
Global Scale Mapping of Subsurface Scattering SignalsGlobal Scale Mapping of Subsurface Scattering Signals
Impacting ASCAT Soil Moisture RetrievalsImpacting ASCAT Soil Moisture Retrievals
This paper was downloaded from TechRxiv (https://www.techrxiv.org).

LICENSE

CC BY 4.0

SUBMISSION DATE / POSTED DATE

23-08-2023 / 31-08-2023

CITATION

Wagner, Wolfgang; Lindorfer, Roland; Hahn, Sebastian; Kim, Hyingglok; Vreugdenhil, Mariette; Gruber,
Alexander; et al. (2023). Global Scale Mapping of Subsurface Scattering Signals Impacting ASCAT Soil
Moisture Retrievals. TechRxiv. Preprint. https://doi.org/10.36227/techrxiv.24013890.v1

DOI

10.36227/techrxiv.24013890.v1

https://www.techrxiv.org
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.36227/techrxiv.24013890.v1


THIS WORK HAS BEEN SUBMITTED TO THE IEEE FOR POSSIBLE PUBLICATION. 1

Global Scale Mapping of Subsurface Scattering
Signals Impacting ASCAT Soil Moisture Retrievals

Wolfgang Wagner, Senior Member, IEEE, Roland Lindorfer, Sebastian Hahn, Hyunglok Kim,
Mariette Vreugdenhil, Alexander Gruber, Milan Fischer, and Miroslav Trnka

Abstract—Soil moisture retrievals from the Advanced Scat-
terometer (ASCAT) have so far relied on the assumption that soil
backscatter increases monotonically with soil moisture content.
However, under dry soil conditions, discontinuities in the soil
profile caused by the presence of stones, rocks or distinct soil
layers may disturb this relation, causing backscatter to decrease
with increasing soil wetness. As of yet, subsurface scattering is a
poorly understood phenomenon and some of its manifestations
on ASCAT soil moisture retrievals have in the past been wrongly
attributed to topographic effects or changes in soil surface
roughness and vegetation. Therefore, this study aims at mapping
subsurface scattering effects on a global scale, explore their
dependency on land surface characteristics, and describe the
impacts on ASCAT soil moisture retrievals. The results obtained
with one statistical and two physically based indicators show that
subsurface scattering is not only widespread in desert regions,
but also in more humid climates with a dry season. Along with
the dryness of the soil, the presence of coarse fragments in the
soil profile and sparse vegetation cover are important factors
that favor its occurrence. The impact on ASCAT soil moisture
retrievals is severe, making subsurface scattering the main error
source in the current version of the ASCAT soil moisture data
as provided by the EUMETSAT Satellite Application Facility
on Support to Operational Hydrology and Water Management.
Users of the product are recommended to mask soil moisture data
affected by subsurface scattering effects using the indicators and
masks developed in this study.

Index Terms—Radar remote sensing, C-band, land surface, soil
moisture, soil properties.

I. INTRODUCTION

THE Advanced Scatterometer (ASCAT) is an active mi-
crowave remote sensing instrument that has been flown

on a series of three Metop satellites operated by the European
Organization for the Exploitation of Meteorological Satellites
(EUMETSAT) [1]. It measures the backscattering coefficient
at a frequency of 5.255 GHz (C-band) which, over land, is
sensitive to the water content in the soil surface layer. This
allows retrieving surface soil moisture (SSM) data using sta-
tistical and physically based approaches [2]–[5]. ASCAT SSM
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data retrieved using the change detection algorithm developed
by TU Wien [6] are available from the EUMETSAT Satellite
Application Facility on Support to Operational Hydrology and
Water Management (H SAF) [6]. The data serve numerous
applications such as numerical weather prediction, rainfall
estimation, and flood and drought monitoring [7]. In many
ways the H SAF ASCAT SSM data are similar to SSM
data provided by the L-band Soil Moisture Active Passive
(SMAP) and Soil Moisture Ocean Salinity (SMOS) missions,
and higher-frequency radiometers such as the Advanced Mi-
crowave Scanning Radiometer 2 (AMSR2) [8]–[11]. Therefore
it is possible to fuse them with passive SSM data to create
consistent climate data records that are more accurate than
single satellite data records [12], [13]. The prerequisite to
achieve such an improvement is a detailed understanding of the
accuracy of each input data set and a fusion technique capable
of optimally merging the individual satellite data records [14].

As is best practice in the validation of satellite soil moisture
retrievals [15], [16], the ASCAT SSM data have been assessed
in numerous validation studies [17]–[21] using multiple inde-
pendent reference data sets, including in situ data as avail-
able from the International Soil Moisture Network (ISMN)
[22], modeled soil moisture data from the fifth generation
of European ReAnalysis (ERA5) [23] and Global Land Data
Assimilation System [24], and passive SSM data sets from
SMOS, SMAP or AMSR2. Validation methods ranged from
calculating standard performance metrics such as time series
correlation and unbiased root mean square error [25], [26],
to more advanced techniques such as triple collocation [27],
instrumental variable regression [28] or Fourier analysis [29].

