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A B S T R A C T   

Crop rotation planning, being an essential prerequisite for organic farming, involves determining the species and 
timing of crops on farmland to improve soil quality, crop yield, and resistance to pests and weeds. Pre-crop values 
and crop rotation matrices describe the effect of a crop on the next crop, mediated through the soil. The iden
tification of these effects in traditional long-term field studies is resource intensive. Within this paper we present 
AI4CROPR, a method to identify pre-crop values and crop rotation matrices using Normalized Difference 
Vegetation Index (NDVI) data from remote sensing, clustering, and artificial intelligence. Our method uses 
24.352 unique crop rotations prevailing on plots in Lower Austria from 2017 to 2021. We restricted the crop 
rotations to the 26 most used crop types, which represent about 95 % of the crops grown in the area. For each 
plot and year, we estimated yield potential using the Normalized Difference Vegetation Index (NDVI) from 
Sentinel-2 data. AI4CROPR enables the data-driven estimation of pre-crop values and creation of crop rotation 
matrices for entire regions based on their specific conditions and without the need to manually survey individual 
farms or plots. Validation has shown that results of the data- and AI-driven AI4CROPR method overlap to a great 
extent with recommendations from literature (28.20 % of the measured pre-crop values are identical to literature 
recommendations, 51.60 % deviate by one degree, and 19.67 % deviate by two degrees) and are suitable to 
extend the work to further regions and integrate them in crop rotation decision support systems.   

1. Introduction 

Crop rotation planning is the process of deciding how and when to 
plant crops on agricultural plots in order to decrease soil erosion (Aya
lew et al., 2021), increase soil productivity (Aschi et al., 2017), crop 
yield (Jalli et al., 2021; Weiser et al., 2018; Preissel et al., 2015), and 
resistance to pests and weeds (Andert et al., 2016. While crop rotation 
planning is an essential requirement in organic farming, it is becoming 
increasingly important in conventional agriculture to reduce nutrient 
loads and GHG emissions (Lötjönen and Ollikainen, 2017). The knowl
edge of which crops can be grown in which order to achieve synergy 
effects, as well as their extent in the crop rotation, comes from extensive 
field trials and expert knowledge from science and practice. Often, data 
on specific crop combinations or framework conditions, e.g., resulting 
from regional climatic conditions and soil properties, have not been 
collected to a sufficient extent to make reliable statements on synergy 
and cannibalism effects of specific crop rotations (Schöning et al., 2022). 

In this context, the research question this work poses is, if and to 
what extent yield-enhancing predecessor/successor crop combination 
data obtained from measured, clustered and standardized NDVI values 
match literature and expert knowledge from long-term field experiments 
regarding yield-enhancing crop combinations. 

In organic farming, agronomic, environmental and ecological ob
jectives are usually met by following heuristic rules. Especially successor 
crop suitability, like in Kolbe (2006), is used to help reduce diseases, 
pests and weeds, and increase overall yield and quality of the grown 
crops. The pre-crop value is described in the literature as the effect of a 
crop on the next crop, mediated through the soil. This effect can be 
divided into two values, the direct pre-crop value, which comes from the 
immediately preceding crop (Freyer, 2003), and the indirect pre-crop 
value, which includes the cumulative effect of the preceding crops. 
This effect includes factors such as humus reproduction, the specific 
water requirement of the crop, the promotion of pests or weeds that can 
positively or negatively affect the growth of the following crop (cf. 
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Freyer, 2003 and Hermann and Plakolm, 1993). 
These relationships between crops and the effects of crops on sub

sequent crops are presented and qualitatively assessed in pre-crop-post- 
crop tables (e.g., Kolbe, 2006; Jeangros and Courvoisier, 2019; Freyer, 
2003; Landwirtschaftskammer Nordrhein-Westfalen, 2015; Reckling, 
2016). Kolbe (2006) uses 4 levels from very favorable to very unfavor
able and evaluates this pre-crop value via yield gains or yield losses in 
the following crop, quantified as differences of − 20 % to +20 % to the 
usual yield. In addition, the combinations are verbally supplemented 
with comments, such as that certain soil conditions or climatic condi
tions are to be observed, warnings about weeds, etc. 

Dogliotti et al. (2003) designed ROTAT, a system for creating crop 
rotation sequences based on specific filters, such as timing constraints (e. 
g., sowing and harvesting dates). These need to be manually handed to 
the program as input data to limit the number of created crop rotations. 

Bachinger and Zander (2007) developed ROTOR and advanced this 
approach by classifying produced crop sequences based on the calcu
lated yield, which concludes into economic performance, nitrogen bal
ance and risk of being infected by weed. For creating the crop sequences, 
the approach also uses crop-specific annual production activities, which 
consist of a list of all single field operations that should be done and 
possible preceding crops. These manually crafted rule sets are used to 
create feasible crop rotation sequences. 

Schönhart et al. (2011a) developed CropRota, which generates 
typical crop rotations for farms and regions by taking into account 
agronomic criteria and observed land use data. It was applied to 579 
farms in the Austrian Mostviertel region, and the results of the validation 
and sensitivity analysis indicated that the model is suitable for esti
mating typical crop rotations from observed land use data, and is flexible 
enough to be used in different spatial scales and research contexts. 

Peltonen-Sainio et al. (2020) developed an interactive and multi-step 
crop rotation tool which takes into account the farmer’s preferences in 
terms of crop allocation based on various farm and field plot charac
teristics. The tool provides a 5-year crop rotation plan on a field plot 
scale, offering a diverse range of crop choices for the farmer’s consid
eration. Assessment of the suitability of crops for a field plot was based 
on authors’ previous work on the importance of different field plot 
characteristics for decision making by farmers for land allocation (Pel
tonen-Sainio et al., 2018). 

