
Attentional Neural Network based
Dynamic Object Detection for

Autonomous Multi-Agent
Systems

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Informatik

eingereicht von

Daniel Scheuchenstuhl, BSc
Matrikelnummer 01630368

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dr.rer.nat. Radu Grosu
Mitwirkung: Univ.Ass. Dott.mag. Luigi Berducci

Wien, 12. August 2023
Daniel Scheuchenstuhl Radu Grosu

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Attentional Neural Network based
Dynamic Object Detection for

Autonomous Multi-Agent
Systems

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computer Engineering

by

Daniel Scheuchenstuhl, BSc
Registration Number 01630368

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dr.rer.nat. Radu Grosu
Assistance: Univ.Ass. Dott.mag. Luigi Berducci

Vienna, 12th August, 2023
Daniel Scheuchenstuhl Radu Grosu

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Daniel Scheuchenstuhl, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 12. August 2023
Daniel Scheuchenstuhl

v

Danksagung

Erstmals möchte ich meinen Betreuer Luigi Berducci für die kontinuierliche und umfas-
sende Unterstützung im Rahmen dieser Arbeit honorieren. Zudem möchte ich Jie He für
sein wertvolles Feedback und sein Engagement im Bezug auf die Korrekturlesung dieser
Arbeit danken.

Des Weiteren möchte ich die Gelegenheit nutzen, mich bei meiner Familie für die tatkräfti-
ge Ermutigung und die finanzielle Unterstützung im Rahmen meines gesamten Studiums
zu bedanken. Schlussendlich möchte ich den emotionalen Beistand meiner Freunde und
meines Freundes würdigen.

vii

Acknowledgements

Above all, I would like to honor my advisor Luigi Berducci for his continuous and
comprehensive support throughout this thesis. I would also like to express my gratitude
to Jie He for his valuable feedback and commitement proofreading this work.

Furthermore, I would like to take this opportunity to thank my family for their energetic
encouragement and financial aid throughout my study. Finally, I would like to show my
appreciation for the emotional support of my friends and my boyfriend.

ix

Kurzfassung

Das Erlernen robuster Merkmalsrepräsentationen bleibt ein anspruchsvolles Problem
in der Robotik, insbesondere in Anbetracht komplexer visueller Eingaben. Inspiriert
durch den menschlichen Aufmerksamkeitsmechanismus, welcher es Menschen ermöglicht,
komplexe visuelle Szenen schnell zu verarbeiten und auf Umweltreize zu reagieren, zeigen
wir, dass wir durch Einbetten von menschlichen Aufmerksamkeitsmerkmalen in Objek-
terkennungsalgorithmen die Effizienz und Robustheit der Objekterkennungsalgorithmen
verbessern können. In dieser Masterarbeit präsentieren wir eine neuartige Methode zur
Emulation von menschlicher Aufmerksamkeit mit einem approximierten maschinellen
Lernmodell, indem wir auf menschlichen Blickaufzeichnungen lernen, die während des
manuellen Fahrens in einer realen Umgebung im kleinen Maßstab aufgezeichnet wurden.
Dementsprechend nutzen wir die gelernten menschlichen Aufmerksamkeitsmerkmale,
um die visuellen Eingaben des Objekterkennungsmodells zu bereichern. Die in dieser
Arbeit durchgeführten Experimente vergleichen unseren Ansatz mit modernen Objekter-
kennungsmethoden im Bereich des maschinellen Sehens und zeigen, dass die Nutzung
vorhergesagter menschlicher Aufmerksamkeit zu einer verbesserten Robustheit der trai-
nierten Objekterkennungsmodelle in Szenarien außerhalb der Trainingsverteilung führt.
Damit betont diese Arbeit das Potenzial der Integration von zusätzlichen menschlichen
Aufmerksamkeitsmerkmalen im Rahmen des Repräsentationslernens für die Robotik und
zeigt neue Wege für zukünftige Forschungsrichtungen auf.

xi

Abstract

Learning robust feature representations remains a challenging problem in robotics,
especially when considering complex visual inputs. Inspired by the human-attention
mechanism, allowing humans to rapidly process complex visual scenes and react to
environmental stimuli, we show that by embedding human-attention feature maps into
object detection pipelines, we can enhance the efficiency and robustness of the object
detection algorithms. In this master thesis, we present a novel method for emulating
human-attention with an approximated Machine Learning (ML) model by learning on
human-gaze recordings of manual driving in a small-scale real-world setting. Consequently,
we exploit the learned human-attention feature maps, enriching the visual inputs of the
object detection model. The experiments conducted in this thesis compare our approach
to state-of-the-art computer vision-based object detection baselines and demonstrate
that leveraging predicted human-attention results in improved robustness of the trained
object detection models on Out-of-Distribution (OOD) scenarios. To that end, this
work emphasizes the potential of integrating auxiliary human-attention features in
representation learning for robotics and illustrates new avenues for future research
directions.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1

2 Scientific Background 5
2.1 Related Works . 5
2.2 Human Attention . 7
2.3 Artificial Intelligence & Machine Learning 9
2.4 Computer Vision . 23

3 Scientific Methodology 35
3.1 Technologies . 36
3.2 Development Process . 38

4 Design of Att-YOLOv7 39
4.1 Development of the Human-Attention Model 39
4.2 Development of the Object Detection Neural Network 54
4.3 Algorithm and Deployment of the System 61

5 Evaluation of Att-YOLOv7 65
5.1 Single-Agent/Multi-Agent Evaluation 65
5.2 Limitations & AI-on-the-Edge . 77

6 Discussion of Att-YOLOv7 79
6.1 Discussion on the System Foundations 79
6.2 Discussion of the results regarding the research questions 81
6.3 Future research directions . 82

7 Conclusion 83

8 Appendix 85

xv

List of Figures 89

Acronyms 91

Bibliography 95

CHAPTER 1
Introduction

Over the past few years, computer vision and the advent of Artificial Intelligence (AI)
have dramatically advanced and shaped myriad industries and research fields. Among
these advancements is autonomous driving, which heavily relies on computer vision
systems that are geared toward perceiving and interpreting their surroundings. With
remarkable progress in the development of object detection models, autonomous vehicles
can now identify and track objects in real-time, enhancing decision-making and enabling
safer and more sophisticated autonomous driving systems. However, despite significant
progress, OOD scenarios such as altering lighting conditions still pose a tremendous
challenge to recent object detection models. Illumination perturbations which are caused
by factors such as changing seasons, weather conditions or varying times of day, can
severely impact the accuracy and robustness of object detection systems in autonomous
driving scenarios.
The accurate detection and recognition of objects in images or videos heavily depends on
the availability of distinct visual features and the expressiveness of the learned abstract
latent feature representations. Illumination perturbations, characterized by variations
in lighting, shadows and contrast, introduce significant challenges in detecting objects
precisely, leading to potential hazards in autonomous driving systems. Consequently,
robustifying computer vision-based object detection towards illumination perturbations
becomes critical for developing reliable and robust autonomous driving systems. Tradi-
tional approaches usually apply image enhancement techniques or data augmentation in
terms of adjusting brightness levels which often fail to fully address these perturbations,
due to the absent incorporation of the underlying perceptual cues utilized by humans.
Recognizing the potential of human attention as a guiding mechanism for object detec-
tion, this master thesis aims to explore the benefits of incorporating human attention
mechanisms to tackle the issue of illumination perturbations in object detection models
for autonomous driving. As an integral component of human visual perception, human
attention enables us to selectively focus on relevant objects or regions in our visual Field

1

1. Introduction

of View (FoV) while filtering out irrelevant information. By leveraging this innate human
ability, we can develop more robust and adaptable object detection models capable of
mitigating illumination perturbations encountered in autonomous driving scenarios.

This research endeavors to contribute to the existing knowledge base in the fields of
computer vision, AI and autonomous driving by investigating novel approaches that
combine object detection models with the biological human-attention mechanism. For the
purpose of creating an autonomous system, a human-attention model mimicking human-
attention in driving situations is designed in order to remove human interaction. The
insights gained from this study will inform the development of more robust and reliable
algorithms for object detection under varying lighting conditions. Finally, by integrating
human-attention, this work aims to enhance the safety, robustness and effectiveness of
autonomous driving systems, enabling them to detect and track objects under varying
lighting conditions and challenging environments more accurately. To this end, this thesis
aims to answer the following research questions:

RQ0: How can we obtain a rich enough labeled dataset for human attention in driving
situations?

RQ1: How to design a neural network capable of imitating human attention for object
detection in autonomous driving?

RQ2: What is the comparative performance of state-of-the-art object detection
approaches, their suitability in our context, and the optimal overall architecture for an

attentional object detector?

The subsequent chapters will delve into the related work, the scientific background and
the research methodology employed in this thesis. Afterwards, we will demonstrate a
novel approach for object detection utilizing imitated human-attention to improve the
robustness of our object detection algorithm. The main contributions of our research
are provided by an in-depth comparison of state-of-the-art object detection models with
our system on the impact of illumination perturbations on their performance. This
work is evaluated on a F1/10 scale setup whereby the human-attention model as well
as all object detection models are trained and evaluated on custom datasets. The
F1Tenth research platform [1] is used along eye-tracking glasses to enable the recording
of human-attention and the acquisition of the necessary datasets for a proof-of-concept
evaluation in a small-scale setup. While most recent object detection approaches utilizing
attention mechanisms apply artificial attention as auxiliary feature [2, 3], the Detection
Transformer (DETR) [4] harnesses the power of the transformer architecture, primarily
relying on its artificial self-attention mechanism for object detection. For this purpose, we
further provide an exemplary comparison on the object detection results, our predicted
human-attention feature maps and the artificial self-attention utilized by the transformer
architecture of DETR. Then, we reason about the underlying mechanics of the imitated

2

human-attention and the artificial attention based on the given example respectively.
Concluding our evaluation, we used the F1Tenth research platform to conduct a feasibility
study of our approach for real-world autonomous driving/racing systems.

Overall, this thesis aims to contribute to the advancement of object detection models
for autonomous driving by addressing the critical issue of illumination perturbations
through the utilization of predicted human-attention. By enhancing the adaptability and
robustness of these systems, this work endeavors to advance the state-of-the-art in this
field, paving the way for safer and more reliable autonomous vehicles in the future.

3

CHAPTER 2
Scientific Background

According to the state-of-the-art on this research topic and the stated problem description
in Chapter 1, this chapter presents the state-of-the-art approaches in the visual object
detection task. Furthermore, this chapter intends on providing a principle overview of
the scientific work that has already been done on developing computer vision systems,
specifically object recognition and object detection approaches incorporating some basic
form of self-attention mechanism. Moreover, relevant scientific work that has been done
on similar research topics as well as the technical background this thesis builds on is
discussed. For this reason, the first section describes the related work while the second
section and onward provide a general introduction on the technical background of this
thesis.

2.1 Related Works
In this section, we state the works related to the contributions of this thesis. Considering
the application domains of object detection and autonomous racing, we conducted a
thorough review of the existing work of learning-based approaches used in autonomous
racing focusing on the perception end of the perception, planning and control pipeline
applied in robotics.

Human-Attention Models. Inspired by it’s vast impact on human learning and
perception, human attention has been comprehensively studied for almost a century.
Johnson et. al. [5] extensively discuss the fundamental mechanism of human attention and
its benefit for enhancing human learning. Focusing on human visual perception, Tsotsos
[6] analyzes vision at the complexity level and refines the computational nature of the
visual search task. Moreover, Itti et. al. [7] even provide a framework for a computational
and neurobiological explanation of human visual attention. Recent research demonstrates
that the notion of attentional focus can efficiently be adopted to enhance the performance
of various ML applications such as Natural Language Processing (NLP) [8], machine

5

2. Scientific Background

translation [9] or object detection [3]. However, the relation between machine attention
utilized by modern Neural Network (NN)s and human attention remains unresolved. For
this purpose, Sood et. al. [10] analyze and interpret the focus of NNs in comparison
to human visual attention in the context of a machine reading comprehension. To this
end, we demonstrate the practical use of human visual attention based feature maps to
enhance the performance of computer vision models.

Representation Learning. Significant progress in the field of representation learning
has been achieved in recent years [11]. In order to reach the goal of learning low-
dimensional, latent feature representations, most modern ML approaches either rely on
self-supervised learning or generative adversarial networks [12, 13, 14] using autoencoders
[15, 16, 17]. Alternatively, Moyer et. al. [18] show that adversarial training is not always
optimal for learning invariant feature representations. In the context of self-supervised
learning, recently emerged contrastive learning algorithms achieve superior results for
learning strong visual representations [19, 20]. When applied to small models, contrastive
learning may only yield poor performance. To this end, Fang et. al. [21] leverage the
visual representations learned by a larger network for a smaller model using self-supervised
learning. In contrast to previous research, we do not aim to use human attention to
derive efficient feature representations. Instead, we propose to enrich the learned visual
feature representations with human visual attention based feature maps.

Autonomous Racing. Given that our robotics experiments have been framed in the
context of autonomous racing, we include a review of existing approaches focusing on
deep-learning based methods w.r.t. perception. A complete overview of the research
field of autonomous racing is given in [22]. While only few works tackle object detection
using multi-modal inputs and sensor fusion [23, 24, 25], most approaches aim to improve
the performance of existing visual object detection algorithms [26, 27]. In particular,
the You Only Look Once (YOLO) architecture [28] has seen extensive advancements
regarding object detection accuracy, inference time and latency in recent years. Despite the
impressive results of it’s latest successor [29], the model is still sensitive to rapid variations
in illumination. Comparably to [24, 25], our goal is to improve the robustness of object
detection architectures to changes in illumination via additional sensory information,
namely human-attention based feature maps.

Object Detection. Object detection is one of the fundamental problems of computer
vision. With the rise of AI and ML, a vast amount of techniques and methods based
on Deep Neural Network (DNN)s and Convolutional Neural Network (CNN)s have
been proposed such as [30] [31]. Most state-of-the-art object detection algorithms treat
object detection as a regression problem, where classification and localization of the
objects in the image are performed simultaneously. In general, state-of-the-art object
detection algorithms can be categorized into one-stage methods such as the YOLO
family [28, 32, 33, 34, 35, 36, 29] and Single Shot Detector (SSD) [37] and two-stage
methods such as Regions with CNN features (R-CNN) [38], Fast/Faster R-CNN [39, 40]
and R-FCN [41] depending on whether region proposals are computed a priori. While
two-stage methods provide a higher object detection accuracy, one-stage methods are

6

2.2. Human Attention

superior in inference time. Moreover, Lin et. al. [42] proposed a simple and powerful
framework for building feature pyramid networks to be used inside CNNs for an efficient
generation of region proposals.

Based on the major advances in NLP, document summarization and machine translation
tasks by implementing the concept of self-attention following [8], attention has also been
considered and successfully applied in computer vision tasks such as object detection
[3, 2]. Specifically, Hara et. al. [3] proposed an augmenting deep neural network with an
attention mechanism for visual object detection. When compared to Fast R-CNN [39], a
consistent performance improvement of the self-attention based DNNs can be determined.
Furthermore, Zhu et. al. [2] proposed a fully convolutional network denoted as Attention
CoupleNet to incorporate the attention-related global and local information of objects to
improve the object detection performance. Attention CoupleNet achieves state-of-the-art
performance on the Pattern Analysis, Statistical Modelling, and Computational Learning
Visual Object Classes (PASCAL VOC) and Common Objects in Context (COCO) datasets
for object detection. Moreover, the Transformer architecture proposed by Vaswani et
al. [8] has also been successfully applied to computer vision applications such as image
recognition [43] and object detection [4]. Both approaches achieve competitive results in
their respective domain of application.

However, all of the discussed methods that incorporate an attention mechanism imple-
ment the concept of self-attention following [8] while a more advanced attention concept
imitating human attention may proof beneficial in terms of training time, object detection
accuracy, inference time or robustness [44]. Ultimately, for most object detection ap-
proaches, the PASCAL VOC and COCO benchmarks are the defacto standard in object
detection performance comparison while they cannot be used as measure for quantifying
the object detection performance in an autonomous driving context.

2.2 Human Attention
The selective focus on specific regions of a visual scene for fast perception is biologically
integrated in the human visual system and known as human attention [44]. Alternatively,
human attention may be described as a procedure for reducing the computational cost
of the search process inherent to visual perception [7]. Based on the rising computa-
tional complexity of computer vision tasks, data-driven visual search approaches become
infeasible addressing the need for an attention based feature selection method that is
further able to exploit and use task knowledge in order to minimize the computational
cost of visual processing [6]. Due to the nature of human visual attention, an attention
based visual search algorithm that efficiently mimics human visual attention is desired.
According to [7], four general computer vision approaches have emerged: artificial ma-
nipulations, active vision, perceptual grouping and Regions of Interest (RoI) operators.
Artificial manipulations are highly task-specific systems requiring domain-knowledge
and a variety of assumptions. Furthermore, these systems do not only rely on vision
and do not generalize well due to their task-specific design. In active vision, features

7

2. Scientific Background

are extracted from a visual scene by manipulating the parameters of the sensors. For
example when applied in structure reconstruction, stereo camera systems are used to
reconstruct a visual scene based on the variation of the degrees of freedom of the sensors
(position, focus, zoom, vergence, etc.). Another idea is to cluster/organize low-level
features into high-level structures to obtain a more abstract view of the visual scene
allowing for semantic manipulation of the segmented scene. While such generic methods
are not specifically designed for computer vision, in a biological and psychological context
such processes are also known as perceptual grouping algorithms which are constrained
by the principles of Gestalt theory. Last but not least, RoI operators specify distinctive
and invariant descriptors of features of interest in a scene. Hence, each feature is uniquely
characterized with respect to its neighbouring features in terms of position, geometry
and radiometric distortions. Although the selective processing of RoI leads to promising
results, the lack of semantic information in the low-level feature representations limit its
general applicability.

In order to create a biological model of visual attention, empirical research must be
conducted and experimental data must be obtained leading to the study of visual search,
saliency, overt and covert attention as well as bottom-up/top-down attention. Visual
search deals with the localization of a target items among several distraction items where
either parallel or serial visual search is applied. The reaction time in parallel visual search
is independent of the number of distraction items whereas the reaction time in serial visual
search increases proportional to the number of additional distraction items at a given
rate. It is assumed that in parallel visual search, all items are processed simultaneously
at a semantic level sufficient to distinct between target and distraction items while this
distinction is not possible anymore in serial visual search. Another key aspect of visual
attention is saliency which is biologically implemented as local saliency modulation and
global saliency map. Local saliency modulation is assumed to be performed in the
striate cortex and interpreted as precursor or texture/object segregation. Contrarily,
a global saliency map is assumed to be located in the lateral intraparietal (LIP) area
and represents salient stimuli as the neurons in this region seem to respond very well
to recently flashed stimuli and abrupt motion. In a computational modelling context, a
global saliency map can basically be modeled as 2D activation map (heatmap) of varying
neuron firing intensities. Coming back to attention in general, we can distinguish between
overt attention and covert attention. By definition, overt attention is the fixation or direct
focus of the eyes on a respective stimuli in the visual perception. On the other hand,
covert attention is described by reacting on a stimuli that is located within the radial
bounds of peripheral vision but not fixated by the gaze of the eyes. Covert attention is
also denoted as visual spatial attention and initiates the transition of overt attention in
the attentional locus. Finally, we can discuss the impact of bottom-up and top-down
attention. Stimulus-related attention or also denoted as bottom-up attention is observed
by differentiating between various items and shifting the attention in terms of the fixation
of the eyes to the most relevant stimuli. Top-down attention is driven by an intention in
terms of searching the visual perception for specific information. This information may
either be explicitly present e.g. image cues or implicitly provided via prior stimuli.

8

2.3. Artificial Intelligence & Machine Learning

Based on research conducted in this field, three of the major theories of visual attention
shall be briefly introduced. The most popular theory of visual attention is attention as
selection which views visual attention as mechanism to selectively identify RoI in the
visual perception and prepare those for further processing in higher cortical areas. As
the human visual system appears to be a hierarchical system that incorporates scale and
location invariance in order to process input images, a common theory is attention as
filtering. This theory relies on the increasing receptive field size of the neurons at higher
levels of the hierarchy where attention is supposed to be used to filter the relevant stimuli
from the redundant information and improve the signal-to-noise ratio. The third major
theory denoted as attention as process assigns the observed characteristics to emergent
properties of the competitive neural network in the brain rather than to a dedicated
attentional mechanism.

2.3 Artificial Intelligence & Machine Learning
AI is a field of computer science and refers to the capability of a computer system
to imitate human intelligence, develop cognitive abilities or even go beyond human
capabilities. Computer systems that incorporate AI have the ability to learn, gain
problem-solving competence and evolve. Generally, an AI does not need to be pre-
programmed. AI uses mathematical operations and logic to mimic human reasoning
in order to arrive at a well-founded decision for a specific problem or task. On the
contrary, ML is a subset of AI where a computer system makes a decision or prediction
based on historical data. While computer systems incorporating ML do not need to
be explicitly pre-programmed either, these systems generally require a vast amount of
historical data such that high-confidence predictions on new data can be made. Basically,
a ML algorithm constructs a statistical model based on the historical data, also called
training data. This model is further evaluated on the validation data to guarantee that
the model learns patterns and regularities in the training data and generalizes well on
new data instead of overfitting on the training data. In contrast to general AI, ML
algorithms are specialized on a specific domain or even a specific problem in particular.
In order to effectively learn from the historical data, ML algorithms are modeled based
on the knowledge and nature of the human brain.
In more detail, artificial neurons are the elementary units of a ML algorithm and are
inspired by the biological neurons in a living organism. Artificial neurons are an abstract
representation modeling the information flow of a biological neuron where an input
vector is basically summed up to produce an output. Artificial neurons are designed to
imitate the computation process that occurs in a biological neuron which is composed of
dendrites, soma and axon. Specifically, an artificial neuron receives an input sequence x
as input where each part of this input sequence x denoted as xi is separately multiplied
with a specific weight denoted as wi. The weighted input sequence is then passed on to a
transfer function. Usually, the transfer function Σ computes the sum or the dot product
of the weighted input sequence and adds a bias term b which is further provided to an
activation function as input. Based on the provided input, the implementation of the

9

2. Scientific Background

activation function ϕ and the threshold value θ, the neuron either activates and passes
on its output in terms of a real number or does not activate. Mathematically, the output
y can be formulated as a function of input x as follows: y = ϕ(Σxi ∗ wi + b). Figure 2.1
also illustrates the input-output mapping as well as the information flow of an artificial
neuron.

Figure 2.1: Schematic representation of an artificial neuron

Based on the synapses and biological neurons in the nerve system of a living creature that
form a self adaptive biological neural network, artificial neurons are similarly connected
to each other forming an artificial NN. Artificial NNs are composed of multiple artificial
neurons and are organized in a hierarchical structure meaning that the initial input
sequence is processed by the first couple of neurons while the output of these neurons
serves as input for the next couple of neurons. Information between these groups of
neurons is passed on in an unidirectional way until the last group of neurons has received
the data and finished processing. The group of neurons that belongs to the same hierarchy
in the network is denoted as layer. The most simplistic artificial NNs consist of two
layers: the first layer is called the input layer and the last layer is called the output
layer. Commonly, the structure of an artificial NN implements a hierarchy with many
more layers in between than an input and output layer. These layers are referred to as
hidden layers as their outputs are not visible. Generally, the integration of hidden layers
in a ML model allows to train an artificial NN for more complex tasks. A hidden layer
receives the output of its previous layer and performs a non-linear transformation on
the input vector which is further passed on to the next layer. As every hidden layer has
different parameters depending on its functional characteristics, distinct transformations
are applied to the input. Thus, hidden layers allow the functionality of the artificial NN
to be broken down into various functions which can be specifically designed to apply
an intended transformation at a given processing step in the data flow to achieve an
expected result. For instance, by using a sigmoid activation function in the output layer,
the output of the neural network can be transformed into the range between 0 and 1
which might be the intended output of the neural network if a probability is expected.

This conceptual design of artificial NN where multiple hidden layers are stacked to
build the structure of the artificial NN is also referred to as DNNs where deep learning
corresponds to the overall term of training, designing and validating such networks.
Figure 2.2 visualizes the difference between a simple artificial NN and a DNN. The major

10

2.3. Artificial Intelligence & Machine Learning

advantage of DNNs is that information processing happens at each stage/layer separately
meaning that the first couple of hidden layers may extract some low-level information
from the training data whereas succeeding hidden layers do not consider all information,
but only the relevant information passed on from the preceding hidden layers. This
allows deeper hidden layers of the DNN to learn more high-level, general and abstract
information about the data while only considering relevant data.

