
Session Recording in
Configuration Management

Environments

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering/Internet Computing

eingereicht von

Maximilian Irlinger, BSc
Matrikelnummer 01426708

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Assistant Prof. Dipl.-Ing. Dr.sc. Jürgen Cito, BSc
Mitwirkung: Univ.Lektor Dipl.-Ing. Dr.techn. Markus Raab, BSc

Wien, 20. Juni 2023
Maximilian Irlinger Jürgen Cito

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Session Recording in
Configuration Management

Environments

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering/Internet Computing

by

Maximilian Irlinger, BSc
Registration Number 01426708

to the Faculty of Informatics

at the TU Wien

Advisor: Assistant Prof. Dipl.-Ing. Dr.sc. Jürgen Cito, BSc
Assistance: Univ.Lektor Dipl.-Ing. Dr.techn. Markus Raab, BSc

Vienna, 20th June, 2023
Maximilian Irlinger Jürgen Cito

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Maximilian Irlinger, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 20. Juni 2023
Maximilian Irlinger

v

Acknowledgements

I would like to express my deepest gratitude to my advisors, Assistant Prof. Dipl.-
Ing. Dr.sc. Jürgen Cito and Univ.Lektor Dipl.-Ing. Dr.techn. Markus Raab, for their
exceptional guidance and unwavering support throughout this thesis. Their expertise,
insightful feedback, and constant motivation have been instrumental in shaping my
academic journey and pushing me towards excellence.

I am truly thankful to my parents and family for their unwavering love, understanding,
and support. Their belief in me and their constant encouragement have been a great
source of strength and inspiration during this challenging process.

I would also like to extend my sincere appreciation to the members of the Elektra Initiative.
Their contributions, collaboration, and shared passion have been invaluable. Working
with such talented individuals has been a rewarding experience, and I am grateful for
the knowledge and friendship we have built.

I am deeply grateful to everyone who has played a part in my academic journey, including
my mentors, family, friends, and project group members. Your support, guidance, and
contributions have been essential, and I am honoured to have had the opportunity to
work with such exceptional individuals.

vii

Kurzfassung

Diese Arbeit präsentiert Record Elektra, ein Session-Recording-Tool, das auf Konfigurati-
onsframework Elektra aufbaut und entwickelt wurde, um den Prozess der Anwendung
von Konfigurationsänderungen auf mehreren Hosts zu optimieren.

Durch eine Fallstudie demonstrieren wir den Konfigurationsprozess unter Verwendung
von Record Elektra und zeigen dabei die Wirksamkeit des Tools bei der Vereinfachung von
Konfigurationsänderungen und der Reduzierung von Fehlern. Darüber hinaus haben wir
die Leistungs- und Speicherauswirkungen von Record Elektra untersucht und festgestellt,
dass sie akzeptablen Grenzen entsprechen und somit die Nutzung von Elektra nur minimal
beeinträchtigen.

Unsere Forschung trägt zum Bereich der Konfigurationsverwaltung bei und betont
den Wert des Session-Recordings zur Verbesserung des Konfigurationsprozesses für
Software-Services. Die Studie konzentriert sich auf Änderungen, die direkt über Elektra
vorgenommen werden, aber unser Ansatz bietet eine Grundlage für die Erweiterung des
Session-Recordings, um Änderungen an Konfigurationsdateien direkt zu überwachen.

ix

Abstract

This thesis presents Record Elektra, a session recording tool built on the configuration
framework Elektra, designed to streamline the process of applying configuration changes
across multiple hosts.

Through a case study, we show the configuration process of an embedded system using
Record Elektra, demonstrating the tool’s effectiveness in simplifying configuration changes
and reducing errors. We also evaluated the performance and memory impact of Record
Elektra, finding that it remains within acceptable limits, ensuring minimal disruption to
the usage of Elektra.

Our research contributes to the field of configuration management, highlighting the
value of session recording in enhancing the configuration process for software services.
The study focuses on changes made directly via Elektra, but our approach provides a
foundation for extending session recording to monitor changes made to configuration files
directly.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Aim of this Thesis . 2
1.2 Methodological Approach . 2
1.3 Scope and Limitations . 2
1.4 Structure of this Thesis . 3

2 Background 5
2.1 Configuration Management . 5
2.2 Elektra . 6
2.3 Ansible . 10
2.4 Related Work . 14

3 Requirements 17
3.1 Functional Requirements . 17
3.2 Non-Functional Requirements . 18

4 Approach 21
4.1 Tracking Configuration Changes using Elektra 22
4.2 Deploying Changes with Ansible . 27
4.3 Tooling . 29

5 Case Study 31
5.1 Scenario . 31
5.2 Preperatory Steps . 33
5.3 Generating the Configuration . 33
5.4 Discussion . 36

6 Benchmarking 39

xiii

6.1 Threats to Validity . 40
6.2 Performance Impact . 41
6.3 Memory Consumption . 47
6.4 Callgraph Analysis . 49
6.5 Discussion . 52

7 Evaluation of Requirements Compliance 57

8 Conclusion 61
8.1 Future Work . 62

List of Figures 63

Bibliography 65

CHAPTER 1
Introduction

With an ever-growing demand for services and compute resources, and reliability thereof,
system administrators and operators find themselves deploying more and more software
systems. One big challenge faced both during initial deployment and ongoing maintenance
is keeping the configuration of the services consistent across multiple instances.

Configuration Management and DevOps tools such as Ansible [1], Chef [2] and Puppet [3]
are often used to configure and manage a range of systems running on bare-metal or in
virtual machines. Over the past decade, containerization using tools such as Docker [4]
and Kubernetes [5], has become one of the big deployment strategies for both cloud and
on-premise services.

While both – configuration management and containerization tools – make it way easier to
deploy and manage services redundantly over multiple instances, there is a key area those
kinds of tools fail to make easier: creating the configuration for the various applications.
Sure, both sets of tools allow rolling out the created configuration, but this is only half the
rent. The operator still has to write the configuration files for each one of the deployed
applications. What makes matters worse is that almost every application uses a different
configuration file format.

The open-source library Libelektra [6] (further called Elektra) and the accompanying
Elektra Initiative set out to solve the latter problem. Elektra aims to provide configuration
data of the system in a global, hierarchical key database. It is very extensible and has a
sophisticated plugin interface. One type of plugin are so-called storage plugins, which are
used as adaptors to read and write configuration files of existing applications. This way,
even applications that do not directly integrate Elektra can be managed using it.

During the maintenance phase of the service life-cycle, changes to the configuration of
the deployed application are often necessary. Some of those changes may be specific
to certain nodes, while other changes need to be rolled out to all nodes running the
application. Performing such changes manually is error-prone and time-consuming.

1

1. Introduction

To mitigate these problems, we introduce the Record Elektra tool. Using this tool, admin-
istrators can record configuration changes on a single host. After the new configuration is
complete, the recorded changes can be exported to and imported on all target machines.

We hypothesise that using this tool will streamline the process of applying iterative
generated configuration changes on other hosts.

1.1 Aim of this Thesis
As mentioned above, we aim to show that session recording in configuration management
tools is a valuable tool. To show this, a session recording tool for Elektra was developed.

While session recording sure can be a great feature to have, we do not expect the majority
of users of Elektra to use it. Ensuring that this feature does not have any severe negative
effects on their usage was of utmost importance.

In this thesis, we will concentrate on answering the following key research questions:

Research Question 1 In which way does Record Elektra benefit the use case of rolling
out changes of configuration?

Research Question 2 What performance and memory impact does Record Elektra have
compared to vanilla Elektra?

1.2 Methodological Approach
To evaluate the research questions, we developed a session recording plugin named Record
Elektra. Before this could be done, we had to create the necessary infrastructure to
support global plugins within Elektra. To enable a user-friendly workflow, tooling for
starting recording sessions and exporting the changes also was developed.

For evaluating Research Question 1, we conducted a case study where a real-world setup
consisting of multiple services was configured. During the case study, the configuration
and reconfiguration to an in-advance determined known configuration of these services
was done once using Record Elektra and once by manually editing the configuration files.

We evaluated Research Question 2 by creating different configurations of varying sizes,
and comparing the runtime and memory footprint of Elektra instances which have Record
Elektra enabled and disabled.

1.3 Scope and Limitations
For the session recording part, we are focusing only on changes that are done directly via
Elektra. More specifically, we only record changes performed by either the command-line

2

1.4. Structure of this Thesis

utility or the API. This has the added benefit that Elektra is able to check whether the
configuration conforms to certain specifications [7].

Although our present analysis is limited to these specific methods, we have established a
solid foundation that can be extended to monitor changes made to configuration files
directly.

1.4 Structure of this Thesis
In Chapter 2, we delve into the essential background of the concepts and technologies used
for our approach, as well as explore related work in this area, laying a solid foundation
for our research.

Chapter 3 is dedicated to presenting the essential requirements we have formulated for
our approach, ensuring that our solution addresses the specific needs and objectives of
our study.

Chapter 4 takes a deep dive into the implementation details of our approach, providing a
comprehensive and detailed description of how we have executed our solution, highlighting
the technical aspects and methodologies employed.

Chapter 5 showcases the conducted case study, where we apply our approach to a real-
world scenario, demonstrating its effectiveness and practical application in a tangible
context.

In chapter 6, we present an overview of the benchmarks conducted on Record Elektra,
providing a comparative analysis and insightful results that evaluate the performance
and capabilities of our approach.

Chapter 7 evaluates whether our requirements have been successfully met, conducting a
thorough assessment that examines how well our approach aligns with the initial set of
requirements and criteria established.

Finally, in chapter 8, we conclude this thesis by summarizing the key findings, reflecting
on the implications of our research, and offering an outlook on potential future work,
thereby contributing to the ongoing development and advancement of the field.

3

CHAPTER 2
Background

2.1 Configuration Management
As best described by Burgess and Couch [8], configuration management is the process
of constraining the behavior of a network of machines so that each machine’s behavior
conforms to predefined policies and guidelines and accomplishes predetermined business
objectives. This also conforms with the system configuration problem that has been
described by Anderson [9].

Configuration

Hardware

Software

Specification and
Policies

System according
to specification

Feedback

Figure 2.1: The System Configuration Problem as described by Anderson [9]

The software configuration problem, as illustrated in Figure 2.1, involves a multi-step
process. Initially, the problem requires configuring several machines, installing the neces-
sary software packages, and specifying the required services according to predetermined
guidelines. Subsequently, feedback is collected, and adjustments are made to the machines’
configurations based on the feedback or whenever any of the inputs, such as hardware,
software, or specifications, undergo a change. This iterative process ensures that the
machines are continuously updated to reflect the evolving needs of the system.