Pahmeyer et al. (2021) developed Fruchtfolge (German for crop 
rotation), a decision support system which provides decision makers 
with crop rotation and management recommendations for each plot 
based on the solution of a single farm optimization model. The authors 
use the expert based score matrix developed by Schönhart et al. (2011a) 
for considering the individual predecessor/successor crop suitability. 
The scores rank the suitability of a certain previous crop (y-axis) / 
subsequent crop (x-axis) combination on a scale from 0 (strong negative 
yield effects or agronomically impossible, e.g. due to an overlap in 
sowing and harvesting dates) to 10 (very beneficial). 

Deininger et al. (2020) applied machine learning to satellite imagery 
to identify crop rotation practices and corresponding yield effects in 
Ukraine. The authors estimated crop rotation impacts by combining 
satellite data with survey-based yield data and identified statistically 
significant and economically important impacts that differed from those 
published in the literature. The authors focused their study on the most 
economically relevant crops in Ukraine (corn, soybeans, sunflower, and 
cereals) and combined crop rotation maps generated from freely avail
able satellite imagery using machine learning with statistical data for 
2016, 2017, and 2018. The authors conclude that, rotation effects point 
towards statistically significant and economically meaningful effects 
that differ from what has been reported in literature. 

Peltonen-Sainio et al. (2019) developed a method that utilized NDVI 
values derived from Sentinel-2 to estimate pre-crop values on the plot 
scale. The NDVI-values were compared to the 90th percentile specific to 
each crop and year in the region to determine an NDVI-gap. In the case 
of monocultural crop sequencing, the NDVI-gaps for each subsequent 

crop were compared to those of other previous crops in rotation to es
timate pre-crop values for numerous previous and subsequent crop 
combinations. The pre-crop values ranged from +16 % to − 16 %. 

This paper presents AI4CROPR, a method for determining crop 
rotation matrices based on satellite data combined with open data 
baseline knowledge. Our method uses 24.352 unique crop rotations 
prevailing on plots in Lower Austria from 2017 to 2021. We only 
considered organically farmed plots to reduce the impact of different 
farming practices on crop yield. For each plot, we determined the grown 
crop from open data. We restricted the crop rotations to the 26 most 
commonly used crop types, which represent about 95 % of the crops 
grown in the area. For each plot and year, we estimated yield potential 
using the Normalized Difference Vegetation Index (NDVI) from Sentinel- 
2 data.1 To ensure comparability, we normalized NDVI values around 
harvest time. We defined the typical harvest window for spring crops 
from August to October and for winter crops from June to July. Based on 
these data, we created clusters of plots that were homogeneous in terms 
of soil clay content, precipitation, and temperature sum per week during 
the growing season. We trained crop-specific XGBoost2 regressors using 
the normalized NDVI values, the current crop, and the previous crop in 
all clusters and years. Finally, we used the trained regressors to predict 
the NDVI for each predecessor/successor crop combination to construct 
the crop rotation matrix (across all clusters and years) as one of the 
outputs of this work. 

In contrast to existing approaches, AI4CROPR (i) clusters agricul
tural plots dependent on their soil, weather, and management (con
ventional, organic) conditions, and thereby compares NDVI values 
among a homogeneous set of plots before normalizing them and 
comparing them with the overall data set, and (ii) distinguishes between 
spring and winter crops and their typical harvesting period to identify 
the maximum NDVI value within this time period to ensure that the 
measured NDVI value relates to the IACS reported crop and not other 
vegetation (e.g., weed) on the plot. AI4CROPR provides pre-crop values 
for 26 different crops. 

2. Materials and methods 

Our overall goal is to use management, satellite, weather, and soil 
data to evaluate the impact of preceding crops on the NDVI as an indi
cator of yield potential for the currently grown crop. Based on these 
findings, a purely data-based crop rotation matrix is constructed to 
present the pre-crop values. 

2.1. Experimental area 

For each plot, the following data for the province of Lower Austria 
for the years 2017–2021 were used and collected in a PostgreSQL 
database:  

• Management data including for each plot, the main crop per year, 
and whether the land is used for organic farming. We used the data 
provided by the European Integrated Administration and Control 
System (IACS)3 and AMA.4  

• Weather data, including precipitation and temperature data.5  

• Soil data, including clay content, from the European Soil Data Centre 
(ESDAC)6 

1 https://www.sentinel-hub.com 
2 Extreme Gradient Boosting (XGBoost) is an open-source library that pro

vides an efficient and effective implementation of the gradient boosting algo
rithm (cf. Chen and Guestrin, 2016)  

3 https://www.data.gv.at  
4 Agrarmarkt Austria, Referat ÖPUL, Bio: https://www.ama.at  
5 https://data.hub.zamg.ac.at/  
6 https://esdac.jrc.ec.europa.eu/ 
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• Satellite data from Sentinel-2 for deriving NDVI data from Sentinel- 
Hub. 

In the IACS database, all agricultural plots are identified with a 
unique key. When the size of a particular agricultural plot changes from 
one growing season to the next, the unique key is changed. In the data 
preparation phase, we identified agricultural plots that had the same 
identifier (i.e., the same location, size, and shape) for two consecutive 
years from 2017 to 2021. From these plots, we identified the plots with 
the most common annual crops (see Table 1). 

