure 6.2, the spin
of the dart around the zD-axis does not affect the marker positions and is therefore not
observable.

To describe the 3 translational DOFs, the position vector rD, which points from the
origin to the center of gravity D, is used. The position vector rD reads as

rD =
�
xD yD zD

T
. (6.1)

Here, the robot coordinate system is used as inertial reference frame which is located
at the center of the CDPR as shown in Figure 2.1. Thus, the dartboard moves in the
xy-plane as indicated in Figure 6.2.

To describe the 2 rotational DOFs, the orientation of the dart is parameterized using
the two angles ϑ and ψ as visualized in Figure 6.3. The dart coordinate frame is defined

6 Flight prediction 6.2 Mathematical model 54

by the basis vectors exD , eyD and ezD and centered at point D. To obtain the orientation
of the dart coordinate frame, a rotation around the y-axis by the angle ψ is conducted to
obtain the intermediate basis vectors ex′ , ey′ and ez′ as shown in Figure 6.3(a). Thereafter,
the intermediate coordinate system is rotated around the x′-axis by the angle ϑ to obtain
the dart coordinate frame exD , eyD and ezD as depicted in Figure 6.3(b).

x

y

y′

x′
z′z ψ

ψ

ψ

(a) Angle ψ.

x

y

yD

xD

zD

z ψ

ψ

ϑ

ϑ

ϑ
ω1

ω2

(b) Angle ϑ.

Figure 6.3: Parameterization of the dart orientation.

Thus, an arbitrary vector (r)D in the dart coordinate frame, given in the basis
(exD , eyD , ezD) can be transformed to the basis (ex, ey, ez) via the rotation matrix RD in
the form

r = RD(r)D . (6.2)
The rotation matrix RD reads as

RD = Ry,ψRx′,ϑ =

 cos ψ sin ψ sin ϑ sin ψ cos ϑ
0 cos ϑ − sin ϑ

− sin ψ cos ψ sin ϑ cos ψ cos ϑ

 , (6.3)

using the elementary rotation matrices

Rx′,ϑ =

1 0 0
0 cos ϑ − sin ϑ
0 sin ϑ cos ϑ

 , Ry,ψ =

 cos ψ 0 sin ψ
0 1 0

− sin ψ 0 cos ψ

 . (6.4)

In other words, the columns of the rotation matrix RD correspond to the basis vectors of
the dart coordinate frame

RD =
�
exD eyD ezD

, (6.5)

as observed from the inertial reference frame.
The relation of the angular velocities ω1 and ω2 in the dart coordinate frame (see

Figure 6.3(b)) to the angular velocities ϑ̇ and ψ̇ is given by 0 −ω3 ω2
ω3 0 −ω1

−ω2 ω1 0

 = (RD)TṘD . (6.6)

6 Flight prediction 6.2 Mathematical model 55

A detailed derivation of Eq. (6.6) can be found in [20]. Calculating ṘD and inserting
Eq. (6.3) into Eq. (6.6) yields the relations

ω1 = ϑ̇

ω2 = ψ̇ cos ϑ .
(6.7)

To describe the motion of the dart and subsequently derive a dynamic model in
Section 6.2.2, the kinematic state z of the dart is defined as

z =
�
xD yD zD ẋD ẏD żD ϑ ψ ω1 ω2

T
. (6.8)

Measuring the position of the three markers via the optical tracking system yields the
output vector y, which is defined as

y =

rF

rM

rB

 =
�
xF yF zF xM yM zM xB yB zB

T
. (6.9)

Using the dart geometry depicted in Figure 6.2 and the rotation matrix RD from Eq. (6.3),
the positions of the optical markers, i. e. rF , rM and rB can be calculated. Thus, the
output y from Eq. (6.9) can be written as a function h(z) in the form

y = h(z) =

 rD − lDezD

rD + (lB − lD)ezD

rD + (lB − lD + lS)ezD

 ezD = RD(ϑ, ψ)

0
0
1

 . (6.10)

6.2.2 Dynamics
To describe the flight dynamics of the dart, a model for the temporal evolution of the
kinematic state z(t) is presented in this section. The flight of the dart consists of two
stages as visualized in Figure 6.4. To account for the structural change between the two
stages, the switching variable u ∈ {0, 1} is utilized in the mathematical model.

In the handheld stage 1 (u = 0), the human player holds the dart such that the hand
moves around with the dart freely. In this stage, the hand compensates the gravitational
acceleration and the dart is accelerated unpredictably as the human moves around and
prepares for throwing the dart. In this work, the motion patterns followed by the human
player are not further modelled and the best estimate for the acceleration of the dart is
zero. Hence, the dynamical model for the handheld stage 1 is given by

d
dt

z = f(z, u = 0) =
�
ẋD ẏD żD 0 0 0 ω1

ω2
cos ϑ 0 0

T
. (6.11)

When the dart is thrown and detaches from the hand, the dart is in the airborne
stage 2 (u = 1). In this stage, the dart is subject to the gravitational acceleration and
experiences aerodynamic forces which stabilize the rotation of the dart and change the
flight path. In the following, the motion of an airborne dart is analyzed to derive a model
for the airborne stage 2 .

6 Flight prediction 6.2 Mathematical model 56

D

ω1

ϑṙD

x

y

z

D

ω1

ϑ

ṙD

1 Handheld
u = 0

2 Airborne
u = 1

g

Figure 6.4: Switching between the handheld stage 1 and the airborne stage 2 .

The flight trajectory rD(t) of a tournament dart closely resembles a parabolic ballistic
trajectory, which is the result of the gravitational acceleration acting on the dart in
negative y-direction. However, the aerodynamic forces acting on the dart change the
shape of the trajectory and significantly impact the behavior of the orientation of the
dart. The flights located at the rear of the dart cause the aerodynamic center of the dart
to be located behind the center of mass. As a result, any deviation of the orientation of
the dart from the flight direction causes an opposing torque. Thus, the flights stabilize
the dart and attempt to align the zD-axis with the velocity ṙD. When the dart is thrown
by the player with an initial angular velocity, this effect causes the orientation of the dart
to oscillate around the direction of flight.

A typical trajectory of a dart thrown by an amateur player is shown in Figure 6.5. The
image shown in Figure 6.5 was created by overlaying multiple frames captured with a
high-speed camera. Here, the oscillation of the angle ϑ is visible. The dart is thrown such

1
2

3

Figure 6.5: Typical trajectory of a dart thrown by an amateur player.

6 Flight prediction 6.2 Mathematical model 57

that initially ϑ > 0 at point 1 . Due to the negative initial angular velocity, the dart
pitches downward such that ϑ < 0 at 2 . Finally, the aerodynamic forces cause the dart
to pitch upward again such that ϑ ≈ 0 at point 3 .

To accurately predict the impact position of the tip of the dart and reliably hit small
segments such as the bullseye, the dynamics of the orientation must be modelled and
aerodynamic effects must be considered. The flowfield over a flying dart is a complex
combination of different fundamental flow shapes. In [55], the airflow over a dart is studied
in detail using smoke flow visualization in a wind channel. It is found, that the flow
can be characterized by different counter rotating vortex systems which form due to the
separation of air around the barrel, shaft and at the leading edge of the flights. The
results indicate, that the flights behave similar to a delta-wing and efficiently create lift,
even at large angles of attack.

For the aerodynamic model developed in the present thesis, it is assumed that the
angles ϑ and ψ are small when the dart is airborne. Consequently, the coupling between
the dynamics of ϑ and ψ is neglected and each rotational degree-of-freedom is treated
independently. The modelled forces acting on the dart are visualized in Figure 6.6.

yD

zD

xD

x

y

z

lac

D

ω1
T1

αx

βx

ϑ

Ff1
gD

Fd1

ṙD

ac

(a) Forces acting on the airborne dart in the yz-plane for ψ ≈ 0.

zD

xD
x

y

z

lac

D

ω2
T2

αy

βy

ψ

Ff2

Fd2

ṙD

ac

(b) Forces acting on the airborne dart in the xz-plane for ϑ ≈ 0.

Figure 6.6: Forces acting on the dart for small angles ϑ and ψ.

The gravitational force gD acts at the center of gravity D and reads as

gD =
�
0 −mDg 0

T
, (6.12)

with the gravitational acceleration g and the mass of the dart mD.

6 Flight prediction 6.2 Mathematical model 58

Aerodynamic forces acting on the dart are created as a result of the interaction of the
dart with the surrounding air as the dart moves through the air. Here, the motion of the
rigid dart relative to the air is described by the velocity ṙD and the angular velocities
ω1 and ω2. For better readability, the euclidean norm of the velocity ∥ṙ∥2 is denoted vD

in the following. For simplicity, the effect of the linear motion of the whole dart with
the velocity vD is treated separately from the effect of the angular velocities ω1 and ω2,
respectively.

It is assumed, that all aerodynamic forces act at the aerodynamic center denoted ac as
shown in Figure 6.6, where the distance between the center of mass D and the aerodynamic
center ac is denoted lac.

