
Communication and State
Management for Micro Frontend

Architectures
Challenges and Solution Patterns

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering und Internet Computing

eingereicht von

Simon Hayden, BSc
Matrikelnummer 01426127

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.-Doz. Mag.rer.nat. Dipl.-Ing. Dr.techn. Rudolf Freund

Wien, 15. Juli 2023
Unterschrift Verfasser Unterschrift Betreuung

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Communication and State
Management for Micro Frontend

Architectures
Challenges and Solution Patterns

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Simon Hayden, BSc
Registration Number 01426127

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.-Doz. Mag.rer.nat. Dipl.-Ing. Dr.techn. Rudolf Freund

Vienna, 15th July, 2023
Signature Author Signature Advisor

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Simon Hayden, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 15. Juli 2023
Simon Hayden

v

Acknowledgements

First and foremost I would like to thank my better half Dipl.-Ing. Magdalena Steinböck.
She helped me greatly by being a rubber duck during development, a scientific mentor
for data presentation, and helped me find the words you read in this thesis. Secondly,
Dipl.-Ing. Mag.rer.soc.oec. Christoph Mayerhofer, Bakk.techn. supported me during
the research process, guiding me in finding the next steps and discussing the latest
developments. Last but not least I want to thank my parents who enabled me to study
at TU Vienna. Without them, this thesis would not have been possible.

vii

Kurzfassung

Die Micro Frontend Architektur ermöglicht es, Teams um vertikale Features, anstatt
von horizontalen Applikationsschichten zu bilden. Um am Endgerät eine interaktive
und reaktive Benutzererfahrung anbieten zu können, müssen isolierte Micro Frontend
Instanzen jedoch kooperieren. In dieser Diplomarbeit untersuchen wir mögliche Kommuni-
kationskanäle, mit denen Zustandssynchronisierung zwischen mehreren Micro Frontends
ermöglicht werden sollen. Mithilfe der Action Research Methodologie erstellen wir drei
Prototypen der gleichen Webapplikation: Zuerst wird eine monolithische Applikation
entwickelt, die als Vergleichsbasis dient. Danach werden zwei Micro Frontend-basierte
Applikationen mit iframes bzw. Web Components entwickelt. Beide Technologien ha-
ben dabei unterschiedliche Herausforderungen und Limitationen. Zuletzt vergleichen wir
die Ergebnisse anhand des Ressourcenverbrauchs und Entwicklungsaufwands bei sich
ändernden Anforderungen.

Keywords: Micro Frontend Architektur, Micro Frontend Integration, Web Browser
Kommunikationskanäle, Action Research

ix

Abstract

Micro frontends have enabled developers to think in feature vertices rather than appli-
cation layers. But on the client, isolated micro frontends need to communicate with
each other to provide rich and dynamic user experiences. This thesis explores possible
communication channels in order to implement state synchronization across multiple
micro frontend instances. Using the Action Research methodology, we test our theory by
developing three prototypes of the same web application: First, a monolithic baseline,
followed by two micro frontend based applications using iframes and Web Components
– each posing different challenges and limitations. Finally, we compare the prototypes’
resource consumption and development overhead of changes.

Keywords: micro frontend architecture, micro frontend integration, web browser com-
munication channels, action research

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Aim of this Work . 2
1.3 Methodology . 3
1.4 Limitations . 3

2 State of the Art 5
2.1 The Software Monolith . 5
2.2 Microservices in the Backend . 6
2.3 Micro Frontend Architecture . 7

3 Evaluation Using Action Research 13
3.1 Domain Definition . 16
3.2 Iteration 1: Implementation as Monolith 25
3.3 Iteration 2: Migration to iframes and Implementing Direct communica-

tion . 35
3.4 Iteration 3: State Management for iframes 45
3.5 Iteration 4: Migration to Web Components and Implementing Direct

Communication . 53
3.6 Iteration 5: Shared Services for Web Components 67
3.7 Iteration 6: Message Bus for Web Components 71

4 Comparing the Results 77
4.1 Baseline Performance . 77
4.2 Change Request 1: Adding a Micro Frontend as Data Consumer . . . 81
4.3 Change Request 2: Adding Translations as Data Provider 84

5 Future Work 91

xiii

6 Conclusion 93

List of Figures 95

List of Listings 96

Glossary 97

Acronyms 99

Bibliography 101

CHAPTER 1
Introduction

1.1 Motivation
Over the last few years, the microservice architecture has gained traction in web develop-
ment [57, 87], as seen by Netflix and Amazon1 for instance. Parallel to this development
client-side rendering technologies such as Angular [2, 7], React [13], and Vue [34, 33]
became well established in modern, highly interactive applications [77] such as Google’s
store or the Microsoft Office web application [21], parts of Netflix [47] as well as Face-
book – the creator of the React library [13]. However, despite their popularity the
two technologies appear to diverge in their goal: While microservices want to create
smaller software fragments and teams, client-side rendering frameworks increase the
frontend’s responsibilities and therefore also its size. The resulting monolithic frontends
share many issues with monolithic backends: Frozen technology stack, large and complex
code base, difficulty to parallelize and isolate teams, deployment as a single artifact,
etc. [23, 48, 87, 61].

To solve the issues that come with monolithic artifacts, the micro frontend architecture
aims to split the frontend into multiple parts that are recombined at the frontend to
provide a coherent web application – similar to the microservices in the backend. While
some aspects of this rather new approach are well researched already [58, 77], there is still
a lot to be done compared to more established architectures, e.g., the already mentioned
microservices.

In particular, the interactions between micro frontends are yet to be scientifically analyzed.
In many cases, micro frontends will not just coexist next to each other but are required
to be interactive and integrated with their siblings, child component(s), and parent
component(s). A simple example is a button inside a micro frontend to view news

1Netflix and Amazon provide many tools for developing microservices on their GitHub page:
https://github.com/Netflix & https://github.com/amzn

1

https://github.com/Netflix
https://github.com/amzn

1. Introduction

articles. Clicking the button should bookmark the article, therefore sending a signal to
the “bookmark” micro frontend.

Additionally, micro frontends might not only need to communicate actions but also state
information. Continuing the example from above, assume the bookmarks are kept in a
list. To tell the user whether an article has already been bookmarked, the micro frontend
for displaying articles needs the list of bookmarked articles. An additional backend
Application Programming Interface (API) call should be avoided, as it fetches redundant
information. Therefore, the state of an article – bookmarked or not – should be shared
between micro frontends. This concept can be extended to not only share the User
Interface (UI) state but also datasets as a shared cache, which are accumulated during
the current session.

1.2 Aim of this Work
With this master thesis, we aim to answer the question of how cross-communication
between micro frontends could be implemented as well as their advantages and drawbacks.
In particular, following research questions should be answered:

RQ1 What kind of messaging interfaces for communication between micro frontends are
provided by modern browsers?

RQ2 How can communication patterns or other technologies be used to synchronize the
state between micro frontends?

RQ3 What is the overhead on performance as well as architecturally of a specific com-
munication and synchronization pattern?

To answer these questions the evaluation process will be split into four steps:

1. Research existing projects and architectural patterns (RQ1). Within this
step, an as complete as possible overview of current applications of micro frontends
should be gained via literature research. Due to the young age of the micro frontend
pattern, some backend technologies like Server Side Includes (SSI) or approaches to
similar problems (e.g., cross-communication of microservices) will be investigated
as well.

2. Analyze ways of communication between micro frontends (RQ1, RQ2).
With the results of the first step, the different architectural patterns have to be
further analyzed regarding the communication channels they allow and how to use
them. The goal of the second step is to formulate different communication patterns
that apply to the different architectural styles.

2

1.3. Methodology

3. Analyze options for state synchronization (RQ2). Based on the communica-
tion patterns, the next step is to synchronize micro frontend instances. The goal
is to find ways for lateral communication to share common data between micro
frontend instances.

4. Qualitative analysis for each communicational and architectural pattern
(RQ3). In the final stage, all evaluated patterns will be quantifiably compared
using performance and architectural benchmarks.

1.3 Methodology
In the first step, we use literature research to determine the current state of the art. To
analyze communication and state synchronization patterns in steps two and three, we
apply the Action Research methodology. This is a cyclical process consisting of problem
identification and finding solutions. In our case, we iteratively improve upon solutions for
micro frontend communication and state synchronization by implementing three different
prototypes. Finally, in step four we use benchmarking to determine performance and
architectural characteristics of our solutions. For the performance metrics, we repeatedly
open each prototype in a browser and measure the application’s load time and memory
consumption. We analyse the architectural properties by introducing change requests
to the application, which we realize in each prototype. We then analyze the number of
changed files as well as categorizing the types of changes.

1.4 Limitations
Since the topic of micro frontends can be rather broad and vague, this master thesis will
restrict the investigated aspects. First of all, embedding legacy applications into another
(micro) frontend will not be considered. While they exhibit some properties shared with
micro frontends (e.g., combining smaller parts to form a complete user interface), they
lack meaningful integration with the host application.

Secondly, only Single Page Applications (SPAs) are considered. The reason is that
traditional web pages are usually rendered on the backend, mitigating the need for
communication and dynamic state synchronization on the client. SPAs, on the other
hand, move most of the representation layer to the browser. Hence, they also need
most of the logic for integrating the individual frontend fragments, requiring means for
communication and state synchronization.

Thirdly, Angular [2] will be used for all frontend code. While not necessarily a restriction
on the topic, it must be mentioned and considered while evaluating patterns found and
described for implementing solution patterns. For this reason, the described guidelines
must ensure that they apply not only to Angular applications but are generally valid.
The reason for choosing this framework is the author’s experience with Angular.

3

1. Introduction

Finally, this work is exploratory – meaning that little previous work has been done in this
field – and cannot discuss every possible solution in detail. Rather, the Action Research
investigates some of the many paths software development may lead to. Basing our
research on known grounds and iterating upon it, however, should prevent developing
“paperware” – software solutions that solely exist in academic papers with no real-world
use case.

4

CHAPTER 2
State of the Art

In this chapter, we explore the state of the art of micro frontends and their origin. It forms
the basis for our research regarding communication patterns and state synchronization
between micro frontends.

2.1 The Software Monolith
In software engineering, a monolith is a piece of software that is developed, deployed,
and executed as a single fragment [71, 53, 65]. In the early days of software engineering,
this architecture type was the most prevalent, as it lends itself well to desktop-native
applications. For example, a desktop word-processing application might be developed
via a single code base and built into a single executable (usually an installer). The
deployment is done by uploading the executable to a website for users to download and
install locally. In the execution phase, the user runs the program on the local machine.

This scenario shows the main advantage of monolithic architecture: its simplicity. The
development life cycle has low complexity, which means less likelihood of unexpected
errors. The locality of code can also be used as an advantage. For example, refactoring
cross-cutting concerns are guaranteed to be updated for all consumers. Static analysis of
the code can help in finding bugs early, e.g., compiling errors after updating a type.

So naturally, early web applications used the same monolithic structure. Instead of
rendering native windows and frames, the representation layer of the application creates
Hypertext Markup Language (HTML) strings, which are then rendered by the browser.

As applications grow, however, the disadvantages of monoliths grow too [71, 70, 57, 53, 65].
Most importantly, managing a monolithic code base does not scale well with application
complexity and size. Due to the lack of isolation of code fragments from each other, it is
harder to parallelize the development of individual features. Due to the coupling of code,

5

2. State of the Art

it is easily possible to introduce subtle bugs via side effects of changes. Hence, the code
base becomes stiff and legacy code might not be able to change or be replaced easily.

Additionally, the monolith is usually developed using a single programming language and
a fixed framework for cross-cutting concerns like routing incoming Hypertext Transfer
Protocol (HTTP) requests to their handlers, execute them, and handle errors. As the
application ages, however, modern languages, features, or libraries might emerge which
could greatly improve the application’s code base or performance. However, the monolith
might be too large for undergoing large refactors. The development team is therefore
locked into the technology they originally chose [70, 73, 71].

2.2 Microservices in the Backend

As websites become more interactive, their complexity rises as well, showing the disadvan-
tages mentioned above. However, in comparison to desktop applications web applications
are not limited to deploying everything as a single fragment. For desktop applications,
downloading and running multiple executables simultaneously is impractical. But since
only the final HTML is sent to the user, the origin which rendered the page is transparent
to the user. So the backend of an application can be split into multiple fragments, each
providing a different function.

From this idea, the microservice architecture emerged [71, 73, 70, 89]. A microservice
is an isolated, small, and independently deployed and executed piece of software which
provides a well-defined interface – usually a Representational State Transfer (REST)
API [53]. If a microservice needs the features provided by another, it talks to the exposed
API, without relying on its implementation.

This high degree of isolation solves many issues found in monolithic applications. First,
since each microservice can be deployed in isolation, the application can update gradually.
Deploying new features can be done individually without touching or shutting down
other services. The high isolation of microservices allows teams to be split into smaller,
independent teams. Therefore, they can act faster by focusing on their responsibilities
only [70, 57, 53, 90, 89].

Secondly, since microservices only expose a single API, the technology stack for each
of them is independent. This allows an application to be a polyglot of programming
languages and frameworks [53, 70]. Hence, the application is not locked into using a single
technology over the entire lifecycle. Furthermore, granular updates to the application
can be done iteratively, preventing large refactors at once.

Parallel to the rise in the popularity of microservices, SPAs move the representation
layer to the browser. This decouples the views from the backend. Hence, the backend is
kept as a headless API. For this reason, SPAs are frequently used in combination with
microservices, as the frontend is just another consumer of the outwards facing APIs.

6

2.3. Micro Frontend Architecture

Persistence

Frontend

Business
Logic

Team Database

Team User Management

Team Products

Team Recommendation

Team Frontend

Team Recommendation

(a)

Team Products Team Checkout Team Recom-
mendations

Persistence

Business
Logic

Frontend

Persistence

Business
Logic

Frontend

Persistence

Business
Logic

Frontend

(b)

Figure 2.1: Comparison of vertical and horizontal teams. In a horizontal team structure
(a), teams are divided based on responsibility. There are five teams, one team to implement
the frontend monolith, four teams on the server side. Three teams develop micro services
while one (Team Recommendation) also manages their own database. The other two
teams rely on Team Database for their persistence layer. In the vertical team structure
(b), each team is formed around features. They have complete control over the full stack.

2.3 Micro Frontend Architecture
The micro frontend architecture was first mentioned in thoughtworks’ Technology Radar
in 2016 [24]. They describe the architecture pattern as the frontend counterpart of
the microservice architecture. Therefore, the frontend monolith is split into smaller,
self-contained, modular frontend components or fragments, which are later recombined
to form a complete web application [24]. Similar to microservices, micro frontends
should therefore be developed, deployed, and executed in isolation from the rest of the
application [78, 58, 77, 90].

One of the ways team separation is achieved is technology agnosticism [90, 58, 78]. Com-
pared to the frontend monolith, different teams should be able to use different frameworks
and libraries in different versions. That way incremental updates of dependencies in
a larger application are easier. Additionally, teams may be encouraged to experiment
with technologies and keep the application near the state of the art of modern web
applications. Refactoring applications to new technologies is possible as well and can be
done in increments. [58, 78]

However, beyond the code structure of micro frontends, the architecture pattern allows
structuring teams around features rather than responsibilities. Usually, using microser-
vices, one team is responsible for the monolithic frontend. Even if the backend uses
microservices with small teams, the frontend monolith cannot scale its team size as
easily. Splitting the frontend into micro components means that teams can be arranged

7

2. State of the Art

“vertically”. Each vertical team is responsible for developing, maintaining, and deploying
its feature, as seen in the example for developing a web shop in Figure 2.1 [24, 58, 77].

The goal of this team structure is to reduce the communication overhead of teams between
each other and therefore improve development speed. For example, requesting a single
feature no longer requires requesting changes from the database team, the backend API
team, as well as the frontend team. Hence, vertical teams should naturally scale with the
number of features or feature groups. [58, 77]

But micro frontends are no silver bullet either. There are many drawbacks of the
architecture that have to be considered as well. The most prevalent is the added complexity
of the system. Splitting the code base into multiple micro frontends means that ways
for composition and communication between the parts have to be added to the system.
Additionally, the infrastructure must support serving multiple parts of a web application,
potentially across multiple servers. Another risk is that application-layer-based tasks
span multiple, if not all, vertical teams (e.g., Application Performance Management
(APM), security constraints, etc.). This could lead to even more communication and
coordination overhead, compared to horizontal teams. [78, 58, 77]

Therefore, the first step in choosing micro frontends should follow the YAGNI-principle
(“you ain’t gonna need it” [59]). In other words, applying the micro frontends architecture
pattern should be a necessity and there must be a real use-case for them (e.g., many
or large teams, strict isolation of code, the requirement for different technologies, etc.).
Singleton [85] mentions that microservices should not be used if less than 60 team members
are working on a project. The same rule may also apply to micro frontends [60, 72].

2.3.1 Micro Frontend Composition

Given that an application should be developed in vertical teams, there is a need for re-
combining the different artifacts back together to form a coherent application [58, 90, 89].
This is known as micro frontend composition. Geers [58] and Yang et al. [90] describe
several ways of composing micro frontends, which we discuss in the following.

Route-based Composition

The simplest approach is hosting micro frontends on different paths or domains and only
referencing them via regular anchor elements [58, 90]. However, Geers [58] concludes that
this is not enough for most use cases. Only linking to other micro frontends prevents
integrating other teams’ fragments into different pages. For example, if we want to
provide recommendations for a given product in a web shop, we have to link to the page
of the recommendation team. According to Geers [58] and Yang et al. [90], this greatly
reduces the user experience, since links are less interactive and may be overlooked.

8

2.3. Micro Frontend Architecture

1 <!-- product-page template -->
2 <div class="recommendations-container">
3 <!--#include virtual="http://recommendations-domain/for-product/123" -->
4 </div>
5

Listing 2.1: Example showing SSI. The #include instruction tells the parser to fetch
a resource referenced by the virtual parameter. Here, a dummy URL references the
recommendations for the product with ID “123”.

Server Side Includes

The second solution described by Geers [58] is SSI. The idea is to add semantic comments
to the page’s markup to reference additional resources to load and include. A server
then parses those comments, fetches the resource, and replaces the comment with the
response’s content before responding to the client’s request [88]. The example Listing 2.1
shows a section of a product page to display recommendations for the current product.
The virtual parameter points to the resource to load. In the given example, a dummy
URL is passed to fetch the recommendations for the product with ID "123". As a result,
according to Geers [58], developers can now integrate the UI of different teams into their
applications. SSI also has a very low overhead in terms of client performance. Only a
single request and response are needed for the composition. Since the server’s response is
a regular HTML file, there is no additional logic required on the client either.

However, SSI also has its drawbacks [58]. First and foremost, SSI does not provide means
for isolating micro frontends. Since they are all part of the same Document Object Model
(DOM) tree, they share the same styles and context, meaning teams need to carefully
prefix their code with their namespace. Secondly, purely server-side rendered pages
usually are less interactive than client-side rendered pages. For example, navigating to a
product requires the client to reload the whole page. The server needs to re-render the
entire page before sending it to the client. Hence, Geers [58] recommends combining SSI
with client-side rendering techniques for optimal performance and responsiveness.

To counteract some of the disadvantages of server-side rendering, micro frontends can
be composed on the client side [58]. This means that micro frontends are not rendered
on the server, but rather generated via JavaScript on the client. As a result, pages can
have more advanced features like dynamically showing and hiding elements, lazy loading
content, and interacting with an API instead of re-rendering the full page, etc. [58].

The first client-side composition pattern Geers [58] describes is using HTTP calls from
JavaScript to fetch HTML text and render it into the DOM. However, this approach still
has many of the same drawbacks of SSI – most importantly lacking isolation. Moreover,
the additional requests needed to fetch a page’s content could lead to worse performance
compared to SSI. [58]

9

2. State of the Art

1 <!-- product-page template -->
2 <div class="recommendations-container">
3 <iframe src="http://recommendations-domain/for-product/123">
4 </div>
5

Listing 2.2: Example showing composition using iframes. By referencing the recommen-
dation team’s website, the product team can integrate product related recommendations.

iframes

To improve isolation between micro frontends, Geers [58] and Yang et al. [90] propose
iframes. The largest benefit of iframes is their high degree of encapsulation. An
application inside an iframe only has limited access to its parent and vice versa. As a
result, styles and JavaScript code cannot affect and interfere with each other. However,
Geers [58] mentions that iframes are hard to use in practice due to their lack of proper
layouting. An iframe element will not adapt its height or width to its content. Hence,
other means for resizing have to be found – usually via messaging, which will be described
in detail in section 3.3. Additionally, every context the browser has to create costs
performance [58, 90]. Finally, search engines will not treat a page containing iframes
as a single page, but rather as individual pages [88, 58]. For those reasons Geers [58]
sees the use case for iframes is limited to non-searchable sites that prefer the higher
isolation to a higher integration. Geers [58] names the Spotify desktop app as an example
where iframes make sense.

A simple example for client-side composition using iframes is shown in Listing 2.2. The
code snippet shows the same context as the SSI example in Listing 2.1. But instead of
server-side resolution of the micro frontend, the client will now render the recommendation
team’s website inside an iframe. For demonstration purposes, the URL of the iframe
source is identical to the one of the SSI example. However, instead of only returning
part of an HTML page, the recommendation team now needs to host and maintain a
fully functional web page – including headers, styles, and code. Compared to SSI, this
introduces an additional burden on the frontend teams.

Web Components

For a more modern approach, Web Components are a popular choice [58, 89, 88, 90, 75].
The Web Component specification consists of three parts: custom elements, shadow DOM,
and HTML templates [82]. The first browser API allows declaring a custom element
tag and its corresponding implementation. When the browser encounters the custom
element’s tag in the DOM, the implementation will be instantiated, which allows it to
render the custom tag’s content dynamically [82]. Hence, for the most part, it behaves
similarly to built-in browser tags like the video element. The shadow DOM isolates
part of the DOM from external styles and optionally even JavaScript access [82]. Using
the video element as an example again, clients are not able to access or manipulate the

10

2.3. Micro Frontend Architecture

1 <!-- product-page template -->
2 <div class="recommendations-container">
3 <script src="http://recommendations-domain/web-components">
4 <recommendations product-id="123">
5 </div>
6

Listing 2.3: Example showing composition using Web Components. The product team
references the recommendation team’s micro frontend by using their Web Component in
their template. However, the custom element needs to be registered first, which is done
by executing the registration script.

browser-specific elements that are rendered as children of the video element. Finally,
HTML templates allow reusing part of the DOM by cloning a template [82, 58].

Together, the Web Component specification allows the creation of reusable, isolated
components that can be used like regular HTML elements [82, 88, 89, 90, 75]. Hence,
they are technology-agnostic and can be used with any framework that allows the creation
of elements via tag name (e.g., by calling document.createElement). This makes
them a good candidate for client-side composition and a viable alternative to iframes.

The composition step can be found in Listing 2.3. We modified the example of the
product page to use the recommendation Web Component. Since Web Components are
defined using JavaScript, their consumers need to ensure that it is loaded before they
can use them. Therefore, the code snippet uses a script element, which references the
recommendation team’s code. Next, the product page simply uses the Web Component
like any other HTML element. Here, the Web Component receives the product’s ID to
show recommendations via an attribute.

2.3.2 Micro Frontend Communication
Geers [58] identifies three different communication directions a rich client application can
use:

Parent to fragment communication (downwards). Downwards communication [58]
is mostly used for passing parameters from the host to the hosted micro frontend. Using
Web Components as an example, downward communication is possible by setting the
custom element’s attributes.

Fragment to parent communication (upwards). Upwards communication [58] is
needed to notify a micro frontend’s host about an event. For example, if a user clicked a
button inside a micro frontend, the host may need to react to it.

Fragment to fragment communication (lateral). Lateral communication [58] is
the most complex communication direction. It allows different micro frontend fragments

11

2. State of the Art

to communicate directly with each other. For example, if a product is added to the
shopping cart, the “Add to cart”-button may become a “Remove from cart”-button.
Since there might be more than one way of adding a product to the cart, all other buttons
need to be notified about the change.

Implementations of Lateral Communication

To implement lateral communication, Geers [58] sees three possibilities. Firstly, direct
communication can be achieved by looking for micro frontends in the current DOM and
calling methods on them. However, this creates a very tight coupling between the sender
and the receiver of the message [58]. Also, this approach is only possible, if all micro
frontends have access to the full DOM. Hence, this solution is not viable when using
iframes.

Secondly, lateral communication can be handled by routing messages via the parent(s)
of a micro frontend. The message is emitted to the parent using the regular upwards
communication channel [58]. The parent then needs to forward the message either to the
receiver or pass it on to the next closest node. As a result, lateral communication becomes
a path-finding problem, where each parent node must be capable of forwarding a message
to either a sibling node of the sender or the parent if the receiver is no descendant of the
current node. The complexity of the solution is therefore rather high.

