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Abstract 19 

Estimating accurate surface soil moisture (SM) dynamics from space, and knowing the error 20 

characteristics of these estimates, is of great importance for the application of satellite-based SM 21 

data throughout many Earth Science/Environmental Engineering disciplines. Here, we introduce 22 

the Bayesian inference approach to analyze the error characteristics of widely used passive and 23 

active microwave satellite-derived SM data sets, at different overpass times, acquired from the 24 

Soil Moisture Active Passive (SMAP), Soil Moisture and Ocean Salinity (SMOS), and Advanced 25 

Scatterometer (ASCAT) missions. In particular, we apply Bayesian hierarchical modeling (BHM) 26 

and triple collocation analysis (TCA) to investigate the relative importance of different 27 

environmental factors and human activities on the accuracy of satellite-based data. 28 

To start, we compare the BHM-based sensitivity analysis method to the classic multiple 29 

regression models using a frequentist approach, which includes complete pooling and no-pooling 30 

models that have been widely used for sensitivity analysis in the field of remote sensing and 31 

demonstrate the BHM's adaptability and great potential for providing insight into sensitivity 32 

analysis that can be used by various remote sensing research communities. 33 

Next, we conduct an uncertainty analysis on BHM's model parameters using a full range 34 

of uncertainties to assess the association of various environmental factors with the accuracy of 35 

satellite-derived SM data. We focus on investigating human-induced error sources such as 36 

disturbed surface soil layers caused by irrigation activities on microwave satellite systems, 37 

naturally introduced error sources such as vegetation and soil organic matter, and errors related 38 

to the disregard of SM retrieval algorithmic assumptions - such as the thermal equilibrium passive 39 

microwave systems. Based on the BHM-based sensitivity analysis, we find that assessments of 40 
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SM data quality with single variable should be avoided, since numerous other factors 41 

simultaneously influence their quality. As such, this provides a useful framework for applying 42 

Bayesian theory to the investigation of the error characteristics of satellite-based SM data and 43 

other time-varying geophysical variables. 44 

 45 

Keywords: 46 

microwave satellite systems, remotely sensed soil moisture, Bayesian hierarchical model, triple 47 

collocation analysis, uncertainty analysis  48 
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1. Introduction 49 

Since surface soil moisture (SM) controls the flow of water and energy and governs 50 

interactions between the land surface and atmosphere, obtaining accurate surface-level SM 51 

information is critical for understanding many Earth system processes (Hirschi et al 2014, 52 

Seneviratne et al 2006). Likewise, understanding the accuracy of SM data is essential for applying 53 

SM data to numerous research fields, such as predicting hydrologic extremes (e.g., droughts, 54 

floods, wildfires, and dust outbreaks), estimating water resources, and improving land surface 55 

models (LSMs) (Brocca et al 2019, Crow et al 2022, Reichle 2008). 56 

Among the methods used to estimate surface SM - including, but not limited to, 57 

gravimetric sampling (Reynolds 1970), hand-held/in-situ electromagnetic sensors (Kim et al 58 

2020a), and cosmic-ray neutron probes (Nguyen et al 2017) - microwave satellite systems are 59 

generally considered to be the most practical for obtaining temporal and spatial continuous SM 60 

data at large spatial scales (Cho et al 2017, Entekhabi et al 2010, Jackson et al 1996, Wagner et 61 

al 2007, Wigneron et al 2017, Kim and Lakshmi 2018). Such systems include passive microwave 62 

instruments such as the L-band radiometer on board the Soil Moisture Active Passive (SMAP) 63 

(Entekhabi et al 2010), the Microwave Imaging Radiometer with Aperture Synthesis (MIRAS) on 64 

board the Soil Moisture and Ocean Salinity (SMOS) (Kerr et al 2010), and the active microwave 65 

sensor Advanced Scatterometer (ASCAT) on board the MetOp-A (de-orbited in November 2021 66 

after 15 years of service), MetOp-B, and MetOp-C satellites (Wagner et al 2013). 67 

However, despite researchers' best efforts to obtain reliable SM information from 68 

satellite systems, we still encounter significant environmental/human-induced factors that 69 

decrease the quality of SM retrievals. For example, satellite-based SM data are vulnerable to 70 
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errors from sources such as dense vegetation canopy (Calvet et al 2011, Owe et al 2001), arid 71 

climatic conditions (Wagner et al 2022), radio frequency interference (RFI) (de Nijs et al 2015, 72 

Misra and Ruf 2012, Oliva et al 2012), soil properties which have been disturbed by irrigation 73 

activities (He et al 2021, Lawston et al 2017), and high amounts of soil organic matter (SOM) 74 

(Wigneron et al 2017). Although many previous studies have identified error sources that 75 

negatively impact SM data quality, there has been little consideration regarding the relative 76 

importance of these error sources, including human-created and environmental factors, in 77 

inferring the overall quality of SM data. Ideally, if we can identify robust relationships between 78 

the error variance of satellite-based SM and a given environmental condition, we can also use 79 

SM data more effectively. 80 

Errors in satellite SM data are dependent upon the exact retrieval algorithm used and/or 81 

the satellite systems themselves. Therefore, knowing the relative accuracy of each SM data 82 

product is essential for making the best use of satellite-based SM retrievals – particularly in the 83 

common case where SM information is integrated from multiple sources.  84 

Here, we seek to develop improved regression models to explore the relationship 85 

between various hydrogeological variables and the precision of satellite-based SM products 86 

across different land surface characteristics. To investigate a global-scale individual satellite-87 

based SM retrieval's precision, we employ triple collocation analysis (TCA; see the methodology 88 

section for details). By building a land cover-specific hierarchical model based on a Bayesian 89 

approach, we seek to provide an enhanced description of the relationship between SM retrievals 90 

errors, as described by TCA and key environmental variables. 91 
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Traditional approaches to understanding relationships between independent and 92 

dependent variables often involve creating multiple linear regression models. These models, 93 

while easy to interpret, may not always produce reliable results due to factors such as inadequate 94 

data points for specific land surface types. Additionally, frequently used model parameter 95 

estimation methods like maximum likelihood estimation (MLE) come with limitations. For 96 

example, they assume fixed, unknown true parameter values and may fail to account for prior 97 

parameter information or fully capture uncertainty.  98 

Given these challenges, there is a need for more flexible and robust modeling methods. 99 

Bayesian hierarchical modeling (BHM) can serve as such an approach (Wagenmakers, et al. 2008). 100 

It allows for the integration of prior knowledge about parameters, more precisely quantifies 101 

uncertainty, and adapts well to different data structures, making it particularly beneficial for 102 

datasets with naturally clustered observational units, such as different land cover types. The 103 

present research uses BHM to analyze error in satellite SM data and assess the relative 104 

importance of environmental factors on SM data quality, taking into account inherent 105 

uncertainties. In this study, by using a Bayesian approach, we aim to achieve more rigorous and 106 

reliable scientific inferences. This study distinguishes itself from current regression model 107 

approaches, which frequently result in overfitting or offer only a single fixed parameter for each 108 

environmental factor that influences SM data quality. 109 

 110 

2. Data sets 111 

Here, we focus on evaluating the error characteristics of three satellite-based SM data 112 

sets (using the most recent version of each data; last checked date October 2022): the dual-113 
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channel algorithm (DCA) based SMAP L3 Version 8 SM product (O'Neill et al. 2021); the INRA-114 

CESBIO (IC) algorithm version 2 based SMOS SM; and the ASCAT SM product based on the TU 115 

Wien algorithm (Wagner et al 2013). Please note that when investigating the baseline quality of 116 

each SM product, we included all data without consideration of their data-quality flags. However, 117 

we did mask areas where the RFI flag values for the SMOS-IC product were larger than 5 K (please 118 

note that the criteria for the RFI flag may vary in future versions of the SMOS-IC algorithm). In 119 

addition, we investigated the error characteristics of different overpass times for each product: 120 

ascending, descending, and the combination of both. 121 

To build the BHM, we used the fractional mean square error (fMSE) metric as the models' 122 

response variable (i.e., dependent or target variable) calculated from TCA (please refer to the 123 

methodology section below). The predictor variables (i.e., independent or feature variables) 124 

came from various sources. To start, we used 21 daily time series of hydrometeorological and 125 

radiation variables from the North American Land Data Assimilation System, version 2 (NLDAS-2) 126 

(Xia et al 2012) and the Modern-Era Retrospective analysis for Research and Applications, version 127 

2 (MERRA-2) (Gelaro et al 2017): time averaged, minimum, and maximum values of near-surface 128 

wind speed (m/s), average rainfall rate (kg/m2s), total precipitation rate (kg/m2s), near-surface 129 

air temperature (K), near-surface specific humidity (-), surface-incident shortwave radiation 130 

