
Unified Framework for robust
Microservice Communication

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Masterstudium Software Engineering & Internet Computing

eingereicht von

Alexander Allacher, BSc
Matrikelnummer 11810873

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Assistant Prof. Dipl.-Ing. Dr.sc. Jürgen Cito, BSc

Wien, 29. August 2023
Alexander Allacher Jürgen Cito

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Unified Framework for robust
Microservice Communication

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Master programme Software Engineering & Internet Computing

by

Alexander Allacher, BSc
Registration Number 11810873

to the Faculty of Informatics

at the TU Wien

Advisor: Assistant Prof. Dipl.-Ing. Dr.sc. Jürgen Cito, BSc

Vienna, 29th August, 2023
Alexander Allacher Jürgen Cito

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Alexander Allacher, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 29. August 2023
Alexander Allacher

v

Kurzfassung

Microservice-Architekturen sind zu einem verbreiteten Ansatz in der Softwareentwicklung
geworden und bieten Skalierbarkeit, lose Kopplung und Wartbarkeit. Dieser Ansatz
ermöglicht es uns, Systeme als einer Menge an kleinen, unabhängig bereitstellbaren
Diensten zu erstellen, die über simple Mechanismen kommunizieren. Da Microservices
von Natur aus verteilte Systeme sind, bringen sie, insbesondere bei der Kommunikation,
Herausforderungen mit sich. Traditionelle synchrone Kommunikation, wie REST, kann
zu zeitlicher Kopplung und kaskadierenden Fehlern führen. Asynchrone Kommunikation
hingegen bringt eigene Herausforderungen mit sich, einschließlich des Bedarfs an Message
Brokern. Außerdem ist ein Umdenken bei der Gestaltung der Interaktionen notwendig.
Diese Arbeit führt eine domänenspezifische Sprache (DSL) ein, um die Kommunikation
von Microservices zu definiert. Dabei wird darauf abgezielt, die Lücke zwischen diesen
beiden Kommunikationsparadigmen, mit besonderem Augenmerk auf Robustheit, zu
schließen.

Durch die Anwendung von ingenieurwissenschaftlichen Forschungsmethoden haben wir
wesentliche Aspekte der Microservice-Kommunikation identifiziert und sie in ein Frame-
work integriert. Ausgehend von der DSL generiert dieses Framework den Großteil des
notwendigen Codes und reduziert somit das Risiko häufiger Fehler. Um die vorgeschla-
gene DSL und das Framework zu validieren, bewerten wir ihre Anwendbarkeit anhand
verschiedener Open-Source-Projekte. Die Bewertung konzentriert sich auf Robustheit,
Wiederverwendbarkeit von Schnittstellendefinitionen und Asynchronität. Weiters zeigt
sie auf, wie die erkannten Fehler in diesen Projekten vermieden werden hätte können. Da
der Großteil der analysierten Projekte nur zu Demonstrationszwecken dienen, könnten
die Ergebnisse in realen Szenarien eine begrenzte Anwendbarkeit haben. Andererseits
existieren diese Demonstrationsprojekte nicht ohne Grund. Sie wurden erstellt, damit
Entwicklerinnen und Entwickler die Entwicklung von Microservice-Architekturen lernen
können. Zusammenfassend zeigt die Arbeit zwar einen vielversprechenden Ansatz zur
Harmonisierung von synchroner und asynchroner Kommunikation in Microservices, den-
noch ist weitere Forschung, insbesondere in Bereichen der Kommunikation mit externen
Diensten, erforderlich.

vii

Abstract

Microservices architectures have become a prevalent approach in software development,
offering scalability, loose coupling, and maintainability. This approach allows us to
build systems systems as sets of small, independently deployable services that communi-
cate through lightweight mechanisms. However, the distributed nature of microservices
presents challenges, particularly in communication. Traditional synchronous communica-
tion, such as REST, can lead to temporal coupling and cascading failures. Asynchronous
communication, on the other hand, presents its own set of challenges, including the
need for message brokers and a different way of thinking about interactions. This thesis
introduces a domain-specific language (DSL) that defines microservice communication,
aiming to bridge the gap between these two communication paradigms while focusing on
robustness.

By leveraging engineering research methodology, we identified essential aspects of mi-
croservice communication and integrated them into a unified framework. This framework,
powered by the DSL, aims to generate most of the necessary code, reducing the risk of
common pitfalls. To validate the proposed DSL and framework, we evaluate its applicabil-
ity using various open-source projects. The evaluation focuses on robustness, reusability
of interface definitions, and asynchronicity, and it demonstrates how oversights in these
projects could have been avoided. As most of the analyzed projects are only for demon-
stration purposes, the results might have limited applicability in real-world scenarios, but
on the other hand, these demonstration projects are there for a reason, so developers can
learn how to create microservice architectures. In conclusion, while the thesis presents
a promising approach to harmonize synchronous and asynchronous communication in
microservices, further research is needed, especially in areas like communication with
external services.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1
1.1 Target Audience . 2
1.2 Motivation . 2
1.3 Research Questions . 3
1.4 Evaluation . 4
1.5 Methodology . 4
1.6 Structure . 5

2 Background 7
2.1 Monothlic Architecture . 7
2.2 Microservices . 8
2.3 Synchronous Communication . 8
2.4 Asynchronous Communication . 10
2.5 Event-Driven Architecture . 10
2.6 Event Sourcing . 11
2.7 Choreography over Orchestration . 11
2.8 Idempotency . 12
2.9 Ciruit Breaker . 12
2.10 Tolerant Reader . 13

3 Related Work 15
3.1 Jolie . 15
3.2 Ballerina . 16
3.3 CORBA . 16
3.4 Microservice DSL (MDSL) . 17
3.5 MicroBuilder . 18

4 RobComDSL 19

xi

4.1 Metamodel . 19
4.2 DSL Implementation . 20
4.3 Code-Generation / Mapping . 26
4.4 Implementation . 33

5 Design Decisions 35
5.1 Querying Data . 35
5.2 Mutating Data . 40
5.3 Custom Actions . 42
5.4 Automatic Publishing / Subscribing of Events 43
5.5 gRPC . 46
5.6 Document-Based Data-Structure . 48
5.7 Tracking Changes . 50

6 Evaluation 53
6.1 Overview . 53
6.2 Robustness and Efficiency Criteria . 54
6.3 Selection Criteria for Projects . 55
6.4 Conceptual Evaluation . 56
6.5 In-Depth Evaluation / Case study . 60

7 Conclusion 67
7.1 Key findings . 67
7.2 Limitations . 68
7.3 Future Research . 68
7.4 Final Reflection . 68

List of Figures 69

List of Tables 71

List of Algorithms 73

Bibliography 75

CHAPTER 1
Introduction

After Netflix presented their microservice architecture in 2014 and shared what they
learned from a successful transition from a monolith to this new architecture, the idea of
microservices spread quickly [WKR21]. It emerged as a new architectural style that is
based on the idea of building a system as a set of small services, that are independently
deployable and communicate with each other via light-weight mechanisms, like calls
over the network [DGL+17, WKR21]. Although microservices are not a new idea, as
they are based, on service-oriented architectures (SOA), they are different in many
aspects. It focuses way more on creating highly maintainable and scalable systems with
strong emphasis on high cohesion, by breaking the complexity down into small loosely
coupled services [DGL+17]. Therefore, microservices are an option worth considering,
as nowadays, new features need to get deployed as fast as possible, due to frequently
changing business requirements. The classic monolith architecture is not suitable anymore,
and therefore, many companies switched to microservices, as they allow deploying new
features independently of each other [BZ16].

With all the benefits, there are also some major drawbacks. The most prominent one is
that microservices are inherently distributed systems, and developing and maintaining
such a system is way more complex than a monolith. We need to think about the way
how microservices can communicate, especially how we define the contracts [DGL+17].
For many years, communication happened usually via REST over HTTP, but such
synchronous communication introduces tight temporal coupling between the services,
which can lead to cascading failures and other problems [LF14, New19]. The alternative
is asynchronous communication, which gained attention in recent years. Nevertheless,
it is not a silver bullet, as it introduces new challenges, like the need for a message
broker [KS21].

1

1. Introduction

1.1 Target Audience

Our paper shows how we can make use of known techniques for communication in
microservices by creating a DSL that can be used to describe many common aspects
relevant to robust communication. As we propose a way how we could unify synchronous
and asynchronous communication, we hope that our work can be used by researchers to
investigate further on this topic. Further, we create a sample implementation of our DSL
and code generators. Hence, we believe that our work is interesting for practitioners, too.

1.2 Motivation

Bogner et al. [BFWZ19] conducted 17 semi-structured interviews with professionals that
implemented real-world microservice architectures to gain in-depth knowledge of the
hurdles they had to overcome and how the perceived software quality changed. Further,
they investigated what technologies the companies were using. Although some made
heavy use of events for communication, they stated that „. . . the de facto standard was
RESTful HTTP.“ While most of the participants felt ok with mainly using synchronous
communication, others categorized it as harmful. As we want to introduce an online shop
system in our motivating example, it is worth mentioning that Bogner et al. [BFWZ19]
had multiple interviews about projects where they replaced an of-the-shelf retail solution
with a custom one built as a microservice architecture.

In the systematic mapping study by Di Francesco et al. [DLM19], they showed which topics
are currently researched in the field of microservices. Although communication is one of
the most important aspects of microservices, due to their distributed nature [Tem20],
communication is not listed as a trending research topic. This is interesting, as Temoor et
al. [Tem20] define microservices as „the smallest independent process that communicates
via a messaging“ and according to Jamshidi et al. [JPM+18], there is a trend towards
more asynchronous communication and supporting libraries, with the goal to make
microservices more robust.

In more recent years, we can already find some papers that pay more attention to
asynchronous communication like Kul and Sayar in 2021 [KS21], but they do not focus
on how to combine both synchronous and asynchronous communication.

1.2.1 Example

To illustrate the different problems and challenges that can occur when implementing
microservices, we will use an example of a very simplified online shop system. The system
consists of two microservices: the CatalogService which is responsible for managing the
products, categories, and available stock, and the OrderService which is responsible for
managing the order process, including payment. For understanding the difficulties and
problems we want to solve, we introduce the following example scenarios (ES):

2

1.3. Research Questions

1. ES1: A customer wants to buy a product, and therefore sends a request to the
OrderService.

2. ES2: The company wants to introduce a new customer service.

When we implement the communication between the OrderService and the CatalogService
with classic synchronous REST calls to deal with ES1 after the OrderService receives
the request, it needs to check if the product is available and what the price is. So it
makes a request to the CatalogService, which checks the stock and returns the price.
This increases the latency, as the OrderService needs to wait for the response of the
CatalogService. Further, if the CatalogService is not available, the OrderService cannot
process the request. In cases which really need synchronous communication we should at
least add retries and circuit breakers to avoid cascading failures, but it is hard to ensure
that every request from every service fulfills these requirements.

If direct synchronous communication is not necessary, we could use asynchronous com-
munication. For example, an event-driven approach where the CatalogService publishes
an event when the stock changes. Then the OrderService subscribes to this event and
stores the information in its own database. So we can get rid of this temporal coupling,
but now we need to ensure that the CatalogService reliably publishes all events and
the OrderService is able to handle the events correctly. One can imagine that this is
not trivial when we have many different microservices which send many different events,
considering idempotency, retries, and so on.

In ES2, we want to introduce a new customer service that can handle user accounts, so
they do not need to enter all their information every time they want to buy something.
Further, the customer service should have all the orders a customer made, so they can
easily see what they bought in the past. Before, we already made the decision to use
event-driven, asynchronous communication, so we can easily add a new service that
listens to the already published events. However, this only works for new events, so the
customer service would not have access to all past orders. As a consequence, we need to
find a way to get the old, potentially huge amounts of, data to the customer service.

1.3 Research Questions
To deal with the problems mentioned, this thesis mainly focuses on the following research
questions:

1. RQ1 How can we design a DSL that models robust synchronous and asynchronous
microservice communication?

2. RQ2 Which types of microservices can we generate code for?

With RQ1, we aim to analyze which mistakes can be made when implementing mi-
croservice communication. We want to find best practices and patterns to avoid these

3

1. Introduction

mistakes and to make communication more robust, for synchronous and asynchronous
transmission. Further on this topic, we want to investigate which scenarios can be solved
with asynchronous communication and which ones need synchronous communication.
Then we want to find a way to combine both communication types so that we can use
the advantages of both while keeping the overhead low. This should be achieved by
designing a DSL, which can be used to model the communication between microservices,
considering the stated aspects.

RQ2 in consequence, is about creating code generators for the defined DSL, which can
generate code for different types of microservices. By doing this, we want to show that
the DSL is not only a theoretical concept, but can be used in practice. To further show
the applicability of the DSL, we want to evaluate it by analyzing open-source projects
that use microservices and show how we would model their communication with our
DSL and what pitfalls we can avoid. We do not expect to be able to generate code for
all types of microservices, and we certainly will not find a solution for every problem
that can occur when implementing communication for microservices. Nevertheless, we
want to show that we can avoid many problems by using our DSL but also make the
limitations of our DSL clear.

1.4 Evaluation
To evaluate the capabilities of our DSL, we will analyze open-source projects that use
microservices. How have they implemented their communication and what problems did
they encounter? We especially focus on robustness, reusability of interface definitions,
and asynchronicity, as these are the main goals of our DSL. Aderaldo et al. [AMPJ17]
specified criteria to evaluate microservice architecture projects. In the evaluation, we
will select applicable criteria and use them to find microservice architectures we can use
to test our DSL. Additionally, Aderaldo et al. listed four open-source projects that use
microservices that fulfill their criteria and which makes them a good example to start
with. We will use the found projects to evaluate our DSL by showing how we would
model their communication with our DSL and what pitfalls we can avoid.

1.5 Methodology
To answer our research questions, we want to apply engineering research [RbAB+21].
But first, we want to collect a list of common errors which happen when implementing
microservices. From the result of the first step, we want to identify important aspects of
microservice communication and define what is necessary to achieve them. By combining
the found concepts and methods in one framework, we want to show that it can reduce
the risk of getting them wrong since the resulting framework should generate most of the
necessary code.

To achieve these goals, we first want to create a metamodel that can be used to describe
the communication. This is then used to derive a DSL, which is applicable for our needs.

4

1.6. Structure

The DSL is intentionally kept simple, but should still meet our stated requirements.

As this DSL should be used to configure the proposed framework and generate code, we
are going to create a sample implementation for the framework and the code generators
too. To validate our results, we plan to analyze some existing microservice projects with
the identified errors from the first step and show how they could have avoided these
errors by using our framework.

1.6 Structure
The remainder of this thesis is structured as follows: Chapter 2 introduces the background
of microservices and the problems we want to solve. Chapter 3 presents related work,
showing how other researchers have tried to solve similar problems we want to solve
and how our approach differs from theirs. The metamodel and DSL are presented in
Chapter 4, which also includes a description of how we implemented the framework.
Chapter 5 explains the design decisions we made and why we made them, so it also
explains how our framework works. In Chapter 6, we evaluate our framework by going
through some open-source projects in detail. Finally, Chapter 7 concludes this thesis,
lists the limitations, and gives an outlook on future work.

5

CHAPTER 2
Background

For a better understanding of the following chapters, this chapter will define important
concepts around microservices. It will also give an overview over the current state of the
art for microservice architectures, their benefits and challenges.

2.1 Monothlic Architecture
Traditionally, software applications are developed as a single unit. As these can get quite
large, projects are often divided into modules, but in the end, they still share the same
resources on one machine. This is the way software has been developed for decades and
therefore has good support in most programming languages and frameworks [DGL+17].

Especially in the beginning, monoliths are easy to develop because they are just one
application. However, while the application grows, it becomes harder to maintain and
extend, as a developer often has to understand the whole, or at least large parts of the
application to make changes. It is easy to break the application without knowing how
things are connected. Updates of dependencies, like external libraries, could also be a
problem due to the lack of knowledge of how the application is using them. Sometimes
such an update may only break the application only in certain edge cases [DGL+17].

As a monolith is one application, it is also deployed as one application. The clear
benefit of this is that the deployment process is simple and straightforward. On the
other side, every time something is changed, the whole application has to be redeployed.
Large applications can take a long time to deploy, which can be problematic when the
application is used in production [DGL+17].

Later we will see that microservices are scaled by running multiple instances of the same
service. For monoliths, this is often hard and very expensive, as the whole application has
to be run multiple times, although only parts of it are under heavy load. Additionally,
when building a monolithic application, synchronization for ensuring consistency is easy,

7

2. Background

as all parts of the application are using the same resources. When running multiple
instances of the same application, this is not the case anymore. This results in the need
that a monolith has to be designed in a way so it can be run multiple times without
breaking consistency [DGL+17].

2.2 Microservices
Inspired by service-oriented architecture (SOA), microservices are a software architecture
pattern that structures an application as a collection of loosely coupled and cohesive
services. Each service is a small, independent process, and they communicate with
each other with messages. A microservice architecture is an inherently distributed
system with all its benefits and challenges. Without forbidding or defining a certain
programming paradigm, it provides a set of guidelines and principles that help to build
independent services which should fulfill one purpose. Due to their limited scope of
functionality, microservices are easier to understand and maintain than monoliths. Testing
and examining the functionality of a service is straightforward because it is independent
of other services [DGL+17].