Thirdly, Geers [58] recommends using a message bus that is agnostic to the micro frontend
context. The global message bus can be accessed via all micro frontends and therefore
lateral communication is as simple as emitting a new value to the message bus.

Signals

Nishizu et al. [75] introduced the concept of signals. A signal holds a value, which might
change in the future. When the value changes, consumers of the signal are notified so
that they can react to the changed value. This is therefore similar, how Svelte’s change
detection1 and Angular signals2 work. Therefore, those concepts can also be used in
order to achieve lateral communication between micro frontends.

1https://svelte.dev/tutorial/reactive-assignments
2https://angular.io/guide/signals

12

CHAPTER 3
Evaluation Using Action Research

An important goal of this thesis is to found its results on a known basis. From there,
new findings should build upon it, extending the boundaries of what is known. We thus
avoid producing results, which are isolated to the specific field of research. Using the
prototype methodology, for instance, an implementation phase is followed by extracting
conclusions. Since the implementation is done in one phase, it may have blind spots
due to the lack of reflection, degrading the quality of the results. Therefore, we apply
the Action Research methodology. Action Research is a cyclical, iterative process of
planning, acting and observing, and reflecting on the action taken as well as their
effects [46, 66, 44, 1, 68, 51, 74, 52, 81, 86, 50, 62, 42]. Baskerville and Wood-Harper [46]
identify three key characteristics of Action Research:

“(1) The researcher is actively involved, with expected benefit for both
researcher and organization.” [46] With the first point, Baskerville acknowledges
that the researcher is part of the action research process and thus does not treat the
researcher as an outside observer. By consciously reflecting on the researchers’ actions
the results do not claim to have a “false objectivity”. Instead the path that lead to the
results are an integral part of the research [46, 1, 51, 74, 52, 86, 50].

“(2) The knowledge obtained can be immediately applied. There is not the
sense of the detached observer, but that of an active participant wishing
to utilize any new knowledge based on an explicit, clear conceptual frame-
work.” [46] Action Research is an iterative process. Each iteration builds upon the
results of the previous one, detecting new and existing weaknesses and additional goals.
Hence, the research process is highly interactive. In comparison to a prototype where
only the result is analysed, Action Research focuses on the process of creating the results
too. [46, 1, 51, 74, 55, 52, 50]

13

3. Evaluation Using Action Research

Progress

Goal Definition

Technolgies Used
1

23 Retrospective Results

Figure 3.1: The Action Research Cycles of this thesis. Each iteration describes its goals
and which technology should enable those goals, then describes the implemented results,
and finally reviews the implementations. The last step will produce new issues and
drawbacks, which will form the basis for the next iteration.

“(3) The research is a cyclical process linking theory and practice.” [46] Each
Action Research iteration follows a predefined cycle [69]. Usually, five phases describe
the iteration process: Diagnosing, action planning, action taking, evaluating, and specify
learning [46, 55, 52, 62]. However, a simplified version may only focus on the steps
problem diagnosis, action intervention, and reflective learning [1, 42] – thus combining
diagnosing and action planning, and evaluating and specify learning.

In this thesis, we will follow the shortened version, as it leads to less redundancy in
the cycle step description. Each iteration, therefore, has the phases Goal Definition to
describe the problem and its potential solutions, Results to describe the taken actions as
well as the produced artifacts, and finally Retrospective to evaluate and reflect on the
implemented solutions. Since this thesis focuses on the technologies that enable micro
frontend communication and state synchronization, each cycle will include a chapter
named Technologies Used to briefly describe the enabling APIs. Figure 3.1 visualizes this
process.

Critics of the Action Research methodology mention that through the inclusion of the
research the results may be biased [46, 81, 45, 62]. While some biases like the experience
of the author are inevitable, we try to mitigate this issue by critically reflecting on the
chosen implementations. However, due to the exploratory nature of this thesis, it is not
possible to cover every possible solution available. Instead, we aim to provide a direction
micro frontend communication and state synchronization can go. Future researchers
may have the opportunity to compare more options than we can in order to gain a more
holistic view and thus purely objective results.

Another issue of Action Research is it’s context sensitivity [46, 81, 86, 62]. As the results
are developed within a specific setting, they may not be reproducible by other researchers.

14

In order to circumvent this issue, we use a widely applicable domain without external
factors or stakeholders. This means that our experiments are reproducible and verifiable.
The full domain is specified in section 3.1.

15

3. Evaluation Using Action Research

3.1 Domain Definition
Before starting the Action Research, we define as well as argue the researched domain.
First of all, the main requirement for the domain has to be its reusability, as the goal of
this research is to find patterns and approaches that are universally valid. In order to
achieve this, a generic setting with as few domain-specific characteristics must be used.

However, it is also important to choose a domain that applies to the real world, as the
Action Research tries to find problems by investigating resolutions to issues that arise
when working within the domain. Therefore the domain should not be purely academic.
Instead of solving specific, predefined issues, the domain should be an open field so
that found problems are as complete as possible. This avoids having blind spots in our
research.

To fulfill those criteria, we chose the domain of a simple web shop for the following
reasons:

• The domain is often met in the real world, meaning that its validity can be more
easily verified.

• A web shop has many tasks that can be easily translated into other fields, e.g.,
displaying products on a full page, sending items to another component like the
shopping cart, sharing state information about an item, etc.

• The domain has few domain-specifics like complex logic or interaction paths.

• The domain is complex enough to generate a wide range of issues when implementing
micro frontends, e.g., cross-communication, managing navigation, communication
with a backend, etc.

• The functionality of a web shop can be split into multiple parts which can then be
encapsulated into micro frontends.

3.1.1 Requirements Analysis
With the domain in place, a rudimentary requirements analysis has to be done in order
to define features and their scope. However, those features will focus on their usefulness
for the Action Research. Therefore, it is more important to have technical variety instead
of covering a wide range of user journeys or having good usability.

Following Leffingwell [67], we decided on using their “user-voice” format. User stories are
thereby defined in the form “As a <role> I can <activity> so that <business value>” [67].
The first part of the user story focuses on the persona. This avoids defining features
without having a use case for them. The second part describes what kind of feature is
needed. This is a high-level description of an action that should be done by the persona.
Finally, the business value must be stated to avoid having features that might be wanted
by the users without having any meaningful value to the application [67].

16

3.1. Domain Definition

We decided on this method due to its popularity in describing high-level requirements of
an application. However, we do recognize that due to the technical nature of this thesis,
the user-focused aspect of the user-voice format may not be leveraged to its full potential.
Nevertheless, using a standardized way of finding requirements helps in comparing this
study to similar works.

We then use the user stories to create basic wireframes of the application. In the
implementation phases, we will use them as guidelines for the general structure of the
different views the web shop must provide. Finally, we extract concrete functional and
non-functional requirements from the user stories and designs. While those requirements
may not cover every aspect of a real-world shop, they define and confine the scope of the
Action Research.

3.1.2 User Stories
This chapter enlists all user stories we defined for the web shop application. Each user
story is written following the user-voice format by Leffingwell [67]. Additionally, we
provide background information on why each user story matters in the context of this
research.

As a consumer
I can visit the home page to quickly get an overview of relevant or recommended products
so that I don’t have to manually search through product catalogs.

On the landing page of the web shop, we have some sort of recommendation system. The
idea is to mimic the functionality of real-world shops. Usually, when visiting the root
page of a shop, the user is provided with highlighted products and products related to
the user’s preference or past shopping behavior.

As a consumer
I can navigate to any product displayed in the recommendations
so that I can read more information about that product.

While obvious from a consumer standpoint, from a technical perspective this user story
describes the need to trigger navigation from inside the recommendation tile. Thinking
of micro frontends, this requires the ability for “upward” communication. I.e., the
component needs to notify its host that a product was clicked and the host needs to
understand what to do next.

As a consumer
I can copy a link to a product’s details
so that I can easily share or bookmark it.

17

3. Evaluation Using Action Research

This user story describes a crucial part of micro frontends: The ability to share the current
route (“state”) across the full application. We want to investigate possible solutions for
host-owned states (in this case the route) with child components.

As a consumer
I can complete part of the checkout process and come back to it later
so that I don’t have to complete the full checkout immediately.

In order to achieve this, the application must be able to retain its state and re-use it
later. It is therefore similar to the user story above, in that users can restore the page’s
state by navigating to said page.

As a consumer
I can view recommendations for a product on the product’s detail view
so that I can view alternatives to the current product.

We chose this user story to highlight that it must be possible to re-use components (e.g.,
the recommendations) across multiple views and micro frontends.

As a consumer
I can add products to the shopping from the details page or the recommendations
so that I can buy it later when I am done with the current session.

Here, the user story describes a cross-cutting concern. Namely, adding products to the
shopping cart at any time. This requires us to find communication paths that might not
only be hierarchical, but lateral as well.

As a consumer
I can click on a button to view and manage the current content of my shopping cart so
that I know which items I have already added and what they cost.

The goal is to have the shopping cart managed and shared as a state inside the web
application. So instead of fetching the shopping cart from the backend with each click,
the frontend should know what products have been added so far.

As a consumer
I can open the website on a different device and still view the same shopping cart
so that I’m not bound to do everything on one device.

Complementing the previous user story, we want to persist the shopping cart of a user into
a database. This means that the shopping cart state of the frontend must be synchronized
with the backend.

18

3.1. Domain Definition

Figure 3.2: Example for recommendations on https://web.archive.org/web/
20230101002323/https://www.amazon.com/. Visited on 2021-12-18.

As a developer
I can develop a new or existing feature without much obstruction, no matter the technology,
so that I can improve the development speed and work satisfaction.

While usually not written down as a user story, developers require a good developer
experience. This includes being fast at developing small features, easy debugging and
useful error messages, transparent behavior of the application, quick and responsive
developer tools, etc. In general, we do not want to sacrifice the developer’s experience
when developing micro frontends, hence, we highlight it by adding this user story.

3.1.3 Designs
With the user stories defined, we created rough designs as guidelines for the imple-
mentation phase. Since this master’s thesis has a technical focus, we will only create
basic wireframes. There won’t be user studies or other ways of verification of the user
experience or usability. However, having the wireframes at hand helps us to think about
the different entry points for micro frontends.

First, the landing page of the app must include some form of recommendations. We
decided on displaying different categories of recommendations in horizontally scrolling
containers. This design was inspired by Amazon’s1 layout for related products as seen
in Figure 3.2. Similarly, we wanted to present more products on the front page, so the
landing page should have three rows of recommendations. The wireframe for this page
can be seen at Figure 3.2.

A single recommendation tile must show the product’s title image. When a user hovers
over the product, more details of it should be visible, e.g., the name, description, and
price of the product. The tile must include a “shopping cart” button. When pressed, the
product is immediately added to the user’s shopping cart. If the user clicks anywhere
else on the product, the product details page is opened, which we describe later on.

Also visible in the wireframe in Figure 3.3 is the top bar of the app. It should be always
visible, even if the user scrolls down. Most prominently, at the center is a search bar.

1Amazon.com Inc, https://web.archive.org/web/20230101002323/https://www.amazon.com/

19

https://web.archive.org/web/20230101002323/https://www.amazon.com/
https://web.archive.org/web/20230101002323/https://www.amazon.com/
https://web.archive.org/web/20230101002323/https://www.amazon.com/

3. Evaluation Using Action Research

BRAND Search

Product Product Product Product Product Product Product Product

Product Product Product Product Product Product Product Product

Product Product Product Product Product Product Product Product

Welcome Text

Recommendation Text

Recommendation Text

Recommendation Text

Cart

Figure 3.3: Wireframe for the front page of the web shop. The body of the page should
list three rows of recommendations, which might need a horizontal scrollbar if too many
products are shown. The top shows a header bar, containing a placeholder for the brand
at the left, a search bar at the top, as well as a button to toggle the shopping cart at the
right.

If the user enters text here, a dropdown shows products in a list with title images for
each product. The user can click on a product to open the product’s detail page. At
the very right of the top bar is a button to toggle the shopping cart. The shopping
cart should be located at the right of the screen as shown in Figure 3.4. The opened
shopping cart displays the current shopping cart content as well as the total price. Each
product is identified by its image and name and shows its price. Products must be
visually separated in the shopping cart. While the shopping cart is open, the rest of the
application should be de-emphasized. Clicking anywhere but inside the shopping cart
should hide the shopping cart again – including the shopping cart toggle button.

If the user wants to view more details of a product, they can open a product details
page – visualized in Figure 3.5. Here, all details of a product must be visible: the full
description of the product, as well as all related images, and its price. We envisioned that
the images should be displayed on the left in a sort of carousel. At the top, the user sees
the currently highlighted image in a larger frame. Below are all images related to the
product. Similar to the recommendations, if there are too many images, the container
will scroll horizontally. Clicking on an image will show it in the larger view. Next to the
image gallery is the product’s description. In contrast to the recommendation tile, the
description is not limited by size. There, a longer text with lists and custom formatted
can be displayed here. Below each product, there should be a single recommendation
row. This must use the same visual and logical recommendations as from the front page.

Finally, the checkout process in Figure 3.6 uses multiple steps shown on a single view.
At the top of a card, a list of step numbers shows the current step, as well as the already
taken and future steps. A step is displayed as a circle with its step number in it. Below

20

3.1. Domain Definition

BRAND Search

Product Product Product Product Product Product Product Product

Product Product Product Product Product Product Product Product

Product Product Product Product Product Product Product Product

Welcome Text

Recommendation Text

Recommendation Text

Recommendation Text

Cart

X

Total: 100.00€

Checkout

Your Cart

Product
Img

Product Name

Price €

Product
Img

Product Name

Price €

Product
Img

Product Name

Price €

Product
Img

Product Name

Price €

Figure 3.4: Wireframe for the opened shopping cart. All added products are shown here,
including the total price for all products. The rest of the application is de-emphasized by
being greyed out.

BRAND Search

Product Product Product Product Product Product Product Product

Product XYZ

Recommendations For Product

Cart

Description
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Lorem ipsum dolor sit
amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore
et dolore magna aliqua. Lorem ipsum dolor sit amet, consectetur adipisicing
elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Lorem ipsum dolor sit
amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore
et dolore magna aliqua.

Figure 3.5: Wireframe for the detail page of a product. On the left, all images related to
the product should be displayed. On the right, the product’s full description is shown.

the circle is a short description telling what the user has to do to complete the current
step.

Each checkout step has three states:

1. The step is inactive. This is the case if previous steps have not been done already
and therefore the next steps cannot be performed yet. In Figure 3.6 this is the case
for steps 3, 4, and 5.

2. The step is active. This means that this step is the currently viewed one. Only
a single step can be active. In Figure 3.6, step 2 is currently active.

21

3. Evaluation Using Action Research

BRAND Search Cart

1 2 3 4 5

Cart Address Payment
Method Verify Finished

Back Next

Address 1
Name Name
Street 123
1000 City
Country

Address 1
Name Name
Street 123
1000 City
Country

Address 1
Name Name
Street 123
1000 City
Country

+

Checkout

Figure 3.6: Wireframe for the checkout process displayed inside a card. Each step displays
a different card content. Already completed steps (step 1), the currently active step
(step 2), as well as not yet available steps (steps 3, 4, and 5) have to be highlighted in
meaningful ways.

3. The step is completed. When the user moved on to the next step, the previously
active step will be marked as completed. Completed steps can be re-visited to
change selections and values. In the Figure 3.6, step 1 is already done.

To visualize the state of a step, clear highlighting has to be used. All inactive steps
must be greyed out to visualize that they cannot be used yet. The active step should be
highlighted in a light color. Already completed steps should be displayed using darker
tones.

Every step will change the content of the card’s body. The first step will display the
shopping cart’s content, while the second step displays the user’s addresses, and so on.
The steps content is defined as follows:

1. Cart. This step shows the shopping cart’s content in a similar way the shopping
cart does. It allows the user to review the shopping cart content before committing
to the checkout process.

2. Address. The user can select or create an address to use for this transaction.

3. Payment method. The user’s registered payment methods are listed as well as
providing means for adding a new payment method.

4. Verify. A summary of the transaction and all items is shown.

5. Finished. The user is notified of the success or failure of the transaction.

22

3.1. Domain Definition

3.1.4 Requirements & Limitations
In order to focus on the development process, a strict scope must limit the features
provided by the web shop frontend and backend. We derive our requirements from the
user stories and wireframes, extended with non-functional and technical topics.

The web shop must meet the following requirements:

• A web shop should be implemented to buy products, the kind of products is
irrelevant. For prototyping, the action of buying a product and the transaction
must be simulated.

• The web shop must have a landing page to display some products with some but
not all information. The selection of products can be random.

• The navigation bar at the top of the page must be visible on all pages except for
the checkout page.

• Clicking the shopping cart in the navigation bar opens a sidebar that overlays the
content.

• A product’s detail page should contain a description, a gallery of images, and
related products. All of them can contain dummy values. However, the related
products must be different for each product. I.e., the recommendations on the
product details page must be parameterized.

• The user’s ID can be generated client-side. This simulates having a logged-in
session. The user ID should therefore persist across reloads.

• Every product, both in recommendations or on product details, can be added to
and removed from the shopping cart.

• A shopping cart is attached to a user’s ID.

• Adding and removing a product from the shopping cart must trigger a request to
the backend. The cart must therefore not be stored purely in the browser.

• The shopping cart must be globally stored on the frontend. Meaning that all
components must be notified when a product is added or removed from the cart.

• There must be a checkout process for a shopping cart.

• The checkout process must include multiple steps:

– Display the current shopping cart content using the global state.
– Display a list of addresses as well as the possibility to add more.
– Display a list of payment options as well as the possibility to add more.

23

3. Evaluation Using Action Research

– A final step to confirm the user’s selection.

• The backend must provide APIs for managing a user’s addresses and payment
options.

As for the limitations, the web shop should not include any of the following:

• The recommendations can be mocked by fetching a random assortment of products
from the database. No actual recommendation engine or user tracking should be
implemented.

• The checkout process must not include any actual payments.

• After the checkout process has been completed successfully, no further interaction
or features may be provided. The scope of the user journey is limited to a single
visit.

• Server Side Rendering (SSR) of SPAs is not covered by this research.

• Basic styling of the web shop application is sufficient. Responsiveness of the
application is not required.

• No usability study or other user-focused research will be performed. The evaluation
is done solely on a technical basis.

While this scope definition is insufficient for a real-world web shop application, it serves as
a boundary for this research. That way we can focus on relevant parts of the application
rather than starting to research beyond the intended scope of this thesis.

24

3.2. Iteration 1: Implementation as Monolith

3.2 Iteration 1: Implementation as Monolith
In order to build iteratively upon an application, we first need to implement a baseline for
future iterations of the Action Research. This chapter, therefore, focuses on implementing
a monolithic SPA and a backend infrastructure.

The frontend monolith is a simple web shop. Users can see recommendations, open
details for individual products, add products to a shopping cart, and finally, complete
the order in a “checkout” process.

To mock the functionality of a real shop, a backend is implemented providing a basic API
for fetching recommendations, individual products, managing products to a shopping
cart, as well as faked user data for the checkout process. For this purpose, product data is
randomly generated and persisted in a database. This ensures that even while developing,
usable, reproducible data is available.

3.2.1 Goal Definition
The first iteration has the ambitious but necessary goal of implementing the full frontend
monolith. Therefore, the goal definition overlaps heavily with the domain definition and
following requirements analysis of subsection 3.1.1 and subsection 3.1.4.

While the implementation of the monolith could have been split into multiple iterations
of the Action Research, we argue that the monolith bears little information and gained
knowledge concerning micro frontends. For this reason, we decided to describe the
monolithic implementation in a single iteration.

Technologies Used

There are many web frameworks for building monolithic SPAs. For example, Angular,
React, Vue, and Svelte are commonly used today. Since the focus of this research
lies on communication and state synchronization, choosing one web framework over
another must not matter. The found patterns must be technology agnostic and not use
framework-specific features (such as dependency injection using Angular or the context
API in React applications).

Due to our personal experience with Angular, we decided to implement the monolith
– and hence future iterations – with an Angular base. Angular is a web framework for
building modularized monoliths. This means that different, reusable frontend components
are grouped into modules. Modules can be imported by other modules to reuse their
defined components and services. This modularization of the monolith already helps us
to define slices that can be extracted into micro frontends, e.g., it is possible to have
a module for the checkout process in the monolith that can be extracted to a separate
micro frontend.

Furthermore, we also need to decide on the technology for the backend. Since it is purely
needed for implementing the features the web shop provides and is of little relevance to

25

3. Evaluation Using Action Research

the results of this research, its technology does not affect the results. Nevertheless, there
are some considerations we had while deciding on the concrete implementation. Firstly,
we wanted the backend to be extensible such that it is easily possible to add features
needed by future micro frontend implementations (e.g., serving JavaScript files, adding a
micro frontend registry, etc.). Secondly, adding features should have little to no impact
on existing code. That allows us to remove features, once they are not needed for one of
the following iterations, without extensive refactoring or regressions. Thirdly, the setup
should be simple enough, such that it is understandable by an interested, educated reader.
In other words, we do not want to rely on heavy, complicated frameworks. They might
help in creating apps but are hard to understand for people unfamiliar with them. Since
the goal of this master thesis is to research micro frontends, we hence saw no benefit in
obscuring our backend implementation.

For those reasons, we decided to use NodeJS with the Express library for managing the
REST endpoints. Moreover, to achieve isolation of the different features, we implement
the backend using a microservice architecture. This allows us to write further applications
and add them to the system. Additionally, they can also just as easily be removed from
the system without any traces left behind.2 For communication between the microservices,
simple HTTP requests are used. While there are solutions available to simplify this
process, we prefer understandability over ease of development here.

Finally, to simplify styling the frontend, we decided to use Bootstrap. Once again, this
does not affect the research, as we only use the style sheet of Bootstrap, not its JavaScript
components.

3.2.2 Results

Implementing the monolith required us to complete many different aspects of a SPA.
As such, this iteration is the largest in terms of code written and features implemented.
To provide an overview of the important aspects of the Angular monolith, we provide a
graphic showing the most important Angular services and components in Figure 3.7.

In the diagram, the backend is treated as a closed box – its implementation is irrelevant.
Instead, only the different APIs and how the frontend interacts with them are important.
Below the backend, the Angular monolith is shown. We implemented the monolith using
two layers: One providing the logic and one rendering the views. This allows us to have
a clear separation of concerns. Therefore, splitting the monolith into multiple micro
frontends will be easier later on.

The logic layer is composed of multiple Angular services, shown in blue in the diagram.
Services with little cylinders at the top right corner represent “stateful services”. They
contain data that must be shared across components.

2As it turned out, it was not necessary to adapt the backend for the different micro frontend
implementations. So future iterations will always use the backend as described here.

26

3.2. Iteration 1: Implementation as Monolith

Angular Monolith

Shopping Cart
ServiceUser Service getUser() getProducts(ids)

getCart(user.id) {ids: [string]} getProducts(ids)

Products Service

[productDetails]

Shopping Cart
Component

addToCart(product) /
removeFromCart(product)

getRecommendations(amount, productId)

getShoppingCart() addToCart(product) /
removeFromCart(product)

getProduct(id)

getShoppingCart()

Recommendation
Service

getRecommendations(
amount, productId)

[[productDetails]]

Backend

Checkout Component Product Details
Component

Recommendations
Component

Logic Layer
View Layer

uses

Figure 3.7: Architecture of the Angular monolith. The application is split into a two-tier
system: The view layer and the logic layer. The view layer mainly handles rendering
data and reacting to user input. The logic layer handles data management and backend
interaction. Arrows show the communication between the different parts. Lines with
single arrows show requests, and dotted lines the responses. Lines with two arrows show
data streams. The filled arrow shows the direction of the request, hollow arrows show
where the data is pushed to.

In the monolith, there are three stateful services:

1. UserService, providing the current user as a data stream (a user might log out
and back in again).

2. ShoppingCartService, handling shopping cart interactions.

3. ProductService, which holds products that have already been fetched from the
backend. It serves as a client-side cache.

As shown in the diagram, those services have to work together to provide the data needed
by the views. For example, the ShoppingCartService needs to combine multiple
data streams into one. First, it needs to get the current user. This is shown via the filled
arrow: The ShoppingCartService requests the data from the UserService. The
UserService returns a data stream in case the current user changes during the session.
Returned data streams are marked via hollow arrows in the diagram. This visualization
was chosen because data streams “push” data toward the caller. However, they need to

27

3. Evaluation Using Action Research

be differentiated from sending a request, which is why we decided on using hollow arrows
instead.

The ShoppingCartService then sends the current user’s ID to the backend in order
to fetch the shopping cart. However, the shopping cart from the backend only includes
product IDs. It, therefore, has to forward the product IDs to the ProductService to
fetch the corresponding products. When one or more products have already been fetched,
they are not loaded again. Only the missing products are fetched from the backend.
Regardless, the corresponding products for the passed product IDs are provided as a
data stream. Now the ShoppingCartService can provide the full shopping cart data
– for the current user, containing the product details – to the views.

