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Kurzfassung

Antikörper sind ein wesentlicher Bestandteil unseres Immunsystems, indem sie Immun-
reaktionen auslösen oder körperfremde Proteine unwirksam machen. Wissen über den
Aufbau von Antikörper und deren konkreten Bindungsmechanismen erlaubt es, viel-
versprechende Antikörper für Therapien auszuwählen oder sogar neue Antikörper zu
entwickeln. Obwohl einige regelbasierte Methoden (z.B. Kraftfelder) für diese Aufgabe
adaptiert wurden, bleibt die Herausforderung, die Bindungsaffinität zwischen Antikörpern
und Antigenen genau vorherzusagen, bestehen.

In dieser Arbeit schlagen wir einen rein datengetriebenen Ansatz zur Vorhersage von
Antikörper-Antigen-Bindungsaffinität durch geometrische Deep-Learning-Methoden vor.
Das Ziel unserer Arbeit ist es, die Leistung eines Graph-Neuronalen-Netzwerks (GNN)
zu bewerten und es mit einem modernen Kraftfeld zu vergleichen. Dazu werden kristal-
lisierte Antikörper-Antigen-Komplexe in Graphen Strukturen umgewandelt, um einen
für maschinelles Lernen geeigneten Datensatz zu erstellen. Darüber hinaus werden ähn-
liche Daten (z.B. Protein-Protein-Komplexe) zusammengestellt, um die Auswirkungen
des Transferlernens auf die Vorhersage der Antikörper-Antigen-Bindungsaffinität zu
beurteilen.

Die Implementierung des von uns entwickelten GNN bietet ein PyTorch-Gerüst für
die generische Vorhersage der Bindungsaffinität von graphähnlicher Strukturen. Das
trainierte GNN zeigt vielversprechende Ergebnisse bei diversen Antikörper-Antigen-
Daten und übertrifft das verglichene Kraftfeld. Die implementierten Transfer-Learning-
Techniken führten nicht zu einer signifikanten Leistungsverbesserung, obwohl es noch
zahlreiche solcher Techniken noch zu erforchen gibt. Die Effektivität von GNNs und ihre
durchgängige Differenzierbarkeit unterstreichen ihr Potenzial für die Untersuchung von
Antikörper-Bindung. Darüber hinaus ermöglichen diese Eigenschaften auch Anwendungen
zur Verbesserung und dem Design von neuartigen experimentellen und therapeutischen
Antikörpern.
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Abstract

Antibodies are an integral part of our body’s immune system due to their ability to
trigger immune responses or render exogenous proteins ineffective. The mechanism of
binding of antibodies has been studied thoroughly in order to select promising antibodies
or even design new ones. Even though a variety of knowledge-primed methods (e.g. force
fields) have been adopted for affinity prediction, the challenge of accurately predicting
binding affinity between antibodies and antigens remains.

In this thesis, we propose a purely data-driven approach to predict antibody-antigen
binding affinity using geometric deep learning methods. Our research aims to evaluate
the effectiveness of graph neural networks (GNN) and compare it to a state-of-the-art
force field-based method. In order to achieve this, available crystallized antibody-antigen
complexes are converted to graph structures and used to train GNN-based learning
methods. In addition, given the scarce availability of training data for the antibody-
antigen affinity prediction problem, we explore the potential of transfer learning to
improve predictive performance (e.g. through the inclusion of general PPI complexes).

The implementation of our designed GNN provides a PyTorch framework for generic
binding affinity prediction using graph-like structures. The trained GNN outperforms the
force field baseline on a diverse set of antibody-antigen complexes by showing robust results
across low- and high-quality structures. The implemented transfer-learning techniques did
not result in significant performance improvements, although numerous such techniques
remain to be explored. The effectiveness of GNNs for affinity prediction and their end-to-
end differentiability highlights their potential for studying the mechanisms of antibody
binding. These properties further allow applications in the improvement and de novo
design of experimental and therapeutic antibodies.
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CHAPTER 1
Introduction

1.1 Motivation
The necessity to react to ever-changing environments and pathogens requires the ability
to adapt to different situations quickly. Therefore, the family of jawed vertebrates has
developed a mechanism to produce a specific class of proteins called antibodies. These
proteins can bind to specific exogenous proteins (also referred to as antigens) leading to
downstream immune responses or cluttering of the bound proteins, thus making them
ineffective [CA06].

The functionality of antibodies can also be used therapeutically by producing antibodies
in animals or cell cultures and administering them to patients. The computational design
of new antibodies that bind to specific antigens has seen increasing attention in recent
years [NAB+20]. Here, a major remaining challenge is to predict the binding affinity
(binding strength) between designed antibodies and antigens.

The basic structure of antibodies and the principles guiding antibody-antigen binding have
been studied extensively over the last decades [BGM+88, SFW93]. Methods have been
developed to measure the location of atoms in molecules that allow a 3D representation
of an antibody bound to an antigen (Figure 1.1).

The binding between an antibody and antigen is based on non-covalent and mostly weak
interactions between the atoms of both proteins [SCKO13]. These interacting forces can
be modeled using biophysical knowledge. The 3D representation in combination with
this biophysical knowledge led to the development of force field methods. Such methods
describe the energetic landscape of molecules with so-called force fields and based on the
atom coordinates derive the energy present in a molecule. Although these methods are
capable of modeling some aspects of protein-protein binding, the underlying physical
interaction functions are not yet precise enough to accurately predict antibody-antigen
binding affinity.
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1. Introduction

Figure 1.1: Cartoon representation of an antibody-antigen complex (PDB ID: 5W6G).
Focus on the 3D structure of the amino acid chains. Only the binding site of the antibody
is shown.

Recent advances in machine learning, specifically in the domain of molecular biology,
show promising results for a multitude of tasks [JLGWS21, ZCH+20]. Especially deep
learning-based antibody structure prediction and generation methods could benefit from
a binding affinity prediction method written in the same framework to improve the
structures of bound proteins.

Antibody-antigen complexes are highly diverse structures containing a lot of information
leading to a high dimensional numerical representation. Deep learning frameworks
have the potential to learn expressive representations of high-dimensional data in lower-
dimensional space for a specific task. Especially, graph neural networks are able to exploit
the inherent spatial structure of protein complexes and utilize geometric priors to extract
relevant information [BBCV21]. However, graph neural networks, like most deep learning
approaches, require many data points during training.

Determining the bound structure of antibody-antigen complexes and their affinity ex-
perimentally proves to be a cumbersome task leading to few available data points. This
suggests the incorporation of related data by applying suitable algorithms while training
the models. Different, but related, research fields (eg. drug-target interaction [ZZW+22]
or deep mutational scanning data [HMW+22]) have received more attention and, there-
fore, more data are available. These data could possibly provide valuable information for
antibody-antigen affinity prediction.

1.2 Aim of the work
In the last three decades, different binding affinity prediction algorithms have been
developed, ranging from simple algorithms to machine learning and now deep learning
methods [SDW+20, SZ20, VCC+18]. A major focus of this research was on the evaluation

2



1.2. Aim of the work

of small molecules for drug development. The interaction between two proteins, and
especially between an antibody and an antigen, has been insufficiently studied and
state-of-the-art models are not sufficiently accurate [TRA+19]. Another challenge is the
sparsity of training data for this specific type of interaction that hinders the development
of machine learning approaches.

A promising way to improve the prediction of binding affinity is to better incorporate
structural information and leverage various data and training modalities. This includes
in particular the design of a deep graph neural network, aggregation of relevant data and
utilization of transfer learning suitable for the available data. This leads to the following
research questions:

Research Questions

RQ1: Does a geometric deep learning approach outperform the Rosetta
Energy Function regarding the predictive power of antibody-antigen binding
affinity?

The first research question of this thesis is focused on the comparison of geometric
deep learning methods with knowledge and statistically primed methods such as force
fields. Therefore, a geometric deep learning model (Graph Neural Network) designed for
antibody-antigen binding affinity prediction is implemented and compared to a baseline.
The currently best available method is the Rosetta Force Field (precise Rosetta Energy
Function 15 [ALFJ+17]) for the task of antibody-antigen binding affinity prediction
[GVZ+21].

Both approaches are compared based on three performance measures: Root-mean-squared-
error, Pearson correlation, and absolute error.

RQ2: Do transfer-learning strategies (domain and/or task, parallel and/or
sequential) to overcome data scarcity limitations improve the predictive power
of graph neural networks for antibody-antigen binding affinity prediction?

The scarcity of antibody-antigen data with structural information and absolute binding
affinities suggests incorporating related data and applying algorithms designed for utilizing
such data. The goal of this thesis is to compare transfer-learning (TF) and multitask-
learning (MTL) approaches, that aim to overcome those limitations, regarding their
improvement of the predictive power of antibody-antigen binding affinity (Root-mean-
squared error).

Therefore, data from related domains (eg. protein-protein binding) or antibody-antigen
data for a different task (eg. change in binding affinity based on a mutation) should be
utilized during training. The model will either be trained on the selected data/tasks
in parallel or first pretrained using the related information and then finetuned on our
antibody-antigen binding affinity dataset.

3



1. Introduction

1.3 Thesis outline
To answer the above-stated questions, an introductory overview of antibodies, antigens
and their binding is given. Additionally, the preliminaries include a recap of the graph
notation used in the thesis and an overview of geometric deep learning and transfer
learning. In this chapter, the necessary background information to understand the thesis
is summed up.

Following the preliminaries, a section on related work will provide an overview of the
fields of binding affinity prediction and protein structure prediction. Approaches from
both fields will be used for transfer learning to answer RQ2. We lay an emphasis on force
field methods and give a more detailed description of the baseline, the Rosetta Energy
Function 15.

The next chapter will describe the available data and analyze the differences and similar-
ities between the antibody-antigen dataset and the related datasets. Then, the methods
and implementation details for the experiments are given. Here, we present an overview
of the implementation and describe the most important aspects in more detail.

Finally, the experiments to answer both research questions are introduced and in the next
chapter, the results are presented and reflected. The thesis concludes with an outlook on
possible ways to improve the approach presented or promising alternatives.
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CHAPTER 2
Preliminaries

This chapter serves as an introduction and overview of groundwork references built upon
in this thesis. First, we introduce biological information and terminology relevant to this
work. Then, the concept of graph theory is reviewed and the notation used in this thesis
is established. Lastly, we outline the concepts of graph neural networks and transfer
learning.

2.1 Antibody-Antigen Binding
The guiding principles underlying antibody-antigen binding (and in general protein-
protein interactions) are not yet fully understood. This stems among other things from
the fact that such interactions, as well as the involved binding partners, are found in
a wide variety regarding their structure and binding sites [NT03]. A slightly distinct
but highly diverse group is that of antibody-antigen interactions. To understand the
uniqueness of this group, we highlight the common structure of antibodies first.

2.1.1 Antibodies
The basic composition of four polypeptide chains1 compromising an antibody is the same
across all different variants. As shown in Figure 2.1 an antibody consists of two heavy
(H) chains and two light (L) chains. Both the L- and H-chains are identical and are
linked by disulfide bonds. Together they form the typical Y-shaped form of antibodies
with the "arms" of the structure being called the antigen-binding fragments (Fab) as seen
in Figure 2.1B [SCKO13].

Each Fab contains two variable fragments (VH and VL in the H- and L-chain respectively)
that together form the variable fragment (FV) of the Fab. The binding to an antigen

1Amino-acids linked by peptide bonds
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2. Preliminaries

Figure 2.1: (A) Cartoon representation of the 3-D structure of an antibody molecule
(PDB ID: 1IGT). (B) Schematic view of the antibody molecule [SCKO13]

happens through the FV and is therefore called the antigen-binding-site or paratope.
Each variable fragment (VL & VH) is composed of three hypervariable loops that play
an important part in the high specificity and affinity of individual antibodies [SCKO13].

2.1.2 Binding Mechanism
Binding between antibodies and antigens occurs by non-covalent2 forces that are not
persistent and can be disrupted by a change in the environment. As seen in Figure 2.2
the counterpart of the paratope on the antibody, the binding site on the antigen, is called
an epitope [Jan01].

In the context of this thesis only the FV of the Fab that actually binds an antigen is
considered and shown (Figure 2.2 right side). The antigen (Figure 2.2 left side) is one of
the surface proteins of the full influenza virus, that acts as a target for this antibody.
Together they form a bound antibody-antigen complex, or simply complex.

The amino acids (referred to as residues within polypeptide chains) of the paratope and
epitope interact in a bound complex through weak and non-covalent forces. These forces
are described in detail by Janeway et al. [Jan01] and summarized below:

2No shared electrons in the interaction
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2.1. Antibody-Antigen Binding

Figure 2.2: Cartoon representation of the FV of an antibody bound to an antigen (here,
an influenza virus protein) (PDB ID: 5W6G)

1. Electrostatic forces: Attraction between opposite charges

2. Hydrogen bonds: Sharing of hydrogen atoms

3. Van-der-Waals forces: Fluctuations in electronic charge induce dipoles and lead to
attraction between neighboring atoms

4. Hydrophobic forces: Hydrophobic surfaces are inclined to group together to exclude
H2O molecules

The interactions mentioned above are individually rather weak forces contributing only a
few calories per mole. However, together they can result in a reasonable binding energy
of 12 kcal/mol, which can be found in the typical interaction of antibodies and antigens
[PLJY14].