The lift and drag forces generated by the motion with a relative velocity of vD are
modelled using the forces Ff1 acting in eyD direction and Ff2 acting in negative exD

direction, respectively. These forces are caused by the flights of the dart, which act as
wings and generate lift. Thus, the forces Ff1eyD and −Ff2exD depend on the angle of
attack αx shown in Figure 6.6(a) and αy shown in Figure 6.6(b), respectively. In the
proposed model, the forces Ff1 and Ff2 are given by

Ff1 = C0f v2
D sin αx , Ff2 = C0f v2

D sin αy , (6.13)

with the constant parameter C0f . The angles of attack αx and αy are defined as

αx = ϑ − atan2(ẏD, −żD) , αy = ψ − atan2(−ẋD, −żD) . (6.14)

In addition, the angular velocities ω1 and ω2 cause additional aerodynamic forces, which
act as damping and oppose the angular velocities. These damping effects are modelled
using the force Fd1eyD and −Fd2exD , respectively. The proposed damping forces are given
by the relations

Fd1 = C0dvDω1 , Fd2 = C0dvDω2 , (6.15)

with the constant parameter C0d.
The balance of momentum can be written by transforming the forces from Eqs. (6.13)

and (6.15) from the dart coordinate system to the reference coordinate system via the
rotation matrix RD from Eq. (6.3). Thus, the relation

r̈D = gD + 1
mD

RD

−Ff2 − Fd2
Ff1 + Fd1

0

 (6.16)

is obtained.
Due to the offset lac, the aerodynamic forces cause the torques T1 around the exD -axis

and T2 around the eyD -axis, respectively, as shown in Figure 6.6. As discussed earlier,
these torques stabilize the rotation of the dart. The balance of angular momentum in the
dart coordinate frame reads asω̇1

ω̇2
0

 = −I−1
D lac

Ff1 + Fd1
Ff2 + Fd2

0

 , (6.17)

6 Flight prediction 6.3 Marker Assignment 59

where ID denotes the inertia tensor in the dart coordinate frame. The zD-axis of the dart
coordinate system is aligned with the symmetry axis of the dart. Due to the symmetry of
the dart, the axes of the dart coordinate system form principal axes for the inertia tensor
and the tensor can be written in the form

ID =

ID⊥ 0 0
0 ID⊥
0 0 ID∥

 , (6.18)

where ID∥ denotes the mass moment of inertia around the zD-axis and ID⊥ denotes the
mass moment of inertia around the xD and yD axes, respectively. Note that due to
symmetry the latter two are identical. Substituting Eq. (6.18) into Eq. (6.17) yields

ω̇1 = − lac

ID⊥
(Ff1 + Fd1) , ω̇2 = − lac

ID⊥
(Ff2 + Fd2) . (6.19)

The unknown constant parameters C0f , C0d, mD, ID⊥ and lac can be lumped into new
parameters in the form

Cf = C0f

mD
, Cd = C0d

mD
, Cl = lacmD

ID⊥
, (6.20)

which can be identified and calibrated using measurement data. The model parameter
values used in this work are summarized in Table A.1 in Appendix A.

Combining the equations of motions from Eqs. (6.16) and (6.19) and using the constants
from Eq. (6.20), the dart dynamics for the airborne stage 2 can be written in the form

d
dt

z = f(z, u = 1) =



ẋD

ẏD

żD

sin ψ sin ϑA1 − cos ψA2
−g + cos ϑA1

cos ψ sin ϑA1 + sin ψA2
ω1
1

cos ϑω2
−ClA1
−ClA2


,

A1 = (Ff1 + Fd1) ,
A2 = (Ff2 + Fd2) .

(6.21)

It can be shown that the behavior of the dynamic model for the airborne dart given by
Eq. (6.21) with respect to the dart oscillation is consistent with the small perturbation
model presented in [56]. In this work, the oscillations of the pitch angle ϑ and the angle
of attack αx are studied using high-speed video footage from 225 dart throws from 19
different amateur players.

6.3 Marker Assignment
The marker assignment stage preprocesses the raw data frames Y, which are received
from the optical tracking system and extracts the relevant marker signals y. The optical

6 Flight prediction 6.3 Marker Assignment 60

tracking system uses multiple cameras to capture the position of reflective markers. For
this purpose, the camera images are processed by a proprietary tracking software running
in the Windows operating system to triangulate the position of all markers found in the
camera images. The time when a set of camera images is captured is denoted tj and the
corresponding data frame is denoted Y[j] = Y(tj). In the following, all signals which relate
to measurements are represented as sequences using the measurement index j = 0, 1, 2, . . .
corresponding to the measurement time tj . As soon as a set of camera images has been
processed by the tracking software, it is passed from the Windows environment to the
robot controller. Due to latencies in the tracking software, the Windows operating system
and the transmission system, the data Y[j] are received at irregular control timesteps k.
Thus, there exists no simple relationship between the measurement steps denoted j and
the controller steps k.

Each raw data frame Y[j] has a fixed length and contains data corresponding to the the
first nmk markers, which were found in the tracked volume. For each marker, the position
rmk,i with i = 1, . . . , nmk is contained in the data frame. In addition, a timestamp of
the captured time tj is available for each raw data frame Y[j]. Furthermore, additional
measurement related data for each marker is contained in the raw data such as the marker
size and the triangulation residual. However, the present marker assignment algorithm
does not use this additional data.

The goal of the marker assignment algorithm is to find the indices (iF , iM , iB), which
correspond to the markers attached to the dart as shown in Figure 6.2. Thus, the
measurement y is obtained in the form

y =
�
rmk,iF

rmk,iM
rmk,iB

T
. (6.22)

The measurement data is subject to measurement errors and occasionally marker signals
can be missing due to bad visibility of the optical markers. Hence, the marker assignment
algorithm must be capable of assigning 1, 2 or all 3 marker positions to the corresponding
measurement signals. In the present work, a heuristic marker assignment algorithm was
developed, which is briefly outlined in the following.

Two different cases are distinguished by the marker assignment algorithm. In the first
case, no previous knowledge about the position of the dart is available and the dart is not
yet tracked by the observer presented in the following Section 6.4. Hence, the algorithm
searches for 3 markers which match the dart geometry and assigns the marker signals
accordingly. Figure 6.7 visualizes the assignment procedure without any state estimate.
The idea behind the algorithm is to use bounding boxes centered around each marker
to select candidates for a dart and remove outliers as illustrated in Figure 6.7(a). If a
bounding box with exactly 3 markers inside the box is found, these markers are selected as
candidates for a dart. The 3 distances between each pair of marker signals are compared
to the expected distances lS , lB and lS + lB. If the measured distances match the dart
definition within a predefined tolerance, the three markers are accepted as a valid dart and
the indices iF , iM and iB are assigned accordingly. This step is illustrated in Figure 6.7(b).

Note, that if no previous estimate for the dart state ẑ is available, the marker assignment
only accepts a matching group of 3 markers as a valid measurement.

In the second case, the dart has been found in the previous frame j − 1 and a prediction

6 Flight prediction 6.3 Marker Assignment 61

xrmk,i

y

z

i

bounding
box

(a) Bounding boxes around markers.

iF
iM

F

lB

iB

lS

lS + lB

MB

(b) Comparing marker distances to the model.

Figure 6.7: Marker assignment procedure without previous knowledge.

for the expected marker locations ŷ[j] is available. The marker assignment procedure in
this case is visualized in Figure 6.8.

x

rmk,i

y

z

i

search
box

(a) Search box.

lBlS

lS + lB

MB F

iB
iM

missing
marker

lS

prediction

(b) Finding best fit to the prediction.

Figure 6.8: Marker assignment procedure with a state estimate ẑ.

In the first step, a search box centered around the predicted center of gravity r̂D[j]
is used to find marker candidates and remove outliers. Here, the search box is chosen
considerably larger than the bounding boxes in the previous case, to account for prediction
errors as illustrated in Figure 6.8(a). If 1, 2 or 3 markers are found within the search box,
they are used as candidates for the marker signals. In the example shown in Figure 6.8,
only two valid markers were found and one marker signal is missing in the raw data Y[j].
In the next step, the available marker candidates are compared to the prediction ŷ[j]
to find the best fit as illustrated in Figure 6.8(b). If the distance between the markers
matches the dart model within a predefined tolerance and the prediction error is below

6 Flight prediction 6.4 Observer Design 62

a predefined threshold, the markers are accepted as valid signals and the indices are
assigned according to the best fit. In the example shown in Figure 6.8(b), the markers are
identified as M and B because their distance matches the expected value lS . The two
possible assignment combinations are compared to the prediction and the best fit with
the lower prediction error is chosen.

Note that the outlined procedure accepts marker signals with only 1 or 2 markers if
their distance matches the dart definition and they are sufficiently close to the predicted
positions. Thus, lost data points can be handled and the algorithm is robust with respect
to missing data. However, if the marker signals are lost for an extended period of time and
the prediction error becomes too large, the dart can no longer be tracked and a reliable
estimation of the dart impact location is no longer possible.

If no valid match for the dart signals can be found for a predefined time Tlost, the state
prediction ẑ is discarded because it is considered invalid.

6.4 Observer Design
To track the motion of the dart, a state observer is used. The observer uses the model
derived in Section 6.2 and the measurement data y, provided by the marker assignment
algorithm, to estimate the kinematic state z of the dart. In the following, a discrete-time
extended Kalman filter (EKF) is designed for this purpose. A classical Kalman filter
is based on a linear system model. The idea behind an EKF is to extend the classical
Kalman filter to nonlinear system models by linearizing the system at each step j.

The EKF is based on the nonlinear, discrete-time system model

z[j + 1] = F(z[j], u[j], w[j], ∆tj)
y[j] = h(z[j]) + v[j] ,

(6.23)

where w ∈ R10 denotes the unknown disturbance vector and v ∈ R9 denotes the measure-
ment noise. The output function h(z) is given by Eq. (6.10). To obtain the transition
function F(z, u, w, ∆t), the nonlinear continuous-time model given by Eqs. (6.11) and
(6.21) is discretized using the explicit Euler method. Thus, the transition function is given
by

F(z[j], u[j], w[j], ∆tj) = z[j] + f(z[j], u[j])∆tj + w[j] . (6.24)
The unknown disturbance w[j] can be interpreted as the effect of modelling errors,
unmodelled phenomena and parameter uncertainties in the model. It is assumed in the
discrete model from Eq. (6.24), that the disturbance w[j] additively acts on the state z[j].

