
Microprocessors and Microsystems 98 (2023) 104807

A
0

R
p
M
a

b

c

A

K
P
M
T
M
M

1

v
o
a
s
c
r
n
v
𝑂
r
a
o
m

t
2

(

h
R

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

ealizing multioperations and multiprefixes in Thick Control Flow
rocessors✩

artti Forsell a,∗, Jussi Roivainen a, Ville Leppänen b, Jesper Larsson Träff c

VTT, Finland
Faculty of Technology, University of Turku, Finland
Faculty of Informatics, TU Wien (Vienna University of Technology), Austria

R T I C L E I N F O

eywords:
arallel computing
ultiprocessor architecture
hick Control Flow
ultioperation
ultiprefix

A B S T R A C T

Multioperations are primitives of parallel computation by which threads perform reductions, e.g., additions, on
values provided by multiple threads into a single value in a constant number of steps. Multiprefixes resemble
multioperations, but return to each participating thread a cumulative ordered reduction of all preceding values.
Algorithmically, multioperations and multiprefixes can speed up parallel programs by a logarithmic factor
over their single operation counterparts. In this paper, we introduce architectural techniques for realizing
multioperations and multiprefixes in so-called Thick Control Flow (TCF) processors. A thick control flow is a
computational construct that bundles homogeneous threads following the same control path into a data parallel
entity. Our proposed processors optimized for executing TCFs feature a frontend-backend structure with low-
latency processing of TCF-common computations and high-throughput execution of data parallel parts. Our
solution relies on step caches and equally sized multioperation scratchpads, while on the memory side, we
make use of active memory modules. The idea is to compute partial results in backend units to reduce the
traffic to the referred shared memory location. The final multioperation result is then computed in the active
memory unit of the target memory module. Multiprefixes use an additional phase where the final results are
computed with a help of backend-wise prefixes. According to our evaluation, the proposed techniques indeed
speed up certain 𝑁 data element algorithms by a log𝑁 factor with reasonable hardware costs.
. Introduction

Reductions are patterns of parallel computation in which a set of
alues provided by a set of threads are reduced to a single value in some
rder (usually determined by a thread numbering or thread priority) by
pplying a (usually associative) binary operation. Multioperations are
uch reduction operations, where several reductions can be carried out
oncurrently by disjoint sets of threads. A trivial way to implement a
eduction in parallel is by a tree-shaped computation in which the bi-
ary operation is repeatedly applied in parallel on pairs of non-reduced
alues until there is only one value left. With 𝑁 threads this takes
(log𝑁) parallel time steps, and is therefore called a logarithmic (time)
eduction algorithm. We also observe that the number of threads doing
ctive computations reduce from 𝑁∕2 down to 1 during the execution
f the algorithm (see Fig. 1). Execution of this algorithm on current
ulticore processors with 𝑃 individual processor cores is inefficient

✩ This paper is a revised and significantly extended version of the paper ‘‘Implementation of Multioperations in Thick Control Flow Processors’’ presented at
he Advances in Parallel and Distributed Computional Models workshop at the International Parallel and Distributed Processing Symposium, 2018 (Forsell et al.,
018) [1] with support for multiprefix operations, more detailed exposition of the proposed techniques, and additional, new benchmarks and measurements.
∗ Corresponding author.
E-mail addresses: Martti.Forsell@vtt.fi (M. Forsell), Jussi.Roivainen@vtt.fi (J. Roivainen), Ville.Leppanen@utu.fi (V. Leppänen), traff@par.tuwien.ac.at

J.L. Träff).

since there is typically only a very small number of hardware threads
available, and doing thread switching and synchronization by software
twice per parallel iteration incurs a huge penalty compared to the
execution time of the binary operation. A faster and more cost-efficient
solution is to divide the 𝑁 values into 𝑃 blocks, perform block-wise
reductions in parallel with all 𝑃 processor cores, and determine the
final result using the logarithmic algorithm or even a sequential one if
it turns out to be faster (see Fig. 1). A typical execution time for this
blocking reduction algorithm is either 𝑂(𝑁∕𝑃 + 𝑃 ) or 𝑂(𝑁∕𝑃 + log𝑃 ),
if the logarithmic algorithm is used to reduce the block results; but
again the number of active processor cores changes along the run of
the algorithm.

In this work we define multioperation instructions as hardware-
assisted implementations of reductions. They apply multiple associative
binary operations to obtain one or more reduction result values. The
vailable online 22 February 2023
141-9331/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a

ttps://doi.org/10.1016/j.micpro.2023.104807
eceived 7 January 2022; Received in revised form 15 October 2022; Accepted 18
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

February 2023

https://www.elsevier.com/locate/micpro
http://www.elsevier.com/locate/micpro
mailto:Martti.Forsell@vtt.fi
mailto:Jussi.Roivainen@vtt.fi
mailto:Ville.Leppanen@utu.fi
mailto:traff@par.tuwien.ac.at
https://doi.org/10.1016/j.micpro.2023.104807
https://doi.org/10.1016/j.micpro.2023.104807
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2023.104807&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Microprocessors and Microsystems 98 (2023) 104807M. Forsell et al.

v
a
v
i
m

a
p
a
(
𝐼

m
o
c
t
m
i

c
c
o
c
h

Fig. 1. The logarithmic algorithm (left) and blocking algorithm (right) implementing additive reduction of 16 values on a 4-core system.
Fig. 2. The logarithmic algorithm (left) and blocking algorithm (right) implementing multiprefix addition of 16 values on a 4-core system.
A

alues are defined by specified target addresses of the data that are
ssociated with one or more sets of threads. The obtained result
alue(s) will reside in memory after the execution of a multioperation
nstruction while the operands can be read from registers or from
emory depending on the variant of the multioperation instruction.
Multiprefix operations are similar to multioperations, but return

cumulative ordered reduction of all preceding elements for each
articipating thread. Like multioperations, multiprefix operations can
lso be implemented with both a logarithmic and a blocking algorithm
see Fig. 2). The former is an iterative algorithm, which at iteration
applies the binary operation to the 𝑁 − 2𝐼 rightmost elements with

the first operands coming from element placed 2𝐼 positions to the
left. The execution time is 𝑂(log𝑁) parallel time steps. The latter
algorithm takes three phases since the results of the second phase
need to be combined with the results of the first phase to obtain the
final results [2]. A typical execution time for this blocking multiprefix
algorithm is again either 𝑂(2𝑁∕𝑃 + 𝑃 ) or 𝑂(2𝑁∕𝑃 + log𝑃 ) (with the
constant 2 included to emphasize the two block phases).

We define here multiprefix instructions as hardware-assisted imple-
entations of multiprefixes. They apply multiple associative binary

perations to obtain one or more multiprefixes (results). The input data
an reside either in memory or in registers depending on the variant of
he instruction. Likewise, the obtained result values will reside either in
emory or in registers of the processor after execution of a multiprefix

nstruction depending on the variant of the multiprefix instruction.
Constant time multioperation and multiprefix instructions can in-

rease the performance of a parallel machine by a logarithmic factor for
lasses of algorithms containing reductions and multiprefixes [3]. Thus,
ne would expect to see the same kind of performance boost in practical
omputers. Supporting multioperation and multiprefix instructions is,
owever, meaningful only for the class of architectures supporting
2

synchronous execution of threads, e.g., so-called Emulated Shared Mem-
ory (ESM) architectures [4–10], that use multithreading to hide the
(distributed) shared memory system access latency, and low-cost syn-
chronization mechanisms to support lock-step synchronous execution.
Previous attempts to support multioperations and multiprefixes in ESM
architectures include:

Combining networks. These implement multioperations and multi-
prefixes for ESM machines that utilize light-weight interleaved
multithreading along with low-cost synchronization to emulate
an ideal shared memory [11]. The main idea is to combine ref-
erences targeted to the same memory location when they meet
in the intercommunication network. Unfortunately, this tech-
nique requires sorting of the memory requests prior to injection
into the network which effectively doubles the latency for all
memory accesses. In addition, a buffer for holding the combined
load/multiprefix messages is needed for each interconnection
network switch.