(W/m2), and surface-incident longwave radiation (W/m2). In addition, the daily difference 131 

between 2-m air temperature (AT) and soil temperature (ST) (surface level 1) (|Δ𝑇(𝑆𝑇, 𝐴𝑇)|) (6 132 

a.m. and 6 p.m.) was calculated from ERA5-Land global reanalysis data (Muñoz-Sabater et al 2021) 133 

from 2015 to 2021, and the time averaged, minimum, and maximum values of (|Δ𝑇(𝑆𝑇, 𝐴𝑇)|) 134 

were computed. Please note that for the North American domain, we utilized NLDAS-2, while for 135 
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other regions, we used MERRA-2. This approach allowed us to ensure the highest quality data for 136 

both areas. 137 

Second, we simulated 24 daily hydrological variables using the Noah-138 

Multiparameterization LSM version 4.0.1 (Niu et al 2011): time averaged, minimum, and 139 

maximum values of the latent heat flux (W/m2), sensible heat flux (W/m2), total 140 

evapotranspiration (kg/m2s), average surface temperature (K), surface radiative temperature (K), 141 

soil temperature (K); LAI (-), and greenness (-). All the data sets were processed using the Land 142 

Surface data Toolkit (LDT) (Arsenault et al 2018) and the Land Information System (LIS) (Kumar 143 

et al 2006). The LDT and LIS are open-source tools and software libraries developed and 144 

maintained by NASA for managing and analyzing remotely sensed and land surface data. They 145 

are widely used in the field of Earth science, offering a comprehensive solution for global-scale 146 

data analysis. The user guide and tutorials for this software are publicly available on a GitHub 147 

page, which is noted in the Acknowledgements section. We intentionally omitted ERA5-Land and 148 

SMAP L4 SM data products from our analysis to maximize the independence of our predictor 149 

variables relative to response variables - note that both ERA5-land and SMAP L4 integrate some 150 

form of satellite-based SM information. Instead, we opted to use an open loop simulation of the 151 

Noah-MP land surface model (Noah-MP4.0.1) lacking any data assimilation.  152 

Third, we considered seven additional static variables: 1) topographic complexity (i.e., 153 

proxy for surface roughness) by taking the logarithm of the digital elevation model (DEM) data 154 

obtained from the Shuttle Radar Topography Mission (SRTM), as described by Kim et al. (2015); 155 

2) the diversity index (or Gini-Simpson index) (-) using the International Geosphere–Biosphere 156 

Programme (IGBP) from the National Centers for Environmental Prediction (NCEP) land 157 
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classification map (17 IGBP data and three tundra landcover classes) (Fig. 1(a)); 3) the irrigation 158 

fraction (%) from the Global Map of Irrigation Areas (GMIA) (Siebert et al., 2005; Fig. 1(b)); 4) 159 

SOM from the International Soil Reference and Information Centre (ISRIC) (Fig. 1(c)); 5) 160 

vegetation opacity (-) (or Tau) based on the SMAP Multi-Temporal Dual Channel Algorithm (MT-161 

DCA) (Konings et al 2017) (Fig. 1(d)); 6) the sand fraction (%) from the STATSGO-FAO soil texture 162 

class map; 7) the slope from the SRTM DEM (%); 8) the average surface albedo based on Wang 163 

et al.'s (2004) method, which uses data from the Moderate Resolution Imaging 164 

Spectroradiometer (MODIS). In addition, the daily time averaged, minimum, and maximum 165 

values of the brightness temperature (Tb)-RFI flag (K) from SMOS-IC data (a.m. and p.m.) (Fig. 166 

1(e)) were collected. The RFI flag is represented by the Tb-RMSE in Kelvin (K), which is the root 167 

mean square error (RMSE) value between the L-band Microwave Emission of the Biosphere (L-168 

MEB) model Tb and the measured Tb data. Wigneron et al. (2021) demonstrated that the TB-169 

RMSE is a simple and effective indicator of the actual RFI impact. In total, 67 predictors (Table S1) 170 

were initially considered as predictor variables, and all variables were normalized using their 171 

mean and standard deviation values. 172 

Multicollinearity between predictor variables can result in less reliable statistical 173 

inferences. Therefore, since several of the independent variables described above are likely to 174 

be mutually correlated, we conducted a multicollinearity test before continuing. This test was 175 

based on applying a variance inflation factor (VIF). We selected the 14 predictors whose VIF was 176 

below 12 (Table 1). However, we included soil temperature and precipitation variables even 177 

though their VIF were greater than 12, as they were the two most important hydrometeorological 178 
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variables of interest (note that high VIF for these two variables was not unexpected since some 179 

of our predictors were calculated from LSM).  180 

The variables listed in Table 1 have the potential to directly and/or indirectly impact the 181 

quality of SM data retrieved from both passive and active systems. For example, topographic 182 

complexity can serve as a proxy for surface roughness, which is a critical factor in retrieving SM 183 

data from the tau-omega model (Li et al 2020). Additionally, high sand fractions can impede the 184 

retrieval of SM by both passive and active satellite systems due to the subsurface scattering of 185 

microwave signals (Kim et al 2018). Furthermore, algorithms that assume a static state and a 186 

constant vertical SM distribution for L-band microwave radiometer-based SM systems can be 187 

adversely affected during and immediately after precipitation events due to the transient 188 

movement of water in the shallow subsurface. Additionally, during periods of heavy rainfall, both 189 

naturally emitted microwave signals observed by passive microwave sensors and microwave 190 

signals generated from active satellite systems will be affected by the presence of hydrometeors 191 

(Colliander et al 2020). Finally, RFI has a direct impact on L-band SM retrievals (Oliva et al 2012). 192 

The aim of this study is to examine the influence of these variables on the quality of SM data 193 

retrieved from both passive and active satellite systems. 194 

All data were resampled into the Equal-Area Scalable Earth (EASE) grids (36-km × 36-km). 195 

In summary, a total of 100,766 data points and 9 commonly available land cover types were 196 

available in total. Note that we were forced to restrict our analysis to only 9 commonly available 197 

land cover types for three satellite-based SM products due to missing TCA values (i.e., the 198 

response variable) and resulting inadequate coverage of certain land cover types. This resulting 199 
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in a 100,766 × 14 predictor matrix with one categorical variable (i.e., 9 land cover types) for the 200 

generation of a particular BHM.  201 
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Table 1. 14 Selected variables for the model development. 202 

Variable Name (unit) Factor Data Source 

Diversity (Gini-Simpson) Index (-) Static Calculated from the IGBP land classification data 

Irrigation Fraction (-) Static Global Map of Irrigation Areas (GMIA) 

Sand Fraction (-) Static STATSGO-FAO soil texture class map 

Soil Organic Matter (g/kg) Static International Soil Reference and Information Centre (ISRIC) 

Slope (-) Static 

Shuttle Radar Topography Mission (SRTM) 

Topographic complexity (log(m)) Static 

SMAP Vegetation Opacity (Tau) (-) Dynamic SMAP (MT-DCA) 

SMOS-IC Radio Frequency 

Interference (K) (a.m. and p.m.) 
Dynamic SMOS-IC (Version 2) 

Soil Temperature (K) Dynamic 

NoahMP4.0.1 

Sensible Heat Flux (W/m2) Dynamic 

Surface Albedo (-) Dynamic Moderate Resolution Imaging Spectroradiometer (MODIS) 

Total Precipitation (kg/m2s) Dynamic North American Land Data Assimilation System, phase 2 (NLDAS-2) 

Modern-Era Retrospective analysis for Research and Applications, 

version 2(MERRA-2) 
Near Surface Specific Humidity (-) Dynamic 

∆𝑇(𝐴𝑇, 𝑆𝑇) (a.m. and p.m.) Dynamic ERA5-land 

  203 
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 204 

Figure 1. Maps of: (a) the 18-member land cover classification, (b) the irrigation fraction from 205 

GMIA, (c) soil organic matter (SOM) from ISRIC, (d) vegetation optical depth (VOD) from SMAP 206 

MT-DCA, and (e) radio frequency interference (RFI) RMSE from SMOS-IC (version 2). 207 
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3 Methods 208 

3.1 Calculating the Error of satellite-based SM Data 209 

To evaluate the uncertainties in satellite-based SM data sets on a global scale, we 210 

employed TCA to estimate the total random error (ε) variance of time-varying geophysical data. 211 

Among possible TCA-based error statistics, we selected the fractional mean square error (fMSE) 212 

as it provides straightforward insight on the precision of the data. Specifically, fMSE ranges from 213 