Many of these validation studies specifically addressed the
question of how the quality of the ASCAT SSM retrievals
depends on land cover and vegetation [18], [20], [21], [30].
Given that vegetation dampens the signals from the soil
surface, the expectation is that the uncertainty of ASCAT SSM
retrievals increases with increasing biomass in a similar way
as for passive soil moisture retrievals. However, contrary to
this expectation, ASCAT SSM data have been found to be
of better quality over grasslands and agricultural regions than
over bare or sparsely vegetated regions [8], [31]. In many
arid and semi-arid environments, ASCAT SSM data are even
negatively correlated with in situ and modeled soil moisture
data.
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Wagner et al. [6] hypothesized that the retrieval errors
observed in arid regions may be caused by the high pen-
etration of C-band waves into dry soil, leading to volume
scattering from stony soil layers or scattering by subsurface
discontinuities, e.g., a rock surface beneath a shallow layer of
sand. This explanation was supported by controlled laboratory
experiments with a C-band profiling radar that allows resolving
signals originating from the soil surface layer from subsurface
signals [32]. These experiments demonstrated that a distinct,
brightly reflecting subsurface below a 10–12 cm thick layer
of sand can produce strong backscatter signals, causing total
backscatter to increase when the moisture content of the sand
decreases. This behavior can be modeled with an exponential
subsurface scattering term that predicts an increase of subsur-
face scattering contributions with decreasing soil wetness that
may counteract the signal from the soil surface [33]. When
confronting the bare soil backscatter model with and without
the new subsurface scattering term to three years of ASCAT
backscatter observations acquired over a region covering parts
of south-western Europe and north-western Africa, it was
found that subsurface scattering is not just limited to arid
environments, but appears to be a much more widespread
phenomenon that may also emerge in more humid regions
during dry periods [33].

For ASCAT SSM retrievals, it would hence be essential
to account not only for the scattering contributions from the
soil surface and vegetation layers but also for those from
subsurface discontinuities. Unfortunately, this is currently not
the case in the TU Wien change detection algorithm, impairing
the quality of the H SAF ASCAT SSM data. To varying de-
grees, this also affects downstream soil moisture data products
such as produced by the European Space Agency’s Climate
Change Initiative (ESA CCI) [34], the Copernicus Global
Land Monitoring Service (CGLS) [35], [36] and the National
Oceanic and Atmospheric Administration [13].

Therefore, this study aims at detecting subsurface scattering
effects at a global scale and discussing their impacts on
ASCAT SSM retrievals. This will contribute to the under-
standing of the interaction of C-band microwaves with the
Earth’s surface and allow users of H SAF ASCAT SSM data
to make informed decisions about where and when to mask
the SSM retrievals. Additionally, the subsurface scattering
information obtained from this study can serve as a crucial
and independent predictor, alongside other factors such as
vegetation and soil properties, in the development of more
accurate models for predicting uncertainties in remotely sensed
soil moisture datasets [12], [37].

This paper is structured as follows: In Sec. II we provide a
theoretical discussion of the different types of errors in the
ASCAT SSM retrievals that may occur in case of subsur-
face scattering. After describing all data used in this study
(Sec. III), the methods for detecting subsurface scattering
effects are presented in Sec. IV. The results shown in Sec. V
reveal a strong dependency of subsurface scattering effects on
climate, soil and vegetation properties. The usefulness of the
derived subsurface scattering maps for masking ASCAT SSM
retrievals is discussed in Sec. VI, followed by the conclusions
in Sec. VII.

II. THEORY

The H SAF ASCAT SSM retrieval scheme is based on the
TU Wien change detection model originally developed for
the ERS scatterometer [38], and later adapted to ASCAT [2],
[39], [40]. This backscatter model is formulated in the decibel
domain, assuming that a change in soil moisture leads to a
change in backscatter

∆σ0[dB] = S∆θ (1)

where θ is the soil moisture content in degree of saturation,
σ0 the backscattering coefficient expressed in dB, and S is the
sensitivity of σ0 to θ. This linear relationship is assumed to
hold over the entire incidence angle range of ASCAT (25◦ to
65◦) for bare soils and vegetated covered ground alike.

To obtain estimates of θ, the model is calibrated for each
land surface pixel by extracting minimum and maximum
backscatter values from multi-year backscatter time series
standardized to a reference angle of 40◦ and corrected for
seasonal vegetation cover effects [40]–[42]. The so-derived
values of σ0

min and σ0
max do not only vary from pixel to

pixel, but also over the seasons and are assumed to represent
completely dry and saturated soil conditions, respectively.
Furthermore, assuming stable land cover and soil surface
roughness, the backscattering coefficient σ0 as measured by
ASCAT and other spaceborne radar sensors is then written as

σ0[dB] = σ0
min + S · θ (2)

with S = σ0
max−σ0

min. Like σ0
min and σ0

max, the sensitivity S
varies in space and time, reflecting the patterns of land cover
and vegetation phenology. By inverting Eq. 2, soil moisture
can be obtained

θA(t) =
σ0(t)− σ0

min

S
(3)

where t is the time of acquisition. The subscript A indicates
that this is an estimate of the area-averaged soil moisture
content based on ASCAT.