In terms of deployment, microservices are prone to be shipped as containers (e.g. Docker
containers), which makes it easy to deploy them on different machines. As a result,
scaling is simple. Only the services that are under heavy load have to be scaled. By
allowing to run multiple instances of the same service, microservices can not only be
scaled horizontally, but also allow to run different versions of the same service at the
same time. When done right, this allows updating services without downtime because
the old version can be shut down after the new version is up and running. In particular,
they can even run side by side for some time to allow other services to adapt to the new
version [DGL+17].

2.3 Synchronous Communication
Communication between services is a key aspect of microservice architectures. The
medium over which services communicate is the network [ALFT21]. One popular example
of a protocol that is used for communication over the network is HTTP. This fact alone
does not make the communication synchronous, but rather the fact that a sender waits
for the server’s response before continuing with its execution. It should be noted that
this is the case even if the code is asynchronous (non-blocking) [MJBC22].

So what is the reason that synchronous communication is the de-facto standard for
communication between services [BFWZ19]? An explanation could be due to the request-
response pattern synchronous communication being real-time by nature. This means
that the sender can be sure that the receiver has received the message and processed
it. Moreover, this kind of communication is easy to reason about and can be used for
time-sensitive tasks [MJBC22].

8

2.3. Synchronous Communication

On the other hand, synchronous communication has some drawbacks. When creating
request chains, where one service calls another service, which calls another service, and
so on, it results in a dependency chain. So if any of these services are unavailable or at
peak load, the whole chain is affected [New19]. One contradiction to mention is that
synchronous communication is often used due to its fast responses, but by creating such
request chains, we introduce a lot of latency, which in turn makes the response slow.

Two commonly used protocols for synchronous communication are REST and RPC.

2.3.1 REST

Representational State Transfer (REST) is a popular protocol for communication over the
network. It is based on the HTTP protocol and uses its methods to perform actions on
resources. The most common methods are GET, POST, PUT and DELETE [HSYK18].
The communication is stateless, which means that the server does not store any infor-
mation about the client. This is especially important when having multiple instances of
the same service. Also, the error handling is simple, as a failed request can be retried.
A downside is by always transferring the whole state of a resource, REST is not very
efficient when it comes to bandwidth [Fie00]. Often the data is encoded in JSON which
itself is also not very efficient as it is only text. Yet, on the other hand, it is an advantage
because it makes it very compatible across many different technologies.

As REST is for communication between a client and a server (the client sends a request
to the server), it is necessary that the implementation of both sides align. The client has
to know the structure of the request and the response, and the server has to know how
to handle it. To not have to implement this logic twice, it is common to use a tool like
OpenAPI. It is a standardized specification language for REST APIs that is independent
of the programming language and framework. YAML or JSON are used to describe the
API, and from this description, the client and server code can be generated. This is called
API-first approach, but there is also a code-first approach, where the API is generated
from the code [Fou23].

2.3.2 RPC

Remote Procedure Call (RPC) is a concept that allows a program to execute a function on
a remote machine. The goal is to make the remote function call look like a local function
call while transmitting control and data over the network in an efficient manner. For
strong typing, it is necessary that there are stubs on the client side and skeletons on the
server side at compile time. When a remote function is called, the client stub transparently
forwards the call to the server and therefore abstracts the network communication [SG01].
Nevertheless, one has to be very careful when using RPC, as these calls are over the
network and, therefore, can fail, are slow, and so on. When moving from a monolith to
a microservice architecture, and only replacing the calls to local functions with remote
calls, we introduce way too much communication over the network, which will lead to

9

2. Background

performance issues. In conclusion, rethinking the communication is necessary to use
remote procedure calls in moderation [LF14].

One popular implementation of RPC is gRPC, a high-performance and platform-agnostic
framework for RPC developed by Google. The interfaces are defined using Protocol
Buffers, which serialize the data in a binary format, so it is more efficient than JSON.
These definitions are used to generate client and server code [Goo23a].

2.4 Asynchronous Communication
In the often-cited article from Lewis and Fowler published in 2014, they state that
synchronous calls between services are problematic, as they can lead to cascading
failures [LF14]. This is nothing new, as already in 2001, long before microservices were
a thing, Saif and Greaves introduced the idea that synchronous communication is not
a good fit for distributed systems, and we should rather use asynchronous messages
instead [SG01]. To decouple services from each other in terms of time and synchronization,
asynchronous communication is used. In opposition to synchronous communication, the
sender does not communicate with the receiver directly, but rather sends a message to
a message broker, which then delivers the message to the receiver when the receiver is
ready to process it. This way, the sender does not have to wait for the response of the
receiver and can continue with its execution. Another benefit over direct, synchronous
communication is the possibility of many-to-many communication, as the sender does not
have to know who is listening to the message. This makes it a good fit for a distributed
system like microservices [KS21].

With the publish/subscribe paradigm, the notion of topics is introduced. The topics
are used to categorize messages so that the sender can send a message to a topic, and
all subscribers of this topic will receive it. Thereby, the sender does not have to know
who is listening to the topic, and the subscribers do not have to know who is sending
the message. So it can be that a topic does not have any subscribers, which means that
messages to this topic do not get consumed. Besides this topic-based approach, there
is also a content-based approach, where the subscribers can define filters so that they
only receive messages that match the filter. The linking piece in this approach is the
message broker. Depending on the filtering approach, it distributes the messages to the
subscribers [KS21]. Due to the asynchronous nature, it is not guaranteed that the system
is always consistent, and therefore it is eventually consistent [KS21].

2.5 Event-Driven Architecture
Event-Driven Architecture (EDA) is a software architecture pattern that promotes the
production, detection, consumption, and reaction to events. Thereby, these events get
distinguished into three categories: commands, events, and queries. When a service wants
another one to do something that changes the state of the system, it sends a command.
The receiver of the command is responsible for handling it and maybe sends a response

10

2.6. Event Sourcing

back. Events, on the other hand, are a notification that something has happened. So
they are published by a service that has changed the state of the system, independent of
who is listening. This means events do not request any action, but it could be that a
service reacts to a given event, yet, there is no response to it. Queries are used to request
information from a service, which then responds with a result. Unlike the other two,
queries have no side effects [Sto18].

All this is done in order to create loosely coupled services that are independent of each
other. To achieve this, it is important to share as little as possible so no other service
can couple to it. Through the use of messaging, data gets distributed, so a subscriber
does not need to perform an action on the source but rather can perform it on the stored
data [Sto18].

2.6 Event Sourcing
When all changes to the state of an application are published as an event, the events
describe the history of the application. When these are now immutably stored in the
order they occurred, it results in an event log. Event sourcing is a pattern that uses this
event log as the source of truth [Sto18]. Due to the fact that processing all the events
can be quite expensive, it is common to store the current state of the application as a
snapshot [Fow17]. It is always possible to replay the events to get the current state of
the application, which leads to a corruption-resistant system [Sto18]. Event sourcing
offers many benefits which are similar to those of a version control system, and it is often
used in combination with CQRS. On the negative side, it is more complex to implement
and understand, and there is the problem with replaying events that depend on external
services. Another non-trivial aspect is that the schema of the data can change over time,
which has to be taken into account when replaying events [Fow17].

2.7 Choreography over Orchestration
Besides the type of communication, there are also different ways how services can
communicate with each other. These communication patterns describe how the services
are connected and how they interact with each other. We can see this as a spectrum, where
on one side, we have orchestration and on the other side, choreography. Orchestration
is a centralized approach, where a handful of services are responsible to coordinate the
communication and, by extension, whole business processes. In the days of SOA, this
approach was often used, as it was easy to implement and understand. Unfortunately,
orchestration increases the coupling between services and responsibilities get taken away
from some services and transferred to orchestrators, which leads to a loss of autonomy.

As microservices are all about decentralization and autonomy, choreography is used
to embrace these principles and allow for collaboration. In choreography, services are
communicating with each other directly, without a central instance that orchestrates
the communication. Publish/Subscribe mechanisms are a good fit for this. As already

11

2. Background

stated, they allow services to subscribe and publish events without knowing who is
listening [DGL+17, KS21].

2.8 Idempotency

Idempotency is a property of a function, which defines that the result of the function
does not change when the function is called multiple times with the same input. So an
action is idempotent if it can be performed multiple times, but it has the same effect
as if it would be performed only once. In practice, it is a bit more complicated. For
example, if we have a function that writes something to the log, then the log message
will be in the log multiple times. The same counts for the usage of resources. But for our
purposes, we can say that it is enough if the result of the function does not change, even
if the function has other side effects.

Idempotency is important in distributed systems, as we cannot guarantee that a message
is only delivered once. Multiple deliveries of messages can happen due to network, or
other failures, which lead to a retry. When using message brokers, it is not always
possible to guarantee that a message is only delivered once, and there can also be retries
due to failures. What makes it even more complicated to enforce idempotency is that in
a microservice architecture, we can have multiple instances of the same service, which
means that the same message can be delivered to multiple instances of the same service.
This can, for example, happen as a result of load balancing [Hel12].

One way to solve this problem is to give each message a unique identifier, which is stored
somewhere, for example, in a database. When a message is received, the identifier is
checked against the database, and if it is already there, the message is discarded. However,
implementing this manually is a lot of work, and can lead to subtle bugs [RV13].

2.9 Ciruit Breaker

The Circuit Breaker pattern is a popular microservices pattern that plays a crucial role
in enhancing the robustness and resilience of distributed services. When using reties, it
is always a good idea to use circuit breakers, as a failing service can be easily overloaded
with retries and therefore hindered from recovering. A further goal of circuit breakers is
to prevent failure propagation to dependent services. This is accomplished by refusing
incoming requests when a specific condition, like a system overload, is fulfilled, thereby
safeguarding system latency at the cost of reduced availability. Another advantage of
circuit breakers is that they can lead to faster failures and, therefore, faster recovery, as
resources get freed up [SSKT22].

Even when auto-scaling is used, it is possible that the system is overloaded, maybe due
to a sudden spike in traffic. This is owed to the fact that, typically the auto-scaling takes
some time to react to the increased load. Hence a circuit breaker allows for a faster

12

2.10. Tolerant Reader

reaction. It must be kept in mind that circuit breakers are a trade-off between availability
and latency, as they can lead to reduced availability [SSKT22].

2.9.1 Client-Side Circuit Breaker
The client-side circuit breaker is implemented in the client, and therefore the client
is responsible for handling the failures. This is done by intercepting all the requests
to a given service [SSKT22]. Consequently, the client-side circuit breaker is only for
self-limiting and helps more to prevent the client from getting overloaded.

2.9.2 Server-Side Circuit Breaker
The server-side circuit breaker is implemented in the service. After a server receives
a request, it first goes through the circuit breaker, which checks if the request can be
processed. If the circuit breaker is closed, the request is processed, and the response gets
sent back to the client [SSKT22]. Due to these facts, the server-side circuit breaker still
adds additional load to the server, even when it is open.

2.9.3 Proxy-Based Circuit Breaker
The third approach is the proxy-based circuit breaker. These circuit breakers are
standalone services that are placed between the client and the service. Therefore, all
communication between the client and the service goes through the proxy, which adds an
additional hop and as a result can increase latency [SSKT22].

2.10 Tolerant Reader
The tolerant reader principle, as explained by Martin Fowler, is a crucial concept in the
world of microservices, which aims at reducing the coupling between different parts of
a system. While some degree of coupling is inevitable due to the need for services to
communicate via interfaces, many teams exacerbate this coupling unnecessarily. In this
context, Postel’s Law [Pos81] can be applied, which states that a system should be as
tolerant as possible when it comes to the input it receives, but as strict as possible when
it comes to the output it produces. This means that a system should be able to handle
input that is not exactly what it expects, by only using the parts of the input it needs,
and ignoring the rest. In particular, this principle is relevant when services need to evolve
over time. Because service definitions will inevitably need to change, it is important to
design services in a way that minimizes disruption. Additionally, it is wise to have all
communication with a service in one place which translates the external interface to the
internal interface. This way, if the external interface changes, only the communication
layer needs to be changed, and the internal interface can remain the same [Fow11].

13

CHAPTER 3
Related Work

In the ever-evolving field of microservices, numerous approaches have been proposed to
tackle the challenges of communication. This chapter presents some of the most relevant
approaches and compares them to ours.

3.1 Jolie
Jolie is a service-oriented programming language that is based on the service-oriented
programming paradigm. Most traditional programming languages are designed for
computations on a single machine and need different frameworks or libraries to create
abstractions for communication and coordination between services. Jolie wants to solve
this problem by providing native abstractions for managing these aspects and composing
services. This way they want to change the way how developers think about services
and make the development easier. To achieve these goals, they are heavily focusing
on API design and contracts. As a result, it is possible to develop everything as a
monolithic service, and if needed, some parts can be extracted and deployed as separate
microservices on another machine. In terms of communication, they support synchronous
as well as asynchronous, and it is protocol agnostic, with many mainstream protocols
already included [GGM23]. A Jolie program consists of two parts, the deployment
description and the behavior description. The deployment description is used to describe
the interfaces. Further, this means what operations the service can handle, as well as
the request and response types. Next, it is possible to define the protocol and port
on which the service is listening. The behavior description is used to describe, as the
name suggests, the actual behavior/functionalities of the service. This part consists of
computations, but also communication with other services, which, as stated before, can
be request-response aka. synchronous or one-way aka. asynchronous [SMMR16].

Although Jolie is a great tool, Casale et al. [CAvdH+20] criticized that the need for a
custom interpreter could be a problem in the future due to vendor lock-in. Additionally,

15

3. Related Work

there is no possibility to define dependencies for a function. This is a problem when
functions are extracted to run as separate services.

While Jolie wants to rethink the way we formalize microservice definition and communica-
tion by introducing a new programming language, we opt for a more pragmatic approach
by reusing existing technologies. First of all, it reduces the need for developers to learn a
new language, which is not always easy, and often they do not want to. Second, it allows
using existing libraries and frameworks. As this is not the case for Jolie, it is unlikely
to introduce Jolie in an already existing project. We want to provide a solution where
it is possible to describe the communication between services in a language-agnostic
way, which then can be used to generate the code. In addition, we want to combine
synchronous and asynchronous communication, so it is possible to let the developer or
framework decide which communication mode should be used in a given situation.

3.2 Ballerina
Similar to Jolie, Ballerina is a programming language that is designed for writing network-
distributed applications. In fact, it can be used to model applications that heavily rely
on communication over the network. Yet it provides ways to orchestrate the system in
a reliable way. The language has many great features like null-safety or explicit error
handling. Another feature that is absent in most mainstream languages is that it can
represent its code as a sequence diagram, to easier understand how the services interact.
Although there exists an own virtual machine where Ballerina code can run, due to
performance issues, it mostly runs on the JVM (Java Virtual Machine). This means that
it is possible to extend it with Java code, but then the visualization with the sequence
diagram falls apart [WSO23, WEPL18].

Considering these facts, the argument against Jolie is also true for Ballerina. It is a
completely new programming language, which means that developers have to learn it.
We also want to point out that by having the code of multiple services in one project,
it contradicts some key principles of microservices. At which point is a system still a
microservice architecture, and when is it a distributed monolith?

3.3 CORBA
A somewhat older approach is CORBA, the Common Object Request Broker Architecture,
with its first version introduced in 1991 [Gro23]. One big goal of CORBA was to
make communication possible between programs developed in different languages long
before microservices were a thing, therefore, concepts like loose coupling were not
considered [Hen06]. Communication is mainly done synchronously, but it is also possible
to send async messages [A+98]. Although CORBA has been around for a long time, it is
not particularly popular. This has to do with its complexity and problems with firewalls
that established web services do not have [Mes12]. Henning [Hen06] stated that some of
the initial object services specifications were not only complicated but also lacked any

16

3.4. Microservice DSL (MDSL)

practical use. Further, commercial use was quite expensive, and the learning curve was
steep [Hen06].

Compared to our approach, CORBA was not designed with microservices in mind, and
it does not support an event-driven architecture. Our goal is to make it way simpler
to choose and switch between communication modes and make developing decoupled
microservices as easy as possible, which is not the case with CORBA.

3.4 Microservice DSL (MDSL)

MDSL is a domain-specific language for describing microservices, which is an abstraction
over other definition languages like OpenAPI, WSDL, or Protobuf. It supports defining
data types which are the data transfer objects (DTOs), and operations which consist
of an expected input and a provided output type. Additionally, it is possible to define
the endpoint, the location and the communication protocol with protocol-specific details
in a construct called provider. An operation can get bound to a provider, which means
that the operation is available on the endpoint of the provider. The clients need to be
declared separately, and they contain the information on which endpoint from which
provider they want to use [Zim18].