0 to 1, whereas a value of lower than 0.5 indicates that the true SM signal is a larger component 214 

to the data than estimation noise.  215 

The TCA-based error variance of individual satellite-based SM retrievals (𝜎𝜀𝑖

2 ) and the 216 

variance of the individual data itself, 𝜎𝑖
2, are used to calculate fMSE: 217 

𝑓𝑀𝑆𝐸𝑖 =
𝜎𝜀𝑖

2

𝜎𝑖
2 =

𝜎𝜀𝑖

2

𝛽𝑖
2𝜎Θ

2 + 𝜎𝜀𝑖
2

=
1

𝑆𝑁𝑅 + 1
   𝐸𝑞. (1) 218 

Where 𝜎Θ
2 is the variance of the true jointly observed SM signal; 𝑓𝑀𝑆𝐸𝑖 is a normalized 219 

representation of the signal-to-noise ratio (SNR) (
𝛽𝑖

2𝜎Θ
2

𝜎𝜀𝑖
2 ). After removing the climatology of SM 220 

and under the TCA assumptions of error orthogonality and zero error-cross correlation (Gruber 221 

et al., 2016), 𝜎𝜀𝑖

2  can be calculated from: 222 

𝜎𝜀𝑖

2 = 𝜎𝑖
2 −

𝜎𝑖𝑗𝜎𝑖𝑘

𝜎𝑗𝑘
   𝐸𝑞. (2) 223 

Where j and k indicate other individual satellite-based SM retrievals, and 𝜎𝑥𝑦 (𝑥 ∈ {𝑖, 𝑗, 𝑘}, 𝑦 ∈224 

{𝑖, 𝑗, 𝑘}, and 𝑥 ≠ 𝑦) are the covariance between two different satellite-based SM retrievals. 225 

Here, we followed the calculation of the ensemble fMSE shown in Kim et al. (2021) using the 226 

most recent version of each SM data source systematically organized into different triplets. In 227 
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composing individual triplets, we emphasized combinations of a passive system, an active system, 228 

and a model-based SM product to maximize the likelihood that each of the three products 229 

contain mutually independent errors. We then calculated the ensemble fMSE of SMAP SM data 230 

from the following triplets: 1) SMAP-ASCAT-model-based SM, 2) SMAP-AMSR2-model-based SM, 231 

and 3) SMAP-ASCAT-AMSR2 - where model-based SM data (0 - 10 cm) was acquired from Global 232 

Land Data Assimilation System Version 2 (hereafter GLDAS) (Rodell et al 2004). Likewise, for the 233 

SMOS-IC ensemble fMSE calculation, the following triplets were used: 1) SMOS-ASCAT-GLDAS, 2) 234 

SMOS-ASCAT-AMSR2, and SMOS-ASCAT-GLDAS. Finally, for the ASCAT ensemble fMSE 235 

calculation, we used five additional triplets: 1) ASCAT-SMAP-GLDAS, 2) ASCAT-SMOS-GLDAS, 3) 236 

ASCAT-AMSR2-GLDAS, 4) ASCAT-AMSR2-SMAP, and 5) ASCAT-AMSR2-SMOS. If the standard 237 

deviation of fMSE of a given product, obtained across the set of triplets defined above, is larger 238 

than 0.1, we discarded those fMSE values and assumed that they are biased due to the neglect 239 

of one or more TCA assumptions. Please refer to Kim et al. (2021) for further details regarding 240 

the calculation of the ensemble fMSE. 241 

 242 

3.2. Regression Model and Hierarchical Model Structures 243 

Our data structure has J groups indexed as j = 1, …, J=9 (i.e., 9 commonly available land 244 

cover types), we have n observations of the response variable yi (fMSEi), i = 1, …, n with k 245 

predictors in an n x k matrix X. Let Xi be the ith row of X. Here, we have three commonly used 246 

regression model structures for the standard regression models with a dummy variable (i.e., land 247 

cover types): 1) a complete pooling model, 2) a no-pooling model, and 3) a partial pooling model. 248 

However, each of these approaches has well-known limitations. For example, the complete 249 
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pooling model cannot provide groupwise error estimates and the no-pooling model gives poor 250 

and possibly extreme estimates for groups having a small sample size. Additional details 251 

regarding other regression model types are included in the supplementary material document. 252 

Hierarchical linear modeling (HLM) is a special form of multiple linear regression used to 253 

analyze variances in outcome variables when the predictor variables are obtained from different 254 

groups. HLM uses available information in the data, i.e., the predictor variables, to better predict 255 

the group target or response values - even in small groups. A basic hierarchical model with varying 256 

intercepts and varying slope is given below: 257 

𝑦𝑖 = 𝛼𝑗[𝑖] + 𝛽𝑗[𝑖]𝑿𝑖 + 𝜖𝑖   𝐸𝑞. (3) 258 

Where 𝑦𝑖  is fMSE calculated from Eq. (1) (𝑖 ∈ {1, … , 𝑁}), 𝑿𝑖  is the 14 predictors in Table 1, and 259 

𝛼𝑗[𝑖] and 𝛽𝑗[𝑖] are the parameters for each land cover type (j), and 𝜖𝑖 is normally distributed with 260 

mean 0 and variance of σϵ
2:𝜖 ∼ 𝒩(0, σϵ

2). Please note that, we made the assumption that the 261 

error terms (ϵ𝑖 ) are independent and identically distributed (i.i.d). Specifically, these errors 262 

represent the discrepancies between our model's predictions and the actual values, and we 263 

assume these discrepancies are random, have a constant variance (𝜎2), and are not correlated 264 

with each other or with the predictors in our model. The sign of 𝛽𝑗 is essential for understanding 265 

the relative significance of every predictor in predicting fMSE. A large positive or negative 𝛽𝑗 266 

value for a predictor suggests a stronger association with the fMSE value, while a predictor with 267 

a value closer to zero is less strongly associated. Analyzing the 𝛽𝑗  allows us to discern the 268 

significant variables that play a crucial role in impacting the accuracy of satellite-based SM data 269 

sets. In this study, HLM offers insights into the association between variables and the precision 270 

of satellite-based SM data across various land cover types. While insightful, HLM with MLE, like 271 
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classic regression models, does not account for parameter estimate uncertainty. Tools such as 272 

bootstrapping may estimate this uncertainty but are not universally applicable (Wagenmakers et 273 

al., 2008). To bridge this gap, we have employed Bayesian inference. This probabilistic model 274 

allows us to recover the full range of inferential solutions, contrasting with the singular 275 

deterministic estimate of classical regression. Rather than acquiring a single estimate for the 276 

model parameters (i.e., 𝛼 and 𝛽), we propose that each model's parameters are drawn from a 277 

probability distribution using the Bayesian approach. This stands in contrast to ordinary least-278 

squares regression, which only minimizes the residual sum of squares. 279 

In this study, HLM offers insights into the association between variables and the precision 280 

of satellite-based SM data across various land cover types. While insightful, HLM with MLE, like 281 

classic regression models, does not account for parameter estimate uncertainty. Tools such as 282 

bootstrapping may estimate this uncertainty but are not universally applicable (Wagenmakers et 283 

al., 2008). To bridge this gap, we have employed Bayesian inference. This probabilistic model 284 

allows us to recover the full range of inferential solutions, contrasting with the singular 285 

deterministic estimate of classical regression. In other words, rather than acquiring a single 286 

estimate for the model parameters (e.g., 𝛽𝑗[𝑖]), we can draw each model's parameters from a 287 

probability distribution using the Bayesian approach which enables us to estimate an unobserved 288 

population of parameters conditioned on the training inputs and outputs. 289 

To sum up, our BHM approach, applied to Eq. (3), presents a solution to the limitations of 290 

standard pooling or non-pooling models associated with the frequentist approach. By using Eq. 291 

(4), we can infer the probability distribution of 𝛽𝑗 in Eq. (3) from the underlying population of 292 

fMSE and X. With credible intervals, we can then make reliable inferences about the relationship 293 
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between the hydrometeorological variables listed in Table 1 and the accuracy of satellite-based 294 

SM data sets. 295 

 In addition, the Box-Cox transformation was applied to the independent variable fMSE, 296 

yielding 𝑓𝑀𝑆𝐸(𝜆) . This transformation reduced the skewness of the distribution, allowing 297 

𝑓𝑀𝑆𝐸(𝜆) to be better approximated by a normal distribution. The Box-Cox parameter lambda, 𝜆, 298 

was estimated by minimizing a sum-of-squares misfit (Fig. S1). 299 

 The normal distribution for 𝑓𝑀𝑆𝐸(𝜆)  is characterized by location ( 𝜇 ) and scale ( 𝜎 ) 300 

parameters. The probability density function (PDF) of the univariate normal distribution is as 301 

follows: 302 

𝑓𝑀𝑆𝐸𝑖
(𝜆)

 ~ 𝑁(𝜇𝑖, 𝜎2)   𝑬𝒒. (𝟒 − 𝟏) 303 

𝜇𝑖 = 𝛼𝑗[𝑖] + 𝛽𝑗[𝑖]𝑿i   𝑬𝒒. (𝟒 − 𝟐) 304 

where, 𝜎 is the standard deviation of the measurement error ϵ𝑖. The group-level random effect 305 