Functionally, the way how the TU Wien change detection
model describes the backscatter behavior of vegetation is simi-
lar to the Water Cloud model introduced by Attema and Ulaby
[43] to simulate backscatter from agricultural fields. The Water
Cloud model is essentially a zeroth-order radiative transfer
solution for the vegetation canopy that can be combined with
different soil backscatter models. Using an exponential bare
soil backscatter model, the Water Cloud model can be written
in a simplified form [33]

σ0[m2m−2] = σ0
veg + Γ2

vegαe
βθ (4)

where σ0 is the backscattering coefficient as given in Eq. 2
(but this time in linear scale), σ0

veg is the volume scattering
contribution from the vegetation canopy, Γ2

veg is the two-
way attenuation factor describing the two-way loss of energy
through the vegetation, α is the surface scattering contribution
when the soil is dry (θ = 0), and β describes the sensitivity
of bare soil backscatter to soil moisture changes.
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For naturally occurring values of σ0 in the range 0.01 to
10 m2m−2 both the TU Wien change detection model (Eq. 2)
and the Water Cloud model (Eq. 4) resemble second-order
polynomial functions between σ0 and θ, and predict, under
all circumstances, an increase of σ0 when the soil surface
becomes wetter. Both models are hence unable to describe
subsurface scattering effects that cause backscatter to increase
when the soil dries. In the case of the Water Cloud model,
this deficiency can be resolved by introducing an exponential
subsurface scattering term of the form ψe−ξθ, where ψ is
the scattering coefficient of the subsurface scatterers (such as
bedrock or stones covered by a layer of sand) and ξ regulates
the strength of the attenuation of the subsurface scattering
signals by the intermediate soil layer [33]. With this additional
term, the backscattering coefficient of vegetation-covered soil
(with subsurface scatterers) becomes

σ0[m2m−2] = σ0
veg + α̂eβθ + ψ̂e−ξθ (5)

where α̂ and ψ̂ are the surface and subsurface scattering
coefficients dampened by the vegetation layer, i.e. α̂ = Γ2

vegα

and ψ̂ = Γ2
vegψ. Note that vegetation phenology causes

σ0
veg and Γ2

veg to vary over the year particularly at high
incidence angles where the path of the microwaves through the
vegetation canopy is larger. At low incidence angles, seasonal
changes due to vegetation are smaller. Therefore, following
[33], we assume that at an incidence angle of 20◦ the three
model parameters σ0

veg , α̂ and ψ̂ can in a first approximation
be treated as constants. This allows focusing on the effects
caused by subsurface scatterers as discussed in the following.

Eq. 5 shows that, depending on the relative strengths of
the surface and subsurface terms, σ0 either increases or
decreases with increasing soil wetness. This leads to three
functionally different backscatter regimes: (i) dominant surface
scattering, (ii) dominant subsurface scattering, (iii) and mixed
scatter regime. These regimes are illustrated by Fig. 1 which
furthermore serves to discuss the expected impacts on ASCAT
SSM retrievals.

< Fig. 1 >

Let us start from the worst possible case from the point
of view of the current TU Wien algorithm, i.e., dominant
subsurface scattering (Fig. 1a). In this scenario, subsurface
scattering is very strong under all weather conditions, resulting
in an inverted monotonic relationship between σ0 and θ
(Fig. 1a). In principle, this could enable the derivation of reli-
able soil moisture estimates from the ASCAT measurements.
The primary distinction from a ”regular” retrieval would be
that the physical mechanism causing the backscatter response
to changes in soil moisture is not the enhanced scattering
contribution from the soil surface but the damping of the
subsurface scattering signals with increasing θ. Regardless,
with the current TU Wien algorithm this scenario leads to
physically meaningless SSM estimates that are negatively
correlated with true soil moisture values. It was exactly this
kind of behavior observed in spaceborne radar observations
over desert regions [6], [44]–[46] that has prompted this line
of research.

In the mixed scattering scenario illustrated by Fig. 1b,
the subsurface scattering signals are weaker than in the first
scenario, but still sufficiently strong to cause an initial decline
of σ0 with increasing wetness, leading to a U-shaped rela-
tionship between σ0 and θ. This is a challenging scenario for
any type of soil moisture retrieval scheme, given that there
is no unique mapping of a σ0 measurement to one SSM
value. Potentially, this ambiguity might be resolved by using
additional observations (e.g., other polarizations, frequencies,
etc.) or other ancillary data sets capable of signaling the
occurrence of subsurface scattering [32]. For the current TU
Wien algorithm, the impact of this scenario is also quite severe
in that the ASCAT SSM retrievals are meaningful only for
wet soil conditions, while during dry periods ”anomalies”
occur. Depending on the strength of the subsurface scatters
and climatic conditions, these anomalies may occur each year
during the dry season or only intermittently in exceptionally
dry periods [41], [47]. This might lead to counter-intuitive
situations where the ASCAT SSM data indicate a wetting of
the soil while an ongoing drought intensifies.