Figure 2.2: Structure of a simple and deep artificial neural network from [45]

The structure of a DNN or also called algorithm of the DNN is highly task specific.
For example, a Multilayer Perceptron (MLP) consists of three or more fully-connected
layers meaning that every neuron of the preceding layer is connected to every neuron
of the succeeding layer given a respective weight and implements non-linear activation
functions. Although the MLP can distinguish patterns in non-linearly separable data,
it will not be able to efficiently and accurately learn how to classify various images of
animals as the MLP can not learn about the spatial information of the data. In order
to implement a DNN capable of learning how to classify various images of animals, a
variant of a CNN may be used. In CNNs, the key to obtain spatial information between
the pixels in an image is by performing a convolution operation on the 2D or 3D image
data using a convolutional matrix denoted as kernel filter of predefined weights. By
applying consecutive convolution operations in the hidden layers, different convolutional
transformations are learned allowing the CNN to extract various spatial features at every
layer. The CNN learns about low-level features of the input images such as edges in the
upper hidden layers, mid-level features such as corners or contours in the next couple of
hidden layers and high-level features such as geometric shapes or facial characteristics in
the lower hidden layers. Finally, classification of the abstract feature representations is
performed in a couple of fully-connected layers. Inspired by the receptive field of biological
neurons, artificial neurons of a convolutional layer have only a local view of the input
matrix received from the previous convolutional layer. Additionally, all neurons within a
convolutional layer share the same weights allowing them to learn local features. As the
exact position of low-level features such as edges is not of interest for object recognition,
each convolution layer may be followed by a pooling layer. There are several types of
pooling operations including average-pooling and max-pooling while max-pooling is the
most commonly used one. For instance, by performing a max-pooling operation on a 2x2
grid, only the neuron from the previous convolution layer with the highest activation in
this area is considered for further processing while the outputs of the other three neurons

11

2. Scientific Background

are discarded. Based on a 2x2 grid, the output space of the previous convolution layer is
reduced by a factor of four using a succeeding pooling layer. Thus, pooling layers allow
to implement and train deeper NN while also providing a measure to prevent the NN
from overfitting. Generally, CNNs vastly reduce the number of parameters required for
training in comparison to MLP determining the success of CNNs for image processing
tasks.

2.3.1 Activation Functions
An artificial neural network may be viewed as an universal function approximator allowing
to learn any function given a specific input-output mapping. The complexity and learning
capability of an artificial NN depends on the mathematical model of its artificial neurons.
When modeling an artificial neuron merely as a composition of linear functions, the
artificial neuron will lack the ability to learn non-linear correlations. Therefore, an artificial
NN or DNN which is only composed of a combination of linear transformations can not
benefit from the deep learning approach of a multi-layer network as every combination of
linear functions has an equivalent single-layer network and can be functionally reduced to
it. In order to achieve the described functionality of the activation function and for the
artificial neuron to be able to also learn non-linear functions, activation functions have to
be modeled as non-linear functions. There are several types of activation functions such
as sigmoidal shaped functions, piecewise linear functions or step functions each having
different properties regarding network complexity and learning convergence. Common
activation functions include the sigmoid function, hyberbolic tangent function, heaviside
function as well as Rectified Linear Unit (ReLU) activation function and its variants.

The sigmoid activation function given by σ(x) = 1
1+e−x is a non-linear and continuous

function which is commonly used to normalize any input in the range between 0 and
1. It also comes with an easily calculated derivative which is especially important in
gradient-based learning methods such as supervised learning 2.3.4 for computing the
gradients in the backpropagation algorithm. On the downside, optimization of multi-
layer neural networks becomes a challenge as the gradients tend to diminish towards
zero for neurons incorporating a bounded activation function as a sigmoid activation
function making the network vulnerable to the vanishing gradient problem. The vanishing
gradient problem occurs in gradient-based learning methods during the backpropagation
algorithm where the parameters (weights & bias) of the neurons are updated based
on the partial derivatives of the loss function with respect to these parameters. These
update values are also denoted as gradients. For very deep multi-layer networks, the
gradients are successively multiplied based on the chain rule over and over again resulting
in insignificantly small update values in upper layers. Thus, if the output of one of the
upper layer’s neurons is close to a threshold value, the small gradients will prevent the
weights from updating their value. Hence, the network either converges really slow or is
prevented from learning at all in the worst case.

The hyperbolic tangent function given by tanh(x) = ex−e−x

ex+e−x is a zero-centered, non-
linear and continuous function similar to the sigmoid function where real input values

12

2.3. Artificial Intelligence & Machine Learning

are suppressed to the range between -1 and 1. In contrast to the sigmoid function, the
gradient of the TanH function is much higher at zero where data is usually centered around.
Additionally, TanH is symmetric around zero resulting in a much faster convergence.
On the downside, the TanH activation function also suffers from the vanishing gradient
problem. The heaviside function or also denoted as step function is a non-linear function
used for a binary classification of the input given a specific threshold θ. It is usually useful
in the last layer of a NN where a binary decision has to be performed. The heaviside
function can be approximated using any sigmoidal function.
One of the most commonly used activation functions is the ReLU activation function.
ReLU is a piecewise linear and unbound function which corresponds to the positive part
of its argument. Mathematically, ReLU is given by f(x) = max(0, x) where x is the
input of a neuron. The main benefits of ReLU are its efficient computation as only simple
mathematical operations are required in comparison to the sigmoid or TanH function
that require an exponential calculation, its representational sparsity allowing for true
zero values and accelerating the overall learning process as well as it avoids the vanishing
gradient problem allowing to effectively train DNNs. Moreover, ReLU equals the linear
ramp function for x > 0 making it easier to optimize. Contrarily, based on its definition,
ReLU may output any value in the range [0, ∞) possibly leading to the exploding gradient
problem which is the compliment of the vanishing gradient problem. The exploding
gradient problem occurs when large magnitudes of gradients accumulate and result in
very large updates to the weights of a NN. These large updates may cause the NN to
become unstable and diverge, making further learning infeasible. The exploding gradient
problem may be identified in terms of Not a Number (NaN) values in the training process,
as large updates may lead to an overflow in the loss and/or weights. There are a couple
of methods in order to fix this issue such as gradient clipping or weight regularization.
Revisiting ReLU, the gradients will be zero for activations where the input is in the range
x < 0, thus preventing the neurons from applying any future updates. This problem is
also denoted as the dying ReLU problem. Especially for designing and training DNNs,
ReLU has become the default activation function. Therefore, there are many variants
of ReLU such as leaky ReLU and Exponential Linear Unit (ELU) each having different
properties in order to tackle the drawbacks of the ReLU activation function. For example,
the leaky ReLU function given by

f(x) = x if x > 0,

0.01x otherwise

is an extension of ReLU and tackles the dying ReLU problem by allowing a small, constant
and non-zero gradient for x < 0. On the other hand, the ELU given by

f(x) = x if x > 0,

α ∗ (ex − 1) otherwise

extends ReLU and attempts to compensate for the dying ReLU problem by smoothly
declining its output value until its equal to −α which represents a tunable hyper-
parameter.

13

2. Scientific Background

2.3.2 Structure of Neural Networks

Up to this point, when describing the design and behaviour of NN, we implicitly talked
about Feed-Forward Neural Network (FFNN). A FFNN can be modeled as a directed,
acyclic graph where information may only flow in the forward direction. Thus, when data
is received at the input layer, it is processed and passed on to the first hidden layer where
it is again processed and passed on to the next hidden layer. This NN design implies that
there is no backward flow which may also be denoted as feedback loop. On the contrary,
a Recurrent Neural Network (RNN) is a directed but cyclic graph where information is
also passed along a feedback loop. Figure 2.3 shows the structural difference between a
RNN and a FFNN.

Figure 2.3: Design of a Recurrent Neural Network (RNN) and a Feed-Forward Neural
Network (FFNN) [46]

The idea behind RNNs is to adequately learn sequential or time series data such as
language translation, NLP or speech recognition. Specifically, the assumption for the
design of RNNs is that input and output are not independent of each other but the
output depends on the prior input. Hence, for predicting the next token of a sequence
of dependant data items such as predicting the next character or word of a sentence,
the previous state of the neurons has to be memorized. At each time step, a neuron
receives the output of the previous layer as well as its previous output state as input.
The short-term memory capabilities of a RNN may be extended to more than only
considering one time step ahead though, meaning the RNN can be composed of many
hidden units. In order to train a RNN, the Backpropagation Through Time (BPTT)
algorithm is applied which is a variant of the backpropagation algorithm where the error
is propagated from the last time step to the first time step as the partial error of a given
time step depends on the error of the previous time step. Figure 2.4 demonstrates the
concept of unrolling the time steps of a RNN.

The major issue of RNNs is that they are also vulnerable to the vanishing gradient
problem. For this purpose, Sepp Hochreiter and Juergen Schmidhuber proposed the
concept of Long-Short Term Memory (LSTM) [47] which is an extension of RNNs and
partially solves the vanishing gradient problem as well as also allows to learn long-term

14

2.3. Artificial Intelligence & Machine Learning

Figure 2.4: Comparison of rolled RNN (left) and unrolled RNN (right) [46]

dependencies in sequential data. While the repeating module in RNNs have a very
simple structure, LSTMs consist of four interacting components. Figure 2.5 illustrates
the internal design of a LSTM.

Figure 2.5: Structure of a LSTM module adapted from [48]

The key element of a LSTM is the LSTM cell ct which may be considered as memory
unit where information can be read, written or deleted. Access to the cell is controlled
through an input, output and forget gate which determine on whether new input is
fetched, irrelevant information should be erased or the hidden state ht at time step
t should be affected by the cell’s content. More technically, the LSTM implements
pointwise multiplication, addition, sigmoid activation and TanH activation functions to
model the functionality of these gates, thus allowing the LSTM module to learn the
temporal relation between sequential input tokens and the output respectively. Since
it’s invention, many variants of the LSTM have been proposed and further refined for
different application domains such as the Convolutional LSTM (ConvLSTM) [49] which
is used for spatio-temporal predictions for example.

15

2. Scientific Background

2.3.3 Machine Learning Variants
Apart from gradient-based learning methods such as supervised learning 2.3.4, various
other ML techniques exist. The following paragraphs provide a brief overview of the
most common learning techniques used in ML.

Reinforcement Learning (RL) is one of the three fundamental ML paradigms next to
supervised learning and unsupervised learning. In RL, an agent is trained on how to
interact with its environment based on the notion of a cumulative reward. Typically,
an environment is stated as Markov Decision Process (MDP) where a transition from
one state to another state given a specific action is associated to a reward. The main
difference between RL and supervised learning is that the correct solution does not have
to be provided to the algorithm (no labelling of the input data is required). The aim
of a RL agent is to find the optimal balance between exploration of new territory and
exploitation of its current knowledge by learning a policy π of state and action pairs
maximizing the expected cumulative reward to achieve an optimal solution.

Imitation Learning (IL) is a ML concept similar to RL but instead of providing a scalar
reward as feedback for transitioning from one state to another state in the environment
given a specific action, the agent receives a direct demonstration (an action) of the task
as feedback. These actions are gathered from a trainer, denoted as expert which the
model learns to imitate.

The idea of Transfer Learning (TL) is to use an already trained NN for a new problem.
Based on the large amounts of data required for training DNNs from scratch, TL provides
a convenient possibility of slightly adapting the pre-trained model and apply it to a
similar use case without the need to retrain all layers of the model. In a computer vision
context for example, the classifier of an image recognition model may be redesigned
and/or retrained while the backbone of the network (involves the entire down-sampling
path) which is used for feature extraction is left unchanged. For this purpose, aside
from the vastly reduced training time, much less training data is necessary as only the
classifier needs to be fine-tuned. It shall be noted that the fine-tuned model should be
applied on inputs which are similar to those the pre-trained model has been trained with,
otherwise the accuracy of predictions might still be low.

Finally, unsupervised learning is a ML method where unknown patterns and correlations
in a dataset are learned without the need to label the data. Thus, an unsupervised
learning algorithm analyzes the given data to discover potential similarities and differences
in order to group the data into a previously undefined number of categories. Usually,
unsupervised learning algorithms are utilized for clustering, association and dimensionality
reduction. Clustering is the process of grouping data points based on similarity, difference,
structure and/or pattern. Examples of clustering algorithms are K-Means, DB-Scan and
hierarchical cluster analysis algorithms. Association is the analysis of finding correlations
between the data points where the apriori algorithms may be noted as an example. Last
but not least, dimensionality reduction aims at finding the least amount of variables
to express the given data such that the algorithm does not overfit on the training data

16

2.3. Artificial Intelligence & Machine Learning

and may also be used on other datasets. One example of a dimensionality reduction
algorithm is Principal Component Analysis (PCA).

2.3.4 Supervised Learning
Supervised learning is a ML paradigm and one of the most commonly applied techniques
to solve a specific problem using ML. The basic idea of supervised learning is based on
the knowledge of the correct solution to a given problem. Supervised learning approaches
may be split into two categories: classification and regression. In classification, an
algorithm is designed to assign the correct category to each desired data instance. For
example in semantic segmentation 2.4.1, each pixel of an input image is assigned a class
label. Regression deals with the problem of finding a relationship between dependent
and independent variables while the goal is to project their further relation. For instance,
based on the stock price of the last few weeks, the stock price of tomorrow shall be
projected. Apart from artificial NNs, several other types of supervised learning techniques
exist such as Naive Bayes, linear and logistic regression, Support Vector Machine (SVM),
k-nearest neighbour and random forest. This section only focuses on the explanation of
supervised learning using artificial NNs.

An artificial NN, also denoted as model or network is trained on a dataset which consists
of individual input and label pairs where the input is a data item the model is intended
to be trained on and the label provides the actual solution to the input. The major
drawback of supervised learning algorithms is that the input data must be labeled prior
to training the model. Generally, the learning process of an artificial NN can be split
into training phase and validation phase which are iteratively executed. Each iteration
of the learning process is also referred to as epoch. For every epoch, the model is trained
on a large amount of training data by performing forward propagation where an error
term, denoted as cost or loss between the provided solution and the predicted solution is
computed. Afterwards, the backpropagation algorithm is applied where the parameters of
the model are recursively adjusted based on the partial derivatives of the loss function of
these parameters. Once the training phase of the network for a given epoch is completed,
the model is evaluated on a different portion of the dataset denoted as validation data.
In the validation phase, the performance of the artificial NN is tested with respect to
an evaluation metric determining the accuracy of the model. The evaluation metric
should be interpretable and have a task-specific or domain-specific meaning as well as a
correlation between the loss function and the evaluation metric is preferable, as a decrease
in the loss might not lead to an increase in accuracy otherwise. Based on the change in
accuracy over various epochs, the learning rate which is a fundamental hyper-parameter
in gradient-based learning methods such as supervised learning, may be increased or
decreased resulting in a more efficient training of the network.

In order to train the network appropriately, the loss function has to be sufficiently
minimized. For this purpose, an optimization algorithm also denoted as optimizer is
required which searches the parameter space of the model’s weights and biases and adapts
the learning rate to reduce the overall loss and converge to an optimal minimum. Various

17

2. Scientific Background

optimization algorithms exist such as Gradient Descent, Stochastic Gradient Descent
(SGD), Mini-Batch Gradient Descent, SGD with Momentum, Nesterov Accelerated
Gradient (NAG), Adaptive Gradient Descent (AdaGrad), Root Mean Square Propagation
(RMS-Prop), AdaDelta and Adaptive Moment Estimation (Adam). These optimization
algorithms may be roughly categorized into two sets depending on the usage of a
constant or dynamic learning rate. Optimization algorithms relying on a constant,
manually selected learning rate have the disadvantage that the choice of learning rate
heavily impacts the convergence speed. Moreover, variants of the Gradient Descent
algorithm tend to converge to local minima. While optimization algorithms building
on a dynamic learning rate allow to select a different learning rate for each parameter,
those algorithms are more complex and quite computationally expensive. The following
paragraph provides an introduction to the most basic, but also the most commonly used
optimization algorithm: Gradient Descent.

The Gradient Descent algorithm is an iterative first-order optimization algorithm meaning
that the first-order derivative of the loss function is calculated. Therefore, not any given
function may be used for the computation of the loss as the loss function must be
differentiable. Furthermore, the cost function is ideally convex as the algorithm may also
converge towards local minima. For convex functions, the local minima also corresponds
to its global minima. The parameters are updated by subtracting the scaled gradient of
the current value from the current value. Mathematically, the Gradient Descent algorithm
is formulated as follows: θn+1 = θn − η∇f(θn) where θn+1 is the parameter’s updated
value, θn is the parameter’s current value, η is the step size, also denoted as learning
rate and ∇f(θn) is the gradient of the parameter’s current value. As already mentioned,
the learning rate is an essential parameter of the Gradient Descent algorithm. If the
learning rate is too low, convergence may take forever. If the learning rate is too high, the
algorithm might not converge or even diverge. Finally, the parameters are updated only
once for every epoch as the entire dataset is used for computation. Thus, the Gradient
Descent algorithm might have a large memory footprint as well as requires a large number
of epochs to converge.

In order to partially overcome this problem, the SGD algorithm updates the parameters
of the model after each iteration by only considering one randomly fetched training
sample vastly reducing time for convergence. As the training samples are randomly
selected, the parameters have high variance and fluctuations in the loss might occur. The
Mini-Batch Gradient Descent algorithm tries to find a balance between Gradient Descent
and SGD by updating the parameters of the model after a batch of training samples has
been processed.

Finally, an advanced optimization algorithm using dynamic learning rates and second-
order derivatives is addressed. Adam [50] is a first-order and second-order momentum
based optimization algorithm of stochastic objective functions combining the benefits of
AdaGrad and RMS-Prop. Adam uses an individual learning rate for each parameter of
the model while the parameters are adapted with respect to the exponentially decaying
average of the gradient and the exponentially decaying average of the squared gradient.

18

2.3. Artificial Intelligence & Machine Learning

Thus, Adam uses the mean and uncentered variance of the gradients to rapidly improve
convergence.

Specifically, when a model is trained, a set of data samples such as images denoted as a
batch is passed on to the model. Each image is received at the input layer of the artificial
NN and sequentially processed by all layers of the network to compute the output of the
model. This process is called forward propagation or forward pass. Suppose, we consider
the fully-connected NN shown in figure 2.6 with only one hidden layer consisting of two
neurons and a single-neuron output layer.

Figure 2.6: Structure of a simple FFNN

During forward propagation, the intermediate variables as well as the activations of
the neurons are computed based on the model’s current parameters. For instance, the
intermediate variables and activations of the neurons in the hidden layer and in the
output layer for the network displayed in figure 2.6 are calculated according to equations
2.1 - 2.6.

h1 = x1 ∗ w1 + x2 ∗ w3 + b1 (2.1)
h2 = x1 ∗ w2 + x2 ∗ w4 + b2 (2.2)

h1a = ϕ1(h1) (2.3)
h2a = ϕ2(h2) (2.4)

y = h1a ∗ w5 + h2a ∗ w6 + b3 (2.5)
ya = ϕ3(y) (2.6)

where ϕi(x), i ∈ [1..3], are neuron activation functions. Without the loss of generality,
the computation of the intermediate variables and the hidden activation vectors based on
a network with only one hidden layer for an input x ∈ Rn where n is the dimensionality
of x may also be stated according to equations 2.7 - 2.10.

19

2. Scientific Background

h = W1 ∗ x + b1, W1 ∈ Rm×n, b1 ∈ Rn (2.7)
ha = ϕ(h), h ∈ Rm (2.8)
y = W2 ∗ ha + b2, W2 ∈ Ro×m, b2 ∈ Rm (2.9)

ya = ϕ̂(y) (2.10)

While the computational graph of the network is traversed in forward direction during
forward propagation, the backpropagation algorithm traverses the network in reverse
order and updates the parameters of each layer’s neurons based on their relative impact
on the loss by applying the chain rule consecutively. The backpropagation algorithm is
the core for training NNs. Due to the nature of the chain rule, the computation of the
gradient of each neuron’s parameters only depends on the neuron’s hidden state which
was computed by forward propagation and on the gradient of each neuron’s parameters
that are on the path between the current neuron and the respective output neuron. For
this reason, the backpropagation algorithm allows for high-parallelism in the overall
computation of each neuron’s loss making it the state-of-the-art training algorithm for
NNs as it can be efficiently utilized to run on multiple Graphical Processing Unit (GPU)s
simultaneously.
From a more theoretical perspective, the chain rule formally states that the derivatives
of two differentiable functions represent the derivative of the composition of these two
functions. Suppose we have two functions z = f(y) and y = g(x). Then, the chain rule
given by equation 2.11 allows to express the partial derivative of the dependent variable z
with respect to the independent variable x given the intermediate dependent variable y.

dz

dx
= dz

dy

dy

dx
(2.11)

The objective of the backpropagation algorithm is to compute the gradients of the cost
function C with respect to the model parameters. Based on the artificial NN given in
figure 2.6 and by disregarding the bias parameters for the sake of simplicity, the partial
derivatives ∂C

∂W1,2
need to be calculated according to equations 2.12 - 2.17. Therefore,

the gradient of C with respect to the output layer ya is computed first. Furthermore,
the gradient of C with respect to the intermediate variable y is calculated while an
elementwise multiplication to account for the activation function is necessary. In the
next step, the gradients of the model parameters used for the output layer computation
are obtained according to equation 2.14. Based on equation 2.14, we need to further
traverse the network in backward direction in order to calculate the gradient of ∂C

∂W1
.

The gradient of C with respect to the hidden layer output ha is obtained in equation
2.15. For computing the gradient of C with respect to the intermediate variable h, the
activation function has to be considered again. Finally, the gradient of C with respect to
the model parameters used for the hidden layer computation are computed according to
equation 2.17.

20

2.3. Artificial Intelligence & Machine Learning

∂C

∂ya
∈ Ro (2.12)

∂C

∂y
= ∂C

∂ya

∂ya

∂y
= ∂C

∂ya
∗ ϕ̂(y) ∈ Ro (2.13)

∂C

∂W2
= ∂C

∂y

∂y

∂W2
= ∂C

∂y
hT

a ∈ Ro×m (2.14)

∂C

∂ha
= ∂C

∂y

∂y

∂ha
= W T

2
∂C

∂y
∈ Rm (2.15)

∂C

∂h
= ∂C

∂ha

∂ha

∂h
= ∂C

∂ha
∗ ϕ(h) ∈ Rm (2.16)

∂C

∂W1
= ∂C

∂h

∂h

∂W1
= ∂C

∂h
xT ∈ Rm×n (2.17)

Thus, given the model’s initial parameter initialization, when a model is trained, forward
propagation and backward propagation are alternated as they essentially depend on each
other.

Fitting the model on a dataset is a non-trivial task, as the model must be represented
with descent complexity to capture the underlying distribution in the dataset. Usually,
the distribution in the dataset is either assumed to be Gaussian or non-Gaussian. When
sampling from data of a given distribution, we aim at either standardizing the data
by having a mean of zero and a standard deviation of one in the data for Gaussian
distributions or normalizing the data to a common range e.g. between zero and one for
non-Gaussian distributed data of various scales. Many ML algorithms benefit from this
pre-processing step as bias and variance play a vital role in finding a statistical fit for
an unknown target function. The complexity of the model is the second fundamental
parameter. Figure 2.7 provides an argument on the importance of the model’s complexity.
Underfitting is a phenomenon that occurs if the model has a high bias and is too simple
to represent the desired target function while overfitting refers to an overestimation of
the target function where the model has high variance and also attempts to capture
outliers/noise in the data. Commonly, the problem of underfitting can be identified
by the model’s poor performance on the training and test data and tackled by either
increasing model complexity or training data size. On the other hand, the problem of
overfitting is much harder to deal with, thus it is discussed in the following in more detail.

In order for DNNs to generalize well on new data, overfitting of the model to the training
data must be prevented. Generally, the term overfitting describes the problem that the
model achieves a low loss and high accuracy on the training data as the model tries to fit
to the noise and variance in the training data while a much lower or even poor prediction
confidence on new data is given. In order to avoid this issue, regularization techniques
have to be implemented in the design of the model and/or the learning process. The
most common regularization techniques in deep learning are L1 & L2 regularization,

21

2. Scientific Background

Figure 2.7: Bias-variance trade-off for optimal model generalization from [51]

dropout, batch normalization, data augmentation and early termination. This section
will conclude with a brief explanation of each of the stated methods.

The basic idea behind L1 & L2 regularization is based on the assumption that smaller
parameter values result in simpler and more generalized models. Hence, the respective
loss function is extended by a regularization term penalizing large parameter values. This
ensures that the overall magnitude for the model’s parameter values decreases. Depending
on the implementation of L1 or L2 regularization, the regularization term varies in how
the model’s parameters are influenced. For L1 regularization, the sum of absolute values
of the parameters is penalized. Mathematically, the L1 regularization term extended loss
function is given by loss = loss + λ ∗ ΣN

i=1|wi|. Contrarily, the L2 regularization term
penalizes the sum of squared parameter values and acts as weight decay to drive the
parameters to decay towards zero. The L2 regularization term extended loss function can
be formulated as follows: loss = loss + λ ∗ ΣN

i=1|wi|2. λ is a hyper-parameter in the range
between 0 and 1 specifying how much the regularization term contributes to the overall
loss. L1 regularization is robust to outliers in the data, as parameters may actually be
zero and thus, discard some features entirely while for L2 regularization, parameters may
only take non-zero values, preserving a slight impact of each feature.

Dropout is a regularization technique directly implemented in the design of the network.
Based on a selected probability, inputs of a hidden unit are randomly set to 0, discarding
their influence in all further processing steps. Specifically, neurons of two consecutive
hidden layers are randomly disconnected. This procedure is only applied during the
training phase of a model.

The variations in mean and standard deviation of the samples in each batch has a large
impact when training the model where a batch mean of 0 and a batch standard deviation
of 1 is more optimal. Thus, batch normalization overcomes this issue by computing the
batch mean and batch standard deviation in order to normalize the samples in each

22

2.4. Computer Vision

batch. During the validation phase, the already precomputed batch mean and batch
standard deviation are used, leading to a faster learning convergence of the network.