Streamlined combining networks. These implement
multioperations and multiprefixes for ESM machines [8] and
operate like combining networks. They reduce the number of
routing phases from six used in [11] to five and in addition also
reduce the number of memory modules. Unfortunately also this
requires the same sorting phase as non-streamlined combining
networks.

ctive memories. These implement limited and partial concurrent
memory access [12] and can support multioperations for a
limited number of special memory locations. The key idea is
to mimic the blocking algorithm by calculating the block-wise
results within the processor cores in parallel and then determine



Microprocessors and Microsystems 98 (2023) 104807M. Forsell et al.
the final result with a help of block results. Compared to the
previous ideas, this solution eliminates the need for sorting and
combining machinery in the network.

Step caches and scratchpads. These implement multioperations and
multiprefixes for all memory locations in ESM machines [13].
The main algorithm is the same as with active memories; but
special associative memories called step caches are used to rec-
ognize references belonging to the same operation and scratch-
pads are used to retain the block-wise results. The associativity
of the step cache, however, limits the applicability of this solu-
tion. Resending of partial results to the target address is needed
if it has been wiped out from the step cache due to a set
overflow. Also this solution eliminates the need for sorting prior
to injection of references to the network.

The performance of existing ESM architectures [8,9,14] even with
these extensions is, however, not optimal for algorithms with low and
non-matching parallelism. To address this problem and still retain the
benefits of ESM for functionalities with sufficient parallelism, we have
introduced the thick control flow programming model and processor ar-
chitecture for emulating execution of workloads with arbitrary number
of simplified thread-like computational elements. A Thick Control Flow
(TCF) [15] is a computational abstraction that bundles any number of
homogeneous threads following the same control path into a vector-
like entity. The elements of a TCF are called fibers to distinguish them
from ordinary threads having their own individual control. Efficient
execution of TCF programs requires unique hardware, in which com-
mon parts of TCFs are assigned to frontend execution units providing
low latency, and individual fibers are assigned to high-throughput
parallel backend execution units [16]. Using a programming language
supporting TCFs, an example of a parallel program calculating the
logarithmic multiprefix sum shown in Fig. 2 with a single TCF can now
be written into a compact form:

int i, A_[N];
for (i=1, #N-1; i<N; #-=i, i<<=1)

A_[$+i] += A_[$];

The program declares a scalar loop variable i that is common to all
fibers and an N-element shared array A_. The for-loop initializes i with
value 1 and the thickness of the TCF (#) with N-1. During each iteration
for each fiber in parallel, the fiber $, $ ∈ {0, 1, .., # − 1}, adds A_[$] to
A_[$+i] in parallel and decreases the thickness by i and doubles i. The
loop ends when the condition i < N does not hold any more. There is no
need to add synchronizations after parallel operations since the fibers
of the TCF are executed synchronously.

According to our investigations [16–18], use of TCFs simplifies
parallel programming, improves utilization of hardware resources, and
greatly increases the performance over industry standard multicore pro-
cessors if suitable processor, interconnect and memory system architec-
tures are used. TCF processors turned to widely accelerate execution of
parallel parts of the code, especially if there are dependencies between
the parallel components of the executed program or shared memory
access patterns are non-trivial. We expect therefore TCF processors
to be important in application domains, such as personal computing,
virtual and augmented reality, artificial intelligence, machine learning,
high-performance computing, automated cars, telecom and defence.
Unfortunately none of the above mentioned multioperation and mul-
tiprefix techniques support these operations for variable, unbounded
numbers of threads needed in TCF processors. Fig. 3 illustrates a
parallel program written to employ 21 threads. If we try to bundle
homogeneous threads of the program following the same control path
together to form TCFs, we end up identifying three bundles visualized
in the top of the figure. Bundle 0 is shown in middle of the figure as
3

a TCF where operations are homogeneous and common operations are
Fig. 3. A parallel program written to employ 21 threads, bundling of threads for TCF
formulation, a bundle as a TCF and execution of instructions of the TCF in a TCF
processor with a single frontend (FE) units and four backend (BE) units as synchronous
steps. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

executed only once for the whole TCF and the thickness of computation
is altered to improve the utilization of execution units. Executing in-
structions related to the TCF on a processor with a single frontend unit
and four backend units is shown at the bottom of the figure. Common
operations are executed in the frontend unit 0 while individual opera-
tions are executed at backend units. For instructions involving multiple
homogeneous operations, such as Instruction 3 marked with blue color,
the individual operations numbered from 0 to 15 are distributed evenly
among the backend units and executed there. The figure shows the
default stacked assignment or mapping of operations to backends. Steps
of execution are shown for both the frontend and backends.

In this paper, we propose architectural techniques for supporting
multioperations and multiprefixes in Thick Control Flow (TCF) pro-
cessors. On the processor side, our proposal relies on step caches and
equal-sized multioperation scratchpads, while on the memory side, we
make use of active memory modules. The idea is to compute partial
results in the backend units to reduce the traffic to target memory
location. The final multioperation result is then computed in the active
memory unit of the target memory module, while multiprefixes need
an additional phase where final results are determined with the help
of backend-wise prefixes. According to the evaluation made with our
TCF-aware processor equipped with multi(prefix)operation scratchpads
and active memory units, it indeed executes certain 𝑁 data element
algorithms log𝑁 times faster than the baseline processor. The cost of
the realization is preliminarily evaluated.



Microprocessors and Microsystems 98 (2023) 104807M. Forsell et al.
Fig. 4. The overall structure of the Thick Control Flow Processor Architecture with F FEs and B BEs (L1D = SMP/NUMA level 1 data cache, L1I = SMP/NUMA level 1 instruction
cache, L2 = SMP/NUMA level 2 cache, FE = processor frontend unit, TB = TCF Buffer, BE = processor backend unit, OS = Operand Select, WB = Write Back, MU = Memory Unit,
BR = Backend Register block, S = step cache and SM = Shared Memory module). The outer memory hierarchy, forwarding network and intermediate registers are not shown.
The rest of the paper is organized as follows: Section 2 describes
TCF processors, Section 3 proposes support for parallel multioperations
in TCF architectures, Section 4 does the same for multiprefixes, Sec-
tion 5 evaluates the solution with simulations, and Section 6 draws
conclusions and outlines future work.

2. TCF processors

According to our tests, TCFs execute poorly in current multicore
processors [18] due to high threading and synchronization costs. Pro-
cessing common parts of TCFs resembles executing threads in a multi-
core processor while handling individual fibers corresponds executing
threads in an ESM processor. This motivates our frontend-backend
organization, where common parts are processed in a frontend and
individual fibers are computed in backends.

The Thick Control Flow Processor Architecture (TPA) [16] is our
implementation of a TCF processor. It consists of 𝐹 frontend (FE) units
and 𝐵 backend (BE) units connected together via a work spreading
network (see Fig. 4). The FEs are connected to a typical Symmetric Mul-
tiprocessor (SMP)/Non-Uniform Memory Access (NUMA) style memory
system and the BEs are connected to distributed shared memory system
modules via a high-bandwidth multimesh network. TPA is a part of
our multiprocessor framework aiming for high performance and easy
programmability.

FEs aim at low-latency processing of TCF-level control and data
common to all fibers. They borrow many features, including a num-
ber of parallel functional units (FU) and hierarchical cache-assisted
4

SMP/NUMA memory system, from current CPUs. In this paper we
assume that the FE uses a static superscalar execution scheme known
as Very Long Instruction Word (VLIW) architecture, where instructions
are composed of a number of subinstructions commanding explicitly
the FUs, and where scheduling and register allocation happens at
compile time [19,20]. However, utilizing a traditional dynamic super-
scalar architecture with out-of-order execution, register renaming and
speculation would be possible as well if the interface with the BEs
is implemented properly. A special requirement for the FEs is that
they should support fast switching of TCFs. The inner memory system
typically consists of level 1 instruction and data caches as well as level
2 unified caches. The details of the outer memory system are, however,
out of the scope of this paper.