In the last scenario (Fig. 1c) subsurface scattering is either
weak or non-existent, not changing the monotonic relationship
between σ0 and θ. Therefore, the ASCAT SSM retrievals
should not show irregularities due to subsurface scattering.
However, the additional scattering energy may reduce the
sensitivity of σ0 to changes in θ for dry soil conditions.
Therefore, H SAF ASCAT SSM retrievals may vary little
when the soils dry, while in situ soil or modeled soil moisture
data still continue to decrease [33]. Interestingly, this effect
may, to some extent, be compensated by backscatter saturation
effects for wet conditions as predicted by many bare soil
backscatter models [48], including the widely used Integral
Equation Model [49] or the semi-empirical Dubois model [50].

III. DATA

ASCAT backscatter and SSM data were processed for
the years 2007 to 2021 at a global scale and compared to
climate reanalysis data from ERA5-Land, in situ data from the
ISMN, and various ancillary data sets characterizing climatic
conditions and soil and vegetation properties. A selection of
key reference data sets is shown in Fig. 2: three thematic maps
showing climate classes, land cover, and soil groups, and three
maps showing continuous land surface variables, namely mean
relative soil moisture, leaf area index (LAI), and the volumetric
fraction of coarse fragments (CFVO) in the 5-15 cm soil layer.
The ASCAT, ERA5-Land and ISMN data are described in
more detail in the following subsections, while all other data
sets are briefly summarized in Table I.

< Fig. 2 >

< Table I >

A. ASCAT Backscatter and Soil Moisture

ASCAT is a fan beam scatterometer that captures backscat-
ter triplets in VV polarization along two 550 km wide swaths.
The three antennas on each side are oriented at 45◦, 90◦,
and 135◦ with respect to the satellite track [1], viewing the
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Earth’s surface at incidence angles ranging from 34◦ to 65◦

for the fore and aft beams, and from 25◦ to 55◦ for the
mid beam. Because of this multiple-viewing capability, it is
possible to determine the slope and curvature that charac-
terize the backscatter – incidence angle relationship. This,
in turn, allows for correcting seasonal vegetation effects in
the soil moisture retrievals [40] and extrapolating the ASCAT
backscatter triplets to any desired reference angle [51]. To
minimize seasonal vegetation effects in our procedures to
detect subsurface scattering, we computed ASCAT backscatter
data at a reference angle of 20◦ [33].

To build the ASCAT backscatter and SSM time series for
the years 2007 and 2021, we extracted all the necessary data
fields from the H SAF data records H119 and H120 [52]
which comprise data from the three Metop satellites: Metop-
A (2006–2021), Metop-B (launch 2012) and Metop-C (launch
2018). The data come with a spatial resolution of about 25 km
and are sampled on a fixed Earth grid with 12.5 km sampling
distance and 838,275 land pixels.

We masked the ASCAT data in regions where a soil mois-
ture retrieval is not possible for physical reasons: (i) Dense
tropical forest areas were masked based on ASCAT confidence
flags (bits 4 and 5) as well as LAI data (LAI > 3) from CGLS.
(ii) Open water bodies and seasonally flooded wetland areas
were masked using the Global Lakes and Wetlands Database
[53] together with land cover information (classes 160, 170
and 180) and the ASCAT confidence flag bit 3. (iii) Snow and
frost conditions were also masked using the confidence flag
supplied by the H SAF record (bit 1) in combination with
ERA5-Land soil temperature (≤ 2 ◦C) and snow depth data
(> 0 mm after averaging with a sliding window of 31 days)
as masking criteria.

B. ERA5-Land Soil Moisture

ERA5-Land is a global dataset for the land component of the
fifth generation of European ReAnalysis (ERA5) implemented
by the European Centre for Medium-Range Weather Forecasts
(ECMWF) [23]. It combines model data with observations
and describes the evolution of the water and energy cy-
cles over land by means of meteorological forcing from the
ERA5 climate reanalysis and the Carbon Hydrology-Tiled
ECMWF Scheme for Surface Exchanges over Land (CHT-
ESSEL) model. Key updates of the CHTESSEL land surface
model include a revised soil hydrology, the introduction of
a climatological seasonality of vegetation as well as a new
scheme for bare soil evaporation. Soil moisture and other
land surface variables are derived on a 9 km grid with an
hourly temporal sampling [54]. Importantly, ERA5-Land and
ASCAT are independent since ERA5-Land does not assimilate
land surface observations, in contrast to ERA5. Modeled soil
moisture data are taken from the ERA5-Land’s volumetric soil
water layer 1 ranging from 0 to 7 cm. The hourly data record
from 2007 to 2021 was resampled to the global 12.5 km grid
used for ASCAT and temporally collocated to match the time
stamps of the ASCAT measurements. The ERA5-Land soil
moisture data were then scaled between the minimum and
maximum values from 2007–2021 for each pixel to achieve a

relative indicator θE , ranging from 0 to 100 % such as θA.
Frost and snow masking was carried out as for ASCAT. Fig. 2b
shows the mean θE values after applying the snow and frost
mask.