Especially for small datasets, models tend to overfit. Therefore, data augmentation proves
to be among the most efficient regularization techniques to battle this challenge. Data
augmentation defines an artificial extension of the training dataset where e.g. a set of
images from the training dataset is randomly transformed and appended to the training
dataset. With respect to computer vision applications, transformations for images may
include color jittering (brightness, contrast, saturation and hue), flipping, rotation or
cropping. The specifically applied transformations have to be selected based on the input
space of the domain, e.g. in autonomous driving, no vertically flipped camera images
will be recorded. Thus, there is no point of making the model robust against this type
of inputs. Additionally, no labeling is required, as the already labeled training data is
modified. If data acquisition is a tedious and cumbersome task for the respective ML
problem, data augmentation is essential.

Finally, early termination considers the problem of overfitting by monitoring the trend of
the validation loss during the learning process. Ideally, as the training loss declines, the
validation loss should also monotonically decrease and follow the trend of the training
loss. At a given epoch, the validation loss might not decline but increase, indicating
that further training might lead to an overfitted model. Thus, the learning process is
terminated earlier.

Generally, a combination of a subset of the described regularization methods may even
further improve the model’s ability to generalize well while a mix of all regularization
techniques may even result in a decline in the model’s accuracy. In summary, a trade-off
between bias and variance has to be found to arrive at a statistical fit which provides an
optimal generalization of the model on new data.

2.4 Computer Vision
The science of computer vision is a field of AI aiming at analyzing digital 2D/3D camera
images or videos in order to comprehend the visual world and extract the content of a
given scene. The overall goal of computer vision is to replicate human vision and enable
machines to have a high-level understanding of what is depicted in a scene given specific
visual inputs. Machines may use this information to determine on how to optimally
interact with the environment based on what they identified in the visual perceptions.
Especially for cyber-physical systems such as robots or autonomous cars, computer vision
is of major interest as those systems have to carefully perceive their environment in order
to make well-founded decisions on their next move. Specifically, autonomous driving
agents need to satisfy strong safety and real-time requirements regarding perception,
planning and control to safely and reliably perform a specific task where computer vision
algorithms are crucial for perception. Despite the ranging capability and vast applicability
of different sensor systems such as Radio Detection and Ranging (Radar) or 2D/3D
Light Detection and Ranging (LiDaR) sensors for environmental sensing, camera systems

23

2. Scientific Background

have the advantage of allowing images to be further analyzed by advanced computer
vision algorithms building upon AI. Furthermore, the transportation infrastructure is
designed to be visually interpreted based on how humans drive e.g. traffic lights, traffic
signs or lane boarders may only be detected using a visual camera system. Contrarily,
camera systems have the drawback that computer vision algorithms are sensitive to
illumination. Hence, as safety can be concerned as the most important requirement in
autonomous driving, especially for harsh weather conditions, sensor fusion will be required
to compensate for the disadvantages of multiple different sensor systems nevertheless.

While the smallest unit of a digital image is related to as pixel, computer vision is
more complex than the sum of interpreting each pixel in the image individually. One
of the core components of computer vision algorithms is feature extraction. Features
are specific characteristics of individual parts of an image. Depending on the computer
vision algorithm, these features are either hand-crafted by a human or learned using ML.
The computer vision algorithm further uses these features to reason about the content
of the image. In case of state-of-the-art DNNs for image processing which build upon
the fundamentals of CNNs, multiple convolutional layers are stacked to perform feature
extraction. For each convolution operation, the network learns the weights of the applied
kernel filter matrix. These feature extraction networks also referred to as backbones are
used to extract a wide range of features, from low-level features such as distinct pixel
colors, lines or edges in the upper hidden layers to high-level features such as distinct
object shapes in the lower hidden layers. Important attributes of strong features are
repeatability, robustness and uniqueness. In order for the model to generalize well, the
extracted features must be representative of the described object category in general
(repeatability), allow to characterize an object despite the noise in the image (robustness)
as well as distinguish an object from other objects (uniqueness). Based on the structure of
DNNs for image processing, features of the upper hidden layers are simpler than features
of lower hidden layers as the receptive field of the artificial neurons in the upper hidden
layers is much smaller in comparison to the receptive field of the artificial neurons in the
lower hidden layers. Thus, these neurons only have a local view of the entire image and
less information available. In general, the receptive field of an artificial neuron defines
the proportional region of the input space (patch) that a stimuli is capable of triggering
that neuron. Rephrased, the receptive field of an artificial neuron is defined by the area
of the input space that produces an output feature. The size of the receptive field is
especially important for neurons in the last convolutional hidden layers, as they must be
able to consider all essential information that is necessary for further processing. For
example in image classification, the size of the receptive field of the neurons in the last
convolutional hidden layer in a CNN must be as large as the largest object to classify,
otherwise classification results may decrease as the object is never fully viewed. The
concept of a neuron’s receptive field only applies to local operations such as convolution or
pooling as each neuron in a fully-connected layer has access to all information available.

24

2.4. Computer Vision

Apart from autonomous driving, computer vision algorithms are also used for face
recognition in social media, brain tumor diagnosis in healthcare using biomedical image
segmentation, customer and item detection in retail stores, defect detection in manufac-
turing as well as in military and space technology. Due to its vast application possibilities,
there are many tasks computer vision algorithms can be successfully applied to. The
main tasks of computer vision may roughly be categorized into image classification,
image segmentation, object localisation, object detection and object tracking. Figure 2.8
illustrates the difference between the individual computer vision tasks.

Figure 2.8: Visualization of the various computer vision applications from [52]

In image classification, predefined class labels are assigned to entire input images. The
class labels are represented as integers ranging from zero to #classes − 1 where each
number corresponds to a user-specific class. An artificial NN e.g. a CNN is trained on a
set of sample images that have already been labelled and expected to classify new images
accordingly.

Unlike image classification, image segmentation describes the task of assigning a predefined
class label to each pixel of the input image rather than the entire input image. Therefore,
instead of a single scalar integer class label, a 2D or 3D segmentation map with the same
dimensionality than the input image must be provided for each input sample for training.
In image segmentation, the input space is divided into subregions allowing the artificial
NN to differentiate between various objects as well as objects and the background. For
further processing, each identified object can be extracted from the image using its
corresponding pixel mask from the segmentation map. Depending on if a pixel mask for
each individual object or the object category in general is sufficient, we can distinguish
between semantic segmentation and instance segmentation.

Object localisation tackles the problem of assigning a 2D or 3D bounding box to identify
an object in an image. Once the object has been located, it may also be classified.
Depending on the format of the label, the coordinates of the bounding boxes are either

25

2. Scientific Background

provided in terms of the center coordinates of the bounding boxes and the width, height
and depth of the bounding boxes or by directly providing the corner coordinates of the
bounding boxes.

The primary objective of object detection combines object localisation and object clas-
sification by first assigning a 2D or 3D bounding box to identified objects in an image
which are then further classified according to predefined class labels. In contrast to object
localisation, the number of objects in a given image sample is unknown. Thus, the output
space of object detection algorithms varies in length as the bounding box coordinates as
well as the class label are required for each detected object.

Finally, object tracking is defined as the problem of detecting multiple objects in images
and uniquely correlating these objects across multiple images. In comparison to object
detection, the output vector is further extended by a target id which describes a particular
instance of a detected object category. By incorporating an additional target id label, each
instance of an object may be tracked individually. This allows to predict the trajectories
of objects based on the same detected objects in previous images.

There are many more specific computer vision tasks such as image restoration, image
stitching, scene reconstruction, pose estimation or motion analysis. For the purpose of
this thesis, we are going to provide a more detailed perspective on the tasks of semantic
segmentation and object detection as those are relevant for the work incorporated in this
thesis.

2.4.1 Semantic Segmentation in Computer Vision
Semantic segmentation is a type of image segmentation and depicts the task of separating
object categories from each other as well as the background in an image. More specifically,
a predefined class label is assigned to each pixel of an input image which is also referred
to as dense prediction. For this purpose, an artificial NN is provided with a set of
image samples and a corresponding segmentation label called the segmentation map
for training. The segmentation map has the same dimensionality as the input image
sample while each pixel of the segmentation map is assigned the dedicated integer class
label of the object category it belongs to. For instance, for each RGB input image
with height × width × 3, a segmentation map with height × width × 1 is provided as
target. Alternatively, the segmentation map may also be one-hot encoded meaning that
there exists an individual channel for each class in the segmentation map where only the
pixel mask of the segmented object class is present while all other pixels are zero. In
this case, the segmentation map has dimensionality height × width × C where C is the
number of object categories. In order to arrive at a segmentation map with only one
channel as before, the channels can be merged by using the maximum argument of each
depth-wise pixel vector. One-hot encoding has the advantage that categorical data can
be represented in an efficient way for the ML algorithm to learn.

When training a NN for semantic segmentation, the categorical cross-entropy loss function
proves to be quite promising. Categorical cross-entropy loss is a loss function that allows

26

2.4. Computer Vision

to deal with categorical data and expects the labels to be one-hot encoded. DNNs used
for semantic segmentation tasks that only require to separate an object or some other
specific region from the background may also use the binary cross-entropy loss function.
Binary cross-entropy loss does not require the labels to be one-hot encoded and returns a
scalar floating point value between zero and one for each pixel of the segmentation map
where a value closer to zero indicates that the respective pixel belongs to the background
and vice versa. For validation, alongside pixel accuracy and Intersection over Union
(IoU) also denoted as Jaccard coefficient, the Sørensen–Dice coefficient also denoted as
Dice Similarity Coefficient (DSC) provides a precise and strong metric for evaluating
the performance of a semantic segmentation model. Each of these metrics is bound to
the range from zero to one where zero indicates no correspondence and one refers to
perfect overlap. Pixel accuracy measures the proportion of the correctly classified pixels
in the segmentation map. While this metric seems to be sufficient for validating the
performance of a semantic segmentation model intuitively, it yields a poor performance
when dealing with class imbalanced data. In most real world datasets, class imbalance is
present meaning that one or more classes dominate the input space e.g. an image. In
order to tackle this problem, we have to consider more than only the true positives. For
this purpose, IoU measures the area of overlap divided by the area of union between
the predicted segmentation map and the ground truth label and is given by T P

T P +F P +F N
where TP refers to the true positives, FP refers to the false positives and FN refers
to the false negatives when comparing the model’s prediction with the ground truth
labels. Contrarily, DSC describes two times the area of overlap divided by the number of
pixels in both images between the predicted segmentation map and the ground truth
label and is given by 2×T P

2×T P +F P +F N . While IoU and DSC have a positive correlation, the
main difference between IoU and DSC is illustrated when computing the average score
over a set of predictions. Generally, IoU penalizes instances of wrong classifications (FP
and FN) harder. Therefore, IoU is more sensitive to classification outliers and tends
to converge towards worst-case performance while DSC tends to stick closer to average
performance of the model. Apart from being used as validation metrics, IoU and DSC
may also be formulated as differentiable functions and used as loss functions by negating
the coefficient’s value. Hence, a high metric score is directly related to a low loss when
an optimizer aims to minimize the loss function respectively.

However, the architectural design of the NN used for learning a given semantic segmen-
tation problem is fundamental. To this end, a basic approach is to use a CNN and
preserve the full resolution of the input dimensions at each layer of the network by
using a respective padding. Thus, the network directly learns a set of transformations of
feature mappings between the input images and their corresponding segmentation maps.
Obviously, such an algorithm is quite computationally expensive. In order to reduce the
computational costs and maintain expressiveness, an encoder-decoder structure proves to
achieve promising results. The encoder also denoted as downsampling path in this context
reduces the spatial resolution of the images while increasing the number of feature maps
(channels). Similar to a CNN, the encoder extracts features from the input images which
are further processed and scaled-up by the decoder also denoted as upsampling path to the

27

2. Scientific Background

full resolution of the input images. The encoder uses convolution and pooling operations
to manipulate the input data and reduce the spatial resolution. On the other hand, several
different methods for upsampling exist. The most popular approaches for upsampling are
nearest neighbour interpolation, bilinear interpolation and transpose convolution. While
nearest neighbour interpolation and bilinear interpolation are mathematical operations
involving no tunable parameters, transpose convolutions allow to learn the parameters
of the upsampling operation. In comparison to a regular convolution which computes
the pixel value by calculating the dot product of an image patch with its kernel matrix,
an element-wise multiplication of a single feature value with the kernel matrix of the
transposed convolution is performed to produce an upsampled feature map. Despite
the advantage of requiring less computational resources and learnable encoder/decoder
operations, the network suffers from the lack of local information in the upsampling
path. Thus, the ML algorithm is only capable of computing coarse-grained segmentation
maps. In order to face this limitation, the decoder is split into multiple stages similar
to the encoder structure where additional skip connections between the encoder and
decoder stages are added. At each stage of the decoder, the lower spatial resolution
feature maps are upsampled and combined with the equivalent spatial resolution feature
maps of the respective encoder stage. The combination of the feature maps from the
encoder and the upsampling path may either be implemented in terms of an addition or
a concatenation. Ronneberger et al. proposed the U-Net architecture [53] which follows a
symmetric encoder-decoder architectural design incorporating skip connections between
the encoder/decoder stages. Figure 2.9 depicts the standard U-Net architecture based on
the details of the reference paper.

Figure 2.9: Schematic of the original U-Net architecture [53]

According to the original paper, the U-Net architecture consists of a contracting path
(encoder) and an expansive path (decoder). Each block of the encoder is composed of two

28

2.4. Computer Vision

3x3 convolutions where each convolution is followed by a ReLU activation. Afterwards,
the feature maps are downsampled and the feature channels are doubled using a 2x2
max pooling operation with a stride size of two. For each block of the decoder, the
feature maps are upsampled, a 2x2 convolution is applied to reduce the number of feature
channels by a factor of two and the upsampled feature maps are concatenated with the
corresponding feature maps from the encoder. Finally, two 3x3 convolutions followed
by a ReLU activation are performed. For the last layer of the expansive path, a 1x1
convolution is necessary to map each 64 dimensional feature vector to a feature vector
with a channel depth corresponding to the number of classes.

U-Net was trained with very few annotated larger scale image samples and a batch size
of one. Additionally, data augmentation in terms of random elastic deformations was
applied to achieve the necessary robustness and invariance properties in order for U-Net
to perform well in biomedical image segmentation use cases. For computing the loss,
a pixel-wise soft-max function in combination with the cross-entropy loss function was
utilized. In order to compensate the class imbalance in the training data set and to
emphasize the boarders between the individual regions in the segmentation map, the
weight map for each ground truth label used in the loss function was pre-computed.

While the standard U-Net architecture achieves remarkable results for various biomedical
image segmentation applications, many more advanced extensions of U-Net have been
proposed such as [54] [55]. Zhou et al. proposed U-Net++ [54] which redesigns the skip
connections of the original U-Net architecture by implementing convolution layers as
skip connections as well as by additionally utilizing nested, dense skip pathways. On the
one hand, this allows U-Net++ to bridge the semantic gap between the feature maps
of the encoder and decoder subnetworks. On the other hand, gradient flow is improved
due to the dense skip connections. Last but not least, U-Net++ also relies on deep
supervision during training. Oktay et al. proposed Attention U-Net [55] which adds an
additional additive attention gate before each stage of the upsampling path. Based on
the upsampled feature maps and the contextual information provided along the skip
connection from the corresponding encoder block, the upsampled features are scaled with
attention weights calculated by each attention gate of the decoder subnetwork.

29

2. Scientific Background

2.4.2 Object Detection in Computer Vision

Object detection is one of the most researched areas in computer vision and a core
component in many computer vision applications. In particular, object detection aims at
localizing and classifying a previously unknown number of objects in a given scene image.
Recent computer vision algorithms are deployed at multiple scales, from edge devices and
embedded mobile computing platforms to large scale server clusters and clouds. State-of-
the-art object detection algorithms must comply with strong application requirements
while being limited by the computational resources of the integrated environment. Modern
computer vision treats object detection as a regression problem where in addition to the
class labels, a set of numbers related to the bounding box coordinates of each object in
the image are predicted. Based on traditional computer vision algorithms, one of the first
approaches was to use an external method to generate region proposals of where objects
are assumed to be located in the image which are further sequentially passed to a CNN
for classification. Specifically, this procedure known as R-CNN [38] proposed by Girshick
et al. uses selective search to extract region proposals also denoted as RoI from an input
image, resizes these RoI to a fixed shape and subsequently forwards those through a
CNN to a SVM for classification and bounding box prediction. While this approach
achieves a high object detection accuracy, it suffers from the multiple sequential RoI
passes to the CNN resulting in a slow and computationally costly network. In order to
avoid passing multiple RoI to the CNN one by one, Girshick et al. proposed Fast R-CNN
[39]. Instead of externally computing and cropping the RoI of the input image, the entire
image is passed to the CNN where the RoI are again computed on the input image using
an external method and projected on the resulting feature map. Furthermore, the feature
map is passed on to a Fully Connected Neural Network (FCNN) for classification and
bounding box regression. The RoI projection on the output feature map of the CNN is
implemented in terms of a RoI pooling layer which receives the computed RoI as well
as the feature map from the CNN as input and performs a max pooling operation on
its variable-shaped input and outputs a fixed-size feature map. As this algorithm is
more efficient when compared to R-CNN, the reliance on an external RoI computation is
undesired. For this purpose, Ren et al. proposed Faster R-CNN [40] that substituted the
external RoI computation procedure of Fast R-CNN with a Region Proposal Network
(RPN). The RPN generates region proposals based on the feature maps from the CNN
which are both provided as input for the RoI pooling layer. Figure 2.10 illustrates the
architecture of Faster R-CNN.

Faster R-CNN outperforms R-CNN and Fast R-CNN in terms of inference time (frame
rate) as well as object detection accuracy. Despite its improvements and high object
detection accuracy, Faster R-CNN is still too computationally expensive for an efficient
deployment on embedded devices. Therefore, alternative object detection approaches
have been proposed leading from two-stage detectors to one-stage detectors where the
spatial information from the CNN is directly used for classification and bounding box
regression instead of a region proposal network to avoid redundant computations. Hence,
the object detection task can be performed in a single network. While two-stage methods

30

2.4. Computer Vision

Figure 2.10: Representation of the Faster R-CNN architecture [40]

achieve a slightly higher object detection accuracy than one-stage methods, one-stage
object detection algorithms are much faster. Liu et al. proposed SSD [37] which consists
of a backbone model for feature extraction and a SSD head for classification and bounding
box prediction. The FCNN is removed from the backbone model and the downsampling
path preserving all of the spatial information of the input images at lower resolution is
connected to the SSD head. The SSD head is composed of several convolution layers
which successively decrease in size and where each convolution predicts objects at different
scales. The spatial information of the activation maps of the last convolution layers of the
SSD head are interpreted as the classification and bounding box predictions. The final
prediction results are obtained by applying Non Maximum Suppression (NMS). The core
of the SSD architecture relies on the receptive field which enables the prediction of objects
at multiple scales. The structure of modern deep CNNs can be beneficially used for the
backbone model as the input space is divided into a hierarchy of multiple local cells of
varying size across the network’s layers in terms of a pre-defined grid layout. Each cell is
responsible for localizing objects in its specific region. Based on the size of the receptive
field, lower layers are more capable of predicting small scale objects while higher layers
have a larger receptive field enhancing the detection of large scale objects. Cells at the
same layer have the same receptive field and the same amount, but different information
available. Thus, the network is able to detect a given object independent of its position
in the input space known as translation invariance. If no object can be located within a
cell, the background class is assumed and no bounding box coordinates are predicted.
For detecting multiple objects within a cell, various anchor boxes are assigned to each
grid cell. Anchor boxes also denoted as prior boxes are defined in various sizes/scales and
shapes/aspect ratios a priori. In the training phase, a set of anchor boxes is generated for
every feature where the most fitting prior bounding box is matched with each object’s

31

2. Scientific Background

ground truth bounding box. Similar to semantic segmentation 2.4.1, IoU or DSC are
commonly used to determine the default bounding box with the largest overlap indicated
by a confidence value. The general objective function is composed of the weighted sum
of a confidence loss and a regression loss where the confidence loss is a softmax loss over
multiple class confidences and the regression loss is a Smooth L1 loss. The downside
of SSD is the need for an extensive data augmentation strategy implying that a vast
amount of training data is necessary for the model to perform well. Additionally, the
detection accuracy for small objects might suffer from the poor feature generation in the
lower layers of the network.

One of the most fundamental families of object detection architectures was introduced
by Redmon et al. back in 2015 who proposed YOLO [28], the first real-time end-to-end
object detector. Since then, many improvements have been made on the overall network
architecture and the training process [32, 33, 34, 36, 29]. There is also an open source
version of an improved YOLOv4 model called YOLOv5 [35] that lacks an official paper
but was ported from C to Python to be more easily accessible to the deep learning
community. While we use the state-of-the-art YOLOv7 object detector in this work,
which is introduced in Section 4.2, the earlier iterations of the YOLO series illustrate
many basic design concepts of the object detectors. For this purpose, the foundations of
YOLO, namely YOLOv1 - YOLOv4 are discussed here.

Similar to SSD, YOLO basically divides the input image into a S × S grid where each cell
is responsible for detecting objects in its region in terms of N bounding boxes, confidence
scores and C classification labels. Figure 2.11 illustrates the object detection procedure
performed by YOLO.

Figure 2.11: Illustration of the unified object detection approach applied by YOLO [28]

YOLO uses features from the entire image to predict all bounding boxes of all objects
simultaneously. Each bounding box is represented by five predictions: x, y, width, height
and confidence where x and y are the center coordinates of the bounding box relative
to the grid cell coordinates while width and height are provided relative to the image
dimensions. All four bounding box identifiers are normalized between zero and one with
respect to the spatial dimensions of the input images. The confidence score is an indicator
on how well the predicted bounding box of an object fits the ground truth bounding box

32

2.4. Computer Vision

of this object and is usually computed using IoU. Independent of the number of predicted
bounding boxes, C conditional class probabilities are predicted per grid cell where each
conditional class probability is multiplied with the individual bounding box confidence
score resulting in a class-specific confidence score for each bounding box. In order to
arrive at the final object predictions, YOLO uses NMS to retrieve the final bounding
boxes corresponding to the highest class-specific confidence score per object. To this end,
YOLO encodes its predictions in a S × S × (N ∗ 5 + C) tensor.
Equivalent to SSD, YOLO does not predict the bounding box coordinates for each object
in an image from scratch. Instead, various anchor boxes of different height, width, scale
and aspect ratio are generated a priori at each grid intersection, also denoted as anchor
points. Each grid cell is defined by the coordinates of an anchor point. The shape of
the anchor boxes is based on the configuration of the anchor box sizes for each Feature
Pyramid Network (FPN) head. These anchor box sizes are hyperparameters of the YOLO
network. During training, the model outputs x, y, width and height corrections of the
most promising anchor boxes in order to match a specific target bounding box. Due to
the design of the model, these corrections may only be in a restricted range of adjacent
grid cells, thus only a subset of anchor boxes, denoted as center prior anchor boxes may
match a target bounding box. This procedure drastically simplifies the object detection
problem and heavily reduces the computational cost.
While the architecture of the first YOLO implementation consisting of 24 convolution
layers and two FCNN was rather simple and did not include multi-scale feature map
predictions such as SSD, YOLOv4 is represented by a far more sophisticated one-stage
architecture for instance which is depicted in figure 2.12.

Figure 2.12: Illustration of the YOLOv4 architecture [34]

Generally, feature extraction is performed in the backbone of YOLOv4 where multi-
scale feature maps of different backbone levels are extracted in the neck. Finally, the
YOLO head is responsible for object classification and bounding box regression across
multi-scale feature maps. In more detail, YOLOv4 uses Cross Stage Partial Network
(CSPNet), specifically CSPDarknet53 [56] as a feature extraction backbone. Spatial
Pyramid Pooling (SPP) [57] and Path Aggregation Network (PAN) [58] are integrated
in the neck where SPP drastically increases the receptive field size and highlights
context features and PAN performs parameter aggregation of different backbone levels

33

2. Scientific Background

while an anchor based YOLOv3 head performs the dense predictions. Additionally,
YOLOv4 applies the concepts of Bag-of-Freebies (BoF) and Bag-of-Specials (BoS) where
either the training strategy is switched to improve object detection accuracy without
increasing inference cost or object detection accuracy is significantly enhanced by slightly
increasing inference cost. Specifically, YOLOv4 uses genetic algorithms to select optimal
hyper-parameters, self-adversarial training, mosaic and mixup data augmentation, cross
mini-batch normalization, dropout regularization, Complete Intersection over Union
(CIoU)-loss for objectness computation, Distance Intersection over Union (DIoU)-NMS
and many more advanced techniques.

Last but not least, DETR [4] is an alternative approach to object detection inspired by
[8]. DETR addresses object detection as a direct set prediction problem and utilizes the
self-attention mechanism of the transformer encoder-decoder network. The architecture
is composed of a CNN backbone for feature extraction, a transformer encoder-decoder
architecture and FFNN as prediction heads. Figure 2.13 depicts the DETR algorithm.

Figure 2.13: Visualisation of the DETR architecture [4]

A positional encoding is computed for the flattened set of image features extracted by the
CNN backbone before those along with the positional encoding are passed to the encoder
of the transformer. The decoder of the transformer is provided with a small set of learned
positional embeddings, denoted as object queries as well as the output of the encoder to
reason about the global image context and object relations. Each output embedding of
the decoder is passed on to a shared FFNN which acts as the prediction head. The FFNN
computes the final set of bounding box predictions along with the predicted class indices.
During training, the network applies a set-based global loss in order to force unique
predictions via bipartite matching. The strength of the DETR architecture relies in its
anchor-free design as well as in the combination of a CNN backbone for feature extraction
with the power of the transformer network to contextualize the global information of the
processed image efficiently. Thus, DETR is able to accomplish state-of-the-art results
compared to other object detection approaches.