Apart from the stateful services, there are also stateless services, e.g., the Recom
mendationsService only returns a set of recommendations for a given number of
recommendation groups (“amount” in the diagram) and product ID. No data is held
beyond that interaction. Both kinds of services have to work as expected across all micro
frontend implementations. In particular, stateful services have to share their state across
all micro frontend instances. Hence, those services play a crucial role in our further
research and are the focus when finding ways for state synchronization.

Following the services, we highlighted some components in the architecture diagram in
Figure 3.7. These components are views – marked with an eye symbol at the top right
corner. A view’s task is to take data as input, and present it to the user via rendering
HTML and Cascading Style Sheet (CSS), as well as handling user input – usually by
calling another service, e.g., the shopping cart component receives the shopping cart as
data. It then renders HTML to show the shopping cart’s content. If a user wants to
remove an item from the shopping cart, a button may be clicked. The view calls the
ShoppingCartService to remove the clicked product. This triggers a data change,
which is emitted to the shopping cart component again.

Apart from rendering, there is as little logic as possible inside views. As already mentioned,
the separation of business- and rendering logic allows us to easily refactor the views
without having to change the data aggregation. In our case, we will be able to easily
replace components with micro frontends in following iterations.

While there are more services (e.g., for the checkout, the search, etc.) and components
(e.g., footer, header, search), they play a smaller role in this research. For this reason,
they have been left out to improve the clarity of the diagram.

Since the monolithic application is reused in future iterations, it is important to understand
the current pages in detail. In particular, we discuss the following:

1. The landing page of the application. It is the main entry point of a user and
displays recommendations.

2. A product details page to display further details of a single product. At the bottom,
a row of recommendations is included.

28

3.2. Iteration 1: Implementation as Monolith

Figure 3.8: Screenshot of the monolithic landing page. It shows a welcome text at the
top, followed by three groups of recommendations, each showing a heading provided
by the backend. The individual groups can be scrolled horizontally as shown in the
top group. Here, the middle product is hovered over by the user. Therefore, its name
“Orange Card Game”, a dummy description, as well as its price and button to add it to
the shopping cart are visible.

3. The checkout process is a stepped process to complete the purchase.

Landing Page

Starting with the landing page, we had to write the recommendations component. This
component takes the number of groups to load and display as well as a product ID as
parameters. Each recommendation group displays its recommendations in a horizontally
scrolling list of products. Each product is visualized using its title image. When a user
hovers over a product, the product’s name, a dummy description, its price, as well as a
shopping cart button is shown. Clicking the shopping cart button adds the corresponding
product to the shopping cart. Clicking anywhere else on the product card opens the
product details page. A screenshot of the full landing page can be seen in Figure 3.8.

Looking at the component tree in Figure 3.9, the landing page is composed of the
app-landing-page component, which nests the app-recommendations component.
The outer app-landing-page component’s task is to pass the proper parameters to
the nested component in order to properly display three rows of recommendations. The
app-recommendations parses the parameters and requests the recommendations from
the RecommendationsService. The component then listens to the returned data
stream and renders the emitted data.

With regards to micro frontends, this view should cover the “base” case: A hosting
application integrates a micro frontend. There is no state to be shared between the host
or the micro frontend, since we implemented the recommendation service stateless – as

29

3. Evaluation Using Action Research

Figure 3.9: Angular components of the monolithic landing page. The view’s content is
the app-landing-page hosting the app-recommendations component.

mentioned above. Therefore, the hosting application only needs to pass the parameters
(e.g., number of recommendation groups) to the micro frontend, and the micro frontend
only has to emit events (e.g., a recommendation is clicked; a product should be added to
the shopping cart).

Product Details

The next view to discuss is the product details page. Its task is to display all information
related to a product. In addition to its name, price, and shopping cart button, the prod-
uct’s description and image gallery are shown. We also wanted to show recommendations
for a product. This means that a single row at the bottom of the page must be displayed.
For this use case, we re-used the recommendations component of the landing page.

As seen in Figure 3.10, we decided to display a dummy description, as to not have a
mostly blank page. This description is hard-coded and does not change depending on the
product. For simplicity, no actual data is provided by the backend for the description of a
product. Regarding the component structure, we have highlighted the important Angular
components in Figure 3.11. The root component is now app-product-details,
which hosts the same app-recommendations component we have already used for the
landing page.

With the outlook towards refactoring the monolith to using micro frontends, this page
helps us in researching how to handle nested micro frontends. Recommendations must
not only work as part of the hosting application but also inside another micro frontend.
Therefore, the recommendations must not be coupled to the hosting context.

30

3.2. Iteration 1: Implementation as Monolith

Figure 3.10: Screenshot of the monolithic product details page. On the left, an image
gallery shows all images related to a product. Below is a list of recommendations for
the selected product. At the center of the page are the product’s name and a dummy
description.

Figure 3.11: Angular components of the monolithic product details page. The
app-product-details component is used as the root component to render product
details. The app-recommendations component is re-used to display the recommen-
dations for a product.

Checkout

The final page is the checkout process. It is implemented using a single component,
containing multiple tabs. Each tab is displayed via a circle with a step number inside.
The user can click arbitrary steps, as long as they are active. A step is active if all
previous steps have been completed. A screenshot of our implementation is provided in
Figure 3.12. Additionally, each step is individually shown in Figure 3.13.

31

3. Evaluation Using Action Research

Figure 3.12: Screenshot of the monolithic checkout page. In the center of the page is a
card, whose content changes based on the current step. Currently, the step "Address" is
active.

Since the previous views all retain their state via services or components, we decided to
use the browser’s URL as state storage. For example, the currently active step is not
stored via a variable inside the component, but rather by reading and updating a query
parameter of the current URL. This also holds for the selected shipping address and
payment method. This means that the checkout component is completely stateless. It
emits events when the form data changes and receives updated parameters afterward.
This should provide a unique challenge for the micro frontend implementations. We need
to solve the problem of how micro frontends access and manipulate the URL.

Finally, the component structure of the checkout page – seen in Figure 3.14 – is one of
the simplest yet. As mentioned above, we implemented the checkout process as a single
component. Hence only one Angular component is shown in the screenshot. Once again,
with this view we want to focus on URL synchronization, rather than creating complex
nested components, which might be extracted to web components later.

Backend

Since our backend bears little informational value towards the research of communication
and state synchronization of micro frontends, it will not be discussed in detail here.
However, we have added a chapter to the appendix describing the architecture.

Regarding this thesis, the backend can be viewed as a closed box. It provides the APIs
needed to fetch products, manage shopping carts, as well as addresses and payment
methods for the checkout process.

32

3.2. Iteration 1: Implementation as Monolith

(a) (b)

(c) (d)

(e)

Figure 3.13: Screenshots of the individual steps of the checkout page. The process of the
checkout process can be viewed via the stepper on the top of the card. The next step is
only available if the current step has been completed (visualized by fading the step as
long as it cannot be selected).

3.2.3 Retrospective

Implementing the baseline for the following iterations meant developing a wide range of
aspects of the application. Especially the infrastructure was a challenge since we had
to provide useful workflows for both the frontend and the backend. For instance, the

33

3. Evaluation Using Action Research

Figure 3.14: Angular components of the monolithic checkout page. The
app-landing-page should not be confused with the component mentioned in Fig-
ure 3.9. The unfortunate naming came to be, because this component represents the
landing page of the checkout process.

backend had to be usable while being developed, as well as when it is deployed as Docker
containers. This meant having workflows in place on how to start a microservice locally,
then building and deploying it into the Docker network once the changes have been
applied. However, our established backend infrastructure is a robust foundation that the
other iterations can build upon.

As for the implementation of the frontend, we implemented a generic Angular monolith
(i.e., without extensive library usage, complex state management, etc.). This was done
intentionally, as to not generate library- or framework-specific results. Consequently,
the development process for the frontend mostly followed the official Angular workflow:
Using the ng command to generate a new application, scaffold components and modules,
serve the application with a development server, and build the application. Therefore,
there have been no surprises during the development of the different components and
modules.

Most noteworthy, we implemented the state management via global Angular services
and data streams in this iteration. Those data streams need to be provided in micro
frontends as well. However, for micro frontends we cannot use Angular’s dependency
injection of service ecosystem. Hence we anticipate that converting the current services
to framework-agonistic classes is one of the main focuses in the next iterations.

34

3.3. Iteration 2: Migration to iframes and Implementing Direct communication

3.3 Iteration 2: Migration to iframes and Implementing
Direct communication

In the first micro frontend iteration of this Action Research, we split the application
into micro frontends using iframes. We chose this approach first, because iframes
are a well established and understood technology. They have been supported since
1997 and were standardized in HTML 4.0 [15]. Even though, iframes have not been
intended to be used as micro frontends, however, they fit their requirements quite well.
In particular, iframes provide a high degree of isolation, which means that applications
can be developed and deployed independently. Implementing a micro frontend approach
with iframes first provides the opportunity to find shortcomings early and compare
how more modern technologies overcome them.

3.3.1 Goal Definition
In this iteration, we implement a micro frontend based application via iframes. In con-
trast to the previous iteration – the monolith – we are not focusing on developing working
software yet. Instead, we want to achieve basic integration of the micro frontends into a
hosting application. This also means that we will be adding one-to-one communication
to the iframes.

Therefore, the goal definition for the second Action Research iteration is:

1. Decide on feasible cut-off points of the monolith.

2. Migrate the monolith’s modules to separate Angular applications.

3. Integrate the newly created Angular application into hosting applications.

4. Implement direct, one-to-one communication between the host and the micro
frontend.

Hence, the expected result of this iteration is a web application, which allows navigating
between views, passing parameters toward micro frontend as well as receiving messages
from the micro frontend at the host.

Technologies Used

The advantage of high isolation provided by the iframes from the hosting application
is a disadvantage regarding the possible communication channels and patterns. Since
iframes do not share the same context with their parent, there is only a limited amount
of APIs the host is allowed to call on the inner content (and vice versa). There are
some relaxations when the application inside the iframe is on the same origin (e.g.,
accessing the same localstorage, sharing SharedWorkers as service layer, using
BroadcastChannels, etc.), but since this assumption could also highly hinder the

35

3. Evaluation Using Action Research

1 // Code on the receiving end.
2 window.addEventListener("message", (event) => {
3 // The event.data contains the payload of the sender
4 console.log(event.data);
5 });
6

(a)

1 // Code for the sender.
2 // In this example the sender is an iframe, therefore it sends messages to
3 // the hosting application. But any window reference (e.g., from pop-ups)
4 // can be used to send and receive messages to and from a foreign browser
5 // context
6 window.parent.postMessage("hi from iframe");
7

(b)

Listing 3.1: Example usage of the postMessage API. The receiver (e.g., the hosting
window) must first register an event listener for the message event on its own window
object. The sender can then get a reference to the receiver’s window object e.g., via the
parent field – it references the hosting window of an iframe. When the postMessage
method is called, a new “message” event will be triggered in the receiver. Hence, the
registered event listener is called.

usefulness of implemented patterns (e.g., not being able to embed external micro frontends
into the host; allowing different teams to be on different domains), they have not been
taken into consideration.

The main intended communication method between iframes and their hosts provided
by browsers is postMessage3. It enables different browser contexts to communicate
with each other via an event based, asynchronous communication channel. Arbitrary,
serializable data can be sent via this function [16]. In the short example shown in
Listing 3.1, the receiving end has to register an event listener for the message event on
the global window reference. Whenever another instance wants to send a message to the
receiver, it needs to get a reference to the receiver’s window. Here it is assumed that the
sender is inside an iframe of the receiver, therefore using the global window.parent
to get a (potentially restricted) reference to the hosting application’s window object.
However, any other way of getting a window reference is valid (e.g, by opening a pop-up
window or new browser tab).

The next step is sending a message. Calling postMessage on a window will generate
a new event on the referenced window object – the iframe host in the example in
Listing 3.1. This sent data can be arbitrary, as long as it is serializable. In particular,

3https://web.archive.org/web/20230406194208/https://developer.mozilla.org/en-
US/docs/Web/API/Window/postMessage

36

https://web.archive.org/web/20230406194208/https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
https://web.archive.org/web/20230406194208/https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage

3.3. Iteration 2: Migration to iframes and Implementing Direct communication

the sender cannot pass function references (and by extension also class references). This
means that senders cannot provide callback functions to a sent message directly. In the
example above (Listing 3.1), only a string is passed. As a result, the receiving browser
context generates a new “message” event and the registered listeners are called. The
passed event will contain the sent custom payload in the event.data field. We will
use this communication channel for pushing updates for parameters (inputs) to a micro
frontend, as well as receiving events (outputs) from them.

Another way of passing arguments towards an iframe is via its source URL. Just like
for any web application, query parameters can be used to send arbitrary, serializable
data. However, updating the query parameters from outside requires changing the source
attribute, hence reloading the application inside. Therefore, the iframe’s source does not
fit our requirements. Nevertheless, this approach is still used to pass the initial parameters
to an iframe. Further updates are sent via the postMessage API described above.

3.3.2 Results
One of the challenges of this iteration was deciding on how to split the monolith. In
theory, every component of the Angular monolith could be split into its application run
inside an iframe. However, the organizational overhead, as well as the performance
overhead, could have slowed the development process by a lot. For this reason, we decided
to use larger applications around business cases instead. The following iframe based
micro frontends were developed:

• Micro frontend for showing recommendations.

• Micro frontend for showing product details.

• Micro frontend for handling the checkout process.

The resulting architecture can be seen in Figure 3.15. The views for the checkout process,
product details, and recommendations have been rewritten to embed the corresponding
Angular applications. As a result, the Angular app shell no longer needs to contain
services for those views. Instead, the embedded applications have to provide those services
themselves. For example, in the monolithic Angular application, the product details
view had to fetch the product details from the product service. With the micro frontend
architecture, however, the logic for getting data is transferred to the micro frontend itself.
The product details component of the app shell only passes the arguments required by
the micro frontend – in this case, it forwards the product ID that should be displayed.

Since each Angular application runs in its own browser context, each micro frontend
hosts its Angular services. As a result, the current implementation does not provide a
shared state – as mentioned in the goal definition.

In the diagram visible at Figure 3.15, this means the product services cannot share the
same cache of products. Even though they share the same code, they cannot access the

37

3. Evaluation Using Action Research

Angular App Shell

Shopping Cart
ServiceUser Service getUser() getProducts(ids)

getCart(user.id) {ids: [string]} getProducts(ids)

Products Service

[productDetails]

Shopping Cart
Component

getShoppingCart()

Backend

Checkout App

Logic Layer
View Layer

uses

Product Details App Recommenations
App

Angular Product Details App

Logic Layer
View Layer

Checkout Component Product Details
Component

Recommendations
Component

embedsembedsembeds

Products Service

getProduct(id)

Product Details
Component

Recommenations
App

embeds

Backend

getProduct(id)

productDetails

Figure 3.15: The micro frontend architecture using iframes. The shopping cart compo-
nent was kept as a regular Angular component. The other views embed the corresponding
applications (highlighted via the browser symbol on the top right corner). Each applica-
tion consists of the component and all required services required for it. Note that the
two backends may not be different instances, but are separated to improve the layout.

38

3.3. Iteration 2: Migration to iframes and Implementing Direct communication

runtime data from each other. Therefore, each micro fronted needs to fetch the product
details for recommendations, the shopping cart, or the product details page on their own.

The monolithic implementation for the user service relies on generating a random ID
and storing it in the local storage of the browser. This simulates a unique, logged-in
user for the application. Since the local storage is bound to the host address of the web
application, it cannot be shared across iframes. For this reason, the product details
app in diagram Figure 3.15 does not host its own instance of the shopping cart service.
If it was, adding a product to the shopping cart would only add the product to the local
user. Other micro frontends, as well as the app shell, have different users and hence do
not see the added product. As a result, whenever the shopping cart button is clicked,
the message must be forwarded to the app shell in order to toggle a product in the
shopping cart. Nested micro frontends complicate this even further, as they need to
“bubble” messages from their child micro frontend to their own host. Hence, the amount
of different messages a micro frontend emits is always a superset of the messages that
all child micro frontends emit. This creates a very strong coupling between the micro
frontend and its children.

Because the checkout process highly relies on state management, we decided against
implementing it via one-to-one communication alone. Instead, it will be implemented with
the next iteration. More details regarding the communication between micro frontends
will be discussed in section 3.3.2. First, however, we will demonstrate how the migration
to iframes affected the UI. This also helps to understand which fragments need to
communicate with each other and their hierarchy.

Views

As already mentioned, for this implementation we decided to form coarse micro frontends.
Due to the development overhead for each iframe, one micro frontend for sharing
buttons or image components would have been too complex without yielding additional
information regarding this research – the communication and state synchronization
patterns for micro frontends.

To highlight the different micro frontends in each view, we displayed borders around
each iframe containing a micro frontend in Figure 3.16. Each view – the landing page,
the product details page, as well as the checkout page – has been migrated to micro
frontends. The landing and checkout page only host a single micro frontend each – the
recommendations and checkout micro frontend respectively. Their only parent is the app
shell. In contrast, the product page uses nested micro frontends. As seen in Figure 3.16b,
the innermost micro frontend is the recommendations. Next up in the hierarchy is the
product detail micro frontend, which itself is hosted in the app shell.

However, since iframes do not grow with their content, the dimensions of each iframe
must either be defined by its host or emitted from the iframe and manually set. For our
purposes, each micro frontend will send its current content height via the postMessage-
channel to the micro frontend host, which sets the iframe’s height to the emitted

39

3. Evaluation Using Action Research

(a)

(b)

(c)

Figure 3.16: Screenshots of the three micro frontends inside iframes. The landing page
(a) hosts the recommendations micro frontend. In (b) the product details micro frontend
nests recommendations. In (c), the checkout micro frontend is centered inside the host.

40

3.3. Iteration 2: Migration to iframes and Implementing Direct communication

value. Figure 3.16 shows that, with this inconvenience in mind, the migrated application
looks very similar to the monolithic implementation. However, this may not apply to
all applications using iframes as micro frontends. For instance, some layouts use an
HTML element’s initial size as a baseline but will shrink it down to fit the container.
This is how the CSS flexbox works [14]. The micro frontends, therefore, need a sensitive
balance between emitting their intrinsic size as well as using the actual iframe’s size. If
the balance is violated, the iframe may begin to scroll or the layout of the webpage
keeps changing based on the last emitted event – either the iframe’s actual size or the
iframe content’s size.

Communication Between Micro Frontends

After splitting the monolith into iframes, we had to re-implement the communication
channels of the application. For example, without knowing which product to display,
the product details micro frontend cannot work properly. Therefore, the communication
patterns mentioned in section 3.3.1 were applied to pass inputs and outputs between parent
and child. The implementation is inspired by Angular’s @Input() and @Output().
Parameters are passed from parent to child (one-way binding) and events are emitted
from the child to the parent. There is no two-way binding (changes to input parameters
are also reflected to the component host) or data sharing between parents and children.
For our communication channel, we also want to push updated parameters towards a
micro fronted, while emitting updates to the micro frontend host.

The first step in achieving this was the creation of the intercom Angular library, which
abstracts the lower level details of message passing. Instead of dealing with sending
and receiving messages via postMessage and message-events directly, consumers of
the intercom library can pass and process message objects. The library then handles
pushing the message to the correct receivers as well as creating data streams for incoming
messages. The data streams are created by wrapping native JavaScript events of the
message channel. While the payload of the postMessage API is untyped, we wrote
some interfaces that all messages must follow. Most importantly, each message sent has
to declare a "type" property (e.g., "input-changed", "output"). It can be used
by the type system to infer what kind of properties exist on the message. However, the
dynamic payload, specific to each micro frontend, could not be typed statically. The
library must still allow arbitrary data to be sent.

To have a better separation of concerns, we decided to provide two Angular services for
communication. One service was created for micro frontend hosts (ParentIntercom
Service) and one for hosted child micro frontends (ChildIntercomService). The
first one allows callers to send messages directly to an iframe (and therefore a micro
frontend) and listen for messages from them (e.g., output events). The second one
simplifies receiving messages from the hosting micro frontend (e.g., updated inputs) and
sending messages to it.

41

3. Evaluation Using Action Research

1 <app-iframe-host
2 [app]="’mf-name’"
3 [input]="{productId: 3}"
4 (output)="onOutput($event)"
5 ></app-iframe-host>
6

Listing 3.2: Example usage of the iframe-wrapper Angular component. The hosted
micro frontend is passed via the “app” parameter. To pass parameters to the hosted
micro frontend, the “input” parameter is used. Events from the iframe are re-emitted
using the “output” event.

In order to further simplify handling iframes for hosting micro frontends, we wrote
the Angular component IframeHostComponent. It enables using micro frontends
as closely to regular Angular components as possible. It defines an Angular input,
simply called "input" to send and update parameters to the micro frontend and
an Angular output aptly called output to receive messages from the iframe as
native Angular outputs. However, herein also lies the first drawback of this setup.
Since the IframeHostComponent component cannot know what kind of parame-
ters or events the inner iframe may or may not consume or emit (especially their
structure), all inputs and outputs of the component are untyped. As a result, type
checks have to be done at runtime by both the micro frontend and the micro fron-
tend host. The input of the IframeHostComponent works in two ways. When
the iframe is not loaded yet, the input must be visible to the iframe immediately.
This means that the input is passed to the iframe via its source’s query parame-
ters. All values are JSON-encoded to enable more complex data to be passed. Af-
terward, any further updates to the input cannot re-write the iframe’s source
attribute, as this force-reloads the content. This would introduce a larger perfor-
mance overhead than is necessary. Instead, the IframeHostComponent will send
InputMessages via the ParentIntercomService to the iframe. The output
event of the IframeHostComponent is simpler, as it just listens for OutputMessages
sent by the inner iframe to its host and then emits the payload as Angular output
event. An example of how to use the IframeHostComponent is shown in Listing 3.2.
Here, the parent wants to render a micro frontend called mf-name, passes the param-
eter productId with value 3, and calls the method onOutput every time the micro
frontend emits events. The implementation of onOutput (not shown) must then use
the $event.outputName to differentiate what kind of output the child micro frontend
emitted, so that $event.outputValue can be used correctly. For example, the child
micro frontend could emit an output named cartClicked with a product ID to add to
the cart as output value.

On the child micro frontend side, receiving initial and updated inputs was simplified via
the ChildIntercomService. It provides a method called getInput() which returns
a data stream that does two things. Initially, the query parameters of the child’s iframe

42

3.3. Iteration 2: Migration to iframes and Implementing Direct communication

are parsed. This will contain all initial values set by the IframeHostComponent.
Afterward, whenever a InputChangedMessage is being received, the data stream will
emit the updated value.

3.3.3 Retrospective
The primary goal of this iteration was to migrate the monolith towards iframe based
micro frontends. While we did succeed in doing so, the path towards separated micro
frontends had its challenges. The largest of which was the compiler setup. We are sharing
libraries between different micro frontend instances by introducing aliases that point to
the library distribution folders. For example, by writing an import of "intercom", the
compiler will load the files from "dist/intercom". However, whenever a library is
compiled, the dist folder will first be cleared. As a result, any compiler running in watch
mode might crash, since some crucial files are now missing. This meant that every time
we changed a library, we had to restart all Angular development servers for the changes
to be picked up. While there might be solutions to this problem, it highlights the issues
that can arise when working with micro frontends. Hence, developing micro frontends
with iframes may not provide the same level of developer experience that monoliths
have. One reason thereof is the increased complexity. For example, while the monolith
has roughly 4769 lines of code, the iframe solution uses 7535 (increase of 58%). While
many of those added lines are boilerplate code (e.g., each Angular application needs its
own entry file to bootstrap the Angular application), those are still lines that must be
maintained.

Finally, having multiple micro frontends could also mean having multiple versions
of libraries at the same time. In our current monorepo setup, we only use a single
package.json to define dependencies and their versions. However, it is also possible
to use different versions for different micro frontends. As a result, developers potentially
have to support different versions of libraries, depending on which environment the micro
frontend provides. For example, the "intercom" library must be compatible with all
micro frontends. However, some micro frontends may use older versions of Angular. So
the library has to be compatible with a wide range of Angular versions. Since there
are breaking changes with each major version of Angular, developers could be forced
to publish different versions of their library to have feature parity between all micro
frontends.

Regarding the communication channel iframes provide, postMessage is a good so-
lution for one-to-one communication. For our use case, pushing messages towards and
from micro frontends was simple enough to be a viable solution. The restriction of only
sending serializable data has not been an issue for us, yet. However, the effort to send
updates via a messaging port is clearly larger than a simple function call in the monolith.