𝛼𝑗  and the group-specific coefficients 𝛽𝑗  are assumed to each follow their own multivariate 306 

normal distribution. That is, the 𝛼𝑗 for all groups form a multivariate normal distribution with a 307 

certain mean vector and covariance matrix, and similarly the 𝛽𝑗  for all groups form another 308 

multivariate normal distribution (Eq. (5)) with its own mean vector and covariance matrix. 309 

 310 

𝑃(𝜷| 𝝁𝜷, 𝚺) =
exp {−

1
2

(𝜷 − 𝝁𝜷)
T

𝚺−1(𝜷 − 𝝁𝜷)}

√(2𝜋)𝑘|𝚺|
   𝐸𝑞. (5) 311 

 312 

where 𝝁𝜷 is the vector of the means; and 𝚺 is the covariance matrix. In this manner, we model 313 

not just the variances of 𝛼𝑗 and 𝛽𝑗, but also the covariances among the 𝛼𝑗 's and among the 𝛽𝑗 's, 314 
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respectively. Furthermore, although both 𝛼𝑗  and 𝛽𝑗 , are modeled as multivariate normal 315 

distributions, our primary interest lies in the analysis of 𝛽𝑗 . Therefore, Eq. (5) explicitly 316 

incorporates the 𝛽 term to represent this focus in our study. 317 

Furthermore, because the scale parameter 𝜎 in Eq. (4-1) must be a positive value, 𝜎 is 318 

assumed to be a Half-Cauchy distribution with infinite scale parameters (𝜎′). The distribution of 319 

the Half-Cauchy log-likelihood is as follows: 320 

 321 

𝑃 ( 𝜎 ∣∣
∣ 𝜎 ′ ) =

2

𝜋𝜎
′[1+(

𝜎

𝜎′
)

2

]

   𝐸𝑞. (6) 322 

 323 

Please also note that, in our model, Eq. (4) defines the likelihood for each observation, 324 

with the mean 𝜇𝑖 being modeled as a linear function of the predictors (𝑿𝑖), with coefficients that 325 

vary by group (𝛼𝑗 and 𝛽𝑗) (Eq. (3)). Specifically, 𝛽 is modeled by assuming a priori that they have 326 

a zero mean matrix and their covariance matrices are provided by identification of the matrix 327 

using the multivariate normal distribution function. This process provides a flexible family of prior 328 

distributions for the matrix logarithm of the covariance structure (Sinay and Hsu, 2014). In 329 

specific, this prior structure results in shrinkage of the 𝛽𝑗  coefficients towards zero and each 330 

other, depending on the covariance structure, while also assisting in the regularization process 331 

and mitigating overfitting. Utilizing the No U-Turn Sampler (NUTS) (Hoffman and Gelman 2014) 332 

method for posterior estimation, these priors could help enhance the mixing of chains (e.g., 333 

making the chains less likely to get stuck in one region) and reduce autocorrelation (e.g., ensuring 334 
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the chain moves more quickly and independently around the parameter space), leading to 335 

efficient sampling and accurate posterior estimation. 336 

 Based on the likelihood and prior distributions above, the joint posterior probability of 337 

the model parameter can be estimated using the Bayes theorem, which provides a principled 338 

way to calculate a conditional probability. Therefore, we then obtained the posterior distribution 339 

of the parameters 𝑝(𝜷 ∣ 𝑓𝑀𝑆𝐸(𝜆), 𝑋) from Bayes' theorem as shown below: 340 

 341 

𝑝( 𝜷 ∣∣ 𝑓𝑀𝑆𝐸(𝜆), 𝑿 ) =
𝑝( 𝑓𝑀𝑆𝐸(𝜆) ∣∣ 𝜷, 𝑿 )𝑃(𝜷)

𝑝( 𝑓𝑀𝑆𝐸(𝜆) ∣∣ 𝑿 )
=

𝑝( 𝑓𝑀𝑆𝐸(𝜆) ∣∣ 𝜷, 𝑿 )𝑃(𝜷)

∫ 𝑝(𝑓𝑀𝑆𝐸(𝜆) ∣ 𝜷, 𝑿)𝑃(𝜷) 𝑑𝜷
 𝐸𝑞. (7) 342 

 343 

The complexity of the analytical form of 𝑃( 𝑓𝑀𝑆𝐸(𝜆) ∣∣ 𝑿 ), which often does not belong to known 344 

distribution families nor conjugates with 𝑃( 𝑓𝑀𝑆𝐸(𝜆) ∣∣ 𝜷, 𝑿 )  (Chiu 1996), requires 345 

approximating the integrand through sampling to calculate the integral over marginal 346 

distributions ( 𝑓𝑀𝑆𝐸(𝜆) ∣∣ 𝑿 ) = ∫ 𝑃(𝑓𝑀𝑆𝐸(𝜆) ∣ 𝜷, 𝑿)𝑃(𝜷) 𝑑𝜷. This is accomplished through the 347 

Hamiltonian Monte Carlo (HMC) sampling approach (Hoffman and Gelman 2014) and variational 348 

procedures for initial point calculations (Blei et al 2017). In this study, the 792 parameters and 349 

hyperparameters of the non-centered hierarchical model were estimated using the NUTS 350 

sampler, with initial sampling points determined by the automatic differentiation variational 351 

inference method (ADVI) (Kucukelbir et al 2016). Differing from the frequentist approach, NUTS, 352 

a type of HMC sampling algorithm, generates the posterior distribution of unknown model 353 

parameters based on observed data and prior distribution in Bayesian inference, thereby 354 

producing a posterior distribution for parameters, such as 𝛽 (Eq. (5)). This distribution enables 355 
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the estimation of summary statistics, inferences, and predictions, proving the utility of Bayesian 356 

machine learning in providing robust predictions, especially where data is limited. Our model's 357 

validation was facilitated through posterior predictive checks (PPCs), which employ the posterior 358 

distribution of model parameters to generate a predictive distribution for new observations, 359 

accounting for model parameter uncertainty and assessing the model's fit with the observed data. 360 

In summary, we transformed the fMSE data to a normal distribution through a Box-Cox 361 

transformation and confirmed the fit using the SSE method against 80 distribution candidates. 362 

We then built a hierarchical model where the mean is a function of predictors with group-level 363 

effects and group-specific coefficients, both following a multivariate normal distribution. We 364 

assumed a prior structure for the 𝛽 coefficients based on a zero mean matrix and a covariance 365 

matrix identified from the multivariate normal distribution, while the scale parameter follows a 366 

Half-Cauchy distribution. Finally, the joint posterior probability was estimated using the Bayes' 367 

theorem and the NUTS sampler, with initial points obtained from the ADVI method. To estimate 368 

the posterior distribution for the 𝛽 coefficients, we use the NUTS sampler, which generates a 369 

series of smart proposals through the parameter space. It starts at initial points defined by the 370 

ADVI method and proceeds with a trajectory until it appears to make a U-turn, ensuring efficient 371 

exploration. The iterative process of proposal and acceptance/rejection following the 372 

Metropolis-Hastings criterion results in a sequence of 𝛽 coefficients samples representing the 373 

desired posterior distribution. 374 

 375 

4. Results and discussion 376 

4.1. Bayesian inference model evaluations 377 
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Fig. 2 shows the posterior predictive fMSE values (i.e., calculated from (𝑓𝑀𝑆𝐸(𝜆)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝜆 + 1)
1

λ) 378 

for each satellite-based SM product for a.m. (solid red lines), p.m. (solid blue lines), and combined 379 

(solid green lines) overpasses. We have 2,000 HLMs for each product, obtained from 2,000 380 

converged Bayesian HLMs using NUTS. Consequently, 2,000 PDF lines are used for the posterior 381 

predictive analysis of fMSE values calculated from 2,000 individual HLM for the SMAP (a.m., p.m., 382 

and a.m.+p.m.), SMOS (a.m., p.m., and a.m.+p.m.), and ASCAT (a.m., p.m., and a.m.+p.m.) cases. 383 

The PDF of the predicted fMSE follow the observed fMSE data (dashed line for each 384 

product) remarkably well, indicating that the BHM can reasonably describe fMSE values over 385 

different land cover conditions based on the 14 chosen predictors. Please note that the Box-Cox 386 

transformed observed/predicted fMSE values were inversed to the original scale fMSE to 387 

illustrate these results. It is worth noting that the precision of SM data is improved (i.e., lower 388 

fMSE) if the a.m. and p.m. products are combined; however, at the same time, the predictive 389 

precision of fMSE from the Bayesian HLM can be reduced for the combined (a.m.+p.m.) SMAP 390 

and SMOS SM cases. This suggests that making an inference from the model parameters is harder 391 

with a.m.+p.m. data (i.e., understanding the impact of predictors on the precision of SM data is 392 

harder) because when the two data sets from passive microwave systems with different error 393 

characteristics are combined, the impact of error sources on SM precision can be blurred. For 394 

example, the model has trouble finding the relationship between the error characteristics of 395 

a.m.+p.m. SM data with time-averaged surface temperature. 396 

On the other hand, the a.m.+p.m. case is a better fit for the active system (green lines in 397 