34

CHAPTER 3
Scientific Methodology

The research method applied in this thesis follows a design and creation research strategy
and builds upon academic literature as well as relevant specifications [59]. In computing
research, the design and creation strategy focuses on developing new IT products called
artefacts [60]. Such artefacts include constructs, models, methods and instantiations
[61], whereby in most research, a combination of several artefacts contribute in creating
new knowledge. As artefacts often represent computer-based products, the design and
creation research strategy emphasises on analysis, explanation, argument, justification,
and critical evaluation of the results to distinguish itself from product development.

In the context of design and creation research, the focus lies either on the artefact itself,
(e.g. the IT application incorporates a new theory), the artefact as a vehicle to create new
knowledge (e.g. the IT application in use) or on the process to create an artefact to create
knowledge [62]. The focus of this thesis is two-fold and lies in the creation process as well
as on how the artefact performs in its application domain. Specifically, this thesis creates
knowledge in designing a computer vision-based object detection system applied in an
autonomous racing setting capable of utilizing predicted human-attention for enhancing
object detection robustness as well as provides insights on design challenges related to
this novel approach.

Design and creation research is a problem-solving approach and builds upon the princi-
ples of system development [63]. The process typically involves five steps—awareness,
suggestion, development, evaluation and conclusion. Whereby these steps are not rigid
in order but instead form an interative cycle. Based on this iterative process, research in
this work is conducted.

In particular, a comprehensive research methodology is employed, where we initially
perform an in-depth literature research on the state-of-the-art of computer vision research,
especially focusing on the topic of object detection. This encompassing research establishes
the theoretical basis of this thesis as well as provides the baselines for the evaluation

35

3. Scientific Methodology

of the Attentional Neural Network (AttNN) based dynamic object detection system.
The primary challenge of this thesis relies on the design of the human-attention model
(AttNN), the integration with the object detection model and how our system performs
in its application domain. Assuming that humans persistently attend to RoI in their
FoV, we apply the supervised learning paradigm to train the AttNN on the human-
attention based RoI for given visual inputs. In order to create a dataset for training
the human-attention model, we monitor the attention of the subjects on given track
layouts while the manually driven F1Tenth racecar is in motion. To this end, we create a
technical setup - also denoted as data-collection pipeline - composed of several hardware
and software components including eye-tracking glasses which allows us to simulate the
navigation of the F1Tenth racecar from a first-person perspective. This simulation is
performed with a variety of subjects on multiple different indoor track settings such that
the human-attention model is not biased on single drivers and generalizes well. Once the
human-attention dataset has been created, we will explore several algorithms, learning
strategies and human-attention label representations in order to assess which one fits best
for modeling the AttNN and learning the relation between camera frames and associated
human-attention regions.
For evaluating the overall system, the human-attention model is integrated with an object
detection NN that is trained on a custom object detection dataset, denoted as F1Tenth
object detection dataset. The human-attention dataset as well as the F1Tenth object
detection dataset are gathered from the same track layouts. The experimentation phase
will involve evaluating novel approaches for designing the AttNN based dynamic object
detection system and comparing the performance of selected object detection baselines
from state-of-the-art computer vision research trained on the F1Tenth object detection
dataset with the AttNN based dynamic object detection system. We will quantify
the impact of illumination perturbations on Mean Average Precision (mAP), among
other relevant metrics. Furthermore, we demonstrate the object detection results of our
approach compared with DETR along the predicted human-attention feature maps and
the artificial attention on a given visual input. Finally, in order to evaluate the feasibility
of our proposed approach for real-world autonomous driving/racing applications, we will
deploy our system in the Robot Operating System (ROS) [64], validate the algorithm
on a F1Tenth hardware car given custom indoor tracks and establish a collaboration of
our system with Highly Automated Driving (HAD) agents. Concluding our research, the
results of this comprehensive evaluation will be analyzed, interpreted and discussed.

3.1 Technologies
The following paragraphs give a short introduction about the most important tools
and frameworks that have been used throughout this work. For this thesis, Python 3.9,
PyTorch 1.11.0 and CUDA 11.6 have been used for developing, training and validating the
AttNN (Section 4.1) and the object detection NN (Section 4.2) as well as for evaluating
the AttNN based dynamic object detection system in simulation (Section 4.3.1) and the
comparison to state-of-the-art computer vision research (Section 5). For the deployment

36

3.1. Technologies

of the AttNN based dynamic object detection system (Section 4.3.2) on the physical
F1Tenth hardware car [1], JetPack 5.0.2 including TensorRT 8.4.1, CUDA Deep Neural
Network (cuDNN) 8.4.1, CUDA 11.4 and Python3.8 as well as ROS Noetic Ninjemys
were installed on the NVIDIA Jetson Xavier NX. The JetPack SDK allows to utilize full
hardware-accelerated AI-at-the-edge deployment on NVIDIA Jetson devices.

3.1.1 PyTorch
The open source machine learning framework PyTorch [65] was developed by Facebook’s
artificial intelligence research group in 2016 and designed for the programming language
Python. PyTorch is based on the Torch library and can be combined with other popular
Python libraries such as NumPy, SciPy and Cython. PyTorch allows for CPU and
GPU-accelerated Tensor analysis as well as dynamically builds DNNs on a tape-based
autograd system using reverse-mode auto-differentiation for gradient computation while
its main advantages are characterized by flexibility and speed. Custom neural network
modules may be easily created as PyTorch’s Tensor Application Programming Interface
(API) was designed with minimal abstractions. Furthermore, PyTorch supports Open
Neural Network Exchange (ONNX) [66] enabling to export the model to be used in other
machine learning frameworks and related tools based on an open standard for machine
learning interoperability.

3.1.2 CUDA
CUDA [67] is a NVIDIA developed parallel computing platform, programming model
and API for general computing on GPUs. The CUDA toolkit enables users to run the
sequential portion of a program on the CPU while the parallel processing capabilities
of all available system GPUs may be used for the computation expensive part of an
application software to the full extent. Moreover, CUDA may be used with popular
programming languages such as C, C++ or Python where the latter one provides an easy
starting point for deep learning engineers. CUDAs ecosystem comprises GPU-accelerated
libraries, a C/C++ compiler, debugging and optimization tools and a runtime library.
Thus, developers are able to create, optimize and deploy high-performance applications
on GPU-accelerated embedded systems such as the NVIDIA Jetson Xavier NX.

3.1.3 TensorRT
The high-performance deep learning framework NVIDIA TensorRT [68] supports the
major machine learning frameworks PyTorch and Keras/Tensorflow as well as provides
an ONNX parser allowing custom models to benefit from GPU hardware acceleration
featured by NVIDIA’s mobile platforms. The library implements a C++ and Python
API, a deep learning inference optimizer as well as an optimized runtime. Hence, custom
models may be created, trained and validated in an ecosystem of choice to ease the
development of NN and later be deployed in terms of a TensorRT engine to achieve low
latency and high throughput during inference.

37

3. Scientific Methodology

3.1.4 ROS
ROS [64] is an open source framework that incorporates software libraries and tools
to develop and deploy robotic applications. The framework primarily targets Ubuntu
releases and provides hardware abstraction, device drivers, inter-process communication
and package management. Generally, the releases of ROS can be distinguished between
its two main distributions, ROS 1 and ROS 2. ROS 1 is well established and provides
a centralized service for inter-process communication while ROS 2 aims at providing
real-time guarantees and uses a decentralized inter-process communication system in
terms of the Data Distribution Service (DDS).

3.2 Development Process
This section illustrates the chronological development process of the AttNN based
dynamic object detection system and the completion of the subtasks that were necessary
for the contribution of this work. Specifically, figure 3.1 visualizes the time frame for
implementing the individual parts of this work and the overall progress of the thesis
respectively.

Figure 3.1: Chronological development process of the AttNN based dynamic object
detection system

38

CHAPTER 4
Design of Att-YOLOv7

The primary focus of this thesis is two-fold and aims to formulate the problem of
replicating human attention and learning a NN capable of imitating human attention
on the one hand as well as relies on the design of an object detection neural network
incorporating the imitated human attention on the other hand. The designed and learned
AttNN attempts on imitating human attention and lays the foundation for the object
detection model. In comparison with the results stated in Section 2.1, this chapter of
the thesis first discusses the premises, the technical setup and the process of creating
the human-attention dataset necessary for learning the human attention model, also
denoted as AttNN (Section 4.1). Furthermore, the architectural design and the learning
approach for the AttNN are illustrated. Section 4.2 visualizes the process of creating
the object detection dataset as well as the design and learning approach for the object
detection neural network. Finally, the overall structure of the AttNN based dynamic
object detection system is given and the deployment in the simulation environment as
well as the deployment on the F1Tenth hardware car [1] are shown in Section 4.3.

4.1 Development of the Human-Attention Model
This section provides a detailed overview on how the human-attention dataset necessary
for learning the AttNN was created and how the attention filter has been designed and
trained. First of all though, I would like to state that all of the work described in Section
4.1.1 that was mandatory for the creation of the human-attention dataset was done in
cooperation with my colleagues Felix Resch and Stefan Ulmer.

4.1.1 Creation of the Human-Attention Dataset
For the purpose of imitating human attention in an autonomous racing context using
neural networks, appropriate training, validation and test data has to be available or

39

4. Design of Att-YOLOv7

acquired. The training, validation and test data has to be from a similar environmental
setting and application context in comparison to the data which is provided to the model
once deployed for neural networks to achieve promising results. Ideally, the given training,
validation and test data also uniformly covers all the potential scenarios that may occur
during operation of the model later on. In order to satisfy these requirements, we created
a dataset - in the context of this thesis denoted as human-attention dataset - which
focuses on the driver’s attention when manually controlling F1Tenth cars [1] given various
scenarios on several custom indoor tracks.

Concept & Technical Setup. The basic idea for the creation of the human-attention
dataset was to simulate the navigation of the race car from the car’s perspective and
simultaneously record the attention of the driver. Specifically, the idea was to transmit the
video stream of the car’s camera over the local network, project that stream on a desktop
screen and monitor the eye movements of the driver while the subject is sitting in front
of the desktop monitor and manually controls the car by only using the provided camera
stream. Regarding the technical setup, a variety of software and hardware components
were necessary for the creation of a proper dataset. The most crucial component for the
creation of the human-attention dataset was the correct tracking of the eye movements
of the drivers while they navigated the car across the given track. In order to be able to
record the gaze of the drivers, eye-tracking glasses called View Point System (VPS) [69]
were used. Specifically, we used the VPS 19 model. The glasses communicate with an
external device named Smart Unit using USB which is required for the software based
interaction with the glasses. Before usage, the Smart Unit has to be used to calibrate the
glasses on the pupils of the driver. Once calibrated, the Smart Unit enables the recording
of the driver’s eye movements using a frequency of 60 Hz and locally stores the stream
of the glasses visual input as well as the x and y coordinates of the attention points for
each VPS camera frame. Due to the streaming limitation of 30 Frames per Second (FPS)
for the VPS camera system, multiple attention points may be recorded per frame.

In order to provide a stable and fast network stream from the car’s local camera to the
desktop screen of the driver, the GStreamer [70] toolchain has been used. GStreamer is
an open-source multimedia framework and a NVIDIA featured software package which
enables the use of hardware acceleration for NVIDIA hardware such as the Jetson Xavier
NX embedded on the car. Additionally, GStreamer allows the use of multiple sinks which
enables us to transmit the stream over the local network while simultaneously storing
the stream on the transmitting device locally. For manually controlling the F1Tenth
car, a standard console controller in combination with a ROS based joy_teleop node
was used first. Due to the instability of the Bluetooth connection on greater distances
and the resulting sudden unresponsiveness of the console controller, we chose to create a
software-based interface linking two console controllers via WiFi which we called NetOp.
Essentially, NetOp runs on a PC/Notebook, publishes the control commands of the first
console controller on a specific ROS topic on which the F1Tenth car subscribes to and the
control commands are directly propagated to the joy_teleop node. The second console
controller is only required for enabling the manual driving mode. The latency and the

40

4.1. Development of the Human-Attention Model

additional bandwidth over the WiFi are both negligible for our experiments as we have
empirically tested in a couple of demonstrative runs. In order to acquire a smoother
velocity and steering profile, we replaced the console controller linked to NetOp with a
LOGITECH G923 TRUEFORCE Gaming Steering Wheel with Pedals.

The human-attention dataset is composed of multiple test runs, where one test run
corresponds to one driver navigating the F1Tenth car for a certain number of laps on a
given track. The data that comes along with one test run consists of all relevant frames
of the car’s local camera stream where the car is actually in motion as well as the set of
x and y coordinates of the attention points for each of the car’s camera frames which is
provided in a .csv file. The frames are in RGB format and stored in the marked_frames
directory of the test run. In order to assign the attention points monitored in the VPS
camera space to the car’s local camera space, frame matching has to be performed
for which a synchronisation procedure for synchronising the local camera stream and
the VPS stream had to be established. A Field Programmable Gate Array (FPGA)
controlled LED array replicating a traffic light with three LEDs was programmed to
successively flash each LED at a frequency of 30 Hz once a button connected to the
FPGA was pressed. The frequency of 30 Hz was chosen as the car’s local camera as
well as the VPS were recording with 30 FPS. Therefore, the flash of the green LED
- which we chose for synchronisation - was only visible on one or two frames for both
camera systems denoted as synchronisation frames which were used as reference frame
estimates for post-processing. Generally, this visual synchronisation procedure allowed
us to synchronise the car’s local camera stream and the VPS stream by triggering the
synchronisation sequence in front of the car’s local camera while the driver wearing the
calibrated VPS was looking at the network stream on the desktop monitor before driving.

Finally, the recording of the network stream cannot be directly matched to the car’s local
camera frame as the transmitted network stream also covers the desktop monitor itself
and its surroundings. In order to face this issue, a total of eight ArUco markers based on
[71], [72] were virtually attached at the corners and edges of the transmitted network
stream using the overlay function for the GStreamer receiver end. These markers are
uniquely identifiable, allowing to perform an ArUco marker based display/network stream
extraction on the VPS video during post-processing to detect the individual frames of
the transmitted network stream for each frame of the glasses recordings. For an accurate
and precise detection of the ArUco markers, the intrinsic and extrinsic parameters of the
VPS camera have been estimated using a checkerboard.

Considering that no intermediate technical errors occurred at any step of the workflow,
the following procedure was performed: First, the VPS was calibrated on the pupils of
the driver. In a second step, the NetOp for manually controlling the F1Tenth car was
launched and enabled. Afterwards, the network stream from the car’s local camera was
started and successful transmission to the notebook connected to the desktop monitor
was tested (the receiving GStreamer application was put into fullscreen mode). The
driver was required to sit in front of the desktop monitor before the VPS recording was
started and the synchronisation sequence was initiated. Once the driver perceived the

41

4. Design of Att-YOLOv7

green LED on the desktop monitor, he/she was allowed to drive on the given track for
a certain number of laps before both recordings were stopped. Figure 4.1 depicts the
interaction between the F1Tenth car and the driver.

Human
Observation

Camera Recording

Driving
Commands

Gaze
Recording

Sensor
data

Figure 4.1: Hardware setup for recording human-gaze while manually driving a F1Tenth
racecar

A recorded run consists of the car’s local camera stream and the recorded VPS stream.
These frame sequences have to be matched given the reference frame in both video
streams such that the monitored attention point coordinates can be transformed from
the VPS camera space to the car’s local camera space. For the purpose of providing and
learning on an efficient dataset, we are additionally merely interested in the sections of
the car’s local camera stream where the car is actually in motion. To this end, we used
the open-source video processing software OpenSHOT [73] to post-process the car’s local
camera video and the VPS video, determine the respective reference frames based on
the flash of the green LED in both videos as well as the frame ranges in the car’s local
camera video where the car was in motion. These configuration parameters are written
into each run’s configuration file which is further used for the post-processing pipeline.
Post-Processing Pipeline. The eye-tracking/post-processing pipeline implemented in
[74] is used to successively transform the data of each recorded run into the final format
for each run of the human-attention dataset. For this purpose, each run is processed
consecutively while three fundamental operations are performed: the display/network
stream extraction from the desktop monitor for each frame of the VPS video, the
coordinates projection from the VPS camera space to the car’s local camera space and
the frame matching process in order to assign the correct attention point coordinates to
their corresponding frame on the car’s local camera space.
In a first step, the Open Source Computer Vision Library (OpenCV) [75] is used to
capture the VPS video and process it frame by frame. At this point, it shall be noted that
the VPS video has to be converted from .mkv to .mp4 beforehand due to some OpenCV
video processing issues regarding the correct frame length of the videos. Based on the
ArUco marker system, the display of the desktop monitor may be extracted from each
frame of the VPS by first identifying the location of each ArUco marker in the current

42

4.1. Development of the Human-Attention Model

frame. Once an ArUco marker has been detected, the ArUco marker library grants access
to the x and y coordinates of each corner of the ArUco marker in the frame. Given
the x and y coordinates of the respective ArUco markers and the capability of uniquely
identifying each ArUco marker within the current frame, the display of the desktop
monitor may be reliably detected by extracting the corresponding rectangle between the
detected ArUco markers. Given the identified ArUco markers, this procedure may be
reliably performed with at least two detected ArUco markers (diagonally opposite). The
display extraction stage of the pipeline returns a .csv file holding the coordinates of the
extracted rectangle for each frame of a respective run if detected.

By defining a valid attention area for each frame within the VPS video, we are able
to reject all outlier attention point coordinates with respect to their corresponding
valid attention areas in the second stage. The valid attention area of a given VPS
frame corresponds to the extracted rectangle coordinates in the previous stage. For all
valid attention point coordinates of a given VPS frame, a perspective transformation is
performed. Based on the transformation matrix, the new coordinates of each attention
point in the car’s local camera space are computed for each frame individually. The new
attention point coordinates as well as the corresponding frame number are saved in each
run’s transformed_coords.csv file.

In the final stage of the post-processing pipeline, the section of interest in the car’s
local camera video is extracted where each frame of this section is matched against its
corresponding frame from the VPS domain. To this end, the frames defining the section of
interest in the car’s local camera space as well as the reference frames for both videos are
loaded from each run’s .yaml configuration file. Furthermore, OpenCV is used to capture
and process the car’s local camera video. For each frame of the section of interest, the
corresponding VPS frame is calculated based on equation 4.1 given the defined reference
frames.

vpsk = cark − carref + vpsref , k ∈ N (4.1)

vpsk refers to the VPS frame id matching the kth processed frame of the car’s local
camera video cark while carref as well as vpsref are the reference frames of the car’s
local camera video and the VPS video. In case the calculated VPS frame may not be
feasible for usage as the display of the desktop monitor has not been detected or the
attention point coordinates are not valid, we discard the matching frame pair. Finally, the
car’s local camera frames that achieved a match are stored in each run’s marked_frames
directory.

Human-Attention Dataset. The final dataset consists of six independent runs where
a total of four different persons have been included across two different indoor track
settings and different driving scenarios. These numbers only refer to valid runs where no
technical issues occurred during recording and no external distraction of the drivers was
given while driving. In particular, run four, six, eight and ten have been used from the
track set up at Aufbaulabor recorded on 12th, April 2022 while run four and five have
been used from the track set up at Getreidemarkt 8/9 recorded on 23rd, August 2022. For

43

4. Design of Att-YOLOv7

more details on the track layouts and the environmental setting, we refer to Section 5.1.1
at this point. Two runs were recorded where the drivers had to complete the track for a
couple of laps without crashing and without the presence of static obstacles (common
boxes) or dynamic obstacles (F1Tenth cars). Two runs were recorded where the drivers
had to complete the same track for a couple of laps without crashing and without the
presence of static obstacles (common boxes) but with another F1Tenth racecar driving
autonomously and in the same direction on the track (using an implementation of the
follow-the-gap algorithm). The goal of the last two recorded runs was similar to the prior
four runs but the driver had to complete a different track layout in a different indoor
track setting. In addition to another F1Tenth car simultaneously driving on the track,
static obstacles (common boxes) were placed on the track where the placement of these
obstacles changed for every completed lap. Finally, four runs have been recorded while
the driver was required to drive in clockwise direction while the other two runs have
been recorded while the driver was required to drive in counter-clockwise direction. The
human-attention dataset contains approximately 25k images and 45k attention point
labels for the given images. Based on the various recorded driving scenarios, we hope
that we minimized the class imbalance and bias in our attention dataset as much as
possible.

44

4.1. Development of the Human-Attention Model

4.1.2 Design and Learning of the Human-Attention Model
In order to train an artificial NN to imitate human attention in an autonomous racing
context based on the collected human-attention dataset described in Section 4.1.1, an
appropriate ML algorithm, training setup and representation for replicating human
attention have to be defined. Above all, the general idea is that the model receives one
or more camera frames and predicts the attention regions for those frames. Due to the
exploratory nature of this work, two different approaches for representing human attention
have been empirically evaluated. While the first and original implementation reduces the
learning problem to a classification task, the second approach uses regression analysis.
Considering the sequential nature of human attention and the underlying data, two
learning strategies have been developed and tested. The first learning strategy is denoted
as Frame based Learning (FBL) where batches of n image/frame label pairs are provided
to the NN at time step t while the second learning strategy is denoted as Sequence based
Learning (SBL) where batches of n sequences of k consecutive image/frame label pairs
are provided to the NN at time step t.

Formally, consider input images xt ∈ Rn×m, the set of attention points At = {ai,t}
tracked by our system at time step t and attention feature maps yt ∈ Rn×m preserving
the information given by At. Then we define the AttNN either according to equation 4.2
for FBL or according to equation 4.3 for SBL

ŷt = AttNN(xt), t ∈ N (4.2)
ŷt = AttNN(xt), xt = {xt, ..., xt−k} ∧ t, k ∈ N (4.3)

where ŷt represents the predicted attention feature map at time step t.

Based on the original idea, the problem of learning human attention has been formulated
as a semantic segmentation problem (Section 2.4.1). We argue that this formulation
is valid as we basically want to learn and infer the human-attention based RoI of the
individual camera frames which are further provided as auxiliary information for the
object detection NN (Section 4.2.2). Moreover, as human attention is not limited to
pixel accuracy level with respect to the spatial dimensions of the camera frames that
are provided as visual perceptions for the drivers, we are not interested in learning
human attention at a pixel accuracy level either. Instead, the radius of the region of
human attention is specified in terms of a predefined constant/hyperparameter used to
generate the region of human attention for each attention point in each label. Finally,
by formulation as a semantic segmentation problem, we are able to build upon state-
of-the-art ML algorithms in this application domain such as U-Net [53]. This allows
us to efficiently learn the region of human attention in the labels in terms of binary
segmentation maps/occupancy grids. Hence, pixel-level classification is performed where
every pixel in the grayscale label mask that belongs to a region of human attention is
encoded as 1 whereas all remaining pixels are treated as background and are encoded as
0.

45

4. Design of Att-YOLOv7

Contrarily, the second approach formulates the problem of learning human attention as
an image restoration problem and applies regression analysis. This implementation is
based on the premises of the previous idea but neither relies on using a predefined circle
size to define the region of the human attention for each attention point in each label
nor uses a binary segmentation map to encode each label. Alternatively, an isotropic 2D
Gaussian distribution with a mean of 0 and a standard deviation of 1 centered at the
coordinates of each attention point in each label is created. These labels are denoted
as attention heatmaps and reflect the likelihood of a driver’s attendance to a specific
location in the image and take values in the range 0 to 255. The main advantage of this
label representation is the continuous output space which enables us to apply a soft-loss
for learning the attention heatmaps as adjacent pixels in the attention heatmaps are not
independent from each other. On the other hand, binary segmentation discretizes the
output space and assumes that every pixel in the label mask is independent from each of
its neighbouring pixels.

Based on the representation of the attention heatmap labels, we are further able to encode
the sequential nature of the data directly in the labels using multi-frame aggregation. For
this purpose, we compute the current label by calculating the element-wise maximum of
the attention heatmap of the current frame and the intensity decreased attention heatmap
of the previous frame to derive the true attention heatmap at time step t. These attention
heatmaps are iteratively precomputed according to equation 4.4 and equation 4.5 where
yt is the aggregated attention heatmap at time step t, ht is the immediate attention
heatmap at time step t and (1 − r) is the exponential decay factor that is applied on
the attention heatmap of time step t − 1 to account for the attention heatmap intensity
variations of different time steps. Last but not least, max denotes the element-wise
maximum operation.

y0 = h0 (4.4)
yt = max(ht, (1 − r)yt−1), t ∈ N (4.5)

To this end, this formulation of reproducing human attention aims towards allowing the
model to capture the sequential nature of the data using the FBL approach without the
necessity of implementing a RNN such as a LSTM as for the SBL approach.