Our biggest pain point is the lack of type information within our implementation. Since
the library for communication should be message-agnostic, we do not wish to add type
information directly into the intercom library. Otherwise, it is too tightly coupled to

43

3. Evaluation Using Action Research

our specific use case. Simultaneously, type information has to be shared across multiple
micro frontends. Defining types of sent or received messages locally is possible but bears
little use since other micro frontends won’t be able to re-use them. A solution could be to
export the type information of each micro frontend of received and sent messages, such
that only such messages are allowed to be sent or received. Exposing this information,
however, will again increase the complexity of the setup.

Lastly, we want to highlight the great isolation of iframes. This degree of independence
allows micro frontends to be very stable. Therefore, micro frontends deployed today will
still work later on. Since all libraries, styles, and the context of the micro frontends are
self-contained, the only point of failure are the message interfaces the micro frontend
understands and sends. Hence, accidental side effects when updating the app shell are
very unlikely.

44

3.4. Iteration 3: State Management for iframes

3.4 Iteration 3: State Management for iframes

3.4.1 Goal Definition

In our last iteration, we implemented micro frontends based on iframes, but still lacked
sharing state between different instances. As a result, some features were still missing
from the monolithic implementation (e.g., the shopping cart). Hence, in this iteration,
we implement state management across all micro frontend instances in order to achieve
feature parity with the frontend monolith.

Technologies Used

We use the same messaging channel we have already been utilizing in the previous
iteration. Since iframes from different origins provide no other means for sending and
receiving messages, postMessage has to be re-used for state synchronization as well.
Therefore, deciding on how state synchronization is implemented becomes a question
about the protocol to use on top of the messaging channel. We chose to implement
publish-subscribe semantics via data providers and data consumers. The publish-subscribe
messaging pattern as described in [49] allows data providers to send messages towards
a data stream, without needing to know who the receivers will be. Data consumers,
on the other hand, will subscribe to data streams, without having to know, where the
data comes from. This degree of decoupling allows the pattern to be highly dynamic –
producers and consumers can come and go as needed.

In the micro frontend context, data consumers are our micro frontend instances, which
might need to consume some data in the shared store. Data producers are services that
hold some shared state. In particular, we provide the shopping cart and product services
as data providers, while, e.g., the checkout micro frontend is a data consumer. The other
micro frontends interact with the checkout service in order to manipulate the current
state. The diagram Figure 3.17 shows the general message flow of the publish-subscribe
pattern as we implemented it. The consumer cannot access the data stream directly, or
send a callback function to the data provider, due to the limitations of serialization of
postMessage. As a result, the provider has to proxy the subscription of the consumer.

As seen in the diagram Figure 3.17, there are three types of messages. The first one is
the subscribe message. The first parameter is a unique ID of the subscription, which
allows us to connect all future messages to this initial request. The second parameter is
the name of the data stream from which the consumer wants to receive updates. The
second message is a dataUpdate event and is sent by the provider to the consumer every
time the data stream emits a new value. To send these messages, however, the provider
itself has to subscribe to the data streams. Because the data stream cannot leave the
context of the provider, we have to proxy the subscription for the consumer. Hence,
every time the source emits a new data event, its value is forwarded to the consumer.
Finally, the consumer can send an unsubscribe message to the provider. It clears the
provider’s subscription to the data stream to free all resources. Therefore, this message

45

3. Evaluation Using Action Research

Figure 3.17: Publish-subscribe pattern shown via a consumer and provider. In this
case, the consumer subscribes to the provider via some subscription ID and the name of
the data stream to subscribe to. The provider resolves the data stream by name and
subscribes to it. Every time the data stream pushes a new update, the provider sends
a message to the consumer with the subscription ID and the emitted data. After some
time, the consumer may unsubscribe with a subscription ID. This terminates the provider
side subscription and no further messages will be sent.

must be called before a micro frontend is destroyed or the data is no longer needed.
Otherwise, the provider will keep emitting data events, causing memory leakage and
potential performance degradation.

Interestingly, those issues are very similar to those found in the backend. For example,
suppose a website sells tickets for concerts. It uses a data stream that emits events when
users have a concert’s page open and when they buy a ticket. This allows the application
to show live data on the frontend, i.e. how many people are currently on the page and
how many tickets have already been sold. Since the data stream includes sensitive data,
however, the frontend cannot access the stream directly, so the data and subscriptions

46

3.4. Iteration 3: State Management for iframes

have to pass through a backend service first. In this scenario, the backend service will
face the same issues as our micro frontend solution above.

3.4.2 Results

We noticed that the messaging pattern described in section 3.4.1 is reminiscent of the
proxy pattern. A proxy provides functions, but instead of implementing the functions
directly, the function call is forwarded to another service. This allows the proxy to
forward requests to a remote service while behaving as if it was executed locally. We used
this pattern to convert the existing stateful services to two separate implementations:
The data provider in the app shell and the data consumer in the micro frontends. In
Figure 3.18 the ShoppingCartService has been converted to an interface. Since
the interface still exposes the same methods with the same signature, the Angular
components do not need to be updated. The original implementation was then moved into
the ShoppingCartProviderService. This service must be executed as a singleton
across the full application – not just within each Angular context – to avoid data
duplication and redundant API calls. For micro frontends to access the data streams
returned by the ShoppingCartProviderService, we implemented the Shopping
CartConsumerService. When its methods are called, it sends a message to the
ShoppingCartProviderService via the postMessage channel. The Shopping
CartProviderService then subscribes to the data stream on behalf of the micro
frontend. Each time the data stream emits an event, the event is forwarded to the original
subscriber. To reiterate, all micro frontends must use the ShoppingCartConsumer
Service and only the app shell must host the ShoppingCartProviderService.
All Angular components still consume the ShoppingCartService as before, but the
implementation is different depending on the context of the component.

In order to simplify the service implementation and avoid repetitive code, we have added
a translation layer, which converts calls to the consumer service to calls of the provider
service. The sequence diagram at Figure 3.19 reveals the full traversal of messages sent
between the services for a subscription request and data response. The sequence diagram
starts on the provider side. First, the translation layer ConsumerProxy 4 registers a
listener for any store-related messages. Then the ShoppingCartProviderService
is registered as a data provider at the ConsumerProxy. The ConsumerProxy now
knows that whenever it receives messages targeting the ShoppingCartService, this
provider needs to be called. Next, we assume that a component wants to interact with the
ShoppingCartService. As the consumer is hosted in a micro frontend, it calls meth-
ods of the ShoppingCartConsumerService. In this case, getShoppingCart()

4We chose the name ConsumerProxy, as it receives requests from a consumer and forwards (“proxies”)
them to the provider.

47

3. Evaluation Using Action Research

ShoppingCartConsumerService

<<interface>>
ShoppingCartService

getShoppingCart():
 Observable<ShoppingCart>

toggleProduct(id: string)

addToShoppingCart(id: string)

removeFromShoppingCart(id: string)

getTotalByCurrency():
 Observable<TotalByCurrency>

isInCart(id: string): Observable<bool>

ShoppingCartProviderService

AngularComponent

Figure 3.18: Class diagram showing the provider-consumer hierarchy. The shopping cart
service was converted to an interface. It exposes the original method signatures. The
shopping cart provider uses the same implementation as in the monolith. The shopping
cart consumer, however, forwards all requests to the corresponding provider service.
Components and services can still inject the ShoppingCartService. Depending on
the context, the consumer or provider implementation is used.

is called. The ShoppingCartConsumerService sends a message to the app shell
containing the following information:

• A "type" field with value "subscribe". This message should trigger a subscrip-
tion on the data provider.

• A randomly generated subscription ID. That way, both the consumer and provider
can identify which messages belong together.

• The provider to address. In this case, we address the ShoppingCartService,
so the value is set to "ShoppingCartService".

• The action to call. Here, we forward the name of the method that was called on
the ShoppingCartConsumerService. In this case "getShoppingCart".

• Optionally, an array of arguments can be passed. However, the arguments are
restricted by the serialization done by the browser when calling postMessage.
Hence, no functions or other complex objects can be passed.

48

3.4. Iteration 3: State Management for iframes

Figure 3.19: The complete process of communication between consumer and provider for
subscribing to data and returning a data stream.

49

3. Evaluation Using Action Research

For better reusability, we implemented the message generation in the ChildIntercom
Service. It handles generating a unique ID, building the message, as well as listening
for responses containing the generated subscription ID. This enables us to return a data
stream to the caller. Every time a new message in response to the generated subscription
ID is received, its payload is pushed to the returned data stream.

After the payload was sent to the app shell, the ConsumerProxy receives and handles
the request. Using the value of the “provider” field of the message (in the example
above "ShoppingCartService"), the ConsumerProxy resolves the corresponding
data provider. If an instance is found, the method call will be forwarded to the provider.
For the current example, this means calling the getShoppingCart method with no
parameters. Because this method returns a data stream, the ConsumerProxy will
subscribe to it. Every time the data stream emits a new value, the ConsumerProxy
will be notified. With the received subscription ID, the ConsumerProxy can build a
new message containing said ID, the emitted data, and the type "sub-event" to the
ChildIntercomService. Since the subscription ID matches the previously generated
ID, the ChildIntercomService can forward the received payload to the original
caller of getShoppingCart.

Finally, the ChildIntercomService can parse the received message, understand
which data stream the message is related to – based on the subscription ID – and push
the message’s payload to all subscribers – in this scenario the component. While there
are more scenarios, they follow the same pattern and do not bear any more information
than is already described above. Therefore, we will only shortly mention them:

• Data streams might complete, meaning that no further values will be emitted by it.
In this case, all consumers in micro frontends must be notified by the completion
as well. It, therefore, follows the same message flow as regular data.

• Data streams might throw an error. This will cause a data stream to stop emitting
new values. So it behaves similarly to the completion, but the error object must be
passed on as well.

• Data streams may never emit or complete. However, this case cannot be solved via
the library and has to be checked if there is an issue with the data source.

3.4.3 Retrospective
We managed to extend the implementation of the previous iteration with an asynchronous
protocol that enables state synchronization across multiple micro frontends. While it
added a lot of complexity – as seen by the sequence diagram above – the proxy based
approach means that it is easily possible to add more data providers as well as data
consumers. Most of the complexity associated with the messaging layer between the
provider and the consumer can be abstracted via proxy services. However, with the
current implementation, the app shell and micro frontends still need to be configured

50

3.4. Iteration 3: State Management for iframes

properly. For example, a micro frontend could provide the wrong implementation of the
ShoppingCartService, therefore not using the shared state, but rather provide its
own. Another issue is that the ShoppingCartConsumerService manually calls the
ChildIntercomService to build the correct messages, leaving room for error. Both
issues could be resolved by improving the library. However, such a solution will likely
increase the complexity of the messaging, increasing the error surface and may worsen
the traceability of the system.
Another weak point of our state synchronization is that sending messages had to follow
the iframe hierarchy. While parent and child communication could be implemented
as described above, we had to consider the communication between the parent and
grand-children as well. Since micro frontends only send messages to their direct parent,
we had to add more logic so that micro frontends are able to forward messages to their
parent, in case they aren’t the intended recipient. While it is possible to retrieve the
top most parent with window.top, it may be possible for our application to be hosted
inside an iframe as well. Micro frontends would therefore not get the app shell’s window
reference, but the hosting application that embedded our shop. This scenario is unlikely
for our shop, but as mentioned we do not want to find solutions for our specific use-case.
Instead, generally applicable patterns for communication and state synchronization are
investigated.
A potential solution for this issue is creating another micro frontend, whose task is solely
to provide the data streams required by micro frontends. Since its iframes will all be
hosted at the same origin, more advanced browser features like MessagingChannel
or BroadcastChannel as messaging channels could be used. They could also utilize
SharedWorkers, which behave like background services that multiple application in-
stances can interact with. Another advantage of SharedWorkers is the separation of
the state synchronization logic from the app shell. Disadvantages, however, are the added
complexity of the system and added artifacts to maintain. Loading additional iframes
to the web application – even empty ones without any HTML being rendered – could
also negatively affect the performance of the web application.
Finally, having the provider services centralized in one application creates the issue of
instantiation: We do not want to create all possible services that any micro frontend
could ever need at once. Rather, they should be loaded and executed lazily when they
are needed. With the current implementation, the app shell cannot know which micro
frontend requires which data providers, so it has to load and register all provider services
at the start time. However, even if a micro frontend would be able to tell the app shell
which services it requires, the app shell would still need to provide their implementation.
In other words, the app shell has a high coupling to all provider services, since their
implementation must be available inside it.
Alternatively, micro frontends may pass arbitrary URLs to the app shell in order to load
the provider service code. While this allows us to remove the implementation from the
app shell, it also forces us to execute micro frontend code inside the app shell, weakening
isolation and potentially introducing an attack vector. Writing a secure management

51

3. Evaluation Using Action Research

service for external provider services, therefore, adds additional complexity to the code
base, but also the infrastructure. Not only do we have to write and maintain a stable
interface, but we also must provide means to register servers that serve the provider
service’s code.

To conclude, while we see the potential for our state synchronization, there are many
pitfalls. Especially covering every edge case while still retaining good isolation of runtimes
as well as code bases is no easy task. Having the bottleneck due to the postMessage
limitations does not improve this situation either.

52

3.5. Iteration 4: Migration to Web Components and Implementing Direct Communication

3.5 Iteration 4: Migration to Web Components and
Implementing Direct Communication

During the development process, it became clear that iframes are great for isolation,
but at the cost of complexity in regards to the integration of micro frontends. One
reason is the lack of a shared environment between the micro frontends. Hence, sharing
data and code between micro frontends inside iframes – while technically possible –
requires complex protocols and patterns to be feasible. Therefore, instead of deepening
the knowledge and possible implementations using iframes, we decided to investigate a
different approach – one that better fits the requirements of micro frontends.

3.5.1 Goal Definition
For this iteration, where we are using Web Components instead of iframes, the focus
lies on migrating the existing codebase. This includes creating a suitable development
infrastructure. Features that should be provided by the infrastructure are hot reloading
micro frontends, a process for developing and testing individual micro frontends (e.g.,
hosting a single micro frontend on a dedicated application), code sharing of libraries,
exporting and importing type information, etc. Those goals go beyond the iframe based
implementation because the decrease in isolation enables us to improve the development
experience. At the end of this iteration, the SPA should provide basic functionality
like displaying products from the recommendations. Hence, we want to achieve direct
communication between micro frontends. More advanced features that require a global
state, like the shopping cart, however, will not be implemented yet.

Technologies Used

Frequently, works describing micro frontends also explore the possibilities of Web Com-
ponents [58, 89, 88, 90, 75]. Web Components are a rather new technology – they were
first mentioned in 2011 by Russel [30] – that allows developers to reuse HTML elements.
Firefox enabled the technology by default in 2018 [43]. The Web Component standard is a
collection of multiple specifications related to sharing code between web applications [83]:
shadow DOM, custom elements HTML templating, and ES Modules [63, 36]. The first
one – Shadow DOM – is used to isolate part of the DOM (usually the inner HTML
of a custom element) from the outside world – both from JavaScript and CSS access.
Custom elements were designed to share code between multiple applications by defining
new HTML elements. This is done by defining a JavaScript class, which is then added
to the custom element registry with a new, custom HTML element tag. Whenever the
browser detects the custom HTML tag in the DOM, an instance of custom element
implementation will be created. The browser allows the custom element to react to
lifecycle events (e.g., when the custom element is mounted into the DOM) or to attribute
changes. The implementation can, for example, manipulate the element’s inner HTML
to render content based on attribute values. Finally, HTML templating enables creating
a DOM tree once, any cloning it whenever needed, thus improving reusability and ES

53

3. Evaluation Using Action Research

1 import { createCustomElement } from "@angular/elements";
2
3 @NgModule({
4 /** omitted for brevity **/
5 })
6 export class RecommendationsModule implements DoBootstrap {
7 constructor(private injector: Injector) {}
8
9 ngDoBootstrap() {

10 // Wrap the RecommendationsComponent into a custom element
11 const ce = createCustomElement(RecommendationsComponent, {
12 injector: this.injector,
13 });
14 // Add the custom element to the browser’s custom
15 // elements registry
16 customElements.define("mfe-recommendations", ce);
17 }
18 }
19

Listing 3.3: Example of how Angular Elements can be used to create Web Components.
The createCustomElement function wraps an Angular component into a custom
element. The injector is necessary to enable dependency injection for the Web Component.
To use the Web Component, it must be added to the custom elements registry with the
browser’s customElements.define function. The first argument constitutes the tag
name of the custom element, the second parameter is the custom element class reference.

modules are a standardized way of modularizing JavaScript code (i.e., export and import
from different files). However, the last two specifications play little role for this research,
as they describe how code could be reused, rather than how micro frontends interact
with their environment.

For this iteration, the existing Angular components must be converted to Web Com-
ponents. Angular provides a library called Angular Elements [3], which wraps Angular
components into custom elements. They can then be used like any other Web Component,
including shadow DOM, custom events, and attribute binding. We converted Angular
components to Web Components by passing the component’s class reference to the
createCustomElement function provided by the library @angular/elements. A
code example thereof can be found in Listing 3.3. Here, we convert the existing code of
the RecommendationsComponent to a Web Component. Note, that we do this in the
ngDoBootstrap life-cycle method of the RecommendationsModule. This means,
whenever this module is executed while bootstrapping the Angular application, instead
of executing the default Angular logic for bootstrapping the application, we register the
Web Components.

To implement direct communication, custom elements natively support listening to
changes of attributes of the DOM element [58, 75]. This enables consumers of a Web

54

3.5. Iteration 4: Migration to Web Components and Implementing Direct Communication

Component to pass arguments to a custom element. For upwards communication to the
micro frontend host, custom events can be used [58, 75]. As the name suggests, those are
DOM events that can have customizable payloads and properties.
As already mentioned, Angular Elements handles most of the heavy lifting. It automat-
ically converts the outgoing messages marked with the @Output decorator to custom
events and exposes all fields marked with @Input as bindable attributes of the DOM
element. However, Angular Elements cannot convert the string values of the attributes
to their correct expected types. For example, the RecommendationsComponent
has an input called groups which modifies the number of recommendation groups
fetched and displayed and, therefore, should be a number. However, since the runtime
cannot know how to convert the string to a number correctly, the implementation of
RecommendationsComponent also must be able to handle strings as input. In this
case, the string can easily be converted to a number by casting the string. However, more
complex parameters might need more complex parsing.
As for the infrastructure to handle hot reloading, building, and loading the Web Compo-
nents, we use webpack’s Module Federation. Usually, the webpack bundler assumes all
dependencies to be local, meaning that during bundling, every dependency or JavaScript
import must be present and will be added to the final bundle. With Module Federation
enabled, webpack instead treats some dependencies of the JavaScript code as remote, so
that they will be loaded at runtime from a specified server instead. For us, this meant
that we could declare all micro frontends as remote code. To load a micro frontend, we
could use regular JavaScript imports. webpack will detect them and fetch the remote
code when it is needed.
This setup has several advantages. Firstly, since loading a micro frontend is an ordinary
import, the TypeScript compiler as well as the IDE can resolve the type information
for the micro frontend (e.g., by having the type information installed locally). This can
have many advantages over the untyped approach we were forced to use in the iframe
implementation (e.g., finding type errors at compile-time, getting better suggestions from
the IDE while developing). Secondly, offloading the micro frontend orchestration to the
infrastructure frees us from loading and managing micro frontends ourselves. Instead,
webpack’s Module Federation handles loading the code and re-using it when needed again.
Thirdly, Module Federation also provides code sharing between multiple micro frontends,
e.g., every micro frontend requires Angular as a runtime. Hence loading Angular only
once and re-using it reduces loading redundant resources.
However, using Module Federation increases the complexity of the setup. Firstly, every
micro frontend must declare Angular as a shared library. If it was missing, Angular would
be included in the micro frontend’s bundle. Secondly, all micro frontends should be able to
agree on a shared Angular version. Module Federation uses semantic versioning to deter-
mine a globally compatible Angular version. If it fails to do so, Angular might be loaded
several times. Luckily, there is a library called @angular-architects/module-
federation [5], together with @angular-architects/module-federation-tools [6],
which help in properly configuring webpack.

55

3. Evaluation Using Action Research

Angular App Shell

Shopping Cart
ServiceUser Service getUser() getProducts(ids)

getCart(user.id) {ids: [string]} getProducts(ids)

Products Service

[productDetails]

Shopping Cart
Component

getShoppingCart()

Backend

Checkout
WebComponent

Logic Layer
View Layer

uses

Product Details
Angular Context

Logic Layer
View Layer

Products Service

Product Details
WebComponent

Recommenations
WebComponent

Checkout Angular
Context

Logic Layer
View Layer

Products Service

Recommendations
Angular Context

Logic Layer
View Layer

Products Service

Figure 3.20: Architecture of the Web Component based micro frontend implementation.
Each micro frontend has its own Angular context, containing instances of needed services
(the backend communication has been removed for brevity). Each micro frontend exposes
its components as a Web Component, which can be integrated into the app shell in the
same way as regular HTML elements.

3.5.2 Results
We transformed the iframe-based web shop SPA to Web Components using Angular
Elements. Since using Angular Elements together with webpack’s Module Federation
requires separate Angular applications for each micro frontend, the project setup of the
previous iteration fitted the changed technologies. However, the code related to iframe
based messaging was removed.

Since Web Components are running in the same context as the host application, they are
not limited to using postMessage, thus widening the spectrum of possible communica-
tion channels. The final architecture of the Web Component based implementation can
be found in Figure 3.20. The micro frontends are no longer separate web applications but
are directly loaded into the app shell. Each micro frontend, however, retains its isolated
Angular context. Therefore, they can create their own service instances.

In order to provide components to the app shell, each micro frontend exposes its Angular
components as Web Components. Parameters are passed using HTML attributes and

56

3.5. Iteration 4: Migration to Web Components and Implementing Direct Communication

messages are emitted via custom events. Apart from the already mentioned removal of
code related to the intercom library, the change from iframes to Web Components had
a great impact on the development process and environment. First, the Web Components
may only use the minimum required features from Angular that are needed to create
the custom elements. Therefore, during development, we created a separate Angular
application for each micro frontend. The task of each application is to only host their
respective micro frontend. This removes the need to run the full web shop app for
developing individual micro frontends – hence achieving isolated development teams for
different micro frontends.
Secondly, using the already mentioned Module Federation meant that each micro fron-
tend had to be configured correctly to support the feature. To simplify the setup
with monorepo projects, we used a helper library called @angular-architects/
module-federation. It helps in configuring webpack in the right way, so that it uses
the correct versions of shared libraries according to the package.json file as well as
shared libraries added via TypeScript path aliases.
Nevertheless, the configuration for what dependencies should be shared and in which
version still had to be done manually for each Angular application. For example, if one of
the micro frontends was misconfigured and did not declare the @angular/core library
as shared, then the library code would not be loaded at runtime dynamically. Instead,
webpack bundled the library into the micro frontend’s artifact. As a result, libraries no
longer were provided as singletons. This easy oversight can not only lead to increased
bundle sizes and hence load times, but also to more severe consequences for libraries that
must be loaded as singletons.
An example of such a library is Zone.js [41]. This library instruments many global
functions, so that they can be used by Angular for change detection. However, having
multiple instances of Zone.js means that those patches are applied multiple times,
which in turn can cause runtime errors or failed change detection [25]. For this reason,
the library @angular-architects/module-federation-tools provides a boot-
strapping function that can be used in place of Angular’s default bootstrapModule
function. It ensures that the singleton Zone.js instance is re-used across multiple
Angular micro frontends.
Thirdly, the micro frontends, as well as the app shell, need to be integrated into each
other. For the iframe implementation, we used a mapping of the micro frontend name
and its URL. That way it was known at runtime which micro frontend is hosted on
which server and how to load it into an iframe. For our webpack implementation using
Module Federation, this mapping can be moved to webpack configurations. They can
be configured at compile time or dynamically at runtime. We decided to use static
configurations for the micro frontends, but a dynamic configuration at runtime for the
app shell. The reasoning behind this is that the product-page micro frontend uses the
recommendations as part of the product page. Therefore it is reasonable to define this
information statically instead of having to configure it at runtime. To do so, we modified
the webpack.config.json of the product-page micro frontend as seen in Listing 3.4.

57

3. Evaluation Using Action Research

This configuration uses the ModuleFederationPlugin to define remotes. This
key-value map tells the webpack bundler, which imports (defined as keys) should be
mapped to which server (defined as values). At runtime, this configuration is used to
fetch the Module Federation metadata and the code of the micro frontend when it is first
imported. The build process as well as the built artifacts are displayed in Figure 3.21.
Each micro frontend has a separate build process with custom webpack configurations
as described above. During bundling, webpack uses these configurations in order to
bundle the micro frontend’s source code. Additionally, as configured via the filename
in Listing 3.4, a file called removeEntry.js is created. It contains meta data about
which libraries this module depends on as well as which versions of those libraries are
located on the server.