Of a total of 134.742 (2017), 139.563 (2018), 151.914 (2019), 
155.512 (2020), and 155.739 (2021) organically farmed plots in Lower 
Austria, 31.777 (2017), 32.228 (2018), 25.644 (2019), 19.613 (2020), 
and 12.629 (2021) (i) had identical Geo-IDs in two consecutive years 
from 2017 to 2021, and (ii) one of the previously described annual crops 
was grown on the plot (see Fig. 1). We annotated the digital represen
tation of each of these 121.891 plots in our data set with the following 
data on an annual basis: .  

1. Biweekly NDVI values derived from Sentinel-2 satellite imagery data.  
2. Weekly precipitation and temperature sums.   

• Precipitation sum per week from September to August for winter 
crops and from January to December for spring crops  

• Temperature sum per week from September to August for winter 
crops and from January to December for spring crops  

3. Soil clay content  
4. Crop grown in the previous year  
5. Indicator of whether the plot was farmed organically. 

2.2. Satellite data 

From these 121.891 plots (from 2017 to 2021) we were able to 
obtain at least bi-weekly NDVI values (see Section 2.2) within the har
vesting period (see Table 2 for the used calendar weeks per crop) for 
29.699 plots (see Table 1). From these 29.699 plots, plots with a 
normalized NDVI value below 0.67 and above the 95th percentile were 
removed from the training data because they were mostly outliers (e.g., 
due to very narrow or small plots that overlapped with neighboring plots 

and resulted in biased NDVI values). The remaining 24.352 plots were 
part of our final training dataset (see Table 2). 

To calculate the NDVI, we used the atmospherically corrected 
Sentinel2-L2A bands B04 and B08 and a cloud mask to filter out cloudy 
areas. We divided the entire area of interest (i.e., Lower Austria) into 
boxes of equal size. For each box and for each of the two bands, we 
gathered a single TIFF file and the cloud mask (CLD) from the Sentinel- 
Hub. We extracted all pixels from the Sentinel data and removed cloud- 
covered pixels for each agricultural plot according to the IACS data set. 
For each remaining pixel, we calculated the NDVI by: 

NDVI =
B08 − B04
B08 + B04 

The arithmetic mean of the NDVI for each plot was calculated based 
on the NDVI pixel values of each plot and stored in a database for further 
processing. 

2.3. Weather data 

To generate the weekly precipitation and temperature sums, we 
downloaded the daily weather data provided by ZAMG of all available 
weather stations in Lower Austria as a CSV file and extracted the global 
radiation sum in J/cm2, precipitation sum in mm, and Tmin/Tmax in 
Celsius. Then, we imported the weather data together with the station 
metadata (i.e., geographic position in lat/long) into the PostgreSQL/ 
PostGIS database and corrected the precipitation sums by setting 
negative numbers to 0. Since the weather data per station was not 
complete (e.g., because the precipitation data is available but the global 
radiation sum not), the data for missing days was imputed with data of 
the geographically closest station (conducted with PostGIS Cross Lateral 
Join and PostGIS Distance Operator). To aggregate data to a weekly 
resolution we defined Global radiation and precipitation as sum (SUM), 
and Tmin/Tmax as average (AVG). The results were rounded to 1 dec
imal place for grouping purposes. Finally, we assigned each plot to the 
geographically closest weather station (by Cross Later Join/Distance 
Operator). 

2.4. Soil data 

The soil data from ESDAC are available as ESRI SHP files and include 
the following parameters: Soil Density in g/cm3, clay content in %, 
organic carbon content in %, sand content in %, silt content in %, 
available water in mm. With the values for clay and silt content, we 
classified the soil types according to the standard ÖNORM L 1050 
(Austrian Soil Texture Triangle). This can be used to infer values such as 
the nitrogen content or water absorption capacity of the soil. In order to 
assign the soil data to the plots, we prepared the data as follows: .  

• Download of the soil data as SHP files (including features as points).  
• Import of the files into QGIS and conversion of the CRS to WGS84/ 

EPSG:4326.  
• Import of the data into the PostgreSQL/PostGIS database.  
• Filtering of the points to the Area-Of-Interest (NOE) via NOE mask.  
• Rounding of the values for Bulk Density (BD) and Organic Carbon 

(OC) to 2 decimal places.  
• Identification of the geographically closest point per IACS plot (via 

PostGIS Cross Lateral Join and Distance Operator) and assignment of 
the soil data to the plot. 

2.5. Crop and management data 

The crops grown in previous years were obtained from the IACS plot 
usage data downloaded from the Austrian open data portal,7 imported in 

Table 1 
Description of initial plot and NDVI data.  

Crop Plots Q1 Q2 Q3 

CLOVER  1699  0.78  0.88  0.95 
CLOVER GRASS  3712  0.83  0.9  0.94 
LUCERNES  2019  0.83  0.9  0.96 
FIELD BEANS  626  0.6  0.79  0.95 
GRAIN PEAS  377  0.83  0.92  1.0 
LENTILS  205  0.69  0.82  0.95 
SOYBEANS  937  0.84  0.92  0.97 
WINTER SOFT WHEAT  4111  0.71  0.82  0.9 
SPRING SOFT WHEAT  272  0.54  0.79  0.99 
WINTER DURUM WHEAT  51  0.83  0.93  1.0 
WINTER SPELT  1683  0.72  0.82  0.92 
WINTER TRITICALE  2145  0.74  0.84  0.91 
WINTER RYE  3671  0.72  0.81  0.89 
WINTER BARLEY  1049  0.69  0.83  0.94 
SPRING BARLEY  671  0.58  0.79  0.94 
SPRING OAT  2421  0.57  0.74  0.88 
MILLET  209  0.8  0.91  0.99 
SILO MAIZE  235  0.87  0.96  1.0 
GRAIN MAIZE  1293  0.81  0.9  0.96 
SUGAR BEET  103  0.86  0.94  1.0 
POTATOES  357  0.68  0.84  0.98 
SUNFLOWER  302  0.8  0.93  1.0 
OIL PUMPKIN  1000  0.65  0.78  0.9 
BUCKWHEAT  254  0.81  0.92  1.0 
HEMP  297  0.9  0.95  1.0 