Fig. 2(c)). This could be because the ASCAT SM retrieval algorithm does not require land 398 

temperature inputs; therefore, its error estimation can be less sensitive to diurnal differences in 399 
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thermal conditions. Specifically, the 14 predictors that are being used might not be strong enough 400 

to describe the variability of the ASCAT a.m. or p.m. SM error. For example, it is hypothesized 401 

that the omission of predictors related to subsurface scattering, which is known to be one of the 402 

largest sources of error for ASCAT, can be effectively counterbalanced by averaging and 403 

combining a.m. and p.m. soil moisture (SM) data from three Metop satellites. This approach is 404 

postulated to mitigate the impact of subsurface scattering conditions on ASCAT SM, thereby 405 

significantly enhancing the model's capability to accurately describe the SM retrieval error using 406 

the current 14 predictors. 407 

Additionally, ASCAT retrievals likely capture shallower, and thus higher-frequency, soil 408 

moisture dynamics than ~5-cm estimates from SMAP/SMOS and 10-cm estimates obtained from 409 

GLDAS (Wagner et al 2013, Wigneron et al 2017). Since TCA tends to punish outlier products, TCA 410 

results calculated for the triplets ASCAT/SMAP/GLDAS or ASCAT/SMOS/GDLAS triplets may 411 

therefore penalize ASCAT SM retrievals relative to SMAP and SMOS. Consequently, fMSE, 412 

calculated from the average of multiple ASCAT SM data per day (ASCAT H119/120 SM data 413 

contains SM retrievals obtained from the three Metop satellites), may lower a.m.+p.m. SM's 414 

fMSE versus the sole use of a.m. or p.m. data - since averaging ASCAT SM data reduces noise and 415 

smooths out high-frequency variability. Using these Bayesian HLMs, the association between 416 

each predictor and the precision of the SM data (i.e., fMSE) will be explored next, using a 417 

posterior marginal distribution of each predictor's parameter across different land cover types.418 
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 419 

Figure 2. The posterior predictive of BHM-predicted fMSE using the NUTS method. Each PDF graph, (a), (b), and (c) shows the PDF for 420 

the posterior predictive fMSE values (2,000 solid lines) from the Bayesian HLM produced by the NUTS method for the SMAP, SMOS, 421 

and ASCAT products (grouped by a.m., p.m., and a.m.+p.m.). The observed fMSE probability PDF is indicated by the dashed lines.422 
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4.2. The Usefulness of the Bayesian Hierarchical Modeling Approach 423 

Our comparison results of BHM and frequentist approaches (i.e., the complete pooling 424 

model (CPM) and no-pooling model (NPM)) in Figs. S2 – 17, demonstrate that BHM can provide 425 

a more comprehensive probability distribution of 𝜷 values than CPM or NPM and it offers a 426 

clearer picture of the associated uncertainty. This is because HLM offers several advantages over 427 

NPM, including enhancing parameter estimation through the judicious consideration of data 428 

from each land cover type and other land cover types. This leads to more precise parameter 429 

estimates, particularly in circumstances characterized by small sample sizes or noisy data. Finally, 430 

BHM also permits the incorporation of prior knowledge and assumptions about the data, which 431 

augments the estimation of 𝜷  values and mitigates uncertainty. Since BHM can provide a 432 

complete distribution of 𝛽, offering a comprehensive understanding of the uncertainty of 𝛽, we 433 

use BHM for the remainder of the study to analyze the impact of 14 variables on fMSE.  434 

Fig. 3 reveals a distinct difference in the association of VOD with SM data quality between 435 

a.m. and p.m. retrievals. As illustrated in Figs. 3(a), (b), (c), and (d), the association between 436 

vegetation matter and the quality of SMAP and SMOS SM retrievals varies depending on the 437 

overpass time of the satellites. One possible explanation for this is that the SM retrieval 438 

algorithms from these passive systems require an assumption of thermal equilibrium assumption, 439 

with 6 a.m. being an ideal time to achieve this status (Entekhabi et al. 2010). There is a higher 440 

likelihood of violating this assumption at 6 p.m. due to the potential temperature gradients 441 

resulting from vegetation which increase the impact of VOD on SM data quality during the late 442 

afternoon overpass time. However, the impact of VOD for the active system is different from that 443 

of the passive systems. The ASCAT SM retrieval algorithm (TU Wien algorithm) does not require 444 
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land temperature inputs; rather, SM retrievals are based on the relative backscatter values to 445 

historically maximum and minimum values. Our results, as seen in Figs. 3(e) and (f), indicate that 446 

during the a.m. there is a significant positive association between vegetation dynamics and fMSE 447 

in the TU Wien SM retrieval algorithm (except ENF and CNV). However, this positive association 448 

is substantially weaker during the p.m. overpass time and is only evident for WS, Gr, OS, and EBF 449 

land cover types. This suggests that during p.m. overpasses, the effect of vegetation on fMSE is 450 

more challenging to determine, potentially due to greater day-to-day fluctuations in vegetation 451 

water content at 9 p.m. compared to 9 a.m. 452 

In addition, over cropland, the relationship with uncertainties of satellite-based SM data 453 

is not solely determined by VOD and is linked to other environmental factors (please refer to our 454 

discussion pertaining to Figs. 4 and 5 below). Additional results that are analogous to Fig. 3, but 455 

for different predictor variables and overpass times, are summarized in Figs. S2 – S14456 
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 457 
 458 
Figure 3. Parameter (𝛽) estimations for the VOD variable from the complete pooling model (CPM), no-pooling model (NPM), and 459 
Bayesian hierarchical model (BHM) for (a, b, c) SMAP, (d, e, f) SMOS-IC, and (g, h, i) ASCAT for different overpass times. 460 
 461 
 462 
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4.3. Association of different error sources with the quality of satellite-based SM data  463 

Here, we examine the most interesting parameter sensitivity cases illustrated by the BHM. 464 

In particular, we use 14 selected predictors to investigate the association of human activities (i.e., 465 

irrigation activities), vegetation mass (i.e., VOD), and SOM with the quality of SM retrieval data, 466 

as these factors are generally considered to be major impediments to the retrieval of SM using 467 

microwave satellite systems. (The results for the other nine predictors are included in the SI 468 

document.) Even though we only included 14 predictor variables, the current framework can be 469 

applied to analyze any other set of environmental factors. However, it should be stressed that, if 470 

the posterior predictive (solid lines in Fig. 2) from different models do not correspond with the 471 

observed fMSE (dashed solid lines in Fig. 2), the statistical inference from the Bayesian HLM will 472 

be unreliable. 473 

First, we evaluate the uncertainties of predictor variables by examining the credible 474 

intervals of parameters to understand their associations with SM data quality across a range of 475 

satellite products. Specifically, Fig. 4 shows a correlation between SM retrievals for each satellite 476 

system and the amount of vegetation mass over different land cover types. Different PDF lines 477 

indicate different land cover types. 𝜷  is the location parameter in Eq. (7) which shows the 478 

distribution of 𝜇  in Eq. (4). To determine the credibility of a predictor related to 𝛽 , the 479 

distribution of 𝛽  should not cross zero or include zero within the ±95% density interval. In 480 

addition, positive 𝛽 values suggest that a factor tends to increase fMSE (i.e., degrades SM quality). 481 

A wider distribution indicates greater uncertainty regarding a variable's impact on fMSE. 482 

Fig. 4 illustrates a strong association between vegetation and SM retrieval errors for most 483 

land cover types. This correlation is seen as naturally emitted signals observed from passive 484 
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satellites, or the backscattered energy generated from active sensors, are very sensitive to 485 

vegetation. This relationship is further supported by the 𝜷 distributions that are relatively narrow 486 

and do not cross zero. Nonetheless, the dispersed distribution (i.e., large σ) for barren or sparsely 487 

vegetated (BSV) land cover types suggests a weaker association between VOD and error 488 

characteristics in these areas, compared to areas with a narrow 𝜷 distribution. This result also 489 

implies that VOD may not play a major role in describing error characteristics for these land cover 490 

types, because VOD does not vary significantly either spatially or temporally within these land 491 

cover types. This finding underlines the need for careful consideration when building error 492 

models primarily dependent on vegetation-related variables, especially for certain land cover 493 

types. For land cover types where VOD does not appear strongly associated (i.e., where the 494 

posterior 𝜷 distribution is wide and includes zero), fMSE might be better characterized by other 495 

variables. Please also refer to Fig. S15 for an examination of the associations between other 496 

environmental factors and satellite-based SM retrieval errors over arid environmental conditions. 497 
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 498 

Figure 4. Posterior marginal distributions for the 𝛽 parameter assigned vegetation optical depth 499 