Finally, each shared library will be bundled into a separate file. This allows webpack to
load a single library from the server, if it is required by one of the micro frontends. For
instance, suppose webpack detects an import statement import(’recommendations/
web-components’) at build time. Then, instead of bundling the code of said im-
port into the final artifact, webpack loads the javascript file "remoteEntry.js" from
the server "http://localhost:4201/" at runtime. This "remoteEntry.js" file
contains metadata on which modules are exposed. In the case of a given import state-
ment, the module "web-components" must be exposed by the "recommendations"
namespace. Since the recommendations micro frontend is similarly configured as the
product-page micro frontend shown in Listing 3.4, the "web-components" module
points to a file that bootstraps the micro frontend as Web Component. As a result, after
the example import was resolved, the product-page can use the Web Components defined
by the recommendations micro frontend.

For the app shell, we do not want to statically configure every micro frontend’s server
location. Instead, it should be possible to fetch the list of available micro frontends from
a server dynamically. We simulated this behavior by using promises that loaded the
metadata from the other micro frontend servers. Later on, those promises could be easily
replaced with an HTTP request or similar. The code can be found in Listing 3.5. There,
the call to loadRemoteEntry fetchs the metadata from the given server and adds it to
the webpack registry of different remotes. As a result, webpack knows which module has
which dependencies and in which version. Only then, the bootstrapping file for the app
shell itself is loaded (as declared via the import(’./bootstrap’) statement). As
a result, webpack has time to negotiate versions of libraries before loading the actual
application. For example, given that all micro frontends as well as the app shell share
the Angular core library called @angular/core, each micro frontend might specify a
slightly different version of the library. It could be that the app shell was built with
Angular version 12.0.0, but the recommendations micro frontend was created a little later
and uses Angular 12.1.0. However, since node libraries follow semantic versioning [79, 80],
webpack knows that even though the app shell uses the APIs of Angular 12.0.0, Angular
12.1.0 must be backward compatible with Angular 12.0.0, as only the minor version
changed – there can only be new features added, but no breaking changes. Therefore,

58

3.5. Iteration 4: Migration to Web Components and Implementing Direct Communication

1 // Excerpt from
2 // web-components/frontend/projects/product-page/webpack.config.js
3 module.exports = {
4 /** omitted for brevity */
5 plugins: [
6 new ModuleFederationPlugin({
7 // Name of the micro frontend
8 name: "productPage",
9 // Generated file - must be loaded by the shell and other micro

frontends
10 filename: "remoteEntry.js",
11 exposes: {
12 // When importing the web-components, point to the micro frontend’s
13 // bootstrap.ts file
14 "./web-components": "./projects/product-page/src/bootstrap.ts",
15 },
16 remotes: {
17 // Statically define the web components this project depends on
18 recommendations: "recommendations@http://localhost:4201/remoteEntry.

js",
19 },
20 /** omitted for brevity */
21 }),
22],
23 };
24

Listing 3.4: Excerpt of the webpack configuration file of the product-page micro frontend.
It defines exposed code as well as from which remotes a module and its metadata should
be fetched.

webpack loads the highest compatible version of all modules. In this case, webpack will
load the @angular/core with version 12.1.0 provided by the recommendations server.

To understand the full process of Module Federation, Figure 3.22 shows a sequence
diagram to illustrate how the browser loads different parts of the code at different times.
Initially, the browser loads and executes the JavaScript files for the app shell (marked
with 1 and 2). As shown in Listing 3.5, in the first step the app shell loads the metadata of
every micro frontend needed (steps 3 and 4). For demonstration purposes and to simplify
the process, only a single micro frontend is shown in the sequence diagram. Furthermore,
since the metadata of the app shell is already part of the app shell’s code, it may not
be loaded separately. In step 5, webpack’s Module Federation evaluates the required
versions of shared dependencies to find the optimal version to use. For demonstration
purposes, the version negotiation allows loading all shared libraries from the app shell in
step 6. It is possible, however that the version negotiation results in some libraries being
loaded from different servers. After this step, the initialization process of the app shell is
done. Later, the checkout micro frontend may be needed. For example, the user could
navigate to the checkout page, which hosts the checkout micro frontend. At that time,

59

3. Evaluation Using Action Research

Project Checkout

Source Code
& webpack config

micro
frontend

entry file

shared
libraries

Project Product Page

Source Code
& webpack config

micro
frontend

entry file

shared
libraries

Project Recommendations

webpackSource Code
& webpack config

micro
frontend

entry file

shared
libraries

Project App Shell

Source Code
& webpack config

app
shell

shared
libraries

webpack

webpackwebpack

Figure 3.21: The created artifacts for all applications. All applications build the source
code into executable JavaScript (marked in green). The micro frontends generate entry
files (marked in red), which provide metadata for each micro frontend. Shared libraries
are compiled into independent artifacts as well (marked blue).

the browser loads the micro frontend’s code (steps 8 and 9). Since the checkout micro
frontend might need additional dependencies, webpack has to determine which libraries
have not been loaded at step 6. Usually, this is done when the checkout micro frontend
tries to import a shared library. In steps 11 and 12, webpack found some libraries that
have not yet been loaded and therefore loads them from the checkout server. Once again,
libraries could have also been loaded from another server, if webpack needs to load a
different version than the checkout server provides. This process may be repeated, once
new micro frontends are being loaded.

In order to load and display a micro frontend inside the app shell, the already ex-
isting layout components – LandingPageComponent and ProductDetailLayout
Component of the products Angular module and the LandingPageComponent of the
checkout Angular module – load the Web Component code of each micro frontend. To
illustrate this further, the TypeScript code of the ProductDetailLayoutComponent
of the app shell is shown in Listing 3.6 and its HTML template in Listing 3.7. First,
the component’s constructor calls the loadRemoteModule function. This function
is imported from @angular-architects/module-federation. Its purpose is to
load a remote module – "productPage" in this case – and import an exposed module –
in the given example "./web-components". As discussed earlier, this loads the code
of the product-page micro frontend that registers its Web Components into the browser’s

60

3.5. Iteration 4: Migration to Web Components and Implementing Direct Communication

1 // Excerpt from
2 // web-components/frontend/src/main.ts
3 import { loadRemoteEntry } from "@angular-architects/module-federation";
4
5 // Load all micro frontend metadata as well as the app shell
6 Promise.all([
7 loadRemoteEntry(
8 "http://localhost:4201/remoteEntry.js",
9 "recommendations"

10).catch((error) =>
11 console.log("Failed to load MFE recommendations: ", error)
12),
13 loadRemoteEntry("http://localhost:4202/remoteEntry.js", "productPage").

catch(
14 (error) => console.log("Failed to load MFE productPage: ", error)
15),
16 loadRemoteEntry("http://localhost:4203/remoteEntry.js", "checkout").catch(
17 (error) => console.log("Failed to load MFE checkout:", error)
18),
19])
20 .then(() => import("./bootstrap"))
21 .catch((err) => console.error(err));
22

Listing 3.5: Dynamic loading of metadata of the micro frontends. Calling
loadRemoteEntry fetches the metadata of a specified micro frontend and adds it
to the webpack runtime. The second parameter defines the module name to load.

custom elements registry. After the code of the product-page micro frontend was loaded,
the ProductDetailLayoutComponent of the app shell can now use the product-page
custom element as seen in Listing 3.7. Hence, the HTML template declares to render
the element mfe-product-page. The tag name is declared by the micro frontend and
must therefore be known by the consumer of the micro frontend.

Communication

Web Components mainly use two mechanisms for communicating with the outside
world. Similar to Angular’s binding with Outputs and Inputs, Web Components use
custom events for upwards communication and attribute binding for passing parameters
downwards. Custom events behave like native browser events, e.g., the click event or scroll
event. Moreover, custom events can add a custom payload to the event instance. This
allows the sender of an event to propagate additional information to all listeners of an
event. Regarding Web Components, this means that they can tell their parent component
that some special event occurred. For example, whenever a product is clicked in the
recommendations micro frontend, it emits a new, custom event called productClicked
with the clicked product as payload. The listener of the event can then decide what to
do with this event. Attribute binding on the other hand is a technique added specifically

61

3. Evaluation Using Action Research

Figure 3.22: Sequence diagram for webpack’s Module Federation. In this example, the
app shell is loaded first, followed by the checkout micro frontend.

for custom elements. A custom element can declare the attributes it wants to observe via
a static field called observedAttributes, which must be an array of strings with the
names of the HTML attributes to observe. Then, the custom element instance can have
a function called attributeChangedCallback with up to three parameters: The
attribute name, the old value of the attribute, and the new value of the attribute. This
function is called by the browser each time one of the observed attributes of the custom

62

3.5. Iteration 4: Migration to Web Components and Implementing Direct Communication

1 // Excerpt from
2 // web-components/frontend/src/app/products/components/
3 // product-detail-layout/product-detail-layout.component.ts
4 @Component({
5 selector: "app-product-detail-layout",
6 templateUrl: "./product-detail-layout.component.html",
7 styleUrls: ["./product-detail-layout.component.scss"],
8 })
9 export class ProductDetailLayoutComponent {

10 productId$ = this.route.params.pipe(map((params) => params["productId"]));
11
12 constructor(
13 private route: ActivatedRoute,
14 private navigationService: NavigationService
15) {
16 // Load the micro frontend code asynchronously
17 loadRemoteModule({
18 remoteName: "productPage",
19 exposedModule: "./web-components",
20 });
21 }
22
23 // Called from the HTML template
24 onRecommendationClicked(product: Product | null) {
25 if (!product) {
26 return;
27 }
28 this.navigationService.showProductDetails(product.id);
29 }
30 }
31

Listing 3.6: Example code for loading a micro frontend and its Web Component.
loadRemoteModule fetches the JavaScript of the productPage micro frontend and
loads the "web-components" module. It then initializes the custom elements.

element changes. We have added an example of such a custom element in Listing 3.8.
It observes value changes on the product-id attribute. The implementation of the
updateProduct method is left out for brevity.

However, since HTML attributes are strictly string values only, passing more complex
information downwards needs custom solutions. For example, if a micro frontend should
only take and display data – without any logic on how to fetch it – the data must be
encoded in some way. One solution is to use JSON encoding and decoding, but apart
from the performance overhead this adds, it also couples the consumer of a micro frontend
closer to the micro frontend implementation – namely the encoding and decoding of
values. For this reason, attribute binding alone is not suitable for state synchronization
across multiple micro frontends but can be used for direct communication. However, as

63

3. Evaluation Using Action Research

1 <!--
2 Excerpt from
3 web-components/frontend/src/app/products/components/
4 product-detail-layout/product-detail-layout.component.html
5 -->
6 <mfe-product-page
7 [productId]="productId$ | async"
8 (recommendationClicked)="onRecommendationClicked($any($event).detail)"
9 ></mfe-product-page>

10

Listing 3.7: Example usage of the product-page Web Component. The product ID to
display is passed to the Web Component via the productId attribute. The custom
event recommendationClicked calls the function onRecommendationClicked of
the ProductDetailLayoutComponent.

1 class DummyProductComponent extends HTMLElement {
2 static observedAttributes = ["product-id"];
3
4 attributeChangedCallback(name, oldValue, newValue) {
5 switch (name) {
6 case "product-id":
7 this.updateProduct(newValue);
8 //...
9 }

10 }
11 }
12

Listing 3.8: Example code showing how custom elements can react to attribute changes.
By implementing the attributeChangedCallback function, the browser will call
it every time one of the attributes defined in the static observedAttributes array
changes. The first argument of the function call is the updated attribute, followed by its
old and new values.

mentioned in the goal definition, this aspect of Web Components is investigated in future
iterations.

3.5.3 Retrospective
The goals of this iteration were to migrate the web application from iframes to Web
Components and implement one-to-one communication from the micro frontend hosts to
micro frontends and vice versa. Focusing on the migration process first, changing the
codebase was little effort since we could reuse most parts of the project structure from
the iframe implementation. Apart from the reimplementation of the communication
channels, we did not have to rewrite large parts of the application to adopt Web
Components. The migration was further supported by much better tooling surrounding

64

3.5. Iteration 4: Migration to Web Components and Implementing Direct Communication

our use case. To implement the iframe based micro frontend, we had to find our own
ways of managing remote micro frontends that should be loaded into the app shell. As a
result, there is no support for loading type information for micro frontends or getting
suggestions from the IDE on possible parameters and events of micro frontends.

For the Web Component based implementation, we used features of the webpack bundler
to automate the process of wiring micro frontends together. Using Module Federation,
we were able to map regular imports in our code to remote locations. As a benefit, we
could delegate the management of those remotes to the tooling (i.e., loading remote code,
keeping track of already loaded code, and sharing dependencies) instead of developing it
ourselves. Hence, we only had to configure webpack properly. Additionally, since remote
code is imported like regular libraries, the existing tooling for TypeScript can be re-used.
Most importantly, it is possible to install type information of a micro frontend locally
and the compiler and IDE will be able to resolve it correctly. As a result, there can be
compile-time checks as well as advanced hints and recommendations by the IDE during
the development process.

On the downside, using tooling to achieve our goals also means that the project is tighter
coupled to that technology. For instance, if the tooling was to be abandoned or found
to be insecure or flawed, the project might be stuck with the disadvantages the tooling
has or requires extensive refactoring. In our case, webpack Module Federation is still a
rather young concept – released with webpack 5 in 2020 [38]. Therefore, it is possible
that webpack may change some features in the future. This could either to failing builds
or runtime errors, because different projects were built with different webpack versions.
Such impacts must be considered when choosing the tooling for Web Components.

Nevertheless, Web Components themselves are part of the DOM standard [11], meaning
it is very unlikely that they change in a way that breaks the current Web Component
specifications. Furthermore, having a shared standard (e.g., as compile target) across
multiple tools also means that interoperability between them is very likely, freeing the
developers to use whatever fits their requirements best.

Following the migration to Web Components, we implemented one-to-one communication
between micro frontends and their hosts. Custom elements allow to listen for changes of
specific attributes of the element in the DOM. Thus, whenever an HTML attribute’s value
is changed, the custom element can be notified via executing a method on the custom
element’s class. This feature enables passing arguments to a custom element as well as
updating them when needed. For upwards communication from the Web Component to
the host, custom events are used to attach an arbitrary payload to an event. Together,
attribute binding and custom events allow us to send and receive messages to and from
the micro frontend.

However, there are also drawbacks of using attribute bindings for downwards communi-
cation. Since DOM attributes can only be string values, their flexibility is limited. For
simple arguments like numbers, booleans, or string values that might not be an issue.
However, more complex parameters may require custom string parsing. For example, any

65

3. Evaluation Using Action Research

cyclic data cannot be converted to a string using the JSON.stringify function. Call-
back functions likewise cannot be serialized easily. Therefore, we conclude that attribute
binding combined with custom events alone is not suitable for state synchronization.

66

3.6. Iteration 5: Shared Services for Web Components

3.6 Iteration 5: Shared Services for Web Components

3.6.1 Goal Definition

After using attribute bindings and custom events for communication, we want to im-
plement lateral communication for state synchronization. Since all micro frontends are
hosted in the same browser context, global services should be used. In order to prevent
state duplication, all shared services must be provided as singletons so that no micro
frontend creates new instances.

Technologies Used

Currently, it is possible to share library code between micro frontends, but each Angular
context creates its own instances of the services, because each Angular application creates
a new root Angular context. The micro frontends do not and should not share Angular
context information. Otherwise, the isolation principle of micro frontends is broken.
Nevertheless, Angular provides a special provider token called platform. According to
the documentation, it uses a “special singleton platform injector shared by all applications
on the page” [4]. In other words, instead of only looking for providers for services in
the current context, Angularalso uses a global context. However, to avoid Angular-
specific solutions for shared service instances, we decided against using platform providers.
Instead, we apply a more general solution.

During the fourth iteration in section 3.5, where we used Module Federation for migrating
the iframe based solution to Web Components, we recognized that the code of shared
libraries was already provided as a singleton, i.e., it is only loaded once and reused for
every new import. Thus, if the shared libraries not only provide the code, but instances
of services instead, we can use Module Federation as a foundation to provide shared
singleton services. That way our infrastructure handles and ensures service instantiation
and uniqueness of them.

We recognize that using Module Federation for our research on state management may
lead to technology-specific results. However, this setup can still be generalized to other
implementations by having a loader for required services. Our approach is therefore
reminiscent to the plugin pattern for developing frontend application [61]. Instead of
referencing services directly, service consumers ask the service loader for a reference to
the service instance. It is the service loader’s task to use a global directory of already
loaded services and only fetch and instantiate newly required services. In our case, we
want to pass this task on to the tooling, instead of implementing it ourselves.

For micro frontend communication, we do not introduce a new messaging protocol or
channel in this iteration. Instead, sending messages is performed via method calls of the
singleton services. Nevertheless, calling a method is similar to sending a message to it.
In Smalltalk [84], calling a function on an object is conceptionally described as sending a
message to an object. The function name is the message type and the parameters are part

67

3. Evaluation Using Action Research

1 export class ShoppingCartService {
2 private static instance: ShoppingCartService;
3
4 static getInstance() {
5 if (!ShoppingCartService.instance) {
6 ShoppingCartService.instance = new ShoppingCartService(
7 HttpService.getInstance(),
8 ProductsService.getInstance()
9);

10 }
11 return ShoppingCartService.instance;
12 }
13 }
14

Listing 3.9: Factory for the shopping cart service. If an instance has already been created,
it is returned to the caller. If no instance is available, a new one is created. For all
dependencies of the shopping cart service, factories are called. This procedure ensures
that only a single instance is used across the full application.

of the message’s payload. Thus, implementing a mechanism that allows communication
via shared services is analogous to communication via shared memory.

3.6.2 Results
In order to remove Angular’s dependency injection from the application, we created
factory methods for each shared service as shown in Listing 3.9. The factories’ task
is to check if a global instance has already been created. If so, the cached instance is
returned. Otherwise, the service is instantiated and cached. The factories also must
handle creating dependencies of the service by calling other factories. Therefore, our
implementation uses no dependency injection. Instead, our refactored services are plain
JavaScript classes, so no external framework or library is needed to use them. This shows
that our implementation of shared state can easily be integrated into any web application
or framework.

In order to keep the component implementations as they are, we added Angular providers
for the shared services. Angular providers are a mechanism that allows us to declare
dependency injection tokens and a factory to return the value that should be used for the
token. In our case, the dependency injection tokens are the shared service class references
and the factories are the same as mentioned above. Having those providers means that
the shared service instances are referenced in each Angular dependency injection context.
In the architecture diagram in Figure 3.23, we symbolized this via a dashed border around
the services in each Angular context. As a result, no components have to be altered,
since the services are injected as before.

Consequently, the architecture is very reminiscent of a monolith. Instead of communi-
cating via messaging channels, the different parts of the application now reference the

68

3.6. Iteration 5: Shared Services for Web Components

Angular App Shell

Shared Service
Singletons

Shopping Cart
Service

getUser()

getProducts(ids)

getCart(user.id) {ids: [string]}

Products Service

[productDetails]

Shopping Cart
Component

getShoppingCart()

Backend

Checkout
WebComponent

Logic Layer
View Layer

uses

Product Details
Angular Context

Logic Layer
View Layer

Products Service

Product Details
WebComponent

Recommenations
WebComponent

Checkout Angular
Context

Logic Layer
View Layer

Products Service

Recommendations
Angular Context

Logic Layer
View Layer

Products Service

getProducts(ids)
User Service

Shopping Cart
Service

Figure 3.23: Architecture of the shared services of the Web Components. Instead of
providing service instances in their own contexts, each micro frontend references the
global, singleton instance.

same service instances. Therefore, our implementation no longer has issues passing and
receiving complex objects like data streams. This enables a development experience,
which is close to the familiar frontend monolith. Since the shared code can be imported
like any other regular library, the type information is available to the IDE and compiler as
well, thus reducing the danger of having to cast messages to their proper types manually.

3.6.3 Retrospective

Compared to the complexity of the state synchronization of the iframe based solution,
using shared services was a much smaller and simpler change to the code base. The
largest refactoring was replacing Angular’s custom HTTP client service with browser
native fetch calls. Since all shared services are no longer Angular service, but regular
JavaScript classes, they can no longer access Angular specific features – such as the
HTTP client. The logic of the services, as well as the consumers of them, did not
change. Not having to worry about the communication between micro frontends and the
stateful services removes the burden of maintenance. For iframes, we had to implement
our own communication layer on top of the postMessage messaging channel. The
additional code introduces a larger surface for errors, especially when the protocol has to

69

3. Evaluation Using Action Research

be expanded for new use cases. None of this is present with shared services. Developers
can therefore focus on implementing the services.

In our opinion, having type information available is a great benefit of using shared services
with Module Federation. As already mentioned, lacking types of messages requires casting
them to educated guesses of their shape. Errors can therefore easily be introduced by
changes to the messaging protocol. However, the backward compatibility of shared
services still has to be guaranteed by developers.

However, using singleton services provided via webpack Module Federation has drawbacks
as well. Foremost, misconfigurations of webpack can be very hard to trace and debug.
In our monorepo example app, this is less of an issue, since the library developers also
have control over the other applications. For micro frontends in different repositories,
misconfigurations could easily occur due to the lack of proper static analysis across all
projects. Hence, the services would no longer be provided as global singletons, breaking
the state synchronization.

One solution to this issue could be creating a registry of services on the global window
object. Instead of checking whether a local variable in the current module is set, the
factories could check if a service instance is already available in the window object.
Misconfigurations can still occur, but this approach is more resilient against them. In the
best-case scenario, the only drawback is that the shared service code is loaded redundantly,
but is still only executed once. In the worst case, due to the lack of webpack’s version
negotiation, the misconfigured micro frontend may require a newer version than was
loaded by the application. Hence, some features may not be present, causing runtime
errors. Those issues might be hard to trace, since a web application may work fine while
it is being developed, but any library version update in any of the micro frontends could
lead to broken micro frontends. There is no silver bullet to solve the issue, yet. Future
work may develop mechanisms or libraries to tackle those issues. For now, having a
strict configuration management system before deploying composed web applications is
recommended.

Another disadvantage of our implementation is the use of build tools to handle a task
that should be part of the application code. As a result, micro frontend developers are
forced to use the same tooling. As discussed earlier, webpack is a common tool supported
by most web frameworks. Nevertheless, by introducing a required dependency across
all micro frontends, we break the goal of technology heterogeneity. In the future, there
might be newer tools or frameworks, which build on tooling not compatible with webpack.
If that was the case, a substantial refactoring of the web application would most likely
be required. This is the reason why technology isolation is so important in the micro
frontend architecture. As of this thesis, Module Federation is a promising development
that may be adopted by other tools as well. For example, there are extensions for
esbuild [54] and Vite [32] to enable similar features to or support for Module Federation.
Both build tools are modern alternatives to webpack.

70

3.7. Iteration 6: Message Bus for Web Components

3.7 Iteration 6: Message Bus for Web Components

3.7.1 Goal Definition

In the previous iteration, we achieved singleton services across multiple micro frontend
instances. In doing so, we have introduced a coupling of our micro frontends to the
service implementations, i.e., micro frontends need to know which services have which
responsibility and how to interact with them. For example, each micro frontend project
must be configured correctly, otherwise, the services might not work properly.

On the other hand, shared service developers must consider, which services expose which
interfaces and who the consumers are, e.g., some service method may have side effects or
strict history constraints. Currently, we have the history constraint that the constructor
must not be called anywhere outside the provided factory. Those constraints can be
hard to communicate and easy to break. Instead, we want to decouple the consumers
from the producers by implementing a messaging bus for our application – inspired by
message brokers used in the microservice architecture [56, 64]. Data producers (e.g.,
the stateful services) publish messages to the message bus, while data consumers (e.g.,
Angular components) subscribe to the data streams. We have already discussed this
publish-subscribe pattern in the context of our iframe implementation. However, now
we have the benefit of sharing the same context between micro frontends. Hence we are
not limited to using a hierarchical messaging bus to route data between micro frontends.

Technologies Used

In contrast to Nishizu et al. [75], we chose not to implement a custom messaging bus
from scratch. Instead, we want to use browser-native features. Thereby our findings
can more easily be applied to other projects, as our implementation is not application
specific. For this reason, we have chosen the BroadcastChannel API, which is
similar to named queues in RabbitMQ [26]. In the example in Listing 3.10a, a client
wants to interact with the “cats” channel. Therefore, the client passes the channel’s
name to the BroadcastChannel constructor. The client can then receive messages
by adding a listener to the "message" event. The provider in Listing 3.10b also
creates a new BroadcastChannel with the same name. When the provider sends a
new message using postMessage, the client receives a new "message" event. Each
BroadcastChannel therefore is a multi-directional port to access the named channel.
In the context of the micro frontend architecture, BroadcastChannels are a good
candidate for implementing the publish-subscribe pattern, which we have already used in
previous iterations. In comparison to the shared service implementation in section 3.6,
however, consumers no longer need to know the source of the data, but only the data
stream’s name. This greatly decouples the data consumers from the data source.