One drawback of MDSL is that it is not possible to define asynchronous communication.
Therefore, Liberali introduced an extension for MDSL called AsyncMDSL [Lib20], which
is at the time of writing in a technical preview state. This extension allows defining
asynchronous communication in a similar way as MDSL allows for synchronous commu-
nication and therefore is suitable for defining message-queue-based communication. The
main difference is that there is no response defined, as the client does not get one back
from the server. Moreover, it allows for defining a channel with additional properties for
its intended usage like point-to-point or publish-subscribe and other useful properties
like expiration time or quality of service. Message brokers like RabbitMQ or Kafka can
be used as providers, which expose channels defined before. In the end, AsyncMDSL is
used to generate an AsyncAPI definition, which then can be used to generate the code.

At first glance, MDSL and AsyncMDSL seem to be quite similar to our approach. But
there are some key differences. First of all, there is still a strict separation between
synchronous and asynchronous communication, which we want to avoid by allowing
a unification of both communication modes. Second, clients and servers are defined
separately, which is a bit confusing, as, in the end, an OpenAPI or AsyncAPI definition
is generated, which does not have this separation anyway. This leads to unnecessary
complexity and makes it harder to understand. We not only want to avoid this but
rather add some syntactic sugar to make it easier to define common patterns like CRUD
operations. As stated before, robustness is a key aspect of microservices, and therefore we
want to add the option for defining aspects relevant to robustness like retries or timeouts.

17

3. Related Work

3.5 MicroBuilder
MicroBuilder can be used to define and generate code for REST-API-based microservices.
One part of MicroBuilder is the MicroDSL, a domain-specific language defined with the
Eclipse Modeling Framework. The metamodel is defined in Ecore, and they provided a
concrete syntax with Xtext. All the concepts are centered around RESTful communication
between microservices [TDKA+17].

The second part of MicroBuilder is the code generator, which generates code for the
microservices based on the MicroDSL definition. They call it MicroGenerator and the
included code generators are created with Xtend. As the generated code is based on
Spring Boot, the programming language in use is Java. Moreover, they make use of
multiple tools for service discovery, load balancing, and resilient communication. The
resulting code contains interfaces for a REST API, with insert, update, and delete
operations. In their paper, they also included a table that compares how many lines of
code they were able to save by using MicroBuilder [TDKA+17].

In comparison to our approach, MicroBuilder is fully focused on REST APIs. It is
not possible to define asynchronous communication. MircoDSL also allows defining
connection details like URLs and ports, which are not part of our approach, as we want
to keep the communication details out of the definition. There are some similarities like
MicroBuilder provides CRUD operations out-of-the-box. We will do this too, as we also
want to reduce the amount of code the developer has to write. Continuing with the
similarities, they provide some concepts for robustness like circuit breakers. However,
they do not allow for configuring these aspects in their DSL.

18

CHAPTER 4
RobComDSL

In order to solve the stated problems, we propose a DSL for describing the services and
the communication interfaces. We call this DSL RobComDSL. First, we present an
abstract metamodel as a diagram to give an overview of how the DSL is structured and
what it can describe. Then we show a concrete implementation of the DSL based on
JSON, so existing tools and parsers can be utilized. Finally, we describe how the DSL is
used to generate the source code for the services.

4.1 Metamodel
The metamodel depicted in Figure 4.1 shows the main concepts of the DSL. A service
definition describes which data a particular service owns and which actions can be
performed on it. The data is described by the model, which comprises a list of fields
that in turn can be primitive types or child models. As a consequence, the data model
is a tree structure similar to a document in a document database. This comes with
all the advantages and drawbacks known from this kind of data storage. In particular,
it is not possible to define relations between models apart from the tree-structured
child-parent relations. More on this in Section 5.6. As can be seen in the figure, a service
definition contains a second way to describe data. This definition is for data transfer
objects (DTOs) which are only used to transfer data between services and do not get
stored in the database. Basically, this is the main difference between models and DTOs.
The actions, which are also a part of the model, have such DTOs as input and output
parameters. CRUD (create, read, update, delete) operations are implicitly defined for
every model. Every other operation needs to be defined as an action. In addition, the
model contains a configuration comprising the description of which criteria in terms of
robust communication have to be fulfilled when communicating with the service.

The configuration shown at the top of Figure 4.1 contains the own service definition,
besides that it also contains a list of other service definitions of services it depends on.

19

4. RobComDSL

These are the services, which a service wants to communicate with. As it may not be
interested in all the models of a related service, it is possible to specify which data
a service should receive from the other service. Moreover, a selection of fields can be
supplied in order to only store a subset of the data. Lastly, the configuration contains a
list of key-value pairs which can be used to configure how the source code of the service
should be generated.

4.2 DSL Implementation
The DSL is implemented in JSON because it is a well-known and easy-to-use format. Yet
it is easy to parse, there are many libraries for different programming languages available,
and the tooling support is mature. For defining the structure of the JSON document, we
use a simplified BNF (Backus-Naur form) notation. Besides other JSON specific details,
it omits, for better readability, the definition of whitespaces or the definition of number
representations.

The definition is split into multiple files. This is done due to the reason that the
configuration is specific to a certain service, while the service definition needs to be
shared between services. Every service has its own service definition which is used to
generate the controllers and the models. In addition, every service can have multiple
other service definitions, of services it depends on, and therefore are used to generate the
clients. As a result, every service definition is stored in a separate file, so it is easy to
share it by copying or linking the whole file and not having to copy parts of a file. These
service definition files follow this structure:

⟨ServiceDefinition⟩ ::= \{
⟨ServiceNameProp⟩,
⟨ModelsProp⟩,
⟨DTOsProp⟩

}

⟨ServiceNameProp⟩ ::= "serviceName": ⟨String⟩

⟨ModelsProp⟩ ::= "models": { ⟨Models⟩ }

⟨Models⟩ ::= ⟨Model⟩
| ⟨Model⟩, ⟨Models⟩

⟨Model⟩ ::= ⟨String⟩: {
⟨PluralNameProp⟩,
⟨FieldsProp⟩
(, ⟨ActionsProp⟩)?
(, ⟨ConfigProp⟩)?

}

20

4.2. DSL Implementation

serviceDefinitiondependencies (1:n)

Config

models (1:n)

dtos

Service Definition

serviceName: String
definition

subscribedModels (1:n)

hints (1:n)

Service Dependency

RequestType

Synchronous

StaleWhileRevalidate

EventDriven

Adaptive

Subscribed Model

modelName: String

requestType: ReqeustType

fields: String[]

Generation Hint

key: String

value: String

fields (1:n)
config

actions (1:n)

Model

name: String

pluralName: String

fields (1:n)

Dto

name: String

Field

name: String

nullabel: Boolean

creatable: Boolean

modifiable: Boolean

FieldType

Id

Number

Integer

Currency

Boolean

String

Timestamp

Bytes

Simple Field

type: FieldType

fields(1:n)

Object Field

name: String

items

Array Field

name: String

retry

rateLimit

timeout

Communication ConfigcircuitBreaker

Retry Config

maxRetries: Integer

exponentialDelayMs: Integer

Circuit Breaker Config

maxFailures: Integer

breakDurationMs: Integer

Rate Limit Config

maxRequests: Integer

durationMs: Integer

Timeout Config

durationMs: Integer

requestType

syncResponseType

Custom Action

name: String

Dto Field

name: String

nullabel: Boolean

Simple Dto Field

type: FieldType

fields(1:n)

Object Dto Field

name: String

items

Array Dto Field

name: String

Figure 4.1: Diagram of RobCom metamodel

21

4. RobComDSL

⟨PluralNameProp⟩ ::= "pluralName": ⟨String⟩

⟨FieldsProp⟩ ::= "fields": { ⟨Fields⟩ }

⟨Fields⟩ ::= ⟨FieldProp⟩
| ⟨FieldProp⟩, ⟨Fields⟩

⟨FieldProp⟩ ::= ⟨String⟩: ⟨Field⟩

⟨Field⟩ ::= ⟨SimpleField⟩
| ⟨ObjectField⟩
| ⟨ArrayField⟩

⟨SimpleField⟩ ::= {
⟨TypeProp⟩
(, ⟨NullableProp⟩)?
(, ⟨CreatableProp⟩)?
(, ⟨ModifiableProp⟩)?

}

⟨ObjectField⟩ ::= {
"type": "object",
⟨NameProp⟩,
⟨FieldsProp⟩
(, ⟨NullableProp⟩)?
(, ⟨CreatableProp⟩)?
(, ⟨ModifiableProp⟩)?

}

⟨ArrayField⟩ ::= {
"type": "array",
⟨ItemsProp⟩
(, ⟨NullableProp⟩)?
(, ⟨CreatableProp⟩)?
(, ⟨ModifiableProp⟩)?

}

⟨TypeProp⟩ ::= "type": ⟨String⟩

⟨NullableProp⟩ ::= "nullable": ⟨Boolean⟩

⟨CreatableProp⟩ ::= "modifiable": ⟨Boolean⟩

⟨ModifiableProp⟩ ::= "modifiable": ⟨Boolean⟩

22

4.2. DSL Implementation

⟨ItemsProp⟩ ::= "items": ⟨Field⟩

⟨NameProp⟩ ::= "name": ⟨String⟩

⟨ActionsProp⟩ ::= "actions": { ⟨Actions⟩ }

⟨Actions⟩ ::= ⟨Action⟩
| ⟨Action⟩, ⟨Actions⟩

⟨Action⟩ ::= ⟨String⟩: {
⟨RequestTypeProp⟩,
⟨SyncResponseTypeField⟩

}

⟨RequestTypeProp⟩ ::= "requestType": ⟨String⟩

⟨SyncResponseTypeField⟩ ::= "syncResponseType": ⟨String⟩

⟨ConfigField⟩ ::= "config": {
(⟨RetryField⟩)?
(, ⟨CircuitBreakerField⟩)?
(, ⟨RateLimitField⟩)?
(, ⟨TimeoutField⟩)?

}

⟨RetryField⟩ ::= "retry": {
"max": ⟨Integer⟩,
"exponentialDelayMs": ⟨Integer⟩

}

⟨CircuitBreakerField⟩ ::= "circuitBreaker": {
"maxFailures": ⟨Integer⟩,
"breakDurationMs": ⟨Integer⟩

}

⟨RateLimitField⟩ ::= "rateLimit": {
"max": ⟨Integer⟩,
"durationMs": ⟨Integer⟩

}

⟨TimeoutField⟩ ::= "timeout": ⟨Integer⟩

⟨DTOsField⟩ ::= "dtos": { ⟨DTOs⟩ }

⟨DTOs⟩ ::= ⟨DTO⟩
| ⟨DTO⟩, ⟨DTOs⟩

23

4. RobComDSL

⟨DTO⟩ ::= ⟨String⟩: { ⟨DtoFieldsProp⟩ }

⟨DtoFieldsProp⟩ ::= "fields": { ⟨DtoFields⟩ }

⟨DtoFields⟩ ::= ⟨DtoFieldProp⟩
| ⟨DtoFieldProp⟩, ⟨DtoFields⟩

⟨DtoFieldProp⟩ ::= ⟨String⟩: ⟨DtoField⟩

⟨DtoField⟩ ::= ⟨SimpleDtoField⟩
| ⟨ObjectDtoField⟩
| ⟨ArrayDtoField⟩

⟨SimpleDtoField⟩ ::= {
⟨TypeProp⟩
(, ⟨NullableProp⟩)?

}

⟨ObjectDtoField⟩ ::= {
"type": "object",
⟨NameProp⟩,
⟨DtoFieldsProp⟩
(, ⟨NullableProp⟩)?

}

⟨ArrayDtoField⟩ ::= {
"type": "array",
⟨DtoArrayItemsProp⟩
(, ⟨NullableProp⟩)?

}

⟨DtoArrayItemsProp⟩ ::= "items": ⟨DtoField⟩

To define which service definition is the own one, and which are the dependencies,
the configuration file is used. This is done by defining the file name, or list of file
names respectively, of the service definitions. It also contains the definition, which
models of a dependent service are used and which fields of the model should be stored.
This determines how the clients are generated. Simply deleting the models or fields
from the copied service definition might break the generated code and is therefore not
recommended. For example, if protobufs are used, the index of the fields depends on
the order in the service definition, hence removing a field would change the index of all
following fields, and consequently communication between the services will not work.
It would also complicate the versioning of the service definitions, as someone needs to
remove all unused models and fields, every time the source service definition changes and
gets copied to the dependent service.

24

4.2. DSL Implementation

Furthermore, it contains „generation hints“ which are used to configure the generation
of the source code. As this is designed to hold implementation-specific information, it is
not further specified how this should be used. Summing everything up, the configuration
file has the following structure:

⟨RobComConfig⟩ ::= {
⟨ServiceDefinitionProp⟩
(, ⟨DependenciesProp⟩)?
(, ⟨GenerationHintsProp⟩)?

}

⟨ServiceDefinitionProp⟩ ::= "serviceDefinition": ⟨String⟩

⟨DependenciesProp⟩ ::= "dependencies": [⟨Dependencies⟩]

⟨Dependencies⟩ ::= ⟨Dependency⟩
| ⟨Dependency⟩, ⟨Dependencies⟩

⟨Dependency⟩ ::= {
⟨DependencyServiceDefinitionProp⟩,
⟨SubscribedModelsProp⟩

}

⟨DependencyServiceDefinitionProp⟩ ::= "serviceDefinition": ⟨String⟩

⟨SubscribedModelsProp⟩ ::= "subscribedModels": [⟨SubscribedModels⟩]

⟨SubscribedModels⟩ ::= ⟨SubscribedModel⟩
| ⟨SubscribedModel⟩, ⟨SubscribedModels⟩

⟨SubscribedModel⟩ ::= {
⟨ModelProp⟩,
⟨RequestTypeProp⟩
(, ⟨FieldsProp⟩)?

}

⟨ModelProp⟩ ::= "model": ⟨String⟩

⟨RequestTypeProp⟩ ::= "requestType": ⟨RequestType⟩

⟨RequestType⟩ ::= "Synchronous"
| "StaleWhileRevalidate"
| "EventDriven"
| "Adaptive"

25

4. RobComDSL

⟨FieldsProp⟩ ::= "fields": [⟨Fields⟩]

⟨Fields⟩ ::= ⟨Field⟩
| ⟨Field⟩, ⟨Fields⟩

⟨Field⟩ ::= ⟨String⟩

⟨GenerationHintsProp⟩ ::= "generationHints": { ⟨KeyValuePais⟩ }

⟨KeyValuePais⟩ ::= ⟨KeyValuePair⟩
| ⟨KeyValuePair⟩, ⟨KeyValuePais⟩

⟨KeyValuePair⟩ ::= ⟨String⟩: ⟨String⟩

To give an example of what this would look like in practice, we show the service definition
in Figure 4.2 for the OrderService introduced in Section 1.2.1. Further, the configuration
for the OrderService is shown in Figure 4.3. The OrderService has one model called
„order“ which has the fields „orderNumber“, „orderDate“, „customerId“ and „items“,
which is an array of objects. In this example, the number is automatically generated and
therefore cannot be set by the client and only the customer id is allowed to be empty, so
guests can order too. In the configuration, it is defined that the OrderService depends
on the ProductService and that it is interested in the „product“ model.

4.3 Code-Generation / Mapping
To make use of the DSL, we need a framework that parses the DSL and provides the
necessary functionality. We decided to heavily rely on code generation, as it allows us to
implement the framework for basically every programming language. The only alternative
would be to use some kind of metaprogramming, which is not available in every language.

4.3.1 Models
With RobComDSL we can describe tree-structured models of a service, consequently, we
need to recursively generate the model classes from the DSL. In order to do so, a new
file is generated for every model. To keep it simple, the class name is the name of the
model. Next, some default fields are added to the classes, which are an id, the created
and updated timestamp, and the cumulative hash (Section 5.4.2). The generated classes
also contain the fields of the models as attributes and getters and setters for them. The
equals method is also generated, which compares the id of the model.

4.3.2 Change Detection Proxies
As the RobCom framework automatically publishes changes when a model is updated, it
needs to know which fields have changed. To do so, proxies get generated which wrap the

26

4.3. Code-Generation / Mapping

{
"serviceName": "OrderService",
"models": {

"order": {
"pluralName": "Orders",
"fields": {

"orderNumber": {
"type": "string", "modifiable": false, "creatable": false

},
"orderDate": { "type": "timestamp", "nullable": false },
"customerId": { "type": "id" },
"items": {

"type": "array",
"nullable": false,
"items": {

"type": "object",
"name": "orderItem",
"fields": {

"productId": { "type": "id", "nullable": false },
"quantity": { "type": "number", "nullable": false },
"price": { "type": "number", "nullable": false }

}
}

}
// ...

}
}

}
}

Figure 4.2: Example service definition for the OrderService

27

4. RobComDSL

{
"serviceDefinition": "OrderService.json",
"dependencies": [

{
"serviceDefinition": "ProductService.json",
"subscribedModels": [

{
"model": "product",
"requestType": "EventDriven",
"fields": ["name", "price"]
}

]
}
// ...