For the design of the EKF, it is assumed that the disturbance w and the measurement
noise v are uncorrelated white noise sequences with zero mean. Thus, the relations

E(w[j]) = 0 E(w[j]wT[k]) = Q[j]δj,k (6.25)
E(v[j]) = 0 E(v[j]vT[k]) = R[j]δj,k (6.26)

E(w[j]vT[k]) = 0 (6.27)

hold, where E(·) denotes the expected value and δj,k denotes the Kronecker symbol. Here,
R ∈ R9×9 is the covariance matrix of the measurement noise and Q ∈ R10×10 is the

6 Flight prediction 6.4 Observer Design 63

covariance matrix of the disturbance. It is assumed that the measurement uncertainty for
each measured marker position rmk,i is proportional to the triangulation residual ρi. If a
marker signal is missing because the marker was not found by the optical tracking system,
then the corresponding uncertainty is set to the large value ρi = 109m. Hence, the noise
covariance matrix is given in the form

R[j] = Rmkdiag(ρF [j], ρF [j], ρF [j], ρM [j], ρM [j]ρM [j], ρB[j], ρB[j], ρB[j]) , (6.28)

with the constant parameter Rmk.
Furthermore, it is assumed that the disturbance depends on the flight stage, which is

defined by the switching variable u[j]. In the handheld stage 1 (u[j] = 0), the unmodelled
forces exerted by the human can be very large and thus the disturbances are assumed to
be large. In the airborne stage 2 (u[j] = 1), the disturbances are caused by modelling
errors and parameter uncertainties which are assumed to be smaller in comparison. Hence,
the disturbance covariance matrix Q[j] is set according to the switching variable u[j] in
each timestep in the form

Q[j] =
�

Q1 , for u[j] = 0
Q2 , for u[j] = 1 .

(6.29)

Here, the two matrices Q1 and Q2 are constant design parameters. The parameter values
chosen for the observer in this work are summarized in Table A.2 in Appendix A.

Because no a priori knowledge about the initial state of the dart is available, the EKF
is initialized using

ẑ[0] = ẑ+[0] = 0 P[0] = P+[0] = 106I . (6.30)

The estimation error covariance matrix P ∈ R10×10 is initialized as a diagonal matrix
with very large values because the uncertainty of the initial guess ẑ[0] is very large. The
update procedure for a discrete-time EKF is given by the following steps [57].

A Compute the transition matrix Φ[j − 1]:

Φ[j − 1] = ∂

∂zF

ẑ+[j − 1], u[j − 1], 0, tj − tj−1

�
. (6.31)

B Extrapolate state estimate ẑ[j], estimation error covariance matrix P[j] and
output estimate ŷ[j] for the current timestep j:

ẑ[j] = F

ẑ+[j − 1], u[j − 1], 0, tj − tj−1

�
, (6.32)

P[j] = Φ[j − 1]P+[j − 1]ΦT[j − 1] + Q[j] , (6.33)
ŷ[j] = h(ẑ[j]) . (6.34)

C Compute the output matrix C[j] for the predicted state:

C[j] = ∂

∂zh(ẑ[j]) . (6.35)

6 Flight prediction 6.5 Impact prediction 64

D Perform the measurement update to obtain the corrected state estimate ẑ+[j]
and the corrected estimation error covariance matrix P+[j]:

K[j] = P[j]CT[j]

C[j]P[j]CT[j] + R[j]

�−1
, (6.36)

ẑ+[j] = ẑ[j] + K[j]

y[j] − ŷ[j]

�
, (6.37)

P+[j] =

I − K[j]C[j]

�
P[j] . (6.38)

In steps A and B , new estimates for the state ẑ[j], error covariance matrix P[j] and
output ŷ[j] are predicted via extrapolation using the linearized system dynamics. These
estimates are referred to as a priori estimates because they are computed before acquiring
the measurement y[j]. In steps C and D , the measurement y[j] is used to obtain
improved estimates ẑ+[j] and P+[j] . These estimates are called a posteriori estimates
because they are calculated after the measurement is obtained.

The marker assignment algorithm outlined in Section 6.3 is executed between step B
and step C . Here, the marker assignment algorithm uses the a priori estimate ŷ[j] to
robustly find y[j] in the case of missing marker signals.

A state-machine is used to coordinate the different procedures involved in tracking
the dart. The state-machine detects a valid throw of the dart based on the history of
the distance to the dartboard and the velocity towards the dartboard. Let ja denote
the timestep, where the state-machine detects that the dart is airborne. Consequently,
the switching variable u[ja] = 1 is set, to switch the model dynamics accordingly for the
current timestep ja and all subsequent timesteps. During the throwing process, the human
player rapidly accelerates the dart towards the dartboard. This leads to a relatively large
prediction error immediately after the throw. To improve the prediction when switching
from the handheld stage 1 to the airborne stage 2 , the prediction error covariance matrix
P[ja] is set to a large value. As a result, the EKF discards the possibly erroneous estimate
and puts more weight on the following measurement data. Thus, the model switchover
procedure from the handheld stage 1 to the airborne stage 2 can be summarized as:

u[j] =
�

0 , for j < ja

1 , for j ≥ ja ,
P[ja] = 108I . (6.39)

6.5 Impact prediction
An impact of the dart on the dartboard occurs, when the tip of the dart T arrives at
the surface of the dartboard. Because the dartboard moves in the xy-plane, the impact
position rp on the impact surface always has the same z-coordinate denoted zp, which is
given by the distance of the dartboard’s surface to the xy-plane.

The position rT of the tip T depends on the dart state z defined in Eq. (6.8) and can
be written in the form

rT (z) = rD − lT ezD =

xD − lT sin ψ cos ϑ
yD + lT sin ϑ

zD − lT cos ψ cos ϑ

 . (6.40)

6 Flight prediction 6.5 Impact prediction 65

The impact of the dart occurs when the z-coordinate of the tip position rT reaches the
value zp. Using the distance from the impact surface

hp(z) = zD − lT cos ϑ cos ψ − zp (6.41)

as a so-called event function, the dart impact can be formulated as an event location
problem in the form

d
dt

z = f(z, u = 1) + w

z(0) = z0

hp(z(tp)) = 0 .

(6.42)

Here, the impact time tp and the corresponding impact state z(tp) describe the impact
of the dart at the dartboard. The vector field f(z, u = 1) from Eq. (6.21) describes the
dynamics of the airborne dart and w denotes the disturbance. Using the solution z(tp) of
Eq. (6.42), the impact location rp is obtained by substituting z(tp) into Eq. (6.40)

rp = rT (z(tp)) . (6.43)

To find an approximation r̂p of the exact impact location rp, the event location problem
from Eq. (6.42) is discretized using Heun’s method. Heun’s method is a two-stage
Runge-Kutta scheme and corresponds to using the trapezoid rule for integrating an
ordinary differential equation (ODE) [58]. Thus, Heun’s method is exact for integrating
ODEs which have a linear derivative, which corresponds to a quadratic solution. The
dart trajectory closely resembles a parabola due to the dominating influence of the
gravitational acceleration. For this reason, Heun’s method is very computationally
efficient for numerically integrating the dart model. The event function is used as an
inequality constraint, to find the step np where the impact has occurred. Thus, the
discrete approximation of the event location problem from Eq. (6.42) reads as

ẑp[0] = ẑ+[j] , (6.44a)

ẑp[n + 1] = ẑp[n] + 1
2(∆z1 + ∆z2) ,

∆z1 = f(ẑp[n], 1)Tp[j] ,

∆z2 = f(ẑp[n] + ∆z1, 1)Tp[j] ,

(6.44b)

hp(ẑp[np]) ≤ 0 . (6.44c)

The discrete event location problem from Eq. (6.44) is solved to predict the impact
location as follows. In each measurement step j the updated a posteriori state estimate
ẑ+[j] is used to initialize ẑp[0] as stated by Eq. (6.44a). Then, the iteration law from
Eq. (6.44b) is applied until the condition from Eq. (6.44c) is satisfied. Thus, the iteration
step np where the impact occurred is found. An approximation for the impact position is

6 Flight prediction 6.6 Rotation planning 66

computed by linearly interpolating between the step np and the previous step np − 1 in
the form

z̄p[j] = ẑp[np] − ẑp[np] − ẑp[np − 1]
hp(ẑp[np]) − hp(ẑp[np − 1])hp(ẑp[np]) (6.45)

Finally, the predicted impact state z̄p can be substituted into Eq. (6.40) to obtain an
estimate for the impact position in the form

r̂p[j] =
�
x̂p[j]
ŷp[j]

�
= rT (z̄p[j]) . (6.46)

To determine a suitable time step Tp[j] for the iterative procedure, a preliminary
estimate for the total duration of the dart flight T̂tot is calculated. This estimate is
obtained from the state estimate ẑ+[j] by assuming that the velocity in z-direction v̂+

z [j]
remains constant. Thus the duration can be estimated in the form

T̂tot[j] = hp(ẑ+[j])
v̂+

z [j]
. (6.47)

This total duration is divided by the desired number of steps Np which is a fixed design
parameter. Thus, the time step Tp is given by

Tp[j] = T̂tot
Np

. (6.48)

6.6 Rotation planning
The CDPR has 3 degrees-of-freedom for moving the dartboard attached to the EE in
the task space. The dartboard can be positioned in the xy-plane and rotated around
the z-axis. Hence, the desired set-point pose xset for hitting a desired segment of the
dartboard is not unique.

In this section, a simple heuristic rotation planning method for choosing a suitable
set-point xset is presented. The aim of the planning algorithm is to choose a visually
appealing combination of rotation and translation with a low computational effort.

To define the chosen target segment, the target impact point is parameterized in polar
coordinates using the radius rt and the angle φt as illustrated in Figure 6.9. Here, the triple
5 segment is shown as an example. The values for rt and φt are stored in a lookup table
for each segment on the dartboard such that the user can choose any desired segment as
a target. The algorithm calculates a suitable set-point pose xset in two steps as visualized
in Figure 6.10.

In the first step, the angle φset is chosen in the form

φset[j] = Kφ(φp[j] − φt) , (6.49a)

φp[j] =
�

atan2(−x̂p[j], ŷp[j]) , if x̂2
p[j] + ŷ2

p[j] > r2
min

φp[j − 1] , otherwise .

φp[0] = 0 ,

(6.49b)

6 Flight prediction 6.6 Rotation planning 67

y

φt

xzrt

target

Figure 6.9: Parameterization of the desired segment (e. g. triple 5) on the dartboard.

y yC

φt −φp

x

xC

z

r̂p−φset

(a) Rotation φset.

y

rset

xz

yC

xC

zC

C

(b) Translation rset.