In the previous iteration, in order to guarantee the uniqueness of service instances, we
had to ensure that all projects are configured properly. If a project does not declare
the service library as shared code, webpack treats it as a local library and bundles it

71

3. Evaluation Using Action Research

1 // Consumer Code
2 const channel = new BroadcastChannel("cats");
3 channel.onmessage = (msg: MessageEvent) => {
4 console.log("Received cat:", msg.data);
5 };
6

(a)

1 // Provider Code
2 const channel = new BroadcastChannel("cats");
3 channel.postMessage({ color: "black", name: "Oscar" });
4

(b)

Listing 3.10: Code example for the BroadcastChannel API. Both consumer and
provider can create an instance of the BroadcastChannel. Since they use the same
channel name ("cat"), they reference the same data stream. When the provider sends
a message to the channel, all current subscribers to the channel receive the message.

into the project. Hence the code is executed twice and duplicate instances are created.
To avoid the reliance on the tooling and a proper configuration thereof, we decided to
use a SharedWorker. The SharedWorker API allows us to spawn a new background
thread, which multiple browser contexts can access – hence “shared”. Similar to the
BroadcastChannel, a SharedWorker is identified by the string that is passed to its
constructor – the URL to the source code to execute. In other words, if multiple browser
contexts (tabs, windows, iframes, etc.) call the constructor with the same URL, they
can interact with the same SharedWorker. This allows us to use browser features
in order to guarantee that only a single instance of our code is loaded and executed.
Therefore, the chance for misconfiguration is reduced.

3.7.2 Results
We started by creating two BroadcastChannels per service. One for sending out
commands to a service (analogous to calling methods of the service), and another for
broadcasting the current state, e.g., the current shopping cart. This setup allows us to
decouple the operational stream from the data stream. In order to prevent misuse of
either stream, we established factory functions that either return read-only streams or
write-only streams. For example, data consumers receive data, but send commands.
Hence, the data BroadcastChannel is a read-only stream, while the command
stream is a write-only stream. For data providers, however, it is the other way around
– commands are read while state updates are sent. In order to share message channels
between applications, we created a new library that is imported by each micro frontend.
However, in contrast to the previous implementation, micro frontends no longer need to
configure the library as “remote” using webpack’s Module Federation. The library can

72

3.7. Iteration 6: Message Bus for Web Components

Angular App Shell

Shopping Cart Commands Channel

toggleProduct(id)

Product Details
Angular Context

Recommendations
Angular Context

subscribe cart

Checkout Angular
Context

Products Service

[productDetails]

Shopping Cart
Component

Backend

Checkout
WebComponent

uses
Product Details
WebComponent

Recommenations
WebComponent

getProducts(ids)

User Channel

subscribe products

Products Channel

subscribe cmd

Shopping Cart Channel

subscribe cmd
publish user

User Service

getCart(user.id) {ids: [string]}

Shopping Cart
Service

SharedWorker

subscribe user

publish cart

Products Commands Channel

getProducts(id)

subscribe cart

Figure 3.24: Architecture using a SharedWorker as a service layer. The micro frontends
no longer use service instances directly, but rather subscribe to data streams and submit
messages to command streams. For service instances running in the worker thread, it is
the other way around.

be bundled into the micro frontend’s bundle. Since all communication is now done via
the message channels, micro frontends no longer need to import the service library.

Furthermore, some of the commands sent to a service require a direct response. For
example, when adding a product to a shopping cart, we might want to display a loading
spinner until the request is completed – either successfully or with an error. For those
cases, a caller can send a (randomly generated) name of the response channel alongside
the command. If such a response channel is given, the handling service will send the
response to the BroadcastChannel with the given name. After the client has received
the response, the channel is no longer used and can be destroyed. This pattern is also
used for backend publish-subscribe services like RabbitMQ [22]. After the messaging was
in place, we migrated the services to a SharedWorker. Then, we needed to create the
bootstrapping code that starts our services as singletons. We created another messaging
channel so that micro frontends or the app shell can notify the SharedWorker which
services are currently needed. The SharedWorker then loads the required service via a
dynamic import. Those lazy imports keep the initial SharedWorker code as small as
possible.

The resulting architecture can be found in Figure 3.24. Instead of interacting with
services directly, micro frontends subscribe to data streams. Commands can be sent to
services using their respective command streams. Micro frontend components are hence
completely decoupled from the service implementation. Vice versa, services no longer

73

3. Evaluation Using Action Research

need to know the different consumers of their functionality. The separation therefore
allows us to decouple the service’s context from the component’s context. As a result, it
was easily possible to execute services in the shared worker – a separated thread from the
UI thread. In theory, this could improve the performance of the application, since the
application logic can be executed asynchronously, non-blocking, and therefore doesn’t
block the web page from rendering.

3.7.3 Retrospective
Separating the representation layer from the logic layer had its unique challenges and
interesting consequences. Compared to the previous iteration, this approach has ad-
vantages, but also disadvantages. Starting with the advantages, the largest benefit of
using the message bus is the possibility of running the service layer in a different browser
context. Being able to decouple the service layer strictly from the UI layer allows the
creation of a new vertical team just for shared services. In the previous iteration, shared
service developers were restricted by the different micro frontends, e.g., if a project is not
able to leverage webpack 5 and its Module Federation, the shared services could not be
used as easily. A micro frontend might also misuse a service by calling its constructor,
disregarding the requirement to run it as a singleton. Using a SharedWorker, however,
means that the shared service developers only need to ensure that at least one micro
frontend – usually the app shell – loads and starts the service layer. This means much
less communicational and organizational overhead between the teams.

The second advantage of our implementation is the context-spanning state. Since both
the SharedWorker and BroadcastChannels can be used across multiple browser
contexts (tabs, windows, workers, etc.), we can share the application state even beyond
the current browser tab. Hence, adding a product to the shopping cart in one window
automatically updates all other browser contexts as well. Especially caches benefit from
this, as duplicate requests can be avoided even across browser tabs and windows.

A smaller, but still interesting advantage of SharedWorkers is that they do not block
the rendering thread. Usually, JavaScript is executed inside a single thread. Hence, a
single, computationally expensive task could block any other tasks from executing. As
a result, the browser cannot execute any code required to render the webpage. This
causes it to freeze until the code has terminated. Moving the service layer into a
SharedWorker causes the JavaScript code to be executed in a separate thread. Hence,
even computationally expensive tasks can be done independently of the rendering loop.
However, the added overhead for cross-thread communication negatively impacts the
performance. Thus, depending on the number of messages sent in comparison to the
CPU time needed for the JavaScript code, our solution may improve or decrease a web
application’s performance.

Nevertheless, there are also disadvantages to our implementation. The largest disadvan-
tage is that our approach lacks type safety. Using Module Federation, we were able to
use the shared services’ types directly in our code without needing to provide separate

74

3.7. Iteration 6: Message Bus for Web Components

type declarations. We tried to mitigate the issue by providing typed wrappers around
the BroadcastChannels. However, a vertical team could easily misuse or not use
the library. Hence, a micro frontend may inject data into channels, it isn’t supposed
to. Sadly, we cannot prevent this, therefore reducing the type safety of the system.
Secondly, BroadcastChannels have the same restrictions we have already discussed
for the iframe’s postMessage interface. Most importantly, it is not possible to send
complex messages through channels. All data must be cloneable, which prevents callback
functions from being passed along a message. As a result, we cannot send objects with
methods over the channels. Hence we had to implement a different, more elaborate
way of responding to messages via ephemeral response channels. Lastly, by moving
the service layer code to a SharedWorker, we had to ensure that the service worker
understands and provides all required services. This means that the SharedWorker
becomes a centralized registry of all possible services and combinations. In the previous
iteration, Module Federation handled the handshake and version resolution of libraries
between all micro frontends. This means that Module Federation scales well with new
features and libraries. For example, if a new micro frontend requires a new library, it
will simply load it from its JavaScript repository. With a SharedWorker, new libraries
must be understood by the centralized registry, hence most likely requiring code changes.
With enough effort, it might be possible to implement a similar mechanism to webpack’s
Module Federation inside the SharedWorker. As of now, however, to the best of our
knowledge such a system does not exist and we must therefore consider it a drawback of
the SharedWorker.

For those reasons, it is hard to verify if all parts of the application use the API cor-
rectly at compile time and runtime. Bugs that might arise from incorrect usage of the
BroadcastChannels can be very hard to trace, since messages don’t have a trace
attached to them. Combined with the side effects that messages in the channels have, a
bug’s cause might be hard to detect and fix.

75

CHAPTER 4
Comparing the Results

In the last few chapters, we developed a monolithic web application and split it into
micro frontends using iframes, followed by Web Components. We investigated how
the different micro frontends could communicate with each other – hierarchically as well
as laterally. What we have found are multiple patterns for communication and state
synchronization of micro frontends.

In this chapter, we qualitatively compare all the different solutions based on the last
implementation of each micro frontend technology. For the monolith, we are using the
results of the first iteration. The iframe based solution was completed after the third
iteration. Finally, for the micro frontends using Web Components, we take the status
after the sixth and last iteration for comparison.

The first analysis is the current performance of each implementation. Then, we mea-
sure the development effort via two change requests. The unit of measurement is the
number and category of changed files. After each change request, we again measure the
performance and compare the values against the previous measurements.

4.1 Baseline Performance
In this chapter, we measure the performance baseline for each implementation. It will
demonstrate the overhead each micro frontend approach has over the monolith. The
performance properties we evaluate are the consumed memory (JavaScript as well as
Graphics Processing Unit (GPU) Random Access Memory (RAM)), the number of HTTP
requests, the amount of data transferred, as well as the duration until all resources have
been loaded. Computational utilization is not being evaluated, as this measurement
is very volatile due to its dependency on the computer’s state and background tasks.
Furthermore, CPU utilization always stabilizes towards 0%. Thus the comparison between
measurements is non-trivial and therefore out of scope of this thesis.

77

4. Comparing the Results

To ensure the comparability of each implementation, we decided on a fixed environment
in which the applications are executed. First, we removed all randomness from the system.
Thus, the endpoint for fetching recommendations always returns the same products to
ensure the same images are loaded with every performance test. As a result, the same
URLs will deterministically load the same products, including their images and texts.

Secondly, all applications are served with the same command line arguments. We decided
to run the applications using the production configuration of Angular. It ensures that
the source code is optimized and minimized. Furthermore, the flag -no-live-reload
prohibits the application from creating a WebSocket. During development, the WebSocket
is used to notify the client that the source code has changed. The client can then reload
the application. For our performance test, we removed this overhead. The final command
for running each application is as follows:

ng serve -configuration production -no-live-reload

It ensures that each application can be executed with as little overhead as possible. The
comparison of the application performances is, therefore, more accurate and less noisy.

Thirdly, each performance measurement must be executed on the same hardware and
software. We execute the tests on an AMD Ryzen 7 1700X 16-threads CPU with an
NVIDIA GeForce GTX 970 GPU. The installed operating system is Manjaro Linux with
kernel version 5.19.16. The used Nvidia GPU driver version is 520.56.06. For the browser,
we decided on using Chromium version 106.0.5249.119 released in October 2022 due to
its provided developer and performance measurement tools. As a windowing system, X11
is used.

Apart from the test environment, the test procedure needs to be identical across every
measurement. First, each test must be run inside a private window. Private windows
clear the user data and caches when they are closed. Therefore, they minimize the amount
of persistent data between runs. To disable network caches, we opened the developer
tools and ensured that network caches are disabled before each test. Finally, Chromium’s
task manager allows us to inspect the memory consumption of each open tab.

To extract the data during performance testing, we followed the same steps for every
run. After the site under test loaded, we used the development tools to measure the time
until the last HTTP call is finished, the amount of data transferred, and the number
of HTTP requests. We differentiated between style sheets, JavaScript files, and API
calls. Afterward, we closed the development tools, to avoid additional memory being
consumed for them. Finally, we measured memory consumption using Chromium’s
task manager. Since memory consumption is usually higher after the page has loaded,
we waited until the memory consumption stabilized. The data points we collected are
“Memory footprint”, “GPU memory”, and “JavaScript memory” (“alive” only).

The sites we measured are the landing page and the product detail page. The first
represents a page with a single micro frontend (the recommendations). The product
detail page represents a page with multiple, nested micro-frontends. The checkout view

78

4.1. Baseline Performance

has not been tested, as – test-case-wise – it is identical to the landing page, i.e., a page
hosting a single micro frontend.

4.1.1 Results

Starting with the web application’s memory consumption on the landing page (Figure 4.1a
and Figure 4.1b), the average total RAM footprint was 36KB for the monolith, 41.376KB
for the iframe implementation, and 40.389KB for the Web Components. Therefore, the
iframes use on average 13.12% more memory than the monolith. The Web Components
have a 9.14% higher average memory footprint.

Interestingly, the Web Components have the highest memory consumption for allocated
JavaScript objects (6.8204KB; +63.79% compared to the monolith). iframes are in the
middle with 6.0938KB used (+46.34%). The monolith uses the least JavaScript memory
with 4.164KB. We assume that the iframes use less JavaScript because most of the
orchestration and isolation is handled via the browser’s native code, thus not counting
towards the JavaScript heap.

The GPU memory consumption is rather stable across all test runs. The monolith and the
Web Components had the same GPU memory usage across all measurements (14.871KB
and 14.872KB respectively). The iframes had a little more variation. Their average
was 14.873KB, with a minimum of 14.169KB and a maximum of 16.985KB. We explain
the lower minimum value due to the higher isolation of the frames, which might lead to
possible optimization paths that are not possible if all styles are – potentially – applied
globally. The higher variation could be explained by the higher total memory consumption.
Therefore, the browser might get into a state that prevents further optimization.

The product detail page shows a similar behavior (Figure 4.1c and Figure 4.1d). The
monolith and the Web Components use a little less total memory compared to the landing
page with 33.924KB and 39.178KB on average. The reason lies in the less complex layout
and fewer DOM elements to render. The iframes, however, increased their memory
consumption by 0.72KB to 42.616KB. Even though the site is less complex, it has to
render two iframes instead of one. Since providing the different browser contexts is a
memory-intensive task, the total memory used is higher than before.

The GPU memory shows little difference compared to the landing page. Both the
monolith and Web Components use a stable 14.08KB of memory. The iframes have
higher variation with an average of 13.459KB used.

Finally, the JavaScript memory consumption shows that the monolith is mostly unaffected
by the different pages. It uses on average 4.113KB, which is 0.05KB less than the landing
page average. The Web Components and iframe had an increased JavaScript memory
usage by 0.415KB to 7.236KB and by 1.739KB to 7.833KB respectively. The additional
overhead comes from the nested micro frontends, which have to be kept in memory too.

79

4. Comparing the Results

36 KB 38 KB 40 KB 42 KB

Memory Footprint

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

Project

Monolith

iframe

Web Components

15 KB 16 KB 17 KB

GPU Memory

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

Project

Monolith

iframe

Web Components

5 KB 6 KB 7 KB

JavaScript Memory

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

Project

Monolith

iframe

Web Components

Memory Usage Landingpage - Baseline

(a) Baseline memory measurements of the landing page.
Memory Footprint (KB) GPU Memory (KB) JavaScript Memory (KB)

min max mean median min max mean median min max mean median
Project
Monolith 36.00 37.01 36.33 36.26 14.87 14.87 14.87 14.87 4.16 4.16 4.16 4.16
Web Components 39.98 41.24 40.39 40.27 14.87 14.87 14.87 14.87 6.31 6.95 6.82 6.95
iframe 41.38 42.21 41.86 41.90 14.17 16.98 14.87 14.17 6.07 6.15 6.09 6.08

(b) Statistical analysis of the baseline memory usage of the landing page.

35 KB 40 KB 45 KB 50 KB 55 KB

Memory Footprint

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

Project

Monolith

iframe

Web Components

13.5 KB 14 KB 14.5 KB

GPU Memory

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

Project

Monolith

iframe

Web Components

4 KB 5 KB 6 KB 7 KB 8 KB 9 KB

JavaScript Memory

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

Project

Monolith

iframe

Web Components

Memory Usage Product Details - Baseline

(c) Baseline memory measurements of the product detail page.
Memory Footprint (KB) GPU Memory (KB) JavaScript Memory (KB)

min max mean median min max mean median min max mean median
Project
Monolith 33.57 34.60 34.02 33.92 14.08 14.08 14.08 14.08 3.68 4.16 4.11 4.16
Web Components 38.31 39.57 39.08 39.18 14.08 14.08 14.08 14.08 6.55 7.32 7.24 7.31
iframe 41.81 54.44 43.84 42.62 13.18 14.78 13.46 13.38 7.69 9.07 7.83 7.69

(d) Statistical analysis of the baseline memory usage of the product detail page.

Figure 4.1: Baseline memory measurements.
80

4.2. Change Request 1: Adding a Micro Frontend as Data Consumer

For the iframe approach, the overhead is much larger, because each iframe has to
hold a separate JavaScript context and Angular application.

Next, regarding the network performance measurements, on the landing page (Figure 4.2a
and Figure 4.1b) the monolith loaded the fastest with 515.5ms to finish loading. During
this time, the monolith transferred 1.9MB of data. The iframe implementation was
the slowest and needed 622.4ms (+28.5%) for 2.4MB. The Web Components managed
second place with 598.8ms (+16.2%) on average and 2.3MB sent. Looking further into
the data, the Web Components require the most data for JavaScript – 27KB more than
the iframe and 339KB over the monolith. While this appears counter-intuitive since
the iframes have to load parts of the JavaScript twice (e.g., the Angular framework),
it shows that Module Federation does not allow for as much optimization as when the
compiler can treat the code as local-only. Additionally, each JavaScript file now has to
carry proper meta-data as well, thus increasing the total bundle size even further.

Using Module Federation for the Web Components also increased the number of requests
needed to fetch the JavaScript files. While the monolith and iframes needed 4 and 8
calls respectively, the Web Components had to load JavaScript files 12 times. This also
highlights the disadvantages of not knowing at compile-time, which code can be delivered
as a single file and which cannot.

On the product details page, the monolith could finish a little faster with 512ms (-0.68%)
on average. The iframes were slower with 805.5ms (+57.3% over the monolith, +29.4%
over the landing page) on average. The reason – similar to the memory footprint – is
the nested iframes. The Web Components loaded in 611.1ms on average (+19.6%
compared to the monolith, +2.1% over the landing page).

In comparison to the landing page, the product page showed nearly the same performance
for the monolith (512ms time to finish (-0.6%), 491KB JavaScript transferred (±0%)).
The Web Components (611.1ms (+2.1%), 931KB (+12.2%)) and iframes (805.4ms
(+29.4%), 1.1MB (+37%)), however, decreased their performance due two the nested
micro frontends. The number of fetched JavaScript files stayed the same for the monolith
as well but increased for the iframe and Web Components to 11 and 13 respectively.

4.2 Change Request 1: Adding a Micro Frontend as Data
Consumer

In this chapter, we test the extensibility of each prototype by adding a new data consumer
to the application. Since communication patterns need to scale with new consumers, it is
important to measure the impact a new message receiver has on our system. In this case,
the data consumer is a new micro frontend to simplify the usage of the shopping cart

81

4. Comparing the Results

0.45s 0.5s 0.55s 0.6s 0.65s 0.7s

Time to Finish

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

Project

Monolith

iframe

Web Components

Mon. Web C. iframe

Transferred Data

0.0B

500KB

1MB

1.5MB

2MB

2.5MB
JS

CSS

API

Other

Mon. Web C. iframe

Number of Requests

0

5

10

15

20

25

30

35
JS

CSS

API

Other

Network Performance Landingpage - Baseline

(a) Baseline network performance of the landing page.
Time to Finish Transferred Data Number of Requests

min max mean median JS CSS API Total JS CSS API Total
Project
Monolith 449ms 576ms 515.3ms 515.5ms 491KB 148KB 50.2KB 1.9MB 4 1 2 26
iframe 579ms 668ms 622.4ms 621.5ms 803KB 294KB 50.2KB 2.4MB 8 2 2 32
Web Components 528ms 699ms 598.8ms 585.0ms 830KB 149KB 48.9KB 2.3MB 12 1 1 34

(b) Statistical analysis of the baseline network performance of the landing page.

0.5s 0.6s 0.7s 0.8s

Time to Finish

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

Project

Monolith

iframe

Web Components

Mon. Web C. iframe

Transferred Data

0.0B

500KB

1MB

1.5MB

2MB

2.5MB JS

CSS

API

Other

Mon. Web C. iframe

Number of Requests

0

5

10

15

20

25

30

35
JS

CSS

API

Other

Network Performance Product Details - Baseline

(c) Baseline network performance of the product detail page.
Time to Finish Transferred Data Number of Requests

min max mean median JS CSS API Total JS CSS API Total
Project
Monolith 466ms 717ms 512.0ms 489.5ms 491KB 148KB 19.9KB 1.5MB 4 1 3 22
iframe 732ms 868ms 805.4ms 815.5ms 1.1MB 442KB 19.9KB 2.6MB 11 3 3 38
Web Components 524ms 737ms 611.1ms 568.0ms 931KB 149KB 17.1KB 1.9MB 13 1 1 29

(d) Statistical analysis of the baseline network performance of the product detail page.

Figure 4.2: Baseline network performance.

82

4.2. Change Request 1: Adding a Micro Frontend as Data Consumer

button. Therefore, each existing shopping cart button needs to be replaced by the new
micro frontend.

After we implemented the changes, we use the Git history in order to extract the changed
files.1 Then, we categorized each change into one of four different categories: Feature,
Config, Bugfix, and Other. The first category, Feature, groups changed files, which are
directly related to the new feature (e.g., new files for the new shopping cart button
component, files modified to replace the old shopping cart button with the new component,
etc.). Secondly, the Config category includes non-code changes that had to be done in
order to add the new micro frontend (e.g. updating URLs for new micro frontends). This
category indicates how easily new micro frontends can be integrated into an existing
application stack. The Bugfix category highlights issues that we found during developing
the new feature. Finally, Other contains all files, which have little to no effect on the
change request (e.g., comment updates, style changes, formatting, etc.).

Each file is only categorized with one label. If a file would fit two labels, the one higher
up takes precedence. For example, if a file got modified by integrating the new micro
frontend, but also fixed a bug while doing so, it is categorized as Feature.

Category Total New Modified
0 Feature 10 3 7
1 Config 0 0 0
2 Bugfix 0 0 0
3 Other 1 1 0

(a) Monolith

Category Total New Modified
4 Feature 21 13 8
5 Config 10 6 4
6 Bugfix 1 0 1
7 Other 5 3 2

(b) iframes

Category Total New Modified
8 Feature 21 17 4
9 Config 14 9 5
10 Bugfix 0 0 0
11 Other 3 3 0

(c) Web Components

Figure 4.3: Changed files for each project after the first change request.

As seen in Figure 4.3, the monolith had the fewest files changed with 10 feature-related
changes and one added test file. The iframe based implementation had to update 32
files, including 21 files related to features, 10 config updates and 1 bug fix. The bugfix
was related to a minor bug of missing a break in a switch-case statement, causing a
misleading log to be printed. Additionally, 5 files are categorized under Other, mostly
related to testing files, updated shell scripts, and styles. For the Web Components, we
had to update 35 files, 21 of which are Feature changes. The remaining 14 files are
config updates. 3 additional files had to be changed to accommodate new test files and a
favicon.ico file for the new Angular project.

The monolith clearly shows its strength here, as it has the lowest amount of changes
required to implement the feature. We had to create a new component – the three new
files in Figure 4.3a – and replace the old shopping cart in all existing components. The
iframes and Web Components, however, required us to generate new projects. Hence,
the higher number of new files. Additionally, for both micro frontend approaches, we

1We decided against using line-based changes for this evaluation since line changes are too noisy and
unstable. They depend on the code style as well as the usage and length of comments, which are not
related to the feature. Hence only the number of changed files will be taken into consideration.

83

4. Comparing the Results

have to update multiple configurations, at least one for each micro frontend consumer, to
integrate the new remote component.

Most importantly, however, none of the projects required us to modify the existing code for
the micro frontend communication. Meaning, our solutions for inter-app communication
are stable regarding new data consumers.

Analyzing the memory performance (Figure 4.4), we noticed a small impact on the
monolith (+6.58% average on the landing page, +5.73% for the product detail page). The
iframe implementation, however, had a very high decrease in performance (+304.29%
average memory consumed on the landing page, +112.84% on the product detail page).
Finally, the Web Components has shown a medium increase in memory usage with a
+17.9% increase on the landing page and +9.93% on the product detail page respectively.