BEs have long pipelines for high-throughput processing of individ-
ual fibers. They utilize the ESM scheme augmented with the TCF sup-
port mechanisms to provide high performance and simple programma-
bility. This is implemented via the latency compensation mechanism
that employs interleaved multifibering to hide the shared memory sys-
tem latency by executing other fibers while one is referring the memory
if the number of fibers is large enough [16]. Low-cost synchronization
is achieved by using wave synchronization where a wave-shaped group
of special messages separates the references belonging to consecutive
steps of execution and prevents violating the execution order [8,11]. To
maximize exploitation of low-level parallelism, the FUs are organized
as a chain so that subinstructions can use the results from preceding
functional units as operands [9]. The shared Memory Unit (MU) is



Microprocessors and Microsystems 98 (2023) 104807M. Forsell et al.
Fig. 5. (Left) The overall structure of the Thick Control Flow Processor Architecture with the proposed multioperation and multiprefix support (L1D = SMP/NUMA level 1 data
cache, L1I = SMP/NUMA level 1 instruction cache, L2 = SMP/NUMA level 2 cache, FE = processor frontend unit, TB = TCF Buffer, BE = processor BackEnd unit, BR = Backend
Register block, S = step cache and SM = Shared Memory module, SP = scratchpad, A = active memory unit). The outer memory hierarchy is not shown. (Right top) N-way set
associative step cache. (Right middle) Scratchpad. (Right bottom) Active memory unit.
placed in the middle of the chain to enable both address computation
prior to memory access and processing of memory data after it. This
implies that code with inter-instruction dependencies can be executed
within a step as long as there are suitable FUs available. TCFs are
supported in BEs via flexible register block and pipeline mechanisms
allowing arbitrarily thick TCFs and providing access to FE data via the
work spreading network and return channel [16].

Execution of instructions belonging to a TCF happens in a single
FE and optionally for each fiber synchronously in the BEs assigned for
that particular TCF. As a result, execution of a step lasts potentially for a
number of clock cycles. More specifically, we can identify the following
three FE phases and three BE phases:

For each active FE do

F1. Select the next TCF from the TCF buffer if requested by the
previous instruction or TCF management logic.

F2. Fetch a VLIW instruction pointed by the PC of the current TCF
from the FE memory system.

F3. Execute the subinstructions specified by the instruction in the
FUs including control transfer ones. Memory subinstructions are
typically targeted to the FE memory system. If the instruction
contains a BE part, select the operands and send them along with
the part to the BEs assigned to the FE via the work spreading net-
work. Store the data of current TCF to the TCF buffer and switch
5

to the next TCF if requested by the corresponding subinstruction
or TCF management.

For each BE do

B1. When the BE has finished executing the previous instruction, fetch
the next instruction from the spreading network and determine
the fibers to be executed in the BE.

B2. Generate the fibers of the TCF to be pipelined according to the
assignment determined in B1.

B3. For each fiber do:

B3.1 Select the operands from the received FE data and BE register
block.

B3.2 Execute the BE subinstructions in a chained manner. Memory
subinstructions targeted to the shared memory system are ex-
ecuted in the MU residing in the middle of the chain.

B3.3 Write back the BE register block and send the optional reply data
back to the FE via the return channel built into the spreading
network.

After all active TCFs from the FE have been in execution for a single
instruction, TPA issues a special synchronization TCF of thickness zero



Microprocessors and Microsystems 98 (2023) 104807M. Forsell et al.

r
U
s
s
m
i
r
b
a
u
a
w
e
c
p
a
i
w
t
t

m

3

i
u
e
t
m
r
u

3

per BE that only sends and receives a synchronization message to/from
the BE shared memory system.

TPA is a shared memory processors that is aimed to be used as a
parallel central processing unit (CPU) of a computer system. It resem-
bles processors that are optimized for processing multiple homogeneous
components in parallel but unlike vector processors [21–23], SIMD
units of chip multiprocessors [24] and hybrid architecture GPUs [25,
26], the vector size in our TPA is unbounded, execution of parallel
components is synchronous over the entire machine and therefore BE-
initiated parallel access fulfills the requirements for strict memory
consistency. TPA therefore frees a programmer from the connection
of software threads to hardware execution units (hardware threads)
that limits the usage of parallelism in programs with inter-thread
dependencies in current multicore processors.

The mapping of individual subinstructions from an FE to BEs hap-
pens according to a programmable mapping function. Fig. 3 shows an
example of the stacked mapping but alternatives, such as interleaved
mapping, can also be applied when necessary.

We also assume that the processors use concurrent memory access
techniques implemented with step caches as described in [17]. These
techniques allow parallel programs, where all fibers read from/write to
a single memory location, to execute without any congestion overhead.
Step caches are associative storage blocks holding copies of the latest
eferences to the shared memory system [27] (see Fig. 4 top left).
nlike ordinary caches, there are no coherency issues in step caches

ince the lifetime of cache entries range only until the end of the current
tep and references within a step are independent by definition. The
ain idea of step caches is to reduce the traffic to target locations

n the case of concurrent memory access so that a BE sends only one
eference per step per accessed address. In a TPA, step caches are used
y most memory subinstructions and placed as a part of the memory
ccess machinery of BEs (see Fig. 4) so that a memory subinstruction
tilizing the step cache can access it prior to making a decision whether
n actual memory reference needs to be done or not. In the case of a
rite operation, the shared memory unit accesses the step cache. If an
ntry corresponding to the target location is found, the write operation
an be ignored since a write is already done, otherwise the write will
roceed normally to the shared memory system. Similarly, in the case of
read operation, the MU accesses the step cache. In the case of hit, data

s already in the BE unit and no memory system reference is needed,
hile in the case of a miss, memory reference is generated and sent to

he shared memory system. Thus, a BE unit-wise step cache is attached
o the MU of each unit.

In the following two sections, we describe how multioperations and
ultiprefixes can be implemented in TCF processors, such as TPA.

. Multioperations for TCF processors

In order to support multioperations in TCF processors, one needs to
mplement reductions for arbitrarily large number of fibers in hardware
sing the blocking algorithm. This prevents applying existing multiop-
ration techniques relying on a step cache and scratchpad entry per
hread [13]. Our idea is to employ step caches, scratchpads, active
emory units, FEs and load operations along with processors’s BE

egister blocks organized differently than in [13] to support TCFs with
nbounded number of fibers.

We propose a solution consisting of 𝐿-line 𝑁-way set associative
step caches, 𝐿-entry scratchpads, a pre-memory ALU (pre-ALU) and a
post-memory ALU (post-ALU), where the default value for 𝐿 is the max-
imum latency of the shared memory that can be hidden. Fig. 5 shows
the modifications needed to the TCF processors architecture opening
up step cache, scratchpad and active memory blocks. The step caches
in this solution are similar to those used for the concurrent memory
access support for TCF processors [17]. They are used to associatively
reduce the traffic to the shared memory and group the references tar-
geted to the same address, i.e., belonging to the same multioperation.
6

Step caches consist of 𝑁 cache arrays, comparators and the hit logic.
Since caches hold their content only during the end of ongoing step,
scratchpads are used to hold the data and intermediate results. The
scratchpads resemble those used in some ESM architectures [13] but do
not have capacity to hold data for each fiber. Scratchpads consist of an
array of data addressed by an operand determined as a function of step
cache address. Besides step caches and scratchpads, a multioperation-
aware active memory unit on each shared memory module is needed.
They consist of an ALU and multiplexer attached into the BE shared
memory module. Active memory operations, such as multioperations
and multiprefixes, fetch the old value of the target memory location,
perform the operation in the ALUs and write the result back to the
memory location while non-active memory operations just pass the
ALUs.

We identify five different techniques (summarized also in Fig. 10
of Section 5 for reference purposes) to realize multioperations in TCF
processors:

1. Fast multioperations (FS). These are implemented with M𝑜𝑝
subinstructions realizing the reduction 𝑜𝑝 by relying on active
memory units in the memory module (see Fig. 6 left): Each
BE executes its instructions for each fiber one by one in an
overlapped way in phase B3.2. The fibers participating in mul-
tioperations send out their data (marked with blue color) to
a memory module where the target location is placed. The
active memory unit of the target module fetches the old data
of the location (marked with green color), performs 𝑜𝑝 with
the incoming fiber data and stores the result back to the target
location. Fast multioperations execute in one step. If there are
more than 𝑇 ∕𝐵 participating fibers per multioperation (𝑇 is
the thickness of the TCF taking care of the functionality, 𝐵 the
number of BEs) the execution will slow down accordingly. The
minimum execution time of a step is 𝑇 ∕𝐵. If all fibers of a TCF
participate to a single fast multioperation, the speedup is lost
entirely due to congestion caused by 𝑇 requests within 𝑇 ∕𝐵
clock cycles in the module access port.