5

2. Background

One of the first descriptions of dynamic configuration management with a central database
was given by Anderson [10]. Other early theoretical groundwork was laid by Burgess [11],
where he introduces the tool CFEngine [12]. Burgess’s work was instrumental in laying
the groundwork for modern configuration management approaches, which continue to
play a critical role in managing complex systems today.

2.2 Elektra
The Elektra Initiative aims to solve the non-trivial issue of abstracting configuration for
improved integration and reconfiguration of software. They make this possible with the
library aptly named Elektra [13, 6].

Elektra describes itself as the configuration framework for everyone. At its core, Elektra
is a global key database with various plugins to mount configuration files of numerous
applications. It also provides a command-line tool called kdb that can be used to modify
the configuration database.

In their study, Raab et al. [14] have shown, that developers using Elektra are significantly
faster in common configuration management scenarios compared to other methods.

2.2.1 Keys and Namespaces
Elektra’s global key database (KDB) is laid out hierarchically. Keys are the eponymous
components of key databases. The following are example keys in Elektra :

system:/sw/apache/httpd/#0/current/num_processes
system:/sw/apache/httpd/#0/current/AllowOverride
user:/sw/kde/kicker/#0/current/preferred_applications/x-www
user:/sw/kde/kicker/#0/current/preferred_applications/x-mail
proc:/env/HOME
proc:/env/PWD

Keys in Elektra are hierarchical. Each hierarchical step is delimited by a slash (/). Figure
2.2 depicts the above keys as a hierarchical tree. A key may also have a value attached
to it. Values can either be in text or binary form. Keys may also possess metadata, such
as default values and data type constraints.

Every key exists in a namespace, e.g. system:/. Currently, 5 namespaces are available,
each one serving slightly different purposes. The namespaces are listed in their default
order:

• spec:/ does not contain values but only metadata.

• proc:/ read-only namespace that derives its data from the current process, such
as program name, arguments and environment variables.

6

2.2. Elektra

/

env

HOME PWD

sw

apache

httpd

#0

current

num_processes AllowOverride

kde

kicker

#0

current

preferred_applications

x-www x-mail

Figure 2.2: Tree representation of key database

• dir:/ derives its values from the current working directory. Useful for e.g. working
with .htaccess files in multi-tenant web hosting installations.

• user:/ stores configuration on a per-user basis. This way, every user on a multi-
user system can have their own custom configuration.

• system:/ contains system-wide configuration.

When setting values, the namespace has to be explicitly provided. When reading values,
the namespaces are optional. If no namespace is provided, Elektra will perform a cascading
lookup.

During a cascading lookup, Elektra will cycle through the namespaces in the order
described above. As soon as it finds the key, it returns the result. This mechanism allows
users, e.g., to overwrite system configuration (stored in system:/) for their own profile
(stored in user:/).

One notable exception are keys in the spec:/ namespace. This namespace holds
metadata that influences the cascading search. The search itself, however, usually is in
the keys of the other namespaces. Only if it did not find a value for the key in another
namespace, Elektra will return the default value that has been specified in the spec:/
namespace.

7

2. Background

2.2.2 The kdb Utility
The command-line kdb utility is one of the main ways for a user to interact with the key
database. At the most basic level, kdb is used to set and retrieve values for keys, and
their metadata.

• kdb get <key> retrieves the value of the given key.

• kdb set <key> <value> sets the value of the key.

• kdb rm <key> removes the key.

• kdb ls <key> lists all keys in the hierarchy below the specified key.

• kdb meta-get <key> <meta name> retrieves the metadata named <meta
name> for the specified key.

• kdb meta-set <key> <meta name> <meta value> sets the metadata named
<meta name> for the specified key.

• kdb meta-rm <key> <meta name> removes the metadata named <meta name>
for the specified key.

• kdb meta-ls <key> lists all available metadata for the specified key.

The above list of commands is far from complete. A full list of available commands is
available in the manual pages.

2.2.3 Mounting
The preferred way of making applications work with Elektra is to elektrify them. This
means that the application’s developers have to directly use the APIs that Elektra
provides. In cases where this is not possible, Elektra provides a simpler way to integrate
with the application. This approach is called mounting the configuration files of the
application.

When mounting a configuration file, administrators tell Elektra that a specific subtree of
the key database is stored in a particular file. A requirement for this is that a storage
plugin for the format of the configuration file exists. Some of the default storage plugins
shipped with Elektra include plugins for host files, Mozilla configuration files, XML-,
JSON- and YAML files.

The following command mounts the hosts file into the subtree system:/hosts of the
key database:

sudo kdb mount --with-recommends /etc/hosts system:/hosts hosts

8

2.2. Elektra

The developer of the storage plugin has to decide how to map the contents of the
configuration file to an Elektra key hierarchy. For the hosts plugin, the developers
decided to split it up into IPv4- and IPv6-specific hostnames.

system:/hosts/ipv4/www.example.com -> 93.184.216.34
system:/hosts/ipv6/localhost -> ::1

2.2.4 Extensibility
Storage plugins are not the only type of plugins for Elektra . In recent years, multiple
research projects were conducted on how to integrate Elektra into configuration manage-
ment tools. Denner created a plugin for interaction with Puppet [15] and Waser created
an Ansible plugin [16].

Being a configuration-management tool, the plugins and their interactions themselves are
configured using Elektra. One of the most useful plugin types are filter plugins. They
receive configuration settings and can inspect their values. For example, checker plugins
can be used to validate the format of IP addresses.

2.2.5 Validation and Specifications
Verifying configuration stored in Elektra has also been researched by Raab [7], allowing
for immediate verification of whether the merged configuration is valid. This feature
alone can be responsible for huge cost savings in a real-world deployment, as system
downtime due to misconfiguration can be largely avoided [17].

The basic building block of validation in Elektra are the aforementioned filter plugins.
Most of them can be configured using metadata on the keys themselves. The following sce-
nario tells the check plugin that the value for the key user:/tests/together/test
must be a number:

kdb meta-set user:/tests/together/test check/validation
"[1-9][0-9]*"→

kdb meta-set user:/tests/together/test check/validation/match
LINE→

kdb meta-set user:/tests/together/test check/validation/message
"Not a number"→

Being able to configure validation rules for every key is a very powerful feature. In
practice, however, it would be cumbersome if the administrators of a system had to create
those rules all by themselves. Also note that in this example, the validation metadata is
stored directly on the keys. If the key would exist in multiple namespaces, e.g. system:/
and user:/, those rules would have to be specified for every namespace.

9

2. Background

This is where specifications come into play. Specifications live in the spec:/ namespace.
As mentioned in the section about namespaces, this namespace only contains metadata.
metadata for a key in this namespace is automatically applied to the same key in all
namespaces. This allows the creation of schemata by the application developers.

2.3 Ansible
Ansible [18, 1] is one of the most popular open-source configuration management tools
available. One of its distinctive properties is that, compared to other tools such as
CFEngine, Chef and Puppet, it is agentless. In short, this means that there is no special
software required on the machines you want to manage. The only hard requirement is
that the machine needs to run an SSH daemon.

Agentless tools have some key advantages over their counterparts requiring the installation
of agent software on the target machines:

• Easy bootstrapping. There is no need to install and configure the agent for your
configuration management tool.

• Less maintenance. You don’t have to keep the agent up-to-date with the latest
feature and security updates.

• Enhanced security. Every additional piece of software running on a machine is
a potential attack vector. By not having something running constantly in the
background, you automatically decrease the likelihood of your systems getting
hacked.

Another key differentiator of Ansible is that it is serverless. If you’re using Ansible, you
don’t need a central configuration server.

This has another few advantages:

• No extra infrastructure. You don’t need to provision and set up extra hard- and
software services just to manage your configuration.

• Improved scalability. As there is no central server, there are a lot fewer scalability
issues when you’re starting to configure hundreds of thousands of machines.

• Less maintenance. You do not have to maintain, update, backup, monitor, etc. the
configuration servers.

• Enhanced security. As with agentlessness, having less software running minimizes
the potential attack vectors your infrastructure presents to potential hackers.

10

2.3. Ansible

2.3.1 Infrastructure As Code

Ansible embraces the concept of infrastructure as code. This is an approach, where system
configuration and infrastructure automation is based on best practices from software
development.

One key principle is that configuration is kept as human-readable text files, which can
be easily versioned using common version control systems such as git. Therefore, the
configuration and its history are always auditable.

2.3.2 Inventory

To configure your machines we need to tell Ansible which machines to manage. This is
where the inventory comes into play. In its simplest form, the inventory is just a flat file
called hosts which contains one host per line, as shown in Listing 2.1.

vienna.example.com
munich.example.com
paris.example.com
london.example.com

Listing 2.1: Basic inventory with four hosts

After the host name, Ansible allows the specification of variables for this host. Those
variables can be some of the Ansible-internal variables, such as the SSH username,
or completely custom variables. In the example depicted in Listing 2.2, we set the
Ansible-internal variable ansible_user and the custom variable web_server_port.

vienna.example.com ansible_user=hans web_server_port=8080
munich.example.com ansible_user=franz web_server_port=8081

Listing 2.2: Inventory with variables for each host

Hosts can also be grouped. These groups can also overlap, and be nested. This allows
for fine-grained control over which configuration is applied to which hosts. An example
of this can be seen in the following Listing 2.3.

11

2. Background

[web]
vienna.example.com
munich.example.com

[database]
paris.example.com
london.example.com

[accounting]
vienna.example.com
paris.example.com

Listing 2.3: Inventory with groups

The inventory doesn’t have to be a flat file. It is also possible to use YAML and JSON
files to describe the inventory. Ansible also has a neat way of dealing with dynamic
inventories. If you already have a system in place where you’ve registered all your hosts,
Ansible has a way query this information. You just need to provide it with an inventory
file that is marked as executable. Ansible will execute this file and interpret the output
of the execution as the inventory.
There are also numerous plugins to use other forms of inventory, such as Amazon EC2
and Azure Resource Manager.

2.3.3 Playbooks
The central component of configuration management with Ansible is the so-called playbook.
A playbook is a configuration management script in YAML format. It describes the
desired state of a system and the steps, represented by tasks, that should be taken to
achieve that state.
Ansible playbooks are designed to be idempotent. Running the playbook multiple times
should result in the same end state. This allows for safe and repeatable automation of
IT tasks.
This idempotency, however, isn’t something that Ansible can just force. It is also partly
the users’ responsibility to keep the playbooks idempotent. If instructed to, Ansible will
happily change the same configuration in varying ways multiple times within the same
play.
For example, a very simple playbook looks something like the following depicted in
Listing 2.4. This example playbook consists of a single play named Configure Webservers.
This play is executed on all hosts in the group web, as defined in the inventory in
Listing 2.3. The first task in the play is named Install nginx server. It uses the package
module to make sure that the package nginx is installed and up-to-date.