Crop: main crop grown on the plot as indicated in IACS, Plots: number of plots in 
dataset, Q1: NDVI - first quartile, Q2: NDVI - median, Q3: NDVI - third quartile. 7 https://www.data.gv.at/inspire/ 
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QGIS, converted to WGS84/4326, and the resulting geometry and fea
tures were imported to PostGIS for further processing. 

The indicator if the plot has been organically farmed was imported as 
ESRI SHP files into QGIS, converted to WGS84/4326, and the resulting 
geometry and features were imported to PostGIS for further processing. 
Since the organically farmed plots do not contain IACS plot identifiers 
(Geo ID), the intersection must be performed using geometric operation 
in PostGIS. Since there are slight differences between the IACS and AMA 
organic plots in terms of geometry and the PostGIS st_intersects method 
would be far too costly in terms of runtime, a faster mapping via Geo 
Hash Value8 was implemented as follows:  

• IACS and AMA organic plots are copied into tmp tables and there the 
precision is reduced to 0.00001: st_reduceprecision(geom, 0.00001). 
Factor 0.00001 guarantees the uniqueness of the hits, but removes 
the unnecessary decimal places.  

• Calculation of the geo hash for each IACS and AMA organic plot: 
st_geohash(geom, 20) with precision 20.  

• The IACS and AMA organic plots are matched with each other based 
on their geohash. The organic flag is stored in the IACS plots. 

2.6. Clustering 

Table 3 shows the data structure for assigning the plots to homoge
neous clusters in terms of precipitation, temperature, radiation, and soil 
conditions. Table 4 shows sample data for the clustering process. 

We used the K-Means algorithm from the Python library sklearn9 to 
cluster the IACS plots in homogeneous groups (cluster) according to the 
attributes shown in Table 3. Our goal was to find a suitable number of 
clusters which minimize the variance of the instances within a cluster. 
To this end, we used the elbow method10 and aggregated the data for all 
plots for a whole year. We then ran the K-Means algorithm for up to 100 

Fig. 1. Filtered plots for Lower Austria.  

8 https://postgis.net/docs/ST_GeoHash.html 

9 https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans. 
html  
10 https://en.wikipedia.org/wiki/Elbow_method_(clustering) 
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clusters and chose a k-value of 40 based on the generated elbow dia
gram. Fig. 2 shows the 40 identified clusters for the year 2020. As the 
weather data, which has the most influence on the clustering, changes 
each year, the clustering was conducted for each year from 2017 to 
2021. 

2.7. Machine learning 

For each crop, we trained an XGBoost regressor to predict NDVI 
around harvest time (maximum NDVI within typical harvest time win
dows for winter and spring crops) based on previous crop. We defined 
the typical harvest window for spring crops from August to October and 
for winter crops from June to July (see Table 2 for the exact calendar 
weeks). To express the effect of the predecessor crop on the successor 
crop’s NDVI we used the following classes and NDVI ranges: very suit
able: between 1.00 and 0.92, suitable: between 0.92 and 0.84, not 
suitable: between 0.84 and 0.75, and very unsuitable: between 0.75 and 
0.67. Plots with a normalized NDVI value below 0.67 and above the 95th 
percentile were removed from the training data because they were 
mostly outliers (e.g., due to very narrow or small plots that overlapped 
with neighboring plots and resulted in biased NDVI values). To reduce 
NDVI-related effects from other sources (fertilization, weather, etc.) as 
much as possible, we only included organically managed plots with 
similar soil and weather conditions during sensitive growing seasons 
(see previous description of clustering). All NDVI values were normal
ized within each cluster (cf. Eq. (1)) so that NDVI effects can be 
compared between different clusters. Table 5 shows the mean squared 
error MSE (cf. Eq. (2), where n is the number of data points, yi is the 
observed (actual) value for the i-th data point, ŷi is the predicted value 
for the i-th data point) of the crop-specific trained regressors. 

NDVInormalized =
NDVI

NDVImax
(1)  

MSE =
1
n
∑n

i=1
(yi − ŷi)

2 (2)  

3. Results 

Algorithm 1 describes how we used the normalized NDVI values in 
the different clusters to create the successor suitability matrix, i.e., a 
matrix showing which predecessor-successor combinations produce 
which NDVI effect around harvest time. Fig. 3 shows how many in
stances of the different crop combinations were used in training and the 
resulting crop-successor suitability matrix. The following color coding is 
used: Dark green - very suitable: 1.00–0.92 NDVI, light green - suitable: 
0.92–0.84 NDVI, yellow - not suitable: 0.84–0.75 NDVI, red - very un
suitable: 0.75–0.67 NDVI, white: no or insufficient NDVI data available 
(this specific predecessor-successor crop combination was excluded 
from the NDVI effect rating as less than 20 plots with valid NDVI data 
around harvesting time were available during analysis). 

Algorithm 1. Creation of the crop successor suitability matrix.  

Table 2 
Description of training data.  