Figure 6.10: Rotation planning algorithm.

where Kφ ∈ [0, 1] is a constant design parameter. This step is illustrated in Figure 6.10(a).
The choice of the parameter Kφ determines the amount of rotation chosen by the algorithm.
For the choice Kφ = 0, only pure translation is performed. In contrast, when choosing
Kφ = 1 the algorithm will align the rotation of the target segment on the dartboard with
the polar angle of the impact position. If the predicted impact position r̂p is very close to
the origin, then the angle φp can vary greatly due to measurement noise. Thus, the angle
cannot be calculated reliably and the last accepted value is used instead. The constant
parameter rmin is used as a threshold. In the special case of choosing the bullseye as
desired segment, the angle φt is undefined because the bullseye is located in the center of
the dartboard. In this special case, the set-point rotation angle is set to φset[j] = 0.

In the second step of the rotation planning algorithm, the set-point rset[j] is chosen
accordingly, such that the target impact position given by rt and φt coincides with the
predicted impact position r̂p[j]. The required remaining translational movement reads as

rset[j] = r̂p[j] − rt

�
− sin (φset[j] + φt)
cos (φset[j] + φt)

�
, (6.50)

as visualized in Figure 6.10(b).

7 Experimental results
In this chapter, experimental results are presented which validate the theoretical consider-
ations and demonstrate the effectiveness and performance of the developed system. First,
in Section 7.1 the experimental setup is presented and the employed hardware components
are outlined. Second, in Section 7.2 the controller tracking error is investigated for highly
dynamic positioning tasks. Third, in Section 7.3, the structural vibrations of the proto-
type robot are analyzed. Furthermore, the vibration reduction achieved by the methods
discussed in Chapter 5 are presented. Fourth, the behavior of the dart tracking algorithm
and the accuracy of the impact prediction are investigated in Section 7.4. Finally, the
reliability of the dart catching robot is demonstrated in Section 7.5.

7.1 Dartrobot experimental setup
The hardware setup used to perform experiments is shown in Figure 7.1. Here, some
relevant components are labelled using the nubers 1 - 6 . To move the dartboard,
the cable-driven parallel robot (CDPR), designed and described in [10], is employed. A
Unicorn Eclipse Pro tournament dartboard is attached to the end effector of the CDPR.
The IR cameras (Optitrack Prime 17W) which are used to capture the position of the
flying dart are positioned at different heights on tripods. Each IR camera is connected
via Ethernet to a switch (Netgear GS728TPP), which is not visible in Figure 7.1. The
switch connects all 6 cameras to the PC system contained inside the electrical cabinet of
the robot via a single Ethernet cable. To achieve high flexibility and good performance, a
custom PC based on the Intel i7-12700K CPU was fitted into the electrical cabinet. This
PC processes the camera data provided by the IR cameras using the Optitrack Motive
software running in the Windows operating system. The robot controller is implemented
on the same PC system using the Beckhoff TWINCAT 3 eXtended Automation Runtime
(XAR). Thus, the robot controller is executed independently from the Windows operating
system to achieve the required real-time behavior. The robot controller sends torque and
enable commands to the motor controllers (Beckhoff AX8206) via EtherCAT. For this
purpose, the PC is equipped with a suitable network card compatible with the EtherCAT
protocol.

To document and record the flight and the impact location of the dart, a DSLR camera
and a compact high-speed camera are used.

In this work, Winmau Barbarian 20g stainless steel darts are used. Two different IR
marker designs are tested, as shown in Figure 7.2. In the first design shown in Figure 7.2(a),
reflective tape is wrapped around the dart to create areas which are highly reflective. The
second design, shown in Figure 7.2(b) is created by attaching spherical reflective markers
to the dart.

68

7 Experimental results 7.1 Dartrobot experimental setup 69

1
1

2 3

4

5

6

1 IR cameras 4 Cable-driven parallel robot
2 High-speed camera 5 Dartboard attached to end effector
3 Camera 6 Electrical cabinet

Figure 7.1: Experimental setup for catching a flying dart.

1cm

(b)

(a)

Figure 7.2: (a) Dart with reflective tape. (b) Dart with spherical reflective markers.

7 Experimental results 7.2 Controller tracking error 70

7.2 Controller tracking error
In this section, the dynamical tracking error of the controller is studied experimentally.
Furthermore, the behavior of the controller is investigated by examining the forces and
torques obtained from the control law.

7.2.1 Translation
To investigate the controller tracking error for translational motion, an experiment
consisting of a positioning task with the parameters

x0 = 0 , xset =
�
0.2 m 0.2 m 0 rad

T
, vmax = 2.5 m/s , amax = 30 m/s2 , (7.1)

is conducted. The trajectory is generated by the OTG algorithm presented in Chapter 4
using the FIR filter presented in Section 4.4.4. Figure 7.3 visualizes the trajectory tracking
error defined in Eq. (3.12) along the trajectory. In Figure 7.3(a), the distance travelled
by the EE is shown. Here, the EE accelerates in Section A and decelerates in Section
B . Due to the symmetry of the motion, the trajectory satisfies xd(t) = yd(t) = rd(t).
Figure 7.3(a) shows that the actual EE positions xC and yC closely follow the desired
trajectory.

The velocity profile of the motion is depicted in Figure 7.3(b). Here, the desired
velocity is denoted ẋd(t) = ẏd(t) = vd(t). While the actual velocities ẋC and ẏC follow
the trajectory closely, there is some visible velocity tracking error at the beginning and at
the end of the acceleration and deceleration phases. This velocity tracking error occurs
when the acceleration changes rapidly i. e. when the jerk is large.

The controller tracking error from Eq. (3.12) is shown in Figure 7.3(c). Both components
ex and ey of the trajectory tracking error exhibit the largest values during phases of large
jerk, which occur at the beginning and end of Sections A and B . The trajectory tracking
error remains below 1.5 mm at all times. Furthermore, the component ey initially has
a value of ≈ 0.5 mm before the motions starts due to static friction. In addition, the
component ex shows the effect of structural vibrations of the robot frame. When the
motion stops at the end of Section B , the frame vibrates in x-direction. This vibration
causes reaction forces on the EE which result in a small oscillation of ex as visible in
Figure 7.3(c).

Figure 7.3(d) shows the velocity tracking error ėx and ėy. Similarly to the behavior of
the trajectory tracking error, the peak values of the velocity tracking error are reached
during phases of large jerk. The effect of the structural vibrations in x-direction are visible
in ėx after the deceleration phase B .

To investigate the behavior of the controller presented in Section 3.2, the PD+ control
law for the EE is examined in detail. The desired task space force fd is given by Eq. (3.13)
and can be partitioned in a feedforward component and a feedback component in the form

fd =
�
Fx,d Fy,d Mz,d

T
= MEEẍd +g� �� �

feedforward

−KPex −KDėx� �� �
feedback

(7.2)

The forces calculated by the controller are visualized in Figure 7.4. Here, the stacked area
plots from Figures 7.4(a) and 7.4(b) illustrate the individual terms highlighted in Eq. (7.2)

7 Experimental results 7.2 Controller tracking error 71

0

0.1

0.2

A B

di
st

an
ce

in
m

rd
xC
yC

0
0.5

1
1.5

v
in

m
/s

vd
ẋC

ẏC

−1

0

1

e
in

m
m

ex
ey

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

−0.1

0

0.1

time in s

ė
in

m
/s

ėx

ėy

(a)

(b)

(c)

(d)

Figure 7.3: Experimental results: (a) Trajectory xC and yC . (b) Velocity ẋC and ẏC .
(c) Position error ex and ey. (d) Velocity error ėx and ėy.

7 Experimental results 7.2 Controller tracking error 72

for the desired task space forces Fx,d and Fy,d, respectively. In each stacked area plot, the
shaded areas correspond to the individual force component of the controller and the lines
show the cumulative sum up to the corresponding force component. By inspecting the
task space force components that make up the total force fd, the behavior of the controller
can be investigated in detail.

The cable forces τi are shown in Figure 7.4(c) and the resulting motor torques given by
the control law Eq. (3.15) are depicted in Figure 7.4(d). The majority of the task space
force is provided by the feedforward components while the feedback terms correct for
model mismatch and disturbances. Initially, the control error ey is positive due to static
friction. Thus, the P-feedback term −KPey acts against the gravity compensation term
mEEg because the static friction supports the EE and acts against gravity. During the
acceleration phase A , the feedforward forces MEEẍd are too large and the feedback terms
are negative to correct the mismatch. This mismatch in the feedforward components can
be explained by two effects. First, the model parameters are subject to uncertainties. In
particular, the inertia of the rotating parts of the motors and cable spools is relatively
inaccurate. Second, the torque generated by the electric motors is not measured directly
but estimated from the motor currents by the motor controllers using an observer. The
motor model used by this observer is prone to uncertainties and errors. Especially the
temperature dependence of the magnetic flux provided by the permanent magnets induces
relatively large uncertainties. Due to the relatively low continuous load during operation
of the CDPR, the motor temperatures are comparatively low. Thus, the motor model
tends to underestimate the generated torques and the actual torques tend to be larger
than the estimated torques.

The force distribution algorithm employed in the controller ensures, that the cable
forces shown in Figure 7.4(c) are strictly positive. For the chosen coordinate system and
sign convention, positive cable forces correspond to negative motor torques in the static
case as visible in Figure 2.2. However, due to the winch inertia compensation in Eq. (3.15),
the motor torques T3 and T4 are positive during the acceleration phase A as shown in
Figure 7.4(d).

7.2.2 Rotation
To study the trajectory tracking error for rotational motion, the positioning task

x0 = 0 , xset =
�
0 m 0 m π

2 rad

T

, ωmax = 12 rad/s , ω̇max = 120 rad/s2 , (7.3)

is performed. Similarly to the previous experiment, the trajectory is generated by the
OTG algorithm presented in Chapter 4 using the FIR filter from Section 4.4.4. Figure 7.5
visualizes the trajectory tracking behavior. In Figure 7.5(a), the rotation angle is illustrated.
The angular velocity increases in the acceleration phase A and decreases in the deceleration
phase B . The actual rotation angle φ closely follows the trajectory φd. Figure 7.5(b)
depicts the angular velocity profile and shows small deviations between the trajectory φ̇d
and the actual angular velocity φ̇ of the EE.