C. ISMN Soil Moisture

Data from the International Soil Moisture Network (ISMN)
are used to evaluate results obtained from the analysis using
the ERA5-Land data. The ISMN serves as a centralized data
hosting facility with globally available in situ soil moisture
measurements from operational networks and validation cam-
paigns [22]. The network contains data from more than 70
networks with over 2,800 stations. For this study we selected
stations that acquired measurements over the complete study
period from 2007 to 2021. All available records of SSM (0–
10 cm) in this time span were matched with the spatially
and temporally nearest ASCAT measurements. As for θA and
θE , ISMN soil moisture was scaled to retrieve a relative
index θI . ISMN data flags [55] were used for masking frozen
soil and snow conditions in combination with ASCAT and
ERA5-Land flags to achieve an equivalent masking procedure.
Unfortunately, spatial coverage is extremely uneven across the
globe, with the bulk of the data coming from the contiguous
United States and comparably few or even no data from the
other continental regions (see Table II).

< Table II >

IV. METHODS

To detect subsurface scattering signals we look for their
‘fingerprints’ in ASCAT backscatter data as discussed in
Sec. II; that is, we aim to detect instances where backscatter
increases (rather than decreases) when the soil dries. We limit
the analysis to areas where ASCAT is sensitive to signals from
the ground surface for most of the year, i.e. cold regions, water
bodies, wetlands, and tropical forest areas are disregarded. We
note that this is important to reduce the number of spurious
signals picked up by the methods as described below.

Building upon the algorithms introduced by Wagner et al.
[33] we use here three indicators of subsurface scattering,
namely the probability of the occurrence of backscatter anoma-
lies, Pano, the probability of detecting subsurface scattering,
Psub, and the subsurface scattering signal strength, Ssub. All
three indicators are calculated from ASCAT σ0(20) time series
collocated to either modeled (ERA5-Land) or in situ (i.e.,
ISMN) soil moisture data.

The first indicator, Pano, is a simple but powerful statistical
indicator of subsurface scattering. It depicts how frequently
the ASCAT backscatter data exhibit anomalies (i.e., strong
negative correlations with a reference soil moisture data set)
over a given region and time frame. It is calculated by firstly
computing the Spearman rank correlation ρ between σ0(20)
and θE or θI for each day of the complete data record
using a sliding window of one month (31 days). Then, the
number of days N when ρ is smaller than −0.4 is computed
and compared with the total number of days, Ntotal, within
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the considered time frame. This yields an estimate of the
probability of the occurrence of backscatter anomalies

Pano =
N (ρ < −0.4)

Ntotal
(6)

The time frame can in principle be chosen arbitrarily, but
should not be too short to yield statistically meaningful results.
In this study, Pano was computed over all years (2007–2021)
and for each month (all years).

The idea behind this indicator is illustrated in Fig. 3 which
shows a backscatter time series from the Sahel zone in Mali.
The observed behavior is quite typical for regions in Africa
with distinct wet and dry seasons [56]–[59]: During the wet
season, which lasts in this region from about July to October,
ASCAT backscatter closely follows the reference soil moisture
time series and ρ is strongly positive. However, in the dry
season, backscatter gradually increases in the absence of
rainfall. Given that at the same time ERA5-Land shows a
subtle decrease in soil moisture, the rank correlation may
fall below the −0.4 threshold. Also note the decrease in
backscatter at the onset of the 2012 rainfall season after the
first few rainfall events, which brings backscatter down to the
lowest point of the U-shaped curve, as shown in Fig. 1b.

< Fig. 3 >

The other two indicators, Psub and Ssub, are derived using
a physically based method that compares the goodness of fit
of two backscatter models — one without (M0) and one with
(M1) the subsurface scattering term [33]. By replacing σ0

veg

in Eq. 5 with a generic constant backscatter term, cσ , that
accounts not only for vegetation but also other types of land
cover (urban areas, rocks, etc.), these two models are written

M0 : σ0 = cσ + α̂eβθ

M1 : σ0 = cσ + α̂eβθ + ψ̂e−ξθ
(7)

Following [33] we fitted the two models to three-year
data subsets and selected the best model using k-fold cross-
validation for each subset. Soil moisture (θ) is either from
ERA5-Land (θE) or ISMN (θI ). In case of very similar model
performance M0 is preferred over M1. The data subsets were
formed by using a sliding time window [Y − 1, Y +1] for all
years Y within the period from 2008 to 2020. Using these
13 data subsets, we calculated the probability of detecting
subsurface scattering with

Psub =
N (M1)

N (M0) +N (M1)
(8)

where N (M1) is the number of subsets for which M1

was selected, and N (M0) is the corresponding number of
subsets for which no subsurface scattering term was needed
to explain the observations, i.e. where M0 sufficed to explain
the variability in the data.