12

2.3. Ansible

The second task Copy nginx configuration uses the template module to copy the file
nginx.config.j2 to its destination in /etc/nginx/nginx.conf. If Ansible detects that this
task changed the system configuration, it will notify the handler called Restart nginx.

A handler is a special type of task that is triggered only when a particular event occurs.
Handlers are used to perform actions that are dependent on the outcome of other tasks,
such as restarting a service when a configuration file has been modified. They are executed
only once, at the end of the playbook run, after all other tasks have been completed.
This ensures that all changes have been made before the handler is executed.

In our example, there is only a single handler. When triggered, it will use the service
module to restart the nginx service.

- name: Configure Webservers

hosts: web
tasks:

- name: Install nginx server
package:

name: nginx
state: latest

- name: Copy nginx configuration
template:

src: nginx.config.j2
dest: /etc/nginx/nginx.conf

notify: Restart nginx
handlers:

- name: Restart nginx
service:

name: nginx
state: restarted

...

Listing 2.4: Example Playbook

2.3.4 Modules
An Ansible module is a standalone script or program that performs a specific task on
a target host. Modules are the building blocks of Ansible. They are supposed to be
idempotent, however, it is up to the module authors to ensure this.

While Ansible already includes hundreds of modules, it is possible to create custom ones
to extend its functionality. This capability allows users to tailor Ansible to their specific
needs and automate tasks that are not covered by the built-in modules. To simplify

13

2. Background

the process of sharing and discovering Ansible modules, there is a community-driven
repository called Ansible Galaxy1.

Creating a Custom Ansible Module

Modules can be written in any programming language that can be executed on the target
host, such as Python, Ruby, Bash, or PowerShell. They can be executed locally on the
target host or remotely through a connection established by Ansible. The most widely
used programming language for Ansible module is Python.

An Ansible Python module is a standalone Python script that follows a specific structure.
It typically consists of a module file written in Python and optionally, a module utilities
file. These files reside in the module library directory on the control machine.

Modules accept input arguments that define their behaviour. These arguments can be
passed to the module through the Ansible playbook or command-line interface. The
argument specification within the Python module defines the parameters accepted by
the module, including their names, types, descriptions, and default values. For Python
modules, the arguments in the playbook are serialized as JSON and passed to the module
on execution.

During execution, Ansible creates a compressed zip file that includes the module file,
any imported utilities, and necessary boilerplate code. This zip file is then copied
to a temporary directory on the managed host. The module file is extracted and
executed, while the utilities and boilerplate code from the zip file are appended to the
PYTHONPATH environment variable.

Ansible modules should return output data to the Ansible framework. This output data
should be in JSON format and printed to stdout. The results can include any information
relevant to the module’s execution, such as status messages, configuration changes, or
data retrieved from remote systems.

2.4 Related Work
In this section, we provide a short overview of related work in this field, which builds the
foundation and inspiration for our work.

2.4.1 Git and EtcKeeper
A currently widespread procedure is having all configuration files on a system (i.e. the
/etc directory) tracked in a version control system like git2. This allows easy backup and
restore and synchronisation across multiple systems. A commonly used tool suite for this
approach is etckeeper [19], which integrates a bit deeper into the system and also does
things like auto-commits on system updates.

1https://galaxy.ansible.com/
2https://git-scm.com

14

2.4. Related Work

2.4.2 Semi-structured Merge
Managing multiple systems using the git approach can sometimes lead to merge conflicts.
This is incredibly likely if changes to the same sections in configuration files are made on
different systems.

Apel et al. [20] present the concept of a semistructured merge. In their approach, they
don’t only rely on textual differences for merges, but also include the syntactic and
semantic meanings of the changes.

This is shown to reduce the number of merge conflicts by up to 60%. Cavalcanti et al.
[21] also evaluated this approach for its impact on productivity and correctness of the
merging process.

They also proposed and implemented further improvements to reduce the conflicts by
50%. Sousa et al. [22] introduce a merge verification approach based on the notion of
semantic conflict-freedom, that is able to verify the correctness of the merge in 75% of
the studied cases.

2.4.3 Docker Record
A session recording tool for Docker, aptly named docker-record, has been developed by
Cito [23, 24]. This tool was born out of the needs and frustration developers suffer from
when creating Docker containers.

Like system configuration, the definition for a Docker container is often created in
iterations with much trial and error. Docker-record helps developers to record all
interactive changes they performed within a container and then allows them to export a
new Dockerfile with all those changes incorporated.

15

CHAPTER 3
Requirements

Before any implementation or case study can be done, we need to define the requirements
we have for session recording and iteratively creating system configuration.

3.1 Functional Requirements
Functional requirements describe the results of the behaviour of the software system
[25]. As such, here we describe the list of features we find are a must-have to enable an
iterative workflow in configuration management.

FR 1 Record any changes made to the configuration

The main requirement is that the solution must be able to record all the changes made
by the user. This includes changes made to any part of the configuration, regardless of
the complexity or size of the configuration.

FR 2 Record a subset of the configuration

It should also be possible to only record changes to parts of the configuration. This can
be useful when working with large and complex configurations, where only a small subset
of the configuration is relevant.

FR 3 Control when recording is active

The user should have full control over when the recording is active. This means that
the solution should offer an easy and intuitive way for the user to start and stop the

17

3. Requirements

recording process. It should also be possible to configure the solution to automatically
start recording.

FR 4 Apply the changes to other systems

In order to put session recording to effective use, it must be possible to apply the
performed changes on other systems too. This means that the solution should be able
to generate configuration files or scripts that can be used to apply the changes to other
systems. The solution should integrate with well-known and widely-used tools, for
example, Ansible.

FR 5 Apply a subset of the changes to other systems

Not all systems are built equally. In an agile and iterative configuration process, one might
start by building the configuration on a single system. After a working configuration has
been found, it is likely that the single system will be split into multiple heterogeneous
systems. Therefore it is a necessary requirement that the changes can be split and applied
to the respective systems.

3.2 Non-Functional Requirements
Non-functional or quality requirements describe the quality attributes of the software.
As pointed out by various scholars and practitioners, these requirements are at least as
important factors for the success of any software as functional requirements are.[26, 27, 28].

NFR 1 Transparency to the user

The session recording feature should not disrupt the user’s experience and workflow. The
user should be able to use all tools and applications as usual without any noticeable
difference, except when starting or stopping the recording.

NFR 2 Transparency to the applications

The application should not require any changes to support the session recording feature.
There should be no impact on the application’s performance, and no run-time checks
should be necessary.

18

3.2. Non-Functional Requirements

NFR 3 Minimal overhead when not in use

The session recording feature should have minimal overhead when not in use. The
recording feature should not affect the system or application’s performance, including
processing time and memory usage.

NFR 4 Concurrent process safety

In a real-world system, multiple processes might modify the configuration concurrently.
The solution should be universally applicable and be able to record all changes made by
those concurrent processes reliably.

NFR 5 Accuracy and completeness

The system must be able to detect and record all changes made to the system configuration.
There should be no false negatives, and all changes should be recorded accurately and
completely.

19

CHAPTER 4
Approach

In Figure 4.1, we illustrate the overall workflow facilitated by our solution. An adminis-
trator iteratively modifies the configuration on a single machine. Once the configuration
is finalized, these modifications are available in a reproducible form that is applied to
other similar systems as well.

Begin
Recording

End
Recording

Administrator

Deploymentpre-existing
Configuration

Iterative
Configuration

Building

Figure 4.1: Workflow overview of iterative configuration building

Our approach incorporates an intelligent monitoring system that automatically detects
and records any modifications made to the system’s configuration. This eliminates the
need for the user to perform the configuration changes to manually keep track of the
alterations. Instead, our solution offers a seamless and automated method for exporting
and deploying these changes to other systems. By automating this process, we vastly
reduce the administrative burden and enhance efficiency.

21

4. Approach

4.1 Tracking Configuration Changes using Elektra
We decided to implement the configuration tracking aspect of our approach using Elektra.
This offers several distinct advantages. One notable benefit is the existing integration
Elektra has with numerous applications. This pre-established integration simplifies the
adoption process and ensures compatibility with a wide range of software systems.

Additionally, Elektra’s mounting mechanism enables the creation of ad-hoc integra-
tions effortlessly, without requiring modifications to the application’s underlying code.
This flexibility allows for seamless integration with various applications, expanding the
versatility and adaptability of our approach.

Elektra provides two main functions for applications to interact with the configuration
database. The kdbGet function retrieves configuration data from the key database,
granting access to values linked to specific keys. On the other hand, the kdbSet function
is utilized to store configuration data in the database, enabling modifications or additions
to settings.

The essential concepts in our approach are denoted by the terms part diff and session
diff, as depicted in Figure 4.2. A part diff captures the modifications made between a
single kdbGet and kdbSet function call. On the other hand, a session diff encompasses all
changes recorded during an active recording session. These terms serve as key components
in understanding and analyzing the modifications made within our approach.

A B

kd
bG

et

kd
bS

et

kd
bG

et

kd
bS

et

kd
bG

et

kd
bS

et

Part
Diff

Part
Diff

Part
Diff

Session
Diff

Figure 4.2: Aggregation of individual part diffs into a comprehensive session diff

Our general approach involves performing a deep duplication of the keyset obtained
during the kdbGet operation. We then compare this duplicated keyset with the one
provided in the kdbSet function. The outcome of this comparison yields the part diff,
which represents the specific differences between the two keysets. By employing this

22

4.1. Tracking Configuration Changes using Elektra

approach, we can effectively identify and analyze the modifications made during the
transition from reading the keyset to applying the changes in the kdbSet operation.

4.1.1 Calculating the session diff

Keys in a diff are divided into three distinct categories:

• Added: the key is new and did not exist before.

• Modified: the key existed before and still exists but its value or metadata has been
modified.

• Removed: the key has been removed.

Keys that have not been modified and therefore are not represented in a diff are called
unchanged keys in the following paragraphs.

Added

Modified

Removed

unchangederror

remove

modify

add

modify /
new value

modify /
old value

add /
old value

add /
new value

remove

remove, modify

add

Figure 4.3: Key state transitions (without transitions from unchanged)

The diagram shown in Figure 4.3 visualises the state transitions when merging diffs.
Green ovals depict the state of a key in the session diff. Arrows present the actions/state
of a key in the new part diff.

For example, if a key is in Added state in the session diff, and it is in Removed state in
the new part diff, then the key will be unchanged in the new version of the session diff.

23

4. Approach

4.1.2 Storage of the Session Diff
We made the decision to store the session diff directly within Elektra. This approach offers
several advantages, including the ability to store all possible values of keys and supported
metadata within Elektra. Moreover, leveraging Elektra’s well-tested IO capabilities
allowed us to fully utilize its robust infrastructure.