Crop Plots HS HE Q1 Q2 Q3 

CLOVER  1514  22  30 0.82 0.9 0.96 
CLOVER GRASS  3357  22  30 0.83 0.9 0.94 
LUCERNES  1947  22  43 0.84 0.91 0.96 
FIELD BEANS  420  31  43 0.79 0.9 1.0 
GRAIN PEAS  353  22  43 0.85 0.92 1.0 
LENTILS  159  31  43 0.77 0.87 1.0 
SOYBEANS  891  31  43 0.86 0.92 0.97 
WINTER SOFT WHEAT  3153  22  30 0.77 0.84 0.91 
SPRING SOFT WHEAT  172  31  43 0.8 0.94 1.0 
WINTER DURUM WHEAT  51  22  30 0.83 0.93 1.0 
WINTER SPELT  1410  22  30 0.77 0.85 0.93 
WINTER TRITICALE  1857  22  30 0.78 0.86 0.92 
WINTER RYE  2881  22  30 0.76 0.83 0.89 
WINTER BARLEY  825  22  30 0.79 0.88 0.96 
SPRING BARLEY  432  31  43 0.81 0.9 0.99 
SPRING OAT  1389  31  43 0.75 0.84 0.91 
MILLET  189  31  43 0.83 0.93 0.99 
SILO MAIZE  224  22  30 0.88 0.97 1.0 
GRAIN MAIZE  1223  22  30 0.83 0.91 0.96 
SUGAR BEET  101  31  43 0.87 0.96 1.0 
POTATOES  276  31  43 0.79 0.9 1.0 
WINTER RAPE  0  22  30 nan nan nan 
SUNFLOWER  267  31  43 0.86 0.95 1.0 
OIL PUMPKIN  734  31  43 0.75 0.85 0.93 
BUCKWHEAT  235  31  43 0.84 0.92 1.0 
HEMP  292  22  30 0.91 0.95 1.0 

Crop: main crop grown on the plot as indicated in IACS, Plots: number of plots in 
dataset, HS: calendar week of harvest season start, HE: calendar week of harvest 
season end, Q1: NDVI - first quartile, Q2: NDVI - median, Q3: NDVI - third 
quartile. 
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Based on Fig. 3, Table 6 shows the ranking of suitable successor crops 
for previously planted crops. Category ‘very suitable’ was mapped to 
1.00–0.92 NDVI, category ‘suitable’ to 0.92–0.84 NDVI, and category 
‘not suitable’ to 0.84–0.75 NDVI. It is planned to use these rankings as 
input for crop rotation planning decision support systems within future 
research. 

In the following we compare the constructed crop successor suit
ability matrix based on NDVI-measurement effects to the crop successor 
suitability matrix by Kolbe (2006) to validate to which extent our results 
match Kolbe’s recommendations. Please note that the Kolbe matrix 
shown in Fig. 4 has been extended by experts Wohlmuth, Friedel, 
Wagentristl and Surböck by the crops oil pumkin, hemp, millet, and 
buckwheat as the regional importance of these crops has increased in 
recent years. In contrast to the original Kolbe matrix, the preceding crop 

effect of sunflower on soybean was changed from favorable to unfa
vorable because disease pressure (Sclerotinia) between the two crops 
requires a growing interval of at least two years. 

Table 4 
Clustering data sample for calendar week 1 and 2.  

geo_id s_clay s_sand s_silt t_clay t_sand t_silt prec_1 rad_1 tmin_1 tmax_1 prec_2 rad_2 tmin_2 tmax_2  

103349790  22  26  52  23  23  54  0.1  1883 − 4.1  3.2  1.5  3290 − 3.5  4.3  
103268100  4  88  8  4  87  9  5.6  2428 − 2.8  6.2  4.5  3433 − 2.6  7.8  
103022635  25  41  34  21  40  39  3.3  1855 − 3.9  5  4  2622 − 3  6.1  
103179166  25  28  47  25  28  47  0.8  1799 − 1.9  4.4  1.1  2742 − 2.8  5  
101776461  34  39  27  24  47  29  2.7  2389 − 2.9  4.8  0.9  2543 − 2  4.6  
101946141  20  45  35  20  42  38  2.3  2062 − 4.9  6.5  0.6  3195 − 5.4  7  
102267956  25  41  34  21  40  39  4  2481 − 2.2  4.5  2.4  3561 − 2.6  5.6  
102376196  0  0  0  51  20  29  3.6  2349 − 0.7  6.5  3.1  3557 − 0.6  7.1  
1775999  34  39  27  24  47  29  4.4  2162 − 2.5  4.3  2.2  2504 − 1.7  4.4  
2498868  25  41  34  21  40  39  4.2  2455 − 4.6  5  3.5  3438 − 4.4  6.1  
2579885  0  0  0  20  42  38  0.7  2037 − 3.3  3.1  1.8  3005 − 3.6  4  
2586218  0  0  0  20  42  38  4.2  2455 − 4.6  5  3.5  3438 − 4.4  6.1  
2611712  4  88  8  4  87  9  4.2  2455 − 4.6  5  3.5  3438 − 4.4  6.1  
2651440  25  41  34  21  40  39  1.3  2220 − 4  3.4  4.2  2911 − 3.5  4.1  
2705032  20  49  31  20  49  31  5.6  2428 − 2.8  6.2  4.5  3433 − 2.6  7.8  
2733935  25  41  34  22  42  36  1.6  2532 − 4.4  4.4  3  3276 − 3  5.8  
2832379  4  88  8  4  87  9  9.7  2510 − 2.9  3.8  2.7  3327 − 2.2  3.6  
2877657  25  41  34  22  42  36  1.7  1688 − 3.2  4.5  4.6  2520 − 3.4  5  
2900300  18  36  46  18  34  48  1.9  2390 − 0.7  4.4  0.7  3390 − 0.6  5.4  
3102422  0  0  0  51  20  29  11.3  1939 − 2.2  5.3  1.1  3316 − 1.9  6.8  
3125085  0  0  0  19  37  44  14.8  2149 − 3.4  8.1  0.7  3448 − 3.9  8.6  
3320634  29  37  34  22  41  37  2.7  2251 − 2.2  4.7  1.5  3283 − 1.6  5.5  
3387190  29  37  34  22  41  37  2.7  2251 − 2.2  4.7  1.5  3283 − 1.6  5.5  
3483278  18  36  46  18  34  48  2.7  2389 − 2.9  4.8  0.9  2543 − 2  4.6 