Finally, the strength of the subsurface scattering signal Ssub

was calculated from the model parameters ψ̂ and ξ that were
estimated when fitting the model M1 to each subset of data.
It is defined as the signal range of the subsurface scattering
term ψ̂e−ξθ from completely dry (θ = 0%) to wet (θ = 100%)
conditions

Ssub = ψ̂
(
1− e−ξ

)
(9)

It is given in linear units (m2 m−2). Here we use its median
value over all 13 subsets. Note that we also tested alternative
time frames (e.g. for each month over all years) to compute
Psub and Ssub. However, results (not shown) either became
unstable if the data subset was too small or were not signifi-
cantly different from the results presented here.

V. RESULTS

We calculated the three subsurface scattering indicators
Pano, Psub and Ssub using θE and θI independently of
each other. As the maps for the contiguous United States
(Fig. 4) show, the indicators based on the point-like ISMN
data exhibit more spatial variability than the maps based on
the coarse-scale reanalysis data. Nonetheless, the large-scale
patterns agree reasonably well: subsurface scattering signals
are detected particularly in the arid southwest while they are
mostly absent in the humid eastern parts of the region. The
spatial correlation between the ERA5-Land and ISMN based
indicators is 0.65 for Pano, 0.20 for Psub and 0.22 for Ssub.
While this is a quite good result for Pano, the values are
relatively low for Psub and Ssub.

< Fig. 4 >

The differences between Pano on the one hand, and Psub

and Ssub on the other, are particularly apparent when having a
closer look at the results over the eastern part of the CONUS
area. While Pano is consistently low for both ERA5-Land and
ISMN, Psub and Ssub have several outlier values over ISMN
stations. Furthermore, Psub and Ssub depict strong signals
in the colder and wetter northeast for ERA5-Land. As these
signals are strongest near the fringes of our snow and frost
mask and near wetlands/lakes, we attribute this latter effect
to the presence of surface water and wet snow that can cause
a decrease of backscatter for wet conditions. This favors the
(wrongful) selection of M1 over M0 (Eq. 7) as only M1

is able to simulate a decrease of backscatter with increasing
wetness conditions.

This behavior observed over the CONUS area is also
apparent in the three global indicator maps based upon ERA5-
Land shown in Fig. 5: Apart from spurious effects in colder
regions and around wetlands, the three global indicator maps
exhibit the expected behavior at large, depicting subsurface
scattering predominantly in arid and semi-arid regions with no
or low vegetation cover and poor soils with coarse fragments.
To quantify the dependence of the three indicators on climate,
land cover and soil classes, we calculated for each class c the
fraction of pixels (stations) for ERA5-Land (ISMN) for which
each indicator exceeds a certain threshold set to exclude noise

fc =
N (indicator > threshold)

Nc
(10)

where Nc is the total number of pixels or stations within a
given class c. The noise thresholds were set to 0.1 (10%) for
both Pano and Psub, and 0.005 m2 m−2 for Ssub.
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< Fig. 5 >

Table III shows fc values (in %) for the Köppen-Geiger
climate classification, ISRIC soil groups, and the ESA CCI
land cover classification. To ease the interpretation of the table,
fc values larger than 30% and the corresponding classes are
highlighted by bold type setting. By and large, the results from
the three indicators based on either the ERA5-Land or ISMN
data are consistent with each other. Nonetheless, one can see
that the Pano results show a more distinct relationship to the
different classification schemes than do the results for Psub,
and, even more so, Ssub. Moreover, the class separability is
better for fc values based on the ERA5-Land data than on
ISMN. In line with our observations from above, this suggests
that one needs to be cautious when interpreting Psub and
Ssub, particularly when based on ISMN data and over higher
latitude/altitude regions with seasonal snow cover and water
bodies.

Considering these caveats, the conclusions that can be
drawn from Table III are that subsurface scattering is primarily
observed in the arid climate zone (B-climates), continen-
tal climates with dry summers (Ds), and the hot-summer
Mediterranean climate (CSa). In line with this dependence
on climatic conditions, bare land and soils with sparse veg-
etation/herbaceous cover, grassland, and shrubland are par-
ticularly prone to subsurface scattering. Soil groups that fa-
vor subsurface scattering are Arenosols (unconsolidated sand
deposits), Calcisols (‘desert’ soils), Cambisols (a soil in the
beginning of soil formation), Gypsisols (soils in semi-arid
regions with the accumulation of gypsum in the subsurface),
Leptosols (very shallow soil over hard rock or a deeper soil
that is extremely gravelly or stony), Regosols (weakly devel-
oped mineral soil in unconsolidated materials) and Solonchaks
(pale or grey soil type found in arid to subhumid poorly-
drained conditions).