(VOD) over 9 land cover types. This figure illustrates the relationship between the amount of 500 

vegetation matter and error magnitudes in fMSE for the a.m. (left) and p.m. (right) overpasses of 501 

(a, b) SMAP, (c, d) SMOS, and (e, f) ASCAT SM data across 9 different land cover types. If the 502 

distribution of the 𝛽  parameter is on the positive (negative) side, it indicates that higher 503 

vegetation matter is associated with higher (lower) fMSE over the corresponding land cover type.504 
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Fig. 5 displays results analogous to Fig. 4, but it illustrates the associations between all 14 505 

environmental factors and the quality of satellite-based SM data over evergreen broadleaf forest 506 

(hereafter EB forest) and open shrublands land cover types. Here, we only include the a.m. data, 507 

but all other results are also included in the supplementary material document (Figs. S15 to S23). 508 

Over EB forest and open shrublands areas, temperature and VOD emerge as two primary factors 509 

associated with increased SM data errors for both passive and active microwave systems (a.m.) 510 

(see the neon fluorescent blue- and light -green-colored PDF lines, respectively, in Fig. 5). 511 

In addition, for the passive systems, BHM results point to a correlation between SOM and 512 

the diminished quality of SM retrievals. This could stem from the possibility that high SOM can 513 

decrease the soil’s respective dielectric constant, potentially resulting in greater porosity than 514 

anticipated in a SM retrieval algorithm. Current passive microwave SM products (including both 515 

SMOS and SMAP) use dielectric constant models based on soil clay content for inversion without 516 

considering SOM (Wigneron et al 2017). Our result is aligned with previous studies' findings 517 

(Zhang et al 2019, Li et al 2022) that suggest a higher fraction of SOM in soil can introduce time-518 

varying SM errors into current passive-microwave SM retrievals algorithms. Li et al. (2022) 519 

showed that the higher the fraction of SOM in soil, the lower the performance of SM retrievals 520 

from SMOS SM. This degradation was evident in increased bias, higher RMSD (ubRMSD), and 521 

decreased correlation coefficient (R) compared to in-situ SM data. A plausible explanation for 522 

this degradation is that SOM increases the number of micropores and macropores in the soil by 523 

adhering soil particles together, which, in turn, affects the soil properties, including structure. 524 

Therefore, SOM affects the soil dielectric properties, while current SMAP and SMOS-IC SM 525 

retrieval algorithms use a clay-based dielectric constant model that does not consider the 526 
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presence of SOM. Similarly, Zhang et al. (2019) showed that, generally, the more the organic 527 

carbon in soils, the lower the performance metrics of SMAP SM data (i.e., higher bias and RMSE, 528 

and lower correlation coefficient). However, it should be noted that higher bias and time-varying 529 

error could be due to the effect of soil freezing and thawing process, since in-situ SM sites with 530 

higher SOM tend to be located at higher elevations (Figs. 1(a) and 1(c)). For the active ASCAT 531 

system, it appears that uncertainties arising from temperature and VOD are two major factors 532 

correlated with an increase in error in SM retrieval data over these land cover types. 533 

It is also intriguing to note the strong similarities between the two passive systems (SMOS 534 

and SMAP), as opposed to the active system (ASCAT), in terms of associations with environmental 535 

factors. Despite the differences in retrieval systems and algorithms for SMOS and SMAP, the 536 

degree and pattern of changes in errors in passive SM retrievals display considerable similarities 537 

across various land cover types (see Fig. 5). This could potentially be attributed to SMAP and 538 

SMOS utilizing similar frequencies and overpass times. This observation underscores the value of 539 

integrating SM data from diverse systems (e.g., merging across active and passive systems) when 540 

attempting to filter random noise.  541 
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 542 

Figure 5. The posterior marginal distribution of 𝛽 parameters for evergreen broadleaf (EB) forest 543 

and open shrublands areas for all 14 predictive variables. This figure describes the associations 544 

between each of these 14 variables and the errors (i.e., fMSE) in (a, b) SMAP (a.m.), (c, d) SMOS 545 

(a.m.), and (e, f) ASCAT (a.m.) SM data over the EB forest and open shrublands land cover types. 546 

If the distribution of the 𝛽 parameter falls on the positive side, it indicates that an increase in the 547 

corresponding variable is associated with a higher fMSE over EB Forest or Open Shrublands. 548 

Conversely, if the distribution is on the negative side, this suggests that an increase in the 549 

corresponding variable is associated with a lower fMSE over EB Forest or Open Shrublands.  550 
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Upon examining Figs. 5 and Figs. S15-S23, we can derive insights concerning the 551 

association between the intensity of irrigation (represented by red-colored PDF lines) and the 552 

quality of SM retrievals for each satellite system. When compared to other environmental factors, 553 

the association between irrigation amounts and SM retrieval data quality is relatively slight (i.e., 554 

all distributions cross zero with a dispersed distribution shape) across all satellite systems. 555 

Furthermore, intensive irrigation does not necessarily correlate with an increase in the 556 

uncertainty of SM retrievals from space. This result supports previous findings that satellite-557 

based SM data can play a significant role in detecting the irrigation signals and can be used to 558 

improve quality of LSM simulations through the data assimilation (Kim et al 2020b, Kwon et al 559 

2022, Lawston et al 2017, Lei et al 2020). In fact, as shown in Fig. 6, there are many other factors, 560 

other than irrigation fraction, that contribute significantly to increasing errors in SM (a.m.) data 561 

over cropland/NVM areas. Furthermore, it was found that over cropland and NVM, observations 562 

with less difference between AT and ST (|Δ𝑇(𝑆𝑇, 𝐴𝑇)| were associated with lower fMSE for the 563 

SMAP/SMOS SM retrieval systems (yellow-colored PDF lines). This result might be related to the 564 

assumption of the passive SM retrieval algorithms which require the thermal equilibrium status 565 

(Entekhabi et al 2010). However, once again, it is worth noting that the lower (|Δ𝑇(𝑆𝑇, 𝐴𝑇)|) 566 

values do not indicate better quality of SM data across all land cover types. Finally, RFI is another 567 

factor increasing errors in passive SM retrieval systems because many croplands are close to RFI 568 

sources over East Asia (Figs. 1(b) and (e)). As shown in Fig. 6, it is the combined effect of these 569 

multiple factors, rather than one specific error source in isolation, that causes difficulty in 570 

retrieving SM over potentially irrigated areas (i.e., cropland and NVM) with passive SM retrieval.571 
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 572 

Figure 6. The posterior marginal distribution of 𝛽  parameters for croplands and natural 573 

vegetation mosaic (NVM) areas for 14 variables. This figure describes the associations between 574 

each of these 14 variables and the error (i.e., fMSE) in (a, b) SMAP, (c, d) SMOS, and (e, f) ASCAT 575 

SM data over croplands and croplands/natural vegetation mosaic (NVM). If the distribution of 576 

the 𝛽  parameter falls on the positive side, it indicates that an increase in the corresponding 577 

variable is associated with a higher fMSE over cropland or NVM. Conversely, if the distribution is 578 

on the negative side, this suggests that an increase in the corresponding variable is associated 579 

with a lower fMSE over cropland or NVM.  580 
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Here, we only included results for 9 (originally 17 excluding water) land cover types. The 581 

main reason for omitting other land cover types was due to not obtaining sufficient fMSE values 582 

from the current TCA method. Land-cover types we omitted included polar or cold regions and 583 

urban areas where the SM dynamics are relatively meaningless due to snow cover, frozen soil 584 

conditions (because signals can be more vulnerable to water in snow, and the relationship 585 

between the dielectric constant of frozen water to water content is unreliable), and impervious 586 

surface conditions in highly urbanized areas (Wagner 1998). 587 

Finally, despite the apparent ability of the BHM to successfully reproduce ASCAT fMSE 588 

over valid TCA points, it is still unclear whether or not it is explicitly capturing sub-scattering 589 

impacts on ASCAT precision. Further study of this question is required - but will likely require the 590 

availability of new predictor variables for subsurface scattering strength (SCS). Therefore, the 591 

impact of the SCS on ASCAT SM error characteristics will be investigated in a future study once 592 

independent data is available that describes conditions under which SCS is likely. 593 

 594 

5. Conclusions 595 

Here, we introduce a novel approach for sensitivity analysis of satellite-based SM error 596 

characteristics using a Bayesian hierarchical modeling (BHM) approach for regression parameters 597 

and hyper-parameters plus a No-U-Turn Sampler (i.e., sampling approach). We then applied the 598 

approach to estimate the credible intervals for 14 selected environmental factors over different 599 

land cover types. In this way, we investigated the error characteristics of the three mostly-widely 600 

used satellite-based SM data for the nighttime, daytime, and combined overpass times, and 601 
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illustrated the advantages and versatility of the BHM approach versus classical regression 602 

approaches for the error sensitivity analysis of satellite-based SM retrievals. 603 