],
"generationHints": {

// ...
}

}

Figure 4.3: Example configuration for the OrderService

model classes and track the changes. These proxies have the same attributes as the model
classes. The getters simply return the value of the field, while the setters set the value
and mark the field as changed. For child objects, the proxies also wrap the child object,
so their changes can be tracked recursively. The most complex part of the proxies are
fields that hold arrays of child objects. A replacement of an array can be detected easily,
by the setter methods, and the modification of a child object can be detected by the
proxy of the child object. Nevertheless, the addition or removal of a child object is more
difficult to detect. As a consequence, the returned array needs to be wrapped in an array
change detection proxy, which contains separate arrays for added and removed objects.
All these change detection proxies have methods to check if changes have occurred and to
get the changes. A simplified example of a change detection proxy is shown in Figure 4.4.

4.3.3 DTOs

To transfer data between services, DTOs are used. There are separate DTOs for creating,
updating, deleting and reading a model and for a full response, a change response or a
delete response. In the DSL, it is possible to define which fields are needed for which
DTOs, by setting the creatable, or updatable attribute of a field. These fields are excluded
from the respective DTOs. The default fields are again added to the DTOs like it is
done for the models. It should be noted that the same DTO can and should be used
for synchronous and asynchronous communication. As we decided to use protobufs

28

4.3. Code-Generation / Mapping

public class OrderChangeDetectionProxy: Order,
IEntityChangeDetectionProxy<Order>

{
private bool _orderDateChanged;
// other changed flags for fields ...
public Order Entity { get; init; }
public bool HasChanged {

get { return _orderDateChanged || ... }
}

public override DateTime OrderDate {
get {

return Entity.DateTime;
}
set {

if(Object.Equals(Entity.OrderDate, value)) return;
_orderDateChanged = true;
Entity.OrderDate = value;

}
}
// other properties ...

public string GetCumulativeSha256Hash()
{

// see Algorithm 5.1
}

}

Figure 4.4: Example Change Detection Proxy for Order Model

(Section 5.5) for the communication, the RobCom framework does not generate the DTOs
directly but generates protobufs which are then used to generate the DTOs.

It is also possible to define DTOs yourself in the DSL, which then can be used for custom
actions. These are also converted to protobufs and then to DTOs. In contrast to the
other DTOs, these DTOs only contain the fields defined in the DSL and get no additional
fields added.

4.3.4 Repositories
As the RobCom framework should be technology-agnostic, it is not possible to generate
the whole repository. Rather, it generates an interface that needs to be implemented
by the developer. This interface contains methods to create, read, update and delete a
model. We give these interfaces the prefix „RepositoryInternal“ to indicate that they

29

4. RobComDSL

should not be used directly. Instead, repository classes are generated which get the
implementation of the internal repository injected and provide a public interface. By
doing so, it is possible to wrap the objects returned by the internal repository in change
detection proxies. For create and delete methods, the repository classes additionally
publish a respective event to the message broker. As the read methods wrap the returned
objects in change detection proxies, the update method can simply check if the object has
changed. If this is the case, it saves the changes to the database by calling the internal
repository. Importantly, it can create a change event from the change detection proxy
and publish it to the message broker. This guarantees that all changes are automatically
published, so it allows for event-driven communication between the services.

4.3.5 Clients

In the DSL it is possible to define dependent services and which models of these services
are used. For every specified model, a client is generated which provides methods to
create, read, update and delete the model as well as methods for all custom actions. For
generating the read methods, it is also important to consider which request type is defined
for the given model. What the different request types mean is explained in Section 5.1.
Besides the method with the configured request type, the client also always provides a
method that allows synchronous reading of the model, as this is always possible and can
be used as a fallback. For other methods, including the custom ones, the client contains
a synchronous and an asynchronous method. The synchronous method directly calls the
service and returns the result. For create this is a full response, for update a change
response, for delete a delete response, and for custom actions, it returns the response
defined in the DSL. The asynchronous method, on the other hand, does not return the
result directly but rather publishes the changes to the message broker. This allows for
event-driven communication between the services.

To make the clients more robust, there is a communication config in the DSL that defines
four robustness criteria. By default, the clients come with automatic retries and circuit
breakers. The developer can additionally configure rate limiting and timeouts. Before
sending a request, the client creates an idempotency key, so the receiver can detect
duplicate requests.

4.3.6 RobCom Context

The RobCom context is the central class of the RobCom framework. It contains in-
formation about the request like if it is synchronous or asynchronous. It also provides
repositories and clients for the services defined in the DSL. As a result, it can handle
transaction management and trigger the publishing of events. Overall, it is essential to
manage the communication between the services. A simplified example of a RobCom
context is shown in Figure 4.5. It has public properties for the repositories and clients,
so they can be accessed from the service layer.

30

4.3. Code-Generation / Mapping

public class RobcomContext: IAsyncDisposable
{

private OrderContext _dbContext;
private OutboxPublisherBackgroundService _publisherBgService;
public RequestType RequestType { get; }
public RobcomContextInternal Internal { get; }
public IOrderRepository OrderRepository { get; }
public ProductClient ProductClient { get; }

public RobcomContext(CheckoutContext dbContext,
OutboxPublisherBackgroundService publisherBgService,
CancellationToken CancellationToken,
ProductGrpcControllerClient productGrpcClient)

{
// ...

}

public void PublishEvents(List<OutboxEvent> events)
{

// ...
}

public async Task SaveChanges()
{

List<OutboxEvent> events = new List<OutboxEvent>();
events.AddRange(

await OrderRepository.SaveChangesAsync());
await Internal.SaveChanges();
PublishEvents(events);
await _dbContext.SaveChangesAsync(CancellationToken);
_publisherBgService.StartProcessingOutstandingEvents();

}

public ValueTask DisposeAsync()
{

// ...
}

}

Figure 4.5: Example RobCom Context

31

4. RobComDSL

4.3.7 Controllers
The RobCom framework generates controllers for every model. These controllers are the
endpoints for synchronous communication and implement methods for creating, reading,
updating and deleting a model, as well as for all custom actions. Before forwarding the
request to the service layer, they first initialize the RobCom context. Next, it verifies
if the request was already processed, by checking the idempotency key. If this is not
the case, it hands the request to the service layer and then returns the result. Before
sending the response, the idempotency key is saved in the database and the transaction
is committed.

4.3.8 Listeners
For asynchronous communication, the RobCom framework generates listeners for every
model. These are the endpoints for asynchronous communication and, like the synchronous
counterparts, implement methods for creating, reading, updating and deleting a model,
as well as for all custom actions. They also initialize the RobCom context and check
the idempotency key. Then the requests get forwarded to the service layer, which is
exactly the same as for synchronous communication. This is part of the reason why the
RobCom framework provides a unified framework for synchronous and asynchronous
communication. The main difference is that the listeners do not return a response, as it
is not necessary for asynchronous communication. This is due to the fact that without
regard to the request type, all changes are published to the message broker. So the
response would contain the same information as the published event, which is redundant.

Another difference is that the listeners are also generated for dependent services and
models. These, however, are only needed if the request type of the model is event-driven
or adaptive. The listeners simply receive the events and update the database accordingly,
so the data is ready when it gets requested. Afterward, these listeners also call the service
layer, where the developer can add methods to react to the events.

4.3.9 Services
The service layer implements out-of-the-box methods for creating, reading, updating
and deleting a model. This implementation is very basic and only saves the data to the
database or reads it from it. To extend the functionality, the developer can override
these methods and implement the desired functionality. For custom actions, it is always
necessary to implement the method on your own.

Every method gets the request, no matter if it is synchronous or asynchronous, and the
RobCom context as parameters. All calls to the database are done through the RobCom
context, so it can handle transaction management and change tracking, which is essential
for automatic event publishing. Moreover, all communication with other services is done
through the RobCom context, as it knows the configured request type and can therefore
decide if the request should be synchronous or asynchronous.

32

4.4. Implementation

4.4 Implementation
We decided to implement the RobCom framework in C#, as we wanted to use the Pitstop
project (Section 6.5.1) and the E Shop On Containers project (Section 6.5.2) to test
and evaluate our DSL and framework. Why we have chosen these projects is explained
in Section 6.3. Further, C# is a modern and widely used programming language and
provides some libraries which we can use to build our framework upon.

Although C# has support for code generation in the form of source generators, which are
executed at compile time and can also incrementally update the generated code [S+23],
we decided to create a CLI tool that does the job. This is due to the fact that source
generators can only generate source code, but we also need to generate protobuf files.
Additionally, the option to generate source code with a CLI tool is available for every
programming language, while source generators or similar constructs do not exist for
every language.

For communication, we decided to use gRPC (Section 5.5) and rabbitMQ as they are
widely used and have good support in C#. Due to these reasons, we used the libraries
Grpc.AspNetCore, Grpc.Net.Client and RabbitMQ.Client which are all available on
NuGet. In order to make the communication more robust, we used the library Polly
(Microsoft.Extensions.Http.Polly) which provides automatic retry, circuit breaker and
rate limiting. For timeouts, we could directly use the timeout of gRPC.

As both Pitstop and E Shop On Containers use Entity Framework Core as ORM, we
decided to use it as well. Because the RobCom framework is technology-agnostic, it only
provides interfaces for repositories and the developer needs to implement them. This
means that the developer has to create a database context and then implement all the
functions from the repository interfaces. As these implementations need the database
context as a parameter in the constructor and RobCom generates code for initializing
the repositories, it is required to know the type of the database context at generation
time. This necessitated that the developer specifies the type of the database context and
the according factory class in the DSL as generation hints.

Apart from this, the RobCom framework is implemented how it is described in Section 4.3.
To make RobCom available as a CLI tool, we needed to set the options „PackAsTool“ to
true, „ToolCommandName“ to „robcom“ and „PackageOutputPath“ to the path where
the tool should be saved. Every time the content of the definition files changes, the
developer needs to run the tool to generate the code.

33

CHAPTER 5
Design Decisions

This chapter describes how the RobCom framework works and enumerates the key aspects
of it. Further, it explains why we made certain design decisions and what the benefits
and drawbacks of these decisions are.

5.1 Querying Data
Querying data is a very important part of every application, and it is also a part where
the use of RobCom can provide many benefits. They all come from the fact that the
RobCom framework generates clients for all services defined as dependencies, which can
be used to query data from subscribed models. An important goal of RobCom is to
provide a unified way for communicating with other services, regardless of synchronous
or asynchronous communication. Consequently, it provides multiple options for querying
data. One thing to point out is that the business logic (the service layer) for the server, as
well as for the client, can stay the same, regardless of the communication style, because
the RobCom framework abstracts away the communication layer to provide a unified
interface. The four different options for querying data are the following.

5.1.1 Synchronous Requests
The first option is to use the generated client to send a synchronous request to the server.
Even if this is not the selected communication style in the RobCom configuration, it is
always possible to use it, as it provides the following benefits:

• Most direct way to query data

• Data is as fresh as possible

• Easy mental-model

35

5. Design Decisions

Although it is the most straightforward way to query data, it is also the least robust one,
due to the temporal coupling it introduces. It only works if the server is available and
has the capacity to handle the request. Next, the client has to wait for the response from
the server, which can take some time, depending on the network latency and the load of
the server. So the drawbacks are as follows:

• Temporal coupling

• Server can be overwhelmed

• Single request can trigger multiple subsequent requests

• Often used but rarely changed data leads to unnecessary communication

To combat some of the drawbacks, the RobCom framework provides the following options:
By default, retries are enabled, so if a request fails, it is retried a certain number of
times. The waiting interval between the retries is calculated by an exponential function
f(x, r) = xr, where x is the base and r is the retry count. The base as well as the
maximum number of retries can be configured in the RobCom configuration. It must be
noted that retries will increase the latency and the load on the server, so they should be
used with care.

This leads to the next option, which is a circuit breaker (Section 2.9). It is also enabled
by default and the number of failures before opening and the break duration can be
configured in the RobCom configuration. The circuit breaker configuration could be
more advanced, but we wanted it to be simple and easy to use.

An option for a timeout is present in RobCom too, but it is disabled by default. When
configuring it, someone should take the retries into account, because if the timeout is too
short, the request will fail before the retries are even started.

Last but not least, the RobCom framework provides a way to define rate limits for
requests. These limits are meant to be enforced by the client. This decision is based
on the fact that RobCom is intended to be used in a microservice environment, where
multiple instances of the same service are running in parallel. Therefore, enforcing the
rate limits on the server is not that easy and would require communication between the
instances, which would add a lot of complexity to the framework.

5.1.2 Stale-While-Revalidate
The second option which can be configured in the RobCom config is to use the generated
client to send a request to the server, but then use a stale-while-revalidate strategy to
update the data. This is depicted by the state machine in Figure 5.1. Similar to other
common implementations of this strategy, the data is missing in the beginning, so the
client sends a synchronous request to the server. While the data is fresh, the client can
use it without any further communication with the server.

36

5.1. Querying Data

request /
blocking response

Missing

timeout
(fresh duration)Fresh

timeout (max age)

request /
immediate response /

async background update

Stale

request /
immediate response

async response

Waiting for
async Response

request /
immediate response

Figure 5.1: State machine for stale-while-revalidate

The difference to other implementations comes into play when the data is stale. Normally,
the update request would be sent in the background, but this still would be synchronous.
As RobCom unifies synchronous and asynchronous communication and uses the same
DTOs and the same business logic for both, it is possible to send the update request
asynchronously via a message broker. As the update is not time critical, we can afford
to wait for a response message and then replace the data in the cache. Only when the
data is older than the max-age, a synchronous request is sent again to the server. This
strategy comes with the following benefits:

• Communication is async most of the time

• Lower risk of overwhelming the server

• Data access is fast

• No initial data transfer

Nevertheless, some requests still have to be sent synchronously, which can lead to the
following drawbacks:

• Temporal coupling

• Many synchronous requests when cache times are configured suboptimal

• Often data is not fresh

37

5. Design Decisions

5.1.3 Event-Driven
Instead of requesting data from the server, it is also possible that the server proactively
publishes the data to a message broker and then the client can subscribe to the events. This
is commonly known as an event-driven system and is a popular way for asynchronous
communication between microservices. The RobCom framework provides a way to
automatically publish events for changes to the data, but more on this will be discussed
in Section 5.4. Further, the RobCom framework offers an automatic way to subscribe
to these events and store the data in the database. In the configuration part of the
RobCom definition, it is possible to specify the dependent services and which of their
models should be subscribed to. Additionally, it is possible to declare which subset of
fields of the model should be stored in the database. Due to this, it is easy to harness
the benefits of event-driven systems, which are the following:

• Data is quite fresh

• Access to data is fast and no communication with the server is needed

• No temporal coupling

• Seldom changed but often accessed data does not lead to unnecessary communication

• Complex queries can be done on their own database

This concept is quite powerful and robust, but it also comes with drawbacks. Some of
them are taken care of by the RobCom framework, but some are inherent to the concept:

• Implementation is more complex

• Manually publishing events is error-prone

• Data duplication

• Only works for new data

The first two drawbacks can be solved by the RobCom framework, as already mentioned
it provides a way to automatically publish events and to subscribe to them. So the
complexity is moved from the developer to the framework. Data duplication on the
other hand is inherent to the concept and is the reason why this strategy is robust. The
only measures against this are to strip down the data to the bare minimum of required
fields, which, as already described, can be accomplished with RobCom. Nevertheless, for
services that only need a small but potentially unknown subset of the data, it might be
better to use another communication strategy. This is the reason why RobCom provides
multiple options for querying data and wants to unify synchronous and asynchronous
communication.

38

5.1. Querying Data

One problem with event-driven systems is that a new service needs to get all the data
from the past as described in ES2, which can be a lot of data. There are multiple ways
to solve this problem, like, for example, instruct a service to publish all its data to a
message broker, so the newly subscribed service can store it in its database. This can
potentially lead to a huge spike in the load of the server, so it should be done with care,
or spread over a longer period of time.

5.1.4 Adaptive Data Querying
In order to combine the benefits of the strategies described above, the RobCom framework
provides a way to adaptively query data. This is also a possible solution to the problem of
how new event-driven services can get data from the past. The idea is to basically have an
event-driven system, but when data is missing, the client can fall back to a synchronous
request, which then gets stored. In conclusion, this is somewhat a combination of the
stale-while-revalidate and the subscribing to events strategy. The following benefits can
be achieved with this combination:

• Data is quite fresh

• Access to data is often fast

• seldom synchronous communication with the server is needed

• New services can get data from the past

With this approach, it is also possible to delete data from the own database, when it is
unlikely that it will be accessed again. The decision on which data should be deleted
needs to be made by the developer. As microservices should be small in terms of lines of
code, it is reasonable to assume that a developer can deduce if there is some business logic
in place that likely needs the data again. When this is not the case, the developer can
create a cleanup function that deletes old/unnecessary data based on the deduced criteria.
So the amount of duplicated data can be reduced while maintaining most benefits of
an event-driven system. In the rare case that data needs to be accessed again, it will
automatically trigger a synchronous request, and then the result will be stored in the
database again. Despite all the benefits, this approach also comes with some drawbacks:

• Still some temporal coupling

• Still data duplication

• Developers need to decide which data should be deleted

• No complex queries on the database possible

39

5. Design Decisions

Especially the last drawback could be a big one. As the data in the database might
be incomplete, it is not possible to do complex queries on it and get the same results
as if the query would be done on the server. In the end, it is a trade-off between data
duplication and the ability to do complex queries on the data. Therefore, the developer
needs to decide which strategy is the best for the use case at hand.