< Table III >

For the comparison to continuous land surface fields, we
computed spatial correlations between the three indicators and
five variables that can be expected to influence subsurface
scattering effects in either a rather direct manner (i.e., mean
soil moisture, CFVO, sand fraction) or indirectly (i.e., LAI,
terrain). As Table IV shows, ISMN results are again less clear
but nonetheless corroborate the dependencies as depicted by
the ERA5-Land results (mostly for Pano). As expected, the
mean soil moisture conditions in an area represent the most
important direct control of subsurface scattering effects, with
rank correlations ranging between −0.4 and −0.8 for the three
ERA-Land based indicators. The correlations are also very
good for LAI, which implies that the mean LAI reflects critical
soil properties (moisture, structure) well.

< Table IV >

Quite surprising are the results for the fractions of coarse
fragments and sand in the soil. While the sand fraction seems
to be a poor diagnostic variable at the scale of our analysis,
CFVO is found to be a much better predictor. As illustrated
by Fig. 6, all three indicators consistently increase with CFVO

for both ERA5-Land and ISMN data. The increase is most
gradual for Pano and most pronounced for Ssub which takes
on non-zero larger values only for CFVO values in the highest
quarter of the distribution (from about 180 to 320 cm3 dm−3).
Last but not least, elevation is only a weak predictor but one
can nonetheless note that some of the strongest subsurface
scattering signals are found in arid mountain ranges.

< Fig. 6 >

Let us now address the different sensitivities exhibited by
the three indicators seen in all results so far. While Pano picks
up signals over a broader range of environmental conditions,
Psub and even more so Ssub are more confined to arid regions
and show much more pronounced spatial patterns. This may
indicate that, comparable to the overestimation problem of
Psub and Ssub in cold and wetland regions, also Pano is sensi-
tive to other physical effects that cause subsurface-scattering-
like signals. However, when plotting Pano for individual
months one finds that it follows the succession of dry and
wet seasons extremely well, with high values during the dry
season and values at or near zero during the wet season. This
behavior can be nicely observed over Africa (Fig. 7) where
Pano behaves anti-cyclic to the movement of the intertropical
convergence zone (ITCZ). As the ITCZ, which is a major
control on tropical rainfall [60], reaches its northernmost
position in July–August, soils across the whole Sahelian
belt have become sufficiently wet to switch off subsurface
scattering. The same is true in southern Africa when the
ITCZ reaches its southernmost position in January–February.
Quite remarkable is the widespread occurrence of subsurface
scattering signals during the dry season in both the Sahel
and southern Africa. These high Pano values are caused by
the backscatter behavior seen in long dry seasons as already
discussed for the backscatter time series from Mali (see Fig. 3).

< Fig. 7 >

VI. DISCUSSION

The results show that, broadly speaking, the spatial patterns
depicted by the three subsurface scattering indicators Pano,
Psub and Ssub reflect the global distribution of climate, land
cover and soil types quite well (cf Fig. 1). Furthermore, all
three exhibit the expected dependencies on soil moisture, soil
properties (CFVO) and (indirectly) vegetation (LAI). This
gives us confidence that all three indicators do a reasonable
job in picking up subsurface scattering signals. Nonetheless,
it is also clear that they may both over- and underestimate
the extent of subsurface scattering areas. Unfortunately, at
the global level and the spatial scale observed by ASCAT,
independent field observations do not exist, which means that
it is impossible to compute a confusion matrix and associated
metrics such as the classification accuracy. Alternatively, we
evaluate the usefulness of three indicators by their ability to
mask out inaccurate ASCAT retrievals. But before doing so, let
us discuss possible reasons for both over- and under-detection.

Considering that Pano covers much larger areas than Psub

and Ssub, one may be tempted to assume that Pano has a
stronger tendency than Psub and Ssub to over-detect subsurface
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scattering areas by picking up other anomalous backscatter
signals. However, when carefully analyzing Fig. 5, one can
note that, also on a global level, Psub and Ssub depict more
erratic signals near wetlands and cold regions than Pano does.
Furthermore, as we have already seen for Africa (cf. Fig. 7 and
Fig. 3) the weaker signals picked up by Pano look plausible,
occurring predominately during the dry seasons. So even
though there may of course be isolated short-term anomalies
accidentally caused by noise in the backscatter measurements
or due to physical effects such as seasonal flooding, there is
no evidence to assume that over-detection is a bigger problem
for Pano than it is for Psub and Ssub.

Conversely, this means that Psub and Ssub must have a
problem with under-detection. In fact, this reflects our expe-
rience when carrying out multiple experiments (not shown)
in which we tested alternative time windows to better detect
seasonal subsurface scattering signals. Irrespective of the num-
ber of years and the choice of seasonal/monthly subsets, the
method unfortunately failed by and large to pick up subsurface
scattering signals in some climatic zones with a dry season
such as over the Sahel or southern Africa. The main cause
of the problem appears to be that in these environments, as
can be seen in Fig. 3, θE typically varies little over the dry
season while σ0 may show relatively strong signal fluctuations.
While this mismatch of signal magnitudes at the dry edge is
not a problem when computing rank correlations, it impairs
the capability to determine a best-fitting model M0 or M1.
Therefore, we conclude that, given the properties of the σ0 and
θE time series, Psub and Ssub are not as robust and sensitive
as Pano, leading to a relatively strong under-estimation of
subsurface scattering areas.