The definition of paratope and epitope is not entirely coherent in the literature, as it is
often based on an arbitrarily chosen distance cutoff (given in Ångström3) that defines
interacting residues. In our experiments, we applied a commonly used cutoff value of
5Å ([GPC+05, PLT01, LSJ08]) and all residues in the antibody or antigen that have a
counterpart in the other protein are considered to be part of the paratope or epitope,
respectively.

In the further context of this thesis, the paratope and epitope together are termed the
binding interface (or simply interface) and residues in either epitope or paratope will be
called interface residues.

3Ångström (Å) is a distance measure commonly used in structural biology: 1Å = 10−10m
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2. Preliminaries

Binding affinity measurements

There are multiple ways to measure the energy involved in the binding of two molecules.
One of the most commonly employed ways for proteins is the measurements of the
concentration of each binding partner (A & B), as well as of the complex AB.4 The
binding affinity determined by such experiments is usually described in terms of the
dissociation equilibrium constant or KD [Pol10].

In general, the biomolecular reaction is described as below:

A + B ⇌ AB (2.1)

The right-facing arrow indicates the binding reaction, while the left-facing arrow specifies
the dissociation of AB to A and B. For both reactions we can define:

rate of binding = k+(A)(B)

rate of dissociation = k−(AB)

with k+ and k− being the association and dissociation rate constant, respectively, and ()
indicating the concentration of the molecule [Pol10].

An equilibrium constant is, by definition, measured in an equilibrium of the binding and
dissociation rates given by:

rate of binding = k+(A)(B) = k−(AB) = rate of dissociation

To be precise, the dissociation equilibrium constant is equal to the ratio of the binding
rate and dissociation rate or the ratio of the concentration of the free molecules (Aeq)
and (Beq) and the bound complex (ABeq) in equilibrium [Pol10].

KD = k−
k+

= (Aeq)(Beq)
(ABeq) (2.2)

Binding affinity can also be described by quantifying the physical interaction forces as
the Gibbs free energy (∆G) that is directly related to the thermodynamic KD value by

∆G = −RT ln 1
KD

(2.3)

with R being the gas constant and T the absolute temperature of the KD experiment
[Pol10].

4There are many difficulties and nuances to consider while measuring the binding affinity of two
molecules. More information in [Pol10, JAVH20]
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2.1. Antibody-Antigen Binding

2.1.3 Modeling protein complexes as graphs

Figure 2.3: Examples for graph representations of a protein complex (PDB ID: 5W6G)
A) Cartoon representation B) Sticks representation C) C-alpha atoms with 5Å-proximity
edges

Protein complexes (as well as single proteins) can be represented in different forms
depending on the conveyed information. Focusing on the surface of proteins we can
model them as 3D objects (Volumes) or with the amino acid chain in mind they can be
represented as character sequences. However, if the focus lies on the 3D-position of each
residue, protein complexes can also be represented as graphs.

Figure 2.3 shows three reasons why a graph representation is suitable for protein com-
plexes:

(A) Sub-Figure A shows the cartoon representation of proteins, which is a common
representation in the fields of molecular biology and chemistry. This representation
indicates the residue sequence of proteins (amino acids linked by peptide bonds).
In this case, residues could be seen as nodes and peptide bonds could be seen as
edges.

(B) Sub-Figure B shows the stick representation that focuses on atoms and their covalent
bonds5. Here atoms could be interpreted as nodes and the covalent bonds as edges.

(C) Sub-Figure C shows the residues (here only the Cα atoms are shown) as spheres
and the 5Å proximity edges. Therefore, a graph can be built based on the proximity
of residues (or atoms) with edges if two residues are closer than a certain proximity
threshold.

5Covalent bonds involve sharing of electrons between atoms
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2. Preliminaries

2.2 Graph Theory
The mathematical field of graph theory helps to formalize the above-derived graph and
enables numeric representations for this kind of data structure. The scientific endeavor
towards a graph theory started with the publication of Leonard Euler called Seven bridges
of Königsberg in 1736 [BLW76]. More than 100 years later the term graph was introduced
by Sylvester [SYL78] and over the years the problem was formalized in a way as known
today.

Definition 2.2.1 (graph). A graph G(V, E) is defined as a pair of a finite set of nodes
V = V(G) and a finite set of edges E = E(G) ⊆ V × V. An edge e ∈ E(G) is directed,
therefore an ordered pair e = {v1, v2} of nodes v1, v1 ∈ V(G), or undirected and is
represented as an unordered pair e = (v1, v2) = v1, v2 of nodes v1, v2 ∈ V(G) [DGKP14].

The neighborhood N (ni) = {nj |(ni, nj) ∈ E(G)} of a node ni is defined as all nodes
connect to ni.

If all edges e ∈ E(G) are directed G(V, E) is called directed graph, whereas G(V, E) is
called undirected graph if all edges e ∈ E(G) are undirected.

Applying this notation to the three graphs in Figure 2.3 gives the following definitions:

(A) GA(V, E)
v ∈ V(GA) for all residues v in the complex
e = (v1, v2) ∈ E(GA) if residue v1 and residue v2 are connected by peptide bond

(B) GB(V, E)
v ∈ V(GB) for all atoms v in the complex
e = (v1, v2) ∈ E(GB) if atom v1 and atom v2 are connected by a covalent bond.

(C) GC(V, E)
v ∈ V(GC) for all residues v in the complex
e = (v1, v2) ∈ E(GC) if d(v1, v2) ≤ x, with
x...proximity threshold (eg. 5Å)
d...distance (eg. euclidean distance)

Numerical representation of graphs

A graph G(V, E) with V(G) = {v1, v2, ..., vn} can also be represented numerically, which
allows mathematical transformations. Nodes vi ∈ V(G) can be represented by a vector
xi ∈ Rm (feature vector) with m dimensions. Stacking all of these feature vectors leads
to the node feature matrix.

10



2.3. Geometric Deep Learning

Definition 2.2.2 (node feature matrix). The node feature matrix X (G) of graph
G(V, E) is defined as the combination of all the node feature vectors {xi|∀vi ∈ V(G)}
[DGKP14].

X = (x1, x2, ..., xn) ∈ Rn×m

The edges of a graph can be represented by an adjacency matrix.

Definition 2.2.3 (adjacency matrix). An adjacency matrix A(G) = (aij) of graph
G(V, E) with node set V(G) = {v1, v2, ..., vn} and edge set E(G) ∈ V × V is a quadratic
n × n matrix [DGKP14].

aij = 1 if(vi, vj) ∈ E(G)
0 otherwise

This concept can be extended to include edge information that leads to an edge tensor.

Definition 2.2.4 (edge tensor). An edge tensor ET (G) = (eijc) of graph G(V, E) with
node set V(G) = {v1, v2, ..., vn} and p-dimensional edge information {zij1, zij2, ..., zijp}
for each edge (vi, vj) is a n × n × p matrix [DGKP14].

eijc = zijc if(vi, vj) ∈ E(G)
0 otherwise

An example of edge information zijc of edge (vi, vj) ∈ E(G) could be the Euclidean
distance between nodes vi and vj . With this numeric representation of graphs, machine
learning algorithms can be applied to learn meaningful transformations of this kind of
data.

2.3 Geometric Deep Learning
Geometric Deep Learning is defined by Bronstein et al. [BBL+17] as an umbrella term
for deep learning methods that generalize to non-euclidean structures such as graphs.
Using this terminology they try to unify the notion of using geometric priors in deep
learning systems, like convolutional filters in Convolutional Neural Networks (CNNs) and
extend these ideas to other domains.6

A fundamental prior of geometric deep learning systems is the utilization of possible
symmetries. If the transformation of an object leaves certain properties unchanged, it
is said to be invariant. For example, the task of binding affinity prediction is the same
irrespective of the rotation of the complex, leading to the need for a rotation-invariant
function [BBCV21].

6More information and mathematical elaboration can be found in the publication [BBL+17] and in
the pre-print of a book [BBCV21] about Geometric Deep Learning by Bronstein et al.
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2. Preliminaries

Definition 2.3.1. Let g be a transformation of the input x then the function f is said
to be g-invariant if f(g(x)) = f(x) [BBL+17].

If the output of a function changes in the same way as the input is transformed, the
function is called equivariant to this transformation.

Definition 2.3.2. Let g be a transformation of the input x and output of function f
then the f is said to be g-equivariant if f(g(x)) = g(f(x)) [BBL+17].

The task of structural binding affinity prediction is invariant to rotations and translations
of the input structure leading to the need for functions that have these properties. Neural
networks on graphs can be defined to enforce invariance or equivariance with respect to
their input.

2.3.1 Graph Neural Networks
Due to their flexibility, graphs are employed as the primary data structure in diverse
research areas including social science (social networks), natural science (protein-protein
interaction), or knowledge graphs. This led to an increased focus on machine-learning
approaches for graphs over the last few years.

Especially the advances in deep learning for visual computing through the use of CNNs
gave rise to a great deal of interest in deep learning in general and graph deep learning
in particular [WPC+21].

Graph neural networks (GNNs) can be categorized based on different criteria [WPC+21]:
recurrent GNNs, convolutional GNNs, graph autoencoders, spatio-termporal GNNs. The
group of convolutional GNNs will be the focus of this thesis7.

Convolutional operations on graphs can be seen as parameterized aggregations of node
information based on the graph structure (also called message passing and described in
detail below). Zhou et al.[ZCH+20] display some of the similarities to convolutional filters
in CNNs: Both aggregate information from a local neighborhood based on parameterized
filters. In contrast to the fixed-sized neighborhood in CNNs, the local neighborhood in
graphs is based on the graph topology and therefore varies from node to node. Thus,
one of the major challenges of GNNs is the definition of convolutional operations that
deal with differently sized neighborhoods while maintaining permutation-invariance8.

Message Passing

The concept of graph convolutional operations is also known as message passing. The
term message passing stems from the flow of information (messages) in the graph and
how this process can be utilized in GNNs.

7More information on spatial and spectral convolutional GNNs and their difference can be found in
[ZCH+20] and [BBCV21]

8Invariance of a function to the ordering of the input
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2.3. Geometric Deep Learning

Figure 2.4: Message Passing: Three-step process of the graph convolutional operation.

Figure 2.4 shows the basic principles of graph convolutional operations. First, the local
neighborhood of a node is aggregated with a permutation-invariant aggregation function
(e.g. sum-, mean-, max-pooling). The aggregated information is then transformed via
a parameterized function fθ (usually a neural network) and the node information is
updated. This operation is performed for every node vi ∈ V(G). By stacking multiple
convolutional operations, we can pass information from nodes not directly connected by
an edge, and so achieve the traversal of information throughout the full graph.

As an example with local neighborhood summation as aggregation function, one of the
convolutional operators used in this thesis is GCNConv [KW17].

Definition 2.3.3 (GCNConv). The convolutional operator GCNConv on graph G is
defined for node vi ∈ V(G) with xi being the node information for node vi as fθ(xi) = x′

i

with

x′
i = Θ⊤

j∈N (vi)

aj,i

d̂j d̂i

xj (2.4)

for node-wise update with d̂i = 1 + j∈N (i) aj,i.

In matrix notation for the full graph

X′ = D̂−1/2ÂD̂−1/2XΘ. (2.5)

with ÂT = AT + I being the adjacency tensor with self loops and D̂ii = j=0 Âij being
the degree matrix [KW17].

Another popular approach is to use an attention mechanism in the aggregation function
to weight the information of the neighboring nodes. We used an improved version of
the Graph-Attention-Convolution (GATConv) layer [VCC+18] called the GATv2Conv by
Brody et al. [BAY22] in this thesis.
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Definition 2.3.4 (GATv2Conv). The convolutional operator of GATv2Conv on graphs
G is defined for node vi ∈ V(G) with xi being the node information for this node as

x′
i = αi,iΘxi +

j∈N (vi)
αi,jΘxj (2.6)

with the attention coefficients αi,j calculated using edge information from the edge tensor
ET (G) and the learned parameter a for the computation of the attention scores:

αi,j =
exp


a⊤ LeakyReLU (Θ [xi ∥xj∥ ei,j ])


k∈N (vi)

exp (a⊤ LeakyReLU (Θ [xi ∥xk∥ ei,k])) . (2.7)

LeakyReLU ... Non-linear activation function [MHN13]

exp ... exponential function ex [BAY22]

Currently, a lot of research is being done on different message passing operations and how
these can be used to utilize node information and graph structure properties in an efficient
and effective way. However, this thesis focuses on the applicability of GNNs for antibody-
antigen binding affinity prediction. For a comprehensive review of message passing
algorithms, refer to Zhou et al.[ZZW+22]. Therefore, only the GCNConv-Layer[KW17]
and the GATv2Conv layer[BAY22] are considered.