We focused on analyzing the impact of irrigation amounts, vegetation mass, and soil 604 

organic matter (SOM) on the quality of satellite-based SM data. Results suggest a strong 605 

association between vegetation and the errors in satellite-based SM retrievals; however, it is 606 

important to note that the quality of SM data cannot be inferred solely from single error sources, 607 

as it is also linked to many other factors. By comparing BHM with the classical regression model 608 

with the frequentist approach for sensitivity analysis, we demonstrated how CPM or NPM with 609 

the frequentist approach can lead to different/misleading results -- for instance, based on CPM, 610 

one can draw opposing inferences about the impact of vegetation on the quality of the satellite-611 

based SM data. In addition, we also found an association between SOM and challenges in 612 

retrieving SM information from passive microwave sensors. Moreover, we observed that the 613 

combined presence of signal attenuations from vegetation and RFI seems to be correlated with 614 

further difficulties in SM information retrieval. Over potentially irrigated areas such as croplands 615 

and natural vegetation mosaic, the degree of irrigation may not be used for inferring the quality 616 

of SM data, as other factors (e.g., thermal equilibrium status, albedo, RFI) control the quality of 617 

SM data over these areas. Although we could only include 14 predictors with the SM variable in 618 

the current analysis, our approach is highly general, and many other predictors and time-varying 619 

geophysical variables can be added by individual researchers according to their own research 620 

needs. 621 

Lastly, it is essential to adopt a streamlined approach that employs fewer but more 622 

effective predictor variables and improved land cover maps, along with simplified statistical 623 
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models, to address overfitting and incorporate critical aspects such as subsurface scattering 624 

parameters that were previously omitted. Additionally, it is important to acknowledge that the 625 

triplets used to calculate fMSE may be inherently more favorable to SMAP and SMOS due to the 626 

particular combinations of sensors and datasets employed, which could have influenced the 627 

outcome. By refining the regression models to encompass these vital components and critically 628 

examining the selection of triplets, the robustness and reliability of the results can be enhanced. 629 

This refined approach is expected to foster a deeper understanding of the processes in question 630 

and lead to more accurate interpretations of the interactions between microwave signals and 631 

various factors, including subsurface properties. Including subsurface scattering parameters is 632 

particularly crucial for establishing a more accurate error prediction model. 633 

634 
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https://land.copernicus.vgt.vito.be. SMOS-IC data is available at https://ib.remote-642 
sensing.inrae.fr. The Land Information System Framework (LISF) source code is available at 643 
https://github.com/NASA-LIS/LISF. The boxplot and violin plot is available at 644 
https://www.mathworks.com/matlabcentral/fileexchange/91790-al_goodplot-boxblot-violin-645 
plot and MT-DCA Tau data is available at https://zenodo.org/record/5579549#.YyOdbyHMIqs 646 
(Feldman et al. 2021). Online HTML-based documentation reflecting the master branch of NASA-647 
LIS/LISF is available on https://nasa-lis.github.io/LISF/ and GitHub page 648 
(https://github.com/NASA-LIS/LISF). 649 
 650 
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endorsement by the US Government. 653 
 654 
References 655 
Arsenault K R, Kumar S V, Geiger J V, Wang S, Kemp E, Mocko D M, Beaudoing H K, Getirana A, 656 

Navari M, Li B, Jacob J, Wegiel J and Peters-Lidard C D 2018 The Land surface Data 657 
Toolkit (LDT v7.2) – a data fusion environment for land data assimilation systems Geosci. 658 
Model Dev. 11 3605–21 659 

Brocca L, Filippucci P, Hahn S, Ciabatta L, Massari C, Camici S, Schüller L, Bojkov B and Wagner 660 
W 2019 SM2RAIN–ASCAT (2007–2018): global daily satellite rainfall data from ASCAT 661 
soil moisture observations Earth Syst. Sci. Data 11 1583–601 662 

Calvet J-C, Wigneron J-P, Walker J, Karbou F, Chanzy A and Albergel C 2011 Sensitivity of Passive 663 
Microwave Observations to Soil Moisture and Vegetation Water Content: L-Band to W-664 
Band IEEE Trans. Geosci. Remote Sensing 49 1190–9 665 

Cho E, Su C-H, Ryu D, Kim H and Choi M 2017 Does AMSR2 produce better soil moisture 666 
retrievals than AMSR-E over Australia? Remote Sensing of Environment 188 95–105 667 

Colliander A, Jackson T J, Berg A, Bosch D D, Caldwell T, Chan S, Cosh M H, Collins C H, Martínez-668 
Fernández J, McNairn H, Prueger J H, Starks P J, Walker J P and Yueh S H 2020 Effect of 669 
Rainfall Events on SMAP Radiometer-Based Soil Moisture Accuracy Using Core 670 
Validation Sites Journal of Hydrometeorology 21 255–64 671 



 40 

Cosh M H, Jackson T J, Bindlish R, Famiglietti J S and Ryu D 2005 Calibration of an impedance 672 
probe for estimation of surface soil water content over large regions Journal of 673 
Hydrology 311 49–58 674 

Crow W T, Dong J and Reichle R H 2022 Leveraging Pre‐Storm Soil Moisture Estimates for 675 
Enhanced Land Surface Model Calibration in Ungauged Hydrologic Basins Water 676 
Resources Research 58 Online: 677 
https://onlinelibrary.wiley.com/doi/10.1029/2021WR031565 678 

Crow W T, Han E, Ryu D, Hain C R and Anderson M C 2017 Estimating annual water storage 679 
variations in medium-scale (2000–10 000 km&lt;sup&gt;2&lt;/sup&gt;) basins using 680 
microwave-based soil moisture retrievals Hydrol. Earth Syst. Sci. 21 1849–62 681 

Entekhabi D, Njoku E G, O’Neill P E, Kellogg K H, Crow W T, Edelstein W N, Entin J K, Goodman S 682 
D, Jackson T J, Johnson J, Kimball J, Piepmeier J R, Koster R D, Martin N, McDonald K C, 683 
Moghaddam M, Moran S, Reichle R, Shi J C, Spencer M W, Thurman S W, Tsang L and Zyl 684 
J V 2010 The Soil Moisture Active Passive (SMAP) Mission Proceedings of the IEEE 98 685 
704–16 686 

Gelaro R, McCarty W, Suárez M J, Todling R, Molod A, Takacs L, Randles C A, Darmenov A, 687 
Bosilovich M G, Reichle R, Wargan K, Coy L, Cullather R, Draper C, Akella S, Buchard V, 688 
Conaty A, da Silva A M, Gu W, Kim G-K, Koster R, Lucchesi R, Merkova D, Nielsen J E, 689 
Partyka G, Pawson S, Putman W, Rienecker M, Schubert S D, Sienkiewicz M and Zhao B 690 
2017 The Modern-Era Retrospective Analysis for Research and Applications, Version 2 691 
(MERRA-2) J. Climate 30 5419–54 692 

He L, Chen J M, Mostovoy G and Gonsamo A 2021 SMAP improves global soil moisture 693 
simulation in a land surface scheme and reveals strong irrigation signals over farmlands 694 
Geophys Res Lett Online: https://onlinelibrary.wiley.com/doi/10.1029/2021GL092658 695 

Hirschi M, Mueller B, Dorigo W and Seneviratne S I 2014 Using remotely sensed soil moisture 696 
for land–atmosphere coupling diagnostics: The role of surface vs. root-zone soil 697 
moisture variability Remote Sensing of Environment 154 246–52 698 

Hoffman M D and Gelman A 2014 The No-U-Turn Sampler: Adaptively Setting Path Lengths in 699 
Hamiltonian Monte Carlo Journal of Machine Learning Research 15 1593–623 700 

Jackson T J, Schmugge J and Engman E T 1996 Remote sensing applications to hydrology: soil 701 
moisture Hydrological Sciences Journal 41 517–30 702 

Kerr Y H, Waldteufel P, Wigneron J-P, Delwart S, Cabot F, Boutin J, Escorihuela M-J, Font J, Reul 703 
N, Gruhier C, Juglea S E, Drinkwater M R, Hahne A, Martín-Neira M and Mecklenburg S 704 
2010 The SMOS Mission: New Tool for Monitoring Key Elements ofthe Global Water 705 
Cycle Proc. IEEE 98 666–87 706 



 41 

Kim H, Cosh M H, Bindlish R and Lakshmi V 2020a Field evaluation of portable soil water 707 
content sensors in a sandy loam Vadose zone j. 19 Online: 708 
https://onlinelibrary.wiley.com/doi/abs/10.1002/vzj2.20033 709 

Kim H and Lakshmi V 2018 Use of Cyclone Global Navigation Satellite System (cygnss) 710 
Observations for Estimation of Soil Moisture Geophys. Res. Lett. 45 8272–82 711 

