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Abstract

Estimating accurate surface soil moisture (SM) dynamics from space, and knowing the error
characteristics of these estimates, is of great importance for the application of satellite-based SM
data throughout many Earth Science/Environmental Engineering disciplines. Here, we introduce
the Bayesian inference approach to analyze the error characteristics of widely used passive and
active microwave satellite-derived SM data sets, at different overpass times, acquired from the
Soil Moisture Active Passive (SMAP), Soil Moisture and Ocean Salinity (SMQOS), and Advanced
Scatterometer (ASCAT) missions. In particular, we apply Bayesian hierarchical modeling (BHM)
and triple collocation analysis (TCA) to investigate the relative importance of different
environmental factors and human activities on the accuracy of satellite-based data.

To start, we compare the BHM-based sensitivity analysis method to the classic multiple
regression models using a frequentist approach, which includes complete pooling and no-pooling
models that have been widely used for sensitivity analysis in the field of remote sensing and
demonstrate the BHM's adaptability and great potential for providing insight into sensitivity
analysis that can be used by various remote sensing research communities.

Next, we conduct an uncertainty analysis on BHM's model parameters using a full range
of uncertainties to assess the association of various environmental factors with the accuracy of
satellite-derived SM data. We focus on investigating human-induced error sources such as
disturbed surface soil layers caused by irrigation activities on microwave satellite systems,
naturally introduced error sources such as vegetation and soil organic matter, and errors related
to the disregard of SM retrieval algorithmic assumptions - such as the thermal equilibrium passive

microwave systems. Based on the BHM-based sensitivity analysis, we find that assessments of
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SM data quality with single variable should be avoided, since numerous other factors
simultaneously influence their quality. As such, this provides a useful framework for applying
Bayesian theory to the investigation of the error characteristics of satellite-based SM data and

other time-varying geophysical variables.

Keywords:
microwave satellite systems, remotely sensed soil moisture, Bayesian hierarchical model, triple

collocation analysis, uncertainty analysis
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1. Introduction

Since surface soil moisture (SM) controls the flow of water and energy and governs
interactions between the land surface and atmosphere, obtaining accurate surface-level SM
information is critical for understanding many Earth system processes (Hirschi et al 2014,
Seneviratne et al 2006). Likewise, understanding the accuracy of SM data is essential for applying
SM data to numerous research fields, such as predicting hydrologic extremes (e.g., droughts,
floods, wildfires, and dust outbreaks), estimating water resources, and improving land surface
models (LSMs) (Brocca et al 2019, Crow et al 2022, Reichle 2008).

Among the methods used to estimate surface SM - including, but not limited to,
gravimetric sampling (Reynolds 1970), hand-held/in-situ electromagnetic sensors (Kim et al
2020a), and cosmic-ray neutron probes (Nguyen et al 2017) - microwave satellite systems are
generally considered to be the most practical for obtaining temporal and spatial continuous SM
data at large spatial scales (Cho et al 2017, Entekhabi et al 2010, Jackson et al 1996, Wagner et
al 2007, Wigneron et al 2017, Kim and Lakshmi 2018). Such systems include passive microwave
instruments such as the L-band radiometer on board the Soil Moisture Active Passive (SMAP)
(Entekhabi et al 2010), the Microwave Imaging Radiometer with Aperture Synthesis (MIRAS) on
board the Soil Moisture and Ocean Salinity (SMOS) (Kerr et al 2010), and the active microwave
sensor Advanced Scatterometer (ASCAT) on board the MetOp-A (de-orbited in November 2021
after 15 years of service), MetOp-B, and MetOp-C satellites (Wagner et al 2013).

However, despite researchers' best efforts to obtain reliable SM information from
satellite systems, we still encounter significant environmental/human-induced factors that

decrease the quality of SM retrievals. For example, satellite-based SM data are vulnerable to



71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

errors from sources such as dense vegetation canopy (Calvet et a/ 2011, Owe et al 2001), arid
climatic conditions (Wagner et al 2022), radio frequency interference (RFl) (de Nijs et al 2015,
Misra and Ruf 2012, Oliva et al 2012), soil properties which have been disturbed by irrigation
activities (He et al 2021, Lawston et al 2017), and high amounts of soil organic matter (SOM)
(Wigneron et al 2017). Although many previous studies have identified error sources that
negatively impact SM data quality, there has been little consideration regarding the relative
importance of these error sources, including human-created and environmental factors, in
inferring the overall quality of SM data. Ideally, if we can identify robust relationships between
the error variance of satellite-based SM and a given environmental condition, we can also use
SM data more effectively.

Errors in satellite SM data are dependent upon the exact retrieval algorithm used and/or
the satellite systems themselves. Therefore, knowing the relative accuracy of each SM data
product is essential for making the best use of satellite-based SM retrievals — particularly in the
common case where SM information is integrated from multiple sources.

Here, we seek to develop improved regression models to explore the relationship
between various hydrogeological variables and the precision of satellite-based SM products
across different land surface characteristics. To investigate a global-scale individual satellite-
based SM retrieval's precision, we employ triple collocation analysis (TCA; see the methodology
section for details). By building a land cover-specific hierarchical model based on a Bayesian
approach, we seek to provide an enhanced description of the relationship between SM retrievals

errors, as described by TCA and key environmental variables.



92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

Traditional approaches to understanding relationships between independent and
dependent variables often involve creating multiple linear regression models. These models,
while easy to interpret, may not always produce reliable results due to factors such as inadequate
data points for specific land surface types. Additionally, frequently used model parameter
estimation methods like maximum likelihood estimation (MLE) come with limitations. For
example, they assume fixed, unknown true parameter values and may fail to account for prior
parameter information or fully capture uncertainty.