2. Symmetric two phase multioperations (S2). This consists of a se-
quence of two subinstructions — BM𝑜𝑝 and EM𝑜𝑝 that perform
the main work in the phase B3.2 of the BEs (see Fig. 6 right).
The former begins execution by calculating backend unit-wise
results for the reduction 𝑜𝑝 with a help of the step cache, the pre-
ALU and the scratchpad without referring to the shared memory
system. For this, each fiber sends its references along with the
data (marked with blue color) to the step cache for grouping
together the values belonging to the same multioperation based
on target addresses and assigning data values to corresponding
scratchpad address (marked with gray color). The fibers then
proceed to the pre-ALU logic located in the BE pipeline just
before the logic sending out memory references. There, previous
value from the determined scratchpad address is fetched, the 𝑜𝑝
with the fiber data is performed in the pre-ALU and the result
stored back to the scratchpad. After all the fibers have been
executed, the scratchpad entries contain BE-wise multioperation
results. They are used to pass these BE-wise results to the second
instruction that ends execution by taking care of the actual
computing of the processor-wise results in the same way as
the FS technique does and writing the final result to the target
location (marked with green color). A symmetric two-phase
multioperation takes two full steps to execute and requires an
overflow mechanism if more than 𝑁 multioperations per a cache
set needs to be supported as the step cache sets and scratchpad
can get full. In the best case it takes 2𝑇 ∕𝐵 clock cycles.

. Backend–frontend multioperations (BF). This can be used only

in the case of single multioperation and consists of two phases



Microprocessors and Microsystems 98 (2023) 104807M. Forsell et al.
Fig. 6. Fast multioperation (FS, left) and symmetric two-phase multioperation (S2, right) techniques. Step caches are not shown. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
Fig. 7. Backend–frontend multioperation (BF, left) and optimized two-phase multioperation (O2, right) techniques. Step caches are not shown. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
5

like S2 (see Fig. 7 left). The first phase is identical to S2 but
the processor-wise results are also sent to the frontend for
completing the operation there. The second phase consists of
reducing the received 𝐵 BE-wise results into the final result in FE
phase F3 using a FE memory location (marked with red color)
and writing the obtained value to the target BE memory location
(marked with green color). This takes 𝑇 ∕𝐵+𝐵+𝐿𝑓 clock cycles,
where 𝐿𝑓 is the latency of FE write to the BE shared memory
system. A variant of this writes the final result to the FE memory
only and potentially saves up to 𝐿𝑓 − 1 cycles.

4. Optimized two phase multioperations (O2). The first phase of
this technique works like in S2 but allocation of scratchpad is
7

done from the beginning towards the end. Due to this sequen-
tial addressing scheme, the scratchpads need to keep also the
multioperation target addresses. The second phase sends out
the contents of the occupied entries of the scratchpad only. If
more than 𝐿 multioperations need to be supported, O2 requires
an overflow mechanism of S2 but here for the first phase. The
execution time is normally 𝑇 ∕𝐵+𝑀 , where 𝑀 is the number of
simultaneous multioperations (see Fig. 7 right).

. Multioperation loads (ML). An obvious weakness of the previous
techniques is that they work efficiently only for register to
memory reductions, not for memory to memory reductions.

Multioperation loads work similarly as O2 but the first phase



Microprocessors and Microsystems 98 (2023) 104807M. Forsell et al.
Fig. 8. Three phase multiprefix (3MP) technique. Step caches are not shown.
Fig. 9. Memory-to-memory multiprefixes (MMP) technique. Step caches are not shown.
loads data from the memory and performs the backend-wise re-
duction of incoming data with an additional post-ALU following
the memory unit in the BE pipeline. The minimum execution
time for memory-to-memory multioperation loads with the O2 s
phase operation is 𝑇 ∕𝐵 + 𝑀 . The overflow mechanism for this
technique is harder to design than for the other techniques
due to the fact that loaded data already occupies the memory
8

interface.
Note that for this kind of techniques, step caches, scratchpads and
data memory modules employing active memory units should be able
to perform a read and write to the same address within a clock cycle.
For step caches and scratchpads this is not a major problem since they
reside inside BE units and have typically small size. For data memory
modules that are much larger and typically implemented with a fast
SRAM technology, a read–write access can be implemented with a

double speed memory technology that is very expensive or may limit



Microprocessors and Microsystems 98 (2023) 104807M. Forsell et al.
Fig. 10. Evaluated techniques (MO = multioperation, MP = multiprefix, 𝑜𝑝 = multioperation or multiprefix operation, 𝐵 = number of backends, 𝐿𝑓 = latency of FE write to the
BE shared memory, 𝑀 = number of simultaneous multioperations, 𝑆𝑠𝑐 = size of step cache, 𝑇 = thickness of the current TCF, 𝑊 = memory system segment length in the BE
pipeline).
Fig. 11. Processors in the evaluation.
2

the clock rate, use a (patented) module cache technology adding a
small cache read–write port cache to speed up access, or accept the
performance hit of half-speed access. In this paper, we assume that the
module caches are used and no performance penalty is caused.

Since the TCF architecture typically does not access memory loca-
tions in processor order, non-commutative multioperations cannot be
implemented this way.

4. Multiprefixes for TCF processors

Implementing multiprefixes in TCF processors resemble that of mul-
tioperations but have two main differences — there is a return value for
each fiber, and the operations must be executed in order to guarantee
correct results. Our idea is to use the blocking multiprefix algorithm
with 𝐿-line 𝑁-way set associative step caches, 𝐿-entry scratchpads, pre-
memory ALU, post-memory ALU and multiprefix-aware active memory
units. Unlike the case for multioperations, employing frontends in
multiprefix computation is not practical since each fiber/block needs
unique return values and passing such values via the spreading network
can be slow.

We identify six different techniques (summarized also in Fig. 10
of Section 5 for reference purposes) to realize multiprefixes in TCF
9

processors:
1. Fast multiprefixes (FMP). These are implemented with MP𝑜𝑝
subinstructions realizing reduction 𝑜𝑝 and returning the or-
dered reduction of the preceding fibers. The implementation
employs active memory units in memory modules and executes
in one step. If there are more than 𝑇 ∕𝐵 participating fibers
per multiprefix (𝑇 is the thickness of the TCF taking care of
the functionality, 𝐵 the number of backend units) then it will
slow down the execution accordingly. The minimum execution
time of a step is 𝑇 ∕𝐵. Furthermore, this primitive gives the
correct ordered result only if the participating fibers belong to
the same backend. However, one can use it to perform

⌊
√

𝑇
⌋

simultaneous multiprefixes useful in many parallel algorithms.
Even if the result is not an actual multiprefix in the case of mul-
tiple participating backends, the result can be used for purposes
where the ordering is not required, such as compacting.

. Three phase multiprefixes (3MP). This consists of a sequence of
three subinstructions — BMP𝑜𝑝, OMP𝑜𝑝 and EMP𝑜𝑝. The first
subinstruction begins execution by calculating backend unit-
wise multiprefix 𝑜𝑝 results with a help of the step cache, scratch-
pad and pre-ALU without referring to the shared memory system
but storing intermediate BE-wise results back to the registers of
fibers (see Fig. 8). The second instruction performs multiprefix



Microprocessors and Microsystems 98 (2023) 104807M. Forsell et al.
Fig. 12. Benchmark programs for the proposed multioperation TPA processor.
s
t
c
w
s
t
t
t
a
t
T
3

5

i
s
1
a
M
S
(
t
p
u
E
a

computation of BE results like the FMP technique does. In order
to obtain correct results, processing of BE results is sequen-
tialized by issuing 𝑖 synchronizations for BE 𝑖 prior to actual
memory operation and 𝐵 − 𝑖 synchronizations after it. Finally,
the third instruction finalizes the fiber-wise results by computing
the obtained BE prefixes into fiber-wise partial results with a
help of post-ALU. This primitive needs an overflow mechanism
resembling that used in the O2 multioperation technique. The
execution time is normally 2𝑇 ∕𝐵+𝐵+𝑀 , where 𝑀 is the number
of simultaneous multiprefixes over the BEs.