5.2 Mutating Data
Besides querying data, mutating data is also a very important part of every application.
By mutating data, we mean creating, updating and deleting data, as all of them change
the state of the application. These basic operations are created for every model out of
the box, but it is also possible to define custom actions (Section 5.3), which can be used
to mutate data. Similar to methods for querying data, the RobCom framework tries to
provide a unified way for mutating data, regardless of the communication style. Further,
the goal is to simplify the implementation by moving as much complexity as possible
to the framework. As mutations are, as the name suggests, changing the state of the
application, it is good practice to ensure that every mutation is only applied once. This
is also known as idempotency and is a very important property of a robust system, hence
RobCom has some mechanisms in place to ensure this property. Every request executed
by the RobCom framework has a unique id, which is used to identify the request. When
a request is sent to a service, the RobCom framework checks if the request-id is already
known and if this is the case, the request is not executed again. Due to all these reasons,
the same business logic can be used for synchronous and asynchronous communication.

5.2.1 Synchronous Mutations
The first option for mutating data is to use the generated client to send a synchronous
request to the server. This is the most straightforward way to mutate data, and has some
key advantages:

• Most direct way to mutate data

• Easy mental-model

• Instant feedback

• Knowledge that the request was successful

• Fixed order of execution

Especially the last two points are very important for many use cases. Many business
processes are implemented in a way that some steps should only be executed if the
previous steps were successful. With the example of an online shop, we introduced in the
beginning (Section 1.2.1), we can create the following illustrative scenario: A customer

40

5.2. Mutating Data

wants to buy a digital product that immediately gets downloaded after the payment was
successful. In this case, there is a fixed order of execution. First, the payment has to be
successful, then the product can be downloaded.

Besides the advantages, synchronous mutations also have some drawbacks which are
quite similar to the ones of synchronous requests (Section 5.1.1), as they are inherent to
the synchronous communication style:

• Temporal coupling

• Server can be overwhelmed

• Single request can trigger multiple subsequent requests

To deal with some of the drawbacks, the RobCom framework has some mechanisms
in place, which are mostly described in Section 5.1.1. So rate limiting, timeouts and
circuit breakers are equivalent to the ones for synchronous requests. This is also true for
retries, but here, the fact that RobCom ensures idempotency comes into play. Without
idempotency, retries could cause mutations to get applied multiple times, which could
lead to incorrect data.

5.2.2 Message-Based Mutations
Alternatively to synchronous mutations, the RobCom framework also supports message-
based mutations. This means that a client publishes the desired mutation to a message
broker. The server is listening to the message broker, and when it receives a mutation,
it applies it to its state. As always, the same services are used here, as are used for
synchronous mutations. Nevertheless, there is one key difference, between the two
communication styles. When the synchronous controller receives a mutation request, it
hands it to the service, which returns a response to the controller, which then sends it
back to the client. However, the asynchronous controller receives a mutation request, it
also hands it to the service, which returns a response, but the asynchronous controller
ignores the result and does not send any response back to the client. This is due to
the fact that any changes to the data are published as events anyway, so the client can
subscribe to them and get notified about the changes. How this is done is described in
Section 5.4. Taking all this into account, the following benefits can be achieved with
event-driven mutations:

• No temporal coupling

• Service can handle the request when it has capacity

As both types of mutations have vastly different properties and therefore, are suited for
different use cases, both can be used in parallel. The decision on which one to use can be
made by the developer, on a per-request basis. The downsides of event-driven mutations
are basically the opposite of the benefits of synchronous mutations:

41

5. Design Decisions

• No instant feedback

• No knowledge that the request was successful

• No fixed order of execution

• Eventual consistency

• No trivial way to give feedback to the user

There is not much that can be done about these points, as they are inherent to the
asynchronous communication style. One option to tackle the last point would be to use
optimistic updates. This means the data gets updated immediately on the client, and
then the mutation request is sent to the server. If the request fails, the data on the client
gets reverted to the previous state. This way the user gets instant feedback, but it is not
guaranteed that the mutation will be applied. Therefore, this approach is only suited
for use cases where it is not that critical that the mutation is applied, hence we decided
against implementing it in the RobCom framework.

5.3 Custom Actions

Although the RobCom framework provides an out-of-the-box way to create, read, update
and delete data, there are many use cases where this is not enough. To tackle this
problem, the RobCom framework provides a way to define custom actions, which can
be used to implement more complex business logic. These actions can be defined in the
RobComDSL as part of a model, and then the framework generates the according source
code for the synchronous controllers and asynchronous listeners for the server.

For all subscribers, the RobCom framework generates the according source code for the
client. So the communication layer is abstracted away and unified. As a result, the
developer can focus on the business logic, which is implemented in the service layer. As
already mentioned, the RobCom framework creates DTOs for CRUD operations out of
the box, but for custom actions, the developer has to define the DTOs separately, to
allow for maximum flexibility. Every custom action has a DTO as an input parameter
which stays the same for both communication styles.

On the other hand, the output DTO is only defined for synchronous communication, as
the asynchronous communication style does not return a response itself. This decision
is based on the fact that changes are published as events anyway (Section 5.4), so the
client can subscribe to them and get notified about the changes. All other aspects in
terms of robustness are handled by the RobCom framework the same way as for CRUD
operations.

42

5.4. Automatic Publishing / Subscribing of Events

5.4 Automatic Publishing / Subscribing of Events
RobCom is intended to allow for event-driven communication between microservices
while moving as much complexity as possible to the framework. Due to the fact that
event-driven systems are all about publishing and subscribing to events, the RobCom
framework provides a way to automatically, and robustly, execute these tasks, while
trying to keep the communication between the services at a minimum.

5.4.1 Publishing Events
The RobCom framework adds a layer between the service layer and the persistence layer.
So it is capable of intercepting all mutations to the data. When a service has finished
its calculations and wants to persist the changes, it hands the data to the RobCom
framework. The framework then checks which fields have changed, which is described in
detail in Section 5.7. This is done for multiple reasons:

• Reduce writes to the database

• Reduce the number of events published

• Reduce the size of the events

If the change tracking indicates that a model did not change, the RobCom framework
does not need to persist the data nor does it need to publish an event. By exactly
knowing which fields have changed, as a consequence, it is possible to publish events that
only contain the changed fields. The receiver needs to apply the changes to its model,
but this can lead to incorrect data if some events in between were missed, or if the events
were not received in the correct order. To tackle this problem, the RobCom framework
adds a hash field to every model, so the receiver can check if its model has the same
state as the sender. Keep in mind that all this is automatically done by the RobCom
framework, so the developer does not need to worry about it.

As mentioned before, a dependent service can decide to only store a subset of the fields
of a model. This, however, renders the hash field useless, as the receiver does not know
the state of the fields it has not stored.

5.4.2 Cumulative Hash
The problem described before can be solved by using an algorithm that we call cumulative
hash. It is designed to compute a hash value which can be used to check if two models
have the same state, after applying a mutation, even if one only stores a subset of the
fields.

The Algorithm 5.1 has one input which is the root object of the changed model. It then
iterates over all child nodes (the fields) of the node and checks if they have changed.
Depending on the type of the node, it then adds the name of the node and the value

43

5. Design Decisions

to a set of values. If the child node is an object or an array, the algorithm is called
recursively. In the case of an object, it does not suffice to only check if the field has
changed, rather it is also necessary to check if the object itself has changes. This check is
also done recursively. For arrays, there are two scenarios that need to be considered. If
the array itself has changed, the whole array needs to be replaced, so the CumulativeHash
algorithm is called recursively for every element of the array. The other case, where the
array stays the same, but some elements have changed, got added or removed, allows for
a smarter approach. The update event can contain three lists, one for added elements,
one for modified elements and one for deleted elements. To reflect this in the hash value,
the algorithm creates three sets and then adds the hash values of the elements to the
corresponding set.

When an object is created, all fields are marked as changed and therefore the same
algorithm can be used to create the initial hash value. The previous hash value is the
first value in the vector of values, which is empty for created objects. As depicted, the
algorithm depends on a hash function hash(v⃗) which takes a vector of values as input
and returns a hash value.

5.4.3 Subscribing to Events

By including the cumulative hash, a receiver can check if its model has the correct state.
Failing this, it can send an asynchronous request to the sender to get the correct state.
As it is not possible to know which fields are incorrect, the sender has to send the whole
model. This, however, should be an exception, therefore, it should not happen often and
not introduce too much overhead.

As the receiver might only store a subset of the fields, a special algorithm is needed to
merge the received event with the existing model and calculate the resulting cumulative
hash which is needed for comparison. Such an algorithm is depicted in Algorithm 5.2.
It takes a node and a change event as input and returns the updated node and the
cumulative hash value. For primitive fields, the algorithm simply updates the value and
adds the name and the value to the vector of values. For objects, it is straightforward
too, as the algorithm is called recursively. For arrays, there are two scenarios to consider:
If the array itself has changed, it is simply replaced by the new array. In the other case,
where elements have been added, modified or deleted, the algorithm iterates over the
lists and applies the changes to the array. For modified elements, the CumulativeApply
algorithm is called recursively.

In the current version, only the hash value of the root node is compared, as only root
nodes are published as events, and their children as a part of them. A way to optimize
this would be to also compare the hash values of all child nodes. This would allow for
knowing which child node has missing or incorrect data, and then it would be possible
to only update this one. As the RobCom framework does not allow for requesting child
nodes, this is not the case. It could be changed, but this would add a lot of complexity

44

5.4. Automatic Publishing / Subscribing of Events

Algorithm 5.1: CumulativeHash
Input: A tree node N
Output: cumulative hash value Σ

1 s⃗ ← {N.CumulativeHash};
2 forall child nodes C of N do
3 if isPrimitive(C) ∧ hasChanged(C) then
4 s⃗ ← s⃗ ∪ C.Name ∪ C.V alue;
5 end
6 if isObject(C) ∧ (hasChanged(C) ∨ hasChanged(C.V alue)) then
7 s⃗ ← s⃗ ∪ C.Name ∪ CumulativeHash(C.V alue);
8 end
9 if isArray(C) then

10 if hasChanged(C) then
11 s⃗ ← s⃗ ∪ C.Name;
12 forall elements E of C do
13 s⃗ ← s⃗ ∪ CumulativeHash(E);
14 end
15 end
16 else if hasAnyChanged(C.V alue) then
17 a⃗ ← ∅;
18 m⃗ ← ∅;
19 d⃗ ← ∅;
20 forall elements E of C.V alue do
21 if isAdded(E) then
22 a⃗ ← a⃗ ∪ CumulativeHash(E);
23 end
24 if isModified(E) then
25 m⃗ ← m⃗ ∪ CumulativeHash(E);
26 end
27 if isDeleted(E) then
28 d⃗ ← d⃗ ∪ CumulativeHash(E);
29 end
30 end
31 s⃗ ← s⃗ ∪ C.Name ∪ a⃗ ∪ m⃗ ∪ d⃗;
32 end
33 end
34 end
35 return hash(s⃗);

45

5. Design Decisions

to the framework, and therefore we decided against it. In addition, it could lead to more
communication when multiple child nodes are missing or are incorrect.

5.5 gRPC
In Section 2.3, we compared different synchronous communication protocols. Based
on this, we decided to use gRPC as the communication protocol for RobCom, due to
its higher efficiency. So the RobCom definition is used to generate the according to
protobuf files, which then are used to generate the source code for the gRPC client
and server stubs as well as the messages (DTOs). One advantage of this is that in
RobCom we only have to define the model and which of its fields should be accessible or
modifiable by other services, and then all the different messages for CRUD operations
are generated automatically. As a matter of fact, this approach not only reduces the
amount of configuration code (like RobComDSL or protobuf) that has to be written, but
it also makes it easier to keep fields for different operations in sync, because they are
generated from the same source. For example, to add a description field to a product in
RobComDSL we only have to add it to the model and then regenerate the protobuf files.
When writing the protobuf files by hand, we would have to add the field to the messages
for create, read and update operations, which is more error-prone.

5.5.1 gRPC for Async Communication
By going with gRPC, we can also take advantage of the more efficient protobuf serializa-
tion, compared to JSON or XML, for asynchronous communication. As one of the big
goals of this thesis is to provide a unified framework for synchronous and asynchronous
communication, this step makes total sense. So instead of encoding the messages in
JSON and publishing them to a message broker, we can use the DTOs generated from
protobuf to convert the data to a binary format and then publish the bytes directly to
the message broker. This not only makes communication more efficient but also reduces
the amount of code that has to be written, because the same logic, mappers and so on,
can be used for synchronous and asynchronous communication. A service does not need
to know if a request was sent to it via gRPC or a message broker, because the DTOs are
the same. Only the communication layer has to be implemented for both communication
styles, which is taken care of by the RobCom framework. As soon as the communication
layer receives a message via either channel, it can pass it to the service and then send
the response back to the caller via the same channel.

5.5.2 Tolerant Reader Problem
We already mentioned the tolerant reader principle in Section 2.10, but in short, it means
that a service should be able to read messages, even if the message contains fields that
the service does not know. Yet, in the way RobComDSL is designed, and due to the
use of protobuf, this property is not guaranteed. This is owed to the fact that protobuf
encoded data does not contain any information about its structure, hence the smaller

46

5.5. gRPC

Algorithm 5.2: CumulativeApply
Input: A tree node N and a change event ∆
Output: A updated node N ′ and the cumulative hash value Σ of the node

1 s⃗ ← {N.CumulativeHash};
2 N ′ ← copy of N ;
3 forall child nodes C∆ of ∆ do
4 C ← ∅;
5 if C∆.Name ∈ C.Names then
6 C ← N.GetChild(C∆.Name);
7 end
8 Cold ← copyofC if isPrimitive(C) then
9 C.V alue ← C∆.V alue;

10 s⃗ ← s⃗ ∪ C.Name ∪ C∆.V alue;
11 end
12 if isObject(C) then
13 (C.V alue, Σ) ← CumulativeApply(C.V alue, C∆.V alue);
14 s⃗ ← s⃗ ∪ C.Name ∪ Σ;
15 end
16 if isArray(C∆) then
17 s⃗ ← s⃗ ∪ C∆.Name;
18 if isReplace(C∆) then
19 C.V alue ← C∆.V alue;
20 forall elements E∆ of C∆.V alue do
21 s⃗ ← s⃗ ∪ CumulativeHash(E∆);
22 end
23 end
24 else
25 forall added elements E∆ of C∆.V alue do
26 C.V alue ← C.V alue ∪ E∆;
27 s⃗ ← s⃗ ∪ CumulativeHash(E∆);
28 end
29 forall modified elements E∆ of C∆.V alue do
30 m ← C.V alue.GetItem(E∆);
31 (m′, Σ) ← CumulativeApply(m, E∆);
32 C.V alue ← C.V alue \ m ∪ m′;
33 s⃗ ← s⃗ ∪ Σ;
34 end
35 forall deleted elements E∆ of C∆.V alue do
36 C.V alue ← C.V alue \ E∆;
37 s⃗ ← s⃗ ∪ CumulativeHash(E∆);
38 end
39 end
40 end
41 N ′ ← N ′ \ Cold ∪ C;
42 end
43 return (N ′, hash(s⃗));

47

5. Design Decisions

size, so the receiver can only make sense of the data if it knows the protobuf definition
of the message. Every field in a protobuf file has a unique id, which is used to identify
the field in the encoded message. As long as these ids stay the same, it is possible to
add new fields to a message, without breaking the compatibility with readers with older
versions of the message [Goo23b]. It is even possible to reserve ids for future fields so
that they can be added later. When using RobComDSL the protobuf files are generated
from the RobCom definition. The fields in a message get ascending ids, based on the
order they are defined in the RobCom definition. Therefore, adding or changing a field
in the RobCom definition can break the compatibility with older versions of the message
and dependent services need to be updated.

There are multiple ways to solve this problem. The first one would be to only add new
fields to the end of the RobCom definition so that the ids of the existing fields stay the
same. As the RobCom framework adds further fields to messages, like ids, it is important
that these fields are only added at the beginning of the message.

Another solution would be to add an index field to fields in the RobCom definition, which
then gets mapped to the id field in the protobuf definition. This solution would be more
robust, but as RobCom is intended to be protocol agnostic, it would be a violation of
this principle because this index field is only used for protobuf, but not JSON or XML.
Of course, using a different serialization format, like JSON or XML, which contains
information about the structure of the data, would also get rid of this problem.

A more involved approach would be to use the reflection feature of gRPC. It allows a
client to query the server for its protobuf definition. Based on this information, the client
can adjust itself and only read the fields that it knows. This would be a very robust
solution, but in return would add a lot of complexity to the framework. Additionally,
the client would need to know when to query the server for its definition, as between
the point in time when the server changes its definition and the client queries it, the
client would not be able to read the messages from the server. This can be solved by
publishing an event when the definition changes, or to automatically query the definition
when the deserialization method of the client fails. Also, adding a version number to
every message would do the trick.