Given these challenges, there is a need for more flexible and robust modeling methods.
Bayesian hierarchical modeling (BHM) can serve as such an approach (Wagenmakers, et al. 2008).
It allows for the integration of prior knowledge about parameters, more precisely quantifies
uncertainty, and adapts well to different data structures, making it particularly beneficial for
datasets with naturally clustered observational units, such as different land cover types. The
present research uses BHM to analyze error in satellite SM data and assess the relative
importance of environmental factors on SM data quality, taking into account inherent
uncertainties. In this study, by using a Bayesian approach, we aim to achieve more rigorous and
reliable scientific inferences. This study distinguishes itself from current regression model
approaches, which frequently result in overfitting or offer only a single fixed parameter for each

environmental factor that influences SM data quality.

2. Data sets
Here, we focus on evaluating the error characteristics of three satellite-based SM data

sets (using the most recent version of each data; last checked date October 2022): the dual-
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channel algorithm (DCA) based SMAP L3 Version 8 SM product (O'Neill et al. 2021); the INRA-
CESBIO (IC) algorithm version 2 based SMOS SM; and the ASCAT SM product based on the TU
Wien algorithm (Wagner et al 2013). Please note that when investigating the baseline quality of
each SM product, we included all data without consideration of their data-quality flags. However,
we did mask areas where the RFI flag values for the SMOS-IC product were larger than 5 K (please
note that the criteria for the RFI flag may vary in future versions of the SMOS-IC algorithm). In
addition, we investigated the error characteristics of different overpass times for each product:
ascending, descending, and the combination of both.

To build the BHM, we used the fractional mean square error (fMSE) metric as the models'
response variable (i.e., dependent or target variable) calculated from TCA (please refer to the
methodology section below). The predictor variables (i.e., independent or feature variables)
came from various sources. To start, we used 21 daily time series of hydrometeorological and
radiation variables from the North American Land Data Assimilation System, version 2 (NLDAS-2)
(Xia et a/ 2012) and the Modern-Era Retrospective analysis for Research and Applications, version
2 (MERRA-2) (Gelaro et al 2017): time averaged, minimum, and maximum values of near-surface
wind speed (m/s), average rainfall rate (kg/m?s), total precipitation rate (kg/m?s), near-surface
air temperature (K), near-surface specific humidity (-), surface-incident shortwave radiation
(W/m?), and surface-incident longwave radiation (W/m?). In addition, the daily difference
between 2-m air temperature (AT) and soil temperature (ST) (surface level 1) (|AT (ST, AT)|) (6
a.m. and 6 p.m.) was calculated from ERA5-Land global reanalysis data (Mufioz-Sabater et al 2021)
from 2015 to 2021, and the time averaged, minimum, and maximum values of (|AT (ST, AT)|)

were computed. Please note that for the North American domain, we utilized NLDAS-2, while for
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other regions, we used MERRA-2. This approach allowed us to ensure the highest quality data for
both areas.

Second, we simulated 24 daily hydrological variables wusing the Noah-
Multiparameterization LSM version 4.0.1 (Niu et a/ 2011): time averaged, minimum, and
maximum values of the latent heat flux (W/m?), sensible heat flux (W/m?), total
evapotranspiration (kg/m?s), average surface temperature (K), surface radiative temperature (K),
soil temperature (K); LAl (-), and greenness (-). All the data sets were processed using the Land
Surface data Toolkit (LDT) (Arsenault et al 2018) and the Land Information System (LIS) (Kumar
et al 2006). The LDT and LIS are open-source tools and software libraries developed and
maintained by NASA for managing and analyzing remotely sensed and land surface data. They
are widely used in the field of Earth science, offering a comprehensive solution for global-scale
data analysis. The user guide and tutorials for this software are publicly available on a GitHub
page, which is noted in the Acknowledgements section. We intentionally omitted ERA5-Land and
SMAP L4 SM data products from our analysis to maximize the independence of our predictor
variables relative to response variables - note that both ERA5-land and SMAP L4 integrate some
form of satellite-based SM information. Instead, we opted to use an open loop simulation of the
Noah-MP land surface model (Noah-MP4.0.1) lacking any data assimilation.

Third, we considered seven additional static variables: 1) topographic complexity (i.e.,
proxy for surface roughness) by taking the logarithm of the digital elevation model (DEM) data
obtained from the Shuttle Radar Topography Mission (SRTM), as described by Kim et al. (2015);
2) the diversity index (or Gini-Simpson index) (-) using the International Geosphere—Biosphere

Programme (IGBP) from the National Centers for Environmental Prediction (NCEP) land
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classification map (17 IGBP data and three tundra landcover classes) (Fig. 1(a)); 3) the irrigation
fraction (%) from the Global Map of Irrigation Areas (GMIA) (Siebert et al., 2005; Fig. 1(b)); 4)
SOM from the International Soil Reference and Information Centre (ISRIC) (Fig. 1(c)); 5)
vegetation opacity (-) (or Tau) based on the SMAP Multi-Temporal Dual Channel Algorithm (MT-
DCA) (Konings et al 2017) (Fig. 1(d)); 6) the sand fraction (%) from the STATSGO-FAO soil texture
class map; 7) the slope from the SRTM DEM (%); 8) the average surface albedo based on Wang
et al.'s (2004) method, which uses data from the Moderate Resolution Imaging
Spectroradiometer (MODIS). In addition, the daily time averaged, minimum, and maximum
values of the brightness temperature (Tb)-RFI flag (K) from SMOS-IC data (a.m. and p.m.) (Fig.
1(e)) were collected. The RFI flag is represented by the Tb-RMSE in Kelvin (K), which is the root
mean square error (RMSE) value between the L-band Microwave Emission of the Biosphere (L-
MEB) model Tb and the measured Tb data. Wigneron et al. (2021) demonstrated that the TB-
RMSE is a simple and effective indicator of the actual RFl impact. In total, 67 predictors (Table S1)
were initially considered as predictor variables, and all variables were normalized using their
mean and standard deviation values.