The solution specifically focuses on persistable namespaces, namely dir:/, user:/,
spec:/, and system:/. For these namespaces, we store the modified keys within the
respective namespaces themselves. To facilitate this, we mount a file in each namespace
that serves as a container for the session recording data. The recorded data can be
accessed under the path /elektra/record/session within each of the mentioned
namespaces.

Here are the namespaces where the session recording data is stored:

• dir:/elektra/record/session

• user:/elektra/record/session

• spec:/elektra/record/session

• system:/elektra/record/session

This approach ensures that the recorded changes are organized and accessible within their
respective namespaces, simplifying the management and retrieval of session recording
data.

The following key and key hierarchies are important:

• /elektra/record/config/active: If this key is present, it signifies that
session recording is enabled. The value of this key represents the parent key of the
session. Only changes made to keys that are at the same level or below this parent
key will be recorded.

• /elektra/record/session: Contains all the recorded data. It should be
mounted into separate files in each namespace to ensure proper organization and
management of the recorded sessions.

• /elektra/record/session/diff/added: Stores all the keys that have been
added during the session.

• /elektra/record/session/diff/modified/old: Holds the previous val-
ues and metadata of the keys that have been modified during the session.

• /elektra/record/session/diff/modified/new: Stores the updated val-
ues and metadata of the keys that have been modified during the session.

24

4.1. Tracking Configuration Changes using Elektra

• /elektra/record/session/diff/removed: Contains all the keys that have
been removed during the session.

Whenever a key is added, removed, or modified, a corresponding clone of that key is
created and stored in the appropriate location within the session storage. For instance, if a
key user:/test/name with the value Max is added, a key user:/elektra/record
/session/diff/added/test/name with the value Max is also generated and stored.

4.1.3 Hooks
Elektra has a highly flexible architecture that allows for easy extension through the use
of plugins. As a matter of fact, most of the functionality of Elektra itself is implemented
using plugins. Generally, plugins are bound to a specific mount point. So plugins act like
steps in a pipeline.

In previous work, there was a concept known as global plugins, but it had several
architectural flaws. One significant drawback was that these plugins were executed for
every storage plugin, resulting in limited visibility of only certain parts of the configuration
at any given time. Additionally, there were fixed phases for mounting plugins, a restriction
on the number of global plugins allowed, and the limitation of using the same plugin
interface as normal plugins.

Within the plugin system, we instead introduced a feature known as hooks to enhance its
functionality. Hooks represent specific stages within the KDB lifecycle where specialized
plugins, referred to as hook plugins, are invoked. Each hook has a well-defined API that
outlines its behaviour and requirements. This way, we can present the plugins with a
holistic view of the configuration. We can also ensure that they are only called once.

Our system incorporates multiple hooks, including the notification hook, which employs
inter-process communication mechanisms to notify applications of configuration changes.
Additionally, we have a dedicated recording hook designed specifically for session recording
purposes, addressing the unique needs of that use case.

4.1.4 Copy-On-Write
Our approach to tracking changes necessitates significant duplication of data. In order
to minimize memory usage, we have opted for a copy-on-write strategy for the Key and
KeySet data structures, which are widely utilized within Elektra.

When a key or keyset is copied or duplicated, only a shallow copy is made, containing
references to the original data such as name, value, and contained keys. As the shared
data is modified, new memory is allocated to preserve the integrity of the shared version.
Consequently, duplicated keys and keysets consume only a fraction of the memory
compared to their source counterparts.

The approach is depicted in Figures 4.4 and 4.5. Figure 4.4a depicts a single key.
Figure 4.4b depicts three copies of a key, with one copy having been given another value.

25

4. Approach

ValueName

Key

(a) A single key

Key

ValueName

Key

Key

Modified Value

Key

(b) Three duplicated keys

Figure 4.4: Copy-on-Write keys

Keys

KeySet

Key 1

Key n

....

Name

Value

(a) A single keyset

Keys

KeySet

Key 1

Key n

....

KeySet

Name

Value

(b) Two duplicated keysets

Keys

KeySet

Key 1

Key n

....

KeySet

Name

Value

Keys

Key 1

Key n

....

Name

Value Modified Value

(c) Two deep-duplicated keysets

Figure 4.5: Copy-on-Write keyset

26

4.2. Deploying Changes with Ansible

Figure 4.5a illustrates a single keyset, which contains references to keys. The keyset itself
does not store the actual key data. Figure 4.5b portrays a duplicated keyset where both
keysets reference the same keys. Consequently, any modifications made to a key in one
keyset will also affect the other keyset. When a key is added or removed from a keyset,
it obtains its own list of keys. However, the keys they have in common remain shared.

Figure 4.5c showcases deep-duplicated keysets. Each keyset possesses its own list of keys,
and those keys are duplicates as well.

4.2 Deploying Changes with Ansible
While Elektra is a powerful tool for managing configuration on a single machine, it
does not have, nor strives to have, functionality to work across system boundaries. To
enable the deployment phase of our workflow, we decided to use Ansible, which excels in
automating tasks across systems, for rolling out the iteratively created configuration.

Two crucial components that facilitate this process include a custom Ansible module and
an Elektra plugin capable of exporting Ansible playbooks. These exported playbooks can
be utilized independently or integrated into broader and more comprehensive deployment
scenarios.

4.2.1 Ansible Module
For a while now, there has been a basic Ansible module available for interacting with
Elektra. However, this module had several limitations in terms of functionality. Therefore,
we made the decision to completely overhaul and rewrite the module to incorporate all
the necessary features required to support our desired workflow.

Transactionality

The revamped module now offers complete transactional support. In the event of an
error occurring during task execution, all changes made are automatically rolled back,
ensuring the integrity of the configuration.

Support for Multiple Namespaces

We have extended the module to allow for setting and modification of keys across multiple
namespaces. Together with the transactionality feature, we can now ensure the atomicity
of deploying configuration changes.

Removing Keys

The new module now allows for removing already existing keys. This functionality was
not something that was previously of use outside of session recording. We can finally
ensure that only certain keys are present on a machine.

27

4. Approach

Merge Strategies

Our updated module empowers us to perform three-way merges on the configuration of
target machines. A three-way merge is a technique used to reconcile changes made to a
dataset by multiple actors. It involves comparing the original (or base) version of the
dataset with two modified versions, referred to as theirs and ours, to create a merged
result that incorporates all the relevant modifications from both sources.

Additionally, we can define specific strategies to handle merge conflicts. The available
strategies are:

• Ours: prioritize the changes made in the playbook,

• Theirs: prioritize the changes made on the machine,

• Abort: abort playbook execution and roll back all changes made to the configuration
managed by Elektra during the execution of the task.

Control of Session Recording

The enhanced module provides control over the session recording feature. This enables
the user to specify if session recording should be active on the machine, and which
parts of the configuration should be monitored for changes. Additionally, it can be
specified whether the changes performed during the playbook task execution itself shall
be monitored.

4.2.2 Exporting Ansible Playbooks
Exporting the changes into an Ansible playbook is the final component needed to complete
the puzzle. As Elektra is very extensible via plugins, we created a new Ansible export
plugin.

While Elektra already possesses a robust exporting functionality, it falls short in a
few critical aspects required for the task at hand. The most significant limitation is
the absence of support for removed keys, which is a crucial concept for our use case.
Additionally, Elektra lacks the ability to rewrite keynames, which becomes problematic
as we are storing the changes under different names.

To address these limitations, we have developed a new export functionality specifically
designed for session recording. Our goal was to make this export functionality as versatile
as possible, allowing for the usage of existing export formats supported by the previous
export functionality. Likewise, the export plugin that provides the Ansible playbook
format can be utilized by the previous export functionality to export the entire machine
configuration.

To overcome Elektra’s lack of support for removed keys, we have introduced a special
meta key named meta:/elektra/removed to serve as a marker for removed keys.

28

4.3. Tooling

Plugins that explicitly support removed keys, such as the Ansible export plugin, can
represent them in their native format. For all other plugins, the import tooling within
Elektra may ensure that these keys are properly removed.

4.3 Tooling
Elektra has a wide variety of frontends that can interact with it. The two most important
frontends for our approach are the aforementioned Ansible module and the kdb command-
line tool. For both, we have created first-party integration with the session recording
functionality. Other frontends are also easily adaptable, as we provide an easy-to-use
library to administer session recording.

As for the recording itself, it is directly built into Elektra. Every application that uses
Elektra in any form is automatically capable of recording changes to its configuration.
Developers do not have to change a single line of code.

The command-line tool kdb now incorporates several commands specifically designed
to interact with this feature. In order to clearly distinguish the commands that are
specifically used for interacting with session recording, we made the decision to prepend
the record- prefix to each of these commands. This prefix serves as a visual indicator
for users, making it easily recognizable which commands are associated with session
recording functionality.

kdb record-start [<parent_key>]
This command initiates a session recording, capturing subsequent changes made
to the configuration. The optional parameter parent_key can be used to limit the
recording to a specific subtree of the configuration. If a previous session exists, only
the parent key is modified.

kdb record-stop
This command terminates the current recording session, preventing further changes
from being recorded in the configuration. The recording session itself is not cleared
and can be resumed using the kdb record-start command.

kdb record-export [<source>] [<format>]
This command exports the recorded changes in the specified output format. The
keys are exported to stdout in the specified format.
The source parameter represents the path of the key(s) to be exported. Additionally,
a specific format can be specified using the format argument. The format attribute
relies on Elektra’s plugin system to export the keys in the desired format. The
format parameter must correspond to a valid storage plugin.
Both source and format are optional parameters. By default, source is set to / and
format is set to ansible. If only one argument is provided, the command determines
whether it is a key or a format.

29

4. Approach

kdb record-state
This command displays information about the current state of the recording session.
It includes whether recording is currently enabled, the future recording scope within
the configuration (the session may already contain changes from other parts of the
configuration), the number of recorded keys, and the specific keys that have been
recorded.

kdb record-reset
This command clears all recorded changes in the configuration. However, it does
not undo the actual changes made. The command can be executed regardless of
whether recording is active or not.

kdb record-rm <key>
This command removes the specified key from the recording session, effectively
excluding it from the recorded changes. If the key is modified again after being
removed from the session, it will be included in the session once more.

kdb record-undo [<parent_key>]
This command undoes all the changes that have been recorded. The optional
parameter parent_key can be used to limit the undo operation to a specific subtree
of the configuration. After execution, the undone keys are no longer part of the
recording session.

30

CHAPTER 5
Case Study

This chapter aims to answer Research Question 1.