Training & Validation

All NN architectures used for modelling the AttNN have been exclusively trained on
the human-attention dataset (Section 4.1.1). The specific architectures that have been
evaluated in this context are described in Section 4.1.2 in more detail. First and foremost,
many drivers have been observed to sporadically focus on entities in the surrounding
environment of the track while driving. These entities correspond to people present aside
from the track for instance which are approximately visible in the upper third of the
image from the perspective of the car’s camera. Hence, all frame-attention points pairs in

46

4.1. Development of the Human-Attention Model

the human-attention dataset are filtered based on the y location of each attention point
for each corresponding image. Specifically, attention points located in the upper third of
an image are dropped while frames which have no valid attention point are not considered
for training or validation. Around 83.5% of the roughly 20k frame-attention points pairs
are valid. The intent of this preprocessing step is to force the model to focus on locations
and occurring events on the track rather than learning features from the environment.
While all frames in the human-attention dataset are processed independently during
training for FBL, a rolling window of size four is applied on subsequent frames during
preprocessing to precompute the frame sequences on which the model is trained on for
SBL. When using regression analysis, the attention heatmap labels are precomputed
by iterating them once and stored in 8-bit unsigned integer (uint8) enconding in the
heatmaps/ directory next to the marked_frames directory containing all images to speed
up the training process. During training, the attention heatmap labels corresponding to
the currently processed image batches are loaded and normalized. Several assignments
of the decay factor r for the exponential decay of previous attention heatmaps have
been empirically evaluated whereas the best results have been achieved by specifying
r = 0.17 which corresponds to the visibility of the gaussian covariances for approximately
30 frames (one second). Contrarily, when using semantic segmentation, the corresponding
binary segmentation masks are computed on-the-fly. For SBL, the label corresponding to
the last image of the current frame sequence is utilized during training.

The spatial dimensions of the input images are resized into shape (128, 224) and the
images are normalized. Given that a pretrained model is used, we additionally normalize
the input images with respect to the mean and standard deviation of the dataset the
models have been trained on. In this work, all pretrained models have been trained
on ImageNet [76]. Therefore, we normalize all images on a per-channel mean of [0.485,
0.456, 0.406] and a per-channel standard deviation of [0.229, 0.224, 0.225] in the event of
fine-tuning such a model.

The originally recorded human-attention dataset is more biased towards containing
images where the F1Tenth racecar is either driving straight or taking right turns. In
order to balance the distribution of observations in our human-attention dataset, we
create synthetic data using data augmentation. In particular, we quadruple the size of the
human-attention dataset. Initially, we apply horizontal image flipping on all images and
labels of the human-attention dataset. Afterwards, we utilize colorspace augmentation
by a fraction of brightness=0.4, contrast=0., saturation=0.7 and hue=0.015 to double
the size of the human-attention dataset once more. Before training commences, the
human-attention dataset is split into training set and validation set following a split
ratio of 80% and 20%. We note at this point, that the validation set is sampled from
the human-attention dataset such that it only contains samples from the original frame-
attention points pairs as well as samples from the horizontally flipped frame-attention
points pairs. The colorspace augmentation parameters have been selected according to
the equivalent parameters specified when training YOLOv7. In order to further enhance
model generalization, we rely on Exponential Moving Average (EMA) to compute the

47

4. Design of Att-YOLOv7

weights of the final model based on the weighted linear combination of the EMA model’s
previous weights and the model’s optimized weights for each iteration. Specifically, we
keep track of the EMA weights according to equation 4.6

EMAt = θ0 if t = 0
(1 − α)θt + αEMAt−1 otherwise

(4.6)

where θt are the optimized parameters for iteration t. The decay coefficient α is set to
0.9999 meaning that the current parameters are updated with the new parameters by a
factor of 0.01%. Applying EMA on the model’s parameters reduces the impact of large
parameter updates for individual batches and keeps averaged model weights which tend
to perform significantly better during evaluation.

We implemented Adam with decoupled weight decay (AdamW) [77] as optimization
algorithm using an initial learning rate of 3e−4 and weight decay of 5e−5. These parameters
have been found through hyperparameter tuning of U-Net and U-Net++ using PyHopper
[78] which applies a 2-stage Markov chain Monte Carlo optimization algorithm. Based on
the research proposed by [79], weight decay regularization is solely applied to the weights
of convolutional or fully connected layers to improve model accuracy. Furthermore, we
utilized Automatic Mixed Precision (AMP) training where each operation performed
inside the model such as computing convolutions is executed in the lowest precision
floating point datatype appropriate (either 16-bit floating point precision (FP16) or 32-bit
floating point precision (FP32)). To prevent gradient underflow when using FP16 while
optimizing inference time, gradient scaling is performed. Thus, the computed loss is
multiplied by a designated scale factor. When invoking backpropagation, the magnitudes
of the gradients are equally scaled preventing them from flushing to zero. Before updating
the model’s parameters, the gradient of each parameter is unscaled by the same scale
factor to avoid interference with the learning rate. Further optimizations of the training
process include using page-locked memory (memory pinning) to store data samples in
order to improve host to GPU data transfer and dropping the last batch for each epoch
such that only batches of batch size N are considered.

For training the model, Smooth L1 Loss according to equation 4.7 with β = 1.0 is used as
loss function for regression analysis while a linear combination of Binary Cross Entropy
(BCE) loss and DSC loss is applied when learning on binary segmentation masks. Both
losses utilize mean reduction in order to compute the final loss for the current batch.

L(ŷ, y) =
1

2β (ŷt − yt)2 if |ŷt − yt| < β

|ŷt − yt| − β
2 otherwise

(4.7)

We compute the DSC for each batch by averaging the per sample DSC such that harder
samples are weighted more during training. Moreover, we rely on a learning rate scheduler

48

4.1. Development of the Human-Attention Model

implementing the reduce learning rate on plateau technique to ensure model convergence.
In particular, the learning rate is multiplied by a factor of 0.1 if the validation metric
did not change over the last two epochs. Dependent on the applied learning approach,
the validation metric is expected to increase or decrease consistently for each iteration
during training. The performance of models trained following regression analysis is
validated based on Mean Squared Error (MSE) whereas DSC is used as validation metric
for networks trained using the semantic segmentation approach. In order to objectively
compare the results of both approaches on a common metric, the performance of each
NN trained on attention heatmap labels is also monitored with respect to the DSC.
In the validation phase, the predicted normalized attention heatmaps as well as the
normalized attention heatmap labels are separately discretized based on a 50% threshold
for each batch in order to further compute the DSC similar to the semantic segmentation
approach.

All models have been trained and validated on a single Tesla T4 GPU with 16 GiB
Video Random Access Memory (VRAM). Each model following the FBL strategy has
been trained for 60 epochs using a batch size of 16 and four workers while each model
following the SBL strategy has been trained for 60 epochs using a batch size of four, an
image sequence size of four and four workers. Last but not least, the trained model is
additionally exported as ONNX model during training such that the AttNN can further
be used for the hardware deployment (Section 4.3.2).

Architectural Design & Evaluation

A selection of various network architectures from the literature proposed for image
segmentation or image restoration problems such as several extensions of the standard
U-Net architecture [53] have been trained on the human-attention dataset and evaluated
with respect to training time, parametric complexity and DSC. Specifically, standard
U-Net, Attention U-Net [55], U-Net++ [54], PAN [58], DeepLabV3+ [80], ConvLSTM
U-Net and ConvLSTM Attention U-Net were evaluated in this context to elaborate which
NN fits best to model the AttNN. For U-Net++, PAN, DeepLabV3+, all pretrained
models and models that integrate the Concurrent Spatial and Channel Squeeze &
Excitation (scSE) module we used the implementations provided by the Segmentation
Models PyTorch library [81]. Except for ConvLSTM U-Net and ConvLSTM Attention
U-Net, all models follow the FBL strategy and expect a normalized 4D input tensor of
shape (N , 3, 128, 224) where N refers to the batch size. Each FBL model is composed
of a five stage encoder-decoder network using batch normalization in the decoder. The
specific architecture of the encoder backbone and the upsampling path is dependent on
the respective model and not discussed in detail here. Instead, we refer to the literature
for further information. In the end, a sigmoid activation function is applied on the final
predictions of the model before the loss is computed. All FBL models predict a tensor of
shape (N , 1, 128, 224). The labels are also provided as tensor of shape (N , 1, 128, 224).
Depending on the availability of CUDA [67], all tensors are either of type FP16 or FP32.

49

4. Design of Att-YOLOv7

ConvLSTM U-Net and ConvLSTM Attention U-Net follow the SBL strategy and expect
a normalized 5D input tensor of shape (N , K, 3, 128, 224) where N refers to the batch
size and K corresponds to the number of consecutive images per image sequence. The
models consist of the same five stage encoder-decoder network as U-Net/Attention U-Net
except that the fifth stage encoder-decoder subnetwork is replaced by a ConvLSTM [49].
The motivation for integrating a ConvLSTM in the U-Net architecture is two-fold in
our use case. While a ConvLSTM module enables to memorize previous samples, it
further internally utilizes convolutions instead of matrix multiplications, retaining the
spatial dimensions of the input as opposed to a regular LSTM unit. Thus, a ConvLSTM
allows to learn the spatio-temporal relation of sequential image data. The number of
hidden states in our ConvLSTM module is equal to the image sequence length while the
ConvLSTM cell reference implementation by [82] was adapted for this purpose. In one
forward pass, the batch and sequence dimensions of the input tensor are collapsed and
all images are processed by the encoder network in parallel. Before passing the extracted
features to the ConvLSTM layer, the first dimension of the output of the encoder is
reshaped with respect to the batch size and the image sequence length. Afterwards, all
hidden states of the ConvLSTM are concatenated and simultaneously processed by the
decoder network due to the symmetric design of the U-Net architecture. In order to
compute the final predictions for the current batch, the N last segmentation maps are
fetched from the output layer of the network. Before calculating the loss, the predictions
are passed through a sigmoid activation function. Both models output a FP32 tensor
of shape (N , 1, 128, 224) while the labels are again provided as FP32 tensor of shape
(N , 1, 128, 224). The usage of the FP16 data type for all tensors during training again
depends on the availability of CUDA.

We performed an exhaustive analysis on different NN algorithms. Next to the base models
trained from scratch, ImageNet pretrained variants of U-Net and U-Net++ using different
encoder backbones were trained. Furthermore, the integration of the scSE module in
the decoder of several models has been evaluated. Figure 4.2 compares the training
and validation losses as well as the training and validation DSC scores of all validated
model architectures throughout all epochs. On the other side, table 4.1 provides detailed
statistics about the training time (in hours), parametric complexity and validation DSC.
Complementary, figure 4.3 visually relates training time and validation DSC whereby the
marker size indicates the approximate number of model parameters. In order to further
compare models trained using regression analysis or semantic segmentation, several
architectures have been trained and evaluated using both approaches. Models trained
using the classification approach are marked with the suffix CLS accordingly. All models
have been trained from scratch and utilize multi-frame aggregated human-attention
heatmap labels if not stated otherwise.

50

4.1. Development of the Human-Attention Model

Figure 4.2: Illustration of the training statistics of each model

Model Training time [h] Parameters Validation DSC
DeepLabV3+ 5.58 22 437 457 73.90
PAN 5.49 21 475 816 74.67
PAN (CLS) 5.67 21 475 816 64.61
U-Net (CLS) 13.80 34 520 193 40.63
Attention U-Net (CLS) 15.19 34 870 761 56.57
Attention U-Net 15.19 34 870 761 69.03
VGG19 pretrained U-Net++ with
scSE

27.84 40 950 297 70.03

ConvLSTM Attention U-Net 63.04 27 524 327 90.50
Resnet34 pretrained U-Net++ with
scSE

11.28 26 281 137 67.98

U-Net++ 7.35 26 078 609 72.95
U-Net with scSE 5.45 24 436 369 71.17
U-Net++ with scSE (CLS) 11.53 26 281 137 61.74
ConvLSTM U-Net 57.15 27 437 185 91.49
U-Net++ with scSE 11.77 26 281 137 76.68

Table 4.1: Characteristic comparison of model architectures

Based on the results provided in table 4.1, we selected ConvLSTM U-Net as the ar-
chitecture for the AttNN as ConvLSTM U-Net achieves the highest DSC score on the
validation set. While the difference in DSC score between ConvLSTM U-Net and Con-

51

4. Design of Att-YOLOv7

Figure 4.3: Comparison of model architectures

vLSTM Attention U-Net on the validation set is negligible, both models outperform
models trained using FBL by a large margin. In particular, ConvLSTM U-Net exceeds
U-Net++ with decoder attention type scSE which represents the best model using FBL
and regression analysis in DSC score on the validation set by 14.81%. Conversely, PAN
(CLS) represents the best model using FBL and semantic segmentation, where we note a
remarkable gap of 26.88% in DSC score on the validation set compared to ConvLSTM
U-Net. Considering the performance of pretrained, fine-tuned models and models trained
from scratch, we observe that the U-Net++ with decoder attention type scSE trained
from scratch is superior in performance compared to the ImageNet pretrained VGG19
backboned U-Net++ with decoder attention type scSE by 6.65% in DSC score. Like-
wise, U-Net++ with decoder attention type scSE outperforms the ImageNet pretrained
ResNet34 backboned U-Net++ with decoder attention type scSE by 8.7% in DSC score.

Our empirical evaluation of models trained with FBL and multi-frame aggregated atten-
tion heatmap labels and models trained with FBL and binary segmentation mask labels
further shows that human-attention feature maps represented as time-variant gaussian

52

4.1. Development of the Human-Attention Model

heatmaps are more efficient for NN to learn. The importance of the human-attention
feature map representation is evident when comparing the DSC score on the validation
set for models trained using both learning strategies. For instance, U-Net++ with scSE
achieves a 15% higher DSC score on the validation set when representing human-attention
feature maps as multi-frame aggregated gaussian heatmaps as opposed to binary segmen-
tation masks. We may also theoretically support this observation as human attention
is a time and stimuli sensitive biological mechanism which is better approximated by
encoding human-attention feature maps as time-variant gaussian heatmaps.

Finally, we present an abstract schematic of our human-attention model in figure 4.4,
visualizing the input and output layer as well as the major components of the NN
architecture.

6464

I

128 128

I/2

256 256

I/4

512 512

I/8

512

ConvLSTMCell

256

I/4

+

256 256

I/4
128

I/2

+

128 128

I/2

64

I

+

64 64

I

1

I

I

Softmax

Figure 4.4: Abstract architecture of the AttNN

53

4. Design of Att-YOLOv7

4.2 Development of the Object Detection Neural Network
For the purpose of performing reliable high-speed inference in object detection, a ML-
based object detection algorithm capable of satisfying real-time requirements and inducing
low latency is mandatory. To this end, the focus of this section relies on the creation of
the 2D object detection dataset which is described in Section 4.2.1 as well as the design,
training and validation of the object detection model as discussed in Section 4.2.2.

4.2.1 Creation of the F1Tenth Object Detection Dataset

In an autonomous driving context, a vast variety of different objects exists where a HAD
agent has to locate each object in the environment and predict their temporal behaviour
dependent on their category. Especially in an autonomous racing context, the localisation
of the opponent and other objects on the track and the prediction of their temporal
behavior is highly important in order to perform evasive actions or attempt on overtaking
at the right moment. Generally, objects on the track may roughly be categorised into
static and dynamic obstacles. Static obstacles have a fixed position on the track while
dynamic obstacles are objects moving relatively to the agent. In particular in F1Tenth
[1], the objects of interest on the track are represented by two object categories: F1Tenth
cars and common boxes. Specifically, a F1Tenth car refers to a custom build of a F1/10
scale Formula 1 race car as illustrated in [1] while cuboid boxes with a TU Vienna logo
on each side are used as common boxes. For the simulation deployment (Section 4.3.1),
the hardware deployment (Section 4.3.2) as well as the overall evaluation of the AttNN
based dynamic object detection system and the comparison to the state-of-the-art in
computer vision research (Section 5), an object detection dataset consisting of these two
object classes is considered.

Analog to the creation of the human-attention dataset in Section 4.1.1, the training,
validation and test data for the object detection dataset, also denoted as F1Tenth object
detection dataset needs to be from an equivalent environmental setting as the input data
provided to the object detection NN once deployed. Therefore, several videos of different
runs across two distinct indoor track settings initially recorded for the human-attention
dataset have been post-processed. In particular, the frames of each selected run’s video
that contain objects of interest have been extracted and manually annotated such that
each object of interest in a selected frame is marked with its corresponding class label and
an enclosing 2D bounding box. Finally, between 8% and 10% of the number of labelled
images have been chosen from the remaining non-selected frames of the individual runs
and are used as background images/negative samples in the object detection dataset.
As a consequence, the number of false positives of the object detection NN shall be
significantly reduced. In summary, the F1Tenth object detection dataset contains a total
of 7819 images and 7303 labels. The split between training, validation and test data is
70%, 15% and 15% respectively. The dataset covers three major scenarios: background
images, single class images and multi class images. Table 4.2 provides an overview of the
number of used instances per category as well as the number of occurrences of each of

54

4.2. Development of the Object Detection Neural Network

the two classes for training, validation and test data.

Category Training Validation Test
background images 736 155 166
f1tenth car 3807 832 814
box 1298 276 285
single class 4421 952 934
multi class 315 66 74

Table 4.2: F1Tenth object detection dataset statistics

Finally, the F1Tenth object detection dataset consists of RGB frames that have been
recorded using a Logitech Webcam and an Intel RealSense camera mounted in front of
the F1Tenth car while driving. Due to the insufficient consistent fixation of the camera
system while the car was in motion, the background noise present in the camera frames
has been captured in the F1Tenth object detection dataset ensuring a similar noise
distribution when deploying the AttNN based dynamic object detection system on the
physical car.

4.2.2 Design and Learning of the Object Detection Neural Network
High-speed inference and low-latency for object detection algorithms operating in time-
critical and highly dynamic environments is crucial when deploying the model on a
cyber-physical system such as a F1Tenth racecar. Building upon the latest research in
the domain of computer vision, the recent advancements in vision-based object detection
NN culminate in the one-stage object detector YOLOv7 [29]. YOLOv7 outperforms most
state-of-the-art object detection algorithms on the PASCAL VOC/COCO datasets in
terms of inference time and mAP including one-stage object detectors such as SSD [37]
and the predecessors of YOLOv7 [28, 32, 33, 34, 35] as well as two-stage object detectors
such as R-CNN [38], Fast/Faster R-CNN [39, 40] and the end-to-end object detection
with transformers architecture denoted as DETR [4]. Based on its impressive results,
YOLOv7 has been chosen as the object detection NN for this thesis. The reference
PyTorch implementation adapted in this work is provided by [83].

The general breakdown of the architecture of the YOLO family, the idea behind the
YOLO object detection NN as well as the algorithm of an advanced YOLO variant,
namely YOLOv4 [34] have already been presented in Section 2.4.2. The latest instance of
YOLO - YOLOv7 - builds upon the algorithms of its predecessors YOLOv4 and YOLOv5
[35] and defines several improvements which are integrated in its new architectural design
and training routine. At this point, we intend to provide a more detailed discussion on
the improvements of the YOLOv7 architecture and its training procedure.

Most commonly, researchers aim to optimize the architecture of a NN by reducing the
number of parameters, the computational density of the model or the total number
of computations. The length of the longest path a gradient has to traverse during

55

4. Design of Att-YOLOv7

backpropagation has a huge impact on the learning capabilities of a network, especially
in terms of expressiveness of the model and learned feature diversity. For DNNs to
learn efficiently and converge fast, Efficient Layer Aggregation Networks (ELAN) has
been proposed which allows to control the shortest and the longest gradient path in
the network. However, by rapidly increasing the number of computational blocks, the
utilization rate of the parameters in the network may decline. To resolve this issue,
Wang et. al. proposed Extended Efficient Layer Aggregation Networks (E-ELAN) which
changes the architecture of the computational blocks by applying expand, shuffle and
merge cardinality to continuously enhance the network’s learning capability. Contrarily,
the architecture of the transition layer is left unchanged, enabling the network to maintain
its original gradient path. More specifically, E-ELAN implements grouped convolutions to
expand the channel dimension and cardinality of each computational block as well as uses
the same channel multiplier and group parameters on all feature maps of a computation
layer. Finally, the feature maps will be shuffled, concatenated and added to the feature
vector from the previous stage to perform merge cardinality and compute the feature
vector of the current stage.
In order to meet the versatile requirements of different applications on inference speed,
memory consumption and utilisation as well as mAP, concatenation based computer
vision models are usually designed and trained for multiple scales as the scaled depth
results in a different number of layers and the scaled width leads to a different number
of channels in the network. To overcome this limitation and adapt the initial design
for multiple use cases, the authors of YOLOv7 use a compound scaling method which
computes the change in the output kernel dimensions and scales the width of the network
correspondingly. Hence, the network maintains an optimal architecture and its properties
for an already designed algorithm while scaling depth, width and resolution of the
network.
In contrast to enhancements in the architectural design, improvements in the training
strategy of YOLOv7 which increase the overall accuracy of the algorithm while maintaining
or reducing inference time are denoted as trainable BoF. YOLOv7 introduces and utilizes
two new techniques: planned re-parameterized convolution and coarse for auxiliary and
fine for lead loss.
The general idea behind re-parameterization techniques is to increase model robustness
and its ability for generalisation by averaging a set of model weights of multiple models
trained on different training data or across distinct epochs. Recent research focused on
module level re-parameterization where individual computational blocks or layers of the
network are transformed based on specific re-parameterization strategies e.g. merging of
multiple layers. The authors of YOLOv7 used gradient flow propagation paths in order
to optimally combine re-parameterized convolutions with different network structures.
The second trainable BoF is based on the concept of deep supervision where especially
for very deep NN additional information is provided by inserting an auxiliary head in
the middle layers of the network. Via communication between the auxiliary head and
the lead head which is responsible for the prediction of the final output of the network,

56

4.2. Development of the Object Detection Neural Network

the auxiliary head is able to build upon knowledge that the lead head has learned,
thus enabling the lead head to focus on learning new information. In order to generate
appropriate labels for both heads, YOLOv7 proposes a coarse-to-fine lead head guided
label assigner. The soft labels for the lead head and the auxiliary head are computed
based on the ground truth and the prediction of the lead head. However, the constraints
of the coarse soft labels for the auxiliary head are weakened as the auxiliary head has
a lower learning capability than the lead head. Hence, an additional number of false
positives in the surrounding grid cells is accepted as correct prediction for the auxiliary
head.

Further adaptions of the network’s structure and the training process have been performed
such as integrating batch normalization between the convolution layer and the activation
layer as well as using implicit knowledge in You Only Learn One Representation (YOLOR)
[36] and convolution feature maps to reduce the number of computations at inference
time. Finally, YOLOv7 applies an EMA to average the weights of the model ensemble
in order to arrive at the final model’s weights, a technique also referred to as the Mean
Teacher method [84].

Architectural Design, Training & Validation

In terms of the specific architecture used for the YOLOv7 models in this thesis, we
differentiate between the YOLOv7 base model (Native YOLOv7) and the Attention
as feature based YOLOv7 algorithm (4-channel YOLOv7). The native YOLOv7
algorithm is applied to perform inference on full-scale input images and is used as
evaluation baseline for the performance benchmark comparison later on in Section
5. While 4-channel YOLOv7 also performs inference on full-scale images, the model
leverages the predicted human-attention heatmaps for the full-scale input images as
additional channel information for the YOLOv7 base model to increase feature diversity
and robustness. Hence, the primary architectural difference of the two networks relies in
the number of input channels as well as in the number of trainable parameters.

The input of all YOLOv7 networks is a normalized FP32 tensor of shape (N , C, H,
W) where N is the batch size, C is the number of channels and H and W are the
height and width of the input images respectively. In detail, native YOLOv7 expects a
normalized FP32 tensor of shape (N , 3, 384, 640) while 4-channel YOLOv7 expects a
normalized FP32 tensor of shape (N , 4, 384, 640). The size of the spatial dimensions of the
input tensors results from the letterbox format computed by YOLOv7 when performing
rectangular inference on the images of the F1Tenth object detection dataset for a selected
target image width of 640 pixels. For all experiments conducted throughout this thesis, all
object detection models resize input images such that the target image width corresponds
to 640 pixels respectively. Based on the utilized anchor box configuration, the output
of the YOLOv7 networks is a FP32 tensor of shape (15120, 7) while the final output
after NMS is a FP32 tensor of shape (K, 7) where K is the number of 2D bounding
box predictions for the given input image with an IoU score greater equal to the IoU

57

4. Design of Att-YOLOv7

threshold specified for NMS. For all models, the IoU threshold has been set to 0.20 for
training and 0.65 for evaluation later on.

All instances of YOLOv7 have been exclusively trained on the F1Tenth object detection
dataset (Section 4.2.1) from scratch. Hence, no pre-trained models have been applied for
training. Specifically, the images and labels located in the /images/train and /labels/train
directories have been used for training. For model validation and evaluation later on,
the images and labels from the /images/val, /labels/val and /images/test, /labels/test
directories have been used. Generally, the proposed training routine as well as the
hyperparameters that were stated by the authors of YOLOv7 for learning their network’s
weights have also been used to train all instances of YOLOv7 for this work. In particular,
a series of data augmentation techniques were implemented to increase the robustness
and generalization of the YOLOv7 model. We apply horizontal image flipping with a
probability of 0.5, image translation by a fraction of +/-0.2, image scaling by a gain
of +/-0.5, HSV-colorspace augmentation by a fraction of h=0.015, s=0.7 and v=0.4 as
well as the novel image mosaic data augmentation with a probability of 0.8 for four
image mosaics or a probability of 0.2 for nine image mosaics during training. Moreover,
YOLOv7 implements EMA for computing an averaged set of weights across all iterations
with a decay coefficient of 0.9999. The latest EMA weights are iteratively calculated
based on the weighted linear combination of the previous EMA weights and the updated
weights of the model of the current epoch.