2.4 Transfer Learning
Structural binding affinity prediction relies on two costly types of experiments to gather
the necessary data (structure information + affinity measurements), as shown in Section
2.1.2. This leads to only a few available data points for a deep learning task and the
need for approaches that allow incorporation of data from related domains. Unlike the
conventional method for machine learning, which relies on the assumption that test
and training data stem from the same distribution and feature space, transfer learning
approaches are designed to manage scenarios with a mismatch in distribution and/or
feature space.[FPRA20] This section provides an overview of transfer learning concepts
and notations relevant for this thesis.

The idea of transfer learning is motivated by the knowledge that humans are able to learn
more efficiently utilizing information from previous experiences. This can be information
from different domains and/or tasks that is used to better perform on the challenge at
hand.[FPRA20]

Definition 2.4.1 (Domain). A domain D = {X , P (X)} is compromised of the feature
space X and the marginal probability distribution P (X), with X = {x1, x2, ..., xn} ∈ X
being an instance set. [FPRA20]
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Definition 2.4.2 (Task). A task T = {Y, f(.)} consists of a label space Y and the
objective predictive function f(.). The sample data in a specific domain D = {X , P (X)} is
defined as a pair {xi, yi} with xi ∈ X and yi ∈ Y . The predictive function f should learn
from the sample data to predict the label of new instances by learning the conditional
distribution of instances f(x) = P (y|x) [FPRA20].

Using the concepts of domains and tasks transfer learning can be defined as:

Definition 2.4.3 (Transfer Learning). Transfer learning defines methods that aim to
transfer information from a related source domain DS and a source task TS to improve
the predictive function fT (.) of the target task TT in the target domain DT with DT ≠ DS

and/or TT ̸= TS [FPRA20].

One aim of this thesis is to incorporate data from different domains with the same or
related tasks during training and evaluate their impact on the performance of antibody-
antigen binding affinity prediction. In the following chapter, we introduce the most
relevant related works that utilize the concepts outlined in this chapter and served as the
basis for our experiments.
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CHAPTER 3
Related Work

This chapter introduces and discusses relevant work related to antibody-antigen binding
affinity prediction using GNNs. Related work can be categorized based on either the
domain and task or the methodology used. Regarding domain and task, only methods
developed for binding affinity prediction on related different domains and structure
prediction methods were considered. In terms of methodological-related work, the focus
was on GNNs that try to capture biophysical interaction. A selection of these methods is
shown in Table 3.1 and is discussed in the following sections, beginning with the available
binding affinity prediction methods followed by the structure prediction methods.

Name Domain & Task Method Publication

REF15 Domain agnostic
free energy prediction

Weighted energy
terms [ALFJ+17]

CSM-AB Antibody-antigen
affinity prediction

Graph signatures
+ ML classifier [MPA22]

FAST Protein-ligand
affinity prediction

3D-CNN
& GNN [JKZ+21]

OnionNet-2 Protein-ligand
affinity prediction

Manual features
+ 3D-CNN [WZL+21]

BindingDDG Protein-protein
relative affinity prediction GNN [SLY+22]

DeepRefine Protein complex
structure refinement GNN [MCW+22]

Table 3.1: Overview table of important related work for geometric deep learning driven
antibody-antigen binding affinity prediction
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3.1 Binding affinity prediction
Interaction prediction methods aim to predict if there would be an interaction between
two molecules while binding affinity prediction tries to assess the strength of a given
interaction. Computational prediction of protein-ligand1 interaction, especially in small-
molecule interactions, has gained increased attention over the last three decades. This
stems from the hope of improved efficiency in the initial drug discovery phase. Thafar
et al. categorize available methods based on their use case in interaction prediction
and binding affinity prediction methods. For binding affinity prediction methods, they
additionally distinguish between structure- and nonstructure-based methods, as well as
between machine learning and classical methods (e.g. force fields) [TRA+19].

Nonstructure-based approaches (eg. sequence-based) will not be considered in this
overview because of their fundamentally different type of input data and applied methods,
but an overview is given in [TRA+19] and [ZZW+22].

3.1.1 Classical scoring functions
Using physical information for estimations of molecule forces is a common practice in
the field of chemistry. Rule-based approaches in the field of molecular dynamics have
reached a mature state with empirical force fields after 40 years of research and are now
widely used to investigate the structure and dynamics of molecules. In chemistry, a force
field is the collection of potential energy functions that can be used to derive interacting
forces. Current additive protein energy functions have undergone extensive refinement
and are now of a quality that allows their predictive use in pharmaceutical applications,
the study of protein dynamics, and protein-protein interactions.[LGM15]

Force Fields

In general, force fields aim to describe the potential energy between atoms in a system
based on experiments and calculations. The actual forces acting on certain atoms are
then derived from the force field on the basis of their coordinates. In most cases, these
energy terms can be categorized as bonded terms (interaction of atoms based on covalent
bonds2) or non-bonded terms (non-covalent interaction: e.g. electrostatic forces).[Lea01]

Etotal = Ecovalent + Enoncovalent (3.1)

To calculate the protein binding energy ∆E, resembling Gibbs Free Energy ∆G on a
different scale, the total energy E of the bound complex and the total energies of the
unbound proteins are compared. One of the most recent and best-performing force fields
is the Rosetta Energy Force Field 2015[ALFJ+17]. Another well established force field is
Amber[SFCW13] and these two are compared by Rubenstein et al.[RBN+18]

1Technical term for a molecule that binds to another (usually larger) molecule
2Sharing of one or more electrons
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3.1. Binding affinity prediction

∆E = Etotal(complex) − [Etotal(protein1) + Etotal(protein2)] (3.2)

Rosetta Energy Force Field 2015 (REF15)

The Rosetta software suite is in development for over two decades as a collaboration of
more than 60 institutaions and has strong influence on the field with the tools summarized
by Leman et al.[LWL+20]. This section will give a brief introduction to the approach
used in REF15 to calculate the total energy as in Equation 3.3. Here the total energy is
calculated using an additive approach by weighted summation of energy terms Ei with
weights wi. [ALFJ+17]

Etotal =
i

wiEi (3.3)

Each of these energy terms is a function of geometric degrees of freedom, defined
parameters Θ based on experiments, chemical identities, and amino acid information.
There are energy terms defined for a variety of biophysical concepts, such as van der
Waals forces, hydrogen- and disulfide bonds, or covalent bonds. A detailed description of
every energy term can be found in the accompanying paper of the REF15 [ALFJ+17].

Antibody Benchmark

Figure 3.1: Results of the antibody bench-
mark adapted from Guest et al.[GVZ+21]

The antibody benchmark by Guest et
al.[GVZ+21], which highlights different
classical approaches to binding affinity pre-
diction and compares their performance on
a small antibody-antigen dataset, identi-
fied REF15 as the best-performing method
for antibody-antigen binding affinity pre-
diction.

Guest et al. defined a small, high-
quality, and non-redundant antibody-
antigen dataset to evaluate docking and
binding affinity approaches [GVZ+21]. A
detailed introduction to the dataset is in
Section 4.1. They evaluated 20 different methods, all based on energy functions derived
from physical knowledge, on their dataset as shown in Figure 3.1.

3.1.2 Machine Learning approaches
This chapter structure-based machine learning methods for binding affinity prediction.
The review by Thafar et al. categorizes available methods by the feature extraction type
[TRA+19]. There are feature engineering-based methods (manual feature extraction),
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called machine learning approaches, and representation learning methods (learned feature
extraction), called deep learning approaches.

This section will first highlight an available method developed for the same task and
domain as this thesis (antibody-antigen binding affinity prediction) and then provide an
overview of the latest developments of deep learning-based methods for the drug-target
use case.

Antibody-Antigen complexes

Currently, only a few machine learning methods designed for the antibody-antigen use
case have been developed, which can likely be attributed to the low amount of data (more
information in Section 4.1). To the best of my knowledge, the only peer-reviewed machine
learning approach to antibody-antigen binding affinity prediction was a structure-based
approach called CSM-AB [MPA22].

CSM-AB

Myung et al. describe CSM-AB as being based on modeling the interaction interfaces
as graph-based signatures. These signatures are used to capture surrounding structural
information and close-contact features for every atom. They consider all atoms of the
interface residues and extract eight features (hydrophobic, positive, etc.) for each atom
and three types of distances between the atoms based on whether they belong to the
same protein or not. Atom features are aggregated for antibodies and antigens separately
(counted) and distances are represented as a cumulative distribution function. In addition,
external sources are used to calculate noncovalent interaction features, the distribution
of residues per protein secondary structure type, and solvent-accessible surface areas
[MPA22].

Finally, different supervised machine learning algorithms (Extra Trees, Gradient Boosting,
Random Forest, KNeighbor, ...) are compared using these complex features by cross-
validation schemes. According to the authors, the "Extra Trees" method ([GEW06])
performed best for the extracted features and was then deployed on their web server3.
This web server was later used to gather predictions for the antibody-antigen dataset.

Protein-Ligand complexes

In contrast to the antibody-antigen task, much more data is available for protein-ligand
(small molecule, eg. drug) enabling better use of structure-based deep learning approaches.
The mechanism of binding for protein-ligand interactions differs from that of protein-
protein interactions. Conceptually, proteins usually bind to small molecules via binding
pockets, which can be imagined as small caves/holes in the protein, which neatly fit the
molecule to be bound, as illustrated in Figure 3.2. Du et al. provide an overview of the
different proposed binding models explaining protein-ligand binding [DLX+16].

3The web server can be accessed under http : //biosig.unimelb.edu.au/csmab/
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3.1. Binding affinity prediction

Figure 3.2: Schematic illustrations of protein-ligand binding [DLX+16] (edited)

The difference in binding mechanics leads to slightly different approaches for predicting
the binding affinity. In most cases, proteins and ligands are considered separately, leading
to specialized feature extraction methods for both of them. Structure-based affinity
prediction either relies on manual feature extraction, solely on learned features from the
raw structures, or a combination of both. As shown in the previous subsection, CSM-
AB manually extracts features from the 3D complex, while this subsection highlights
approaches that utilize learned feature extraction or a combination of both.

FAST

Jones et al. compared two different machine learning approaches as well as the fusion
of both utilizing structural information of protein-ligand complexes. They implemented
a 3D convolution neural network that works with a voxel representation of the bound
complex and a graph convolutional neural network that uses a graph representation of
this complex [JKZ+21].

Figure 3.3: Architecture of FAST with (A) the 3D-convolutional and (B) the graph
convolutional parts highlights [JKZ+21] (edited)

Sub-Figure 3.3 A shows the 3D convolutional neural network and the input representation
used. The input is a 48 × 48 × 48 × 19 grid with one voxel being the size of 1Å each
containing 19 atomic features. Each atom is assigned to at least one voxel based on
the Van der Waals radius and feature vectors are summed if multiple atoms belong to
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the same voxel. Furthermore Gaussian blur is than applied to also populate voxels not
directly containing atoms to avoid sparse representations. This voxel grid is then fed into
a 3D-CNN compromised of 5 convolutional layers to extract features for the full complex.
These are then used to predict the binding affinity.

In Sub-Figure 3.3 B the graph approach is displayed. Each atom represents a node and
edges are based on distance, grouped in covalent bond edges (distance cutoff of 1.5Å) and
nonbonded edges (distance cutoff of 4.5Å). They adapt the PotentialNet architecture
[FSW+18] in order to extract node features and then perform average pooling to get a
graph representation used for affinity prediction.

Finally, for FAST they combine both representations to increase robustness and perfor-
mance for binding affinity prediction. They compare mid- and late-fusion approaches,
meaning the concatenation of intermediate layer outputs or the final representations
respectively. They show that for the protein-ligand problem graph convolutional ap-
proaches outperform 3D convolutional networks and the fusion model slightly leads to a
minor improvement compared to the graph convolutional model alone.

OnionNet-2

Wang et al. presented an architecture designed to combine manual feature extraction
based on residue-atom distances with deep learning methods to learn a meaningful
combination of these distance-based features [WZL+21].

Figure 3.4: Architecture of OnionNet-2 [WZL+21]

In particular, they create feature images for every distance shell based on the count of
protein-residues and ligand-atom contacts. They classified residues in 8 groups and atoms
in 21 leading to 8 × 21 = 168 features for each distance shell, represented as a 8 × 21
"image".
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3.1. Binding affinity prediction

A CNN is then used to learn representations from this distance based feature maps that
distinguish between high and low binding affinity complexes. Figure 3.4 shows the full
pipeline of OnionNet-2 and the left upper part displays the layered feature extraction
eponymous for the name of the approach.

Relative binding affinity prediction

The task of relative binding affinity prediction is distinct, yet closely related to absolute
binding affininty prediction. The objective is to predict the change in binding affinity
resulting from one or multiple mutations in the paratope or epitope. The data type
and the available datasets utilized for this task are further elaborated upon in Sections
4.2.2 and 4.2.3. In summary, both the 3D structures of the naturally occurring (aka.
wildtype) and the mutant complex, as well as the binding affinities or the change in
binding affinity are required. Several machine learning methods have been developed for
this task, including the predecessor of CSM-AB, mCSM-AB [PA16], and BindingDDG
[SLY+22], which utilizes GNNs. In this thesis, BindingDDG is used as a pretrained
feature extractor and will be introduced in the following section.