Research Question 1 In which way does Record Elektra benefit the use case of rolling
out changes of configuration?

We do so by demonstrating the capability of the Record Elektra tool to effectively manage
any kind of configuration on a real-world embedded computer system.

5.1 Scenario
Opensesame1, an open-source home automation software, is the primary focus of our
real-world scenario for configuration management. The Opensesame stack will be run
on an OLIMEX OLinuXino LIME 22 open-source single-board computer. We will also
configure the /etc/hosts and /etc/default/keyboard files using Elektra. We chose this setup
to investigate a medium-sized scenario, that contains both fully elektrified applications,
as well as third-party integration for external configuration formats.

5.1.1 Scenario configuration overview
We are in the position of a corporation that has recently constructed a new office space. In
accordance with building and employee safety regulations, each room must be monitored
for both CO2 concentration and smoke accumulation. If either of these values surpasses
a specified threshold, an alarm will be activated within the room, and a notification will
be sent via the company’s Nextcloud chat service.

1https://github.com/elektraInitiative/opensesame
2https://www.olimex.com/Products/OLinuXino/A20/A20-OLinuXino-LIME2/open-source-

hardware

31

5. Case Study

To ensure redundancy in the system, the company has opted to install a single breadboard
computer equipped with sensors in each room. Each of these computers runs on the
Linux operating system with Opensesame.

5.1.2 Iterations

Since this is an unfamiliar area for the IT staff, their plan is to gradually construct the
configuration on a single machine. Once they have completed this process, they aim to
implement the same configuration on all other systems as well. This enables the IT staff
to test the configuration and identify any potential issues or bugs before deploying it
across all other machines.

Iteration 1 - Base Settings

As a first step, all basic settings of the system shall be configured. It encompasses adding
an entry for the Nextcloud server to /etc/hosts.

To maintain optimal security, it is imperative to establish separate login credentials for
the Nextcloud instance of each company host. Consequently, the configuration for each
host must be customized in a unique manner. Having distinct login credentials for each
host enables the system administrators to more easily identify and trace any security
breaches or malicious activity.

The sensors for the room also need to be configured in this step. For this, we have
pre-determined suitable values for the triggering of the alarm and the chat notification
for both the CO2 and smoke sensors. Furthermore, we have to configure which audio file
is played for the alarm.

After testing the configuration on a single host, the configuration is deemed okay and
ready to be rolled out to every host.

Iteration 2 - Configure Settings That Only Apply to Certain Hosts

It was decided that in common areas, like the kitchen, the computers will also feature an
interactive terminal. The idea is to let users view the current and historical air quality.
On those hosts, we will need to configure the keyboard layout.

Iteration 3 - Needless Fine Adjustments

Following a period of time, it is decided to make some minor tweaks to the sensor
configurations. However, after conducting experiments and comparing results with other
hosts, it was determined that the original configuration was actually the most effective.
Therefore, we must now reverse all the modifications made on this particular host.

32

5.2. Preperatory Steps

5.2 Preperatory Steps
Before proceeding with any configurations, there are several steps that need to be
completed manually, without utilizing Elektra. Initially, it is necessary to download the
operating system3 and then flash it onto a microSD card of the appropriate size. This
particular step cannot be automated.

Once that is done, we can begin implementing automation. The system image already
includes an SSH server that is pre-installed and enabled by default. To support Ansible,
Python must be installed first. Fortunately, we can fully automate the installation of
Python, as well as other software and dependencies, using Ansible.

For our specific case study, there are two main components that need to be installed:
Opensame and Elektra. Since the software has not been officially released at the time of
writing this thesis, we had to create a customized Debian repository. This repository
needs to be registered on the system, and the software can then be installed from
there. Detailed instructions and playbooks for these preparatory steps, along with the
overall container playbook, can be found on the accompanying website for this thesis -
https://thesis.maxirlinger.at/#downloads.

5.3 Generating the Configuration
Once all prerequisites are installed, we can establish a connection to the first host and
commence the configuration process. The following subsections will list all the commands
that will be executed on the host during the configuration process, as well as the used
configuration data. The initial step involves enabling session recording.

kdb record-start /

5.3.1 Base Settings
To begin, we need to configure the /etc/hosts file. For this purpose, we must first mount
it into Elektra.

kdb mount -W /etc/hosts system:/hosts hosts

Next, we set the appropriate entry for our Nextcloud instance in the hosts file. It is
important to note that Elektra validates whether the provided input is a valid IP address,
which helps eliminate a wide range of potential errors.

kdb set system:/hosts/ipv4/nextcloud.maxirlinger.at 65.108.157.177

3http://images.olimex.com/release/a20/

33

https://thesis.maxirlinger.at/#downloads

5. Case Study

Now we can proceed to configuring Opensesame. We have the option to either supply
a dedicated kdb command for each key, as we did for the hosts file, or utilize Elektra’s
built-in editor functionality. This feature enables administrators to use their preferred
text editor to modify the configuration in a specified format. Once the file is saved and
the editor process is closed, Elektra will re-import the file and perform checks to verify
the validity of the configuration. If any errors are detected, an error message will be
displayed and the configuration will not be applied.

kdb editor system:/sw/libelektra/opensesame/#0/current toml

At this point, we can provide our initial set of Opensesame settings in TOML format.
We begin by supplying the Nextcloud credentials, as they are required for Opensesame
to start up. Sensitive information in the configuration has been replaced with ****.

[nextcloud]
url = "https://nextcloud.maxirlinger.at/"
chat = "****"
chat.licht = "****"
chat.ping = "****"
user = "****"
pass = "****"

Opensesame will now raise an issue indicating that no sensors have been configured yet.
We once again open the configuration file using kdb editor and add the following
section at the bottom of the file.

[environment]
name = "corporate"

[[sensors]]
loc = "CO2 sensor"
alarm = 250
chat = 200

[[sensors]]
loc = "Smoke sensor"
alarm = 100
chat = 50

We have now registered two sensors with Opensesame. The first one is the CO2 sensor,
which will log an entry into Nextcloud when its reported value exceeds 200 and trigger

34

5.3. Generating the Configuration

an alarm when it exceeds 250. The second sensor is a smoke detector, configured in a
similar manner. The values represent mappings from an analog pin, ranging from 0 to
3.3 volts.

Next, we can configure the audio file that should be played when the alarm threshold is
reached.

[audio]
alarm = "/home/olimex/alarm.ogg"

This concludes the Opensesame-specific part of the configuration. Elektra automatically
restarts Opensesame every time a configuration change is made. Now, we can export our
Ansible playbook for the shared portion of the configuration.

kdb record-export ansible

It is important to highlight that we must make a manual adjustment in the Ansible
file, replacing the Nextcloud credentials with Ansible variables. This approach allows
each host to have its own unique set of credentials. Although the Ansible export plugin
in Elektra can accommodate this requirement, the TOML storage plugin utilized by
Opensesame lacks the capability to store the essential metadata for this purpose.

The recorded configuration will now be rolled out to all hosts that have been defined in
our Ansible inventory file, using the ansible-playbook utility.

5.3.2 Settings That Only Apply to Certain Hosts
We proceed with configuring the machines that require a keyboard layout adjustment. To
accomplish this, we login remotely to the respective host. Subsequently, we need to mount
the /etc/default/keyboard file in Elektra, allowing us to utilize the KDB editor once again
for making the necessary changes. We do not need to activate session recording manually
this time, as it has already been enabled by the deployment of the shared configuration
via Ansible.

kdb mount /etc/default/keyboard system:/keyboard mini
kdb editor system:/keyboard mini

BACKSPACE="guess"
XKBLAYOUT="de"
XKBMODEL="pc105"
XKBOPTIONS="lv3:ralt_switch"
XKBVARIANT=""

35

5. Case Study

All that’s left is again to export theses changes. We get a new Ansible playbook, where
we can specify which group of hosts from our inventory it will be executed on.

kdb record-export ansible

5.3.3 Needless Fine Adjustments
As mentioned earlier, if Ansible was used to configure the system, Elektra’s session
recording gets activated automatically. So when we experiment around with the sensor
values, everything is logged. At the end of the day, we can just issue the undo command
to get back to the previous state.

kdb record-undo

This concludes our configuration scenario.

5.4 Discussion
Based on the execution scenario discussed earlier, it can be concluded that Record Elektra
is capable of effectively configuring and implementing iterative changes in configurations.

For the configuration on the host, we had to execute 10 commands, 5 of them were
caused by configuring with Elektra. Two commands were the mounting of the /etc/hosts
and /etc/default/keyboard files, and one command was the initial session recording start.
Another two commands were issued to export the playbooks for the first two iterations.

The remaining 5 commands would also have been necessary, had we configured the system
manually without Elektra. One command for adding the entry in the hosts file, one
command for editing the keyboards file, and 3 commands for iteratively creating the
configuration for Opensesame.

Additionally, we had to execute two commands on the managing computer, to roll out
the Ansible playbooks. The generated playbooks for both iterations can be found on
https://thesis.maxirlinger.at/#downloads.

With only a handful of commands more, and basically the same workflow on a single
host, we have identified the following key advantages of our approach:

1. Effortless commissioning of new hosts with the same general configuration is made
possible through our integrated automation using Ansible playbooks.

2. The built-in undo feature allows for safe experimentation on the configuration. Users
can always restore the original, unmodified configuration with a single command.

36

https://thesis.maxirlinger.at/#downloads

5.4. Discussion

3. Elektra includes built-in support for validating the correctness of configuration
values. This ensures that we cannot assign incorrect values, such as garbage values,
to IP addresses in the hosts file. Additionally, it provides immediate feedback if we
attempt to configure values for the sensors with incompatible data types. Elektra
could also verify the existence of the specified audio file for the alarm.

4. Elektra’s ability to restart services upon configuration changes is a major benefit.
Elektra successfully restarted Opensesame as needed.

Nonetheless, we have also identified a limitation in our solution. Working with host-
specific values, such as the Nextcloud login credentials in our scenario, is generally feasible
with our implementation. However, the approach we employed, utilizing metadata, is
incompatible with certain storage plugins offered by Elektra. In the case of the TOML
storage plugin, it was unable to store this metadata, resulting in the need for manual
editing of the exported Ansible playbooks.

As for rolling out the changes onto a new host via Ansible, the completely automated
procedure takes about 10 minutes. Of those 10 minutes, 1 minute is used to install
Python in order for Ansible to work properly. Another 9.5 minutes are spent on installing
Elektra and Opensesame. The remaining 30 seconds are the time it takes out to roll out
the configuration itself.

37

CHAPTER 6
Benchmarking

The purpose of this chapter is to address Research Question 2.

Research Question 2 What performance and memory impact does Record Elektra have
compared to vanilla Elektra?

This research question comprises two key components:

1. performance impact, and

2. memory consumption.