3. Optimized three phase multiprefixes (O3M). The first and last
phase operate like in the 3MP technique but the middle phase
is optimized to work using the logarithmic algorithm instead
of sequential one used in 3MP. The execution time is normally
2𝑇 ∕𝐵 + log𝐵 + 𝑀 , where 𝑀 is the number of simultaneous
multiprefixes over the backends.

4. Multiprefix loads (MPL). An obvious weakness of the previous
techniques is that they work efficiently only if the data is in
the registers before execution, not in memory. Multiprefix loads
work similarly as 3MP but the first phase loads data from
memory and performs the backend-wise prefix computation of
incoming data at the post-ALU. The (memory-to-register) mini-
mum execution time for multiprefix loads with second and third
phase operation from the 3MP technique is 2𝑇 ∕𝐵 +𝐵 +𝑀 +𝑊 ,
where 𝑊 is the memory system segment length in the backend
pipeline. The overflow mechanism for this technique is harder to
design than for the other techniques due to the fact that loading
data already occupies the memory interface.

5. Multiprefix stores (MPS) Another drawback of the multiprefix
primitives FMP and 3MP is that they write the prefixes to the
registers rather than in memory. MPS solves this problem by
performing the last phase directly to the memory with a help
of the pre-ALU. The minimum execution time for register-to-
memory multiprefix stores employing first two instructions from
10

the 3MP technique is 2𝑇 ∕𝐵 + 𝐵 +𝑀 +𝑊 . t
6. Memory-to-memory multiprefix (MMP). This combines reading
from memory used in MPL, backend-wise computation phase
of 3MP and storing to memory used in MPS to implement
a true memory-to-memory multiprefix operation (see Fig. 9).
The minimum execution time for memory-to-memory multi-
prefix operation employing the middle instruction from the 3MP
technique is 2𝑇 ∕𝐵 + 𝐵 +𝑀 + 2𝑊 .

Besides these implementation techniques, we identify a couple of
pecial needs to accelerate key primitives in TCF processors with mul-
iprefix variations, namely compacting a vector and splitting a TCF
onditionally to two sub-TCFs. Both variations need to handle fiber-
ise data independently and conditionally which is not possible with

tandard multiprefixes and TCF operation. To implement these primi-
ives efficiently, we propose a variant of the MMP technique in which
here are two targets in additive multiprefixes, one for data meeting
he condition and another for data not meeting the condition. An
dditional requirement is handling extra input and output operands for
he conditions and selection of the data to be written into the memory.
he execution time characteristics for these multiprefixes are similar to
MP.

. Evaluation

We conducted a performance evaluation of the techniques described
n the previous sections. The baseline TPA used in the evaluations con-
ists of a single 7-functional unit MPA VLIW frontend [20] and sixteen
0-functional unit backends. We have implemented the FS, S2, BF, O2
nd ML multioperation techniques, as well as the FMP, 3MP, O3M,
PL, MPS, MMP including conditional multiprefix techniques for ADD,

UB, AND, OR, MAX, MAXU, MIN and MINU multi(prefix)operations
see Fig. 10) on the TPA to demonstrate that the proposed opera-
ions can be implemented and meet the expectations. For reference
urposes, we also evaluated single core execution in the frontend
sing the sequential reduction algorithm (SEQ) and the best existing
SM solution using the configurable emulated shared memory (CESM)
rchitecture [14]. For a summary of the measured architectures and

heir configuration, see Fig. 11.



Microprocessors and Microsystems 98 (2023) 104807M. Forsell et al.
Fig. 13. The execution time in the tested processors as the function of problem size 𝑁 for the multioperation benchmark programs.
5.1. Performance

We implemented 11 parametric kernel benchmarks representing
different use cases of multioperations and multiprefixes (see Fig. 12),
executed them in our clock and RTL accurate TPASim configurable
to simulate the baseline TPA and TPA MCRCW, and measured the
execution time in clock cycles.

The results of the measurements comparing the multioperation
techniques are shown in Fig. 13 while Fig. 14 demonstrates the speedup
potential of the best technique with respect to the baseline TPA and
CESM. Our observations are:

• The FS technique performs poorly in the case of a single multiop-
eration. The execution time of the min benchmark is higher than
that of the sequential algorithm with most values of 𝑁 due to con-
gestion in the shared memory system. However, as the number of
simultaneous multioperations grows (see the msum benchmark),
it becomes the second best performing multioperation technique.

• The S2 technique performs up to 5.33 and 7.98 times faster than
FS in the min and rmin benchmarks in the case of a single
11
multioperation. This is because S2 reduces the contention in the
target memory module. As the number of parallel multioperations
grow, the performance of S2 stays the same until it runs out of
step cache.

• The BF technique works only for single multioperation cases,
where it gives 48.6% and 96.3% higher performance than S2 in
the min and rmin benchmarks. This improvement comes from
reduction of the second phase of the multioperation.

• The O2 technique performs slightly better than BF but it works
also for parallel multioperations that fit in the step cache. It
increases the performance by up to factor of 15.95 in single
register to memory multioperations with respect to FS. The msum
benchmark reveals that the advantage diminishes fast as the
number of parallel multioperations increases.

• The ML technique gives the best performance for memory to
memory multioperations used in the min benchmark. It speeds
up single multioperations by up to factor of 15.57 with respect
to the sequential execution with our 16-backend system. As the



Microprocessors and Microsystems 98 (2023) 104807M. Forsell et al.

n
t
o
c

e
t
m
p
𝑁
p
n
A
t
s
l
o
s
S

c
i

Fig. 14. The execution time of the mmul benchmark versus that in a machine with ideal memory system. The execution time of the min benchmark for the best single multioperation
technique versus that in the CESM without multioperations and TPA baseline processors.
number of parallel multioperations grows, it remains the fastest
alternative until it runs out of step cache.

• For the csort benchmark, the FS technique is the fastest as
expected, while the S2 technique is the weakest. O2 performs a
bit weaker than FS since it runs a second phase. Due to the nature
of the algorithm reducing the parallel comparison results with a
multioperation, the ML technique is not applicable in it.

• The best proposed single multioperation technique executes the
min benchmark up to 43.82 times faster than the baseline TPA
using the logarithmic algorithm shown in Fig. 1. CESM (with-
out multioperations) performs 1.75 times slower than the TPA
baseline in the case where size matches the number of threads.
Otherwise the overhead would be much higher due to thread
switching costs.

To determine the optimality of the proposed solution, we compared
the proposed TPA to a similar machine with an ideal memory system.
The results for the mmul benchmark implemented with the FS tech-
ique are shown in Fig. 14. We observe that measured TPA execution
imes are very close to those in the ideal machine. The execution time
verhead 0.39% in 16 × 16 case drops down to 0.00076% in 128 × 128
ase and corresponds with the synchronization wave overhead.

The CESM architecture (including multioperation support) gives
xactly the same results if the number of hardware threads (2048 for
his configuration) equals to 𝑁 for fast multioperations and two-phase
ultioperations resembling the FS and S2 techniques of TCF-aware
rocessors but it does not have anything similar to BF, O2 or ML. If

is less than the number of threads then the utilization of processor
ipeline will drop proportionally. Likewise, if 𝑁 is greater than the
umber of threads, there will be a high thread switching penalty.
lternatively one can use iterative methods, e.g., looping to match

he number of HW treads with the problems size. In the case of a
imple multioperation, the loop overhead can be eliminated but the
oop header takes at least one instruction with minimum execution time
f 129 clock cycles in the CESM configuration. This corresponds to a
lowdown of up to 6.4% and 33.3% in the min benchmark for FS and
2 techniques, respectively.