The trajectory tracking error eφ is shown in Figure 7.5(c). Here, a constant error with
a magnitude of approximately 8 mrad can be observed before the motion starts and after

7 Experimental results 7.2 Controller tracking error 73

−100

0

100

A

Bfo
rc

e
in

N

mEEẍd
−KPex

−KDėx

Fx,d

0

100 A

Bfo
rc

e
in

N

mEEg
mEEÿd
−KPey

−KDėy

Fy,d

0

50

100

ca
bl

e
fo

rc
e

τ
in

N

τd
τ1
τ2
τ3
τ4
τ5
τ6

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−3

−2

−1

0

time in s

to
rq

ue
T

in
N

m

T1
T2
T3
T4
T5
T6

(a)

(b)

(c)

(d)

Figure 7.4: Experimental results: (a) Task space force components in x-direction. (b) Task
space force components y-direction. (c) Cable forces τ . (d) Motor torques T .

7 Experimental results 7.2 Controller tracking error 74

0

0.5

1

1.5

A B

φ
in

ra
d

φd
φ

0

5

10

φ̇
in

ra
d/

s

φ̇d
φ̇

−20

−10

0

e φ
in

m
ra

d

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−0.4

−0.2

0

0.2

time in s

ė φ
in

ra
d/

s

(a)

(b)

(c)

(d)

Figure 7.5: Experimental results: (a) Trajectory φ. (b) Angular velocity φ̇. (c) Position
error eφ. (d) Angular velocity error ėφ.

7 Experimental results 7.2 Controller tracking error 75

the motion is completed. This error is caused by static friction between the EE and the
guiding surface. The trajectory following error eφ is negative during the majority of the
motion indicating that the EE angle φ slightly lags behind the trajectory φd. Figure 7.5
depicts the angular velocity tracking error ėφ. Here, oscillations with a frequency in the
range of 60-70 Hz can be observed. These oscillations likely correspond to the natural
frequency of the elastic cables, which form a vibratory system with the inertia of the EE.

Figure 7.6 visualizes the behavior of the controller for rotational motion. The individual
components of the desired task space torque Mz,d are illustrated in Figure 7.6(a) as a
stacked area plot. Here, each shaded area corresponds to a task space torque component
and each line visualizes the cumulative sum up to the corresponding torque component.
Furthermore, the cable forces τi are shown in Figure 7.6(b). Figure 7.6(c) shows the
corresponding motor torques Ti calculated via the control law from Eq. (3.15). The

−10

0

10

20

A

B

to
rq

ue
in

N
m

IEE,zφ̈d
−KP,φeφ

−KD,φėφ

Mz,d

20

40

60

80

ca
bl

e
fo

rc
e

τ
in

N

τd
τ1
τ2
τ3
τ4
τ5
τ6

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−2

−1.5

−1

−0.5

time in s

to
rq

ue
T

in
N

m

T1
T2
T3
T4
T5
T6

(a)

(b)

(c)

Figure 7.6: Experimental results: (a) Task space torque components. (b) Cable forces τ .
(c) Motor torques T .

7 Experimental results 7.3 Vibration reduction 76

experimental results depicted in Figure 7.6(a) show, that the friction torque is similar to
the inertial torque necessary to achieve the desired angular acceleration. For translational
motion, the feedforward component provides the majority of the necessary task space
force. However, due to the comparatively large effect of friction for the chosen rotational
motion, the magnitude of the feedback component is similar to the magnitude of the
feedforward component for the rotational motion. During the acceleration phase A , the
feedforward torque IEE,zφ̈d is smaller than the required torque to follow the trajectory due
to the lack of a friction model. Thus, the feedback components −KP,φeφ and −KD,φėφ

assume positive values to provide the additional torque necessary to overcome friction. In
the deceleration phase B the negative feedforward braking torque is too large because
unmodelled friction effects additionally contribute to a deceleration of the EE rotation.
Consequently, the feedback component −KP,φeφ reduces the magnitude of the negative
braking torque to follow the trajectory.

7.3 Vibration reduction
In this section, the structural vibrations of the CDPR frame are analyzed and measured.
Subsequently, the vibration reduction achieved using the methods from Chapter 5 is
investigated.

To excite the dominant horizontal vibration mode of the structure, a horizontal motion in
x-direction with large acceleration is executed. The trajectory for the motion is generated
using the OTG algorithm from Chapter 4 using the parameters

x0 = 0 , xset =
�
0.1 m 0 m 0 rad

T
, vmax = 2.5 m/s , amax = 30 m/s2 . (7.4)

Note that the motion described by Eq. (7.4) is identical to the motion from Eq. (5.1) for
better comparability. This motion is a typical positioning task for catching a dart.

The motion of the frame is captured by attaching an optical marker to the square frame
and measuring its position (xmk, ymk, zmk) using the IR camera system. This data can be
used to find suitable parameters for the linear oscillator model from Eq. (5.5). Figure 7.7
shows the structural vibration of the CDPR. The horizontal motion xmk of the marker
attached to the frame is depicted in Figure 7.7(a). A portion of the signal is selected and
the Matlab fit function is used to fit the linear vibration model from Eq. (5.5) to the
data using the Levenberg-Marquardt method. The parameters

A = 1.58 mm , ω0 = 36.9 s−1 , ζ = 0.0373 , (7.5)

are obtained for the model. The response of the linear oscillator model with the parameters
from Eq.(7.5) is shown in Figure 7.7(b). Here, it can be seen that the data matches the
linear oscillator model very well. The resulting damped natural oscillation frequency of
the dominating mode of vibration reads as

fd = ω0
2π

�
1 − ζ2 = 5.87 Hz . (7.6)

It should be noted that the height of the CDPR can be adjusted using a hand crank and
the robot is equipped with casters. As a result, the vibration behavior of the structural

7 Experimental results 7.3 Vibration reduction 77

−1 0 1 2 3 4 5 6

−1

0

1

time in s

x
m

k
in

m
m

(a) Displacement of the CDPR frame.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

−1

0

1

time in s

x
m

k
in

m
m

data
model

(b) Linear vibration model.

Figure 7.7: Structural vibration of the CDPR.

components of the robot highly depends on the height, the properties of the ground and
the position of the casters. Thus, the conservatively rounded values

f0 = ω0
2π

= 6 Hz , ζ = 0.03 , (7.7)

are used to configure the input shaping methods as described in Chapter 5. To evaluate
the effect of the input shaping methods, the motion from Eq. (7.4) is performed three
times. First, no input shaping is used. Second, the notch filter from Section 5.2 is
employed. Third, the zero vibration (ZV) input shaping method from Section 5.3 is used.
The resulting EE motion xC for all three cases is compared in Figure 7.8. Here, the EE
position is recorded using the IR camera system and the forward kinematics. The forward
kinematics calculates the position of the EE based on the cable lengths measured by
the motor encoders. Thus, the motion of the robot frame does not impact the forward

7 Experimental results 7.3 Vibration reduction 78

kinematics measurement. In comparison, the IR camera tracking system measures the
motion of the EE relative to an inertial reference frame, which is calibrated such that it
is aligned with the robot coordinate system used by the forward kinematics when the
robot is at rest. The robot coordinate system is shown in Figure 2.1. For this reason, the
motion of the robot frame impacts the camera tracking measurement.

0

0.05

0.1

no
in

pu
t

sh
ap

in
g

x
C

in
m

camera tracking
forward kinematics

0

0.05

0.1

no
tc

h
fil

te
r

x
C

in
m

camera tracking
forward kinematics

−0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

time in s

ZV
in

pu
t

sh
ap

in
g

x
C

in
m

camera tracking
forward kinematics

(a)

(b)

(c)

Figure 7.8: Comparison of EE motion with different input shaping methods.
(a) No input shaping. (b) Notch filter. (c) ZV input shaping.

Figure 7.8(a) illustrates the EE motion without any input shaping. The trajectory
requires approximately 110 ms to complete and there is a delay of a few milliseconds
between the forward kinematics data and the camera tracking data caused by latencies
in the camera tracking pipeline. In addition, the vibration of the robot frame causes
the EE to oscillate relative to the inertial reference frame used by the camera system.
Consequently, there are oscillations in the EE position measured by the camera system
after the completion of the positioning task.

Figure 7.8(b) shows the effect of the notch filter on the motion. When using the notch
filter, the trajectory requires approximately 220 ms to reach the set-point. After the

7 Experimental results 7.3 Vibration reduction 79

motion has completed, the camera tracking data matches the forward kinematics data
indicating greatly reduced vibrations of the robot frame.

When using the ZV input shaping method as depicted in Figure 7.8(c), the trajectory
requires approximately 190 ms to complete. This duration is a result of the fixed duration
of 83 ms of the input shaping FIR filter. Similarly to the notch filter, a vibration reduction
of the robot frame can be observed after the motion has completed.

The horizontal vibrations of the marker xmk attached to the robot frame are visualized
in Figure 7.9. Figure 7.9(a) shows the vibration without any input shaping. In comparison,
the resulting vibrations when using the notch filter are shown in Figure 7.9(b) and the
vibrations when using the ZV input shaping method are depicted in Figure 7.9(c). Both

−1

0

1

no
in

pu
t

sh
ap

in
g

x
m

k
in

m
m

−1

0

1

no
tc

h
fil

te
r

x
m

k
in

m
m

−0.5 0 0.5 1 1.5 2 2.5 3

−1

0

1

time in s

ZV
in

pu
t

sh
ap

in
g

x
m

k
in

m
m

(a)

(b)

(c)

Figure 7.9: Effect of input shaping methods in time domain.
(a) No input shaping. (b) Notch filter. (c) ZV input shaping.

the notch filter and the ZV input shaping method cause a significant reduction of the
structural vibrations of the robot frame. A displacement of the robot frame at the
beginning of the motion is visible, which is caused by the reaction forces due to the
acceleration of the EE.