The network performance shown in Figure 4.5 follows a similar trend. The monolith
showed an increased time to finish by +22.47% on the landing page by +14.26% on
the product detail page. The Web Components had +22.23% higher load times on the
landing page and +32.83% on the product detail page. The iframes struggled the most
with an +236.76% increase on the landing page and +190.91% on the product detail
page.

The transferred data also reflects the increase in resource consumption. The monolith
transferred a total of 1.9MB for the landing page and 1.5MB for the product page. The
overhead for the added component is therefore 0%. The Web Components resulted in a
slight increase to 2.4MB (+4.34%) on the landing page and 2.2MB (+15.79%) on the
product page. In contrast, the use of iframes resulted in significantly higher transferred
data, with a total of 20.2MB (+741.66%) and 7.5MB (+188.46%) loaded by the landing
and product pages, respectively. This is due to the duplication of requests for each micro
frontend.

Our testing showed that the iframes had the poorest performance. As each shopping
cart is an additional micro frontend instance, the increase in memory consumption and
network traffic are most evident on the landing page. Web Components scaled more
gracefully with the additional micro frontend. The monolith, however, had the lowest
impact on performance, as well as developer effort to migrate to the shopping cart
buttons.

4.3 Change Request 2: Adding Translations as Data
Provider

With this change request, we analyze the stability of the systems concerning new data
providers. Similar to the change request before, our messaging patterns must scale with
new message senders. If adding a new message source were a large undertaking, the
system could not be updated or extended easily. For this research, a new service is added

84

4.3. Change Request 2: Adding Translations as Data Provider

50 KB 100 KB 150 KB 200 KB

Memory Footprint

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

Project

Monolith

iframe

Web Components

14.5 KB 15 KB 15.5 KB

GPU Memory

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

Project

Monolith

iframe

Web Components

20 KB 40 KB 60 KB

JavaScript Memory

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

Project

Monolith

iframe

Web Components

Memory Usage Landingpage - Change Request 1

(a) Memory measurements of the landing page after the first change request.
Memory Footprint (KB) GPU Memory (KB) JavaScript Memory (KB)

min max mean median min max mean median min max mean median
Project
Monolith 37.83 40.06 38.72 38.53 14.87 14.87 14.87 14.87 4.41 4.46 4.44 4.44
Web Components 43.66 53.78 47.62 45.75 14.87 14.87 14.87 14.87 7.99 9.18 8.29 8.02
iframe 159.74 211.14 169.25 164.81 14.17 15.58 14.59 14.17 59.41 60.26 59.93 60.23

(b) Statistical analysis of the memory usage of the landing page after the first change request.

40 KB 60 KB 80 KB

Memory Footprint

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

Project

Monolith

iframe

Web Components

13.4 KB 13.6 KB 13.8 KB 14 KB

GPU Memory

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

Project

Monolith

iframe

Web Components

5 KB 10 KB 15 KB 20 KB 25 KB

JavaScript Memory

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

Project

Monolith

iframe

Web Components

Memory Usage Product Details - Change Request 1

(c) Memory measurements after the product detail page after the first change request.
Memory Footprint (KB) GPU Memory (KB) JavaScript Memory (KB)

min max mean median min max mean median min max mean median
Project
Monolith 34.80 36.62 35.97 36.00 14.08 14.08 14.08 14.08 4.41 4.43 4.42 4.42
Web Components 41.30 47.49 42.97 42.30 14.08 14.08 14.08 14.08 7.98 8.10 8.02 8.01
iframe 91.58 94.68 93.31 93.31 13.26 13.46 13.44 13.46 26.79 28.59 28.15 28.27

(d) Statistical analysis of the memory usage of the product detail page baseline after the first change request.

Figure 4.4: Memory measurements after the first change request.

85

4. Comparing the Results

0.5s 1s 1.5s 2s 2.5s

Time to Finish

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

Project

Monolith

iframe

Web Components

Mon. Web C. iframe

Transferred Data

0.0B

5MB

10MB

15MB

20MB JS

CSS

API

Other

Mon. Web C. iframe

Number of Requests

0

50

100

150

200

250
JS

CSS

API

Other

Network Performance Landingpage - Change Request 1

(a) Network performance of the landing page after the first change request.
Time to Finish Transferred Data Number of Requests

min max mean median JS CSS API Total JS CSS API Total
Project
Monolith 467ms 1370ms 631.1ms 555.5ms 491KB 148KB 49.8KB 1.9MB 4 1 2 26
iframe 1250ms 2600ms 2096.0ms 2325.0ms 9.7MB 9.1MB 49.6KB 20.2MB 98 62 2 242
Web Components 671ms 783ms 731.9ms 751.5ms 896KB 149KB 49.5KB 2.4MB 16 1 1 38

(b) Statistical analysis of the network performance of the landing page after the first change request.

0.5s 1s 1.5s 2s 2.5s

Time to Finish

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

Project

Monolith

iframe

Web Components

Mon. Web C. iframe

Transferred Data

0.0B

1MB

2MB

3MB

4MB

5MB

6MB

7MB
JS

CSS

API

Other

Mon. Web C. iframe

Number of Requests

0

20

40

60

80

100 JS

CSS

API

Other

Network Performance Product Details - Change Request 1

(c) Network performance of the product detail page after the first change request.
Time to Finish Transferred Data Number of Requests

min max mean median JS CSS API Total JS CSS API Total
Project
Monolith 520ms 655ms 585.0ms 576.5ms 490KB 148KB 19.1KB 1.5MB 4 1 3 22
iframe 2240ms 2480ms 2343.0ms 2355.0ms 4.4MB 2.1MB 19.1KB 7.5MB 44 14 3 104
Web Components 655ms 923ms 811.7ms 835.5ms 977KB 149KB 17.1KB 2.2MB 17 1 1 36

(d) Statistical analysis of the network performance of the product detail page after the first change request.

Figure 4.5: Network performance after the first change request.

86

4.3. Change Request 2: Adding Translations as Data Provider

to all three implementations to translate texts dynamically on the page. All existing
micro frontends need to pass a translation key to the service and receive a stream of
data containing the translated texts. Thus, the translation service is a new data provider,
similar to the existing services for product data or the shopping cart.

Category Total New Modified
12 Feature 30 4 26
13 Config 0 0 0
14 Bugfix 0 0 0
15 Other 1 1 0

(a) Monolith

Category Total New Modified
16 Feature 30 8 22
17 Config 1 0 1
18 Bugfix 0 0 0
19 Other 2 2 0

(b) iframes

Category Total New Modified
20 Feature 27 5 22
21 Config 1 0 1
22 Bugfix 6 1 5
23 Other 14 1 13

(c) Web Components

Figure 4.6: Changed files for each project after the second change request.

In this iteration, however, we have found a crucial bug in the Web Component imple-
mentation. It had a race condition between subscribing to a data provider and the first
emitted value by the data provider. As seen in Figure 4.6, we had to change 6 files
in order to fix this bug. Additionally, 13 files had to be updated due to a misspelling
in one of the libraries. While unintentional, discovering this bug shows the difficulties
communication between micro frontends can have. Due to their added complexity, the
surface for bugs increases and the maintainability decreases.

The changes related to features, however, reveal that every implementation requires
roughly the same changes made to files. Both the monolith and the iframe applications
required 30 files to be changed. We changed 27 files for the Web Components. Additionally,
both the iframe and Web Components had to register the new data provider in the
system. Which means that each had to update one configuration file.

In terms of network performance, the monolith required an average of 38.11KB of memory
on the landing page (-1.56%) and 35.75KB on the product page (-0.60%). The Web
Components required 44.85KB (-5.80%) and 42.30KB (-1.54%) on the respective pages.
Even the iframes showed a decrease in memory usage, with an average of 158.32KB
(-6.46%) and 90.21KB (-3.32%) on the landing and product pages, respectively.

The network performance of the applications slightly decreased, however. The monolith
transferred a total of 2.0MB (+5.26%) in 701.9ms (+11.21%) on the landing page, and
1.5MB (+0%) in 649.6ms (+11.04%) on the product page. The iframe transferred
20.5MB (+1.49%) in 2894ms (+38.07%) on the landing page and 8.1MB (+8.00%) in
2278ms (-2.77%) on the product page.

While the decrease in memory consumption is surprising, it could be caused by fluctuations
in our measurements or the system’s state. Alternatively, using dynamic texts in the
components rather than hard-coded strings could allow for a more optimized code, which
might allow the browser to free up more memory.

87

4. Comparing the Results

50 KB 75 KB 100 KB125 KB150 KB

Memory Footprint

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

Project

Monolith

iframe

Web Components

14.2 KB 14.4 KB 14.6 KB 14.8 KB

GPU Memory

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

Project

Monolith

iframe

Web Components

20 KB 40 KB 60 KB

JavaScript Memory

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

Project

Monolith

iframe

Web Components

Memory Usage Landingpage - Change Request 2

(a) Memory measurements of the landing page after the second change request.
Memory Footprint (KB) GPU Memory (KB) JavaScript Memory (KB)

min max mean median min max mean median min max mean median
Project
Monolith 37.62 39.20 38.11 38.05 14.87 14.87 14.87 14.87 4.40 4.40 4.40 4.40
Web Components 43.59 46.20 44.85 44.93 14.87 14.87 14.87 14.87 7.82 7.85 7.84 7.84
iframe 156.14 160.41 158.32 159.03 14.20 14.20 14.20 14.20 58.34 59.89 59.55 59.84

(b) Statistical analysis of the memory usage of the landing page after the second change request.

40 KB 60 KB 80 KB

Memory Footprint

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

Project

Monolith

iframe

Web Components

13.6 KB 13.8 KB 14 KB

GPU Memory

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

Project

Monolith

iframe

Web Components

5 KB 10 KB 15 KB 20 KB 25 KB 30 KB

JavaScript Memory

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

Project

Monolith

iframe

Web Components

Memory Usage Product Details - Change Request 2

(c) Memory measurements of the product detail page after the second change request.
Memory Footprint (KB) GPU Memory (KB) JavaScript Memory (KB)

min max mean median min max mean median min max mean median
Project
Monolith 35.13 36.51 35.75 35.64 14.08 14.08 14.08 14.08 4.37 4.37 4.37 4.37
Web Components 41.20 43.58 42.31 42.16 14.08 14.08 14.08 14.08 7.89 7.91 7.90 7.90
iframe 84.07 93.04 90.21 90.43 13.46 13.46 13.46 13.46 23.09 29.78 27.69 28.06

(d) Statistical analysis of the memory usage of the product detail page baseline after the second change request.

Figure 4.7: Memory measurements after the second change request.

88

4.3. Change Request 2: Adding Translations as Data Provider

0.5s 1s 1.5s 2s 2.5s 3s

Time to Finish

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

Project

Monolith

iframe

Web Components

Mon. Web C. iframe

Transferred Data

0.0B

5MB

10MB

15MB

20MB JS

CSS

API

Other

Mon. Web C. iframe

Number of Requests

0

50

100

150

200

250
JS

CSS

API

Other

Network Performance Landingpage - Change Request 2

(a) Network performance of the landing page after the second change request.
Time to Finish Transferred Data Number of Requests

min max mean median JS CSS API Total JS CSS API Total
Project
Monolith 620ms 851ms 701.9ms 693.0ms 497KB 148KB 50.2KB 2MB 5 1 2 27
iframe 2580ms 3110ms 2894.0ms 2940.0ms 10MB 9.1MB 50.2KB 20.5MB 98 62 2 242
Web Components 593ms 690ms 637.8ms 633.0ms 915KB 149KB 49.8KB 2.4MB 16 1 1 38

(b) Statistical analysis of the network performance of the landing page after the second change request.

0.5s 1s 1.5s 2s

Time to Finish

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

Project

Monolith

iframe

Web Components

Mon. Web C. iframe

Transferred Data

0.0B

2MB

4MB

6MB

8MB

JS

CSS

API

Other

Mon. Web C. iframe

Number of Requests

0

20

40

60

80

100

JS

CSS

API

Other

Network Performance Product Details - Change Request 2

(c) Network performance of the product detail page after the second change request.
Time to Finish Transferred Data Number of Requests

min max mean median JS CSS API Total JS CSS API Total
Project
Monolith 567ms 713ms 649.6ms 659.5ms 497KB 148KB 19.9KB 1.5MB 5 1 3 23
iframe 2110ms 2390ms 2278.0ms 2275.0ms 4.5MB 3.5MB 19.9KB 9.1MB 44 24 3 114
Web Components 663ms 953ms 750.5ms 702.5ms 988KB 149KB 17.1KB 2MB 17 1 1 36

(d) Statistical analysis of the network performance of the product detail page after the second change request.

Figure 4.8: Network performance after the second change request.

89

4. Comparing the Results

4.3.1 Summary
For the final evaluation of our implementations, we have measured the baseline perfor-
mance followed by applying two different change requests – one for adding a new data
consumer and the other to add a new data provider. After each change request, we
measured their performance to understand the impact of changing requirements to the
system.

We have discovered that both the Web Components and the iframe add similar proper-
ties concerning the implementation overhead of features. Both had to modify 21 files
for the first change request. The second change request caused 30 changed files in the
iframe application and 27 file changes for the Web Components. The monolith needed
10 file changes for the first change request and 30 for the second. Hence, the monolith
can be easier to work with, but large refactoring can require about the same effort.

Looking into the performance of the different applications, the monolith clearly shows the
lowest performance overhead across all tests – both for the memory and network resources.
During our baseline measurements, the iframes showed slightly higher performance
requirements compared to the Web Components. After the first change request, however,
the iframe showed a much greater memory footprint and network traffic than both the
monolith and Web Components. Since the newly added micro frontend is rendered very
frequently, each micro frontend causes a performance-heavy iframe to be rendered on
the page. After the second change request, however, we didn’t observe a large increase in
resource consumption in any of the implementations. This shows that the performance
overhead of the iframes is related to the number of rendered micro frontends, not,
however, caused by the communication patterns.

Concluding the performance evaluation, our communication patterns scaled well with new
data consumers and data providers. However, Due to the performance-intensive nature
of iframes, adding more micro frontends comes at a large cost. As a result, iframes
are not as suited for micro frontends, but rather “macro” frontends: Larger parts of
the application are isolated into separate frames. As seen in the baseline performance
measurements, iframes can compete with Web Components in those use cases.

However, during the development process, we found a crucial race condition in the
Web Component communication channel. It prevented late subscribers to data streams
to receive the first event. This unintentional example shows the risks of adding more
complexity to a system. Therefore, the “monolith first” principle, often found in the
context of microservices, does also apply here [60, 72, 57].

90

CHAPTER 5
Future Work

Since this thesis is an exploratory work, there are many more ways of achieving cross-
communication and state synchronization across micro frontends. For example, iframes
could include a dedicated application for state management. Each micro frontend then
includes this state management iframe. Since each state manager iframe has the same
origin, they could use a similar implementation we developed for the Web Components –
namely a SharedWorker. We have not explored persistent methods for sharing state
information either. Especially in the context of a client-side cache, using persistent
methods like the IndexedDB or localstorage could boost a web page’s performance.

Further, we have limited ourselves from using existing micro frontend frameworks such
as single-spa [29]. Thus we could research the differences, drawbacks, and advantages of
existing solutions to our implementations. This could give insights into the requirements
of large-scale frameworks that did not occur in our small-scale experiments.

Since we implemented our solutions in a framework-agnostic way, the next step could
be creating a library to integrate the patterns into other applications. This requires us
to further test the code, improve the traceability of messages and state, make the code
reusable across multiple use cases, and document the usage of the library.

Which leads to integrating the solutions into existing applications. Usually, during
the development process of an application new requirements are added and existing
requirements might change. Robust communication and state synchronization solutions
must withstand those changes in order to reduce developer burden and feature limitations.
Thus, to test the viability of our solutions, the patterns should be applied to real-world
applications.

Lastly, the web is an ever-evolving standard. Therefore, new APIs might be introduced,
which improve the usability or performance of micro frontend communication. So in the
future, this thesis may be extended to include updated technologies and patterns.

91

CHAPTER 6
Conclusion

In the age of distributed computing, backends have become micro instances extracted from
their monolithic predecessors. Small units of computations provide single responsibilities
and, hence, may need to be recombined in order to provide larger features. While this
re-integration of units is common for backends, micro frontends – the frontend counterpart
to microservices – are mostly considered for their high isolation properties. However,
highly interactive web pages will require micro frontends to work together for more
complex features.

In this thesis, we have researched ways for communicating between micro frontends to
create richer applications. We applied the Action Research methodology in order to
iteratively develop three web shop prototypes. First, we developed a monolith as our
baseline. Next, we re-implemented the same application with micro frontends using
iframes as isolation mechanism. Finally, for the third application we replaced iframes
with Web Components as micro frontend technology.

We identified two different types of communication, i.e., hierarchical and lateral, which
need different approaches to solve them. We use hierarchical communication for passing
parameters to a micro frontend and emitting events from one. Both iframes and Web
Components provide mechanisms to implement them. iframes can communicate with
their host and vice-versa using the postMessage API. Web Components can get notified
when attributes on their custom HTML element change and emit custom events for
sending data to their host.

To share data between micro frontends, we use lateral communication. In contrast to
hierarchical communication, we had to implement custom solutions. iframes cannot
access any context outside their own. Hence, we had to use hierarchical communication
for routing messages to the correct recipients. Web Components, however, are all
hosted in the same browser context. This allowed us to add global objects to serve as
shared services. To further decouple the components from the provided services, we

93

6. Conclusion

moved them to a shared web worker. Commands and data updates are sent using the
BroadcastChannel API. This allowed us to implement the publish-subscribe pattern
within the browser.

To analyze our solutions, we introduced change requests against our three implementations
– the Monolith, the iframes, and the Web Components. The first change request added a
new data consumer to the application and the second a new data provider. By comparing
the changes committed to Git, we found that iframes and Web Components have a
similar overhead for changes compared to the Monolith. The communications patterns
did not need any changes and only had to be extended for the new features. The
performance measurements, however, showed that iframes do not scale well with the
number of micro frontend instances. While the resource overhead was similar during
our baseline measurements, after adding a new micro frontend as data consumer to the
application, the iframes required at least 190.9% more memory and had to transfer at
least 188.5% more data. In comparison, the Monolith used at least 14.3% more memory
and transferred roughly the same amount of data. The Web Components saw a minimum
increase of 9.9% in memory consumption and at least a 4.3% increase in transferred data.
The second change request did not add any micro frontends, hence the performance did
not decrease as drastically.

In conclusion, we have demonstrated the viability of cross-communication between
micro frontends using three different implementations of the same application. Our
communication patterns using postMessage for iframes and BroadcastChannels
for Web Components could be extended beyond the initial feature set with minimal
changes required. iframes, however, showed that their lack of scalability limits their
feasibility in real-world applications.

94

List of Figures

2.1 Comparison of vertical and horizontal teams. 7

3.1 The Action Research Cycles of this thesis. 14
3.2 Example of recommendations on Amazon. 19
3.3 Wireframe for the front page of the web shop. 20
3.4 Wireframe for the opened shopping cart. 21
3.5 Wireframe for the detail page of a product. 21
3.6 Wireframe for the checkout process displayed inside a card. 22
3.7 Architecture of the Angular monolith. 27
3.8 Screenshot of the monolithic landing page. 29
3.9 Angular components of the monolithic landing page. 30
3.10 Screenshot of the monolithic product details page. 31
3.11 Angular components of the monolithic product details page. 31
3.12 Screenshot of the monolithic checkout page. 32
3.13 Screenshots of the individual steps of the checkout page. 33
3.14 Angular components of the monolithic checkout page. 34
3.15 The micro frontend architecture using iframes. 38
3.16 Screenshots of the three micro frontends inside iframes. 40
3.17 Publish-subscribe pattern shown via a consumer and provider. 46
3.18 Class diagram showing the provider-consumer hierarchy. 48
3.19 The complete process of communication between consumer and provider for

subscribing to data and returning a data stream. 49
3.20 Architecture of the Web Component based micro frontend implementation. 56
3.21 The created artifacts for all applications. 60
3.22 Sequence diagram for webpack’s Module federation. 62
3.23 Architecture of the shared services of the Web Components. 69
3.24 Architecture using a SharedWorker as service layer. 73

4.1 Baseline memory measurements. 80
4.2 Baseline network performance. 82
4.3 Changed files after the first change request. 83
4.4 Memory measurements after the first change request. 85
4.5 Network performance after the first change request. 86
4.6 Changed files after the second change request. 87

95

4.7 Memory measurements after the second change request. 88
4.8 Network performance after the second change request. 89

List of Listings

2.1 Example showing SSI. 9
2.2 Example showing composition using iframes. 10
2.3 Example showing composition using Web Components. 11

3.1 Example usage of the postMessage API. 36
3.2 Example usage of the iframe-wrapper Angular component. 42
3.3 Example of how Angular Elements can be used to create Web Components. 54
3.4 Excerpt of the webpack configuration file of the product-page micro frontend. 59
3.5 Dynamic loading of metadata of the micro frontends. 61
3.6 Example code for loading a micro frontend and its Web Component. . . . 63
3.7 Example usage of the product-page Web Component. 64
3.8 Example code showing how custom elements can react to attribute changes. 64
3.9 Factory for the shopping cart service. 68
3.10 Code example for the BroadcastChannel API. 72

96

Glossary

BroadcastChannel A browser API for sending messages to multiple recipients. [8].
35, 51, 71–75, 94, 96

IndexedDB A browser API for storing persistent data in a structured database. [18]. 91

SharedWorker A browser API for executing tasks in the background on a different
thread. A SharedWorker is shared across multiple browser contexts (e.g. windows,
tabs, iframes). A SharedWorker is identified via the path to the JavaScript file.
Each worker is run as a singleton. [28]. 35, 51, 72–75, 91, 95

iframe An HTML element, which allows nesting a website inside another website. The
browser creates a new browser context, in which the nested page will be loaded.
The nested content is sandboxed and thus has limited access to the hosting page
and vice versa. [17]. ix, xi, 10–12, 35–45, 51, 53, 55–57, 64, 65, 67, 69, 71, 72, 75,
77, 79, 81, 83, 84, 87, 90, 91, 93–97

localstorage A browser API for storing persistent key-value entries. Values can only
be strings. [40]. 91

Action Research A cyclic, iterative, interactive research method. For more details see
chapter 3. ix, xi, 3, 4, 16, 17, 25, 35, 93

Angular A JavaScript framework for developing SPAs. Initially released in 2016,
it is mainly used for monolithic applications but provides some APIs for Web
Component. [2]. 1, 3, 12, 25–27, 30–32, 34, 35, 37, 38, 41–43, 47, 54–58, 60, 61,
67–69, 71, 81, 83, 95, 96

Bootstrap A CSS library. [?]. 26

Docker Docker is a tool to build and run isolated containers. Containers are similar
to virtual machines but lighter, as they don’t try to abstract away the underlying
operating system or CPU architecture. [9]. 34

Express A JavaScript library for building REST endpoints in NodeJS. [12]. 26

97

JavaScript An interpreted scripting language. In the context of web applications,
JavaScript is executed in the browser, which allows the creation of dynamic content
and interactive elements on the client. However, JavaScript can also be executed in
different runtimes and is not limited to the browser. [19]. 9–11, 26, 41, 53–55, 59,
60, 63, 68, 69, 74, 75, 77–79, 81, 97, 98

NodeJS A JavaScript runtime for running code outside the browser. Usually used for
server-side applications in the context of web development. [76]. 26, 97

React A JavaScript library for rendering reactive DOM elements from JavaScript. [27].
1, 25

Svelte A JavaScript framework for building SPAs. [31]. 25

TypeScript A programming language which extends JavaScript with type annota-
tions. [20]. 55, 57, 60, 65

Vue A JavaScript framework for building SPAs. [33]. 1, 25

Web Component An umbrella term for technologies to create reusable, isolated custom
elements. [35]. ix, xi, 10, 11, 53–58, 60, 61, 63–65, 67, 69, 77, 79, 81, 83, 84, 87, 90,
91, 93–97

webpack A popular JavaScript bundler. A bundler combines multiple assets into one or
more files in order to reduce network overhead for each file individually. Bundling is
therefore usually the final step in building a web application for a production-ready
build. [37]. 55–62, 65, 70–72, 74, 75, 95, 96

WebSocket A browser API that allows opening and keeping a connection to a server.
They enable servers to push messages to the client. [39]. 78

98

Acronyms

API Application Programming Interface. 2, 6, 8–10, 14, 24–26, 32, 35–37, 41, 47, 58,
71, 72, 75, 78, 91, 93, 94, 96–99

APM Application Performance Management. 8

CSR Client Side Rendering. The client – usually a web browser – handles rendering
data to a visual representation – usually HTML.. 99

CSS Cascading Style Sheet. 28, 41, 53, 97

DOM Document Object Model. API for accessing the rendered nodes of the HTML
programmatically. [10]. 9–12, 53–55, 65, 79, 98