To determine the impact on both components, we examine the following four variants of
Elektra:

1. pre-implementation (git hash 59d56a82a3)1,

2. post copy-on-write implementation (git hash 1c7855fc50)2,

3. post record-implementation (git hash 5746f8b56d)3 with recording inactive, and

4. post record-implementation with recording active.

For these benchmarks, we created a benchmark program (located at benchmarks/change-
tracking.c in Elektra’s source tree) using Elektra’s existing benchmarking framework.
This benchmark consists of two rounds. We measure the time for the call of kdbSet each
round with microsecond precision.

1https://github.com/elektraInitiative/libelektra/tree/59d56a82a3
2https://github.com/elektraInitiative/libelektra/tree/1c7855fc50
3https://github.com/elektraInitiative/libelektra/tree/5746f8b56d

39

6. Benchmarking

1. Create a specified number of keys, each with the key name user:/test/sw/org
/myapp/#0/current/section/subsection/keyNUMBER. Every created key
gets a different value valueNUMBER.

2. Modify half of the created keys by giving them the value value-modifiedNUMBER.

To provide a thorough analysis of each impact, each benchmark was conducted with a
series of key numbers ranging from 10 to 1,000,000 keys. The number of keys will be
increased 10-fold each time. So the series consists of 10, 102, 103, 104, 105 and 106 keys.
By doing so, we aim to gain a better understanding of the impact of our changes to
Elektra on performance and memory consumption across different configurations and
data sizes.

All benchmarks were carried out on the following reference system, a virtual machine on
a Proxmox Server:

• CPU: 4 x Intel(R) Xeon(R) CPU X3450 @ 2.67GHz

• RAM: 8 GB DDR-3 1333 MT/s

• OS: Debian 11.6

• Storage: SAS 6G attached RAID 0 SSDs

As for the configuration of Elektra itself, we use a clean installation with the default
settings and plugins. The following build flags were used to build each of the variants:

cmake .. -DCMAKE_BUILD_TYPE=RelWithDebInfo \
-DKDB_DB_HOME="~/elektra-new/home" \
-DKDB_DB_SYSTEM="~/elektra-new/system" \
-DKDB_DB_SPEC="~/elektra-new/spec" \
-DKDB_DB_USER="elektra-new/user" \
-DPLUGINS=ALL \
-DBINDINGS=ALL \
-DCMAKE_INSTALL_PREFIX=/opt/elektra/

6.1 Threats to Validity
There was other development done on Elektra as well. Since only the “recording active”
and “recording inactive” variants use the same git commit, differences between other
versions may in part be influenced by changes other than the ones described in this thesis.

40

6.2. Performance Impact

6.2 Performance Impact
The first impact we are investigating is the potential performance impact caused by our
changes. Our primary focus lies on the total runtime of the implementation.

6.2.1 Methodology
We use a simple clock-on-the-wall benchmarking approach. The benchmark program
reports its running time with microsecond-level accuracy. To ensure the reliability of the
measurements, each benchmark is run ten times. We then calculate the median of the
measured runtimes to ensure single outliers don’t skew the result.

6.2.2 Results - Runtime for Creating Keys
In this section, we are presenting the variations in runtime when generating keys. The
measured times for each variant and number of keys are presented in Table 6.1, providing
a numerical summary. Figure 6.1 offers a graphical representation of how the median
runtimes change with key size. Furthermore, Figures 6.2 to 6.7 present boxplots that
visually illustrate the runtime, offering a more comprehensive understanding of the
statistical variance in the measurements.

Variant / Key Count 10 100 1 000 10 000 100 000 1 000 000
Original 8.02 9.07 25.88 183.25 1874.77 18616.85
Copy-on-Write 9.45 11.08 26.16 183.49 1874.09 18169.58
Recording (inactive) 8.46 9.66 25.27 179.73 1804.28 17444.58
Recording (active) 18.91 21.55 59.38 430.01 4476.13 46162.38

Table 6.1: Runtime for creating for different variants in milliseconds

10 100 1000 10000 100000 1000000

Key Count

R
un

tim
e

(m
s)

10
50

50
0

50
00

Original
Copy−on−Write
Recording (inactive)
Recording (active)

41

6. Benchmarking

Figure 6.1: Comparison of median runtimes for creating keys

Original

Copy−on−Write

Recording (inactive)

Recording (active)

5 10 15 20 25

Runtime (ms)

Figure 6.2: Total runtimes for creating 10 keys

Original

Copy−on−Write

Recording (inactive)

Recording (active)

10 15 20 25

Runtime (ms)

Figure 6.3: Total runtimes for creating 100 keys

Original

Copy−on−Write

Recording (inactive)

Recording (active)

30 40 50 60

Runtime (ms)

Figure 6.4: Total runtimes for creating 1 000 keys

42

6.2. Performance Impact

Original

Copy−on−Write

Recording (inactive)

Recording (active)

200 250 300 350 400 450

Runtime (ms)

Figure 6.5: Total runtimes for creating 10 000 keys

Original

Copy−on−Write

Recording (inactive)

Recording (active)

2000 2500 3000 3500 4000 4500

Runtime (ms)

Figure 6.6: Total runtimes for creating 100 000 keys

Original

Copy−on−Write

Recording (inactive)

Recording (active)

20000 25000 30000 35000 40000 45000

Runtime (ms)

Figure 6.7: Total runtimes for creating 1 000 000 keys

43

6. Benchmarking

6.2.3 Results - Runtime for Updating Keys

In this section, our focus is on examining the runtime progression during the process of
updating keys. As mentioned earlier, half of the previously generated keys are assigned
new values. The numerical summary of the runtime data can be found in Table 6.2.
To provide a more graphical overview, the data is visually summarized in Figure 6.8.
Additionally, Figures 6.9 to 6.14 display boxplots that visually depict the runtime, enabling
a more comprehensive understanding of the statistical variance in the measurements.

Variant / Key Count 10 100 1 000 10 000 100 000 1 000 000
Original 7.95 9.07 24.02 181.41 1823.71 18389.56
Copy-on-Write 10.25 11.15 25.72 181.45 1835.95 18203.52
Recording (inactive) 7.9 9.54 24.81 178.43 1804.4 17805.12
Recording (active) 17.93 22.42 57.71 416.13 4330.15 44792.97

Table 6.2: Runtime for updating for different variants in milliseconds

10 100 1000 10000 100000 1000000

Key Count

R
un

tim
e

(m
s)

10
50

50
0

50
00

Original
Copy−on−Write
Recording (inactive)
Recording (active)

Figure 6.8: Comparison of median runtimes for updating keys

44

6.2. Performance Impact

Original

Copy−on−Write

Recording (inactive)

Recording (active)

5 10 15 20

Runtime (ms)

Figure 6.9: Total runtimes for updating half of 10 keys

Original

Copy−on−Write

Recording (inactive)

Recording (active)

10 15 20 25

Runtime (ms)

Figure 6.10: Total runtimes for updating half of 100 keys

Original

Copy−on−Write

Recording (inactive)

Recording (active)

30 40 50 60

Runtime (ms)

Figure 6.11: Total runtimes for updating half of 1 000 keys

45

6. Benchmarking

Original

Copy−on−Write

Recording (inactive)

Recording (active)

200 250 300 350 400

Runtime (ms)

Figure 6.12: Total runtimes for updating half of 10 000 keys

Original

Copy−on−Write

Recording (inactive)

Recording (active)

2000 2500 3000 3500 4000 4500

Runtime (ms)

Figure 6.13: Total runtimes for updating half of 100 000 keys

Original

Copy−on−Write

Recording (inactive)

Recording (active)

20000 25000 30000 35000 40000 45000

Runtime (ms)

Figure 6.14: Total runtimes for updating half of 1 000 000 keys

46

6.3. Memory Consumption

6.3 Memory Consumption
We now turn our focus onto the development of the memory consumption of our changes.

6.3.1 Methodology
We utilize Valgrind’s Massif heap profiler tool to track peak allocated memory in order
to measure memory consumption. This tool is a well-established and reliable option for
measuring memory usage in software implementations [29, 30].

6.3.2 Results
Similar to the preceding sections, we begin by presenting a numerical summary in Table 6.3
to showcase the memory usage. This information is further visualized in Figure 6.15,
where we have plotted the memory consumption for each variant at different key counts.
To delve deeper into the memory consumption analysis, Figures 6.16 to 6.21 provide a
more detailed perspective on the memory usage for each variant.

Variant / Key Count 10 100 1 000 10 000 100 000 1 000 000
Original 0.18 0.23 0.81 6.8 66.82 669.47
Copy-on-Write 0.18 0.21 0.51 3.64 34.55 340.98
Recording (inactive) 0.19 0.23 0.58 4.25 40.28 396.63
Recording (active) 0.29 0.39 1.42 12.29 119 1174.94

Table 6.3: Peak memory consumption with different key counts in Mebibytes (MiB)

10 100 1000 10000 100000 1000000

Key Count

M
em

or
y

C
on

su
m

pt
io

n
(M

iB
)

5e
−0

1
1e

+0
1

5e
+0

2

Original
Copy−on−Write
Recording (inactive)
Recording (active)

Figure 6.15: Peak memory usage comparison

47

6. Benchmarking

Original

Copy−on−Write

Recording (inactive)

Recording (active)

Memory Consumption (KiB)

0 50 100 150 200 250

Figure 6.16: Peak memory consumption with 10 keys

Original

Copy−on−Write

Recording (inactive)

Recording (active)

Memory Consumption (KiB)

0 100 200 300 400

Figure 6.17: Peak memory consumption with 100 keys

Original

Copy−on−Write

Recording (inactive)

Recording (active)

Memory Consumption (KiB)

0 200 400 600 800 1000 1200 1400

Figure 6.18: Peak memory consumption with 1 000 keys

48

6.4. Callgraph Analysis

Original

Copy−on−Write

Recording (inactive)

Recording (active)

Memory Consumption (MiB)

0 2 4 6 8 10 12

Figure 6.19: Peak memory consumption with 10 000 keys

Original

Copy−on−Write

Recording (inactive)

Recording (active)

Memory Consumption (MiB)

0 20 40 60 80 100

Figure 6.20: Peak memory consumption with 100 000 keys

Original

Copy−on−Write

Recording (inactive)

Recording (active)

Memory Consumption (MiB)

0 200 400 600 800 1000

Figure 6.21: Peak memory consumption with 1 000 000 keys

6.4 Callgraph Analysis

Before we discuss the raw data presented in the previous sections, we want to gain a bit
more insight into where the runtime overhead comes from.

49

6. Benchmarking

6.4.1 Methodology
To identify the source of performance bottlenecks, Valgrind’s Callgrind [31, 32, 33] tool
is employed. This tool has been extensively used in prior research and has been shown
to provide accurate and detailed information on the execution of software.