The results of multiprefix tests are shown in Fig. 15 while the
onditional multiprefix tests are shown in Fig. 16. Our notes of interest
nclude:
12
• The FMP technique performs modestly in the case of a single
multiprefix operation. It outperforms the sequential algorithm in
the prefix-add benchmark only by a factor of 69%–85% due
to memory system congestion but gives an incorrectly ordered
result. In the mprefix-add test, it outperforms all other tech-
niques if the number of parallel prefixes is at least 512 and is
the only possible solution for over 1024 parallel prefixes due to
inappropriate step cache size.

• The 3MP technique performs up to 4.49 and 7.97 times faster
than FMP in the prefix-add and rprefix-add benchmarks
in the case of single multiprefix. As the number of multiprefixes
increases, the performance drops gradually to half of the FMP.
This technique always gives the correct results, but it cannot be
used if the number of simultaneous multiprefixes exceeds the size
of the step cache.

• The O3M performs slightly worse than 3MP with our test data.
The slowdown compared to it drops from 2.07 down to 1.03 as
the problem size increases in prefix-add benchmark. In the
rprefix-add case, the slowdown ranges from 3.07 down to
1.07. Like 3MP, this technique gives always the correct results,
but it cannot be used if the number of simultaneous multiprefixes
exceeds the size of the step cache.

• The MPL technique gives somewhat better results than 3MP in
memory-to-memory multiprefix tests. The speedup ranges from
1.03 to 1.32 in the single multiprefix case. In the case of multiple
parallel multiprefixes the speedup over FMP drops from 5.93
down to 0.60.

• Like MPL, the MPS technique performs better than 3MP in the
case of a single multiprefix operation. The speedup ranges from
1.02 to 1.32. In the case of parallel multiprefixes the speedup over
FMP collapses from 5.93 down to 0.60.

• The MMP gives the best performance for memory to memory
multiprefixes. It speeds up single multiprefixes by up to a factor
of 15.52 with respect to the sequential version with our 16-
backend system. As the number of parallel multioperations grows,
it remains the fastest alternative except for the largest setup. Like
other step cache assisted multiprefix techniques, it cannot handle
the cases where number of multiprefixes exceeds the step cache
size.



Microprocessors and Microsystems 98 (2023) 104807M. Forsell et al.
Fig. 15. The execution time in the tested processors as the function of problem size 𝑁 for the multiprefix benchmark programs.
We compared the proposed conditional multiprefixes against those
implemented with the baseline TPA without multiprefixes using the
comp and ctcf benchmarks. The former compacts an input data array
using a separate mask array distinguishing the actual values from the
empty space. The latter divides the fibers of a TCF into two sub-TCFs
according to a fiber-wise condition array. Since TCFs always number
the fibers from 0 to 𝑇 − 1, this algorithm provides an output array
containing the fibers of the parent TCF for both sub-TCFs. The results
are shown in Fig. 16. According to the measurements, the proposed
conditional multiprefixes indeed accelerate the comp and ctcf bench-
marks over the baseline TPA by the factors from 8.96 to 23.45 and from
9.22 to 23.93, respectively. The main portion of the speedup comes
from trading an iterative logarithmic prefix algorithm to the conditional
three-phase memory-to-memory MMP technique.

In order to compare the implementation options for OMP𝑜𝑝 in-
structions for three-phase multiprefixes, we executed the prefix-add
benchmark with the standard sequential, balanced sequential and log-
arithmic realizations. The standard sequential version sends out 𝐵+𝑀
references while the balanced sequential version schedules the sending
of references so that it takes 𝐵(𝑀 + 1) clock cycles in total to avoid
13
tweaking of synchronization waves. The results are shown in Fig. 17.
According to the measurements, the standard sequential version is up
to 5.6% faster in dual memory access techniques (MPL and MPS) and
up to 8.1% faster in the three memory access technique (MMP). In the
single memory access case, the logarithmic techniques (O3M) turned
out to be 3.5% slower than the standard sequential version (3MP) in
this benchmark due to extensive pipeline delays not present in the
sequential version. We believe that for very large TPAs the logarithmic
version would be faster than the standard sequential one due to its
asymptotically lower time complexity. However, we did not experiment
with such large TPAs due to extensive simulation times and extra
memory required by the O3M technique.

Finally, to get a rough idea how the performance of TPA MCRCW
would compare to that of existing multicore processors in multiprefix
computation, we implemented a 262 144-element memory-to-memory
additive blocking multiprefix algorithm with a stacked memory alloca-
tion shown in Fig. 2 using C/Pthreads for a MacBook Pro 15’’ laptop
featuring a 2.7 GHz 4-core Intel Core i7 processor with 3 memory units
per core and equally wide lines to the shared L3 cache as TPA MCRCW
has to the on-chip BE shared memory. We compiled the algorithm



Microprocessors and Microsystems 98 (2023) 104807M. Forsell et al.
Fig. 16. The execution time in the baseline and proposed architecture as the function of problem size 𝑁 for the comp and ctcf benchmark programs.
Fig. 17. The execution time in the proposed processors employing sequential, balanced sequential and logarithmic variants of the OMP𝑜𝑝 instruction as the function of the number
of parallel multiprefixes for the mprefix-add benchmark program.
with Apple LLVM compiler with -O3 optimizations and measured the

average execution time of five 100 000-iteration runs to guarantee

that the execution in the processor is ramp-up properly from possible

power saving modes and that the data is in the on-chip caches. We

implemented the same functionality for TPA MCRCW with the MMP-

technique and measured the execution time. If we assume that the

processors would run at the same clock rate, the comparison shows a

significant 9.28-fold performance advantage for TPA.
14
5.2. Hardware implementation considerations

Extending the TPA baseline processor into TPA MCRCW version
does not imply major modifications. Essential parts for supporting mul-
tioperation techniques FS, S2, FB, O2 and ML for operations ADD, SUB,
AND, OR, MAX, MAXU, MIN, MINU as well as multiprefix techniques
FMP, 3MP, O3M, MPL, MPS and MMP including the vector compaction
and conditional TCF splitting include step caches as projected in [13],
active memory units and scratchpads. There is no need to add step
caches to TPA MCRCW, since they are assumed to be already in-
cluded in the baseline TPA to support concurrent memory access [17].



Microprocessors and Microsystems 98 (2023) 104807M. Forsell et al.
Fig. 18. Implementation of the min and prefix-add benchmarks with a high-level programming language and assembler using the O2, ML and MMP techniques (# = thickness
of the TCF, $ = fiber identifier, _ = shared variable). Each assembler text line represents a single VLIW instruction consisting of a multiple subinstructions.
Fig. 19. Implementation of the csort benchmark with a high-level programming language and assembler using the FS technique (# = thickness of the TCF, $ = fiber identifier,
log_n = precomputed log𝑁 , _ = shared variable).
m

f

Fig. 20. The csort algorithm compares all elements of the source array _A_ =
(3,7,2,5) to each other and sums the results of comparisons together column-wisely.
The column sums give the rank of each element in the sorted array.

Adding the 1024-entry scratchpads corresponds to 0.51% increase of
the amount of on-chip memory. Extra logic is required in the form
of ALUs needed before the memory access, within the active memory
units and after the memory access. Based on the gate count estimates
of typical ALU components, the area overhead of these three ALUs
involving adders/comparators and support for basic boolean logic with
respect to eight full-size ALUs of the baseline TPA BE containing also
multipliers and barrel shifters is considered even smaller than 0.51%.
Since the scratchpads and ALUs are utilized only for multioperations
and multiprefixes, we estimate that the energy consumption increases
with less than 0.51%. Thus, all in all, the estimated additional resources
needed are minor compared to gained performance advantages.
15
Regarding the implementability of active memories, a notable fact
is that they are associated with on-chip memory/cache resources imple-
mented with SRAM technology rather than external DRAM. This makes
silicon implementation of them many ways simpler and more efficient.

To demonstrate the feasibility of the techniques proposed in this
paper, we have built a VHDL realization of a full TPA BE system
implementing the most relevant FS, BF, O2, ML multioperation and
FMP, 3MP, MPL, MPS, MMP multiprefix techniques and synthesized it
against FPGA libraries. The resource usage and performance figures in
HDL simulator were identical to those in our RTL software simulator.