geo_id: ID of agricultural plot, s_clay: soil clay content [%], s_sand: soil sand content [%], s_silt: soil slit content [%], t_clay: topsoil clay content [%], t_sand: topsoil sand 
content [%], t_silt: topsoil slit content [%], prec_1: precipitation sum week 1 [mm], rad_1: radiation sum week 1 [J/cm2], tmin_1: minimal temperature week 1 [∘C], 
tmax_1: maximum temperature week 1 [∘C], prec_2: precipitation sum week 2 [mm], rad_2: radiation sum week 2 [J/cm2], tmin_2: minimal temperature week 2 [∘C], 
tmax_2: maximum temperature week 2 [∘C]. 

Fig. 2. 40 clusters for 2020 Lower Austria data set. Circles represent the in
dividual plots. The colors indicate the individual clusters. center_x and center_y 
represent the longitude and latitude of the plots. 

Table 3 
Data structure for clustering.  

Attribute Type Example 

Id of agricultural plot int 10000001 
Weekly precipitation sum list [20, 30, …] 
Weekly temperature min/max list [20, 30, …] 
Weekly radiation sum list [20, 30, …] 
Soil clay content int 20 
Soil sand content int 20 
Soil silt content int 20  
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Combinations in dark green indicate 120–110 % yield, light green: 
110–100 % yield, yellow: 100–90 % yield, and red: 90–80 % yield. We 
used the following mapping to map crops from Kolbe (2006) to the crops 
used in this project: .  

• Label used by Kolbe - label used in this project 
• Alfalfa, clover, legume grass (annual to perennial) - CLOVER, CLO

VER GRASS, and LUCERNE  
• Alfalfa, clover, legume grass Serradella (annual to perennial) - NO 

MAPPING  
• Field bean - FIELD BEANS  
• Pea, lentil - LENTILS and GRAIN PEAS  
• Blue lupine, white lupine, vetch - NO MAPPING  
• Yellow lupine - NO MAPPING  
• Soybean - SOYBEANS  
• Grasses (annual to perennial) - NO MAPPING  
• W. wheat - WINTER SOFT WHEAT  
• S. wheat, durum - SPRING SOFT WHEAT and SPRING HARD WHEAT  
• W. rye, triticale - WINTER RYE and WINTER TRITICALE  
• W. barley, spelt - WINTER SPELT and WINTER BARLEY  
• S. barley (forage quality) - SPRING BARLEY  
• Oats - SPRING OAT  
• Silage corn - SILO MAIZE  
• Grain corn - GRAIN MAIZE  
• Sugar s and fodder beet - SUGAR BEET  
• Early potato - NO MAPPING  
• Medium early potato - POTATOES  
• Late potato - NO MAPPING  
• W. rape - WINTER RAPE  
• Sunflower - SUNFLOWER 

Fig. 5 shows the deviation from the Kolbe matrix (cf. Fig. 4) and the 
measured NDVI effects (cf. Fig. 3). The number in each cell indicates by 
how many steps the Kolbe matrix differs from the measured NDVI effects 
in absolute terms. For example, the potato/potato combination has the 
lowest score in the Kolbe matrix (red [90–80 %]), but the highest score 
in the matrix with the measured NDVI effects (dark green [1.00–0.92 
NDVI]). Table 7 shows the deviations in absolute and relative numbers, 
and we can see that most of the deviations are around 0 or 1, i.e. 28.20 % 
of the measured NDVI effects are identical to the Kolbe matrix, 51.60 % 
deviate by one degree, and 19.67 % deviate by two degrees. 

4. Discussion 

In the following we discuss crop combinations with a NDVI/Kolbe 
deviation of 2 or more (cf. Table 7): 

In the data, perennial forage legumes (clover grass, lucerne, clover) 
are considered individually in each year and therefore there are se
quences within these crops that are not replicated in reality because 
there is no new annual seeding (9/38 deviations of 2 or more degrees: 
clover grass-clover grass, lucerne-lucerne, clover-clover, clover-clover 
grass, lucerne-clover grass, clover-lucerne, clover grass-clover, clover 
grass-lucerne, lucerne-clover). 

Further deviations occur in the actual repetition of crops, which is 
not recommended by Kolbe, but occurs in practice. This is not a practical 
problem for self-tolerant crops such as rye, soybean or buckwheat (5/38 
deviations of 2 or more degrees: soybeans-soybeans, winter barley- 
winter barley, buckwheat-buckwheat, oil pumpkin-oil pumpkin). Espe
cially soybean and winter barley are crops that in practice are also 
successfully grown in succession. Since success depends on location, soil 
condition and disease pressure, repeated cultivation of the same crop is 
not recommended. A diverse crop rotation is also recommended from a 
biodiversity perspective. 