BindingDDG

Shan et al. introduced in 2022 a GNN-based method designed for relative binding affinity
prediction, called BindingDDG [SLY+22]. They build a separate graph for wildtype
and mutated complex, with interface residues as nodes. Each node is connected to its
128-nearest neighbors and the relative position of the residues is used as edge weight.

Figure 3.5: Architecture of BindingDDG [SLY+22] (edited)

They deployed an attention mechanism for message passing in their GNN to learn residue
embeddings. Figure 3.5 shows the full pipeline used to predict the change in binding
affinity based upon a mutation. First the same GNN is used to extract residue embeddings.
Then the residue embeddings of the wildtype and mutant complex are subtracted and
for each of these residue pair embeddings a multi layer perceptron is used to predict
the contribution to the change in binding affinity. Finally, all these contributions are
summed to get to the total change in binding affinity. Shan et al. made their code and
trained model available providing an interesting feature extraction method (pretrained
GNN) for the transfer learning part of this thesis.
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3.2 Protein structure prediction
Modeling the structure of proteins shows some similarities with binding affinity prediction,
since both operate under the assumption of learning underlying biophysical features.
Structure prediction methods utilize these features for the prediction of the correct
atom positions of a folded protein structure. In the past years, deep learning-based
protein structure prediction has seen a number of breakthroughs, as best represented by
the success of the AlphaFold2 [JEP+21] model. While AlphaFold2 primarily relies on
sequence conservation information to identify interacting residues, other methods have
modeled protein structures as pure graphs.

DeepRefine

DeepRefine by Morehead et al. implements a GNN to update atom positions of an
already available 3D structure. Their task is to take an existing imperfect 3D structure
(e.g. predicted by another model or manually designed) and correct the atom positions
to get to a better, more natural, 3D structure [MCW+22].

Figure 3.6: Architecture of DeepRefine [MCW+22]

The graph G = (V, E) is extracted from the initial existing structure with V being the
atoms and E defined as the 20 nearest neighbors of every atom. Nodes are represented
by a feature vector containing the atom type information as well as the surface proximity
of this atom while edges encode information about the chain, sinusoidal edge position,
relative geometric features, and information about covalent bonds. This graph serves
as the input to their GNN as shown in Figure 3.6. In contrast to BindingDDG, every
message passing step does not only update the node embeddings but also the positions of
the nodes. This is based on the weighted distances using a learned MLP that transforms
the node embeddings, edge embedding, and distance to a scalar. The predicted distances
are compared to the measured ones and are used as error terms. Their objective is to
learn the biophysical interaction laws between atoms and how they influence each other
leading to naturally occurring structures.

The methods described in this chapter constitute the basis of the algorithms and experi-
ments described in the following chapter. While REF15 is used as a baseline, DeepRefine
and BindingDDG serve as pretrained models and the others as inspiration for feature
extraction and model architecture.
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CHAPTER 4
Available Data

This chapter provides an overview of the available data, how they were compiled and
the similarities and differences between the transfer learning datasets and the antibody-
antigen binding affinity dataset.

The application of geometric deep learning approaches to binding affinity prediction
requires geometric information about the input structures as well as measured affinity
values. For proteins and protein complexes, this type of data is collected through
structural determination experiments (eg. X-ray crystallography1 or NMR spectroscopy2)
and binding affinity experiments (see Section 2.1.2 on the measurement of KD values).
Common file formats for the structural representation of molecules are PDB and mmCIF
(the former is used in this thesis) and there is a common database where almost all protein
and protein complexes are stored. The Protein Data Bank of the Research Collaboratory
for Structural Bioinformatics (RCSB PDB) is the leading archive for those 3D structural
data of biological molecules [BWF+00]. All protein complexes used for this thesis are
derived from the RCSB PDB or an intermediary database and can be found using a
unique identifier (PDB-ID).

For this thesis, the two most important parts of a PDB file are the header and the
coordinate section. The header summarizes the protein and citation information, as well
as the details of the structure determination process. The coordinate section lists all
atoms, their amino acid and the 3D coordinates.

4.1 Antibody-antigen affinity dataset
Different sources of information were combined to generate our main dataset, which is
referred to as the AbAg-Affinity dataset. This dataset is an aggregation of only non-

1More information in [SM00]
2More information in [HCH+21]
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redundant antibody-antigen structures with experimentally measured binding affinity
values through the combination of available resources. The following paragraphs highlight
the most important aspects of the dataset generation, the partition for training and
testing as well as some general characteristics.

Dataset generation

The generation of the AbAg-Affinity dataset integrates different sources adding informa-
tion to the data, as shown in Figure 4.1.

RCSB PDB
~160k structures

~1.9k non-redudant 
structures

AbDb

746 structures 
      + affinity

SAbDab
385 non- redundant 
structures + affinity

AbAg-Affinity

42 structures + affinity
Ab-benchmark

Figure 4.1: VENN diagram of datasets used
for AbAg-Affinity dataset generation

The antibody structure database (AbDb,
[FM18]) and the structural antibody
database (SAbdAb, [DKL+14]) are cu-
rated subsets of the RCSB PDB. Further-
more, Guest et al. defined a small high-
quality dataset, called the antibody bench-
mark (AB-benchmark, [GVZ+21]).

AbDb provides cleaned and uniform PDB
files, as well as information on redundancy
between antibodies. Antibody pairs are
considered redundant if all amino acids
present in both antibodies are exactly the
same.

SAbDab defines a subset of antibody-
antigen structures with experimentally
measured binding affinity values.

The antibody-benchmark (AB-benchmark)
dataset incorporates only a small set of
complexes (42 data points) that were se-
lected based on stringent criteria. They
defined their redundancy using the BLAST [AGM+90] algorithm with >80% sequence
coverage and >98% sequence identity. Furthermore, they were also filtered according to
the resolution3 of the experiments (good resolution with ≤ 3.25Å resolution) and the
size of both proteins (>30 amino acids).

The antibody-antigen binding affinity (AbAg-Affinity) dataset is defined as the intersection
of AbDb and SAbDab while excluding complexes of the AB-benchmark as shown in
Figure 4.1, leading to 385 data points. This dataset provides uniformly formatted PDB
files for non-redundant complexes with measured binding affinity, excluding those values
that are used in the AB-benchmark to allow comparison with other algorithms on this
benchmark.

3Measurement of the quality of the data that has been collected
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4.1.1 Benchmark

As mentioned above, the final evaluation of the trained GNN is done on the AB-
benchmark dataset [GVZ+21]. This dataset consists of 42 antibody-antigen complexes
with a measured binding affinity and was designed to compare different methods for
binding affinity prediction.

Dataset analysis

The provided KD values of binding affinity experiments (as described in Section 2.1.2)
follow an exponential distribution and, therefore, it is common to use either the ∆G values
(eg. [MPA22, SLY+22]) or their negative logarithm −log10(KD) (eg. [JKZ+21, WZL+21]).
These values have a well-formed distribution (roughly resembling a normal distribution)
for machine learning methods, as shown in Figure 4.2. The values for −log10(KD) range
between 3 and 12 with an average of 8.17 and a median of 8.10. High values mark high
binding affinity between antibody and antigen, while low values indicate low affinity.

Figure 4.2: −log(KD) distribution of the full AbAg-Affinity dataset

4.2 Transfer learning data

Training deep neural networks requires many data points to learn meaningful represen-
tations of data from the target domain DT and to approximate the predictive function
fT of the target task. The previous section introduced the available data in the target
domain DT of antibody-antigen complexes with the target task TT of predicting the
binding affinity. For the combination of DT and TT only a limited amount of data points
are available leading to the idea of incorporating related data to improve the predictive
function. This section provides an overview of the additional datasets used to evaluate
transfer learning approaches for antibody-antigen binding affinity prediction.
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4.2.1 PDBBind subset

The PDBBind database [WFLW04] is a subset of the RCSB PDB containing only solved
structures of bound molecules. Furthermore, they also screened the primary references
of these bound complexes to extract the observed binding affinity values, if available.
In their latest release (2020) this database now contains more than 20.000 molecular
complexes with binding affinity data [Wan20].

This dataset compromises not only protein-protein complexes but also protein-ligand,
protein-nucleic acids, and other types of biomolecular complexes. The binding between
proteins and ligands (small molecules like drugs - see Protein-Ligand binding in Section
3.1.2) or nucleic acids differs from antibody-antigen interactions being a subset of protein-
protein interactions. Therefore, only protein-protein complexes from the PDBBind
database were used. In addition, complexes were also filtered to contain only exactly two
molecules that can be clearly identified. This led to 1072 protein-protein complexes with
binding affinity measurements.

4.2.2 SKEMPI 2.0

Figure 4.3: Comparison of (A) wildtype structure and (B) mutated structure from
complex 1AHW

SKEMPI 2.0 is the second iteration of a database for binding free energy changes, binding
kinetics and binding thermodynamics [JJGD+19]. The second version contains binding
data for 7085 mutations in total. Data collected for each entry include the PDB file, the
mutation as well as the affinity value of the wildtype complex and the mutated complex.

As illustrated in Figure 4.3 this database contains single point mutations (mutant only
differs from wildtype in one amino acid). In this example, the mutation was on an antigen
chain located at the epitope leading to a change in binding affinity.

Like the PDBBind database, this dataset also compromises different types of complexes.
Again, only the subset of protein-protein complexes is selected, leading to a total number
of 100 complexes. For these 100 complexes, 1629 mutations are available. The distribution
of the changes in binding affinity (∆ − log(Kd) = −log(Kd)mutant − −log(Kd)wiltype) is
shown in Figure 4.4. There is a tendency of the selected mutations towards worsening
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Figure 4.4: Distribution of ∆ − log(Kd) of SKEMPI 2.0 subset

the binding affinity in comparison to the wildtype. However, the effect is most of the
time comparatively small and close to zero.

We utilized these 1629 structures with binding affinity values as individual data points.
This comes with a lot of redundancy in the dataset effectively reducing the size of the
data to the 100 unique complexes.

4.2.3 Deep mutational scanning data

Deep mutational scanning (DMS) experiments can be used to measure the effects of a
wide range of mutations on the binding of two molecules in a single experiment. More
information on such experiments is detailed in the review of Araya and Fowler[AF11]. In
general, these experiments are limited with respect to the interpretability of absolute
affinity values. Nevertheless, this kind of data is available in vast quantities and may
provide valuable information for antibody-antigen binding affinity prediction.

My supervisor at the Medical University (Bock Lab), Moritz Schäfer, previously curated
a dataset containing antibody-antigen complexes consisting of eight DMS publications.
In total 33 complexes (high redundancy between complexes within a publication) with
nearly 3 million mutations were gathered. One of these publications (phillips_21_binding
[PLM+21]) reported actual −log(KD) values, which can be used like the other data
presented above. The other authors reported control-normalized read counts, which were
converted to enrichment values E, indicating binding affinity, but not directly related to
KD. These values are scaled between 0 and 1 and only provide a weak indication of the
actual binding strength. Furthermore, a confidence term CE , accompanying the E value,
provides information on the precision of the measurement. Both values are used during
training to sample pairs of mutations with a high likelihood of a significant difference in
binding strength. An overview of the publications used to assemble the DMS dataset is
provided in Table A.3.
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Dataset comparison

The datasets described above carry meaningful information for the antibody-antigen
binding affinity prediction task. This section will compare the related data to the AbAg-
Affinity dataset and justiy their use in a transfer learning approach. Finally, an overview
of all the datasets used will be given.

The distribution of −log(KD) values (Figure 4.5) shows similarities across datasets with
an overrepresentation of strong binding complexes in the SKEMPI.v2 dataset and more
extreme values for the PDBBind dataset. All values are in a range between a −log(KD)
value of 0.6 and 15. In Figure A.2 distributions of graph descriptors are given for each
dataset. All datasets show similar graph sizes in both categories (Panel A & B). The
same applies to the number of edges in the interface and the full graph (Panel C & D).

Figure 4.5: Violin plot of −log(KD) distribution for each dataset

The distribution of node types shows some differences between antibody-antigen datasets
(AbAg-Affinity, AB-benchmark and SKEMPI.v2 having > 50% antibody-antigen com-
plexes) and PDBBind. Serine and Tyrosine are slightly overrepresented in these complexes
(Figure A.3).

Comparing the characteristics of the datasets summarized in Table 4.1 shows their
potential for transfer-learning, but also some potential drawbacks. Our main dataset
(AbAg-Affinity) shows similarities to the AB-benchmark and PDBBind dataset regarding
the distribution of −log(Kd) values. However, we can also observe that the generic
protein-protein binding dataset (PDBBind) has on average lower binding affinity values
than the antibody-antigen datasets. The relative datasets (SEKMPI.v2, DMS) have a
large number of data points but only a limited amount of different complexes. This could
lead to models that overfit on these complexes and do not generalize to generic binding.
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4.2. Transfer learning data

Dataset Domain & Task # complexes
(# mutations) µ(σ) -log(KD)

AbAg-Affinity Antibody-Antigen
absolute affinity data 446 (/) 8.21 (1.45)

AB-benchmark Antibody-Antigen
absolute affinity data 53 (/) 8.69 (1.43)

PDBBind Protein-Protein
absolute affinity data 1,072 (/) 7.35 (1.95)

SKEMPI.v2 Protein-Protein
relative affinity data 100 (1,629) 8.81 (1.81)

DMS Antibody-Antigen
relative affinity data 31 (1,748,004) 7.17 (1.51) 4

Table 4.1: Overview table of used dataset

In the next chapter, we describe how these datasets are used to train and evaluate the
geometric deep learning approach as well as compare it to REF15. While the AbAg-
Affinity dataset serves as the main training dataset and PDBBind, SKEMPI.v2, DMS
are used for transfer-learning, the AB-benchmark dataset is only used to evaluate both
approaches.