5.6 Document-Based Data-Structure
The models in RobCom can only be defined in a tree structure. This means that for every
data item, there is only one root element, which can contain other elements, which then
can contain other elements and so on. Consequently, only one-to-one and one-to-many
relations can be defined in a parent-child manner. Only the root elements can be accessed
directly, all other elements can only be accessed via their parent. This is also common for
document databases, like MongoDB. In contrast to document-based databases, relational
databases can have relations between tables that can be used to join data, and they can
be automatically enforced by the database due to the use of foreign keys. The rationale

48

5.6. Document-Based Data-Structure

behind the decision to only allow tree-structured data is based on the following arguments
and the arguments in Section 5.7:

5.6.1 Relational Data in Document-Based Databases
As RobCom is intended to be technology-agnostic, it should be possible to use it with
many different types of databases. In particular, it should support the use of document-
based databases, like MongoDB, or relational databases, like PostgreSQL. The main
selling points of relational databases are their ACID (atomicity, consistency, isolation,
durability) properties, which guarantee, among other things, that the data is always in a
consistent state. This involves that foreign keys are checked when inserting or updating
data so that only valid relations can be created. In a document-based database, this is
not the case because there are no relations between documents. Of course, it is possible
to store the id of a document in another document, but the database does not know
about this relation and therefore cannot check it. All the checks have to be done by the
application logic.

If RobCom were designed in a way so that the data is of relational nature, it would be
hard to use it with document-based databases, because the RobCom framework would
have to implement the checks that the database would normally do. This, however, is
just possible to a certain degree, as it would necessitate that there is some distributed
locking mechanism in place, so the checks can be done consistently, even when multiple
instances of the same service are running. Besides, the fact that this would add a lot of
complexity to the framework, it would also blow the scope of this framework.

5.6.2 Document-Based Data in Relational Databases
Ideally, microservices built with RobCom should use document-based databases because
they are, for obvious reasons, a better fit for the document-based data structure. Nonethe-
less, it should also be possible to be used with other types of databases, like relational
databases, as maybe someone needs to use a relational database for some reason. In this
case, the data has to be mapped to a relational data structure. Starting with the root
document and recursively walking through every sub-document in the tree structure, a
table for every document has to be created. The fields of the document then become
the columns of the table, and every child document gets a foreign key to its parent
document. This way one-to-one and one-to-many can get produced, which is exactly what
is needed to simulate the document-based data structure. In document-based databases,
the relations between parents and children do not need to be checked as they are fixed
by the data structure. In relational databases, however, this is not the case, but with the
use of foreign keys, the database can check the relations and so both types of databases
will behave the same in this regard.

Querying the data is also possible, but it is more complicated and has more overhead
than document-based databases. In order to get all the data of a document, all the tables
that are involved in the tree structure have to be joined. This could be done by using

49

5. Design Decisions

the repository pattern, where only every root document has its own repository. In the
query methods of the repositories, the joins need to be defined, so that the data can be
queried as a whole. The same applies to inserting, updating or deleting data.

5.7 Tracking Changes
A major goal of RobCom is to provide an out-of-the-box solution for publishing changes
to the data, which is discussed in Section 5.4. To facilitate this feature, the RobCom
framework needs to know which data has changed, so it can publish the changes. For
fields with primitive types, this is trivial, as there can be a simple flag in place for every
field, which indicates if the field has changed. This simple solution falls apart when
relations between models are introduced.

5.7.1 Relations without restrictions
We tried to solve this problem for all relations in general, without any further restrictions,
similar to the way how data is organized in a relational database. The idea was to keep
track of any relations that are added or removed to or from a model. Besides the fact
that this is not that easy to accomplish, many questions arise:

1. How should the event look like?

2. For which of the two models should an event be published when a relation is added
or removed?

3. What happens for relations between a model of the own service and a model of a
dependent service?

We thought that the event should contain the id or the list of ids of the related models.
Although this would not be too hard to implement, it could lead to poor performance.
For example, a service wants to read an order and all its items. It first needs to query the
order from the server, which needs to load the order and all the items from the database
to compute the list of ids. Then the service needs to query all the items from the server,
which needs to load the items from the database again. As a consequence, this is not a
good answer to the first question. Implementing a way to tell the RobCom framework
which relations should be included in the event could be a better solution, but definitely
a more complex one.

The second question is a bit easier to answer. A common way to solve this problem is to
publish separate events for changes in relations. This would also cope with the situation
where a dependent service only subscribes to one model of the relation, but not the other.
However, creating an order with three items would lead to seven events. One for the
order, three for the items and three for the relations between them. This is not only a
lot of overhead, but it also makes it hard to implement as the events could arrive out of
sync.

50

5.7. Tracking Changes

Due to the different ways of querying data, the third question involves many aspects.
Storing the connection between two models as a relation in a relational database would
only work if the query type is event-driven. In the other three modes, the data is not or
not completely stored in the database, so the database would not be able to enforce the
relation.

In conclusion, it is not feasible to allow for arbitrary relations between models, as it
would add a lot of complexity to the framework. Hence, we decided to only allow for
tree shaped relations, which are described in the next section.

5.7.2 Tree shaped Relations
To ease the problem, we added some restrictions on how relations can be modeled with
RobComDSL. By only allowing parent-child relations, and therefore getting a tree-shaped
data structure, many aspects discussed in the previous section can be solved. First of all,
events are only published for the root elements. This not only avoids the n + 1 problem
but also reduces the number of events that need to be published. Further, changes can
be determined by recursively walking through the tree structure and checking if any of
the fields have changed. This, of course, requires that every node knows which of its own
fields have changed, but this can be accomplished by using the same mechanism as for
the root elements, by having a flag for every field. In the change event, only fields that
have changed are included, so the event is as small as possible. For lists, it is necessary
to track if elements were added or removed. Then the change event can contain separate
lists for added, removed and changed elements.

Any other relations between models can be handled by storing the ids of the related
models, but the responsibility to keep the data consistent lies on the developer. This is a
valid trade-off, as document-based databases work the same way.

51

CHAPTER 6
Evaluation

When using the engineering research methodology, it is common to first define the
problem, then find a solution and finally evaluate it. Points one and two were already
discussed in detail in previous chapters. Hence, in this chapter, we analyze multiple
open-source projects which implement microservice architectures, in order to evaluate
our approach. The findings of this analysis will be part of the answer for RQ1, where
we stated that we want to analyze the mistakes made in the communication between
the services. The rest of RQ1 was already discussed in detail in the Chapters 4 and
5. For RQ2, we analyze the projects with regard to compatibility with our framework.
We try to find the limitations of our framework and what types of microservices can be
implemented with it. The results of this analysis are described in Section 6.1.

6.1 Overview
An overview of the evaluated projects can be seen in Table 6.1, where x means that it is
used for all communication, o means that it is used for some communication and blank
means that it is not used. The evaluation also showed us for what types of microservices
our framework is suitable (RQ2): We can say, our framework is a good fit for microservice
architectures that use synchronous communication, as it makes it easy to add timeouts,
retries and circuit breakers. Additionally, it introduces asynchronous communication,
and still uses the same interfaces and business logic for both types of communication.
Due to our design decisions, it works with document-based data structures but is not
suitable for microservices that rely on relations between the data. For new projects, this
is not a big problem as the system can be designed with this in mind, but for existing
projects, it is a problem, which limits the applicability of our framework. In the current
state, we also cannot generate code for event sourcing, so it is not suitable for projects
using this concept. We had one example of this, the Pitstop project and we could still
use our framework, but we had to remove the event sourcing.

53

6. Evaluation

As we mainly focus on inter-service communication, we did not look into how the
communication between the frontend and the services is done. So our framework cannot
generate code for the frontend as this typically has no direct access to the message broker
and rather uses synchronous communication. Nevertheless, it is possible to use the
generated protobuf files for the frontend and use them to generate the communication
code.

Some services used external services which were not part of the project, like a mail service
or a payment service. As a matter of fact, RobCom does not provide any support for
this kind of communication. In summary, our framework is best suited when it is used
for new projects, with document-based data structures and designed in a way so most
communication can happen asynchronously but some communication still needs to be
synchronous. Further, it necessitates that both sides use the framework, so it can control
all the communication between the services.

Another finding we want to mention concerns the cumulative hash Algorithm 5.1. As one
of our goals was to reduce the communication overhead by only sending the changed data,
we needed some way to detect if the data is equal on both sides (sender and receiver). In
particular, the data would differ if events got lost or processed in the wrong order. This
can simply be solved by using a hash value as a checksum. However, as the receiver is
allowed to only store a subset of the fields, a hash would not work. Hence, we introduced
the cumulative hash algorithm. Although the algorithm works for our use case, the
evaluation showed that there is a less complex solution to this problem with different
trade-offs. By adding a version number to each data item that gets incremented for every
published change, we can check for missed, or out-of-order processed events. This change
would save on processing power, but we lose the ability to compare checksums to detect
other changes in data.

6.2 Robustness and Efficiency Criteria
Based on our research, we always favor asynchronous communication over synchronous
communication, as it is more robust and efficient due to decoupling. We also look into
how much effort it is to publish and subscribe to events, and if the outbox pattern is
used, to allow for transactional publishing of events. Another important aspect is that
the interfaces are defined in some technology-agnostic way so that they can be generated
for different languages. This not only reduces the amount of code that must be written
and maintained but also makes communication more robust, as it suppresses errors like
wrong field names or missing fields.

When using synchronous communication, we argue that timeouts and circuit breakers
are a must-have, as they can prevent services from getting overwhelmed, and by doing so,
can prevent cascading failures. We can put rate limiting in the same category, but this
requires the developer to know in advance how many requests the service can handle.

Next, we look for constructs that allow for idempotent communication, as this can prevent

54

6.3. Selection Criteria for Projects

Projects A
sy

nc
hr

on
ou

s

Ev
en

t-
So

ur
ci

ng

O
ut

bo
x

Sy
nc

hr
on

ou
s

R
et

ry

C
irc

ui
t-

Br
ea

ke
r

T
im

eo
ut

R
at

e-
Li

m
it

Id
em

po
te

nc
y

In
te

rfa
ce

G
en

er
at

io
n

Acme Air x
Spring Cloud Example Project x x x
Sock Shop o x o o
Staffjoy x o x
Pitstop x o x o
E Shop On Containers o x x o o o o o
Project with RobCom x x x x x x x x x

Table 6.1: Robustness attributes of the evaluated projects

requests from being executed multiple times. This aspect is especially important when
using retries because they can lead to duplicate requests. Also, caching can be used to
improve the efficiency of the communication.

6.3 Selection Criteria for Projects

In order to find a suitable set of projects, we first examined the existing research in the
field of microservices and looked at the microservice projects they used. Additionally, we
searched for open-source projects which are commonly used as examples of microservice
architectures.

Inspired by the work of Aderaldo et al. [AMPJ17], we defined the following criteria for
the selection of projects, which we will use to evaluate our framework, by replacing
the communication with our framework. Other projects, although not fulfilling all
criteria, will be used to evaluate the framework, too, but only conceptually. This means
that we will only analyze them and show what would change if we would replace the
communication with our framework. As our requirements for the projects are different
from those defined by Aderaldo et al., we selected the criteria which fit our needs and
then extended them with our own. The result is shown in Table 6.2. Especially, the point
of only one language used is important, as we only plan to implement the framework for
a single language. Based on the found projects, we will select one language which we will
use for the implementation of the framework and only projects written in this language
will be used for in-depth evaluation.

55

6. Evaluation

Criteria Description
Explicit Topological View The project has an explicit topological view of

its services.
Easy Access from a VCS There should be a publicly accessible repository

hosted on a version control system like GitHub
or Bitbucket.

Container Orchestration The project should support container orches-
tration (preferably Docker), to easily set up the
project locally.

Community Usage and Interest The project should be easy to use and attract
the interest of its target research community.

Language The project is written in only one language, to
keep overhead low.

Version and Compatibility The project is compatible with the current ver-
sion of the language and uses state-of-the-art
libraries and frameworks.

Number of Microservices The project has a low number of microservices
(<10).

Table 6.2: Criteria for the selection of microservice projects

6.4 Conceptual Evaluation
We analyzed the following projects and found that they did not fulfill all the criteria
defined in Table 6.2. Nevertheless, we still want to use them for a conceptual evaluation,
as they are good examples of microservice architectures.

6.4.1 Acme Air
This project is an online store for a fictional airline company, which is published on
GitHub [TS15]. It claims to be scalable to serve billions of requests per day. Unfortunately,
it has neither an explicit topological view nor does it contain any Docker files. The last
commit was in 2015. By analyzing the code, we saw that the communication is only
done via REST, and we could not find any constructs in place that would make the
communication more robust. Confusingly, Adelardo et al. [AMPJ17] stated that it has
at least circuit breakers in place, and it has reusable Docker images. Yet we could not
find any signs of this.

The project is written in Java and Node.js, hence it is not suitable for further evaluation,
as stated before. Due to the lack of an explicit topological view, or any other detailed
documentation, it is hard to comprehend the project and completely understand the
communication between the services. Nevertheless, when creating an implementation for
RobCom for Java and Node.js, we think that it would drastically improve the robustness
of the communication between the services, as already said, there are currently no

56

6.4. Conceptual Evaluation

constructs in place to make the communication more robust. Due to the fact that the
project already uses MongoDB for data storage, it would be easy to adapt it to the
RobCom framework, because it only allows document-based data structures.

6.4.2 Spring Cloud Example Project
As an example of a microservice architecture, this project is a simple application for
recommending movies, published on GitHub [Bas19]. All the services can be deployed
with Docker, and they use Eureka as an API gateway and for service discovery. Due to
the fact that the purpose of this project is to show how a microservice architecture can
be developed with the Spring framework, every service is written in Java. When ignoring
the API gateway, service discovery, and other services which do not have anything to do
with the business logic, 5 microservices remain, according to their topological view. This
seems to be a good fit for our purpose of evaluating our framework, as the quantity of
services is acceptable and all of them are written in a single language. There is kind of an
explicit topological view, but it only shows the connection to the different databases and
not the communication between the services, which is the main focus of our evaluation.
The last commit, except for an update of the license and readme, was in 2016.

The analysis of the code showed, however, another picture. We did neither find the
depicted rating service nor the analysis service, but we found a UI that is not men-
tioned in the topological view or the readme. The movies, recommendation and users
microservices offer only a REST API, which in turn only gets used by the UI. There
is no other communication between the services. On the positive side, this project uses
Hystrix [C+18], which is a library developed by Netflix, for circuit breaking and is not
under active development anymore. Other than that, there are no constructs in place
to make communication more robust, and they do not use any form of asynchronous
communication.

By using the FeignClient library and the way they created their REST controllers, they
do not need to write any code for the communication between the services, similar to
our framework. This not only reduces the amount of code that must be written and
maintained but also makes the communication more robust, because as long as the code
library has no bugs, there cannot be any errors in the communication code, like wrong
interfaces. In any other aspect, the communication is not robust and would benefit from
our framework. However, as there is no communication between the services, there is no
point in evaluating our framework with this project.

6.4.3 Sock Shop
This project is an online store for selling socks. The project was published on GitHub [C+21]
under the name microservices-demo. There exists a topological view of the services,
however, it looks like only the frontend communicates with the services. Only for the
order, shipping and queue-master service, the communication is shown. But in reality,
there is more communication between the services, as we found out by analyzing the

57

6. Evaluation

code. Some services were updated quite recently, but it looks like these are only bug
fixes or maintenance work. Further positive aspects are that the project uses Docker
for all services. There is some basic documentation and there exists a talk about the
project. It also has over 3.5k stars on GitHub and is used in some recent research
papers [RL19, XSI+22]. In conclusion, there is a community interest in the project.
Unfortunately, it is not suitable for an in-depth evaluation, as it is written in multiple
languages including Java, Go and Node.js, but it is a good fit for a conceptual evaluation.
First of all, we noticed that many services have OpenAPI definitions, which is a good thing,
as it allows generating some basic communication code, which makes the communication
more robust, as errors like wrong field names or missing fields cannot occur. Yet, they
did not use the OpenAPI definitions to generate code, rather the sole purpose of them
is to document the API. Most of the communication is done via REST and therefore
synchronous. The catalog service and the payment service use a server-side circuit
breaker, and only the requests made by the order service have a timeout. This really
drives home the point that a framework like RobCom is a wise choice, as it makes it easy
to add features for robust communication, like timeouts, circuit breakers, retries and rate
limits, of which some are enabled out of the box. Otherwise, it can end in a situation
like this, where some teams think about some aspects of robustness, and others do not.
There is also one example of asynchronous communication in this project. The shipping
service uses a message queue to communicate with the queue-master service. So the
processing of the orders is decoupled from the rest of the system.
Next, we want to take a look at the ordering process, as it is the most complex part of
the system, with the most communication between the services. When the user wants
to order something, the frontend sends a synchronous REST request to the customer
service to get the customer’s data. Next, it sends two requests in parallel to the customer
service, one for the address and one for the credit card. After that, it sends a request to
the order service which only contains an URL for the customer, address, credit card and
the items from the shopping cart. As the order service gets only the URLs, it needs to
send three requests to the customer service (customer, address, credit card) and one to
the shopping cart service (items). These requests are sent in parallel and have timeouts.
Subsequently, the order service sends a request to the payment service, and then to the
shipping service. Only after all these requests are completed successfully, the user gets a
response. This does not only take some time, but the chance of one out of the 10 requests
failing is quite high, especially as there are no retries or fallbacks in place. For example,
the payment service has a circuit breaker, so if it is not available, the order service will
always return an error, and every time the user tries again, the customer service gets six
requests. This increases the likelihood of the customer service failing, too.
We argue that this is a good example of a project which would benefit from our framework.
Not only will it add some robustness to synchronous communication, but it will also
make it easier to add asynchronous communication. Of course, it is not straightforward
to replace the order process with asynchronous communication, as the frontend tries
to give instant feedback to the user, but it is possible. We suggest that when the user

58

6.4. Conceptual Evaluation

presses the order button, the frontend only needs to send the customer id to the order
service. By using RobCom, the order service can subscribe to the customer data and has
everything already on hand, and immediately sends the response back to the user. All
six requests to the customer service can be removed. As the shopping cart data might
change frequently, it is not desirable to subscribe to the change events. So this request
can stay as it is, but with the difference that it is done after sending the response to the
user. The order service then can send an asynchronous message to the payment service,
by using a custom action and listening to payment events. When the payment is done, it
can send an asynchronous message to the shipping service, which then can do further
processing.