In our implementation, SGD is applied as optimizer with an initial learning rate of 1e−2,
a momentum of 0.937 and weight decay of 5e−4. For validating YOLOv7 in terms of
mAP, three different metrics have to be assessed resulting in a compound loss function.
The score computed by the loss function is derived from the weighted linear combination
of an objectness loss, a bounding box or regression loss and a classification loss. The
weight coefficients are 0.7, 0.05 and 0.3 respectively. In detail, the overall loss is computed
by initially targeting center prior anchor boxes for each FPN head. Those priors are
refined using the Optimal Transport Assignment (OTA) algorithm which formulates
label assignment as a global optimisation problem for each image and solves common
issues regarding occlusion or multiple adjacent objects when using IoU. The goal of the
OTA algorithm is to find an optimal predicted bounding box to target bounding box
label assignment minimizing the total cost for each image. While solving the global
optimisation problem is computationally expensive, YOLOv7 implements a simplified
version of OTA by finding a matching target bounding box for each of the n predicted
bounding boxes having the lowest cost. Once the label assignment has been computed,
the objectness loss is determined through the BCE loss of the predicted objectness
probability and the CIoU between the predicted bounding boxes and the matched targets.
The bounding box loss is computed for all proposed anchor boxes and their corresponding
targets based on the mean of the inverse probability of CIoU. The classification loss is
obtained by assessing the BCE loss between the predicted class probabilities of each
anchor box and a one-hot encoded vector representing the ground truth class index of
the matched target bounding box. In case auxiliary heads are integrated into the model,

58

4.2. Development of the Object Detection Neural Network

each loss component is added to the respective loss component of the lead head w.r.t.
to the contribution weight of the auxiliary head. Similarly, the objectness loss is scaled
by the weight of the FPN head. Then, the true loss score is defined by the batch size
multiplied by the sum of the weighted linear combination of the objectness, regression
and classification losses. Finally, YOLOv7 utilizes AMP training.

Analog to the authors of YOLOv7, we apply a cosine learning rate scheduler to adjust
the learning rate during training with a linear warmup of three epochs. Additionally, the
optimizer only applies weight decay regularization to parameters of convolutional or fully
connected layers based on the research proposed by [79]. The weight decay is also scaled
based on the used batch size during training where the base value is fixed for batch sizes
lower than the nominal batch size and linearly increased for batch sizes larger than the
nominal batch size (here 64). Moreover, YOLOv7 implements gradient accumulation
such that the optimizer does not update the parameters of the model after computing
each batch, but after a designated number of iterations. Both techniques tackle the issue
of training the network with inconsistent batch sizes which might otherwise result in
unstable training or require a different selection of hyperparameter values.

Eventually, the selection of appropriate anchor box sizes is fundamental for YOLOv7 to
perform well on the trained dataset as candidate anchor boxes are generated based on
the provided anchor box sizes at each anchor point. The anchor size configuration for
each of the FPN heads we used is based on the original YOLOv7 implementation for the
COCO dataset and given in the following:

- [12, 16, 19, 36, 40, 28] #P3/8

- [36, 75, 76, 55, 72, 146] #P4/16

- [142, 110, 192, 243, 459, 401] #P5/32

While native YOLOv7 can be trained directly by providing the target dataset and the
target hyperparameter configuration, various modifications to the dataloader of YOLOv7
had to be made for training 4-channel YOLOv7. In order to train 4-channel YOLOv7
on the RGB input images as well as on the corresponding attention heatmaps, the
dataloader has been modified such that the associated attention heatmaps are simultane-
ously processed for each image batch. For this reason, the AttNN was used to predict
the attention heatmaps for the images in the F1Tenth object detection dataset. The
predicted attention heatmaps have been stored in the /heatmaps/train, /heatmaps/val
and /heatmaps/test directories accordingly. Additionally, data augmentation techniques
that are applied to input images and geometrically alter the original images (except for
HSV-colorspace augmentation) have to be equally applied to the corresponding attention
heatmaps of those images to compute consistent image/attention heatmap pairs. Many
of the applied data augmentation techniques such as image mosaic augmentation and
random affine transformation perform sampling operations, either for computing addi-
tional indices in the case of mosaic augmentation or for calculating the new RoI in the

59

4. Design of Att-YOLOv7

case of random affine transformation. To ensure consistency between the input images
and the corresponding attention heatmaps, we initially perform the sampling operation
and afterwards simultaneously compute the augmented images/attention heatmaps using
the sampled configuration. The final input of the 4-channel YOLOv7 network results
from the concatenation of the image/attention heatmap pairs along the channel axis
where the fourth channel contains the corresponding attention heatmap.

Evaluation of YOLOv7 model variants

All YOLOv7 models have been trained on a single Tesla T4 GPU with 16 GiB VRAM for
300 epochs using a batch size of 16 and four workers and perform inference on rectangular
images of size 384 × 640. During preprocessing, the original images of size 480 × 848 are
resized and padded if needed according to the letterbox format expected by YOLOv7 for
rectangular inference. We selected a target image width of 640 pixels for comparing our
models running rectangular inference. Figure 4.5 illustrates mAP@.5 and mAP@.5:.95
scores of native YOLOv7 and 4-channel YOLOv7 on the training and validation set of
the F1Tenth object detection dataset across all epochs. Moreover, table 4.3 compares
training time (in hours), parametric complexity, precision (P), recall (R), mAP@.5 and
mAP@.5:.95 scores of both models on the corresponding validation set. We compare the
object detection accuracy of all models in this thesis based on mAP, as this is the defacto
standard metric for evaluating object detection algorithms. Notably, mAP is defined as
the area under the precision-recall curve where mAP@.5 denotes mAP evaluated on an
IoU confidence threshold of 0.5 while mAP@.5:.95 denotes the average mAP score when
evaluating mAP on an IoU confidence threshold of 0.5 up to 0.95 with a step size of 0.05
individually. Finally, the precision, recall, mAP@.5 and mAP@.5:.95 scores represent the
average value across all classes.

Model Training time [h] Parameters P R mAP@.5 mAP@.5:.95
Native YOLOv7 23.827 37 201 950 0.998 0.998 0.998 0.967
4-channel YOLOv7 25.92 37 202 238 0.997 1 1 0.963

Table 4.3: Characteristic comparison of YOLOv7 variants

60

4.3. Algorithm and Deployment of the System

Figure 4.5: mAP scores of each YOLOv7 instance on the validation set

4.3 Algorithm and Deployment of the System
In order to deploy and evaluate the AttNN based dynamic object detection system, the
trained attention filter (Section 4.1) and the trained object detection models (Section
4.2) have to be efficiently integrated. Essentially, this work is based on the premises that
every visual location a human driver attends to while steering a F1Tenth car has to be
of interest and most importantly, a human driver will eventually focus and lay his/her
attention on any static or dynamic objects in the environment in order to safely navigate
the F1Tenth car and avoid a crash. For this reason, we propose and evaluate our novel
approach, denoted as AttNN based dynamic object detection system (Att-YOLOv7).
Att-YOLOv7 incorporates 4-channel YOLOv7 as object detection model which utilizes the
predicted human-attention feature maps by the AttNN as additional channel information
with the goal of providing a more robust and generalized YOLOv7 model. Figure 4.6
outlines the overall pipeline of the AttNN based dynamic object detection system. We
further discuss our approach and provide details on how we evaluated the performance
in simulation in Section 4.3.1. Finally, Section 4.3.2 gives insights on how we deployed
our system on the F1Tenth racecar, performed optimizations and the communication
with HAD agents.

61

4. Design of Att-YOLOv7

Figure 4.6: Sequence diagram of Att-YOLOv7

4.3.1 Simulation Deployment
The overall system layout of the AttNN based dynamic object detection system given
in figure 4.6 was implemented in a simulation environment using the toolchain as
described in Section 3.1. When comparing the simulation deployment of our system
to the deployment on the real F1Tenth racecar (Section 4.3.2), minor modifications to
the pipeline illustrated in figure 4.6 had to be made. The interface to the camera is
replaced by a custom dataloader instance which allows to iterate through a selected
directory containing a given set of test images. The post-processing stage of the pipeline
has also been altered for simulation as the predictions are not communicated to the
HAD agent but are instead visualized on the provided input images. The final inference
results are stored in a designated directory containing all input images marked with the
corresponding 2D bounding box predictions, class name and confidence score while the
color of the predictions represents the predicted class. For evaluating the performance of
our approach on relevant metrics such as mAP, we accumulate the score for the respective
metrics computed on the inference results of each image and derive the final values by
averaging over the entire dataset. We equivalently compute the mAP score for all object
detection baselines in Chapter 5.

For the purpose of generating and storing the current frame sequence required as input
for the human-attention model, a ring buffer is initialized with the size of the image
sequence length k and k copies of the first frame retrieved from the input source e.g.
from a RGB camera or a custom dataloader. For every iteration, the oldest frame in the

62

4.3. Algorithm and Deployment of the System

ring buffer is replaced with the most recent one and the entire frame sequence is returned
with the most recent frame being located at index k − 1. Independent of the deployment
method, this ring buffer implementation is used to capture the sequential nature of our
application domain in a simple way.

Expanding on the algorithmic details, Att-YOLOv7 exploits the predicted human-
attention heatmap computed by the AttNN as additional attentional feature for YOLOv7
to retrieve supplementary information for learning and infering the 2D bounding box
and class labels in each scene. In particular, the channel depth of the input layer of
the YOLOv7 network is extended by adding an auxiliary fourth channel that represents
the non-normalized human-attention feature maps as uint8 grayscale images for the
corresponding RGB input images. Values significantly larger than zero in the human-
attention feature map indicate regions of predicted human-attention. Before inference,
the human-attention feature map is normalized along the given RGB image. In order to
concatenate the human-attention feature map/RGB image pairs, the human-attention
feature maps are resized w.r.t. the spatial dimensions of the input images after computing
the letterbox format for the original input images given the selected target image width
of 640 pixels.

4.3.2 Deployment on the F1Tenth research platform
Apart from the robustness evaluation of Att-YOLOv7 on OOD data, the feasibility of our
approach for real-world autonomous driving/racing applications shall also be assessed and
validated. Therefore, we deployed our system on a custom build of a physical F1Tenth
racecar.

The custom build of our F1Tenth racecar is primarily based on the standard F1Tenth
hardware components according to the F1Tenth documentation [1]. Minor modifications
have been made regarding the placement of the individual hardware parts. Furthermore,
we connected a visual camera system to the NVIDIA Jetson Xavier NX where initially a
Logitech Webcam and later on an Intel RealSense camera mounted above the front axle
of the F1Tenth car has been integrated. The specific software stack used on the F1Tenth
research platform has already been described in Section 3.1.

In order to deploy the AttNN based dynamic object detection system efficiently on the
target platform regarding execution time and to enable an easy collaboration with HAD
agents, the pipeline illustrated in figure 4.6 has been implemented in a ROS node and
the TensorRT Python API has been used to optimize the frame rate of the system by
running the AttNN as well as 4-channel YOLOv7 on the GPU. For this purpose, the
weights of the AttNN and 4-channel YOLOv7 models have been converted to ONNX
format using ONNX opset version 12 with constant folding. The ROS node either expects
ONNX models as input and compiles the networks into FP32/FP16 TensorRT engines
or directly runs supplied TensorRT engine files on the GPU. Two operational modi are
supported which can be configured using the parameters in the corresponding launch file
of the ROS node; running native YOLOv7 or running Att-YOLOv7.

63

4. Design of Att-YOLOv7

Furthermore, NVIDIA Jetson Xavier NX supports 8-bit integer (INT8) model inference
directly on the hardware, which substantially increases model throughput, reduces
inference latency and memory consumption while slightly dropping in mAP compared to
models using FP32 or FP16. The ROS node implements a custom INT8 calibrator class
for the AttNN as well as for all variants of YOLOv7 used in this thesis. Specifically, we
apply Post-Training Quantization (PTQ) based on the workflow stated in the TensorRT
documentation. For running inference using an INT8 calibrated pretrained model using
PTQ, a calibration dataset for the respective model has to be supplied. As TensorRT uses
the calibration dataset for INT8 quantization of the model’s parameters, we separately
use the images from the /images/val directory of the F1Tenth object detection dataset for
calibrating the AttNN as well as 4-channel YOLOv7 to avoid overfitting on the training
data of each model. In particular, we apply a calibration size of 1024 image samples
for calibrating each model individually. The same dataset and settings are used for
calibrating native YOLOv7.

Last but not least, our system enables HAD agents to instantaneously react to detected
objects in the environment. The system directly runs inference on the frames per-
ceived by the connected camera device and publishes object detection predictions on the
/hardware_inference/detections ROS topic. In particular, object detection predictions
are published as messages of type vision_msgs/Detection2DArray where each detected
object is represented in YOLO format and defined by the vision_msgs/Detection2D
message type. The bounding box coordinates are non-normalized and stored as vi-
sion_msgs/BoundingBox2D message type. On the opposite, class id and confidence score
are represented using the id and score fields of the vision_msgs/ObjectHypothesisWithPose
message type. To this end, HAD agents may use our perception system to enhance the
efficiency and safety of their motion-planning and control algorithms.

64

CHAPTER 5
Evaluation of Att-YOLOv7

This chapter of the thesis presents the main results of comparing our proposed AttNN
based dynamic object detection system with different state-of-the-art object detection
baselines in computer vision research. Specifically, this work is evaluated against YOLOv7,
Faster-R-CNN and DETR where we conducted various experiments in terms of inference
cost, model robustness and mAP. The primary focus of our experiments aims to show the
robustness of our proposed AttNN based dynamic object detection system on OOD data,
in particular on illumination perturbations in the input data. For computer vision-based
object detection NN, high resilience to changes in illumination is crucial as these models
are generally sensitive to the illumination conditions in the environment which are not
controllable in autonomous driving/racing. To this end, we show that human attention
may potentially provide a way for resolving the illumination vulnerability of computer
vision-based object detection models used for autonomous racing/driving tasks. Finally,
in Section 5.2, the limitations of our approach are discussed, the feasibility of deploying
the AttNN based dynamic object detection system on hardware is evaluated and the
inference results obtained on the real F1Tenth racecar are compared to the results from
the preceding simulation evaluation.

5.1 Single-Agent/Multi-Agent Evaluation
In this section, we present the main contributions of this work. We conducted several
experiments regarding the evaluation of our proposed AttNN based dynamic object
detection system and the selected object detection baselines on OOD data. Section 5.1.1
describes the training of Faster R-CNN and DETR on the F1Tenth object detection
dataset as well as the recording of additional data necessary for performing various
experiments on distinct OOD data. In Section 5.1.2, we present the results of comparing
our proposed system with native YOLOv7, Faster R-CNN and DETR on OOD data,
in particular on illumination disturbed inputs of three different datasets. Finally, we

65

5. Evaluation of Att-YOLOv7

provide a visual comparison between the human-attention based feature maps generated
by the AttNN and the artificial machine attention utilized by the transformer of the
DETR architecture in Section 5.1.3.

5.1.1 Experimental Setup
In order to evaluate and compare our proposed system with state-of-the-art object
detection baselines in computer vision, the selected algorithms have to be trained on
the F1Tenth object detection dataset. In contrast to YOLOv7, Faster R-CNN and
DETR expect the underlying dataset to be in PASCAL VOC format or COCO format
accordingly. While the directory structure for storing the images and labels in the proper
subsets is different between YOLO, PASCAL VOC and COCO, the specific representa-
tion of the annotations also deviate. PASCAL VOC expects the labels to be stored in
Extensible Markup Language (XML) format whereas COCO assumes JavaScript Object
Notation (JSON) encoding. However, the major difference relies in the representation of
the bounding box annotations. YOLO expects the format (xcenter, ycenter, width, height)
for describing bounding box labels and normalized values in range [0, 1]. Alternatively,
PASCAL VOC stores bounding boxes as (xmin, ymin, xmax, ymax) whilst these are repre-
sented as (xmin, ymin, width, height) for COCO. Both formats assume non-normalized
coordinates. For more details on the stated dataset formats and differences, we refer to
the literature at this point.

Based on the original F1Tenth object detection dataset in YOLO format, we created an
instance of the F1Tenth object detection dataset in PASCAL VOC format as well as in
COCO format for training Faster R-CNN and DETR. In order to train and evaluate
both networks, we adapted the implementations of [85] and [86] for this work. Analogous
to YOLOv7, Faster R-CNN and DETR have been trained and evaluated on the same
platform for a total of 300 epochs. For Faster R-CNN, we used a batch size of four and a
total of eight workers. On the other hand, a batch size of two and a total of four workers
have been configured for training DETR. While Faster R-CNN has been trained from
scratch, we finetuned DETR using the pretrained weights from the ResNet50 backboned
DETR model trained on the COCO dataset. For evaluating DETR, transfer learning was
necessary due to the long training time and slow convergence of the transformer on small
datasets such as the F1Tenth object detection dataset compared to Microsoft COCO
which has 330k images and 1.5 million object instances.

We applied the default hyperparameter configuration stated by the authors for training
both networks. For training Faster R-CNN, we employ SGD as optimizer with an initial
learning rate of 1e − 2, a momentum of 0.937 and a weight decay of 5e − 4. AMP training
is performed while we rely on a learning rate scheduler applying the reduce learning
rate on plateau strategy with a patience of ten epochs and a factor of 0.1. For data
augmentation, horizontal image flipping as well as colorspace augmentation are used.
All images are resized into shape (640, 640, 3). The detection head of the Resnet50
backboned Faster R-CNN model has been replaced and customized to comply with the
number of classes in the F1Tenth object detection dataset. However, as Faster R-CNN

66

5.1. Single-Agent/Multi-Agent Evaluation

expects class zero to represent the background class (no object instance), the actual
number of classes used for training and evaluation of the model is three.

For training DETR, AdamW is utilized as optimization algorithm with an initial learning
rate of 1e−4 in the transformer, 1e−5 in the backbone and a weight decay of 1e−4. DETR
applies the step learning rate scheduling policy using a step size of 200 epochs and a
decay factor of 0.1. Horizontal image flipping as well as image scaling and cropping
are used for data augmentation. All images are rescaled to have shape (800, 800, 3)
and are normalized on ImageNet respectively. A dropout of 0.1 is applied for training
the transformer while DETR is trained with a gradient clipping max norm of 0.1. The
transformer utilizes six encoder-decoder layers and a total of eight self-attention heads.
Finally, we set the number of object queries in the decoder to 100 and equally to Faster
R-CNN, we specified num_classes = 3 to compensate for the no-object/background
class used by DETR. The simultaneous sharp drop in loss and significant rise in validation
mAP score at epoch 200 when training DETR occurs from an adaption of the learning
rate by the learning rate scheduler at this iteration of model training.

While figures 5.1 and 5.2 illustrate the training and validation performance of Faster
R-CNN and DETR across all epochs, table 5.1 provides detailed statistics about the
training time (in hours) and the number of parameters as well as compares FPS and
mAP@.5, mAP@.5:.95 scores of native YOLOv7, Faster R-CNN and DETR on the test
set of the F1Tenth object detection dataset.

(a) Training history (b) Validation history

Figure 5.1: Faster R-CNN training performance across all epochs

Model Training time [h] Parameters FPS mAP@.5 mAP@.5:.95
Native YOLOv7 23.827 37 201 950 77.51 0.999 0.964
Faster R-CNN 63.73 41 081 886 13.21 0.943 0.893
DETR 142.5 41 279 752 28.57 0.999 0.953

Table 5.1: Training statistics of Faster R-CNN and DETR compared to native YOLOv7

67

5. Evaluation of Att-YOLOv7

Figure 5.2: DETR training performance across all epochs

For a comprehensive evaluation of Att-YOLOv7 with the selected object detection baseline
models on OOD data in Section 5.1.2, supplementary data from two different indoor track
settings has been recorded. Equally to the F1Tenth object detection dataset, the data
has been manually labelled and is specified in YOLO format. Thus, we further created
an instance of both datasets in PASCAL VOC and COCO format for evaluating Faster
R-CNN and DETR accordingly. One track was set up at Informatikhörsaal on 25th,
March 2023 while the other track was set up at Getreidemarkt 8/9 on 26th, March 2023.
For this reason, we denote the datasets as Informatikhörsaal dataset and Getreidemarkt
8/9 dataset respectively. Comparable to the initial recording of the F1Tenth object
detection dataset, another F1Tenth car drove a couple of laps as well as boxes have been
randomly placed on both tracks while recording. While figure 5.3 shows the track layouts
of the tracks set up at Aufbaulabor on 12th, April 2022 and Getreidemarkt 8/9 on 23rd,
August 2022, figure 5.4 illustrates the track layouts from which the Informatikhörsaal
dataset and the Getreidemarkt 8/9 dataset have been sampled.

Regarding the environmental details, Aufbaulabor is a laboratory in the style of an old
building with a hardwood floor. Contrarily, Getreidemarkt 8/9 is a seminar room in
the style of a new building with a grey floor. Finally, Informatikhörsaal is a lecture
hall with dark grey tiles. In order to mark the boarders of the tracks, we mostly used
white ventilation hoses. We also want to highlight at this point that no duplicate track
layouts were used across different rooms and recording dates such that the models are
not biased towards a specific track setting. Hence, the supplementary data sampled at
Getreidemarkt 8/9 vastly differs from the data originally recorded in this room i.e. the
illumination, the surroundings and the track layout are mostly dissimilar.

68

5.1. Single-Agent/Multi-Agent Evaluation

Figure 5.3: Track layouts composed at Aufbaulabor on 12th, April 2022 (left) and
Getreidemarkt 8/9 on 23rd, August 2022 (right)

Figure 5.4: Track layouts composed at Informatikhörsaal on 25th, March 2023 (left) and
Getreidemarkt 8/9 on 26th, March 2023 (right)

5.1.2 Evaluation on OOD data
For the purpose of performing an extensive analysis of our proposed system and the
object detection baselines on illumination perturbed inputs, we varied the brightness
of the test set of the F1Tenth object detection dataset, the Getreidemarkt 8/9 dataset
and the Informatikhörsaal dataset in the range [25%, 200%] using a step size of 25%.
Afterwards, all models have been successively evaluated on every brightness disturbance
variation for each of the three datasets. In addition, we conducted an ablation study
on the data augmentation techniques used for YOLOv7 focusing on the mosaic data

69

5. Evaluation of Att-YOLOv7

augmentation technique. To this end, we also trained native YOLOv7 and Att-YOLOv7
without mosaic data augmentation. These models are denoted as YOLOv7(-M) and
Att-YOLOv7(-M) correspondingly.

First off, figure 5.5 visualizes a bar chart grouped by model architecture comparing
mAP@.5:.95 of native YOLOv7, Att-YOLOv7, Faster R-CNN and DETR on the illumina-
tion perturbations of the test set of the F1Tenth object detection dataset. Complementary,
figure 5.6 highlights mAP@.5:.95 of each object detection model as a function of the
brightness niveau of the images in the evaluation dataset, showing the interpolated
mAP@.5:.95 curve for each model. We used cubic splines to interpolate between the
individually computed, discrete mAP@.5:.95 scores for this purpose. Given figures 5.5
and 5.6, native YOLOv7 and Att-YOLOv7 dominate in average mAP@.5:.95 score across
all illumination variations. For a brightness level of 25%, DETR manages to outperform
native YOLOv7 by a margin of 9.3%. Contrarily, Att-YOLOv7 slightly surpasses the
results of DETR by 2.5%, achieving the highest mAP@.5:.95 score on all brightness
variations. When comparing YOLOv7(-M) and Att-YOLOv7(-M), the gap in average
mAP@.5:.95 score across all illumination variations jumps from 1.7% to 3% and is even
larger than between YOLOv7 and Att-YOLOv7.

Figure 5.5: Evaluation of all object detection models on the test data of the F1Tenth
object detection dataset

Equally to the evaluation of all object detection models on the test subset of the F1Tenth
object detection dataset, figures 5.7 and 5.8 illustrate the trend in mAP@.5:.95 score of all
models across all brightness variations on the Getreidemarkt 8/9 (GM89) dataset. Except
for YOLOv7(-M) and Att-YOLOv7(-M), all object detection models achieve a similar
mAP@.5:.95 score of approximately 72.6% on the non-illumination perturbed GM89
dataset. Considering all brightness variations, native YOLOv7 and Att-YOLOv7 clearly
dominate in average mAP@.5:.95 score. While the gap in performance between native
YOLOv7 and Att-YOLOv7 on the test data of the F1Tenth object detection dataset is

70

5.1. Single-Agent/Multi-Agent Evaluation

Figure 5.6: Illustration of the performance of all object detection models on the test data
of the F1Tenth object detection dataset using cubic spline interpolation

only evident for a brightness level of 25%, Att-YOLOv7 outperforms native YOLOv7 on
all illumination variations with a maximum gap of 8.9% in mAP@.5:.95 score for 175%
and 200% brightness levels. For a brightness niveau of 25%, DETR achieves 14% and 5.7%
higher mAP@.5:.95 scores than native YOLOv7 and Att-YOLOv7. In contrast, native
YOLOv7 and Att-YOLOv7 outperform DETR on all other brightness perturbations with
a peak offset of 15.1% and 23.4% in mAP@.5:.95 score for an illumination level of 200%.
For YOLOv7(-M) and Att-YOLOv7(-M), we observe a slightly higher performance for
YOLOv7(-M) on the brightness levels of 75% to 150% while Att-YOLOv7(-M) achieves
better mAP@.5:.95 scores for brightness disturbance variations outside the range [75%,
150%].