Multicollinearity between predictor variables can result in less reliable statistical
inferences. Therefore, since several of the independent variables described above are likely to
be mutually correlated, we conducted a multicollinearity test before continuing. This test was
based on applying a variance inflation factor (VIF). We selected the 14 predictors whose VIF was
below 12 (Table 1). However, we included soil temperature and precipitation variables even

though their VIF were greater than 12, as they were the two most important hydrometeorological
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variables of interest (note that high VIF for these two variables was not unexpected since some
of our predictors were calculated from LSM).

The variables listed in Table 1 have the potential to directly and/or indirectly impact the
quality of SM data retrieved from both passive and active systems. For example, topographic
complexity can serve as a proxy for surface roughness, which is a critical factor in retrieving SM
data from the tau-omega model (Li et al 2020). Additionally, high sand fractions can impede the
retrieval of SM by both passive and active satellite systems due to the subsurface scattering of
microwave signals (Kim et a/ 2018). Furthermore, algorithms that assume a static state and a
constant vertical SM distribution for L-band microwave radiometer-based SM systems can be
adversely affected during and immediately after precipitation events due to the transient
movement of water in the shallow subsurface. Additionally, during periods of heavy rainfall, both
naturally emitted microwave signals observed by passive microwave sensors and microwave
signals generated from active satellite systems will be affected by the presence of hydrometeors
(Colliander et al 2020). Finally, RFI has a direct impact on L-band SM retrievals (Oliva et al 2012).
The aim of this study is to examine the influence of these variables on the quality of SM data
retrieved from both passive and active satellite systems.

All data were resampled into the Equal-Area Scalable Earth (EASE) grids (36-km X 36-km).
In summary, a total of 100,766 data points and 9 commonly available land cover types were
available in total. Note that we were forced to restrict our analysis to only 9 commonly available
land cover types for three satellite-based SM products due to missing TCA values (i.e., the

response variable) and resulting inadequate coverage of certain land cover types. This resulting

10



200 ina 100,766 X 14 predictor matrix with one categorical variable (i.e., 9 land cover types) for the

201  generation of a particular BHM.

11



202  Table 1. 14 Selected variables for the model development.

Variable Name (unit) Factor Data Source
Diversity (Gini-Simpson) Index (-) Static Calculated from the IGBP land classification data
Irrigation Fraction (-) Static Global Map of Irrigation Areas (GMIA)
Sand Fraction (-) Static STATSGO-FAO soil texture class map
Soil Organic Matter (g/kg) Static International Soil Reference and Information Centre (ISRIC)
Slope (-) Static
Shuttle Radar Topography Mission (SRTM)
Topographic complexity (log(m)) Static
SMAP Vegetation Opacity (Tau) (-)  Dynamic SMAP (MT-DCA)
SMOS-IC Radio Frequency
Dynamic SMOS-IC (Version 2)
Interference (K) (a.m. and p.m.)
Soil Temperature (K) Dynamic
NoahMP4.0.1
Sensible Heat Flux (W/m2) Dynamic
Surface Albedo (-) Dynamic Moderate Resolution Imaging Spectroradiometer (MODIS)
Total Precipitation (kg/m2s) Dynamic  North American Land Data Assimilation System, phase 2 (NLDAS-2)
Modern-Era Retrospective analysis for Research and Applications,
Near Surface Specific Humidity (-)  Dynamic
version 2(MERRA-2)
AT (AT, ST) (a.m. and p.m.) Dynamic ERA5-land

203

12
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204

205  Figure 1. Maps of: (a) the 18-member land cover classification, (b) the irrigation fraction from
206  GMIA, (c) soil organic matter (SOM) from ISRIC, (d) vegetation optical depth (VOD) from SMAP

207 MT-DCA, and (e) radio frequency interference (RFI) RMSE from SMQOS-IC (version 2).
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3 Methods
3.1 Calculating the Error of satellite-based SM Data

To evaluate the uncertainties in satellite-based SM data sets on a global scale, we
employed TCA to estimate the total random error (€) variance of time-varying geophysical data.
Among possible TCA-based error statistics, we selected the fractional mean square error (fMSE)
as it provides straightforward insight on the precision of the data. Specifically, fMSE ranges from
0 to 1, whereas a value of lower than 0.5 indicates that the true SM signal is a larger component
to the data than estimation noise.

The TCA-based error variance of individual satellite-based SM retrievals (agzi) and the

variance of the individual data itself, al-z, are used to calculate fMSE:

MSE % %
f i_a-z_ﬁiza§+a§i_SNR+1

l

Eq.(1)

Where aé is the variance of the true jointly observed SM signal; f MSE; is a normalized

2 2
representation of the signal-to-noise ratio (SNR) (ﬁ;#). After removing the climatology of SM

&i
and under the TCA assumptions of error orthogonality and zero error-cross correlation (Gruber
et al.,, 2016), O'Szi can be calculated from:

0i;j0ik

0f =of — Eq.(2)

ik
Where j and k indicate other individual satellite-based SM retrievals, and ay,, (x € {i,j, k},y €
{i,j, k}, and x # y) are the covariance between two different satellite-based SM retrievals.
Here, we followed the calculation of the ensemble fMSE shown in Kim et al. (2021) using the

most recent version of each SM data source systematically organized into different triplets. In
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composing individual triplets, we emphasized combinations of a passive system, an active system,
and a model-based SM product to maximize the likelihood that each of the three products
contain mutually independent errors. We then calculated the ensemble fMSE of SMAP SM data
from the following triplets: 1) SMAP-ASCAT-model-based SM, 2) SMAP-AMSR2-model-based SM,
and 3) SMAP-ASCAT-AMSR2 - where model-based SM data (0 - 10 cm) was acquired from Global
Land Data Assimilation System Version 2 (hereafter GLDAS) (Rodell et al 2004). Likewise, for the
SMOS-IC ensemble fMSE calculation, the following triplets were used: 1) SMOS-ASCAT-GLDAS, 2)
SMOS-ASCAT-AMSR2, and SMOS-ASCAT-GLDAS. Finally, for the ASCAT ensemble fMSE
calculation, we used five additional triplets: 1) ASCAT-SMAP-GLDAS, 2) ASCAT-SMOS-GLDAS, 3)
ASCAT-AMSR2-GLDAS, 4) ASCAT-AMSR2-SMAP, and 5) ASCAT-AMSR2-SMOS. If the standard
deviation of fMSE of a given product, obtained across the set of triplets defined above, is larger
than 0.1, we discarded those fMSE values and assumed that they are biased due to the neglect
of one or more TCA assumptions. Please refer to Kim et al. (2021) for further details regarding

the calculation of the ensemble fMSE.