4Only used 199,992 data points that actually reported −log(Kd)
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CHAPTER 5
Methodology & Implementation

This chapter will describe the main part of this thesis, the used methodology and its
implementation. Table 5.1 lists the main tools used throughout the thesis project.

First, the steps taken to gather and unify all datasets will be introduced. Then a more
detailed description of the graph generation process is given followed by an overview of
the GNN implementation. Finally, the procedure to generate the benchmark datasets
used to compare the developed method with the force field approach will be introduced.

Tool Description Usage Version Citation

Python Programming
language

Main language
throughout the thesis 3.8.13 [noa22]

Snakemake Workflow management
system

Reproducible &
scalable data analysis 7.8.2 [MJL+21]

Jupyter Interactive computing
software

Data exploration &
analysis 4.10.0 [KRKP+16]

Weights &
Bias

Platform for
experiment tracking

Online logging &
Hyperparameter search 0.12.16 [Bie20]

Rosetta
suite

Software suite for
analysing proteins

Force-Field
result generation

2017.29.
59598 [ALFJ+17]

Slurm Cluster management &
job scheduling system

Running experiments
on clusters 21.08.8-2 [YJG03]

PyMol PDB visualization &
tool

Visual data
analysis 2.5.4 [Sch]

Table 5.1: Overview table of the core software used throughout the thesis
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5. Methodology & Implementation

5.1 Data Assembly
The data collection process compromises three main steps. First, potential datasets
were gathered, followed by an exploratory analysis. Then, Snakemake pipelines were
implemented facilitating reproducibility of the dataset generation process as well as an
easy way to integrate new data (refer to Chapter 4 for insights and visualizations).

5.1.1 Dataset search
The search for suitable data consisted of an internet search in combination with the
analysis of datasets used in related works. This led to the Antibody benchmark [GVZ+21],
SAbAb [DKL+14], AbAb [FM18], PDBBind [WFLW04] and SKEMPI.v2 [JJGD+19]
datasets.

The DMS dataset was assembled and analyzed and the necessary structures were generated
by the thesis supervisor. For this dataset, a sightly adapted pipeline was implemented
only focusing on generating the mutated structures and converting the metadata file to
the standardized format used throughout the thesis.

5.1.2 Exploratory analysis
To get an initial overview of the datasets, interactive Jupyter notebooks were used.
In particular, the relationship between provided KD, ∆G and temperature values was
studied, as well as the possibilities to parse and manipulate PDB files using the Python
programming language. PyMol was used to visualize the complex structures and deepen
the understanding of the binding interface.

Summarized, this analysis showed that for the antibody-antigen use case, not a lot of data
are available. The relevant datasets provided only structure and redundancy information
(AbDb) or affinity values (SAbDab). This led to the combination of both datasets by
taking the common complexes (based on the PDB-ID), providing 427 non-redundant
complexes with affinity values. The comparison with the AB-benchmark showed some
redundant complexes, that were excluded from our dataset, as described in Section 4.1.

5.1.3 Dataset generation
Based on the results of the exploratory analysis, reproducible and scalable data generation
pipelines were implemented using Snakemake [MJL+21]. Snakemake workflows are
implemented in a Python based language and integrate seamlessly together with Python
and Bash scripts. Furthermore, Snakemake pipelines can be easily scaled to clusters and
software environments can be specified for each job (a subpart of a workflow executing a
script with specific input and output data). For each dataset a workflow was designed,
using the information from the previous analysis, to generate a standardized metadata
file and all necessary PDB files.

In general, a workflow consists of the following three steps:
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5.1. Data Assembly

1. Download data
Using a Bash script all the data (structure + metadata) is downloaded from the
respective web address. Since most of the databases are extended on a regular
basis, a re-execution would likely lead to slightly different dataset sizes in the future
rendering full reproducibility impossible.

2. Convert metadata & check redundancy
The available metadata information is converted to a standardized format containing
the PDB ID, the affinity value and information about the available protein chains
in the complex. Chain information assigns amino acid chains to the antibody or
antigen. For the AbAg-affinity dataset, the SAbDab metadata file, containing the
affinity values, was used in combination with the consistent structures of the AbDb.
In addition, a redundancy check was implemented in this part of the workflow
to ensure non-redundancy between training and testing datasets. Redundancy
was defined as a sequence alignment score greater than 80%. The sequence align-
ment score measures the overlap of characters of two differently sized sequences.
Here, the amino acid sequence of each chain is compared with the sequences of
the other complex using an implementation of the BioPython [CAC+09] module.
Although this check is rather strict since antibodies could be different even though
their sequences have a large overlap, it was done to ensure that no other dataset
includes complexes redundant to those in the AB-benchmark and AbAg-affinity
test datasets. For the transfer learning part, the redundancy check was used to
ensure nonredundancy between the training data of the related datasets and the
AbAg-Affinity validation set as well.

3. Prepare structures
The available structures were filtered based on the metadata file and stored in the
correct folders. Since the experimentally crystallized structures are often imprecise,
physical force fields are used to locally adjust the atom positions1. Therefore, all
structures were relaxed using the Rosetta Suite2. In our case, we used REF15
[ALFJ+17] to score the structures and the Relax protocol of the Rosetta suite to
adapt the atom coordinates to minimize the total energy.
For relative binding affinity datasets (SKEMPI.v1 & DMS), affinity information
for individual mutations is present, but the structures are missing. Therefore, a
closely matching structure (wildtype structure, containing no mutations) is used
as a starting point to generate the mutated structures. Again the Rosetta suite
was used to perform all necessary mutations and repacking. Repacking adjusts
the coordinates of atoms to minimize the energy of the structure. Repacking, in
contrast to relaxation, only adjusts the sidechains of the mutated residues and is
therefore much faster.

1More information provided in [CTD+14]
2Documentation of the Rosetta Suite under https://www.rosettacommons.org/docs/latest/
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5.2 Graph Generation
The steps of the previous section lead to datasets containing PDB files and affinity values.
This section explains the subsequent conversion from these PDB files to graphs useful for
deep learning. First, the necessary preprocessing steps are outlined, followed by a detailed
description of the steps taken to generate the graphs used as input to the GNN. Finally,
an overview of the possible parameters of the graph generation process is provided as
well as the numeric representation of these graphs in the processing pipeline.

1. Preprocessing
Although specifications for PDB files exist on the official RCSB website [Gre], they
are loosely enforced, leading to a number of irregularities in some of the available
files. Therefore, the first step of the pipeline is to clean the available PDB files using
available tools such as pdb-tools [RTTB18] and Biopandas [Ras17]. Irregularities,
that lead to errors in the subsequent processing pipeline like varied numbering
schemes and untypical or missing residues/atoms, were also removed.

2. From PDB file to graph

Figure 5.1: Illustration of the graph generation process: From 3D structure to graph

In Figure 5.1 the generation process from the initial structure in cartoon represen-
tation (Sub-Figure A) to a graph represented as nodes and edges (Sub-Figure H) is
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shown. Sub-Figure B visualizes the complex in the sticks representation of PyMol
exposing all atoms and their covalent bonds. In order to minimize the size of the
graph, only the relevant parts of both binding proteins were used. The relevant
part was defined as the interface atoms or residues (5Å interface) extended by a
fixed distance (7Å hull size). The part of the complex was denoted as interface
hull (Sub-Figure C). The hull size was chosen after a visual inspection of some
of the complexes, taking the resulting graph size and information content into
consideration.

Using only this interface hull, graph nodes are defined as either residues or atoms.
While atom graphs simply use all available atoms and their coordinates as nodes,
residue graphs consist only of the respective C-alpha atom of the residue (Sub-
Figure D shows the residue graph). Employed node features are for example the
atom or residue type (Sub-Figure E).

Edges are based on the distances of the nodes, covalent bonds or due to common
node features (same chain, same protein, same residue, etc.). Sub-Figure F shows
the edges of the 5Å-proximity graph, connecting all nodes with a distance smaller
than 5Å. These edges also encode information used in the GNN, like distance or if
the residues are connected via a peptide bond. Finally, Sub-Figure G highlights
peptide bonds while Sub-Figure H colors interface edges.

3. Graph configuration

Some examples of different graph G(V, E) configurations are given in the previous
paragraphs. The following paragraphs will define all possible graph types and
introduce the notation used for them.

Nodes V(G):

Let C be a protein-protein complex and R(C) be the residues and A(C) the atoms of
this complex. Then the residue graph is defined with nodes V(GR) = {v|v ∈ R(C)}
and nodes of the atom graph as V(GA) = {v|v ∈ A(C)}.

The feature vector xi of a node vi ∈ V(GR) has dimension 35 and that of a node
vi ∈ V(GA) has dimension 69. Atom node encodings consist of the respective
residue encoding and additional atom specific features. Table A.1 and Table A.2
list the features of residue and atom graphs respectively in more detail. Most of
the features were implemented as previously described in [JLZ+20].

Edges E(G):

The set of edges E(G) ⊆ V(G)×V(G), with an edge eij being the connection between
node vi and node vj , is defined through a maximal distance cut-off value DG. The
distance of two atoms dA(vi, vj), with vi, vj ∈ V(GA), is the euclidean distance of
their coordinates and the distance of two residues dR(vi, vj), with vi, vj ∈ V(GR),
is the euclidean distance of their closest atoms.
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Atom edges E(GA) ⊆ V(GA) × V(GA) are defined as E(GA) = {eij |ni, nj ∈ V(GA) :
dA(vi, vj) ≤ DG}. The same applies to residues edges E(GR) = {eij |ni, nj ∈ V(GR) :
dR(vi, vj) ≤ DG}.
Each edge eij is also encoded with an edge feature vector zij with dimension 3. For
atom edges eij ∈ E(GA) this includes the distance scaled between 0 and 1, with 1
being the DG distance, information if both nodes belong to the same residue and
information if they belong to the same protein. Residue edges eij ∈ E(GR) also
encode the distance and the same protein, but instead of the same residue, they
include information if both nodes share a peptide bond (= are neighbors on the
polypeptide-chain).
Graph size:
The final size of the graph is determined using a maximum interface distance DI

and interface hull size DH and optionally a maximum graph size SG.
Let Pi ⊆ V(G) be all nodes in the graph that belong to a different protein than node
ni. Then, the set of interface atoms IA ⊆ VA(G) is defined through the interface
distance DI with IA = {vi|∃vj ∈ Pi : dA(vi, vj) ≤ DI} and the set of interface
residues IR ⊆ VR(G) as IR = {vi|∃vj ∈ Pi : dR(vi, vj) ≤ DI}.
Then, the set of interface hull atoms HA ⊆ VA(G) is defined through the hull
size DH with HA = {vi|∃vj ∈ IA : dA(vi, vj) ≤ DH} and the set of interface hull
residues HR ⊆ VR(G) as HR = {vi|∃vj ∈ IH : dR(vi, vj) ≤ DH}.
The final atom graph G′

A = (V ′, E ′) is an induced sub graph of GA = (V, E) and
includes only the interface hull nodes V ′(G′

A) = {vi|vi ∈ HA}. The same applies to
the final residue graph G′

R = (V ′, E ′) with V ′(G′
R) = {vi|vi ∈ HR}. If a maximal

number of nodes restriction SG is given then only the closest SG nodes from I and
then from H are used.

In the following course of this thesis, only the final interface hull graph will be considered
and termed as G(V, E). Graph node feature matrix and adjacency tensors were stored as
tensors using the geometric deep learning library PyTorch geometric [Fre] that is based
on PyTorch and optimized for graphs.

5.3 Graph Neural Networks

Figure 5.2: Affinity predic-
tion as supervised ML-task

While in Section 2.3.1 the most important general charac-
teristics of GNNs are summarized, this section will describe
the implementation and parameters of the GNN designed
during this thesis. According to the classification of graph
learning tasks of Zhou et al. the problem of antibody-antigen
binding affinity prediction resembles a graph regression task
[ZCH+20]. This regression can be seen as a classical super-
vised machine learning task, with PDB files as inputs and
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affinity values as output (Figure 5.2). Zhou et al. proposed a four-step process to design
GNNs, which served as the basis for this thesis.

1. Find graph structure: Described in the previous section.

2. Specify graph type and scale: We deal with undirected, static3 and homogeneous4

graphs. Edges can also be seen as heterogeneous (more on that later), but are
normally treated as homogeneous with a different encoding.

3. Design loss function: L2 or L1 loss function were chosen for the regression problem
based on the predicted and measured −log(KD) values.

4. Build model using computational modules: In general, the GNN consists of message-
passing modules (GCNConv, GATv2Conv), pooling modules and a regression head.
The details are described in the following paragraphs.