5.3. Programming mechanism

Multioperation instruction-aware programming can be implemented
with the aid of simple constructs (intrinsics) compiling directly to
multioperation instructions. Since there is no standard way to express
multioperations in popular parallel programming languages, we will
use here the notation of the e-language [28]. It defines high-level con-
structs, multi(OP,tgt,src) and fast_multi(OP,tgt,src),
that implement multioperation OP for data obtained from src and
save the result in tgt using the S2 and FS techniques of the target
machines, like CESM, respectively. The constructs are not subprograms
but compile to inline sequences of multioperation instructions. For
example, multi(ADD,t_,s_) compile to pseudocode sequence of
BMADD s_,t_ | EMADD s_,t_ instructions that executes additive
reduction in constant time. The number of parallel multioperations
is defined by the target address values t_ and the data for each

ultioperation is defined by the combination of s_ and t_.
Our idea is to use the same constructs for expressing multioperations

or TCF-aware processors. The semantic of the constructs remains the



Microprocessors and Microsystems 98 (2023) 104807M. Forsell et al.

c
a
a
t
e

t
h
f
t
r

a
r

Fig. 21. Implementation of the rsort benchmark with a high-level programming language and assembler using the FMP AND MMP techniques (# = thickness of the TCF, $ =
fiber identifier, _ = shared variable).
w
a
c
p
b
u
m
m
t
t
a
m
c
t
o
a

f
d
w
a
s

same as for the fixed threading scheme machines but the number of
participating fibers is now defined by the thickness of the executed TCF.
Due to the bounded size of the assisting step caches and scratchpads,
S2, FB, O2 and ML techniques do not work properly for excessive
number of parallel multioperations unless some kind of an overflow
mechanism is used. If the thickness of the TCF is constant, the selection
of correct technique can be done automatically by the compiler. The
multioperation implementations shown in Section 3 require that the
mapping of individual operations from the FE to the BEs needs to follow
the default stacking function shown in Fig. 3. Selecting the correct
mapping can easily be handled by the compiler.

In order to demonstrate multioperation programming, let us con-
sider the min, prefix-add, csort and rsort benchmarks that
compute a minimizing reduction, additive prefix sum and sort an array
of integers in constant number of steps, respectively. The high level
implementation of min is shown in Fig. 18. It consists of only a
single code line performing the multioperation. The assembler version
compiled with the O2 techniques consists of a sequence of a load
instruction and BMMIN-EMMIN sequence but not a loop to adapt the
software parallelism to hardware one while the ML version consists
the sequence MLMIN-EMMIN only. The high level implementation of
prefix-add is shown in Fig. 18. Also it consists of a single line imple-
menting the multiprefix operation. The assembler version is compiled
using the MMP technique resulting into a program with a sequence of
MPLADD-OMPADD-MPSADD.

The high level implementation of csort is shown in Fig. 19. It
consists of just two statements executed with thicknesses 𝑁2 and 𝑁 ,
respectively. The first statement performs 𝑁 parallel multioperations
using the construct fast_multi() over the results of comparing all
𝑁 data elements to each other. The operations of the algorithm is
illustrated in Fig. 20 for 𝑁 = 4. For the FS techniques, the algorithm
ompiles to just two sequences of three assembler instructions that
ll involve execution in both the frontend and backends. The TPA
ssembler listing of the csort is shown in Fig. 19. The execution
ime of this program is six steps in TPA. The simulations showing the
xecution time in clock cycles are shown in Fig. 13 under the label FS.

For multiprefixes, our idea is to likewise reuse the CESM nota-
ion [28]. In it the standard three-phase multiprefix is denoted with a
igh-level construct prefix(p,OP,tgt,src) and
ast_prefix(p,OP,tgt,src), that implement multiprefix OP for

he data obtained from src, save the corresponding multioperation
esult in tgt, and return the prefixes in p.

The high level language implementation of rsort benchmark is
shown in Fig. 21. It consists of just three statements executed with
thicknesses 𝑁 , 𝑅 and 𝑁 , respectively. The first statement performs

fast multioperation for counting the occurrences of each integer in
ange [0,… , 𝑅 − 1] into array B. The next statement computes the
16

d

additive multiprefix of B revealing the number of predecessors for each
integer. Finally, the third statement uses this information to move each
input integer onto its own place in array D so that the input array is
sorted. The TPA assembler listing of the rsort is shown in Fig. 21
grouped to three groups of instructions corresponding to the three
statements of the high-level language version. The execution time of
this program is eight steps in TPA (see Fig. 15 under the label TPA
MCRCW).

Programming and analyzing parallel algorithms for ESM computers
is discussed beyond multioperations and multiprefixes, e.g., in [3,8,18,
28,29].

6. Conclusion

In this paper we have described architectural solutions for realizing
reductions with multi(prefix)operations in thick control flow (TCF)
architectures, such as TPA. On the processor side, our solution relies
on step caches and equally sized multioperation scratchpads, while
on the memory side, we make use of active on-chip memory mod-
ules. We also discussed solutions utilizing the frontend unit instead
of active memory units, or conditional splitting of fibers of thick
control flows. Asymptotically, the proposed techniques can speed up
execution of certain 𝑁 data element algorithms by a factor of log𝑁

hen comparing to similar processors without multioperations. The
ctual speedups depend on the selected techniques, number of con-
urrent multioperations, execution units and problem size. The highest
ractical speedup factor – 43.82 for 64K data elements on a 16-
ackend TCF-aware processor – was achieved in the min benchmark
sing the multioperation load technique. The best acceleration factor in
ultiprefix operations, 23.93, was achieved with memory-to-memory
ultiprefix technique in the case of conditional multiprefix computa-

ion. We also provided insights into the selection and limitations of
he proposed multi(prefix)operation techniques. Based on the needed
dditional memory capacity for scratchpads and small ALUs, we esti-
ate that the silicon area and power consumption overheads in this

ase are modest compared to the baseline processors even when all
he proposed techniques are implemented. Finally, we show how these
perations can be used to accelerate real programs both in assembler
nd high-level languages.

We intend to develop TCF computing hardware and methodology
urther. This includes, e.g., implementing a TPA with the proposed ad-
itions on an FPGA and hopefully also in silicon, and comparing it more
idely to existing CPU architecture and accelerators, such as GPUs. Our
im is to eventually commercialize the TCF processor technology to
peed up future multiprocessors and better support parallel application

evelopment.



Microprocessors and Microsystems 98 (2023) 104807M. Forsell et al.
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The data that has been used is confidential.

Acknowledgments

This work was funded by VTT, Finland and the grant 1982/31/2021
of Business Finland.

References

[1] M. Forsell, J. Roivainen, V. Leppänen, J.L. Träff, Implementation of multiop-
erations in thick control flow processors, in: IEEE International Parallel and
Distributed Processing Symposium (IPDPS) Workshops, 2018, pp. 744–752.

[2] M. Snir, Depth-size trade-offs for parallel prefix computation, J. Algorithms 7
(2) (1986) 185–201.

[3] J. Jaja, Introduction to Parallel Algorithms, Addison-Wesley, 1992.
[4] J. Schwartz, Ultracomputers, ACM Trans. Prog. Lang. Syst. 2 (4) (1980) 484–521.
[5] D. Gajski, D. Kuck, D. Lawrie, A. Sameh, CEDAR-A large scale multiprocessor,

in: Proceedings of International Conference on Parallel Processing, 1983, pp.
524–529.

[6] G.F. Pfister, W.C. Brantley, D.A. George, S.L. Harvey, W.J. Kleinfelder, K.P.
McAuliffe, E. Melton, V.A. Norton, J. Weiss, The IBM research parallel processor
prototype (RP3): Introduction and architecture, in: Proceedings of International
Conference on Parallel Processing (ICPP), 1985, pp. 764–771.

[7] A. Ranade, S. Bhatt, S. Johnsson, The Fluent Abstract Machine, Tech. rep.,
Technical Report BA87-3, Department of Computer Science, Yale University,
1987.

[8] J. Keller, C.W. Keßler, J.L. Träff, Practical PRAM Programming, John Wiley &
Sons, 2001.