3.2. Regression Model and Hierarchical Model Structures

Our data structure has J groups indexed as j = 1, ..., J=9 (i.e., 9 commonly available land
cover types), we have n observations of the response variable yi (fMSE)), i = 1, ..., n with k
predictors in an n x k matrix X. Let X; be the " row of X. Here, we have three commonly used
regression model structures for the standard regression models with a dummy variable (i.e., land
cover types): 1) a complete pooling model, 2) a no-pooling model, and 3) a partial pooling model.

However, each of these approaches has well-known limitations. For example, the complete
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pooling model cannot provide groupwise error estimates and the no-pooling model gives poor
and possibly extreme estimates for groups having a small sample size. Additional details
regarding other regression model types are included in the supplementary material document.

Hierarchical linear modeling (HLM) is a special form of multiple linear regression used to
analyze variances in outcome variables when the predictor variables are obtained from different
groups. HLM uses available information in the data, i.e., the predictor variables, to better predict
the group target or response values - even in small groups. A basic hierarchical model with varying
intercepts and varying slope is given below:

yi = ajip + BigXi + € Eq.(3)

Where y; is fMSE calculated from Eq. (1) (i € {1, ..., N}), X; is the 14 predictors in Table 1, and
;i) and Bjy;) are the parameters for each land cover type (j), and €; is normally distributed with
mean 0 and variance of 62:e ~ V' (0, 62). Please note that, we made the assumption that the
error terms (€;) are independent and identically distributed (i.i.d). Specifically, these errors
represent the discrepancies between our model's predictions and the actual values, and we
assume these discrepancies are random, have a constant variance (¢2), and are not correlated
with each other or with the predictors in our model. The sign of §; is essential for understanding
the relative significance of every predictor in predicting fMSE. A large positive or negative f3;
value for a predictor suggests a stronger association with the fMSE value, while a predictor with
a value closer to zero is less strongly associated. Analyzing the f; allows us to discern the
significant variables that play a crucial role in impacting the accuracy of satellite-based SM data
sets. In this study, HLM offers insights into the association between variables and the precision

of satellite-based SM data across various land cover types. While insightful, HLM with MLE, like

16



272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

classic regression models, does not account for parameter estimate uncertainty. Tools such as
bootstrapping may estimate this uncertainty but are not universally applicable (Wagenmakers et
al., 2008). To bridge this gap, we have employed Bayesian inference. This probabilistic model
allows us to recover the full range of inferential solutions, contrasting with the singular
deterministic estimate of classical regression. Rather than acquiring a single estimate for the
model parameters (i.e., @ and ), we propose that each model's parameters are drawn from a
probability distribution using the Bayesian approach. This stands in contrast to ordinary least-
squares regression, which only minimizes the residual sum of squares.

In this study, HLM offers insights into the association between variables and the precision
of satellite-based SM data across various land cover types. While insightful, HLM with MLE, like
classic regression models, does not account for parameter estimate uncertainty. Tools such as
bootstrapping may estimate this uncertainty but are not universally applicable (Wagenmakers et
al., 2008). To bridge this gap, we have employed Bayesian inference. This probabilistic model
allows us to recover the full range of inferential solutions, contrasting with the singular
deterministic estimate of classical regression. In other words, rather than acquiring a single
estimate for the model parameters (e.g., Bjj;)), we can draw each model's parameters from a
probability distribution using the Bayesian approach which enables us to estimate an unobserved
population of parameters conditioned on the training inputs and outputs.

To sum up, our BHM approach, applied to Eq. (3), presents a solution to the limitations of
standard pooling or non-pooling models associated with the frequentist approach. By using Eq.
(4), we can infer the probability distribution of ; in Eq. (3) from the underlying population of

fMSE and X. With credible intervals, we can then make reliable inferences about the relationship
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between the hydrometeorological variables listed in Table 1 and the accuracy of satellite-based
SM data sets.

In addition, the Box-Cox transformation was applied to the independent variable fMSE,
yielding fMSE® . This transformation reduced the skewness of the distribution, allowing
fMSE(’l) to be better approximated by a normal distribution. The Box-Cox parameter lambda, A,
was estimated by minimizing a sum-of-squares misfit (Fig. S1).

The normal distribution for fMSE® is characterized by location (u) and scale (o)
parameters. The probability density function (PDF) of the univariate normal distribution is as
follows:

fMSE® ~ N(u;, 0%) Eq.(4—1)
Wi = + B Xi Eq.(4—2)
where, o is the standard deviation of the measurement error €;. The group-level random effect
a; and the group-specific coefficients f; are assumed to each follow their own multivariate
normal distribution. That is, the ; for all groups form a multivariate normal distribution with a
certain mean vector and covariance matrix, and similarly the f; for all groups form another

multivariate normal distribution (Eq. (5)) with its own mean vector and covariance matrix.

exp{~5 (B~ 1) 2 (B — 1))
JGorE

P(Blug X) = Eq.(5)

where pg is the vector of the means; and X is the covariance matrix. In this manner, we model

not just the variances of @; and f8;, but also the covariances among the a;'s and among the f;'s,
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respectively. Furthermore, although both a; and f;, are modeled as multivariate normal
distributions, our primary interest lies in the analysis of ;. Therefore, Eq. (5) explicitly
incorporates the 8 term to represent this focus in our study.