For self-incompatible crops such as potato, the deviation could either 
be a result of a high NDVI because of weeds (1/38 deviations of 2 or 
more degrees: potatoes-potatoes) or it may actually be a high NDVI of 
the potato crop. On some sites (so-called “healthy sites”) with below- 
average annual mean temperatures (e.g. in the Waldviertel) it is a 
common and successful practice to grow potatoes following potatoes. 
Farmers know on which sites they can grow potato on potato without 
problems. 

Late sowing dates might be an explanation for 6/38 deviations of 2 or 
more degrees: potatoes-winter triticale, potatoes-winter rye, oil 
pumpkin-winter rye, buckwheat-winter soft wheat, buckwheat-winter 
triticale, buckwheat-winter rye. 

Overall, the main limitation of the AI4CROPR method is using the 
NDVI as an indicator for the yield potential of the plot. If no yield data is 
available, the NDVI can be used in general to approximate yield po
tential, however, since NDVI measures plant land cover, it also evaluates 
weeds, which means that a heavily weedy field would also result in a 
high NDVI. This can be especially true for root crops. For cereals, a dense 
stand and therefore a high NDVI does not have to result in a high yield. 
Especially during drought, cereals can go into emergency maturity, 
resulting in shriveled grains. 

Despite its specific limitations, this work makes a significant 
contribution to meeting the need for more specific data on the effects of 
crop rotations. It provides the basis for identifying synergistic and 
cannibalistic effects of crop rotations at the regional level. In doing so, it 

Table 5 
Mean squared error (MSE) of the crop-specific trained regressors 
regarding their NDVI prediction.  

Crop model MSE [NDVI] 

CLOVER  0.012 
CLOVER GRASS  0.011 
LUCERNES  0.013 
FIELD BEANS  0.006 
GRAIN PEAS  0.009 
LENTILS  0.008 
SOYBEANS  0.013 
WINTER SOFT WHEAT  0.012 
SPRING SOFT WHEAT  0.008 
WINTER DURUM WHEAT  0.005 
WINTER SPELT  0.013 
WINTER TRITICALE  0.01 
WINTER RYE  0.011 
WINTER BARLEY  0.012 
SPRING BARLEY  0.018 
SPRING OAT  0.006 
MILLET  0.006 
SILO MAIZE  0.006 
GRAIN MAIZE  0.013 
SUGAR BEET  0.005 
POTATOES  0.01 
SUNFLOWER  0.009 
OIL PUMPKIN  0.014 
BUCKWHEAT  0.013 
HEMP  0.01  
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Fig. 3. Crop successor suitability matrix: measured NDVI effects for relevant crop combinations based on standardized NDVI values across all clusters. Dark green - 
very suitable: 1.00–0.92 NDVI, light green - suitable: 0.92–0.84 NDVI, yellow - not suitable: 0.84–0.75 NDVI, red - very unsuitable: 0.75–0.67 NDVI, white: no or 
insufficient NDVI data available. The numbers in the cells refer to the number of plots that were used in this specific crop combination during the training phase. 
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Table 6 
Crop successor suitability based on the measured NDVI effects of pre-crop/crop combinations.  

Previous crop very suitable suitable not suitable 

CLOVER  CLOVER, CLOVER GRASS, LUCERNES, WINTER SOFT WHEAT WINTER SPELT, WINTER TRITICALE, WINTER 
RYE, SPRING OAT 

CLOVER GRASS WINTER BARLEY, SILO 
MAIZE, GRAIN MAIZE 

CLOVER, CLOVER GRASS, LUCERNES, WINTER SOFT WHEAT, WINTER 
SPELT, WINTER TRITICALE, WINTER RYE, SPRING BARLEY, SPRING OAT  

LUCERNES  CLOVER, CLOVER GRASS, LUCERNES, GRAIN MAIZE, OIL PUMPKIN WINTER SOFT WHEAT 
FIELD BEANS  WINTER SOFT WHEAT, WINTER SPELT, WINTER TRITICALE, WINTER 

BARLEY, GRAIN MAIZE 
WINTER RYE 

GRAIN PEAS  WINTER SPELT, WINTER TRITICALE WINTER SOFT WHEAT, WINTER RYE 
LENTILS   WINTER SOFT WHEAT, WINTER SPELT 
SOYBEANS  SOYBEANS, WINTER SPELT, GRAIN MAIZE, OIL PUMPKIN WINTER SOFT WHEAT 
WINTER SOFT 

WHEAT 
SILO MAIZE, SUGAR 
BEET, HEMP 

CLOVER, CLOVER GRASS, LUCERNES, FIELD BEANS, GRAIN PEAS, 
SOYBEANS, WINTER SPELT, WINTER TRITICALE, WINTER BARLEY, 
SPRING BARLEY, SPRING OAT, MILLET, GRAIN MAIZE, POTATOES, 
SUNFLOWER, OIL PUMPKIN, BUCKWHEAT 

WINTER SOFT WHEAT, WINTER RYE 

SPRING SOFT 
WHEAT  

WINTER SPELT, WINTER TRITICALE WINTER RYE 

WINTER DURUM 
WHEAT    

WINTER SPELT MILLET, SUNFLOWER, 
HEMP 

CLOVER, CLOVER GRASS, LUCERNES, FIELD BEANS, GRAIN PEAS, 
LENTILS, SOYBEANS, WINTER BARLEY, SPRING BARLEY, GRAIN MAIZE, 
BUCKWHEAT 