7 Experimental results 7.4 Dart catching experiment 80

To conclude the analysis of the achieved vibration reduction, the effect of the imple-
mented input shaping methods on the frame vibrations is visualized in the frequency
domain in Figure 7.10. Here, the discrete Fourier transform (DFT) of the marker dis-

0

0.05

0.1

0.15

no
in

pu
t

sh
ap

in
g

|D
FT

(x
m

k)
|i

n
m

m

0

0.05

0.1

0.15

no
tc

h
fil

te
r

|D
FT

(x
m

k)
|i

n
m

m

0 2 4 6 8 10 12 14 16 18 20 22 24
0

0.05

0.1

0.15

frequency in Hz

ZV
in

pu
t

sh
ap

in
g

|D
FT

(x
m

k)
|i

n
m

m

(a)

(b)

(c)

Figure 7.10: Effect of input shaping methods in frequency domain.
(a) No input shaping. (b) Notch filter. (c) ZV input shaping.

placement xmk from Figure 7.9 is shown. Figure 7.10(a) shows the frequency spectrum of
the vibration, where a sharp peak at the resonant frequency of ≈ 6 Hz is visible. Both
the notch filter and the ZV input shaping method eliminate this peak in the spectrum as
shown in Figures 7.10(b) and 7.10(c), respectively.

7.4 Dart catching experiment
To investigate the behavior of the flight prediction stage from Chapter 6 and demonstrate
the effectiveness of the overall system, a dart catching experiment is conducted. The
dart with reflective tape shown in Figure 7.2(a) is thrown by an amateur player from the

7 Experimental results 7.4 Dart catching experiment 81

official regulation distance used in dart sports tournaments. A summary of the model
parameters used for the dart is provided in Table A.1. Other parameters used in the dart
catching experiment can be found in Table A.3 for reference. The triple 20 segment, which
is the most valuable scoring segment on the dartboard in the game of darts, is chosen as
the target segment. The center of the triple 20 segment is parameterized using the values

rt = 0.103 m , φt = 0 deg . (7.8)

First, the behavior of the observer described in Section 6.4 is examined by comparing
the state estimate ẑ to the measurement data. For this purpose, a reference estimate for
the true dart state is computed by finding the dart position and orientation

zref =
�
xref yref zref ϑref ψref

T
, (7.9)

which minimizes the Euclidean distance between the modelled marker positions h(zref)
and the measured marker positions rF , rM and rF . To calculate the reference state zref [j]
for each measurement y[j], the unconstrained nonlinear least-squares problem

zref [j] = arg min
z

∥h(z) − y[j]∥2 (7.10)

is solved offline numerically for the captured sequence y[k]. Here, the Matlab command
lsqnonlin is used which implements the Levenberg-Marquardt method. In case marker
signals are missing, the last valid reference state is used for zref . To find a reference
estimate for the dart velocities, the backwards difference quotient is used to approximate
the first derivative of the dart position and orientation with respect to time. Hence, the
reference dart velocities are given by

żref = zref [j] − zref [j − 1]
tj − tj−1

. (7.11)

Using the relation from Eq. (6.7), the angular velocities in the dart reference frame ω1,ref [j]
and ω2,ref [j] can be computed.

Figure 7.11 visualizes the dart tracking behavior of the state observer by comparing
the estimated position x̂D, ŷD, ẑD and orientation ϑ̂, ψ̂ to the reference states zref . The
trowing process and flight of the dart can be divided into 3 sections. In Section 1 , the
dart is held by the human player and the player prepares to throw the dart. The dart
leaves the hand at the time t = 0 s and is airborne during Section 2 . This phase can
be divided into two parts 2a and 2b . At the beginning of the flight in 2a , the state
machine coordinating the flight prediction stage has not yet detected that the dart is
airborne and thus the switching variable has the value u = 0. When the estimated distance
ẑD reaches the threshold ẑD < 1.8 m in Section 2b , the state machine detects that the
dart is in flight and sets the switching variable to u = 1. Thus, the duration of phase 2a
of approximately 80 ms can be interpreted as the time necessary to detect that the dart is
airborne. Finally, in Section 3 the dart hits the dartboard. Due to the limited visibility
of the markers in this stage as well as vibrations of the dart shortly after the impact, the
IR tracking cameras provide only sporadic measurements of the marker locations in phase
3 .

7 Experimental results 7.4 Dart catching experiment 82

handheld airborne

−0.2

−0.1

0

1 2a 2b 3

x
in

m

xref
x̂D

0

0.2

y
in

m

yref
ŷD

0

1

2

z
in

m

zref
ẑD

−20

0

20

40

an
gl

e
in

de
g ϑref

ϑ̂

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

0

10

time in s

an
gl

e
in

de
g ψref

ψ̂

(a)

(b)

(c)

(d)

(e)

Figure 7.11: Experimental results: (a) Position tracking x. (b) Position tracking y. (c) Po-
sition tracking z. (d) Angle tracking ϑ. (e) Angle tracking ψ.

7 Experimental results 7.4 Dart catching experiment 83

Figure 7.11 shows, that the observer closely tracks the motion of the dart. During
Section 2a when the dart is airborne but the observer uses the handheld model from
Eq. (6.11) because u = 0, the model mismatch is large. Due to this model mismatch,
the state estimates (x̂D, ŷD, ẑD, ϑ̂, ψ̂) lag behind the reference states zref . As soon as
the model switches to the airborne stage by setting u = 1 in 2b , the observer uses the
dart model from Eq. (6.21). In addition, a large uncertainty is assigned to the previous
estimates by setting the estimation error covariance matrix P to a large value as stated in
Eq. (6.39). As a result, the estimated states very closely track the reference states during
phase 2b .

The behavior of the velocity estimates ˆ̇xD, ˆ̇yD, ˆ̇zD and the angular velocity estimates
ω̂1, ω̂2 is illustrated in Figure 7.12. In Section 1 when the dart is handheld, the estimated
velocities only poorly approximate the reference velocities. This can be explained by
the unmodelled accelerations provided by the human hand holding the dart. At the
end of phase 1 , the human player rapidly accelerates the dart during the throwing
process. Consequently, the velocity prediction error becomes particularly large. Due
to the model mismatch in Section 2a , the estimated velocities ˆ̇xD, ˆ̇yD, ˆ̇zD and the
angular velocity estimates ω̂1, ω̂2 show large deviations from the corresponding reference
values. As soon as the model is switched to the airborne dart model from Eq. (6.21), i. e.
the transition between 2a and 2b , the estimates rapidly change and closely track the
reference velocities.

Comparing the reference velocity ẋref shown in Figure 7.12(a) to the velocities ẏref from
Figure 7.12(b) and żref from Figure 7.12(c) shows a larger uncertainty, i. e. more noise
in the marker data in x-direction than in y- and z-direction. This asymmetry in the
measurement error can be explained by the shallow viewing angle of the IR cameras. Due
to the chosen camera positions depicted in Figure 7.1, any change in the x-coordinate
of a marker results in a small change in the viewing angle of the cameras. Thus, the
measurement accurracy with respect to motion in x-direction is comparably low.

Figure 7.13 visualizes the timing of the dart catching process and illustrates the behavior
of the impact prediction step and the rotation planning step outlined in Sections 6.5
and 6.6, respectively. In Figure 7.13(a), the impact prediction x̂p, ŷp is compared to the
position of the dart’s tip xT,ref , yT,ref . The tip position is obtained from the reference
state zref using the relation from Eq. (6.40). In addition, the motion of the target field
xt, yt is shown for comparison in Figure 7.13(a). The motion of the EE is shown in
Figure 7.13(b)-(d). Thus, the behavior of the rotation planning algorithm is shown. The
impact prediction shown in Figure 7.13(a) is considered valid when the dart has travelled
0.1 m and the threshold ẑD < 1.7 m is reached. This results in a delay of approximately
15 ms between the beginning of 2b when the dart is detected as airborne and the first
valid impact position estimate x̂p, ŷp. The delay is incorporated to avoid transient spikes in
the impact prediction x̂p, ŷp when the dart model is switched to the airborne stage. After
the impact prediction reaches the first valid value, the prediction remains close to constant
for the duration of the dart flight. This indicates that the flight trajectory predicted by
the aerodynamic dart model from Section 6.2 is in very good agreement with the actual
flight trajectory. The rotation planning algorithm computes a suitable set-point pose xset
consisting of rotational motion and translational motion. The performed translational
motion xC , yC of the EE center-point C is shown in Figure 7.13(b) and (c) while the

7 Experimental results 7.4 Dart catching experiment 84

handheld airborne

−0.5

0

0.5 1 2a 2b 3

v
in

m
/s

ẋref
ˆ̇xD

−2

0

2

v
in

m
/
s

ẏref
ˆ̇yD

−6
−4
−2

0
2

v
in

m
/
s

żref
ˆ̇zD

−10

−5

0

5

ω
in

ra
d/

s

ω1,ref
ω̂1

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−10

0

10

time in s

ω
in

ra
d/

s

ω2,ref
ω̂2

(a)

(b)

(c)

(d)

(e)

Figure 7.12: Experimental results: (a) Velocity estimation ẋD. (b) Velocity estimation ẏD.
(c) Velocity estimation żD. (d) Angular velocity ω1. (e) Angular velocity ω2.

7 Experimental results 7.4 Dart catching experiment 85

handheld airborne

−0.2

−0.1

0

0.1

0.2

0.3

0.4
1 2a 2b 3

di
st

an
ce

in
m

xT,ref
x̂p
xt
yT,ref
ŷp
yt

−0.15

−0.1

−0.05

0

x
C

in
m

0

0.05

0.1

y C
in

m

−0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.2

0.4

time in s

φ
in

ra
d

(a)

(b)

(c)

(d)

Figure 7.13: Experimental results: (a) Dart impact prediction. (b) Dartboard motion xC .
(c) Dartboard motion yC . (d) Dartboard rotation φ.