Furthermore, because the scale parameter o in Eq. (4-1) must be a positive value, o is

assumed to be a Half-Cauchy distribution with infinite scale parameters (¢ ). The distribution of

the Half-Cauchy log-likelihood is as follows:

Please also note that, in our model, Eq. (4) defines the likelihood for each observation,
with the mean y; being modeled as a linear function of the predictors (X;), with coefficients that
vary by group (a; and ;) (Eq. (3)). Specifically, B is modeled by assuming a priori that they have
a zero mean matrix and their covariance matrices are provided by identification of the matrix
using the multivariate normal distribution function. This process provides a flexible family of prior
distributions for the matrix logarithm of the covariance structure (Sinay and Hsu, 2014). In
specific, this prior structure results in shrinkage of the f; coefficients towards zero and each
other, depending on the covariance structure, while also assisting in the regularization process
and mitigating overfitting. Utilizing the No U-Turn Sampler (NUTS) (Hoffman and Gelman 2014)
method for posterior estimation, these priors could help enhance the mixing of chains (e.g.,

making the chains less likely to get stuck in one region) and reduce autocorrelation (e.g., ensuring
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the chain moves more quickly and independently around the parameter space), leading to
efficient sampling and accurate posterior estimation.

Based on the likelihood and prior distributions above, the joint posterior probability of
the model parameter can be estimated using the Bayes theorem, which provides a principled
way to calculate a conditional probability. Therefore, we then obtained the posterior distribution

of the parameters p(B | fMSE™), X) from Bayes' theorem as shown below:

p(fMSED | B,X)P(B)  p(fMSED | B,X)P(B)
p(fMSED | X)  Jp(fMSE® | B,X)P(B)dB

p(B| fMSED,X) = (7

The complexity of the analytical form of P(fMSE(’D | X), which often does not belong to known
distribution families nor conjugates with P(fMSE(’U | B,X) (Chiu 1996), requires
approximating the integrand through sampling to calculate the integral over marginal
distributions ( fMSEW | X) = [ P(fMSE™ | B, X)P(B) dB. This is accomplished through the
Hamiltonian Monte Carlo (HMC) sampling approach (Hoffman and Gelman 2014) and variational
procedures for initial point calculations (Blei et al 2017). In this study, the 792 parameters and
hyperparameters of the non-centered hierarchical model were estimated using the NUTS
sampler, with initial sampling points determined by the automatic differentiation variational
inference method (ADVI) (Kucukelbir et al 2016). Differing from the frequentist approach, NUTS,
a type of HMC sampling algorithm, generates the posterior distribution of unknown model
parameters based on observed data and prior distribution in Bayesian inference, thereby

producing a posterior distribution for parameters, such as 8 (Eq. (5)). This distribution enables
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the estimation of summary statistics, inferences, and predictions, proving the utility of Bayesian
machine learning in providing robust predictions, especially where data is limited. Our model's
validation was facilitated through posterior predictive checks (PPCs), which employ the posterior
distribution of model parameters to generate a predictive distribution for new observations,
accounting for model parameter uncertainty and assessing the model's fit with the observed data.

In summary, we transformed the fMSE data to a normal distribution through a Box-Cox
transformation and confirmed the fit using the SSE method against 80 distribution candidates.
We then built a hierarchical model where the mean is a function of predictors with group-level
effects and group-specific coefficients, both following a multivariate normal distribution. We
assumed a prior structure for the § coefficients based on a zero mean matrix and a covariance
matrix identified from the multivariate normal distribution, while the scale parameter follows a
Half-Cauchy distribution. Finally, the joint posterior probability was estimated using the Bayes'
theorem and the NUTS sampler, with initial points obtained from the ADVI method. To estimate
the posterior distribution for the S coefficients, we use the NUTS sampler, which generates a
series of smart proposals through the parameter space. It starts at initial points defined by the
ADVI method and proceeds with a trajectory until it appears to make a U-turn, ensuring efficient
exploration. The iterative process of proposal and acceptance/rejection following the
Metropolis-Hastings criterion results in a sequence of  coefficients samples representing the

desired posterior distribution.

4. Results and discussion

4.1. Bayesian inference model evaluations
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Fig. 2 shows the posterior predictive fMSE values (i.e., calculated from (]WA + 1)%)
for each satellite-based SM product for a.m. (solid red lines), p.m. (solid blue lines), and combined
(solid green lines) overpasses. We have 2,000 HLMs for each product, obtained from 2,000
converged Bayesian HLMs using NUTS. Consequently, 2,000 PDF lines are used for the posterior
predictive analysis of fMSE values calculated from 2,000 individual HLM for the SMAP (a.m., p.m.,
and a.m.+p.m.), SMOS (a.m., p.m., and a.m.+p.m.), and ASCAT (a.m., p.m., and a.m.+p.m.) cases.

The PDF of the predicted fMSE follow the observed fMSE data (dashed line for each
product) remarkably well, indicating that the BHM can reasonably describe fMSE values over
different land cover conditions based on the 14 chosen predictors. Please note that the Box-Cox
transformed observed/predicted fMSE values were inversed to the original scale fMSE to
illustrate these results. It is worth noting that the precision of SM data is improved (i.e., lower
fMSE) if the a.m. and p.m. products are combined; however, at the same time, the predictive
precision of fMSE from the Bayesian HLM can be reduced for the combined (a.m.+p.m.) SMAP
and SMOS SM cases. This suggests that making an inference from the model parameters is harder
with a.m.+p.m. data (i.e., understanding the impact of predictors on the precision of SM data is
harder) because when the two data sets from passive microwave systems with different error
characteristics are combined, the impact of error sources on SM precision can be blurred. For
example, the model has trouble finding the relationship between the error characteristics of
a.m.+p.m. SM data with time-averaged surface temperature.