71

5. Evaluation of Att-YOLOv7

Figure 5.7: Evaluation of all object detection models on the Getreidemarkt 8/9 dataset

Figure 5.8: Illustration of the performance of all object detection models on the Getrei-
demarkt 8/9 dataset using cubic spline interpolation

Finally, figures 5.9 and 5.10 compare mAP@.5:.95 score of YOLOv7(-M), Att-YOLOv7(-
M), native YOLOv7, Att-YOLOv7, Faster R-CNN and DETR on all brightness pertur-
bations of the Informatikhörsaal dataset. While the gap in average mAP@.5:.95 score
between native YOLOv7 and DETR across all illumination perturbations tends to close,
Att-YOLOv7 dominates in average mAP@.5:.95 score across all brightness perturbations
once more. In comparison to native YOLOv7, Faster R-CNN and DETR, Att-YOLOv7
achieves a 5.9%, 13.6% and 0.7% higher mAP@.5:.95 score. However, DETR clearly
outperforms native YOLOv7 and Att-YOLOv7 by 38.73% and 30.8% in mAP@.5:.95
score for a brightness level of 25%. Considering our ablation study, we observe that

72

5.1. Single-Agent/Multi-Agent Evaluation

YOLOv7(-M) either matches or achieves a higher mAP@.5:.95 score compared to Att-
YOLOv7(-M) for brightness perturbations greater equal to 100%. On the opposite,
Att-YOLOv7(-M) reaches a higher mAP@.5:.95 score for 50% and 75% brightness levels.

Figure 5.9: Evaluation of all object detection models on the Informatikhörsaal dataset

Figure 5.10: Illustration of the performance of all object detection models on the
Informatikhörsaal dataset using cubic spline interpolation

Based on the experiments conducted in this section, we can conclude that Att-YOLOv7
demonstrates promising results on OOD data, specifically on illumination perturbed
inputs compared to state-of-the-art object detection baseline models. Furthermore,
our ablation study shows the tremendous impact of the mosaic data augmentation
technique on the mAP@.5:.95 performance of the YOLOv7 algorithm as well as the
dwindling performance gap between YOLOv7(-M) and Att-YOLOv7(-M). Our empirical

73

5. Evaluation of Att-YOLOv7

results indicate the benefit of combining human-attention feature maps and mosaic data
augmentation to enhance and robustify the object detection accuracy of the YOLOv7
algorithm.

5.1.3 Comparison of Imitated Human Attention and Artificial
Attention

Supplementary to comparing our approach with state-of-the-art object detection baselines
on OOD data, we highlight the behavioral similarities and differences between the two
different types of attention used in this work. Namely, the imitated human visual
attention used by Att-YOLOv7 and the artificial attention also denoted as self-attention
applied by DETR. In particular, we illustrate the imitated human-attention feature
map implemented by Att-YOLOv7 and the decoder self-attention feature map utilized
by the transformer of DETR. We explicitly compare the inference results gathered
from Att-YOLOv7 and DETR on a sample image sequence of the test subset of the
F1Tenth object detection dataset. In detail, we compare the inference results and the
attention heatmaps of both models on the 25%, 100% (originally recorded data) and 200%
brightness perturbed sample image sequence. Figure 5.11 presents the inference results of
Att-YOLOv7 and the imitated human attention feature map depicted as overlayed orange
heatmap for each frame of the three image sequences, where each column features one
image sequence from top to bottom. Complementary, figure 5.12 adequately visualizes
the inference results of DETR and the decoder self-attention feature map depicted as
overlayed orange heatmap for each frame of the three image sequences.

While Att-YOLOv7 and DETR achieve approximately equivalent mAP.5:.95 scores on
the 25% and 100% brightness perturbed test data, Att-YOLOv7 significantly outperforms
DETR on the 200% brightness perturbed test data. When comparing the human-
attention feature maps to the decoder self-attention feature maps, we observe that the
human-attention feature maps produced by Att-YOLOv7 are more robust to the applied
illumination perturbations. Furthermore, Att-YOLOv7 is also capable of detecting
objects which receive no attentional focus in a given image. For instance, the fourth
image of the middle column of figure 5.11 shows that the box is still detected, despite
the human-attention being solely predicted on top of the F1Tenth racecar. Contrarily,
DETR does not detect an object in a given image if the transformer does not attend to
the object’s location. Referring to the last two images of the right column of figure 5.12,
we note that DETR does not manage to detect the box present in both images correctly,
as the model did not attend to the specific locations in the images. For this reason,
Att-YOLOv7 does not learn to fully rely on the imitated human-attention mechanism,
but utilizes the auxiliary information provided by the human-attention feature map to
enhance its object detection ability.

From a behavioural perspective, the decoder self-attention mechanism heavily focuses on
the boundaries of objects present in an image. Conversely, the imitated human-attention
mechanism is a time-dependent, sequential process, focusing on the near surroundings of
an object, the boundaries of an object or the object itself. While there exists no complete

74

5.1. Single-Agent/Multi-Agent Evaluation

Figure 5.11: Att-YOLOv7 inference results of the 25%, 100% and 200% brightness
perturbed image sequences with overlayed imitated human attention feature map

theory of human attention from a psychological or neurological point of view yet, our
empirical results demonstrate the potential of utilizing human-attention for ML models,
especially for object detection in the field of autonomous driving/racing.

75

5. Evaluation of Att-YOLOv7

Figure 5.12: DETR inference results of the 25%, 100% and 200% brightness perturbed
image sequences with overlayed decoder self-attention feature map

76

5.2. Limitations & AI-on-the-Edge

5.2 Limitations & AI-on-the-Edge
Concluding our exhaustive evaluation, we first demonstrate the limitations of our ap-
proach and afterwards show the feasibility of implementing Att-YOLOv7 for real-world
autonomous driving/racing scenarios. We evaluated Att-YOLOv7 on the same platform
all models were trained on. The test subset, composed of the images and labels located
in the /images/test and labels/test directories of the F1Tenth object detection dataset,
was used as the benchmark for this experiment. For a thorough comparison, native
YOLOv7 has also been evaluated on the test subset of the F1Tenth object detection
dataset. The validation metrics used in this context are FPS, precision (P), recall (R),
mAP@.5 and mAP@.5:.95. Table 5.2 demonstrates the results each system obtained on
the given metrics.

System Architecture FPS P R mAP@.5 mAP@.5:.95
Native YOLOv7 53.76 0.998 1 0.999 0.963
Att-YOLOv7 15.65 0.998 0.999 1 0.964

Table 5.2: Comparison of native YOLOv7 and Att-YOLOv7

When comparing mAP@.5 and mAP@.5:.95 scores of YOLOv7 and Att-YOLOv7, both
algorithms achieve similarly high mAP@.5 and mAP@.5:.95 scores of 99.9% and 96.3%
for native YOLOv7 as well as 100% and 96.4% for Att-YOLOv7 on the test set of the
F1Tenth object detection dataset. The main limitation of Att-YOLOv7 is the reduction
in FPS by around 70% compared to native YOLOv7 due to the additional inference time
introduced by integrating the human-attention model. While Att-YOLOv7 may not be
comparative to native YOLOv7 in terms of inference speed, we show that the integration
of human-attention feature maps in the object detection algorithm implemented by
YOLOv7 does not weaken its object detection accuracy on non-illumination perturbed
input data. Conversely, Section 5.1.2 sheds light on the huge performance gain when
employing human-attention feature maps for object detection models on OOD data.

Aside from the simulation evaluation, we aim to show the feasibility of our approach
for real world autonomous racing applications by comparing the evaluation results of
native YOLOv7 and Att-YOLOv7 on the test images of the F1Tenth object detection
dataset gathered in simulation with the results achieved by equal and lower precision
models on the same test data on hardware. Namely, we compare the performance of
YOLOv7 and Att-YOLOv7 using FP32, FP16 and INT8 model variants. In the context
of this experiment, we directly evaluated FPS, precision (P), recall (R), mAP@.5 and
mAP@.5:.95 on the NVIDIA Jetson Xavier NX. The results are shown in table 5.3.

For evaluating Att-YOLOv7 using lower precision formats, the human-attention model as
well as 4-channel YOLOv7 have been converted into the corresponding TensorRT engine
format. For instance for running Att-YOLOv7 INT8 on the racecar, we subsequently
performed the PTQ calibration procedure for both networks before benchmarking the

77

5. Evaluation of Att-YOLOv7

System Architecture FPS P R mAP@.5 mAP@.5:.95
Native YOLOv7 FP32 5.21 0.998 1 0.999 0.966
Att-YOLOv7 FP32 1.76 0.998 0.999 1 0.965
Native YOLOv7 FP16 15.20 0.998 1 0.999 0.966
Att-YOLOv7 FP16 2.23 0.998 0.999 1 0.965
Native YOLOv7 INT8 24.51 0.998 1 1 0.947
Att-YOLOv7 INT8 9.12 0.998 0.999 1 0.953

Table 5.3: Sim2Real comparison of native YOLOv7 and Att-YOLOv7

overall system. When referring to the simulation results presented in table 5.2, we
observe equivalently high mAP@.5 and mAP@.5:.95 scores for all model variants of native
YOLOv7 and Att-YOLOv7 by directly evaluating them on the racecar. Taking inference
time into consideration, FP32 native YOLOv7 and Att-YOLOv7 achieve 5.21 FPS and
1.76 FPS on the NVIDIA Jetson Xavier NX accordingly. In contrast, an increase of
191.7% for native YOLOv7 and 26.7% for Att-YOLOv7 in FPS utilizing FP16 precision
is recorded. Finally, a rise of 370.4% for native YOLOv7 and 436.5% for Att-YOLOv7
in FPS using INT8 calibrated weights is noted. Despite native YOLOv7 being 168.75%
faster than Att-YOLOv7 when deploying both algorithms using INT8 precision, we argue
that depending on the system requirements, these results show the feasibility of our
approach for the integration of Att-YOLOv7 in real-world autonomous driving/racing
applications.

78

CHAPTER 6
Discussion of Att-YOLOv7

In the final chapter, we debate on the results of our experiments conducted in Chapter
5 and discuss the design of our AttNN based dynamic object detection system. In
Section 6.1, we elaborate the benefits and drawbacks of our proposed system compared
to state-of-the-art object detection models from the related works 2.1 as well as potential
improvements of our system architecture and the limitations of our hardware setup
and software stack for recording the human-attention data. In Sections 6.2 and 6.3, we
conclude our work by answering the research questions stated in Chapter 1 and provide a
future outline for possible research directions. Finally, we provide insights on our initial
system design in Chapter 8.

6.1 Discussion on the System Foundations
The results achieved by our Att-YOLOv7 object detector on the robustness experiments
conducted on OOD data in Section 5.1.2 shed light on the potential benefit of incorporating
human-attention in object detection models for autonomous driving/racing systems.
While all selected state-of-the-art computer vision-based object detection baselines have
shown to perform well on samples similar to the training data distribution, we clearly
observe a mediocre to drastic decline in mAP@.5:.95 score for all object detection baselines
on OOD data, in particular on illumination perturbed input data. However, our proposed
approach enables much more robust object detection, outperforming all object detection
baseline algorithms in mAP@.5:.95 score on all brightness variations, except for the 25%
brightness case, of each of the three datasets used during our experiments.

Despite the rapid rise in robustness of our object detection algorithm when utilizing
the biological mechanics of human-attention compared to state-of-the-art approaches,
our system faces a two-fold major drawback. First off, the lack of end-to-end learning
hampers the general usability of our system compared to native YOLOv7, Faster R-CNN
and DETR as the human-attention model as well as 4-channel YOLOv7 must be trained

79

6. Discussion of Att-YOLOv7

individually and successively. Secondly, the acquisition of a proper human-attention
dataset given a specific use case may be a challenging task. For our proof-of-concept
evaluation, we were limited to the human gaze recording capabilities of the VPS as
well as to the quality of the VPS calibration on each test subject respectively. On
the contrary, we were further limited to the design of our hardware/software stack for
simulating the control of the F1Tenth racecar from the car’s perspective. In order to
simulate this behaviour, we had to post-process the recorded data for each run and map
the data acquired in VPS space to the data recorded in the car’s local camera space.
However, due to the head movements of the test subjects while steering the F1Tenth
racecar, the detection of the projected camera live stream using the ArUco marker system
was not successful for all VPS images of all runs. For the same reason, focus points
recorded in VPS space which are not located within the boundaries of the projected
camera live stream are discarded either. Hence, if no valid focus points are present for
a given VPS image, our post-processing pipeline does not compute a matching frame
from the car’s local camera space but skip the data entirely. To this end, each run in
our human-attention dataset contains several gaps of varying size in the total series of
frames. Those are especially present in turns on the tracks as these sections lead to the
highest intensity in head movements for the test subjects. Finally, no driver performance
monitoring was carried out. Therefore, the quality of the human-attention data recorded
for each test subject was not assessed objectively, but assumed to be of equal quality.
This assumption may not necessarily be true though, as the focus of each test subject on
the provided camera live stream and the events on the track may not match.

For the purpose of providing a proof-of-concept solution in this work, we may propose
several advancements to our system architecture. First off, our human-attention model
runs inference only using sequences of RGB images. For the reason of learning strong
latent feature representations, the human-attention model may learn on multi-modal
inputs such as sequences of RGB images coupled with sequences of LiDaR scan data.
However, in order to consider multi-modal inputs, sensor fusion must be performed in
order to synchronize multiple data input streams. Alternatively, learning human-attention
feature maps using sequences of 3D point clouds obtained by a depth camera may also
improve the expressiveness and generalization of the human-attention model.

While the feasibility of our proposed approach for real-world autonomous driving/racing
applications is shown in Chapter 5, our two-stage object detection algorithm is still
computationally expensive and leaves a considerable memory footprint, due to two
NNs being simultaneously executed. In order to further optimize the utilization of the
constrained hardware resources of embedded computing platforms such as the NVIDIA
Jetson Xavier NX, a one-stage object detection algorithm utilizing imitated human-
attention may be designed. A one-stage attentional object detector may utilize the
hardware resources of embedded devices much more efficiently as well as significantly
reduce latency and increase throughput of the system.

80

6.2. Discussion of the results regarding the research questions

6.2 Discussion of the results regarding the research
questions

To that end, we want to provide an argument on the results of this thesis by answering
the research questions that have been formulated in Chapter 1.

Research question zero (RQ0) aims towards the creation of a diverse and expressive
human-attention labeled dataset in driving situations. Specifically, the objective of RQ0
is to provide an answer on how to record human-attention in driving situations and how
to compose a dataset using human-attention labels in this context.

RQ0: How can we obtain a rich enough labeled dataset for human attention in driving
situations?

Following the design and creation research strategy, as described in Chapter 3, Chapter 4
presents the methodological approach and the technical components required for recording
human-attention labels and composing a proper human-attention labeled dataset for
driving scenarios. In particular, Section 4.1.1 illustrates the procedure and discusses the
hardware/software stack necessary for recording human-attention labels in our small-
scale F1Tenth setup. Furthermore, we explain the structure and the content of the
human-attention dataset. All of these insights contribute in answering RQ0.

Research question one (RQ1) aims towards the goal of finding a suitable NN algorithm
capable of learning human-attention feature maps based on our human-attention dataset.
In particular, RQ1 provides an argument on how to appropriately represent and learn
human-attention labels for suitable NN architectures and which model fits best to
reproduce adequate human-attention feature maps.

RQ1: How to design a neural network capable of imitating human attention for object
detection in autonomous driving?

For answering RQ1, Chapter 4 shows how to train fitting NN algorithms on suitable
human-attention label representations. In more detail, in Section 4.1.2, we introduce two
strategies for training suitable NN architectures on our human-attention dataset and
demonstrate two different human-attention label representations in order to investigate
how to ease the process of learning the mechanics of human-attention for the models.
Moreover, we perform an exhaustive analysis on various NN algorithms in order to
objectively assess the selection of the human-attention model architecture. Based on the
comprehensive analysis conducted in Section 4.1.2, we provide an empirical answer to
RQ1.

Research question two (RQ2) aims towards the design of an optimal architecture for
an attentional object detector, the suitability of object detection models in our context
and how our system performs compared to state-of-the-art computer vision-based object
detection algorithms in their application domain.

81

6. Discussion of Att-YOLOv7

RQ2: What is the comparative performance of state-of-the-art object detection
approaches, their suitability in our context, and the optimal overall architecture for an

attentional object detector?

For answering RQ2, Chapter 4 presents an argument why our selected object detection
base algorithm is appropriate for our purpose. Specifically, Section 4.2 provides details on
architectural improvements and enhanced training routines of the object detection base
model, showing it’s supremacy compared to state-of-the-art object detectors. Chapter 4
further presents our approach for integrating the human-attention model and the object
detection model, illustrating the overall algorithm of our attentional object detector.
Finally, Section 5.1.2 visualizes the results of the comparison of our proposed system with
selected state-of-the-art baselines on various OOD scenarios. To this end, we provide an
empirical answer to RQ2 based on the results of the experiments conducted in Section
5.1.2.

In order to sum up the results of this thesis, the discussion of the presented work fulfils the
aims of the thesis to create a rich enough human-attention labeled dataset, train a suitable
NN algorithm to imitate human-attention feature maps, create a robust attentional object
detector and evaluate the attentional object detector compared to state-of-the-art object
detection baselines on OOD data.

6.3 Future research directions
Ultimately, we provide a suggestion for future research directions. While we conducted
all experiments in this thesis on a small-scale F1Tenth setup, recording human-attention
in a real-world autonomous driving/racing setup and training/evaluating our approach
on publicly available object detection datasets for autonomous driving may confirm or
even surpass the results in object detection robustness gathered with our experiments.
Moreover, recording human-attention and composing a human-attention labeled dataset
based on monitoring the human-attention of drivers in real-world driving situations
may increase the quality of the human-attention dataset as opposed to our simulated
setup. Thus, the trained human-attention model may be more efficient in producing
expressive human-attention feature maps, leading to an even more robust attentional
object detector. Apart from the evaluation of our approach on a real-world use case, the
relationship between human-attention and the artificial attention mechanism utilized by
the transformer architecture may be comprehensively studied. By understanding the
relationship and the mechanics of human-attention and artificial attention, we may be
able to learn a unified attention mechanism, exploit the benefits of both of them and
create far more efficient ML models.

82

CHAPTER 7
Conclusion

Autonomous driving systems aim towards the goal of minimizing road casualties, enhanc-
ing the mobility of people with inabilities, reducing CO2-emissions and congestion while
providing an array of further advantages. In order to satisfy the strong requirements with
respect to safety and reliability for HAD agents, an encompassing and robust perception
of the environment is obligatory. However, most state-of-the-art object detection algo-
rithms sustain a significant loss in performance on OOD data. Based on this motivation,
this thesis investigated the impact of human-attention on enhancing robot learning by
designing a more robust object detector. In order to achieve this goal, we recorded data
from human interaction in a driving task utilizing our developed data-collection pipeline
and propose a novel approach to mimic human-attention in driving situations using a
ML model. We enrich the visual input with human-attention feature maps and assess its
impact on the object detection task, observing a significant improvement in robustness
to OOD samples when exploiting imitated human-attention data.

The results and the knowledge obtained in this thesis highlight the potential of incorpo-
rating human-attention into ML pipelines to improve robot learning and subsequently
answer three research questions to fulfil the scientific requirements for a master thesis.
Summarized, our findings suggest that the robustness and efficiency of ML models may
rapidly be increased by utilizing human-attention features, posing major implications on
the application of human-attention for other ML tasks. Future research may consider
replicating our findings in a larger-scale real-world autonomous driving setting as well as
study the relation between human-attention and artificial attention in order to further
exploit the power of both attention mechanisms, creating even more efficient ML models.

83

CHAPTER 8
Appendix

This chapter presents our initial approach for the design of the AttNN based dynamic
object detection system where we originally pursued the goal towards reducing the latency
and increasing the inference speed of object detection algorithms through human-attention
feature maps. Based on our evaluation results in simulation, this approach was not
competitive to state-of-the-art object detectors in terms of object detection accuracy and
speed. For this purpose, we did not pursue this approach any further. However, for the
sake of completeness, we discuss the algorithmic design of this approach and elaborate
on the problems arisen.
System Design. In order to reduce the latency of modern object detectors, the idea of
our approach - denoted as RoI-based dynamic object detection system - was to extract
multiple RoI from the original input image at the locations of RoI in the predicted
human-attention feature map. In a second step, the extracted RoI which are much
smaller than the original image are simultaneously processed by the object detection NN
in one forward pass and the results are transformed into the original image space.
In more detail, the RoI based dynamic object detection system utilizes the predicted
human-attention heatmap by the AttNN to locate the RoI in the original image. In
an intermediate processing step, the predicted human-attention heatmap is resized to
the original spatial dimensions of the input image and all local maxima in the resized,
non-normalized attention heatmap are computed. The pixel coordinates of each local
maxima are considered as center locations for each RoI to be extracted from the original
input image. For computing the local maxima in the predicted attention heatmap,
we essentially utilize maximum filtering and set the minimum distance between local
maxima corresponding to the radius of the normally distributed gaussian covariances.
Additionally, a minimum pixel intensity of 1 (0.4% of the maximum pixel intensity) was
configured for finding local maxima according to the defined minimum peak intensity of
the gaussian covariances when training the AttNN and precomputing the multi-frame
aggregated human-attention heatmap labels. The actual RoI size is a hyperparameter

85

8. Appendix

which defines the spatial resolution of the input of the YOLOv7 model used in the
RoI based dynamic object detection system. Afterwards, we perform batched inference
on the RoI using RoI-YOLOv7 which expects a normalized FP32 tensor of shape (N ,
3, M , M) where N corresponds to the batch size and M corresponds to the RoI size.
Then, the predicted 2D bounding box coordinates are transformed into the original input
space w.r.t. the location of the RoI in the original image. For the transformation of the
predicted 2D bounding box coordinates in the final step, no perspective transformation
is required as the 2D bounding box coordinates for each RoI as well as the coordinates of
each RoI in the original image are known.

Modifications to the F1Tenth object detection dataset. While the F1Tenth
object detection dataset described in Section 4.2.1 is composed of 2D RGB images
with a resolution of 848x480 pixels based on the used camera systems, the F1Tenth
object detection dataset used for training and validation of RoI-YOLOv7 - referred to
as RoI-F1Tenth object detection dataset - needs to be from a lower spatial resolution.
By design of the RoI based dynamic object detection system, the input shape of the
object detection NN equals the size of the RoI. However, the images and bounding box
coordinates of the labels may not be resized directly as the object detection NN processes
the RoI which is cropped from the full resolution image at the location of the predicted
region of human attention by the AttNN. For this purpose, each image in the original
F1Tenth object detection dataset is cropped at the center location of each bounding box
in the original image w.r.t. the target shape of the RoI. The bounding box coordinates
are transformed using a perspective transformation between the original image space
and the RoI space where out-of-bounds coordinates are clipped w.r.t. the RoI shape.
Ultimately, if center locations of two or more bounding boxes have less distance to each
other than the RoI size, the RoI is cropped at the mean center location of all bounding
boxes in the original image. Therefore, multiple object instances within one input image
are also covered by the RoI-F1Tenth object detection dataset.

System Evaluation. In order to assess the impact of the RoI size on the performance
of RoI-YOLOv7, we provide the results of the system by applying multiple RoI sizes.
Specifically, we evaluated the system utilizing RoI sizes 128×128 and 256×256. According
to native YOLOv7 and Att-YOLOv7, we adequately trained and validated RoI-YOLOv7
on the training and validation set of the corresponding RoI-F1Tenth object detection
dataset instance. Figure 8.1 illustrates mAP@.5 and mAP@.5:.95 scores of native YOLOv7
and 4-channel YOLOv7 along both RoI-YOLOv7 variants on the training and validation
set of the corresponding F1Tenth object detection dataset instance across all epochs.
Moreover, table 8.1 compares training time (in hours), parametric complexity, precision
(P), recall (R), mAP@.5 and mAP@.5:.95 scores of all stated models on the corresponding
validation set.

86

Figure 8.1: mAP scores of each YOLOv7 instance on the validation set

Model Training time [h] Parameters P R mAP@.5 mAP@.5:.95
Native YOLOv7 23.827 37201950 0.998 0.998 0.998 0.967
4-channel
YOLOv7

25.92 37202238 0.997 1 1 0.963

128 × 128 RoI-
YOLOv7

4.713 37201950 0.638 0.968 0.672 0.611

256 × 256 RoI-
YOLOv7

6.953 37201950 0.998 0.992 0.997 0.943

Table 8.1: Characteristic comparison of YOLOv7 variants

Equivalent to native YOLOv7 and Att-YOLOv7, we evaluated both instances of the
RoI-based dynamic object detection system on the test set of the F1Tenth object detection
dataset. Once more, we provide a comprehensive comparison of native YOLOv7, Att-
YOLOv7 and both RoI-based dynamic object detection system instances on relevant
metrics such as FPS, precision (P), recall (R), mAP@.5 and mAP@.5:.95. Table 8.2
demonstrates the results each system obtained on the given metrics. For simplicity, both
instances of the RoI-based dynamic object detection system are denoted as RoI-YOLOv7.