GPU Graphics Processing Unit. 77–79

HTML Hypertext Markup Language. 5, 6, 9–11, 28, 35, 41, 51, 53, 56, 60–63, 65, 93,
99

HTTP Hypertext Transfer Protocol. 6, 9, 26, 58, 69, 77, 78

RAM Random Access Memory. 77, 79

REST Representational Sate Transfer. A software pattern for defining API endpoints
similar to a folder structure. Parameters can and should be passed via path
fragments. E.g. /people/123/pets represents the endpoint to interact with the
pets of the person with ID “123”.. 6, 26, 97

SPA Single Page Application. They are web applications that only consist of a single,
static HTML page. The content of the page is generated dynamically by the client.
Hence, rendering pages is not done on the server, but in the browser (Client Side
Rendering (CSR)).. 3, 6, 24–26, 53, 56, 97, 98

SSI Server Side Includes. 2, 9, 10, 96

SSR Server Side Rendering. The server handles the creation of HTML for a request.. 24

UI User Interface. 2, 9, 39, 74

99

Bibliography

[1] Action Research. Routledge, (Accessed at 2023-01-05). [Online]. Avail-
able: https://www.taylorfrancis.com/chapters/edit/10.4324/9781315456539-22/
action-research-louis-cohen-lawrence-manion-keith-morrison

[2] Angular. (Accessed at 2019-07-15). [Online]. Available: https://angular.io/

[3] Angular - Angular Elements Overview. (Accessed at 2019-07-21). [Online]. Available:
https://angular.io/guide/elements

[4] Angular - Injectable. (Accessed at 2022-07-12). [Online]. Available: https:
//angular.io/api/core/Injectable#providedIn

[5] @angular-architects/module-federation. npm. (Accessed at 2023-02-15). [Online].
Available: https://www.npmjs.com/package/@angular-architects/module-federation

[6] @angular-architects/module-federation-tools. npm. (Accessed at 2023-02-15).
[Online]. Available: https://www.npmjs.com/package/@angular-architects/module-
federation-tools

[7] @angular/core. npm. (Accessed at 2019-07-15). [Online]. Available: https:
//www.npmjs.com/package/@angular/core

[8] Broadcast Channel API - Web APIs | MDN. (Accessed at 2023-01-14). [Online].
Available: https://developer.mozilla.org/en-US/docs/Web/API/Worker

[9] Docker: Accelerated, Containerized Application Development. (Accessed at
2023-04-07). [Online]. Available: https://www.docker.com/

[10] Document Object Model (DOM) - Web APIs | MDN. (Accessed at 2023-
01-04). [Online]. Available: https://developer.mozilla.org/en-US/docs/Web/API/
Document_Object_Model

[11] DOM Standard. (Accessed at 2019-12-17). [Online]. Available: https://
dom.spec.whatwg.org/

[12] Express - Node.js web application framework. (Accessed at 2023-01-20). [Online].
Available: https://expressjs.com/

101

https://www.taylorfrancis.com/chapters/edit/10.4324/9781315456539-22/action-research-louis-cohen-lawrence-manion-keith-morrison
https://www.taylorfrancis.com/chapters/edit/10.4324/9781315456539-22/action-research-louis-cohen-lawrence-manion-keith-morrison
https://angular.io/
https://angular.io/guide/elements
https://angular.io/api/core/Injectable#providedIn
https://angular.io/api/core/Injectable#providedIn
https://www.npmjs.com/package/@angular-architects/module-federation
https://www.npmjs.com/package/@angular-architects/module-federation-tools
https://www.npmjs.com/package/@angular-architects/module-federation-tools
https://www.npmjs.com/package/@angular/core
https://www.npmjs.com/package/@angular/core
https://developer.mozilla.org/en-US/docs/Web/API/Worker
https://www.docker.com/
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://dom.spec.whatwg.org/
https://dom.spec.whatwg.org/
https://expressjs.com/

[13] “Facebook/react,” Facebook, (Accessed at 2019-12-03). [Online]. Available:
https://github.com/facebook/react

[14] Flexbox - Learn web development | MDN. (Accessed at 2023-02-11). [Online].
Available: https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/
Flexbox

[15] HTML 4.0 Specification. (Accessed at 2019-12-17). [Online]. Available: https:
//www.w3.org/TR/1998/REC-html40-19980424/

[16] HTML Standard. (Accessed at 2019-12-17). [Online]. Available: https:
//html.spec.whatwg.org/multipage/custom-elements.html

[17] <iframe>: The Inline Frame element - HTML: HyperText Markup Language |
MDN. (Accessed at 2023-01-04). [Online]. Available: https://developer.mozilla.org/
en-US/docs/Web/HTML/Element/iframe

[18] IndexedDB API - Web APIs | MDN. (Accessed at 2023-01-15). [Online]. Available:
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API

[19] JavaScript | MDN. (Accessed at 2023-01-04). [Online]. Available: https:
//developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model

[20] JavaScript With Syntax For Types. (Accessed at 2023-01-04). [Online]. Available:
https://www.typescriptlang.org/

[21] Made with Angular. Made with Angular. (Accessed at 2019-12-03). [Online].
Available: /

[22] Messaging that just works — RabbitMQ. (Accessed at 2022-07-12). [Online].
Available: https://www.rabbitmq.com/

[23] Micro Frontends. martinfowler.com. (Accessed at 2022-07-04). [Online]. Available:
https://martinfowler.com/articles/micro-frontends.html

[24] Micro frontends | Technology Radar | Thoughtworks. (Accessed at 2022-07-
04). [Online]. Available: https://www.thoughtworks.com/radar/techniques/micro-
frontends

[25] Multi-Framework and -Version Micro Frontends with Module Federation: The
Good, the Bad, the Ugly. ANGULARarchitects. (Accessed at 2022-07-12). [Online].
Available: https://www.angulararchitects.io/en/aktuelles/multi-framework-and-
version-micro-frontends-with-module-federation-the-good-the-bad-the-ugly/

[26] Queues — RabbitMQ. (Accessed at 2022-07-12). [Online]. Available: https:
//www.rabbitmq.com/queues.html#names

[27] React – A JavaScript library for building user interfaces. (Accessed at 2023-01-04).
[Online]. Available: https://reactjs.org/

102

https://github.com/facebook/react
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Flexbox
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Flexbox
https://www.w3.org/TR/1998/REC-html40-19980424/
https://www.w3.org/TR/1998/REC-html40-19980424/
https://html.spec.whatwg.org/multipage/custom-elements.html
https://html.spec.whatwg.org/multipage/custom-elements.html
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://www.typescriptlang.org/
/
https://www.rabbitmq.com/
https://martinfowler.com/articles/micro-frontends.html
https://www.thoughtworks.com/radar/techniques/micro-frontends
https://www.thoughtworks.com/radar/techniques/micro-frontends
https://www.angulararchitects.io/en/aktuelles/multi-framework-and-version-micro-frontends-with-module-federation-the-good-the-bad-the-ugly/
https://www.angulararchitects.io/en/aktuelles/multi-framework-and-version-micro-frontends-with-module-federation-the-good-the-bad-the-ugly/
https://www.rabbitmq.com/queues.html#names
https://www.rabbitmq.com/queues.html#names
https://reactjs.org/

[28] SharedWorker - Web APIs | MDN. (Accessed at 2023-01-14). [Online]. Available:
https://developer.mozilla.org/en-US/docs/Web/API/SharedWorker

[29] Single-spa | single-spa. (Accessed at 2023-01-14). [Online]. Available: https:
//single-spa.js.org/

[30] The state of Web Components – Mozilla Hacks - the Web developer blog. Mozilla
Hacks – the Web developer blog. (Accessed at 2019-12-17). [Online]. Available:
https://hacks.mozilla.org/2015/06/the-state-of-web-components

[31] Svelte • Cybernetically enhanced web apps. (Accessed at 2023-01-04). [Online].
Available: https://svelte.dev/

[32] “Vite-plugin-federation,” originjs, (Accessed at 2022-07-12). [Online]. Available:
https://github.com/originjs/vite-plugin-federation

[33] Vue.js - The Progressive JavaScript Framework | Vue.js. (Accessed at 2022-07-07).
[Online]. Available: https://vuejs.org/

[34] “Vuejs/vue,” vuejs, (Accessed at 2022-07-07). [Online]. Available: https:
//github.com/vuejs/vue

[35] Web components. MDN-Web-Dokumentation. (Accessed at 2019-07-20). [Online].
Available: https://developer.mozilla.org/de/docs/Web/Web_Components

[36] Web Components | MDN. (Accessed at 2023-02-15). [Online]. Available:
https://developer.mozilla.org/en-US/docs/Web/Web_Components

[37] Webpack. webpack. (Accessed at 2023-02-15). [Online]. Available: https:
//webpack.js.org/

[38] Webpack 5 release (2020-10-10). webpack. (Accessed at 2022-07-12). [Online].
Available: https://webpack.js.org/blog/2020-10-10-webpack-5-release/

[39] WebSocket - Web APIs | MDN. (Accessed at 2023-02-11). [Online]. Available:
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket

[40] Window.localStorage - Web APIs | MDN. (Accessed at 2023-01-15). [Online]. Avail-
able: https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage

[41] Zone.js. npm. (Accessed at 2022-07-12). [Online]. Available: https://www.npmjs.com/
package/zone.js

[42] A. Abdelhadi and T. Khreis, “The application of action research to enhance the
ability of students to conduct project-based research,” in 2015 IEEE 7th International
Conference on Engineering Education (ICEED), pp. 39–42.

103

https://developer.mozilla.org/en-US/docs/Web/API/SharedWorker
https://single-spa.js.org/
https://single-spa.js.org/
https://hacks.mozilla.org/2015/06/the-state-of-web-components
https://svelte.dev/
https://github.com/originjs/vite-plugin-federation
https://vuejs.org/
https://github.com/vuejs/vue
https://github.com/vuejs/vue
https://developer.mozilla.org/de/docs/Web/Web_Components
https://developer.mozilla.org/en-US/docs/Web/Web_Components
https://webpack.js.org/
https://webpack.js.org/
https://webpack.js.org/blog/2020-10-10-webpack-5-release/
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://www.npmjs.com/package/zone.js
https://www.npmjs.com/package/zone.js

[43] B. Albeza. Developer Tools support for Web Components in Firefox
63. Firefox Nightly News. (Accessed at 2022-07-12). [Online]. Avail-
able: https://blog.nightly.mozilla.org/2018/09/06/developer-tools-support-for-
web-components-in-firefox-63

[44] D. E. Avison, F. Lau, M. D. Myers, and P. A. Nielsen, “Action research,”
vol. 42, no. 1, pp. 94–97, (Accessed at 2023-01-05). [Online]. Available:
https://doi.org/10.1145/291469.291479

[45] D. Banegas and L. Villacañas-de Castro, “A look at ethical issues in action research
in education,” vol. 3, pp. 58–67.

[46] R. Baskerville and T. Wood-Harper, “A Critical Perspective on Action Research as
a Method for Information Systems Research,” vol. 11, pp. 235–246.

[47] N. T. Blog. Netflix Likes React. Medium. (Accessed at 2019-12-03). [Online].
Available: https://medium.com/netflix-techblog/netflix-likes-react-509675426db

[48] K. Brown and B. Woolf, “Implementation Patterns for Microservices Architectures,”
in Proceedings of the 23rd Conference on Pattern Languages of Programs, ser. PLoP
’16. The Hillside Group, pp. 7:1–7:35, (Accessed at 2019-12-13). [Online]. Available:
http://dl.acm.org/citation.cfm?id=3158161.3158170

[49] C. Chen, Y. Tock, and S. Girdzijauskas, “BeaConvey: Co-Design of Overlay
and Routing for Topic-based Publish/Subscribe on Small-World Networks,” in
Proceedings of the 12th ACM International Conference on Distributed and Event-based
Systems, ser. DEBS ’18. Association for Computing Machinery, pp. 64–75, (Accessed
at 2023-04-07). [Online]. Available: https://doi.org/10.1145/3210284.3210287

[50] B. Christens, V. Faust, J. Gaddis, P. Inzeo, C. Sarmiento, and S. Sparks, “Action
Research,” pp. 243–251.

[51] H. B. Christensen, K. M. Hansen, and K. R. Schougaard, “Ready! Set! Go! An
Action Research Agenda for Software Architecture Research,” in Seventh Working
IEEE/IFIP Conference on Software Architecture (WICSA 2008), pp. 257–260.

[52] P. S. M. dos Santos and G. H. Travassos, “Action research use in software engineering:
An initial survey,” in 2009 3rd International Symposium on Empirical Software
Engineering and Measurement, pp. 414–417.

[53] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi, R. Mustafin,
and L. Safina, “Microservices: Yesterday, Today, and Tomorrow,” in Present
and Ulterior Software Engineering, M. Mazzara and B. Meyer, Eds. Springer
International Publishing, pp. 195–216, (Accessed at 2019-12-03). [Online]. Available:
https://doi.org/10.1007/978-3-319-67425-4_12

[54] J. Ebey, “Esbuild-federation-share-scope,” (Accessed at 2022-07-12). [Online].
Available: https://github.com/jacob-ebey/esbuild-federation-share-scope

104

https://blog.nightly.mozilla.org/2018/09/06/developer-tools-support-for-web-components-in-firefox-63
https://blog.nightly.mozilla.org/2018/09/06/developer-tools-support-for-web-components-in-firefox-63
https://doi.org/10.1145/291469.291479
https://medium.com/netflix-techblog/netflix-likes-react-509675426db
http://dl.acm.org/citation.cfm?id=3158161.3158170
https://doi.org/10.1145/3210284.3210287
https://doi.org/10.1007/978-3-319-67425-4_12
https://github.com/jacob-ebey/esbuild-federation-share-scope

[55] L. Etxeberria, X. Elkorobarrutia, and G. Sagardui, “Action Research for Improving
System Engineering Teaching in Embedded Systems Master,” in 2017 43rd Euromicro
Conference on Software Engineering and Advanced Applications (SEAA), pp. 218–
225.

[56] D. R. Ferreira, Enterprise Systems Integration. Springer Berlin Heidelberg,
(Accessed at 2022-07-12). [Online]. Available: http://link.springer.com/10.1007/978-
3-642-40796-3

[57] J. Fritzsch, J. Bogner, A. Zimmermann, and S. Wagner, “From Monolith to Mi-
croservices: A Classification of Refactoring Approaches,” in Software Engineering
Aspects of Continuous Development and New Paradigms of Software Production and
Deployment, ser. Lecture Notes in Computer Science, J.-M. Bruel, M. Mazzara, and
B. Meyer, Eds. Springer International Publishing, pp. 128–141.

[58] M. Geers, Micro Frontends in Action. Simon and Schuster.

[59] J. Goll, Entwurfsprinzipien zur Vermeidung von Überflüssigem. Springer
Fachmedien Wiesbaden, pp. 33–42, (Accessed at 2022-07-05). [Online]. Available:
http://link.springer.com/10.1007/978-3-658-20055-8_3

[60] D. Gravanis, G. Kakarontzas, and V. Gerogiannis, “You don’t need a
Microservices Architecture (yet): Monoliths may do the trick,” in 2021 2nd
European Symposium on Software Engineering, ser. ESSE 2021. Association for
Computing Machinery, pp. 39–44, (Accessed at 2022-12-18). [Online]. Available:
https://doi.org/10.1145/3501774.3501780

[61] H. Harms, C. Rogowski, and L. Lo Iacono, “Guidelines for Adopting Frontend
Architectures and Patterns in Microservices-based Systems,” in Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering, ser.
ESEC/FSE 2017. ACM, pp. 902–907, (Accessed at 2019-07-04). [Online]. Available:
http://doi.acm.org/10.1145/3106237.3117775

[62] R. B. N. Jrad, M. D. Ahmed, and D. Sundaram, “Insider Action Design Research a
multi-methodological Information Systems research approach,” in 2014 IEEE Eighth
International Conference on Research Challenges in Information Science (RCIS),
pp. 1–12.

[63] S. Kang and S. Ryu, “Formal specification of a JavaScript module system,” in
Proceedings of the ACM International Conference on Object Oriented Programming
Systems Languages and Applications, ser. OOPSLA ’12. Association for
Computing Machinery, pp. 621–638, (Accessed at 2022-07-11). [Online]. Available:
https://doi.org/10.1145/2384616.2384661

[64] P. Kookarinrat and Y. Temtanapat, “Design and implementation of a decentralized
message bus for microservices,” in 2016 13th International Joint Conference on
Computer Science and Software Engineering (JCSSE), pp. 1–6.

105

http://link.springer.com/10.1007/978-3-642-40796-3
http://link.springer.com/10.1007/978-3-642-40796-3
http://link.springer.com/10.1007/978-3-658-20055-8_3
https://doi.org/10.1145/3501774.3501780
http://doi.acm.org/10.1145/3106237.3117775
https://doi.org/10.1145/2384616.2384661

[65] B. J. Lando, “Extrahieren von micro-frontends aus einer monolithischen
frontend anwendung,” (Accessed at 2023-06-23). [Online]. Available: https:
//oceanrep.geomar.de/id/eprint/55815/

[66] F. Lau, “A Review on the Use of Action Research in Information Systems Studies,”
in Information Systems and Qualitative Research: Proceedings of the IFIP TC8
WG 8.2 International Conference on Information Systems and Qualitative Research,
31st May–3rd June 1997, Philadelphia, Pennsylvania, USA, ser. IFIP — The
International Federation for Information Processing, A. S. Lee, J. Liebenau, and
J. I. DeGross, Eds. Springer US, pp. 31–68, (Accessed at 2023-01-05). [Online].
Available: https://doi.org/10.1007/978-0-387-35309-8_4

[67] D. Leffingwell, Agile Software Requirements: Lean Requirements Practices for Teams,
Programs, and the Enterprise. Addison-Wesley Professional.

[68] K. Lewin, Field Theory in Social Science: Selected Theoretical Papers (Edited by
Dorwin Cartwright.)., ser. Field Theory in Social Science: Selected Theoretical
Papers (Edited by Dorwin Cartwright.). Harpers.

[69] T. Lima De Sousa, E. Venson, R. M. Da Costa Figueiredo, R. Ajax Kosloski, and
L. C. Miyadaira Ribeiro, “Using Scrum in Outsourced Government Projects: An
Action Research,” in 2016 49th Hawaii International Conference on System Sciences
(HICSS), pp. 5447–5456.

[70] G. Mazlami, J. Cito, and P. Leitner, “Extraction of Microservices from Monolithic
Software Architectures,” in 2017 IEEE International Conference on Web Services
(ICWS), pp. 524–531.

[71] M. Milić and D. Makajić-Nikolić, “Development of a Quality-Based Model for
Software Architecture Optimization: A Case Study of Monolith and Microservice
Architectures,” vol. 14, no. 9, p. 1824, (Accessed at 2023-01-03). [Online]. Available:
https://www.mdpi.com/2073-8994/14/9/1824

[72] F. Montesi, M. Peressotti, and V. Picotti, “Sliceable Monolith: Monolith First,
Microservices Later,” in 2021 IEEE International Conference on Services Computing
(SCC), pp. 364–366.

[73] S. Newman, Building Microservices: Designing Fine-Grained Systems. "O’Reilly
Media, Inc.".

[74] P. A. Nielsen and J. S. Persson, “IT Business Cases in Local Government: An Action
Research Study,” in 2012 45th Hawaii International Conference on System Sciences,
pp. 2208–2217.

[75] Y. Nishizu and T. Kamina, “Implementing Micro Frontends Using Signal-based Web
Components,” vol. 30, pp. 505–512.

106

https://oceanrep.geomar.de/id/eprint/55815/
https://oceanrep.geomar.de/id/eprint/55815/
https://doi.org/10.1007/978-0-387-35309-8_4
https://www.mdpi.com/2073-8994/14/9/1824

[76] Node.js. Node.js. Node.js. (Accessed at 2023-01-20). [Online]. Available:
https://nodejs.org/en/

[77] S. Peltonen, L. Mezzalira, and D. Taibi, “Motivations, benefits, and
issues for adopting Micro-Frontends: A Multivocal Literature Review,”
vol. 136, p. 106571, (Accessed at 2022-07-07). [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0950584921000549

[78] Y. R. Prajwal, J. V. Parekh, and D. R. Shettar, “A Brief Review of Micro-frontends,”
vol. 02, no. 08, p. 4.

[79] T. Preston-Werner. Semantic versioning 2.0.0. Semantic Versioning. (Accessed at
2022-07-12). [Online]. Available: https://semver.org/lang/de/

[80] S. Raemaekers, A. van Deursen, and J. Visser, “Semantic Versioning versus Breaking
Changes: A Study of the Maven Repository,” in 2014 IEEE 14th International
Working Conference on Source Code Analysis and Manipulation, pp. 215–224.

[81] P. Reason, “Choice and Quality in Action Research Practice,” vol. 15, pp. 187–203.

[82] C. Rojas, Building Native Web Components. Apress, Berkeley, CA, (Accessed
at 2022-07-05). [Online]. Available: https://link.springer.com/book/10.1007/978-1-
4842-5905-4

[83] T. Savage, “Componentizing the web,” vol. 58, no. 11, pp. 55–61, (Accessed at
2022-07-12). [Online]. Available: https://dl.acm.org/doi/10.1145/2814338

[84] J. F. Shoch, “An overview of the programming language Smalltalk-72,”
vol. 14, no. 9, pp. 64–73, (Accessed at 2022-07-12). [Online]. Available:
https://dl.acm.org/doi/10.1145/988113.988122

[85] A. Singleton, “The Economics of Microservices,” vol. 3, no. 5, pp. 16–20.

[86] G. I. Susman and R. D. Evered, “An Assessment of the Scientific Merits of Action
Research,” vol. 23, no. 4, pp. 582–603, (Accessed at 2023-06-24). [Online]. Available:
https://www.jstor.org/stable/2392581

[87] D. Taibi, V. Lenarduzzi, and C. Pahl, “Architectural Patterns for Microservices: A
Systematic Mapping Study:,” in Proceedings of the 8th International Conference on
Cloud Computing and Services Science. SCITEPRESS - Science and Technology
Publications, pp. 221–232, (Accessed at 2019-07-01). [Online]. Available: http:
//www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0006798302210232

[88] D. Taibi and L. Mezzalira, “Micro-Frontends: Principles, Implementations, and
Pitfalls,” vol. 47, no. 4, pp. 25–29, (Accessed at 2023-06-23). [Online]. Available:
https://dl.acm.org/doi/10.1145/3561846.3561853

107

https://nodejs.org/en/
https://www.sciencedirect.com/science/article/pii/S0950584921000549
https://www.sciencedirect.com/science/article/pii/S0950584921000549
https://semver.org/lang/de/
https://link.springer.com/book/10.1007/978-1-4842-5905-4
https://link.springer.com/book/10.1007/978-1-4842-5905-4
https://dl.acm.org/doi/10.1145/2814338
https://dl.acm.org/doi/10.1145/988113.988122
https://www.jstor.org/stable/2392581
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0006798302210232
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0006798302210232
https://dl.acm.org/doi/10.1145/3561846.3561853

[89] P. Y. Tilak, V. Yadav, S. D. Dharmendra, and N. Bolloju, “A platform for enhancing
application developer productivity using microservices and micro-frontends,” in 2020
IEEE-HYDCON, pp. 1–4.

[90] C. Yang, C. Liu, and Z. Su, “Research and Application of Micro Frontends,”
vol. 490, no. 6, p. 062082, (Accessed at 2023-06-23). [Online]. Available:
https://dx.doi.org/10.1088/1757-899X/490/6/062082

108

https://dx.doi.org/10.1088/1757-899X/490/6/062082

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Aim of this Work
	Methodology
	Limitations

	State of the Art
	The Software Monolith
	Microservices in the Backend
	Micro Frontend Architecture

	Evaluation Using Action Research
	Domain Definition
	Iteration 1: Implementation as Monolith
	Iteration 2: Migration to iframes and Implementing Direct communication
	Iteration 3: State Management for iframes
	Iteration 4: Migration to Web Components and Implementing Direct Communication
	Iteration 5: Shared Services for Web Components
	Iteration 6: Message Bus for Web Components

	Comparing the Results
	Baseline Performance
	Change Request 1: Adding a Micro Frontend as Data Consumer
	Change Request 2: Adding Translations as Data Provider

	Future Work
	Conclusion
	List of Figures
	List of Listings
	Glossary
	Acronyms
	Bibliography

		2023-08-30T19:01:30+0200
	Signature Box
	Simon Gabriel Hayden
	Signature

		2023-08-30T19:05:06+0200
	Signature Box
	Simon Gabriel Hayden
	Signature

		2023-08-30T19:05:49+0200
	Signature Box
	Simon Gabriel Hayden
	Signature

		2023-08-30T19:30:29+0200
	Signature Box
	Rudolf Freund
	Signature

		2023-08-30T19:33:01+0200
	Signature Box
	Rudolf Freund
	Signature