On the other hand, the a.m.+p.m. case is a better fit for the active system (green lines in
Fig. 2(c)). This could be because the ASCAT SM retrieval algorithm does not require land

temperature inputs; therefore, its error estimation can be less sensitive to diurnal differences in
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thermal conditions. Specifically, the 14 predictors that are being used might not be strong enough
to describe the variability of the ASCAT a.m. or p.m. SM error. For example, it is hypothesized
that the omission of predictors related to subsurface scattering, which is known to be one of the
largest sources of error for ASCAT, can be effectively counterbalanced by averaging and
combining a.m. and p.m. soil moisture (SM) data from three Metop satellites. This approach is
postulated to mitigate the impact of subsurface scattering conditions on ASCAT SM, thereby
significantly enhancing the model's capability to accurately describe the SM retrieval error using
the current 14 predictors.

Additionally, ASCAT retrievals likely capture shallower, and thus higher-frequency, soil
moisture dynamics than ~5-cm estimates from SMAP/SMOS and 10-cm estimates obtained from
GLDAS (Wagner et al 2013, Wigneron et al 2017). Since TCA tends to punish outlier products, TCA
results calculated for the triplets ASCAT/SMAP/GLDAS or ASCAT/SMOS/GDLAS triplets may
therefore penalize ASCAT SM retrievals relative to SMAP and SMOS. Consequently, fMSE,
calculated from the average of multiple ASCAT SM data per day (ASCAT H119/120 SM data
contains SM retrievals obtained from the three Metop satellites), may lower a.m.+p.m. SM's
fMSE versus the sole use of a.m. or p.m. data - since averaging ASCAT SM data reduces noise and
smooths out high-frequency variability. Using these Bayesian HLMs, the association between
each predictor and the precision of the SM data (i.e., fMSE) will be explored next, using a

posterior marginal distribution of each predictor's parameter across different land cover types.
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Figure 2. The posterior predictive of BHM-predicted fMSE using the NUTS method. Each PDF graph, (a), (b), and (c) shows the PDF for
the posterior predictive fMSE values (2,000 solid lines) from the Bayesian HLM produced by the NUTS method for the SMAP, SMOS,
and ASCAT products (grouped by a.m., p.m., and a.m.+p.m.). The observed fMSE probability PDF is indicated by the dashed lines.
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4.2. The Usefulness of the Bayesian Hierarchical Modeling Approach

Our comparison results of BHM and frequentist approaches (i.e., the complete pooling
model (CPM) and no-pooling model (NPM)) in Figs. S2 — 17, demonstrate that BHM can provide
a more comprehensive probability distribution of B values than CPM or NPM and it offers a
clearer picture of the associated uncertainty. This is because HLM offers several advantages over
NPM, including enhancing parameter estimation through the judicious consideration of data
from each land cover type and other land cover types. This leads to more precise parameter
estimates, particularly in circumstances characterized by small sample sizes or noisy data. Finally,
BHM also permits the incorporation of prior knowledge and assumptions about the data, which
augments the estimation of B values and mitigates uncertainty. Since BHM can provide a
complete distribution of 3, offering a comprehensive understanding of the uncertainty of 5, we
use BHM for the remainder of the study to analyze the impact of 14 variables on fMSE.

Fig. 3 reveals a distinct difference in the association of VOD with SM data quality between
a.m. and p.m. retrievals. As illustrated in Figs. 3(a), (b), (c), and (d), the association between
vegetation matter and the quality of SMAP and SMOS SM retrievals varies depending on the
overpass time of the satellites. One possible explanation for this is that the SM retrieval
algorithms from these passive systems require an assumption of thermal equilibrium assumption,
with 6 a.m. being an ideal time to achieve this status (Entekhabi et al. 2010). There is a higher
likelihood of violating this assumption at 6 p.m. due to the potential temperature gradients
resulting from vegetation which increase the impact of VOD on SM data quality during the late
afternoon overpass time. However, the impact of VOD for the active system is different from that

of the passive systems. The ASCAT SM retrieval algorithm (TU Wien algorithm) does not require

25



445

446

447

448

449

450

451

452

453

454

455

456

land temperature inputs; rather, SM retrievals are based on the relative backscatter values to
historically maximum and minimum values. Our results, as seen in Figs. 3(e) and (f), indicate that
during the a.m. there is a significant positive association between vegetation dynamics and fMSE
in the TU Wien SM retrieval algorithm (except ENF and CNV). However, this positive association
is substantially weaker during the p.m. overpass time and is only evident for WS, Gr, OS, and EBF
land cover types. This suggests that during p.m. overpasses, the effect of vegetation on fMSE is
more challenging to determine, potentially due to greater day-to-day fluctuations in vegetation
water content at 9 p.m. compared to 9 a.m.

In addition, over cropland, the relationship with uncertainties of satellite-based SM data
is not solely determined by VOD and is linked to other environmental factors (please refer to our
discussion pertaining to Figs. 4 and 5 below). Additional results that are analogous to Fig. 3, but

for different predictor variables and overpass times, are summarized in Figs. S2 — S14
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Figure 3. Parameter (f3) estimations for the VOD variable from the complete pooling model (CPM), no-pooling model (NPM), and
Bayesian hierarchical model (BHM) for (a, b, c) SMAP, (d, e, f) SMOS-IC, and (g, h, i) ASCAT for different overpass times.
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4.3. Association of different error sources with the quality of satellite-based SM data

Here, we examine the most interesting parameter sensitivity cases illustrated by the BHM.
In particular, we use 14 selected predictors to investigate the association of human activities (i.e.,
irrigation activities), vegetation mass (i.e., VOD), and SOM with the quality of SM retrieval data,
as these factors are generally considered to be major impediments to the retrieval of SM using
microwave satellite systems. (The results for the other nine predictors are included in the SI
document.) Even though we only included 14 predictor variables, the current framework can be
applied to analyze any other set of environmental factors. However, it should be stressed that, if
the posterior predictive (solid lines in Fig. 2) from different models do not correspond with the
observed fMSE (dashed solid lines in Fig. 2), the statistical inference from the Bayesian HLM will
be unreliable.