We concentrate on analyzing the callgrind output for 1 million keys with recording active.
Our specific focus is on identifying the top functions that contribute to the slowdown when
recording is enabled. To facilitate this analysis, we have simplified the provided callgraph.
In these diagrams, we have highlighted the functions specific to session recording as green
boxes.

6.4.2 Analysis
Initially, we concentrate on examining the kdbSet function, which is called by the
benchmark program. This particular callgraph is presented in Figure 6.22.

kdbSet

elektraRecorderRecord
68.45 %

elektraRecordRecord
66.17%

backendsDivide
6.56%

runSetPhase
5.11%

elektraSpecRemove
9.97%

Figure 6.22: Callgraph part for main kdbSet

As we see in Figure 6.22, recording makes up 68.45% of the total time spent in kdbSet.
The function elektraRecorderRecord is the main entry point of the recording hook plugin,
whereas elektraRecordRecord is the function that is actually responsible for recording.

Following that, we come across another time-consuming operation, accounting for 9.97%
of the overall execution time, known as elektraSpecRemove. This function is responsible
for handling the cleanup of specification data and acts as the entry point for a hook,
specifically the specification hook.

The remaining prominent functions in terms of execution time are backendsDivide, which
occupies 6.56% of the execution time, and runSetPhase, accounting for 5.11%. These
functions primarily focus on persisting data and executing all non-hook plugins specified
within the configuration.

50

6.4. Callgraph Analysis

As we are mainly concerned with analyzing the overhead of recording, we jump right into
the sub-graph for elektraRecordRecord in Figure 6.23.

elektraRecordRecord

kdbGet
21.67%

putDiffIntoSessionStorage
12.05%

elektraDiffAppend
5.47%

kdbSet'2
53.24%

Figure 6.23: Callgraph part for elektraRecordRecord

As previously stated, we employ Elektra for storing the recording data. After a short
glance, it becomes apparent that the combined execution time for invocations of kdbGet
and kdbSet accounts for 74.91% of our overall runtime. To distinguish the original kdbSet
call from the one within elektraRecordRecord, we have labelled the latter as kdbSet’2.

The remaining two significant functions, putDiffIntoSessionStorage and elektraDiffAppend,
contribute 12.05% and 5.47% respectively to the overall execution time. The function
elektraDiffAppend is responsible for implementing key state transitions, as illustrated in
Figure 4.3, and thus plays a crucial role in executing a major part of the recording logic.

To complete our deep-dive, we will take a final look at the callgraph for kdbSet’2 in
Figure 6.24.

kdbSet'2

elektraSpecRemove
33.78%

backendsDivide
19.91%

runSetPhase
14.67%

ksDeepDup
8.48%

Figure 6.24: Callgraph part for secondary kdbSet

As this function call does not execute any recording-specific functions, we gain a clearer
understanding of the performance bottlenecks within kdbSet. Highlighted in yellow, we
can once again observe the significant contribution of the elektraSpecRemove function,
which accounts for 33.78% of the total runtime this time.

The functions backendsDivide and runSetPhase, which contribute 19.91% and 14.67%
respectively, are also already familiar. The only new function here is ksDeepDup with

51

6. Benchmarking

8.48%, which is used within multiple places in kdbSet to create deep-duplications of
keysets.

6.5 Discussion
From the runtime observations, the first notable conclusion is that when recording is
disabled, our changes have minimal impact on performance. In fact, thanks to our
optimizations we implemented in Elektra, the runtime performance is even better than
before for key counts of 1000 and above. For smaller key counts, the performance remains
nearly identical. Furthermore, we have observed that the performance characteristics are
comparable between updating and creating keys.

10 100 1000 10000 100000 1000000

10
0

15
0

20
0

25
0

30
0

Key Count

R
el

at
iv

e
R

un
tim

e
(%

)

Original
Recording (inactive)
Recording (active)

Figure 6.25: Runtime impact of our changes relative to the original implementation

Enabling recording introduces a noticeable performance impact, resulting in approximately
2.5 times increase in runtime compared to when recording is inactive. This is clearly

52

6.5. Discussion

depicted in Figure 6.25, where the relative performance of creating keys with recording
active and inactive is compared to the original implementation, providing a visual
representation of the impact.

In Section 6.4, we conducted a detailed analysis of the callgraph for session recording. The
primary observation was that session recording accounts for approximately two-thirds of
the total runtime of the kdbSet function. This finding aligns with the 2.5 times increase
in runtime observed in the time-based benchmarks.

Furthermore, we found that nearly three-quarters of the session recording overhead can
be attributed to the operations of reading and persisting the session diff using the kdbGet
and kdbSet functions. This insight suggests clear optimization opportunities, such as
disabling the spec hook when using Elektra as record storage since it is unnecessary
in this context. Other areas of possible future optimizations are building keysets and
renaming keys.

Regarding memory consumption, we can draw parallel conclusions. We have represented
the relative memory consumption in Figure 6.26, demonstrating the comparison between
active and inactive recording, as well as the original implementation.

10 100 1000 10000 100000 1000000

0
50

10
0

15
0

20
0

Key Count

R
el

at
iv

e
M

em
or

y
C

on
su

m
pt

io
n

(%
)

Original
Recording (inactive)
Recording (active)

Figure 6.26: Memory consumption relative to the original implementation

When recording is inactive, the memory consumption shows significant enhancements
as the number of keys increases, reaching close to a 40% improvement. However, when

53

6. Benchmarking

recording is active, the memory consumption experiences an approximate 80% increase
in comparison to the original implementation.

When comparing active recording with inactive recording, there is a significantly larger
relative increase, converging to approximately three times for large numbers of keys. We
depict this in Figure 6.27.

10 100 1000 10000 100000 1000000

0
50

10
0

15
0

20
0

25
0

30
0

Key Count

R
el

at
iv

e
M

em
or

y
C

on
su

m
pt

io
n

(%
)

Original
Recording (inactive)
Recording (active)

Figure 6.27: Memory consumption relative to inactive recording

When considering the case of 1 000 000 keys, this increase amounts to around 778.31 MiB.
The majority of this increase stems from the requirement to assign new names to each
key when saving the recording data in Elektra, as described in Section 4.1.2. To differen-
tiate added keys, we prepend the prefix /elektra/record/session/diff/added.
For modified keys, we need to store both the old and new values, resulting in the pre-
fixes /elektra/record/session/diff/modified/old and /elektra/record
/session/diff/modified/new respectively.

Combining these prefixes with the original key name, such as user:/test/sw/org
/myapp/#0/current/section/subsection/key999999, leads to an additional
97 bytes of raw data for added keys and 104 bytes (twice) for modified keys. Additionally,
in Elektra, every name is stored in both escaped and unescaped forms. Although the
specific details of this process are not relevant to our observations, it effectively doubles
the memory required for each name, resulting in 194 bytes for each added key and 208
bytes (twice) for modified keys. The data structure responsible for holding the key itself

54

6.5. Discussion

consumes 32 bytes, and the structure for the key name consumes 40 bytes. Thus, for
every added key, we have a total of 266 bytes (32 + 40 + 194), and for every modified key,
we have an extra 560 bytes (32 + 40 + 208 multiplied by two).

Modified keys also have modified values, which contribute an additional 20 bytes for the
value itself and 24 bytes for the data structure holding the value, totalling 44 bytes.

In the benchmark scenario, we have 1 000 000 added keys and 500 000 modified keys.
This results in a total memory consumption of (1, 000, 000 ∗ 266) + (500, 000 ∗ (560 + 44))
bytes, equivalent to 568, 000, 000 bytes or 541.69 MiB.

Hence, we observe that approximately 70% of the overall increase in memory consumption
for the 1 000 000 keys case is attributed to the necessary overhead of storing modified
data and persisting the recording information within Elektra. The other 30% may present
viable optimization potential.

55

CHAPTER 7
Evaluation of Requirements

Compliance

In this chapter, we assess the extent to which our approach satisfies the requirements
outlined in Chapter 3.

FR 1 Record any changes made to the configuration

Our case study effectively demonstrated that our approach is capable of capturing all
user-initiated changes. We have shown that changes made to applications integrated
with Elektra, as well as those unaware of Elektra’s existence, can be reliably recorded.

FR 2 Record a subset of the configuration

As discussed in Section 4.3, the kdb record-start command allows users to specify which
sections of the configuration should be recorded, thereby fulfilling this requirement.

FR 3 Control when recording is active

The case study and Section 4.3 establish that users have complete control over when
session recording is active or inactive. The kdb record-start and kdb record-stop commands
enable starting and stopping recording at will. Furthermore, the Ansible module enables
automated control of recording during rollouts.

57

7. Evaluation of Requirements Compliance

FR 4 Apply the changes to other systems

The case study effectively demonstrated our capability to capture configuration changes
on one system, export them, and successfully apply them to other systems, fulfilling this
requirement.

FR 5 Apply a subset of the changes to other systems

We discuss in Section 4.3 that the configuration export command can be customized to
include only specific parts of the configuration, thereby meeting this requirement.

NFR 1 Transparency to the user

As we demonstrated in the case study, the user is not required to interact with the session
recording feature, apart from starting, stopping and exporting the recorded changes. The
powerful kdb editor tool even allows using the user’s favorite editor to be used to edit the
configuration files directly. We clearly showed that, as far as configuration is concerned,
the workflow remains uninterrupted, thus fulfilling the requirement.

NFR 2 Transparency to the applications

As explained in Chapter 4, the session recording feature is seamlessly integrated into
Elektra without requiring modifications to the application’s codebase. Even applications
not natively integrated with Elektra can benefit from session recording by mounting their
configuration files. Hence, this requirement is satisfied.

NFR 3 Minimal overhead when not in use

Through our benchmarking, we have demonstrated that session recording does not
introduce any noticeable overhead unless actively used. Moreover, we have managed
to decrease Elektra’s peak memory usage compared to its previous state. Thus, this
requirement is successfully fulfilled.

NFR 4 Concurrent process safety

Elektra’s existing file-locking mechanism, designed to prevent simultaneous configuration
modifications by multiple applications, has been extended to meet the demands of session
recording. As a result, this requirement is fulfilled.

58

NFR 5 Accuracy and completeness

As outlined in Chapter 4, our approach employs a direct comparison between what
the application reads from the configuration database and what it writes into the
configuration database, ensuring the reliable detection of all configuration changes.
Hence, this requirement is fully satisfied.

59

CHAPTER 8
Conclusion

Through our case study, benchmarks and evaluation of requirements, we have established
that Record Elektra effectively fulfils the defined requirements and offers several key
advantages.