7 Experimental results 7.4 Dart catching experiment 86

rotational motion φ is visualized in Figure 7.13(d). Here, the translational and rotational
motion complete approximately at the same time around 130 ms before the dart impact
occurs. The combination of rotation and translation moves the target segment xt, yt to
the predicted impact location as visible in Figure 7.13(a). After a total flight duration
of approximately t ≈ 400 ms, the tip of the dart reaches the dartboard very close to
the predicted impact position as shown in Figure 7.13(a). It can be seen that the final
prediction error is very small and the target field (triple 20) is positioned at the impact
point in time.

Figure 7.14 shows the final impact position of the dart on the dartboard. In Fig-
ure 7.14(a), the final configuration of the dartboard and the chosen combination of
rotation and translation can be observed. Figure 7.14(b) shows the impact location inside
the triple 20 segment in more detail.

(a) Front view. (b) Detail view.

Figure 7.14: Impact position of the dart.

7 Experimental results 7.5 Dart catching reliability 87

7.5 Dart catching reliability
To demonstrate the reliability, repeatability and robustness of the developed dart catching
robot, a sequence of 15 consecutive throws by three different amateur players is conducted.
The robot is able to catch all 15 darts, such that they hit the target segment which
was chosen as the triple 20 segment. A video of this experiment and an additional
demonstration of the robot can be found at:

https://youtu.be/_WwZZbF93H4

For all experiments shown in the video, the dart with spherical markers depicted in
Figure 7.2(b) was used. The experiments conducted in the course of this work suggest
that both dart version from Figure 7.2(a) and Figure 7.2(b) perform similarly. Further
investigation is necessary to conclusively determine which marker design performs better
and to optimize the dart design.

https://youtu.be/_WwZZbF93H4

8 Conclusion and outlook
In this work, the benchmark problem of catching a flying dart thrown by a human is
tackled and solved. The flight trajectory of the dart is tracked via infrared (IR) cameras
and the impact location is predicted. A cable-driven parallel robot (CDPR) is used to
move a tournament dartboard accordingly, such that any desired field can be hit reliably.
Thus, a technology demonstrator was created which showcases the performance of the
CDPR and the algorithms involved. A control system architecture was developed by
dividing the task of catching a dart into smaller sub-problems.

A mathematical model of the CDPR was presented in Chapter 2, which was used to
design a trajectory tracking controller for the kinematically redundantly restrained robot
in Chapter 3. The proposed control structure uses a force distribution algorithm to resolve
the redundancies, which was studied in detail using simulations. The trajectory tracking
behavior of the CDPR was evaluated and validated using experiments.

A real-time capable online trajectory generator (OTG) was developed for the application
of planning and dynamically adapting a trajectory for the motion of the dartboard in
Chapter 4. The behavior of the OTG algorithm and the duration and path of the
generated trajectories were analyzed in detail to ensure that the trajectories generated by
the algorithm are time-efficient and smooth.

To reduce structural vibrations excited by the rapid acceleration of the relatively heavy
tournament dartboard, so-called input-shaping techniques were applied to the trajectories
of the dartboard. Different input shaping methods were discussed and compared to each
other in Chapter 5. The resulting vibration reduction was validated experimentally via
measurements.

The flight of a steel dart compliant with dart sport tournament regulations was analyzed
and a dynamical model was developed. Parameters for the model were identified from
measurement data. Based on this model, an algorithm for tracking the flight trajectory
and predicting the impact location on the dartboard was developed in Chapter 6.

In Chapter 7, various experiments were presented to validate the theoretical considera-
tions. All components and algorithms were tested and examined individually. In addition,
experiments were conducted to demonstrate and validate the effectiveness and reliability
of the overall dart catching robot. These experiments showed that the developed system
is capable of reliably performing the challenging task of catching a flying dart.

While the robot presented in this master’s thesis performs well, future work could be
devoted to improve various aspects of the dart catching robot and extend its capabilities.
In darts, a regular turn of each player consists of 3 consecutive throws. The present
work only considers a single dart throw. The employed algorithms could be adapted
and extended to consider a whole turn with 3 darts. This opens the possibility of many
extensions and improvements. The tracking algorithm could be extended to reliably track

88

8 Conclusion and outlook 89

the motion of 3 darts and a strategy for optimally catching these 3 darts such that already
caught darts do not interfere with the catching process could be developed.

Furthermore, future work could improve the motion of the robot to improve the time-
efficiency or reduce vibrations and noise. In addition, possible extensions could aim
at increasing the precision and reliability of the robot. This can be achieved by either
increasing the positioning accuracy of the dartboard or the prediction accuracy of the
flight trajectory of the dart. The positioning accuracy could be potentially increased by
improving the model of the CDPR and incorporating nonlinear effects such as friction,
elastic deformations and nonlinear geometric effects. Alternatively, the position of the
dartboard could be measured via the optical tracking system used for tracking the dart
and this data could be incorporated into the control system. On the other hand, the
prediction accuracy for the dart impact could be improved by improving the dart model
or improving the IR camera system by adding more cameras or improving the usage of the
existing cameras. Alternatively, a totally different measurement system for tracking the
dart could be employed. An optical tracking system could be developed which does not
rely on IR markers and potentially offers higher reliability and performance for tracking
the dart.

A Appendix parameter values

Parameter Symbol Value Unit
Tip length lT 30 mm
Shaft length lS 29.9 mm
Barrel length lB 55.6 mm
Center of gravity distance lD 27 mm
Aerodynamic lift constant Cf 65 mm−1

Aerodynamic damping constant Cd 0.008 1
Aerodynamic length constant Cl 115 mm−1

Table A.1: Dart model parameters.

Parameter Symbol Value Unit

Disturbance
covariance matrix Q1

diag([1, 1, 1, 10, 10,
10, 10, 10, 100, 100])

m2, m2, m2, m2/s2,
m2/s2, m2/s2

1, 1, s−2, s−2

Disturbance
covariance matrix Q2

diag([0.01, 0.01, 0.01,
0.1, 0.1, 0.1, 0.3,
0.3, 0.3, 0.3])

m2, m2, m2, m2/s2,
m2/s2, m2/s2

1, 1, s−2, s−2

Noise parameter Rmk 20 m

Table A.2: Observer parameters.

Parameter Symbol Value Unit
Number of steps Np 80 1
Rotation parameter Kφ 0.5 1
Velocity limit vmax 2.5 m/s
Acceleration limit amax 30 m/s2

Input shaping method – none –

Table A.3: Dart catching experiment parameters.

90

Bibliography
[1] W. Decker and A. Guttmann, Sports and Games of Ancient Egypt. Yale University

Press, 1992.
[2] S. Mori, K. Tanaka, S. Nishikawa, R. Niiyama, and Y. Kuniyoshi, “High-speed and

lightweight humanoid robot arm for a skillful badminton robot,” IEEE Robotics and
Automation Letters, vol. 3, no. 3, pp. 1727–1734, 2018.

[3] M. Hattori et al., “Fast tennis swing motion by ball trajectory prediction and joint
trajectory modification in standalone humanoid robot real-time system,” Proceedings
of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 3612–3619, 2020.

[4] A. R. M. Khairudin et al., “Design and control of an articulated robotic arm for
archery,” Proceedings of the 2022 IEEE 5th International Symposium in Robotics
and Manufacturing Automation, pp. 1–5, 2022.

[5] J. Tian, H. Liu, S.-L. Dai, and C. Yang, “A real-time football goalkeeper robot
system based on fuzzy logic control,” Proceedings of the 2021 China Automation
Congress, pp. 3258–3263, 2021.

[6] D. Büchler, S. Guist, R. Calandra, V. Berenz, B. Schölkopf, and J. Peters, “Learning
to play table tennis from scratch using muscular robots,” IEEE Transactions on
Robotics, vol. 38, no. 6, pp. 3850–3860, 2022.

[7] W. Gao et al., “Robotic table tennis with model-free reinforcement learning,”
Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 5556–5563, 2020.

[8] P. Yang, Z. Zhang, H. Wang, and D. Xu, “Design and motion control of a ping
pong robot,” Proceedings of the 2010 8th World Congress on Intelligent Control and
Automation, pp. 102–107, 2010.

[9] A. Kyohei, N. Masamune, and Y. Satoshi, “The ping pong robot to return a ball
precisely,” Omron TECHNICS, vol. 51, pp. 1–6, 2020.

[10] G. Feiler, “Design, modeling and implementation of a cable driven parallel robot,”
Diploma Thesis, TU Wien, 2023.

[11] B.-S. Kim and J.-B. Song, “Hybrid dual actuator unit: A design of a variable stiffness
actuator based on an adjustable moment arm mechanism,” Proceedings of the 2010
IEEE International Conference on Robotics and Automation, pp. 1655–1660, 2010.

[12] J. Kober, A. Wilhelm, E. Oztop, and J. Peters, “Reinforcement learning to adjust
parametrized motor primitives to new situations,” Autonomous Robots, vol. 33, no. 4,
pp. 361–379, 2012.

91

Bibliography 92

[13] C. Obayashi, T. Tamei, and T. Shibata, “Assist-as-needed robotic trainer based
on reinforcement learning and its application to dart-throwing,” Neural Networks,
vol. 53, pp. 52–60, 2014.

[14] M. Linderoth, A. Robertsson, R. Johansson, et al., “Vision based tracker for dart
catching robot,” IFAC Proceedings Volumes, vol. 42, no. 16, pp. 717–722, 2009.

[15] TU Munich, ITQ GmbH. “Mi5-dartboard.” (2006), [Online]. Available: https:
/ / www . itq . de / innovationen / demonstratoren / #hightech _ _mi5 - showcase
(visited on 12/11/2022).

[16] F. Wolfslehner, “Entwicklung und Aufbau eines mechatronischen Hochgeschwindigkeit-
spositionierungssystems mit hydraulischem Antrieb,” Diploma Thesis, JKU Linz,
2022.

[17] JKU Linz, INRAS GmbH, Linz Center of Mechatronics. “Magic darts.” (2020),
[Online]. Available: https://ars.electronica.art/keplersgardens/en/magic-
darts/ (visited on 01/09/2023).

[18] M. Rober. “Automatic bullseye dartboard.” (2017), [Online]. Available: https://
www.markroberbuildinstructions.com/auto-bullseye (visited on 12/10/2022).