Kim H, Parinussa R, Konings A G, Wagner W, Cosh M H, Lakshmi V, Zohaib M and Choi M 2018 712 
Global-scale assessment and combination of SMAP with ASCAT (active) and AMSR2 713 
(passive) soil moisture products Remote Sensing of Environment 204 260–75 714 

Kim H, Wigneron J-P, Kumar S, Dong J, Wagner W, Cosh M H, Bosch D D, Collins C H, Starks P J, 715 
Seyfried M and Lakshmi V 2020b Global scale error assessments of soil moisture 716 
estimates from microwave-based active and passive satellites and land surface models 717 
over forest and mixed irrigated/dryland agriculture regions Remote Sensing of 718 
Environment 251 112052 719 

Konings A G, Piles M, Das N and Entekhabi D 2017 L-band vegetation optical depth and effective 720 
scattering albedo estimation from SMAP Remote Sensing of Environment 198 460–70 721 

Kumar S, Peterslidard C, Tian Y, Houser P, Geiger J, Olden S, Lighty L, Eastman J, Doty B and 722 
Dirmeyer P 2006 Land information system: An interoperable framework for high 723 
resolution land surface modeling Environmental Modelling & Software 21 1402–15 724 

Kwon Y, Kumar S V, Navari M, Mocko D M, Kemp E M, Wegiel J W, Geiger J V and Bindlish R 725 
2022 Irrigation characterization improved by the direct use of SMAP soil moisture 726 
anomalies within a data assimilation system Environ. Res. Lett. 17 084006 727 

Lawston P M, Santanello J A and Kumar S V 2017 Irrigation Signals Detected From SMAP Soil 728 
Moisture Retrievals: Irrigation Signals Detected From SMAP Geophys. Res. Lett. 44 729 
11,860-11,867 730 

Lei F, Crow W T, Kustas W P, Dong J, Yang Y, Knipper K R, Anderson M C, Gao F, Notarnicola C, 731 
Greifeneder F, McKee L M, Alfieri J G, Hain C and Dokoozlian N 2020 Data assimilation of 732 
high-resolution thermal and radar remote sensing retrievals for soil moisture monitoring 733 
in a drip-irrigated vineyard Remote Sensing of Environment 239 111622 734 

Li X, Al-Yaari A, Schwank M, Fan L, Frappart F, Swenson J and Wigneron J-P 2020 Compared 735 
performances of SMOS-IC soil moisture and vegetation optical depth retrievals based on 736 
Tau-Omega and Two-Stream microwave emission models Remote Sensing of 737 
Environment 236 111502 738 

Misra S and Ruf C S 2012 Analysis of Radio Frequency Interference Detection Algorithms in the 739 
Angular Domain for SMOS IEEE Trans. Geosci. Remote Sensing 50 1448–57 740 



 42 

Muñoz-Sabater J, Dutra E, Agustí-Panareda A, Albergel C, Arduini G, Balsamo G, Boussetta S, 741 
Choulga M, Harrigan S, Hersbach H, Martens B, Miralles D G, Piles M, Rodríguez-742 
Fernández N J, Zsoter E, Buontempo C and Thépaut J-N 2021 ERA5-Land: a state-of-the-743 
art global reanalysis dataset for land applications Earth Syst. Sci. Data 13 4349–83 744 

Nguyen H H, Kim H and Choi M 2017 Evaluation of the soil water content using cosmic-ray 745 
neutron probe in a heterogeneous monsoon climate-dominated region Advances in 746 
Water Resources 108 125–38 747 

de Nijs A H A, Parinussa R M, de Jeu R A M, Schellekens J and Holmes T R H 2015 A 748 
Methodology to Determine Radio-Frequency Interference in AMSR2 Observations IEEE 749 
Trans. Geosci. Remote Sensing 53 5148–59 750 

Niu G-Y, Yang Z-L, Mitchell K E, Chen F, Ek M B, Barlage M, Kumar A, Manning K, Niyogi D, 751 
Rosero E, Tewari M and Xia Y 2011 The community Noah land surface model with 752 
multiparameterization options (Noah-MP): 1. Model description and evaluation with 753 
local-scale measurements J. Geophys. Res. 116 D12109 754 

Oliva R, Daganzo E, Kerr Y H, Mecklenburg S, Nieto S, Richaume P and Gruhier C 2012 SMOS 755 
Radio Frequency Interference Scenario: Status and Actions Taken to Improve the RFI 756 
Environment in the 1400–1427-MHz Passive Band IEEE Trans. Geosci. Remote Sensing 50 757 
1427–39 758 

Owe M, de Jeu R and Walker J 2001 A methodology for surface soil moisture and vegetation 759 
optical depth retrieval using the microwave polarization difference index IEEE Trans. 760 
Geosci. Remote Sensing 39 1643–54 761 

Reichle R H 2008 Data assimilation methods in the Earth sciences Advances in Water Resources 762 
31 1411–8 763 

Reynolds S G 1970 The gravimetric method of soil moisture determination Part I A study of 764 
equipment, and methodological problems Journal of Hydrology 11 258–73 765 

Rodell M, Houser P R, Jambor U, Gottschalck J, Mitchell K, Meng C-J, Arsenault K, Cosgrove B, 766 
Radakovich J, Bosilovich M, Entin J K, Walker J P, Lohmann D and Toll D 2004 The Global 767 
Land Data Assimilation System Bull. Amer. Meteor. Soc. 85 381–94 768 

Seneviratne S I, Lüthi D, Litschi M and Schär C 2006 Land–atmosphere coupling and climate 769 
change in Europe Nature 443 205–9 770 

Siebert S, Doll P and Hoogeveen J 2005 Development and validation of the global map of 771 
irrigation areas Hydrology and Earth System Sciences 13 772 

Vaz C M P, Jones S, Meding M and Tuller M 2013 Evaluation of Standard Calibration Functions 773 
for Eight Electromagnetic Soil Moisture Sensors Vadose Zone Journal 12 vzj2012.0160 774 



 43 

Wagner W 1998 SOIL MOISTURE RETRIEVAL FROM ERS SCATTEROMETER DATA Inst. für 775 
Photogrammetrie u. Fernerkundung d. Techn. Univ. 49 776 

Wagner W, Hahn S, Kidd R, Melzer T, Bartalis Z, Hasenauer S, Figa-Saldaña J, de Rosnay P, Jann 777 
A, Schneider S, Komma J, Kubu G, Brugger K, Aubrecht C, Züger J, Gangkofner U, 778 
Kienberger S, Brocca L, Wang Y, Blöschl G, Eitzinger J and Steinnocher K 2013 The ASCAT 779 
Soil Moisture Product: A Review of its Specifications, Validation Results, and Emerging 780 
Applications metz 22 5–33 781 

Wagner W, Lemoine G, Borgeaud M and Rott H 1999 A study of vegetation cover effects on ERS 782 
scatterometer data IEEE Trans. Geosci. Remote Sensing 37 938–48 783 

Wagner W, Lindorfer R, Melzer T, Hahn S, Bauer-Marschallinger B, Morrison K, Calvet J-C, 784 
Hobbs S, Quast R, Greimeister-Pfeil I and Vreugdenhil M 2022 Widespread occurrence of 785 
anomalous C-band backscatter signals in arid environments caused by subsurface 786 
scattering Remote Sensing of Environment 276 113025 787 

Wagner W, Naeimi V, Scipal K, de Jeu R and Martínez-Fernández J 2007 Soil moisture from 788 
operational meteorological satellites Hydrogeol J 15 121–31 789 

Wang Z, Zeng X, Barlage M, Dickinson R E, Gao F and Schaaf C B 2004 Using MODIS BRDF and 790 
Albedo Data to Evaluate Global Model Land Surface Albedo J. Hydrometeor 5 3–14 791 

Wigneron J-P, Jackson T J, O’Neill P, De Lannoy G, de Rosnay P, Walker J P, Ferrazzoli P, Mironov 792 
V, Bircher S, Grant J P, Kurum M, Schwank M, Munoz-Sabater J, Das N, Royer A, Al-Yaari 793 
A, Al Bitar A, Fernandez-Moran R, Lawrence H, Mialon A, Parrens M, Richaume P, 794 
Delwart S and Kerr Y 2017 Modelling the passive microwave signature from land 795 
surfaces: A review of recent results and application to the L-band SMOS & SMAP soil 796 
moisture retrieval algorithms Remote Sensing of Environment 192 238–62 797 

Xia Y, Mitchell K, Ek M, Cosgrove B, Sheffield J, Luo L, Alonge C, Wei H, Meng J, Livneh B, Duan Q 798 
and Lohmann D 2012 Continental-scale water and energy flux analysis and validation for 799 
North American Land Data Assimilation System project phase 2 (NLDAS-2): 2. Validation 800 
of model-simulated streamflow: VALIDATION OF MODEL-SIMULATED STREAMFLOW J. 801 
Geophys. Res. 117 n/a-n/a 802 

 803 