The GNN designed in the last step can be seen as a processing pipeline (Figure 5.3)
with each step providing different configurations with hyperparameters. The first step is
the feature extraction and graph generation process that was described in the previous
section. Hyperparameters for this step are the node type, edge distance, the maximal
number of nodes, interface- and hull-distance, as described above.

Figure 5.3: Illustration of the GNN processing pipeline: From graph structure to affinity
values

The GNN step then utilized the generated graph structures and node/edge features.
This step consists of message-passing layers and non-linear activation functions. The
number of layers, the type of message passing layer (GCNConv or GATv2Conv) and
the activation function (ReLu, GeLU or LeakyReLu) can be altered. The number of
attention heads for GATv2Conv layers is also configurable. Additionally, the size of the

3Input features and topology of the graphs stay consistent over time [ZCH+20]
4All nodes have the same time (atom or residue) [ZCH+20]
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hidden embeddings could be halved, doubled or left the same after every layer. Only the
GATv2Conv layer is able to utilize multi-dimensional edge encodings while GCNConv
only uses the node distance (ai,j in Definition 2.3.3 of GCNConv). Figure 5.3 shows
the GCNConv with summing as the neighborhood aggregation function. The goal of
modeling the physical interactions as closely as possible led to the idea of implementing
a "guided" GNN. In contrast to the naive GNN, which simply uses all edges at every
step, the guided GNN implements a two-step process of node information aggregation.
First, nodes with a tight bond (atoms belonging to the same residue or residues having a
peptide bond) are aggregated. Then, all nodes belonging to the same protein are used
for message passing. This is achieved by filtering the edges based on the respective edge
feature and applying the message-passing function only with the selected edges.

Following the previous GNN step, the calculated node embeddings need to be aggregated
to obtain a graph embedding used in the final regression step. The implemented aggre-
gation options include max-, mean-, sum- and attention-pooling. Figure 5.3 shows for
example a sum-pooling operation. If the input graph had a fixed size (maximal number
of nodes is given) then also a simple concatenation of all node embeddings would be
possible with the loss of permutation invariance (nodes are sorted by interface distance).

The final step is the actual regression using the graph embeddings. Here a multilayer
perceptron (MLP) was used, defined through the number of layers and a size-halving
hyperparameter. Size-halving is a boolean indicator that defines if the embedding size is
halved after each layer of the MLP in order to reduce the embedding dimensionality more
smoothly towards 1. The output of this step is a single value (predicted −log(KD)).

In an attempt to model the actual interaction in the interface, "edge-pooling" was
implemented, combining the aggregation and regression steps. The idea is to predict
the binding strength of each edge with a MLP by concatenating the embeddings of
the incident nodes. This is done for all interface edges and the resulting edge binding
strengths were summed. An overview of all available model hyperparameters and their
options is given in Table B.1.

5.4 Transfer learning
As described in the previous section and chapter 4, the limited amount of available
antibody-antigen data implies the utilization of transfer learning approaches to improve
the predictive power of the above-described model. This section will outline the details
of the two used approaches for transfer learning, reusing pretrained models and training
with related data.

5.4.1 Pretrained models

Both pretrained models used in this thesis are described in Section 3, particularly
BindingDDG in Subsection 3.1.2 and DeepRefine in Subsection 3.2. These models were
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chosen because of their similarity to the approach described above of modeling protein
complexes as graphs and utilizing GNNs to extract node embeddings.

BindingDDG is a pretrained model to embed residues based on a GNN. Their GNN is
optimized to recognize the effect of one or multiple mutations on the binding affinity of a
complex. The information of this model could also be leveraged to predict the absolute
binding affinity, leading to the integration of this pretrained model in the pipeline and
finetuning5 it with the AbAg-Affinity dataset.

DeepRefine also utilizes a GNN to get atom embeddings and these embeddings are used to
model the interaction between each atom. This interaction information is used to predict
whether the atoms attract or repel each other and is utilized to update node coordinates.
However, it could also offer valuable information for absolute binding prediction.

For both models, their implemented graph generation pipeline (denoted as "Feature
extraction" in Figure 5.3) is used for the available AbAg-Affinity data. The pretrained
models are deployed before the GNN step, optionally also excluding the GNN step and
only performing graph aggregation and regression to get the absolute binding affinity
predictions (compare "Graph Neural Network" in Figure 5.3).

5.4.2 Training on related data

The second transfer learning approach was training the implemented GNN directly on
related data introduced in Section 4.2. In general, two methods to integrate related data
during model training were implemented: pretraining-finetuning and bucket-train.

Pretraining-finetuning allows the model to first learn the distribution and peculiarities
of the related dataset and then adapt the pretrained model to the target antibody-
antigen data (Figure 5.4A with PDBBind as the related data). This is a common way of
implementing transfer learning and follows the same intuition as using pretrained models,
with the only difference being the possibility to use the complete pipeline described in
this chapter.

The approach termed bucket-train (Sub-Figure 5.4B) resembles the multi-task learning
idea described in [Car93]. The idea is to learn from multiple data buckets at the same
time while sharing the model parameters. This should expose the model to significantly
more data while still focusing on the target (here antibody-antigen absolute binding
affinity) dataset while training. This approach is implemented through a custom data
loader that samples data from the related dataset as well as the target dataset. In order
to give the target dataset more relevance, each training epoch includes only a subset of the
related datasets. This could either be the same size as the target dataset (min-sampling),
laying the focus on the target dataset while not fully utilizing the related datasets, or
based on the geometric mean of the dataset sized (geometric-mean-sampling), allowing
an overrepresentation of related data.

5Optimize an already trained model on a different dataset
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Figure 5.4: Illustration of both transfer learning approaches. A) Pretraining-finetuning
method. B) Bucket-train method

The available transfer learning data can be divided into two groups. One group provides
measured KD values while samples of the second group are labeled with an affinity
indicator not directly related to KD, denoted as enrichment values E.

Data with KD labels

KD measurements are available for structures of the PDBBind dataset, SKEMPI.v2 and
the phillips_21 publication of the DMS dataset. This data can be used in the same way
as the AbAg-Affinity dataset and be easily integrated with the pretraining-finetuning
or bucket-train approach. Therefore, a redundancy check is integrated to only train on
data non-redundant to the AbAg-Affinity test and validation subset and AB-benchmark
dataset.

The SKEMPI.v2 dataset and phillips_21 publication of the DMS dataset contain muta-
tional data (see Table 4.1) and can therefore be used in a relative was in addition to the
training on absolute KD values. This is achieved by selecting two mutations from the
same complexes and predicting their affinity values. The error term during training is
then computed by the the measured difference in −log(KD) values and the predicted
difference in −log(KD) values. Therefore these two datasets are used as absolute and
relative datasets in the experiments described in Chapter 6.

Data with E labels

For all complexes in the DMS dataset, except phillips_21, only enrichment E values and
an indicator of their accuracy denoted as NLL are provided. NLL values do not resemble
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the mathematical concept of negative log likelihood but rather describe the expected
precision of the E value. In order to utilize this kind of data, the affinity prediction task
was slightly adapted. A binary classification to determine whether one mutation leads to
a much higher binding energy than the other one was used. Hence, the first step was
to identify the set of suitable mutation pairs Ms, that were defined as having a higher
difference of their E values than their average NLL values.

Definition 5.4.1 (Suitable mutation pairs). Let Ma be all available mutations of a
complex and one mutation mi ∈ Ma have an enrichment value ei and NLL value nnli,
then the set of suitable (unordered) mutation pairs Ms is defined as

Ms = {(mi, mj)|mi, mj ∈ Ma : |ei − ej ≤ nlli+nllj
2 }

For each complex of a suitable pair, the −log(KD) is predicted using the GNN and their
difference is used to predict whether the first or the second complex has a higher affinity.
An additional loss is integrated to scale the values to reasonable −log(KD) values by
penalizing very large or very low predictions.

5.5 Benchmark
Finally, the models trained using the approaches described above are evaluated on two
different datasets to answer the research questions. For one part, the independent AB-
benchmark dataset [GVZ+21] will be used to compare the implemented GNN and REF15,
as well as the transfer learning approaches. Since this dataset only contains high-quality
data (high resolution and comparatively high binding affinity), our own more diverse
dataset (AbAg-Affinity dataset) will be used in addition. The next chapter provides a
detailed description of the experiments and metrics used to assess the performance on
these two datasets.
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CHAPTER 6
Experiments

To answer the research questions (see Section 1.2) two experiments were designed.
Regarding the first question, the focus is on the performance of the GNN trained solely on
antibody-antigen data and the comparison with REF15. Then, a comparison of available
pretrained models and related datasets and their impact on the GNN performance on
antibody-antigen data will be evaluated. This chapter will explain these experiments
and how they utilize the implemented GNN, pretrained models and datasets described in
the previous chapters.

Three metrics will be used to assess the model performance: Absolute Error, Root Mean
Squared Error (RMSE) and Pearson correlation coefficient (Pearson’s R). These metrics
are often used in regression problems and Pearson’s R is also prominent in publications
about binding affinity prediction (introduced in Section 3) and in comparative studies
[TRA+19, GVZ+21].

Definition 6.0.1 (Absolute Error). The absolute error is defined as the absolute difference
between a predicted value ŷ and the measured value (label) y [Hod22].

e(ŷ, y) = |ŷ − y| (6.1)

Definition 6.0.2 (RMSE). The root mean squared error is defined as the square root of
the mean of all squared errors of two arrays (x, y) of dimension n [Hod22].

RMSE(x, y) = MSE(x, y) = 1
n

n

i=0
(xi − yi)2 (6.2)

Definition 6.0.3 (Pearson’s R). Pearson’s R can be used to describe the linear correlation
of two variables (X, Y) by dividing their covariance by the product of their standard
deviations [FPP07].
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Pearson′sR = cov(X, Y )
σXσY

(6.3)

A set of n samples (x, y) can be used to estimate the covariance and variance, giving us
the sample correlation coefficient (represented as r).

r =
n
i=0(xi − x̄) ∗ (y − ȳ)

n
i=0(xi − x̄)2 n

i=0(yi − ȳ)2 (6.4)

with x̄ and ȳ being the mean of all samples in x and y respectively [FPP07].

In order to assess whether differences in the reported metrics are significant, the Wilcoxon
signed-rank test [Wil45] will be used.

Definition 6.0.4 (Wilcoxon signed-rank test). The Wilcoxon signed-rank test is a non-
parametric statistical hypothesis test used to compare the locations of two populations
using paired samples.

W =
Nr

i=1
[sgn (x2,i − x1,i) · Ri]

W = test statistic
Nr = sample size, excluding pairs where x1 = x2
sgn = sign function
x1,i, x2,i = corresponding ranked pairs from two distributions
Ri = absolute difference based rank i

(6.5)

A non-parametric test is used because we cannot make any assumptions on the distribution
of the metrics apriori as advised in [Dem06].

6.1 Graph neural networks based affinity prediction
This section will introduce the experiment used to evaluate the predictive power of GNNs
for the antibody-antigen binding affinity problem and compare it to REF15. The interface
size parameter was fixed at 5Å, as described in Subsection 2.1.2, and the interface hull
size at 7Å (see Section 5.2). First, the remaining GNN hyperparameters are optimized
and the best-found configuration is used subsequently to predict −log(KD) values of
the AB-benchmark. Furthermore, a 10-fold cross-validation (CV) scheme on the full
AbAg-Affinity dataset is used to get predictions for each data point as well as the RSME
and Pearson’s R for the 10 distinct validation subsets. This approach is used to get
unbiased predictions for the full AbAg-Affinity dataset as well as a distribution of the
metrics used to evaluate and compare both approaches.
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Experiment design

The designed experiment is a two-step process to find the best model configuration and
then compare it to REF15.

1. Exploratory hyperparameter search

The implemented GNN is defined through multiple parameters (aka. hyperparame-
ters) as described in Section 5.3. Initially, a random search in this hyperparameter
space was done with Weights&Biases [Bie20], testing different combinations of all
parameter values (see first two columns of Table B.1 for parameter ranges).

The results of this hyperparameter search were used to gather information on the
importance of each parameter and if there is a significant difference between the
values of the hyperparameter. The Kruskal-Wallis test [KW52] was used to calculate
if there is a significant difference in the performance of one of the possible values of
a hyperparameter. This test is a non-parametric method to test whether two or
more independent samples originate from the same distribution. If a significant
difference was found, a post hoc pairwise test between all values was used to identify
the best-performing value. Here, Dunn’s test [Dun64] was used to compare the
mean rank sums between two values.

2. Comparison of GNN and REF15

Using the best model configuration found during the hyperparameter search, the
GNN was used to predict the −log(KD) values for the AB-Benchmark1. Further-
more, the full AbAg-Affinity dataset was split randomly into 10 subsets and the
model was evaluated on each of these subsets when trained on the remaining nine.

REF15 predictions were calculated as described in Sub-Section 3.1.1 using a script
provided in [GVZ+21]. To account for the different scales of REF15 predictions,
the predicted energy terms were scaled using min-max scaling based on the labeled
∆G values and then converted to −log(KD) using Equation 2.3. For min-max
scaling, outliers (> 1 standard deviation apart from the mean) are removed from
the REF15 predictions to ensure that they do not affect the determination of the
min and max values. Here, the same data samples used in the GNN training were
taken to calculate the parameter for min-max scaling.