87

8. Appendix

System Architecture FPS P R mAP@.5 mAP@.5:.95
Native YOLOv7 53.76 0.998 1 0.999 0.963
Att-YOLOv7 15.65 0.998 0.999 1 0.964
128 × 128 RoI-YOLOv7 3.11 0.317 0.0719 0.047 0.0183
256 × 256 RoI-YOLOv7 3.20 0.708 0.403 0.338 0.183

Table 8.2: Comparison of native YOLOv7, Att-YOLOv7 and both RoI-YOLOv7 instances

When comparing mAP@.5 and mAP@.5:.95 scores of all systems, an immense decline
for both RoI-YOLOv7 configurations in contrast to native YOLOv7 is recorded. In
particular, 128 × 128 RoI-YOLOv7 merely achieves 4.7% and 1.83% in mAP@.5 and
mAP@.5:.95 while 256 × 256 RoI-YOLOv7 only scores 33.8% and 18.3% in mAP@.5
and mAP@.5:.95 respectively. In comparison to the scores of the given metrics on the
validation set of the F1Tenth object detection dataset for the RoI based YOLOv7 models,
a drop of 62.5% and 59.27% for 128 × 128 RoI-YOLOv7 as well as a descent of 65.9%
and 76% for 256 × 256 RoI-YOLOv7 is noted. We argue that this rapid decrease in
performance results from the non-optimal RoI extraction centered at each local maxima
of the predicted human-attention feature maps as well as from the lack of long-term
attention memorization. Generally, objects from the original input space may be occluded
in the RoI due to varying shifts between an object’s location in the image and the position
of the local maxima in the human-attention feature map which results in a lower IoU
score and further a lower mAP score when transforming the prediction back to the
original input space. Moreover, the RoI extraction is entirely dependent on the predicted
attention heatmap. However, the predicted human-attention regions dynamically change
across successive frames. Thus, objects that have been attended to at time step t might
not constantly be attended to at time step t + 1 resulting in the same object not being
detected in the succeeding frame.

88

List of Figures

2.1 Schematic representation of an artificial neuron 10
2.2 Structure of a simple and deep artificial neural network from [45] 11
2.3 Design of a Recurrent Neural Network (RNN) and a Feed-Forward Neural

Network (FFNN) [46] . 14
2.4 Comparison of rolled RNN (left) and unrolled RNN (right) [46] 15
2.5 Structure of a LSTM module adapted from [48] 15
2.6 Structure of a simple FFNN . 19
2.7 Bias-variance trade-off for optimal model generalization from [51] 22
2.8 Visualization of the various computer vision applications from [52] 25
2.9 Schematic of the original U-Net architecture [53] 28
2.10 Representation of the Faster R-CNN architecture [40] 31
2.11 Illustration of the unified object detection approach applied by YOLO [28] 32
2.12 Illustration of the YOLOv4 architecture [34] 33
2.13 Visualisation of the DETR architecture [4] 34

3.1 Chronological development process of the AttNN based dynamic object detec-
tion system . 38

4.1 Hardware setup for recording human-gaze while manually driving a F1Tenth
racecar . 42

4.2 Illustration of the training statistics of each model 51
4.3 Comparison of model architectures . 52
4.4 Abstract architecture of the AttNN . 53
4.5 mAP scores of each YOLOv7 instance on the validation set 61
4.6 Sequence diagram of Att-YOLOv7 . 62

5.1 Faster R-CNN training performance across all epochs 67
5.2 DETR training performance across all epochs 68
5.3 Track layouts composed at Aufbaulabor on 12th, April 2022 (left) and Getrei-

demarkt 8/9 on 23rd, August 2022 (right) 69
5.4 Track layouts composed at Informatikhörsaal on 25th, March 2023 (left) and

Getreidemarkt 8/9 on 26th, March 2023 (right) 69
5.5 Evaluation of all object detection models on the test data of the F1Tenth

object detection dataset . 70

89

5.6 Illustration of the performance of all object detection models on the test data
of the F1Tenth object detection dataset using cubic spline interpolation . . 71

5.7 Evaluation of all object detection models on the Getreidemarkt 8/9 dataset 72
5.8 Illustration of the performance of all object detection models on the Getreide-

markt 8/9 dataset using cubic spline interpolation 72
5.9 Evaluation of all object detection models on the Informatikhörsaal dataset 73
5.10 Illustration of the performance of all object detection models on the Infor-

matikhörsaal dataset using cubic spline interpolation 73
5.11 Att-YOLOv7 inference results of the 25%, 100% and 200% brightness per-

turbed image sequences with overlayed imitated human attention feature
map . 75

5.12 DETR inference results of the 25%, 100% and 200% brightness perturbed
image sequences with overlayed decoder self-attention feature map 76

8.1 mAP scores of each YOLOv7 instance on the validation set 87

90

Acronyms

AdaGrad Adaptive Gradient Descent. 18

Adam Adaptive Moment Estimation. 18, 19

AdamW Adam with decoupled weight decay. 48, 67

AI Artificial Intelligence. 1, 2, 6, 9, 23, 24, 37

AMP Automatic Mixed Precision. 48, 59, 66

API Application Programming Interface. 37, 63

AttNN Attentional Neural Network. 36–39, 45, 46, 49, 51, 53–55, 59, 61–66, 79, 85, 86,
89

BCE Binary Cross Entropy. 48, 58

BoF Bag-of-Freebies. 34, 56

BoS Bag-of-Specials. 34

BPTT Backpropagation Through Time. 14

CIoU Complete Intersection over Union. 34, 58

CNN Convolutional Neural Network. 6, 7, 11, 12, 24, 25, 27, 30, 31, 34

COCO Common Objects in Context. 7, 55, 66, 68

ConvLSTM Convolutional LSTM. 15, 49–52

CSPNet Cross Stage Partial Network. 33

cuDNN CUDA Deep Neural Network. 37

DDS Data Distribution Service. 38

DETR Detection Transformer. 2, 34, 36, 55, 65–68, 70–72, 74, 76, 79, 89, 90

91

DIoU Distance Intersection over Union. 34

DNN Deep Neural Network. 6, 7, 10–13, 16, 21, 24, 27, 37, 56

DSC Dice Similarity Coefficient. 27, 32, 48–53

E-ELAN Extended Efficient Layer Aggregation Networks. 56

ELAN Efficient Layer Aggregation Networks. 56

ELU Exponential Linear Unit. 13

EMA Exponential Moving Average. 47, 48, 57, 58

FBL Frame based Learning. 45–47, 49, 52

FCNN Fully Connected Neural Network. 30, 31, 33

FFNN Feed-Forward Neural Network. 14, 19, 34, 89

FoV Field of View. 1, 36

FP16 16-bit floating point precision. 48–50, 63, 64, 77, 78

FP32 32-bit floating point precision. 48–50, 57, 63, 64, 77, 78, 86

FPGA Field Programmable Gate Array. 41

FPN Feature Pyramid Network. 33, 58, 59

FPS Frames per Second. 40, 41, 67, 77, 78, 87, 88

GPU Graphical Processing Unit. 20, 37, 48, 49, 60, 63

HAD Highly Automated Driving. 36, 54, 61–64, 83

IL Imitation Learning. 16

INT8 8-bit integer. 64, 77, 78

IoU Intersection over Union. 27, 32, 33, 57, 58, 60, 88

JSON JavaScript Object Notation. 66

LiDaR Light Detection and Ranging. 23

LIP lateral intraparietal. 8

LSTM Long-Short Term Memory. 14, 15, 46, 50, 89, 91

92

mAP Mean Average Precision. 36, 55, 56, 58, 60–62, 64, 65, 67, 70–74, 77–79, 86–90

MDP Markov Decision Process. 16

ML Machine Learning. xiii, 5, 6, 9, 10, 16, 17, 21, 23, 24, 26, 28, 45, 54, 75, 82, 83

MLP Multilayer Perceptron. 11, 12

MSE Mean Squared Error. 49

NAG Nesterov Accelerated Gradient. 18

NaN Not a Number. 13

NLP Natural Language Processing. 5, 7, 14

NMS Non Maximum Suppression. 31, 33, 34, 57, 58

NN Neural Network. 6, 10, 12–14, 16, 17, 19, 20, 25–27, 36, 37, 39, 45, 46, 49, 50, 53–56,
65, 80–82, 85, 86

ONNX Open Neural Network Exchange. 37, 49, 63

OOD Out-of-Distribution. xiii, 1, 63, 65, 68, 69, 73, 74, 77, 79, 82, 83

OpenCV Open Source Computer Vision Library. 42, 43

OTA Optimal Transport Assignment. 58

PAN Path Aggregation Network. 33, 49, 51, 52

PASCAL VOC Pattern Analysis, Statistical Modelling, and Computational Learning
Visual Object Classes. 7, 55, 66, 68

PCA Principal Component Analysis. 17

PTQ Post-Training Quantization. 64, 77

R-CNN Regions with CNN features. 6, 7, 30, 31, 55, 65–68, 70, 72, 79, 89

Radar Radio Detection and Ranging. 23

ReLU Rectified Linear Unit. 12, 13, 29

RL Reinforcement Learning. 16

RMS-Prop Root Mean Square Propagation. 18

RNN Recurrent Neural Network. 14, 15, 46, 89

93

RoI Regions of Interest. 7–9, 30, 36, 45, 59, 85–88

ROS Robot Operating System. 36–38, 40, 63, 64

RPN Region Proposal Network. 30

SBL Sequence based Learning. 45–47, 49, 50

scSE Concurrent Spatial and Channel Squeeze & Excitation. 49–53

SGD Stochastic Gradient Descent. 18, 58, 66

SPP Spatial Pyramid Pooling. 33

SSD Single Shot Detector. 6, 31–33, 55

SVM Support Vector Machine. 17, 30

TL Transfer Learning. 16

uint8 8-bit unsigned integer. 47, 63

VPS View Point System. 40–43, 80

VRAM Video Random Access Memory. 49, 60

XML Extensible Markup Language. 66

YOLO You Only Look Once. 6, 32–34, 47, 55–75, 77–79, 86–90

YOLOR You Only Learn One Representation. 57

94

Bibliography

[1] F. Foundation, “F1tenth.” Website: https://f1tenth.org/, 2016 - 2022. Online;
accessed 11 May 2022.

[2] Y. Zhu, C. Zhao, H. Guo, J. Wang, X. Zhao, and H. Lu, “Attention couplenet: Fully
convolutional attention coupling network for object detection,” IEEE Transactions
on Image Processing, vol. 28, no. 1, pp. 113–126, 2019.

[3] K. Hara, M.-Y. Liu, O. Tuzel, and A. massoud Farahmand, “Attentional network
for visual object detection,” 2017.

[4] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko,
“End-to-end object detection with transformers,” CoRR, vol. abs/2005.12872, 2020.

[5] A. Johnson and R. W. Proctor, Attention: Theory and practice. Sage, 2004.

[6] J. Tsotsos, “Analyzing vision at the complexity level,” Behavioral and Brain Sciences,
vol. 13, 09 1990.

[7] J. Tsotsos and A. Rothenstein, “Computational models of visual attention,” Schol-
arpedia, vol. 6, p. 6201, 01 2011.

[8] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser,
and I. Polosukhin, “Attention is all you need,” in Advances in Neural Information
Processing Systems (I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, eds.), vol. 30, Curran Associates, Inc., 2017.

[9] M. Luong, H. Pham, and C. D. Manning, “Effective approaches to attention-based
neural machine translation,” CoRR, vol. abs/1508.04025, 2015.

[10] E. Sood, S. Tannert, D. Frassinelli, A. Bulling, and N. T. Vu, “Interpreting atten-
tion models with human visual attention in machine reading comprehension,” in
Proceedings of the 24th Conference on Computational Natural Language Learning,
(Online), pp. 12–25, Association for Computational Linguistics, Nov. 2020.

[11] Y. Bengio, A. C. Courville, and P. Vincent, “Unsupervised feature learning and deep
learning: A review and new perspectives,” CoRR, vol. abs/1206.5538, 2012.

95

[12] J. Pari, N. M. Shafiullah, S. P. Arunachalam, and L. Pinto, “The surprising effec-
tiveness of representation learning for visual imitation,” CoRR, vol. abs/2112.01511,
2021.

[13] A. Kolesnikov, X. Zhai, and L. Beyer, “Revisiting self-supervised visual representation
learning,” CoRR, vol. abs/1901.09005, 2019.

[14] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial networks,” 2014.

[15] M. Tschannen, O. Bachem, and M. Lucic, “Recent advances in autoencoder-based
representation learning,” CoRR, vol. abs/1812.05069, 2018.

[16] Y. Wang, H. Yao, and S. Zhao, “Auto-encoder based dimensionality reduction,”
Neurocomputing, vol. 184, pp. 232–242, 2016. RoLoD: Robust Local Descriptors for
Computer Vision 2014.

[17] M. Chen, A. Radford, R. Child, J. Wu, H. Jun, D. Luan, and I. Sutskever, “Generative
pretraining from pixels,” in Proceedings of the 37th International Conference on
Machine Learning (H. D. III and A. Singh, eds.), vol. 119 of Proceedings of Machine
Learning Research, pp. 1691–1703, PMLR, 13–18 Jul 2020.

[18] D. Moyer, S. Gao, R. Brekelmans, G. V. Steeg, and A. Galstyan, “Evading the
adversary in invariant representation,” CoRR, vol. abs/1805.09458, 2018.

[19] A. van den Oord, Y. Li, and O. Vinyals, “Representation learning with contrastive
predictive coding,” CoRR, vol. abs/1807.03748, 2018.

[20] T. Chen, S. Kornblith, M. Norouzi, and G. E. Hinton, “A simple framework for
contrastive learning of visual representations,” CoRR, vol. abs/2002.05709, 2020.

[21] Z. Fang, J. Wang, L. Wang, L. Zhang, Y. Yang, and Z. Liu, “SEED: self-supervised
distillation for visual representation,” CoRR, vol. abs/2101.04731, 2021.

[22] J. Betz, H. Zheng, A. Liniger, U. Rosolia, P. Karle, M. Behl, V. Krovi, and R. Mang-
haram, “Autonomous vehicles on the edge: A survey on autonomous vehicle racing,”
vol. 3, pp. 458–488.

[23] R. Ravindran, M. J. Santora, and M. M. Jamali, “Multi-object detection and tracking,
based on dnn, for autonomous vehicles: A review,” IEEE Sensors Journal, vol. 21,
pp. 5668–5677, 2021.

[24] R. Nabati and H. Qi, “Radar-camera sensor fusion for joint object detection and
distance estimation in autonomous vehicles,” ArXiv, vol. abs/2009.08428, 2020.

[25] K. Qian, S. Zhu, X. Zhang, and E. L. Li, “Robust multimodal vehicle detection
in foggy weather using complementary lidar and radar signals,” 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 444–453,
2021.

96

[26] A. Balasubramaniam and S. Pasricha, “Object detection in autonomous vehicles:
Status and open challenges,” CoRR, vol. abs/2201.07706, 2022.

[27] A. Benjumea, I. Teeti, F. Cuzzolin, and A. Bradley, “YOLO-Z: improving small
object detection in yolov5 for autonomous vehicles,” CoRR, vol. abs/2112.11798,
2021.

[28] R. G. Joseph Redmon, Santosh Divvala and A. Farhadi, “You only look once: Unified,
real-time object detection,” 2016.

[29] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOv7: Trainable bag-of-
freebies sets new state-of-the-art for real-time object detectors,” arXiv preprint
arXiv:2207.02696, 2022.

[30] D. E. Christian Szegedy, Alexander Toshev, “Deep neural networks for object
detection,” 2013.

[31] Q. Lu, C. Liu, Z. Jiang, A. Men, and B. Yang, “G-cnn: Object detection via grid
convolutional neural network,” IEEE Access, vol. 5, pp. 24023–24031, 2017.

[32] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” 2016.

[33] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” 2018.

[34] A. Bochkovskiy, C. Wang, and H. M. Liao, “Yolov4: Optimal speed and accuracy of
object detection,” CoRR, vol. abs/2004.10934, 2020.

[35] G. Jocher, A. Chaurasia, A. Stoken, J. Borovec, NanoCode012, Y. Kwon, TaoXie,
K. Michael, J. Fang, imyhxy, Lorna, C. Wong, Z. Yifu, A. V, D. Montes, Z. Wang,
C. Fati, J. Nadar, Laughing, UnglvKitDe, tkianai, yxNONG, P. Skalski, A. Hogan,
M. Strobel, M. Jain, L. Mammana, and xylieong, “ultralytics/yolov5: v6.2 - YOLOv5
Classification Models, Apple M1, Reproducibility, ClearML and Deci.ai integrations,”
Aug. 2022.

[36] C. Wang, I. Yeh, and H. M. Liao, “You only learn one representation: Unified
network for multiple tasks,” CoRR, vol. abs/2105.04206, 2021.

[37] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg,
“SSD: Single shot MultiBox detector,” in Computer Vision – ECCV 2016, pp. 21–37,
Springer International Publishing, 2016.

[38] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for
accurate object detection and semantic segmentation,” 2013.

[39] R. Girshick, “Fast r-cnn,” 2015.

[40] K. H. Shaoqing Ren and J. S. Ross Girshick, “Faster r-cnn: Towards real-time object
detection with region proposal networks,” 2015.

97

[41] Y. L. Jifeng Dai and J. S. Kaiming He, “R-fcn: Object detection via region-based
fully convolutional networks,” 2016.

[42] P. D. Tsung-Yi Lin, K. H. Ross Girshick, B. Hariharan, and S. Belongie, “Feature
pyramid networks for object detection,” 2016.

[43] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby,
“An image is worth 16x16 words: Transformers for image recognition at scale,” in
International Conference on Learning Representations, 2021.

[44] Q. Lai, S. Khan, Y. Nie, H. Sun, J. Shen, and L. Shao, “Understanding more about
human and machine attention in deep neural networks,” IEEE Transactions on
Multimedia, vol. PP, pp. 1–1, 07 2020.

[45] DataDrivenInvestor, “Deep learning explained in 7 steps – updated.” Website:
https://www.datadriveninvestor.com/deep-learning-explained/, 2022. Online; ac-
cessed 06 March 2023.

[46] A. Eliasy and J. Przychodzen, “The role of ai in capital structure to enhance
corporate funding strategies,” Array, vol. 6, p. 100017, 07 2020.

[47] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[48] R. T. J. J., “Lstms explained: A complete, technically accurate, conceptual guide with
keras.” Website: https://medium.com/analytics-vidhya/lstms-explained-a-complete-
technically-accurate-conceptual-guide-with-keras-2a650327e8f2, 2020. Online; ac-
cessed 20 August 2023.

[49] X. Shi, Z. Chen, H. Wang, D. Yeung, W. Wong, and W. Woo, “Convolutional
LSTM network: A machine learning approach for precipitation nowcasting,” CoRR,
vol. abs/1506.04214, 2015.

[50] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2014.

[51] A. Oppermann, “Underfitting and overfitting in deep learning.” Website:
https://medium.com/mlearning-ai/underfitting-and-overfitting-in-deep-learning-
687b1b7eb738, 2021. Online; accessed 06 March 2023.

[52] S. Karagiannakos, “Localization and object detection with deep learning.” Web-
site: https://towardsdatascience.com/localization-and-object-detection-with-deep-
learning- 67b5aca67f22, 2019. Online; accessed 06 March 2023.

[53] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” CoRR, vol. abs/1505.04597, 2015.

98

[54] Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “Unet++: A nested u-net
architecture for medical image segmentation,” CoRR, vol. abs/1807.10165, 2018.

[55] O. Oktay, J. Schlemper, L. L. Folgoc, M. C. H. Lee, M. P. Heinrich, K. Mis-
awa, K. Mori, S. G. McDonagh, N. Y. Hammerla, B. Kainz, B. Glocker, and
D. Rueckert, “Attention u-net: Learning where to look for the pancreas,” CoRR,
vol. abs/1804.03999, 2018.

[56] C.-Y. Wang, H.-Y. M. Liao, I.-H. Yeh, Y.-H. Wu, P.-Y. Chen, and J.-W. Hsieh,
“Cspnet: A new backbone that can enhance learning capability of cnn,” 2019.

[57] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolutional
networks for visual recognition,” in Computer Vision – ECCV 2014, pp. 346–361,
Springer International Publishing, 2014.

[58] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path aggregation network for instance
segmentation,” 2018.

[59] B. J. Oates, Researching Information Systems and Computing. SAGE Publications,
Ltd., 2012 ed., 2005.

[60] S. T. March and G. F. Smith, “Design and natural science research on information
technology,” Decision Support Systems, vol. 15, no. 4, pp. 251–266, 1995.

[61] P. Checkland, “Soft Systems Methodology: A Thirty Year Retrospective,” Systems
Research and Behavioral Science, vol. 17, pp. S11–S58, 2000.

[62] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design Science in Information
Systems Research,” MIS Quarterly, vol. 28, pp. 75–105, 3 2004.

[63] J. Hughes and T. Wood-Harper, “Systems development as a research act,” Journal
of Information Technology, vol. 14, no. 1, pp. 83–94, 1999.

[64] Stanford Artificial Intelligence Laboratory et al., “Robotic operating system.”

[65] S. C. Adam Paszke, Sam Gross and G. Chanan, “Pytorch.” Website:
https://pytorch.org/, 2016 - 2022. Online; accessed 15 July 2022.

[66] “Onnx.” Website: https://onnx.ai/, 2019 - 2022. Online; accessed 15 July 2022.

[67] N. Corporation, “Cuda.” Website: https://developer.nvidia.com/cuda-zone, 2007 -
2022. Online; accessed 15 July 2022.

[68] N. Corporation, “Tensorrt.” Website: https://developer.nvidia.com/tensorrt, 2007 -
2022. Online; accessed 29 September 2022.

[69] V. GmbH, “Viewpointsystem.” Website: https://viewpointsystem.com/, 2016 - 2022.
Online; accessed 11 May 2022.

99

[70] freedesktop.org, “Gstreamer.” Website: https://gstreamer.freedesktop.org/, 2008 -
2022. Online; accessed 04 July 2022.

[71] F. J. Romero-Ramirez, R. Muñoz-Salinas, and R. Medina-Carnicer, “Speeded up
detection of squared fiducial markers,” Image and Vision Computing, vol. 76, pp. 38–
47, 2018.

[72] S. Garrido-Jurado, R. Muñoz-Salinas, F. Madrid-Cuevas, and R. Medina-Carnicer,
“Generation of fiducial marker dictionaries using mixed integer linear programming,”
Pattern Recognition, vol. 51, pp. 481–491, 2016.

[73] L. OpenShot Studios, “Openshot.” Website: https://www.openshot.org/de/, 2008 -
2022. Online; accessed 04 July 2022.

[74] S. U. Felix Resch, Daniel Scheuchenstuhl, “Eye-tracking.” Website:
https://gitlab.tuwien.ac.at/cyber-physical-systems/lehre/thesis/attention/eye-
tracking, 2022. Online; accessed 04 July 2022.

[75] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.

[76] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale
Visual Recognition Challenge,” International Journal of Computer Vision (IJCV),
vol. 115, no. 3, pp. 211–252, 2015.

[77] I. Loshchilov and F. Hutter, “Fixing weight decay regularization in adam,” CoRR,
vol. abs/1711.05101, 2017.

[78] M. Lechner, R. Hasani, P. Neubauer, S. Neubauer, and D. Rus, “Pyhopper – hyper-
parameter optimization,” 2022.

[79] T. He, Z. Zhang, H. Zhang, Z. Zhang, J. Xie, and M. Li, “Bag of tricks for image
classification with convolutional neural networks,” CoRR, vol. abs/1812.01187, 2018.

[80] L. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-decoder
with atrous separable convolution for semantic image segmentation,” CoRR,
vol. abs/1802.02611, 2018.

[81] P. Iakubovskii, “Segmentation models pytorch.” Website:
https://github.com/qubvel/segmentation_models.pytorch, 2019. Online; ac-
cessed 09 May 2023.

[82] A. Canziani, “pytorch-cortexnet.” Website: https://github.com/Atcold/pytorch-
CortexNet, 2018. Online; accessed 05 March 2023.

[83] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOv7: Trainable bag-of-freebies
sets new state-of-the-art for real-time object detectors,” 2022.

100

[84] A. Tarvainen and H. Valpola, “Mean teachers are better role models: Weight-
averaged consistency targets improve semi-supervised deep learning results,” in
Advances in Neural Information Processing Systems (I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, eds.), vol. 30,
Curran Associates, Inc., 2017.

[85] S. R. Rath, “A simple pipeline to train pytorch faster rcnn object detection model.”
Website: https://debuggercafe.com/a-simple-pipeline-to-train-pytorch-faster-rcnn-
object-detection-model/, 2021. Online; accessed 09 May 2023.

[86] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “De:tr: End-to-end object detection with transformers.” Website:
https://github.com/facebookresearch/detr, 2020. Online; accessed 09 May 2023.

101

	Kurzfassung
	Abstract
	Contents
	Introduction
	Scientific Background
	Related Works
	Human Attention
	Artificial Intelligence & Machine Learning
	Computer Vision

	Scientific Methodology
	Technologies
	Development Process

	Design of Att-YOLOv7
	Development of the Human-Attention Model
	Development of the Object Detection Neural Network
	Algorithm and Deployment of the System

	Evaluation of Att-YOLOv7
	Single-Agent/Multi-Agent Evaluation
	Limitations & AI-on-the-Edge

	Discussion of Att-YOLOv7
	Discussion on the System Foundations
	Discussion of the results regarding the research questions
	Future research directions

	Conclusion
	Appendix
	List of Figures
	Acronyms
	Bibliography