The integrated automation using Ansible playbooks enables effortless commissioning of
new hosts with the same or similar configurations, as well as updating the configuration
of already existing systems. Another identified key advantage is the now built-in undo
feature, that allows for safe experimentation and easy rollback to a known working
previous configuration state. Elektra’s support for validating configuration values ensures
correctness and its ability to restart services upon configuration changes is highly beneficial.
We have also shown that the solution can be applied to manage software and services
that are not natively integrated with Elektra by directly mounting their configuration
files using a supported storage plugin. However, we have also identified a limitation
related to working with host-specific values when using certain storage plugins.

In terms of runtime performance, we observed that our changes have minimal impact
when recording is disabled, and the runtime performance is even better than before
for larger configuration sizes. Enabling recording introduces a noticeable performance
impact, resulting in approximately 2.5 times longer runtime. Memory consumption also
shows improvements when recording is inactive, but a significant increase when recording
is active. However, we find that the additional functionality is well worth these trade-offs.

Overall, Record Elektra provides a reliable and efficient solution for configuring and
implementing iterative changes in configurations. It offers powerful new features, such
as exporting only the changed configuration and automation capabilities, making it a
valuable tool for managing configuration changes in various systems.

61

8. Conclusion

8.1 Future Work
While Record Elektra has demonstrated its effectiveness in capturing and managing
configuration changes, there are several areas of potential future work that can further
enhance its functionality and performance.

Firstly, optimization opportunities can be explored to improve the runtime performance
and memory consumption when recording is enabled. As we have shown by analyzing
the callgraph, disabling unnecessary hooks, such as the spec hook, specifically for session
recording could noticeably reduce overhead. Additionally, optimizing operations related
to building keysets and renaming keys can further improve performance.

Secondly, the reliance on storage plugins for persisting metadata can be a major drawback,
as we have demonstrated by our host-specific values in the case study. Finding a solution
that allows metadata storage for all storage plugins would eliminate the need for manual
editing of exported Ansible playbooks in such cases. We already envision the possibility
of a fallback storage mechanism for unsupported metadata in such cases.

Additionally, we have laid the groundwork for expanding the scope of session recording
beyond Elektra. We believe it should be feasible to monitor and capture changes to
configuration files without relying solely on the kdb editor command.

By addressing these areas of future work, Record Elektra can continue to evolve and
improve, offering even more robust configuration management capabilities for various use
cases.

62

List of Figures

2.1 The System Configuration Problem as described by Anderson [9] 5
2.2 Tree representation of key database . 7

4.1 Workflow overview of iterative configuration building 21
4.2 Aggregation of individual part diffs into a comprehensive session diff . . . 22
4.3 Key state transitions (without transitions from unchanged) 23
4.4 Copy-on-Write keys . 26
4.5 Copy-on-Write keyset . 26

6.1 Comparison of median runtimes for creating keys 41
6.2 Total runtimes for creating 10 keys . 42
6.3 Total runtimes for creating 100 keys . 42
6.4 Total runtimes for creating 1 000 keys . 42
6.5 Total runtimes for creating 10 000 keys . 43
6.6 Total runtimes for creating 100 000 keys 43
6.7 Total runtimes for creating 1 000 000 keys 43
6.8 Comparison of median runtimes for updating keys 44
6.9 Total runtimes for updating half of 10 keys 45
6.10 Total runtimes for updating half of 100 keys 45
6.11 Total runtimes for updating half of 1 000 keys 45
6.12 Total runtimes for updating half of 10 000 keys 46
6.13 Total runtimes for updating half of 100 000 keys 46
6.14 Total runtimes for updating half of 1 000 000 keys 46
6.15 Peak memory usage comparison . 47
6.16 Peak memory consumption with 10 keys 48
6.17 Peak memory consumption with 100 keys 48
6.18 Peak memory consumption with 1 000 keys 48
6.19 Peak memory consumption with 10 000 keys 49
6.20 Peak memory consumption with 100 000 keys 49
6.21 Peak memory consumption with 1 000 000 keys 49
6.22 Callgraph part for main kdbSet . 50
6.23 Callgraph part for elektraRecordRecord . 51
6.24 Callgraph part for secondary kdbSet . 51
6.25 Runtime impact of our changes relative to the original implementation . . 52

63

6.26 Memory consumption relative to the original implementation 53
6.27 Memory consumption relative to inactive recording 54

64

Bibliography

[1] RedHat, Inc., “Ansible is Simple IT Automation.” https://www.ansible.com/.
Accessed on 2022-02-11.

[2] Progress Software Corporation, “Chef Software DevOps Automation Solutions |
Chef.” https://www.chef.io/. Accessed on 2022-02-11.

[3] Puppet, Inc., “Powerful infrastructure automation and delivery | Puppet.” https:
//puppet.com/. Accessed on 2022-02-11.

[4] Docker, Inc., “Empowering App Development for Developers | Docker.” https:
//www.docker.com/. Accessed on 2022-02-11.

[5] The Kubernetes Authors, “Kubernetes.” https://kubernetes.io/. Accessed
on 2022-02-11.

[6] Elektra Initiative, “ElektraInitiative.” https://www.libelektra.org/. Ac-
cessed on 2022-02-11.

[7] M. Raab, “Improving system integration using a modular configuration specification
language,” in Companion Proceedings of the 15th International Conference on
Modularity, pp. 152–157, 2016.

[8] M. Burgess and A. L. Couch, “Modeling next generation configuration management
tools.,” in LISA, pp. 131–147, 2006.

[9] P. Anderson, “System configuration,” Usenix, 2006.

[10] P. Anderson, “Towards a high-level machine configuration system,” in In Proceedings
of the 8th Large Installations Systems Administration (LISA) Conference, 1994.

[11] M. Burgess et al., “Cfengine: a site configuration engine,” in in USENIX Computing
systems, Vol, Citeseer, 1995.

[12] Northern.tech AS, “CFEngine.” https://cfengine.com/. Accessed on 2022-05-
09.

[13] M. Raab, “A modular approach to configuration storage,” Diploma thesis, Vienna
University of Technology, 2010.

65

https://www.ansible.com/
https://www.chef.io/
https://puppet.com/
https://puppet.com/
https://www.docker.com/
https://www.docker.com/
https://kubernetes.io/
https://www.libelektra.org/
https://cfengine.com/

[14] M. Raab, B. Denner, S. Hahnenberg, and J. Cito, “Unified configuration setting
access in configuration management systems,” in Proceedings of the 28th International
Conference on Program Comprehension, pp. 331–341, 2020.

[15] B. Denner, “Configuration management with libelektra,” Diploma thesis, Vienna
University of Technology, 2018.

[16] T. Waser, “Configuration management with ansible and libelektra,” Bachelors thesis,
Vienna University of Technology, 2019.

[17] D. A. Patterson et al., “A simple way to estimate the cost of downtime.,” in LISA,
vol. 2, pp. 185–188, 2002.

[18] D. Hall, Ansible configuration management. Packt Publishing, 2013.

[19] J. Hess, “etckeeper.” https://etckeeper.branchable.com/. Accessed on
2022-04-28.

[20] S. Apel, J. Liebig, B. Brandl, C. Lengauer, and C. Kästner, “Semistructured merge:
Rethinking merge in revision control systems,” in Proceedings of the 19th ACM
SIGSOFT Symposium and the 13th European Conference on Foundations of Software
Engineering, ESEC/FSE ’11, (New York, NY, USA), pp. 190–200, ACM, 2011.

[21] G. Cavalcanti, P. Borba, and P. Accioly, “Evaluating and improving semistructured
merge,” Proceedings of the ACM on Programming Languages, vol. 1, no. OOPSLA,
pp. 1–27, 2017.

[22] M. Sousa, I. Dillig, and S. K. Lahiri, “Verified three-way program merge,” Proceedings
of the ACM on Programming Languages, vol. 2, no. OOPSLA, pp. 1–29, 2018.

[23] J. Cito, “docker-record - A Semi-automated Approach from Container Setup to Dock-
erfile.” https://speakerdeck.com/citostyle/docker-record. Accessed
on 2022-04-25.

[24] J. Cito, “docker-record.” https://github.com/citostyle/docker-record.
Accessed on 2022-02-11.

[25] K. Pohl, Requirements engineering fundamentals: a study guide for the certified
professional for requirements engineering exam-foundation level-IREB compliant.
Rocky Nook, Inc., 2016.

[26] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-functional requirements in
software engineering, vol. 5. Springer Science & Business Media, 2012.

[27] C. Ebert, “Putting requirement management into praxis: dealing with nonfunctional
requirements,” Information and Software Technology, vol. 40, no. 3, pp. 175–185,
1998.

66

https://etckeeper.branchable.com/
https://speakerdeck.com/citostyle/docker-record
https://github.com/citostyle/docker-record

[28] D. Firesmith, “Using quality models to engineer quality requirements.,” Journal of
Object Technology, vol. 2, pp. 67–75, 09 2003.

[29] The Valgrind Developers, “Massif: a heap profiler.” https://valgrind.org/
docs/manual/ms-manual.html. Accessed on 2023-04-16.

[30] J. Alberdi-Rodriguez, A. Rubio, M. Oliveira, A. Charalampidou, and D. Folias,
“Memory optimization for the octopus scientific code,” 2015.

[31] N. Nethercote, R. Walsh, and J. Fitzhardinge, “Building workload characteriza-
tion tools with valgrind,” in 2006 IEEE International Symposium on Workload
Characterization, pp. 2–2, IEEE, 2006.

[32] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight dynamic
binary instrumentation,” ACM Sigplan notices, vol. 42, no. 6, pp. 89–100, 2007.

[33] The Valgrind Developers, “Callgrind: a call-graph generating cache and branch pre-
diction profiler.” https://valgrind.org/docs/manual/cl-manual.html.
Accessed on 2023-04-16.

67

https://valgrind.org/docs/manual/ms-manual.html
https://valgrind.org/docs/manual/ms-manual.html
https://valgrind.org/docs/manual/cl-manual.html

	Kurzfassung
	Abstract
	Contents
	Introduction
	Aim of this Thesis
	Methodological Approach
	Scope and Limitations
	Structure of this Thesis

	Background
	Configuration Management
	Elektra
	Ansible
	Related Work

	Requirements
	Functional Requirements
	Non-Functional Requirements

	Approach
	Tracking Configuration Changes using Elektra
	Deploying Changes with Ansible
	Tooling

	Case Study
	Scenario
	Preperatory Steps
	Generating the Configuration
	Discussion

	Benchmarking
	Threats to Validity
	Performance Impact
	Memory Consumption
	Callgraph Analysis
	Discussion

	Evaluation of Requirements Compliance
	Conclusion
	Future Work

	List of Figures
	Bibliography