For the prediction of both methods, the absolute error terms are calculated and
compared using the Wilcoxon signed-rank test, individually for the AB-benchmark
and the AbAg-Affinity dataset. Additionally, the RSME and Pearson’s R values
for each of the validation subsets from the 10-fold cross-validation are compared.
Finally, the absolute errors of the GNN for each CV-split are compared against
each other to evaluate the robustness of the model.

1The model evaluated on the first validation split and trained on the remaining 9 was used
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6. Experiments

6.2 Transfer learning
After an initial configuration for the antibody-antigen use case was determined, different
transfer learning strategies are compared. The methods are evaluated individually and
then combined and compared to the GNN trained solely on the AbAg-Affinity dataset.
The two backbone models introduced above (BindingDDG and DeepRefine - Section
5.4.1) and the three datasets (PDBBind, SKMEPI.v2, DMS - Section 4.2) are utilized in
this experiment.

Experiment design

First, a hyperparameter search is used to evaluate the different pretrained models and
related datasets for their impact on the model performance. Then, a combination of good
strategies is evaluated on the same cross-validation scheme as described in the previous
section.

1. Hyperparameter search

The hyperparameter search allows the possibility of different model configurations
for each pretrained model. The type of pretrained model (DeepRefine, BindingDDG,
No-model) is another hyperparameter added to the configuration. Finally, only
the pretrained model parameter will be evaluated and the Kruskal test will be
performed to see if there is any significant difference between the three strategies.

Related datasets will be evaluated in a similar way. Therefore, two parameters
are added to the configuration: transfer-learning dataset and training strategy
(compare first two columns of Table C.2). The transfer learning dataset parameter
defines the dataset used in addition to the AbAg-Affinity dataset while training.
The training strategy defines how these datasets are used, as shown in Figure 5.4.
In this initial step, all datasets will be used individually and evaluated if there is
any improvement to using no related dataset during training.

The DMS dataset is split into 8 different subsets based on the publication. The
datasets with mutations and absolute −log(KD) values ( DMS-phillips_binding_21,
SKEMPI.v2) are used both as absolute and relative datasets (predicting the absolute
binding affinity and predicting the change in binding affinity respectively). This
results in 12 different datasets that are evaluated in this step.

2. Benchmark combination of strategies

If there are any good performing configurations, a combination of a pretrained
model and related datasets is then evaluated on the AbAg-Affinity dataset and
AB-benchmark dataset. This transfer learning configuration is compared to the
GNN trained solely on the AbAg-Affinity data, using the same comparison as
described above (Section 6.1).
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6.2. Transfer learning

All experiments are logged with Weights&Biases and the hyperparameter search is
performed using Weights&Bias sweeps. The final evaluation of the hyperparameter search
results, the comparison of model predictions and the visualizations are performed using
Jupyter notebooks.
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CHAPTER 7
Results & Discussion

In this chapter, we present the results from the above-described experiments. First,
we analyze the performance of GNNs trained solely on the AbAg-Affinity dataset and
compare them to REF15. Then, we discuss the results of the different transfer learning
approaches. All training runs were executed on the Scientific Cluster of the Medical
University Vienna (MUW) providing multiple compute nodes with NVIDIA A100 GPUs.

7.1 GNN based affinity prediction
As described in the previous chapter, a random search of the hyperparameter space was
performed and the results for different configurations were compared. The best-found
model is used in a comparison with REF15 on the full AbAg-Affinity dataset and the
AB-Benchmark.

7.1.1 Exploratory Hyperparameter Search
A performance overview of the 228 executed training runs is given in Figure B.1. Visual
inspection implies that most hyperparameters have no significant impact on model
performance and lead to similar results.

After significance testing with the Kruskal-Wallis test, three hyperparameters showed
a significant difference in the performance for their possible values (compare Table B.1
for a full list of the parameter values and the Krusal scores). Edge pooling leads to
significantly worse results than the other methods for graph aggregation (see Figure 7.1).
Mean pooling is also significantly different from max pooling.

The L1 and L2 loss functions also lead to differently distributed results but with no
clear indication of which loss leads to better results. However, the L1 loss shows a lower
variance in the results. The same applies to the number of fully connected layers in the
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7. Results & Discussion

Figure 7.1: Box-plot showing the results of the different aggregation methods (Only
RSME ≤ 2 shown)

regression head. Here, using 5 layers leads to lower variance, but is not guaranteed to get
the best results.

7.1.2 Comparison of GNN and REF15
The best configuration from the exploratory hyperparameter search (see Table C.1) was
used for the comparison with REF15. The performance measured in RMSE and Pearson’s
R on the validation sets of the 10-fold cross-validation shows significant differences for
GNN and REF15 (Table 7.1). Both metrics indicate that the GNN outperforms REF15
on the AbAg-Affinity dataset (lower RSME, higher Pearson’s correlation). The results
on the AB-benchmark show no clear difference between both approaches as REF15
performed better regarding RSME but the GNN with respect to Pearson’s correlation.

AbAg-Affinity (10-fold CV) AB-Benchmark
RMSE Pearson’s R RMSE Pearson’s R

REF15 3.11 (±1.02) 0.12 (±0.13) 1.35 0.34
GNN 1.80 (±0.60)† 0.35 (±0.13)† 1.33 0.37

Table 7.1: RMSE and Pearson’s R (mean & standard deviation) for AbAg-Affinity CV).
†: significant differnce

Both GNN and REF15 show a significant correlation between the predicted −log(KD)
values and the labels for the AbAg-Affinity dataset (Figure 7.2a) and the AB-benchmark
(Figure 7.2b)
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7.1. GNN based affinity prediction
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(b) AB-benchmark results of GNN and REF15

Figure 7.2: Predictions vs. Labels for AB-benchmark and AbAg-Affinity dataset.
†: significant correlation

The distribution of absolute error terms on the AbAg-Affinity dataset shows a superiority
of the GNN compared with REF15 error terms (Figure C.1 - the majority of errors are
larger for REF15). Here the Wilcoxon signed-rank test indicates a significant difference
in the performances. As shown in Figure 7.2b there is no such plain difference for the
AB-benchmark, which is confirmed by the Wilcoxon signed-rank test not indicating a
significant difference in the error terms of both models.

While the GNN showed similar results across the AbAg-Affinity dataset and the AB-
benchmark, REF15 performed better on the selected values of [GVZ+21] of the AB-
benchmark in terms of Pearson’s correlation (r) and RMSE. Furthermore, the performance
of the GNN across the 10-fold CV shows only slight differences between the different
validation sets (Figure C.2) and comparably stable predictions for the benchmark dataset
with different training datasets (Figure C.3).

7.1.3 Discussion
The initial hyperparameter search did not lead to a unique set of good-performing
hyperparameters but showed some interdependencies between the values of the hyperpa-
rameters. A full analysis and comparison of different configurations and their impact on
the performance goes beyond the scope of this thesis and is therefore not described in
more detail. For the sake of this thesis, it was sufficient to use the best-found configuration
for the subsequent tasks.

Although the results of the previous section show that the implemented GNN outperforms
REF15 regarding all three metrics (Pearson’s R, RMSE, Absolute error) on the AbAg-
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7. Results & Discussion

Affinity data, the results using the AB-benchmark did not provide the same conclusion
(compare Table 7.1. Yet, it can be argued that this dataset does not cover the full
spectrum of antibody-antigen complexes nearly as well as the AbAg-Affinity dataset (42
vs. 387 examples and rigorous manual selection of complexes for the AB-benchmark).
Furthermore, the GNN provides stable results across AbAg-Affinity dataset and AB-
benchmark while the results for REF15 differ a lot between AbAg-Affinity dataset and
AB-benchmark (Figure 7.2). Thus, it can be argued that the GNN shows more robust
results independent of the available data quality.

In conclusion to RQ1, the GNN outperforms REF15 regarding the predictive power for
the antibody-antigen binding affinity problem in almost every tested scenario.

7.2 Transfer Learning
In this section, the impact of an additional pretrained node-embedding model and/or
the integration of related data during training (see Section 6.2) are described and
subsequentially discussed.

7.2.1 Pretrained Models
The addition of BindingDDG and DeepRefine to the GNN node embedding part of the
pipeline does not lead to significant improvements. A random search in the hyperparam-
eter space led to 107 training runs (42 with BindingDDG, 31 with DeepRefine and 34
with no pretrained model). The median performance of all three methods is very similar
(Figure C.7) with BindingDDG having slightly better performance than DeepRefine. The
Kruskal H-Score of 1.99 (p-value: 0.37) does not indicate that one of these approaches
has a significantly different performance (RMSE) on the AbAg-Affinity validation set.

pretrained_model # runs median mean
Binding_DDG 35 1.38 1.44 (±0.13)
No-Model 31 1.39 1.42 (±0.12)
DeepRefine 24 1.39 1.44 (±0.14)

Table 7.2: Hyperparameter search results for pretrained models

7.2.2 Related Data
Due to longer training times when using additional data (especially for relative training
with many pairs), the number of runs for the evaluation of related datasets is limited.
In total 44 training runs were successfully executed with 1-6 runs per transfer learning
dataset. After removing outliers (runs with validation RSME > 2), the performance of
the GNN improves when using some of the datasets (compare Figure 7.3 and Table C.3).
The datasets are selected if the median performance of the respective runs (central bar in
Figure 7.3) is better than the median performance of the GNN without transfer-learning
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7.2. Transfer Learning

(grey background in Figure 7.3). Therefore, 8 of the related datasets are combined in the
final transfer learning dataset (dataset left of the red vertical line in Figure 7.3).
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Figure 7.3: Performance of adding related datasets while training and AbAg-Affinity
dataset alone using random hyperparameter configurations

Pretrain-Finetuning and bucket training

Both transfer learning methods, if used with only one of the related datasets, do not
differ significantly from the use of no transfer learning at all (H-score: 1.54, p-value: 0.46).
However, bucket training has slightly better mean and median performance than the
other two methods after removing outliers. Bucket learning has a clearly shorter runtime
than pretraining-finetuning (mean of 22.6 min and 897.8 min respectively). Therefore,
for the final evaluation of the transfer learning approach, bucket learning will be selected
as the transfer learning strategy.
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7. Results & Discussion

train_strategy # runs median mean
bucket_train 19 1.38 1.44 (±0.15)
pretrain_model 21 1.38 1.44 (±0.15)
model_train 19 1.40 1.45 (±0.15)

Table 7.3: Hyperparameter search results for transfer learning method

7.2.3 Pretrained Model & Related data
As described in the previous chapter, RQ2 will be studied by a comparison of the GNN
trained solely on the AbAg-Affinity dataset with a GNN utilizing a pretrained model and
trained on additional related data, selected based on the results shown above. In order to
find a good performing set of hyperparameters, a search was performed using the selected
datasets and the pretrained model from above. Again, the best-found configuration was
used in the final 10-fold cross-validation with the same splits as for RQ1.

The predictions for models trained with and without a transfer learning approach are very
similar (Table 7.4 & Figure 7.4). Regarding RMSE and Pearson’s correlation the model
trained solely on antibody-antigen data performs slightly better for the full AbAg-Affinity
dataset. However, looking at the absolute errors of both approaches using the Wilcoxon
signed-rank sum test, we cannot reject the possibility that the distribution of both
absolute error terms has the same median (compare Figure C.4). The best results for
the AB-benchmark are also not conclusive as the GNN without transfer learning has a
better RMSE but a lower Pearson’s correlation.

AbAg-Affinity AB-Benchmark
RMSE Pearson’s R RMSE Pearson’s R

REF15 3.12 0.11 1.35 0.34 *
GNN 1.82 † 0.37 † 1.33 0.37 *
GNN + TF 1.98 † 0.32 † 1.42 0.47 *

Table 7.4: RMSE and Pearson’s R for full AbAg-Affinity and AB-benchmark datasets.1
†: significant difference to REF15
*: Significance testing is not possible with a single value

Regarding robustness and stability, the GNN trained with transfer learning showed
similar results as the GNN trained solely on the AbAg-Affinity dataset (Figure C.5
and Figure C.2 respectively). However, the performance of the models trained during
cross-validation showed some differences for the AB-Benchmark dataset. Here the GNN
without transfer learning shows more stable results for the AB-benchmark using different
training splits (Figure C.3) compared to the GNN using transfer learning (Figure C.6).

1Table 7.4 shows the metrics on the full AbAg-Affinity dataset while Table 7.1 shows the metric
average for the 10 validation sets of cross-validation
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Figure 7.4: Predictions vs. Labels for AB-benchmark and AbAg-Affinity dataset.
†: significant correlation

7.2.4 Discussion
Although integrating a pretrained model or related datasets alone seems to lead to slight
improvements, the combination of pretrained models and multiple related datasets does
not cause a significant improvement for predictions on the AbAg-Affinity dataset. The
results of the previous section moreover indicate a decreased performance due to a loss in
robustness (Figure C.6). This could be caused by a variety of reasons, like characteristical
differences across models/datasets or that the model is simply not powerful enough to
model similarities in these datasets (underfitting model). Future research may investigate
in more detail the influence of individual datasets and pretrained models. This has the
potential to lead to better knowledge transfer between related data domains and therefore
increased predictive power for the antibody-antigen use case.
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CHAPTER 8
Conclusion & Outlook

In this thesis, we propose an end-to-end deep learning-based approach to predict antibody-
antigen binding affinity and compare it to a commonly employed baseline approach. The
following paragraphs summarize the key findings by revisiting the research questions
posed in the beginning, stating some limitations of the results and highlighting possible
future work in this direction.