[19] A. Pott, Cable-Driven Parallel Robots. Stuttgart: Springer Tracts in Advanced
Robotics, 2018.

[20] K. Lynch and F. Park, Modern Robotics: Mechanics, Planning and Control. Cam-
bridge: Cambridge University Press, 2017.

[21] L.-W. Tsai, Robot analysis: the mechanics of serial and parallel manipulators. New
York: Wiley, 1999.

[22] M. Yuan and F. Freudenstein, “Kinematic analysis of spatial mechanisms by means
of screw coordinates. part 1—screw coordinates,” Transactions of the ASME Journal
of Engineering for Industry, vol. 93, no. 1, pp. 61–66, 1971.

[23] R. Verhoeven and M. Hiller, “Tension distribution in tendon-based stewart plat-
forms,” Advances in Robot Kinematics: Theory and Applications, pp. 117–124, 2002.

[24] R. Verhoeven, “Analysis of the workspace of tendon based stewart platforms,” Ph.D.
dissertation, Duisburg, Essen, 2006.

[25] C. Gosselin and M. Grenier, “On the determination of the force distribution in
overconstrained cable-driven parallel mechanisms,” Meccanica, vol. 46, pp. 3–15,
2011.

[26] A. Pott, T. Bruckmann, and L. Mikelsons, “Closed-form force distribution for parallel
wire robots,” Proceedings of the 5th International Workshop on Computational
Kinematics, pp. 25–34, 2009.

[27] A. Pott, “An improved force distribution algorithm for over-constrained cable-driven
parallel robots,” Proceedings of the 6th International Workshop on Computational
Kinematics, pp. 139–146, 2014.

[28] T. F. Coleman and Y. Li, “A reflective newton method for minimizing a quadratic
function subject to bounds on some of the variables,” SIAM Journal on Optimization,
vol. 6, no. 4, pp. 1040–1058, 1996.

https://www.itq.de/innovationen/demonstratoren/#hightech__mi5-showcase
https://www.itq.de/innovationen/demonstratoren/#hightech__mi5-showcase
https://ars.electronica.art/keplersgardens/en/magic-darts/
https://ars.electronica.art/keplersgardens/en/magic-darts/
https://www.markroberbuildinstructions.com/auto-bullseye
https://www.markroberbuildinstructions.com/auto-bullseye

Bibliography 93

[29] D. Koditschek, “Natural motion for robot arms,” Proceedings of the 23rd IEEE
Conference on Decision and Control, pp. 733–735, 1984.

[30] B. Paden and R. Panja, “Globally asymptotically stable ’PD+’ controller for robot
manipulators,” International Journal of Control, vol. 47, no. 6, pp. 1697–1712, 1988.

[31] V. Santibañez and R. Kelly, “Global asymptotic stability of the PD control with
computed feedforward in closed loop with robot manipulators,” IFAC Proceedings
Volumes, vol. 32, no. 2, pp. 683–688, 1999.

[32] S. M. LaValle, Planning algorithms. Cambridge: Cambridge University Press, 2006.
[33] T. Kröger, On-Line Trajectory Generation in Robotic Systems. Berlin, Heidelberg:

Springer Tracts in Advanced Robotics, 2010.
[34] R. Katzschmann, T. Kröger, T. Asfour, and O. Khatib, “Towards online trajectory

generation considering robot dynamics and torque limits,” Proceedings of the 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5644–
5651, 2013.

[35] Q. Zhang, S. Li, J.-X. Guo, and X.-S. Gao, “Time-optimal path tracking for robots
under dynamics constraints based on convex optimization,” Robotica, vol. 34, no. 9,
pp. 2116–2139, 2016.

[36] G. Huber and D. Wollherr, “An online trajectory generator on SE(3) for human–robot
collaboration,” Robotica, vol. 38, no. 10, pp. 1756–1777, 2020.

[37] R. L. Andersson, “Aggressive trajectory generator for a robot ping-pong player,”
IEEE Control Systems Magazine, vol. 9, no. 2, pp. 15–21, 1989.

[38] Z. Lin, V. Zeman, and R. V. Patel, “On-line robot trajectory planning for catching a
moving object,” Proceedings of the 1989 IEEE International Conference on Robotics
and Automation, pp. 1726–1727, 1989.

[39] L. Berscheid and T. Kröger, “Jerk-limited real-time trajectory generation with
arbitrary target states,” Proceedings of Robotics: Science and Systems XVII, 2021.

[40] P. K. Allen, A. Timcenko, B. Yoshimi, and P. Michelman, “Automated tracking and
grasping of a moving object with a robotic hand-eye system,” IEEE Transactions
on Robotics and Automation, vol. 9, no. 2, pp. 152–165, 1993.

[41] L. Biagiotti and C. Melchiorri, “Trajectory generation via FIR filters: A procedure for
time-optimization under kinematic and frequency constraints,” Control Engineering
Practice, vol. 87, pp. 43–58, 2019.

[42] P. Besset, R. Béarée, and O. Gibaru, “FIR filter-based online jerk-controlled tra-
jectory generation,” Proceedings of the 2016 IEEE International Conference on
Industrial Technology, pp. 84–89, 2016.

[43] R. Zanasi, C. G. L. Bianco, and A. Tonielli, “Nonlinear filters for the generation of
smooth trajectories,” Automatica, vol. 36, no. 3, pp. 439–448, 2000.

[44] J. E. Lloyd, “Trajectory generation implemented as a non-linear filter,” Department
of Computer Science, University of British Columbia, Vancouver, Canada, Tech.
Rep., 1998.

Bibliography 94

[45] M. Bonfè and C. Secchi, “Online smooth trajectory planning for mobile robots
by means of nonlinear filters,” in 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems, IEEE, 2010, pp. 4299–4304.

[46] M. M. G. Ardakani, B. Olofsson, A. Robertsson, and R. Johansson, “Real-time
trajectory generation using model predictive control,” Proceedings of the 2015 IEEE
International Conference on Automation Science and Engineering, pp. 942–948,
2015.

[47] L. Akulenko and A. Koshelev, “Time-optimal steering of a point mass to a specified
position with the required velocity,” Journal of applied mathematics and mechanics,
vol. 71, no. 2, pp. 200–207, 2007.

[48] J. E. Bobrow, S. Dubowsky, and J. S. Gibson, “Time-optimal control of robotic
manipulators along specified paths,” The international journal of robotics research,
vol. 4, no. 3, pp. 3–17, 1985.

[49] R. Alkhatib and M. Golnaraghi, “Active structural vibration control: A review,”
Shock and Vibration Digest, vol. 35, no. 5, p. 367, 2003.

[50] C. Conker, H. Yavuz, and H. H. Bilgic, “A review of command shaping techniques
for elimination of residual vibrations in flexible-joint manipulators,” Journal of
Vibroengineering, vol. 18, no. 5, pp. 2947–2958, 2016.

[51] J. Vaughan, A. Yano, and W. Singhose, “Performance comparison of robust negative
input shapers,” Proceedings of the 2008 American control conference, pp. 3257–3262,
2008.

[52] S. Orfanidis, Introduction to Signal Processing. Upper Saddle River: Prentice Hall,
1996.

[53] N. Singer and W. Seering, “Preshaping command inputs to reduce system vibration,”
Journal of Dynamic Systems, Measurement, and Control, vol. 112, no. 1, pp. 76–82,
1990.

[54] W. E. Singhose, W. P. Seering, and N. C. Singer, “Shaping inputs to reduce vibration:
A vector diagram approach,” Proceedings of the IEEE International Conference on
Robotics and Automation, pp. 922–927, 1990.

[55] A. A. Pawar, K. S. Ranjan, A. Roy, and S. Saha, “Investigation of flowfield over a
dart using smoke flow visualization,” Proceedings of the 48th National Conference
on Fluid Mechanics and Fluid Power, pp. 99–103, 2023.

[56] D. James and J. Potts, “Experimental validation of dynamic stability analysis
applied to dart flight,” Sports Engineering, vol. 21, pp. 347–358, 2018.

[57] D. Simon, Optimal state estimation: Kalman, H infinity, and nonlinear approaches.
Cleveland: John Wiley & Sons, 2006.

[58] K. Atkinson, W. Han, and D. E. Stewart, Numerical solution of ordinary differential
equations. Iowa City: John Wiley & Sons, 2011.

	Contents
	List of Figures
	List of Symbols
	1 Introduction
	1.1 Literature review
	1.2 Overview
	1.3 Structure of the thesis

	2 Mathematical robot model
	2.1 Kinematics
	2.1.1 Inverse kinematics
	2.1.2 Forward kinematics
	2.1.3 Jacobian matrix

	2.2 Dynamics

	3 Controller Design
	3.1 Cable force distribution
	3.1.1 Problem formulation
	3.1.2 Solution method
	3.1.3 Solution behavior

	3.2 Control structure
	3.3 Error dynamics and stability

	4 Trajectory generation
	4.1 Problem formulation
	4.2 Literature review
	4.3 Trajectory generation algorithm
	4.3.1 Translation
	4.3.2 Rotation
	4.3.3 Filtering
	Moving average FIR filter
	IIR filter

	4.4 Simulation results
	4.4.1 Initial velocity
	4.4.2 Kinematic limits
	4.4.3 Profiles of velocity and acceleration
	4.4.4 Filter behavior

	5 Input shaping for vibration reduction
	5.1 Motivation
	5.2 Notch filter
	5.3 Zero vibration input shaping
	5.4 Robust input shaping

	6 Flight prediction
	6.1 Overview
	6.2 Mathematical model
	6.2.1 Kinematics
	6.2.2 Dynamics

	6.3 Marker Assignment
	6.4 Observer Design
	6.5 Impact prediction
	6.6 Rotation planning

	7 Experimental results
	7.1 Dartrobot experimental setup
	7.2 Controller tracking error
	7.2.1 Translation
	7.2.2 Rotation

	7.3 Vibration reduction
	7.4 Dart catching experiment
	7.5 Dart catching reliability

	8 Conclusion and outlook
	A Appendix parameter values