On one hand, this allows for a faster response to the user and asynchronous processing of
the order, which is more robust, as it will still work if some services are temporarily not
available or overloaded. But on the other hand, it does not give the user any feedback if
the order was successful or not. We think that this is not a problem, as many errors that
can occur during the order process are not the fault of the user, and therefore the user
cannot do anything about it. So it is better when the company gets notified about the
error, and they can fix it. And in other cases, where it is the user’s fault, the user could
get an email or something similar, which informs him about the error and how to fix it.
This could be, for example, a link where the user can update his credit card information.

6.4.4 Staffjoy
This project is a shift scheduling software and compared to the other projects, it is a real
product. Once they closed a seed round of 1.2 million dollars [Val17], but since then it
has been shut down and published as open source [TTa23]. So it gives us a good insight
into how a real product uses microservices. It has a topological view, which shows the
communication between the services, and it is written in Go. Further, it can be executed
with Vagrant or Kubernetes, and it has acceptable documentation.

The analysis of the code showed that the communication of the services is done via
gRPC and the communication between the frontend and the services is done via REST.
As those two protocols are not compatible, their documentation states that they use a
gateway to translate between the two protocols. This is somewhat odd, as this diminishes
the benefits of using gRPC, as a JSON payload gets generated and then converted to
protobuf. We understand that it is not that easy to send a gRPC request from a browser,
but then they could have at least used protobuf for the REST communication to get rid
of the overhead of JSON and the need to convert between the two formats.

As they use gRPC, they also use protobufs so their interfaces are generated. The
REST interfaces are then generated from the protobufs. This makes communication
more robust, as errors like wrong field names or missing fields cannot occur. For some
communication, we found that they set timeouts, but not for all. No other constructs for
robust communication are in the code. By using RobCom, they could easily add timeouts,
retries and circuit breakers to all communication. As RobCom also adds asynchronous

59

6. Evaluation

communication, they could also use this for the bot service, so it can work independently
of the other services. Although it is only written in one language and fulfills our criteria,
we will not use it for an in-depth evaluation, as it is written in Go, and we decided to
use C# for our framework as can be seen in Section 6.5.1 and Section 6.5.2.

6.5 In-Depth Evaluation / Case study

In this section, we will analyze the following projects in detail, as they fulfill all our
criteria and are written in C#, which is the language we chose for our framework. We
will analyze the communication between the services and show how it can be improved
by using our framework.

6.5.1 Pitstop

This project is software for managing car repair shops and was published on GitHub [vW23].
It has good documentation, which describes the architecture and shows a topological
view of the services. It is noticeable that there are regular updates to the project, and
it has been used in some research papers [IKB22, PRT21] before. According to the
documentation, all communication between the services is asynchronous, and they use
RabbitMQ as a message broker. Only the communication between the frontend and the
services is synchronous. Further, all services have Docker files, and there are 5 of them
with business logic and a frontend. This project is up-to-date and only written in C#
and Dotnet 7, which makes it a good fit for our evaluation, as it fulfills all our criteria.

The analysis of the code showed that the communication between the services is indeed
asynchronous. In the documentation, they state that they use retries when accessing
external resources, like RabbitMQ. A counter-example can be found when looking at the
code where the CustomerManagementAPI publishes an event. Anyway, using an outbox
would be the better idea, as it would not only make it possible to decouple the sending
of the event from the publishing and therefore would not block the thread, but it would
also allow for transactional publishing of events. In this example, the changes first get
saved to the database, and then the event gets published, so it is not guaranteed that the
event gets published if something between saving the changes and publishing the event
fails. When establishing a connection to the database or RabbitMQ, they use retries and
timeouts. This is a thing our framework does not do. One aspect where RobCom can
improve the code is the automatic publishing of events. Also, the subscribing and storing
of events comes out-of-the-box with RobCom, so it does not need to be implemented
manually, as it is done in this project.

The communication between the frontend and the services is synchronous and done via
REST. To make it more robust, they use the Polly library to add retries. However,
as they have nothing in place to enforce idempotency, it can happen that requests get
executed multiple times.

60

6.5. In-Depth Evaluation / Case study

Replacing the Communication with RobCom

As this project fulfills all our criteria, we will use it for an in-depth evaluation of our
framework. First, we created the minimal service definitions with our DSL for all
services. An example can be seen in Figure 6.1. Next, the definitions can be copied to
all subscribing services and can get referenced in the RobCom config. In Figure 6.2, the
RobCom config for the WorkshopManagementAPI is shown. It contains the dependencies
to the CustomerManagementAPI and the VehicleManagementAPI, and the required
generation hints. Like before, the communication between these services is event-driven
which can also be seen in the config. After this, we could get rid of many classes, as they,
or adequate replacements, are generated by RobCom. This includes the models, DTOs,
mappers, events and event handlers which just store the received events in the database.
We did not remove the controllers for synchronous communication, as we want to keep
the synchronous communication for the frontend. This is done due to the fact that we
only want to focus on inter-service communication. The usage of RobCom necessitates
changes to the repositories, as they need to implement the InternalRepository interfaces
generated by the framework. Some services used Entity Framework Core and others
Dapper. To keep it simple, we changed all services to use Entity Framework Core. Last,
the startup-config needs to be changed, so that RobCom gets configured correctly. For
this, RobCom provides a handy extension method to add all necessary services and set
the connection to RabbitMQ as well as to the other service. This includes adding a
factory for the database context, which we defined in the generation hints.

Results

After replacing the communication with RobCom, we can see that we were able to get rid
of many classes necessary for communication, as they are generated by RobCom. This
especially includes all the code for publishing and subscribing to events. When someone
adds some business logic that changes the model, it is impossible to forget to publish the
event, and therefore we consider this a more robust solution. Additionally, the events
are now stored in the outbox before they get published. This makes the publishing of
events transactional, so it is guaranteed that the event gets published if the changes to
the database were successful. As mentioned before, they stated that they use retries
when accessing external resources, yet we could not find any evidence of this. But if they
had done so, it would block the execution hence the number of retries would be limited.
By introducing an outbox, the publishing of events can be done in the background and
therefore can afford to wait until RabbitMQ is available again.

On the other side, we got aware of some oversights in our framework. For example, the
notification service has no internal model and only subscribes to events. We did not
think about this case, but it is easily fixed by adding a dummy model. In the future,
we could change the framework so that it is possible to define no internal model. This,
however, leads to the next inconvenience. To subscribe to events, the request type of the
corresponding model must be set to event-driven or adaptive. This automatically stores
all the events in the database, so the data is available when the service needs it. By

61

6. Evaluation

{
"serviceName": "WorkshopManagementAPI",
"models": {

"workshopPlanning": {
"pluralName": "workshopPlannings",
"fields": {

"workshopPlanningId": { "type": "string" },
"jobs": {

"type": "array",
"items": {
"type": "object",
"name": "maintenanceJob",
"fields": {

"plannedStartTime": { "type": "timestamp" },
"plannedEndTime": { "type": "timestamp" },
"vehicleId": { "type": "id" },
"customerId": { "type": "id" },
"description": { "type": "string" },
"actualStartTime": {
"type": "timestamp",
"nullable": true

},
"actualEndTime": {
"type": "timestamp",
"nullable": true

},
"notes": { "type": "string" }

}
}

}
}

}
}

}

Figure 6.1: Minimal service definition for the WorkshopManagementAPI

62

6.5. In-Depth Evaluation / Case study

{
"serviceDefinition": "workshop-management.robcom.json",
"dependencies": [

{
"serviceDefinition": "customer-management.robcom.json",
"subscribedModels": [

{ "model": "customer", "requestType": "event-drive"}
]

},
{
"serviceDefinition": "vehicle-management.robcom.json",
"subscribedModels": [
{"model": "vehicle", "requestType": "event-drive"}

]
}

],
"generationHints": {

"dbFactoryContextType": "IDbContextFactory<WorkshopManagementContext>",
"dbContextType": "WorkshopManagementContext"

}
}

Figure 6.2: RobCom config for WorkshopManagementAPI

subscribing to events, it is also possible to hook into this process and so it is possible to
add some business logic, which reacts to the events. In the Pitstop project, this was the
wanted behavior, most of the time. Nevertheless, there is an exception. The TimeService,
which is there only for demonstration purposes, publishes events to indicate that a day
has passed. The services do not need to store these events, only react to them. We were
able to recreate this behavior by creating custom actions for every service, which we
then called asynchronously. Doing so, unfortunately, changes the communication from
events to actions. This means that before all services knew about the time service and
subscribed to its events, but now the time service needs to know about all services and
call their actions.

For the WorkshopManagementAPI, the Pitstop project used event sourcing. Due to the
fact that our framework does not support event sourcing, we had to remove this feature.
In this case, this was not a problem, as the event sourcing was not used for business
logic. We understand that event sourcing is a powerful tool, and we can understand that
someone wants to use it in a microservice architecture, but it increases the complexity of
the system, and therefore we decided to not support it.

Another thing we noticed is that our framework only allows subscribing to top-level
models. We thought that this would not be a big problem when designing a project

63

6. Evaluation

with this limitation in mind. Although, now we are not so sure about this anymore. As
the workshop model contains a list of maintenance job models, we decided to define the
maintenance job model as a child model of the workshop model. In the Pitstop project,
the invoice service and the notification service only need the maintenance job model
and not the whole workshop planning model. Of course, we could simply change the
definition, so that the maintenance job model is also a top-level model and the workshop
planning model only contains a list of ids of the maintenance jobs. Yet we should not
throw this finding under the rug, as it could be a problem in bigger projects where new
services get added down the road.

6.5.2 E Shop On Containers
This is a sample application for a web shop, which was published by Microsoft on
GitHub [DlTTA+23]. As it is intended to be used as a reference for building microservice
architectures, it has extensive documentation explaining many aspects of the project
including how the communication between the services is done, and depicting it in a
topological view. The git history shows that this project is under active development,
and gets always updated to the newest version of Dotnet. The project has over 24k stars
on GitHub and is used in some recent research papers [RSL+21, NNCS20]. Hence, there
is a community interest in the project.

In the documentation, they state that most of the communication between the services is
asynchronous. Only the aggregators, which are backends for frontends (BFFs) use gRPC
for requesting data from the services. When looking into the code, we found that the
communication between the BFFs and the services has no constructs in place to make
it more robust. Yet we think this is acceptable, as the BFFs only act as an advanced
API gateway that combines data from multiple services. In addition, the frontends have
retries and circuit breakers in place.

When analyzing the asynchronous communication, we found that they do not publish
changes for every model. Rather, they publish highly specific events for a given action.
By doing so, they can reduce the number of events, but it also makes it harder for new
services to subscribe to the events. Often this design choice will lead to an adaption of
the sender when a new service wants to subscribe to the events. An example of this is
the catalog service, which publishes an event when the price of a product changes, but
not when the name changes. In conclusion, all the events get published manually, which
has the potential to lead to errors, as a developer can forget to publish an event. On the
positive side, they use an outbox to store the events before they get published, so the
publishing of events is transactional. When the publishing fails, some services retry the
publishing, but not all. In particular, the catalog service does not retry it, although it
uses an outbox. The order service, on the other hand, retries the publishing, but only
when a new event needs to be published.

In contrast to RobCom, these services use different handlers for synchronous and asyn-
chronous communication. All requests get a request id, which is used to check for

64

6.5. In-Depth Evaluation / Case study

idempotency. Unfortunately, not all services check for duplicates, so it can happen that
requests get executed multiple times. The order service checks for duplicates, but the
basket service does not, which is acceptable, as the basket service does not handle any
events where duplicates could be a problem. The catalog service does also not use the
request id to check for idempotency, which is problematic as it can lead to removing
bought products multiple times from the stock.

To reduce the communication that the order service needs to do on checkout, all the
product data get sent to it, so it does not need to request it from the catalog service. When
using the MVC Web app, the requests get sent to the BFF, which makes a synchronous
request to the catalog service, and then sends the data to the order service. Arguably,
this design choice is confusing at best and a security hazard at worst. The explanation
for this is twofold: First, it provides less benefit if the BFF makes synchronous requests
to the catalog service and not the order service, solely for the purpose that the services
do not use any synchronous communication. It only moves the communication to a place
where it is not expected. In this case, it is especially confusing, as only the product details
get requested in sync on checkout, but not the stock. To check the stock availability, the
order service needs to make an asynchronous request to the catalog service. Second, it is
a security hazard, as the requester needs to check the product data before sending it to
the order service. This is especially important when the product data gets sent from the
frontend, as these requests can be manipulated. Unfortunately, this project has fallen
into this trap. For the second frontend, the SPA, the data does not get checked by the
BFF and gets sent directly to the services behind. By modifying the requests sent by
the SPA, with the browser’s dev tools, we were able to change the price of the products
and buy them for a lower price. This shows that communication in a distributed system
is not only about performance and robustness but also about security. Simple design
choices to reduce communication can lead to vulnerabilities.

This project fulfills all our criteria, and therefore we could use it for an in-depth evaluation
of our framework. Due to the results of the code analysis, we think that this project
would benefit from our framework. Nevertheless, it is not that easy to replace the
communication with RobCom. This is partially owed to the fact that events are highly
specific and to the flawed communication constructs described before. Therefore, we
decided to only replace the communication between the catalog service and the basket
service, to show how the communication would change, which then can be applied to the
other services, too. The catalog service now not only publishes an event when the price
of a product changes, but also when any other field changes. This allows other services
to act upon the changes. In particular, the basket service can now not only update the
product price but also the name or the picture. Further, it is able to remove products
from baskets when they get removed from the catalog. Also, other services like the order
service can now subscribe to the products, so it has the data on hand when a checkout
happens. This eliminates the security risk described before.

65

CHAPTER 7
Conclusion

In this thesis, created a DSL that helps unify synchronous and asynchronous communica-
tion. While doing so, we also focused on making communication more robust and reliable.
We created a sample DSL and implemented a proof of concept to show that it is possible
to create such a DSL. Through the evaluation, we wanted to validate our concept and
find out which types of microservices and communication can benefit from our approach.

7.1 Key findings
We found that most of the analyzed projects use synchronous communication, which is
not necessarily the best choice. Especially as concepts to make communication more
robust are often not used. When they are used, it is often inconsistent, which could be
the result of multiple developers working on a project with no clear guidelines in place.
Just a few projects used DSLs like OpenAPI or gRPC to define communication, which is
a good practice. As a consequence, our framework can provide many benefits, as it is
possible to define communication in a language-agnostic way, which then can be used to
generate the code. Surprisingly, we also stumbled across an example where flawed design
decisions for communication led to security issues, which could have been avoided by
using our framework.

By abstracting the communication and the necessary logic, it is possible to unify syn-
chronous and asynchronous communication and use the same business logic for both.
This allows developers to focus on the business logic and not on the communication,
while still being able to decide which communication mode should be used in a given
situation.

As expected, we encountered some shortcomings in our approach. Due to the fact
that we focused on the communication between microservices, we did not consider the
communication with the frontend. To keep the DSL and the framework simple, we can

67

7. Conclusion

only model document-based data and we do not support event-sourcing. In conclusion,
our approach only works when both sides of the communication are using our framework,
hence it required more manuel intervention when cummunication with external services
is needed.

7.2 Limitations
As this thesis used open-source projects to evaluate the necessity and feasibility of the
presented approach, and most of these projects are only used for demonstration purposes,
it is not possible to predict how well it would work in a real-world scenario. However,
we argue that these demonstration projects are there for a reason, so developers can
learn how to create microservice architectures. Therefore, it is likely that in a real-world
scenario, similar problems will occur. As we focused on small projects with only a few
microservices, it is not clear how well it would work in a large-scale project with hundreds
of microservices.