First, we evaluate the uncertainties of predictor variables by examining the credible
intervals of parameters to understand their associations with SM data quality across a range of
satellite products. Specifically, Fig. 4 shows a correlation between SM retrievals for each satellite
system and the amount of vegetation mass over different land cover types. Different PDF lines
indicate different land cover types. B is the location parameter in Eq. (7) which shows the
distribution of u in Eq. (4). To determine the credibility of a predictor related to £, the
distribution of  should not cross zero or include zero within the £95% density interval. In
addition, positive f values suggest that a factor tends to increase fMSE (i.e., degrades SM quality).
A wider distribution indicates greater uncertainty regarding a variable's impact on fMSE.

Fig. 4 illustrates a strong association between vegetation and SM retrieval errors for most

land cover types. This correlation is seen as naturally emitted signals observed from passive
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satellites, or the backscattered energy generated from active sensors, are very sensitive to
vegetation. This relationship is further supported by the B distributions that are relatively narrow
and do not cross zero. Nonetheless, the dispersed distribution (i.e., large o) for barren or sparsely
vegetated (BSV) land cover types suggests a weaker association between VOD and error
characteristics in these areas, compared to areas with a narrow B distribution. This result also
implies that VOD may not play a major role in describing error characteristics for these land cover
types, because VOD does not vary significantly either spatially or temporally within these land
cover types. This finding underlines the need for careful consideration when building error
models primarily dependent on vegetation-related variables, especially for certain land cover
types. For land cover types where VOD does not appear strongly associated (i.e., where the
posterior B distribution is wide and includes zero), fMSE might be better characterized by other
variables. Please also refer to Fig. S15 for an examination of the associations between other

environmental factors and satellite-based SM retrieval errors over arid environmental conditions.
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Figure 4. Posterior marginal distributions for the  parameter assigned vegetation optical depth

(VOD) over 9 land cover types. This figure illustrates the relationship between the amount of

vegetation matter and error magnitudes in fMSE for the a.m. (left) and p.m. (right) overpasses of
(a, b) SMAP, (c, d) SMOS, and (e, f) ASCAT SM data across 9 different land cover types. If the
distribution of the [ parameter is on the positive (negative) side, it indicates that higher
vegetation matter is associated with higher (lower) fMSE over the corresponding land cover type.
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Fig. 5 displays results analogous to Fig. 4, but it illustrates the associations between all 14
environmental factors and the quality of satellite-based SM data over evergreen broadleaf forest
(hereafter EB forest) and open shrublands land cover types. Here, we only include the a.m. data,
but all other results are also included in the supplementary material document (Figs. S15 to $23).
Over EB forest and open shrublands areas, temperature and VOD emerge as two primary factors
associated with increased SM data errors for both passive and active microwave systems (a.m.)
(see the neon fluorescent blue- and light -green-colored PDF lines, respectively, in Fig. 5).

In addition, for the passive systems, BHM results point to a correlation between SOM and
the diminished quality of SM retrievals. This could stem from the possibility that high SOM can
decrease the soil’s respective dielectric constant, potentially resulting in greater porosity than
anticipated in a SM retrieval algorithm. Current passive microwave SM products (including both
SMOS and SMAP) use dielectric constant models based on soil clay content for inversion without
considering SOM (Wigneron et al 2017). Our result is aligned with previous studies' findings
(Zhang et al 2019, Li et al 2022) that suggest a higher fraction of SOM in soil can introduce time-
varying SM errors into current passive-microwave SM retrievals algorithms. Li et al. (2022)
showed that the higher the fraction of SOM in soil, the lower the performance of SM retrievals
from SMOS SM. This degradation was evident in increased bias, higher RMSD (ubRMSD), and
decreased correlation coefficient (R) compared to in-situ SM data. A plausible explanation for
this degradation is that SOM increases the number of micropores and macropores in the soil by
adhering soil particles together, which, in turn, affects the soil properties, including structure.
Therefore, SOM affects the soil dielectric properties, while current SMAP and SMOS-IC SM

retrieval algorithms use a clay-based dielectric constant model that does not consider the
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presence of SOM. Similarly, Zhang et al. (2019) showed that, generally, the more the organic
carbon in soils, the lower the performance metrics of SMAP SM data (i.e., higher bias and RMSE,
and lower correlation coefficient). However, it should be noted that higher bias and time-varying
error could be due to the effect of soil freezing and thawing process, since in-situ SM sites with
higher SOM tend to be located at higher elevations (Figs. 1(a) and 1(c)). For the active ASCAT
system, it appears that uncertainties arising from temperature and VOD are two major factors
correlated with an increase in error in SM retrieval data over these land cover types.

It is also intriguing to note the strong similarities between the two passive systems (SMOS
and SMAP), as opposed to the active system (ASCAT), in terms of associations with environmental
factors. Despite the differences in retrieval systems and algorithms for SMQOS and SMAP, the
degree and pattern of changes in errors in passive SM retrievals display considerable similarities
across various land cover types (see Fig. 5). This could potentially be attributed to SMAP and
SMOS utilizing similar frequencies and overpass times. This observation underscores the value of
integrating SM data from diverse systems (e.g., merging across active and passive systems) when