8.1 Summary & Key Findings
The search for suitable data and related methods resulted in insights into the limited
availability of antibody-antigen data and a clear focus on protein-ligand binding in
this domain. An analysis of the AbAg-Affinity dataset leads to similar insights as
reported in [RBG+22], giving credit to the representative nature of the dataset (eg.
overrepresentation of specific amino-acids in the paratope and epitope Figure A.1)

The results of this thesis allow answering the first research questions posed in Section 1.2
with high certainty.

RQ1: Does a geometric deep learning approach outperform the Rosetta
Energy Function regarding the predictive power of antibody-antigen binding
affinity?

The comparison included two different metrics that all showed a superiority of the GNN
over the REF15 (compare Table 7.1). Using a cross-validation approach on the larger and
more diverse AbAg-Affinity dataset led to significant performance differences between
both approaches. On the basis of these insights, the superiority of GNNs to REF15 is
concluded.

However, using a smaller subset (AB-Benchmark), selected based on restrictive criteria
(see Section 4.1), no significant performance difference in absolute errors could be detected.
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8. Conclusion & Outlook

RQ2: Do transfer-learning strategies (domain and/or task, parallel and/or
sequential) to overcome data scarcity limitations improve the predictive power
of graph neural networks for antibody-antigen binding affinity prediction?

The initial evaluation of using pretrained models or related datasets did not lead to
significant results and only showed that some datasets seem to slightly improve the
predictive power of the GNN. A final evaluation using a promising subset of the related
datasets and BindingDDG as a pretrained feature embedding model did not lead to
improvements of the predictive power of the GNN.

There are several potential explanations for this result, which may include unsuit-
able information of the introduced datasets or an unfitting transfer-learning approach
(pretraining-finetuning, bucket-training). Furthermore, the implemented GNN could lack
the complexity to actually model the similarities and differences of the transfer-learning
datasets or the existing noise in the validation data simply does not allow for an identifi-
cation of minor improvements. Possible extensions and future research directions in this
domain follow in Section 8.2.

8.1.1 Contribution

The three main contributions to the research domain of machine learning-based antibody-
antigen binding affinity prediction of this thesis are summarized below.

Comprehensive preprocessing pipeline for binding affinity datasets

The datasets used throughout this thesis can be generated using Snakemake pipelines
made available in addition to the source code. These workflows can also be used to
generate new versions of the datasets including the latest complexes published in the
respective databases.

PyTorch-based Framework for binding affinity prediction using GNNs

The source code defining the affinity prediction model used to train the model and
perform the experiments is available under https://github.com/FabianTraxler/
ag_binding_affinity. This module can be used for all binding affinity prediction
tasks and is not limited to antibody-antigen data. Furthermore, the prediction pipeline
(see Figure 5.3) follows a modular design and can be configured and extended in many
ways.

Results for GNN on antibody-antigen data

To the best of our knowledge, this thesis is the first to evaluate the performance of a
graph neural network for the antibody-antigen binding affinity prediction task, showing
promising results for this application.
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8.2. Limitations & Future Work

8.2 Limitations & Future Work
One of the main problems with deep learning-based binding affinity prediction is the
scarcity of data and the quality of the available data. The quality of the 3D structure
and the affinity measurements vary a lot because the currently available methods do
not offer fully precise measurements [JAVH20]. This leads to noisy data that make a
deep-learning approach with limited data even harder. Furthermore, this also affects the
metrics and their interpretation, since we cannot assume that the affinity measurements
are precise and therefore cannot expect a high correlation and low errors.

Furthermore, the selected cross-validation approach comes with the limitation that the
hyperparameters were selected based on one of the validation sets (while being trained
on the rest of the data). Therefore, full independence of the validation sets during
cross-validation cannot be assumed.

Future Work

During the development and implementation of the GNN, many additional extensions
and possible improvements emerged. These concern either the data preparation process,
the GNN architecture, or the integration of related data.

Data preparation:

In this thesis, only relaxation using the Rosetta Suite was implemented, but there are
many different protocols and methods available (eg. Amber Force Field [SFCW13])
that could be compared regarding their impact on GNN performance. Furthermore,
by utilizing biophysical knowledge, even more features for amino acids, atoms or their
connections could be provided.

GNN architecture:

While my research focussed on two well-established GNN layer architectures and ag-
gregation methods, each step of the affinity prediction pipeline could be optimized and
adapted based on the latest research on graph neural networks. For example, different
message-passing layers or aggregation methods could be evaluated.

Both types of graphs (atoms and residues) could be combined, possibly leading to a
better representation of the binding site using a hierarchical approach (eg. similar to An
et al. [AAO+21]).

Transfer learning:

While the experiments of this thesis did not show a clear improvement using transfer-
learning approaches, it is still possible that such methods are successful. For example,
using a self-supervised learning task to obtain meaningful embeddings of the binding site
or integrating data of structure prediction tasks are promising directions to obtain more
meaningful node embeddings. Additionally, information from force fields (like energy
terms) could be leveraged to increase the available information in the graph.
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8. Conclusion & Outlook

The implemented GNN optimized for antibody-antigen binding affinity prediction could
also be used as a tool for other tasks. In contrast to previous energy-based approaches,
the GNN allows for an interpretation of input effects on output values due to its "end-
to-end" gradient-based implementation. Therefore, the neural network can for instance
be integrated with an antibody generation process based on a specific antigen providing
information on the binding strength. Additionally, in a comparison of multiple antibodies
and their possible binding strength to an antigen, the GNN could also supply meaningful
guidance to select the antibody with the best binding strength.
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APPENDIX A
Data Analysis

Tables and plots containing information on the data used throughout this thesis.

Residue graph
Information Size
Amino-acid type 20
Protein type 2
Relative chain position 1
Aliphatic residue 1
Aromatic residue 1
Polar neutral residue 1
Acidic charged residue 1
basic charges residue 1
Residue weight 1
−log(Kd) of −COOH group 1
−log(Kd) of −NH3 group 1
−log(Kd) of any other group 1
pH at isoelectric point 1
Hydrophobicity 2

Table A.1: Overview table of the node features for residue graphs
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A. Data Analysis

Atom graph
Information Size
Residue encoding 35
Atom type 21
Atom degree (# covalent bonds) 4
# bound H atoms 4
Implicit Valence 4
Aromatic atom 1

Table A.2: Overview table of the node features for atom graphs

Publication Size Citation
phillips21_bindin 26,515 Phillips et al.[PLM+21]
wu17_in 83,284 Wu et al. [WGT+17]
starr21_prosp_covid 3 Starr et al. [SGA+21]
wu20_differ_ha_h3_h1 5,765 Wu et al. [WTL+20]
mason21_optim_therap_antib_by_predic 12,528 Mason et al. [MFW+21]
taft22_deep_mutat_learn_predic_ace2 1,618,683 Taft et al. [TWG+22]
b.20_funct_screen_strat_engin_chimer 191 Di Roberto et al. [DRCRF+20]
madan21_mutat_hiv 1,035 Madan et al. [MZX+21]

Table A.3: Overview table of the publications used for the DMS dataset

Figure A.1: Analysis of the difference of residue and atom distribution between the full
protein and the binding site (top: antibody vs. paratope, bottom: antigen vs. epitope)
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Figure A.2: Dataset comparison of graph characteristics distribution (left: atom graphs,
right: residue graphs). A) Interface node count. B) Graph node count. C) Interface edge
count. D) Graph edge count.
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A. Data Analysis

Figure A.3: Dataset comparison of node type distribution. A) Interface hull node types
(top: residue graph, bottom: atom graph). B) Interface node types. (top: residue graph,
bottom: atom graph)
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APPENDIX B
Model Analysis

Tables and plots containing information on the GNN used throughout this thesis.

Hyperparameter Values Kruskal H-score Kruskal p_value Significant

aggregation_method [attention, edge,
max, mean] 110.4186 0.0000 True

attention_heads [1, 3, 5] 5.7417 0.0566 False
batch_size [1, 5, 10] 0.7823 0.6763 False
channel_halving [False, True] 1.2195 0.2695 False
max_num_nodes [10, 50, None] 0.3508 0.8391 False
node_type [atom, residue] 0.0052 0.9424 False
loss_function [L1, L2] 4.6160 0.0317 True
layer_type [GAT, GCN] 0.0160 0.8993 False
gnn_type [guided, proximity] 2.5989 0.1069 False
num_gnn_layers [0, 3, 5] 4.4728 0.1068 False
num_fc_layers [1, 5, 10] 9.2288 0.0099 True
fc_size_halving [False, True] 2.4501 0.1175 False
nonlinearity [gelu, leaky, relu] 2.8163 0.2446 False
relaxed_pdbs [False, True] 2.7303 0.0985 False

Table B.1: Overview table of the GNN hyperparameter and their impact on model
performance
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B. Model Analysis

Figure B.1: Overview of the results for each hyperparameter value (Only runs with
RSME ≤ 2 shown)
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APPENDIX C
Experiments

Parameter Value
node_type residue
batch_size 1
layer_type GCN
nonlinearity leaky
relaxed_pdbs true
scale_values true
learning_rate 0.0002374
loss_function L1
max_num_nodes None
num_fc_layers 10
num_gnn_layers 5
channel_halving true
fc_size_halving false
max_edge_distance 3
aggregation_method mean

Table C.1: Table showing the best-performing hyperparameter configuration of the
hyperparameter search
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C. Experiments

Hyperparameter Values Kruskal
H-score

Kruskal
p_value Significant

pretrained
_model

Binding_DDG,
DeepRefine,
No-Model

1.993466 0.369083 False

transfer
_learning
_dataset

DMS-madan21_mutat
_hiv:relative,

DMS-mason21_comb_optim
_therap_antib_by_predic
_combined_H3_3:relative,

DMS-mason21_comb_optim
_therap_antib_by_predic
_combined_L3_3:relative,

DMS-mason21_optim_therap
_antib_by_predic
_dms_H:relative,

DMS-mason21_optim_therap
_antib_by_predic
_dms_L:relative,

DMS-phillips21_bindin:absolute,
DMS-phillips21_bindin:relative,
DMS-wu17_in:relative,
PDBBind:absolute,
SKEMPI.v2:absolute,
SKEMPI.v2:relative,
no_dataset

10.69 0.56 False

train
_strategy

bucket_train,
model_train,
pretrain_model

1.54 0.46 False

Table C.2: Overview table of the pretrained model and related data comparison and
their impact on model performance
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Figure C.1: Histogram of differences (GNN error - REF15 error) in absolute errors

transfer_learning_datasets runs median mean std
DMS-mason21_optim_therap_antib

_by_predic_dms_L:relative 3.0 1.336388 1.384754 0.083933

DMS-phillips21_bindin:relative 1.0 1.352681 1.352681 NaN
DMS-mason21_optim_therap_antib

_by_predic_dms_H:relative 3.0 1.365688 1.365711 0.018163

PDBBind:absolute 3.0 1.372487 1.361140 0.020919
SKEMPI.v2:relative 3.0 1.375937 1.546211 0.326679
SKEMPI.v2:absolute 7.0 1.378059 1.455285 0.179579
DMS-b.20_funct_screen_strat_engin

_chimer:relative 3.0 1.390536 1.405485 0.124582

DMS-madan21_mutat_hiv:relative 6.0 1.394934 1.417177 0.114558
no_dataset 19.0 1.400437 1.454567 0.148682
DMS-mason21_comb_optim_therap_antib

_by_predic_combined_L3:relativ 3.0 1.404235 1.403509 0.027441

DMS-mason21_comb_optim_therap_antib
_by_predic_combined_H3:relativ 4.0 1.457334 1.503754 0.173792

DMS-phillips21_bindin:absolute 2.0 1.479902 1.479902 0.138483
DMS-wu17_in:relative 2.0 1.597617 1.597617 0.176789

Table C.3: Complete hyperparameter search results for related data
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C. Experiments

Figure C.2: BoxPlot of absolute errors on the 10 different AbAg-Affinity validation sets
during the cross-validation
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Figure C.3: BoxPlot of absolute errors on the AB-benchmark for 10 different training
dataset combinations during cross-validation
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C. Experiments

Figure C.4: Histogram of differences (GNN error - GNN with transfer learning error) in
absolute errors
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Figure C.5: BoxPlot of absolute errors on the 10 different AbAg-Affinity validation sets
during the cross-validation using the transfer-learning appracoh
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C. Experiments

Figure C.6: BoxPlot of absolute errors on the AB-benchmark for 10 different training
dataset combinations during cross-validation using the transfer-learning approach

76



Figure C.7: Performance of the pretrained models compared with no pretrained model
using random hyperparameter configurations

Figure C.8: Performance of different training strategies using random hyperparameter
configurations
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