WINTER SOFT WHEAT, WINTER SPELT, 
WINTER TRITICALE, WINTER RYE, SPRING 
OAT, OIL PUMPKIN 

WINTER 
TRITICALE 

GRAIN PEAS, SILO 
MAIZE, HEMP 

CLOVER, CLOVER GRASS, LUCERNES, FIELD BEANS, SOYBEANS, WINTER 
SOFT WHEAT, WINTER TRITICALE, WINTER BARLEY, SPRING BARLEY, 
GRAIN MAIZE, OIL PUMPKIN 

WINTER SPELT, WINTER RYE, SPRING OAT 

WINTER RYE HEMP CLOVER, CLOVER GRASS, LUCERNES, FIELD BEANS, GRAIN PEAS, WINTER 
SOFT WHEAT, SPRING SOFT WHEAT, WINTER SPELT, WINTER TRITICALE, 
WINTER BARLEY, SPRING BARLEY, GRAIN MAIZE, OIL PUMPKIN, 
BUCKWHEAT 

WINTER RYE, SPRING OAT, POTATOES 

WINTER BARLEY SOYBEANS, SILO MAIZE CLOVER GRASS, LUCERNES, FIELD BEANS, WINTER SOFT WHEAT, WINTER 
SPELT, WINTER TRITICALE, WINTER BARLEY, GRAIN MAIZE 

WINTER RYE, SPRING OAT 

SPRING BARLEY  CLOVER, CLOVER GRASS, LUCERNES, WINTER SPELT, WINTER TRITICALE, 
SPRING OAT, GRAIN MAIZE 

WINTER SOFT WHEAT, WINTER RYE 

SPRING OAT GRAIN PEAS CLOVER, CLOVER GRASS, LUCERNES, FIELD BEANS, WINTER SOFT 
WHEAT, WINTER SPELT, WINTER TRITICALE, WINTER BARLEY, SPRING 
BARLEY, BUCKWHEAT 

WINTER RYE, SPRING OAT, POTATOES 

MILLET   LENTILS, WINTER SOFT WHEAT 
SILO MAIZE  WINTER SOFT WHEAT, WINTER TRITICALE, WINTER BARLEY  
GRAIN MAIZE SUNFLOWER LUCERNES, FIELD BEANS, GRAIN PEAS, SOYBEANS, WINTER SPELT, 

WINTER TRITICALE, SPRING BARLEY, GRAIN MAIZE, OIL PUMPKIN 
WINTER SOFT WHEAT, WINTER BARLEY 

SUGAR BEET   WINTER SOFT WHEAT 
POTATOES POTATOES WINTER SOFT WHEAT, WINTER SPELT, SPRING OAT WINTER TRITICALE, WINTER RYE 
WINTER RAPE    
SUNFLOWER  LUCERNES WINTER SOFT WHEAT 
OIL PUMPKIN  SOYBEANS, WINTER SOFT WHEAT, WINTER SPELT, WINTER BARLEY, 

GRAIN MAIZE, OIL PUMPKIN 
WINTER RYE 

BUCKWHEAT BUCKWHEAT WINTER SPELT WINTER SOFT WHEAT, WINTER TRITICALE, 
WINTER RYE 

HEMP HEMP WINTER RYE WINTER SOFT WHEAT, WINTER SPELT 

Mapping of categories: very suitable: 1.00–0.92 NDVI, suitable: 0.92–0.84 NDVI, not suitable: 0.84–0.75 NDVI. 
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Fig. 4. Kolbe matrix (cf. Kolbe, 2006) mapped to discrete crops used in this project. Dark green: 120–110 % yield, light green: 110–100 % yield, yellow: 100–90 % 
yield, red: 90–80 % yield. 

S. Fenz et al.                                                                                                                                                                                                                                     



European Journal of Agronomy 150 (2023) 126949

11

strengthens the position of (organic) farmers who can adapt their crop 
rotations to local requirements and a wider range of potential crops. 

In future work the results might be (i) used as the basis for a decision 
support system allowing farmers to interactively plan and evaluate po
tential crop rotations based on hard facts and personal preferences, (ii) 

used as part of a reinforcement learning (RL) environment to enable an 
RL agent to output yield-enhancing crop rotation sequences, (iii) applied 
to other geographical areas to compare potential differences in defined 
crop rotations, and (iv) validated with further crop rotation matrices 
such as Schönhart et al. (2011b). 

5. Conclusions 

In this work we used Sentinel-2 satellite image, weather, soil, and 
land-use data to identify yield-enhancing predecessor/successor crop 
combinations based on NDVI around harvesting time and compared the 
results to crop rotation recommendations from literature. Validation has 
shown that results of the developed data- and AI-driven AI4CROPR 
method (pre-crop values and crop successor suitability matrix) overlap 

Fig. 5. Deviation of the measured NDVI effects from the Kolbe matrix. The number within each cell describes how many steps the measured NDVI effects differs from 
Kolbe matrix in absolute terms. E.g., the combination potatoes/potatoes has the lowest rating (red [90–80 %]) in the Kolbe matrix, but the highest (dark green 
[1.00–0.92 NDVI]) in the matrix with the measured NDVI effects. 

Table 7 
Crop successor suitability deviations between Kolbe and measured NDVI effects.  

Deviation Total %  

0 53 of 188  28.20 %  
1 97 of 188  51.60 %  
2 37 of 188  19.67 %  
3 1 of 188  0.53 %  
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to a great extent with recommendations from literature: 28.20 % of the 
measured NDVI effects are identical to the Kolbe matrix, 51.60 % 
deviate by one degree, and 19.67 % deviate by two degrees. 

In subsequent research the developed method can be applied to 
different geographical areas, enabling comparisons of crop rotations in 
diverse context and validate resulting pre-crop values with further geo- 
specific recommendations from literature. 
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