attempting to filter random noise.
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Figure 5. The posterior marginal distribution of § parameters for evergreen broadleaf (EB) forest
and open shrublands areas for all 14 predictive variables. This figure describes the associations
between each of these 14 variables and the errors (i.e., fMSE) in (a, b) SMAP (a.m.), (c, d) SMOS
(a.m.), and (e, f) ASCAT (a.m.) SM data over the EB forest and open shrublands land cover types.
If the distribution of the 8 parameter falls on the positive side, it indicates that an increase in the
corresponding variable is associated with a higher fMSE over EB Forest or Open Shrublands.
Conversely, if the distribution is on the negative side, this suggests that an increase in the
corresponding variable is associated with a lower fMSE over EB Forest or Open Shrublands.
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Upon examining Figs. 5 and Figs. S15-S23, we can derive insights concerning the
association between the intensity of irrigation (represented by red-colored PDF lines) and the
quality of SM retrievals for each satellite system. When compared to other environmental factors,
the association between irrigation amounts and SM retrieval data quality is relatively slight (i.e.,
all distributions cross zero with a dispersed distribution shape) across all satellite systems.
Furthermore, intensive irrigation does not necessarily correlate with an increase in the
uncertainty of SM retrievals from space. This result supports previous findings that satellite-
based SM data can play a significant role in detecting the irrigation signals and can be used to
improve quality of LSM simulations through the data assimilation (Kim et a/ 2020b, Kwon et a/
2022, Lawston et al 2017, Lei et al 2020). In fact, as shown in Fig. 6, there are many other factors,
other than irrigation fraction, that contribute significantly to increasing errors in SM (a.m.) data
over cropland/NVM areas. Furthermore, it was found that over cropland and NVM, observations
with less difference between AT and ST (|AT (ST, AT)| were associated with lower fMSE for the
SMAP/SMOS SM retrieval systems (yellow-colored PDF lines). This result might be related to the
assumption of the passive SM retrieval algorithms which require the thermal equilibrium status
(Entekhabi et al 2010). However, once again, it is worth noting that the lower (JAT (ST, AT)|)
values do not indicate better quality of SM data across all land cover types. Finally, RFl is another
factor increasing errors in passive SM retrieval systems because many croplands are close to RFI
sources over East Asia (Figs. 1(b) and (e)). As shown in Fig. 6, it is the combined effect of these
multiple factors, rather than one specific error source in isolation, that causes difficulty in

retrieving SM over potentially irrigated areas (i.e., cropland and NVM) with passive SM retrieval.
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(a) Impact of Different Variables over Cropland (SMAP a.m.)

(c) Impact of Different Variables over Cropland (SMOS a.m.)
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Figure 6. The posterior marginal distribution of f parameters for croplands and natural
vegetation mosaic (NVM) areas for 14 variables. This figure describes the associations between
each of these 14 variables and the error (i.e., fMSE) in (a, b) SMAP, (c, d) SMOS, and (e, f) ASCAT
SM data over croplands and croplands/natural vegetation mosaic (NVM). If the distribution of
the § parameter falls on the positive side, it indicates that an increase in the corresponding
variable is associated with a higher fMSE over cropland or NVM. Conversely, if the distribution is
on the negative side, this suggests that an increase in the corresponding variable is associated

with a lower fMSE over cropland or NVM.
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Here, we only included results for 9 (originally 17 excluding water) land cover types. The
main reason for omitting other land cover types was due to not obtaining sufficient fMSE values
from the current TCA method. Land-cover types we omitted included polar or cold regions and
urban areas where the SM dynamics are relatively meaningless due to snow cover, frozen soil
conditions (because signals can be more vulnerable to water in snow, and the relationship
between the dielectric constant of frozen water to water content is unreliable), and impervious
surface conditions in highly urbanized areas (Wagner 1998).

Finally, despite the apparent ability of the BHM to successfully reproduce ASCAT fMSE
over valid TCA points, it is still unclear whether or not it is explicitly capturing sub-scattering
impacts on ASCAT precision. Further study of this question is required - but will likely require the
availability of new predictor variables for subsurface scattering strength (SCS). Therefore, the
impact of the SCS on ASCAT SM error characteristics will be investigated in a future study once

independent data is available that describes conditions under which SCS is likely.

5. Conclusions

Here, we introduce a novel approach for sensitivity analysis of satellite-based SM error
characteristics using a Bayesian hierarchical modeling (BHM) approach for regression parameters
and hyper-parameters plus a No-U-Turn Sampler (i.e., sampling approach). We then applied the
approach to estimate the credible intervals for 14 selected environmental factors over different
land cover types. In this way, we investigated the error characteristics of the three mostly-widely

used satellite-based SM data for the nighttime, daytime, and combined overpass times, and

36



602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

illustrated the advantages and versatility of the BHM approach versus classical regression
approaches for the error sensitivity analysis of satellite-based SM retrievals.

We focused on analyzing the impact of irrigation amounts, vegetation mass, and soil
organic matter (SOM) on the quality of satellite-based SM data. Results suggest a strong
association between vegetation and the errors in satellite-based SM retrievals; however, it is
important to note that the quality of SM data cannot be inferred solely from single error sources,
as it is also linked to many other factors. By comparing BHM with the classical regression model
with the frequentist approach for sensitivity analysis, we demonstrated how CPM or NPM with
the frequentist approach can lead to different/misleading results -- for instance, based on CPM,
one can draw opposing inferences about the impact of vegetation on the quality of the satellite-
based SM data. In addition, we also found an association between SOM and challenges in
retrieving SM information from passive microwave sensors. Moreover, we observed that the
combined presence of signal attenuations from vegetation and RFI seems to be correlated with
further difficulties in SM information retrieval. Over potentially irrigated areas such as croplands
and natural vegetation mosaic, the degree of irrigation may not be used for inferring the quality
of SM data, as other factors (e.g., thermal equilibrium status, albedo, RFI) control the quality of
SM data over these areas. Although we could only include 14 predictors with the SM variable in
the current analysis, our approach is highly general, and many other predictors and time-varying
geophysical variables can be added by individual researchers according to their own research
needs.

Lastly, it is essential to adopt a streamlined approach that employs fewer but more

effective predictor variables and improved land cover maps, along with simplified statistical
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models, to address overfitting and incorporate critical aspects such as subsurface scattering
parameters that were previously omitted. Additionally, it is important to acknowledge that the
triplets used to calculate fMSE may be inherently more favorable to SMAP and SMOS due to the
particular combinations of sensors and datasets employed, which could have influenced the
outcome. By refining the regression models to encompass these vital components and critically
examining the selection of triplets, the robustness and reliability of the results can be enhanced.
This refined approach is expected to foster a deeper understanding of the processes in question
and lead to more accurate interpretations of the interactions between microwave signals and
various factors, including subsurface properties. Including subsurface scattering parameters is

particularly crucial for establishing a more accurate error prediction model.
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