7.3 Future Research
Our concept only considered the communication between microservices, but not the com-
munication with the frontend, hence it would be interesting to see how the communication
from the frontend to the backend can be improved. We think that the concept of unified
synchronous and asynchronous communication can have great potential and should be
further investigated, how it can be enhanced. In our research, we also stumbled upon
the concept of debouncing, which is commonly used for UI code to reduce the number
of requests sent to the backend. Such a concept could be used for inter-microservice
communication too, so not every change is published on its own, but instead, multiple
changes are bundled together and sent as one message.

7.4 Final Reflection
While the results presented promising and potential benefits for microservices communi-
cation, it is not clear if those are worth the effort due to the pluralism of the microservice
landscape. Yet, we think it gives a deeper understanding of the significance of making
communication robust, reliable, and unified. This thesis has shed light on the current state
of microservices communication as this is a very important topic because microservices
are a distributed system and therefore heavily rely on communication.

68

List of Figures

4.1 Diagram of RobCom metamodel . 21
4.2 Example service definition for the OrderService 27
4.3 Example configuration for the OrderService 28
4.4 Example Change Detection Proxy for Order Model 29
4.5 Example RobCom Context . 31

5.1 State machine for stale-while-revalidate 37

6.1 Minimal service definition for the WorkshopManagementAPI 62
6.2 RobCom config for WorkshopManagementAPI 63

69

List of Tables

6.1 Robustness attributes of the evaluated projects 55
6.2 Criteria for the selection of microservice projects 56

71

List of Algorithms

5.1 CumulativeHash . 45

5.2 CumulativeApply . 47

73

Bibliography

[A+98] Rob Appelbaum et al. Asynchronous communications. https://www4.cs.
fau.de/~geier/corba-faq/asynch-comm.html, 1998. Accessed:
6.6.2023.

[ALFT21] Florian Auer, Valentina Lenarduzzi, Michael Felderer, and Davide Taibi.
From monolithic systems to microservices: An assessment framework. In-
formation and Software Technology, 137:106600, 2021.

[AMPJ17] Carlos M. Aderaldo, Nabor C. Mendonça, Claus Pahl, and Pooyan Jamshidi.
Benchmark requirements for microservices architecture research. In 2017
IEEE/ACM 1st International Workshop on Establishing the Community-
Wide Infrastructure for Architecture-Based Software Engineering (ECASE),
pages 8–13, May 2017.

[Bas19] Kenny Bastani. Spring Cloud Example Project. https://github.com/
kbastani/spring-cloud-microservice-example, 2019. Accessed:
1.8.2023.

[BFWZ19] Justus Bogner, Jonas Fritzsch, Stefan Wagner, and Alfred Zimmermann.
Microservices in industry: Insights into technologies, characteristics, and
software quality. In 2019 IEEE International Conference on Software
Architecture Companion (ICSA-C), pages 187–195, March 2019.

[BZ16] Justus Bogner and Alfred Zimmermann. Towards integrating microservices
with adaptable enterprise architecture. In 2016 IEEE 20th International
Enterprise Distributed Object Computing Workshop (EDOCW), pages 1–6,
Sep. 2016.

[C+18] Ben Christensen et al. Hystrix. https://github.com/Netflix/
Hystrix/, 2018. Accessed: 1.8.2023.

[C+21] Ian Crosby et al. Sock Shop : A Microservice Demo Application. https://
github.com/microservices-demo/microservices-demo, 2021.
Accessed: 1.8.2023.

75

https://www4.cs.fau.de/~geier/corba-faq/asynch-comm.html
https://www4.cs.fau.de/~geier/corba-faq/asynch-comm.html
https://github.com/kbastani/spring-cloud-microservice-example
https://github.com/kbastani/spring-cloud-microservice-example
https://github.com/Netflix/Hystrix/
https://github.com/Netflix/Hystrix/
https://github.com/microservices-demo/microservices-demo
https://github.com/microservices-demo/microservices-demo

[CAvdH+20] G. Casale, M. Artač, W.-J. van den Heuvel, A. van Hoorn, P. Jakovits,
F. Leymann, M. Long, V. Papanikolaou, D. Presenza, A. Russo, S. N.
Srirama, D. A. Tamburri, M. Wurster, and L. Zhu. Radon: rational
decomposition and orchestration for serverless computing. SICS Software-
Intensive Cyber-Physical Systems, 35(1):77–87, Aug 2020.

[DGL+17] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Maz-
zara, Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. Microservices:
Yesterday, Today, and Tomorrow, pages 195–216. Springer International
Publishing, Cham, 2017.

[DLM19] Paolo Di Francesco, Patricia Lago, and Ivano Malavolta. Architecting
with microservices: A systematic mapping study. Journal of Systems and
Software, 150:77–97, 2019.

[DlTTA+23] Cesar De la Torre, Eduard Tomàs, Christian Arenas, et al. .NET
Microservices Sample Reference Application. https://github.
com/dotnet-architecture/eShopOnContainers, 2023. Accessed:
15.8.2023.

[Fie00] Roy Thomas Fielding. Architectural styles and the design of network-based
software architectures. PhD thesis, 2000.

[Fou23] The Linux Foundation. OpenAPI. https://www.openapis.org/, 2023.
Accessed: 6.6.2023.

[Fow11] Martin Fowler. TolerantReader. https://martinfowler.com/bliki/
TolerantReader.html, May 2011. Accessed: 8.6.2023.

[Fow17] Martin Fowler. What do you mean by “Event-Driven”? https:
//martinfowler.com/articles/201701-event-driven.html,
February 2017. Accessed: 8.6.2023.

[GGM23] Saverio Giallorenzo, Claudio Guidi, and Fabrizio Montesi. Jolie. https:
//www.jolie-lang.org/, 2023. Accessed: 6.6.2023.

[Goo23a] Google. gRPC: A high performance, open source universal RPC framework.
https://grpc.io/, 2023. Accessed: 6.6.2023.

[Goo23b] Google. Protocol Buffers Documentation. https://protobuf.dev/
programming-guides/proto3/, 2023. Accessed: 6.6.2023.

[Gro23] Object Management Group. Corba. https://www.corba.org/, 2023.
Accessed: 6.6.2023.

[Hel12] Pat Helland. Idempotence is not a medical condition: An essential property
for reliable systems. Queue, 10(4):30–46, apr 2012.

76

https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/dotnet-architecture/eShopOnContainers
https://www.openapis.org/
https://martinfowler.com/bliki/TolerantReader.html
https://martinfowler.com/bliki/TolerantReader.html
https://martinfowler.com/articles/201701-event-driven.html
https://martinfowler.com/articles/201701-event-driven.html
https://www.jolie-lang.org/
https://www.jolie-lang.org/
https://grpc.io/
https://protobuf.dev/programming-guides/proto3/
https://protobuf.dev/programming-guides/proto3/
https://www.corba.org/

[Hen06] Michi Henning. The rise and fall of corba: There’s a lot we can learn from
corba’s mistakes. Queue, 4(5):28–34, jun 2006.

[HSYK18] Xian Jun Hong, Hyun Sik Yang, and Young Han Kim. Performance analysis
of restful api and rabbitmq for microservice web application. In 2018
International Conference on Information and Communication Technology
Convergence (ICTC), pages 257–259, Oct 2018.

[IKB22] Andres Osamu Rodriguez Ishida, Kostas Kontogiannis, and Chris Brealey.
Extracting micro service dependencies using log analysis. In 2022 IEEE
29th Annual Software Technology Conference (STC), pages 82–92, Oct 2022.

[JPM+18] Pooyan Jamshidi, Claus Pahl, Nabor C. Mendonça, James Lewis, and
Stefan Tilkov. Microservices: The journey so far and challenges ahead.
IEEE Software, 35(3):24–35, May 2018.

[KS21] Seda Kul and Ahmet Sayar. A survey of publish/subscribe middleware
systems for microservice communication. In 2021 5th International Sympo-
sium on Multidisciplinary Studies and Innovative Technologies (ISMSIT),
pages 781–785, Oct 2021.

[LF14] James Lewis and Martin Fowler. Microservices a definition of this
new architectural term. https://martinfowler.com/articles/
microservices.html, March 2014.

[Lib20] Giacomo De Liberali. Asyncmdsl: a domain-specific language for modeling
message-based systems. 7 2020.

[Mes12] Audrius Meskauskas. CORBA VS Webservices. https://
stackoverflow.com/a/13450269, 2012. Accessed: 6.6.2023.

[MJBC22] James Montemagno, Tarun Jain, Clark Brent, and David Coulter. Commu-
nication in a microservice architecture. https://learn.microsoft.
com/en-us/dotnet/architecture/microservices/
architect-microservice-container-applications/
communication-in-microservice-architecture, April 2022.
Accessed: 6.6.2023.

[New19] Sam Newman. Monolith to microservices: evolutionary patterns to transform
your monolith. O’Reilly Media, 2019.

[NNCS20] Espen Tønnessen Nordli, Phu H. Nguyen, Franck Chauvel, and Hui Song.
Event-based customization of multi-tenant saas using microservices. In
Simon Bliudze and Laura Bocchi, editors, Coordination Models and Lan-
guages, pages 171–180, Cham, 2020. Springer International Publishing.

[Pos81] Jon Postel. Transmission Control Protocol. RFC 793, September 1981.

77

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://stackoverflow.com/a/13450269
https://stackoverflow.com/a/13450269
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/communication-in-microservice-architecture
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/communication-in-microservice-architecture
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/communication-in-microservice-architecture
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/communication-in-microservice-architecture

[PRT21] Sebastiano Panichella, Mohammad Imranur Rahman, and Davide Taibi.
Structural coupling for microservices. CoRR, abs/2103.04674, 2021.

[RbAB+21] Paul Ralph, Nauman bin Ali, Sebastian Baltes, Domenico Bianculli, Jessica
Diaz, Yvonne Dittrich, Neil Ernst, Michael Felderer, Robert Feldt, Antonio
Filieri, Breno Bernard Nicolau de França, Carlo Alberto Furia, Greg Gay,
Nicolas Gold, Daniel Graziotin, Pinjia He, Rashina Hoda, Natalia Juristo,
Barbara Kitchenham, Valentina Lenarduzzi, Jorge Martínez, Jorge Melegati,
Daniel Mendez, Tim Menzies, Jefferson Molleri, Dietmar Pfahl, Romain
Robbes, Daniel Russo, Nyyti Saarimäki, Federica Sarro, Davide Taibi,
Janet Siegmund, Diomidis Spinellis, Miroslaw Staron, Klaas Stol, Margaret-
Anne Storey, Davide Taibi, Damian Tamburri, Marco Torchiano, Christoph
Treude, Burak Turhan, Xiaofeng Wang, and Sira Vegas. Empirical standards
for software engineering research, 2021.

[RL19] Joy Rahman and Palden Lama. Predicting the end-to-end tail latency
of containerized microservices in the cloud. In 2019 IEEE International
Conference on Cloud Engineering (IC2E), pages 200–210, June 2019.

[RSL+21] Ali Rezaei Nasab, Mojtaba Shahin, Peng Liang, Mohammad Ehsan Basiri,
Seyed Ali Hoseyni Raviz, Hourieh Khalajzadeh, Muhammad Waseem, and
Amineh Naseri. Automated identification of security discussions in microser-
vices systems: Industrial surveys and experiments. Journal of Systems and
Software, 181:111046, 2021.

[RV13] Ganesan Ramalingam and Kapil Vaswani. Fault tolerance via idempotence.
In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’13, page 249–262, New
York, NY, USA, 2013. Association for Computing Machinery.

[S+23] Chris Sienkiewicz et al. Incremental Generators. https:
//github.com/dotnet/roslyn/blob/main/docs/features/
incremental-generators.md, 2023. Accessed 6.8.2023.

[SG01] U. Saif and D.J. Greaves. Communication primitives for ubiquitous systems
or rpc considered harmful. In Proceedings 21st International Conference on
Distributed Computing Systems Workshops, pages 240–245, April 2001.

[SMMR16] Larisa Safina, Manuel Mazzara, Fabrizio Montesi, and Victor Rivera. Data-
driven workflows for microservices: Genericity in jolie. In 2016 IEEE
30th International Conference on Advanced Information Networking and
Applications (AINA). IEEE, mar 2016.

[SSKT22] Mohammad Reza Saleh Sedghpour, Cristian Klein, and Johan Tordsson. An
empirical study of service mesh traffic management policies for microservices.
In Proceedings of the 2022 ACM/SPEC on International Conference on

78

https://github.com/dotnet/roslyn/blob/main/docs/features/incremental-generators.md
https://github.com/dotnet/roslyn/blob/main/docs/features/incremental-generators.md
https://github.com/dotnet/roslyn/blob/main/docs/features/incremental-generators.md

Performance Engineering, ICPE ’22, page 17–27, New York, NY, USA,
2022. Association for Computing Machinery.

[Sto18] Ben Stopford. Designing event-driven systems. O’Reilly Media, Incorpo-
rated, 2018.

[TDKA+17] Branko Terzić, Vladimir Dimitrieski, Slavica Kordić (Aleksić), Gordana
Milosavljevic, and Ivan Luković. Microbuilder: A model-driven tool for the
specification of rest microservice architectures. 03 2017.

[Tem20] Muzaffar Temoor. Architecture for Microservice Based System. A Report.
Dec 2020.

[TS15] Doug Tollefson and Andrew Spyker. Acme Air Sample and Benchmark.
https://github.com/acmeair/acmeair, 2015. Accessed: 1.8.2023.

[TTa23] Philip I. Thomas, Sam Turner, and andhess. StaffjoyV2. https://
github.com/LandRover/StaffjoyV2, 2023. Accessed: 5.8.2023.

[Val17] Angelica Valentine. Staffjoy Announces V2 and
$1.2M Seed Round. https://blog.staffjoy.com/
staffjoy-announces-v2-and-1-2m-seed-round-8abb025a150d,
2017. Accessed: 5.8.2023.

[vW23] Edwin van Wijk. Pitstop - Garage Management System. https://
github.com/EdwinVW/pitstop, 2023. Accessed: 3.8.2023.

[WEPL18] Sanjiva Weerawarana, Chathura Ekanayake, Srinath Perera, and Frank
Leymann. Bringing middleware to everyday programmers with ballerina.
In Mathias Weske, Marco Montali, Ingo Weber, and Jan vom Brocke,
editors, Business Process Management, pages 12–27, Cham, 2018. Springer
International Publishing.

[WKR21] Yingying Wang, Harshavardhan Kadiyala, and Julia Rubin. Promises
and challenges of microservices: an exploratory study. Empirical Software
Engineering, 26(4):63, 2021.

[WSO23] WSO2. Ballerina. https://ballerina.io/, 2023. Accessed: 6.6.2023.

[XSI+22] Minxian Xu, Chenghao Song, Shashikant Ilager, Sukhpal Singh Gill, Juan-
juan Zhao, Kejiang Ye, and Chengzhong Xu. Coscal: Multifaceted scaling of
microservices with reinforcement learning. IEEE Transactions on Network
and Service Management, 19(4):3995–4009, Dec 2022.

[Zim18] Olaf Zimmermann. Microservice DSL (MDSL).
https://microservice-api-patterns.github.io/
MDSL-Specification/, 2018. Accessed: 6.6.2023.

79

https://github.com/acmeair/acmeair
https://github.com/LandRover/StaffjoyV2
https://github.com/LandRover/StaffjoyV2
https://blog.staffjoy.com/staffjoy-announces-v2-and-1-2m-seed-round-8abb025a150d
https://blog.staffjoy.com/staffjoy-announces-v2-and-1-2m-seed-round-8abb025a150d
https://github.com/EdwinVW/pitstop
https://github.com/EdwinVW/pitstop
https://ballerina.io/
https://microservice-api-patterns.github.io/MDSL-Specification/
https://microservice-api-patterns.github.io/MDSL-Specification/

	Kurzfassung
	Abstract
	Contents
	Introduction
	Target Audience
	Motivation
	Research Questions
	Evaluation
	Methodology
	Structure

	Background
	Monothlic Architecture
	Microservices
	Synchronous Communication
	Asynchronous Communication
	Event-Driven Architecture
	Event Sourcing
	Choreography over Orchestration
	Idempotency
	Ciruit Breaker
	Tolerant Reader

	Related Work
	Jolie
	Ballerina
	CORBA
	Microservice DSL (MDSL)
	MicroBuilder

	RobComDSL
	Metamodel
	DSL Implementation
	Code-Generation / Mapping
	Implementation

	Design Decisions
	Querying Data
	Mutating Data
	Custom Actions
	Automatic Publishing / Subscribing of Events
	gRPC
	Document-Based Data-Structure
	Tracking Changes

	Evaluation
	Overview
	Robustness and Efficiency Criteria
	Selection Criteria for Projects
	Conceptual Evaluation
	In-Depth Evaluation / Case study

	Conclusion
	Key findings
	Limitations
	Future Research
	Final Reflection

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