[9] M. Forsell, A scalable high-performance computing solution for networks on
chips, IEEE Micro 22 (5) (2002) 46–55.

[10] U. Vishkin, Using simple abstraction to reinvent computing for parallelism,
Comm. ACM 54 (1) (2011) 75–85.

[11] A.G. Ranade, How to emulate shared memory, J. Comput. System Sci. 42 (3)
(1991) 307–326.

[12] M. Forsell, Realising constant time parallel algorithms with active memory
modules, Int. J. Electron. Bus. 3 (3/4) (2005) 255–263.

[13] M. Forsell, Realizing multioperations for step cached MP-SOCs, in: Proceedings
of the International Symposium on System-on-Chip (SOC), 2006, pp. 77–82.

[14] M. Forsell, J. Roivainen, REPLICA T7-16-128 - a 2048-threaded 16-core 7-FU
chained VLIW chip multiprocessor, in: 48th Asilomar Conference on Signals,
Systems, and Computers, Special Session on Multicore, Manycore and Distributed
Systems, 2014, pp. 1709–1713.

[15] M. Forsell, V. Leppänen, An extended PRAM-NUMA model of computation for
TCF programming, Int. J. Netw. Comput. 3 (1) (2013) 98–115.

[16] M. Forsell, J. Roivainen, V. Leppänen, Outline of a thick control flow ar-
chitecture, in: International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD) Workshops, 2016, pp. 1–6.

[17] M. Forsell, J. Roivainen, V. Leppänen, J.L. Träff, Supporting concurrent mem-
ory access in TCF processor architectures, Microprocess. Microsyst. Embedded
Hardw. Des. 63 (2018) 226–236.

[18] M. Forsell, S. Nikula, J. Roivainen, Preliminary performance and programmabil-
ity comparison of the thick control flow architecture and current multicore CPUs,
in: Advances in Parallel & Distributed Processing, and Applications (PDPTA),
Springer International Publishing, 2021.

[19] J. Fisher, Very long instruction word architectures and ELI-512, in: Proceedings
of the 10th Annual International Symposium on Computer Architecture, 1983,
pp. 140–150.

[20] M. Forsell, Minimal pipeline architecture - an alternative to superscalar ar-
chitecture, Microprocess. Microsyst. Embedded Hardw. Des. 20 (5) (1996)
277–284.

[21] R. Hintz, D. Tate, Control data STAR-100 processor design, in: COMPCON, 1972,
pp. 1–4.

[22] W.J. Watson, The TI ASC: a highly modular and flexible super computer
architecture, in: Proceedings of the AFIPS Fall Joint Computer Conference, 1972,
pp. 221–228.
17
[23] J.L. Hennessy, D.A. Patterson, Computer Architecture: A Quantitative Approach,
first ed., Morgan Kaufmann Publishers Inc., 1990.

[24] G. Lento, Optimizing Performance with Intel® Advanced Vector Extensions,
Tech. Rep., Intel, 2014, https://www.intel.com/content/dam/www/public/
us/en/documents/white-papers/performance-xeon-e5-v3-advanced-vector-
extensions-paper.pdf.

[25] Introducing DNA Architecture: The All New RadeonTM Gaming Architecture
Powering NAVI, Tech. Rep., Advanced Micro Devices, 2019, https://www.amd.
com/system/files/documents/rdna-whitepaper.pdf.

[26] Nvidia Ampere GA102 GPU Architecture: Second-Generation RTX, Tech.
Rep., NVIDIA, 2021, https://www.nvidia.com/content/PDF/nvidia-ampere-ga-
102-gpu-architecture-whitepaper-v2.pdf.

[27] M. Forsell, Step caches–a novel approach to concurrent memory access on shared
memory MP-SOCs, in: Proceedings of the 23rd IEEE NORCHIP Conference, 2005,
pp. 74–77.

[28] M. Forsell, Faster implementation of e for multioperation concurrent read
concurrent write MP-SOCs, WSEAS Trans. Comput. 6 (1) (2007) 103–110.

[29] F. Ghanim, U. Vishkin, R. Barua, Easy PRAM-based high-performance parallel
programming with ICE, IEEE Trans. Parallel Distrib. Syst. 29 (2) (2018) 377–390.

Martti Forsell is Principal Scientist of processor architecture
and parallel computing at VTT, Oulu, Finland as well as
Adjunct Professor of computer architecture in the Faculty
of Information Technology and Electrical Engineering at
the University of Oulu. He is known for his work for the
Flow-computing multiprocessor framework aiming to solve
the performance and programmability bottlenecks of current
multicore CPUs. Prior to joining VTT, he was affiliated with
the University of Joensuu, where he also received his M.Sc.
in 1991, Ph.Lic. in 1994 and Ph.D. in 1997.

Jussi Roivainen is Senior Scientist at VTT, Efficient Com-
putation and Communications, Oulu, Finland. His research
interests include digital logic implementations of processors
and baseband.

Ville Leppänen is Professor in software engineering and
software security at the University of Turku, Finland. He has
over 200 international conference and journal publications.
His research interests are related broadly to software engi-
neering and parallelism, ranging from software engineering
methodologies, practices, and tools to security and quality
issues, and to programming languages, parallelism, and
architectural design topics. Currently Leppänen serves as a
Vice dean (education) of Faculty of Technology and leader
of 7 research and development projects.

Jesper Larsson Träff is Professor for Parallel Computing
at TU Wien (Vienna University of Technology) since 2011.
From 2010 to 2011 he was guest professor for Scientific
Computing at the University of Vienna. From 1998 until
2010 he was working at the NEC Laboratories Europe in
Sankt Augustin, Germany on efficient implementations of
MPI for NEC vector supercomputers; this work led to a
doctorate (Dr. Scient.) from the University of Copenhagen
in 2009. From 1995 to 1998 he spent four years as
PostDoc/Research Associate in the Algorithms Group of the
Max–Planck Institute for Computer Science in Saarbrücken,
and the Efficient Algorithms Group at the Technical Univer-
sity of Munich. He received an M.Sc. in computer science in
1989, and, after two interim years at the industrial research
center ECRC in Munich, a Ph.D. in 1995, both from the
University of Copenhagen.

http://refhub.elsevier.com/S0141-9331(23)00053-4/sb1
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb1
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb1
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb1
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb1
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb2
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb2
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb2
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb3
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb4
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb5
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb5
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb5
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb5
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb5
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb6
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb6
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb6
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb6
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb6
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb6
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb6
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb7
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb7
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb7
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb7
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb7
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb8
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb8
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb8
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb9
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb9
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb9
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb10
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb10
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb10
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb11
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb11
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb11
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb12
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb12
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb12
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb13
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb13
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb13
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb14
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb14
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb14
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb14
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb14
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb14
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb14
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb15
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb15
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb15
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb16
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb16
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb16
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb16
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb16
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb17
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb17
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb17
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb17
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb17
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb18
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb18
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb18
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb18
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb18
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb18
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb18
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb19
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb19
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb19
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb19
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb19
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb20
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb20
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb20
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb20
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb20
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb21
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb21
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb21
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb22
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb22
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb22
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb22
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb22
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb23
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb23
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb23
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/performance-xeon-e5-v3-advanced-vector-extensions-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/performance-xeon-e5-v3-advanced-vector-extensions-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/performance-xeon-e5-v3-advanced-vector-extensions-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/performance-xeon-e5-v3-advanced-vector-extensions-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/performance-xeon-e5-v3-advanced-vector-extensions-paper.pdf
https://www.amd.com/system/files/documents/rdna-whitepaper.pdf
https://www.amd.com/system/files/documents/rdna-whitepaper.pdf
https://www.amd.com/system/files/documents/rdna-whitepaper.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb27
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb27
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb27
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb27
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb27
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb28
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb28
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb28
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb29
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb29
http://refhub.elsevier.com/S0141-9331(23)00053-4/sb29

	Realizing multioperations and multiprefixes in Thick Control Flow processors
	Introduction
	TCF Processors
	Multioperations for TCF processors
	Multiprefixes for TCF processors
	Evaluation
	Performance
	Hardware implementation considerations
	Programming mechanism

	Conclusion
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