This conclusion is corroborated when using the three in-
dicators for masking ASCAT soil moisture retrievals, and
comparing the accuracy statistics of the ASCAT SSM data
before and after masking. For this task we use the Pearson
correlation R between the ASCAT SSM and the ERA5-Land
soil moisture data calculated for each pixel over the complete
time series. It is one of the most frequently used metrics in
soil moisture validation studies [16] and has in our context the
advantages that it can be computed everywhere and reveals
rich spatial patterns in arid regions. This distinguishes it
from other commonly used validation metrics that either show
consistently low values in dry regions (e.g., the unbiased root
mean square difference) or cannot be computed in subsurface
scattering areas due to a violation of basic assumptions in the
error models as in the case of triple collocation [15].

The global map of R without any masking of the subsurface
scattering effects is shown in Fig. 8a. One can observe that
desert regions are dominated by negative R values. However,
there are also some desert areas where R is around zero or
even slightly positive. An example is the Ar Rub’ Al Khali
desert in the southern part of the Arabian peninsula. It is
the world’s largest continuous sand desert covering an area
of over 522,000 km2, with huge dunes dominating much of
the landscape [61]. In this case, the absence of subsurface
scattering signals can be explained by deep layers of sand
that ”swallow” the radar pulses. On the other hand, subsurface
scattering is strong in many of the stony and rocky desert

regions of the Arabian peninsula.

< Fig. 8 >

The strong subsurface scattering signals in desert regions
leave a strong imprint on the histogram of R shown in Fig. 9,
with a significant portion of the ASCAT pixels (21.05%)
having R values smaller than zero. To mask these erroneous
ASCAT retrievals one can apply different thresholds to the
three global indicator maps shown in Fig. 5. The choice of
the three thresholds is a trade-off between masking valid
ASCAT pixels and missing erroneous ASCAT retrievals while
taking the uncertainties of the three indicators themselves
into account. Fig. 9 shows the resulting R histograms when
applying static masks created with the same noise thresholds
as used above (0.1 for Pano and Psub, and 0.005 m2 m−2

for Ssub). One can see that Psub and Ssub are both able to
mask strong subsurface scattering signals (large negative R
values) but largely fail to capture weaker ones (small negative
R values). On the other hand, Pano removes all pixels with
negative R values. This, however, comes at the expense of
masking also many regions where ASCAT retrievals are of
good quality during the wet season, such as in the Sahel zone
or in southern Africa. In these regions, a better solution is to
mask ASCAT retrievals affected by subsurface scattering only
during the dry season while retaining the retrievals from the
wetter parts of the year. Therefore, we constructed monthly
subsurface scattering masks by applying the threshold of 0.1
to monthly Pano values and masking only pixels permanently
when this threshold is exceeded for more than nine months.
When recomputing R values after masking one finds that some
negative R values persist, but this drawback is more than
compensated for by the fact that both the number of pixels
and their correlation increase significantly (compare the red
to the green and blue lines in Fig. 5).

< Fig. 9 >

The recomputed R values are shown in Fig. 8b together
with the permanently masked subsurface scattering areas. One
can see that in combination with the other masks for dense
vegetation, wetlands, and snow/frost the subsurface scattering
mask ensures that only physically meaningful ASCAT SSM
retrievals are retained. The figure is also useful to rate the
relative importance of factors impacting the quality of ASCAT
SSM retrievals. Normally, C-band sensors are held to be
sub-optimal for soil moisture retrieval due to their limited
capability to penetrate vegetation and soil [62]. However, the
spatial extent of subsurface scattering areas is comparable to
the extent of dense forest regions where soil moisture retrieval
is not possible due to the high extinction of the C-band waves
by the vegetation layer. Therefore, with the current generation
of soil moisture retrieval algorithms, the transparency of dry
upper soil layers is as much of a problem as the opaqueness of
tropical forests and other dense vegetation regions. This may
change with a new generation of soil moisture retrieval models
that incorporate the exponential term ψe−ξθ proposed by [33]
or more elaborate formulations of subsurface scattering effects.
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VII. CONCLUSIONS

This study has shown that subsurface scattering is the largest
source of errors in the current version of the ASCAT soil
moisture data as provided by EUMETSAT H SAF. The errors
are most pronounced and widespread in desert regions, but
they also extend widely into other climate zones with a dry
season. In the past, due to the lack of a correct explanation,
errors caused by subsurface scattering have been misinter-
preted, for example, as topographic effects or changes in soil
surface roughness and vegetation. With the knowledge gained
in this study, the design of ASCAT soil moisture validation
and application experiments can be improved, and conclusions
drawn in previous ASCAT studies can be re-examined.

To quantify subsurface scattering effects, three indicators
were used in this study. Two of them, the probability of detect-
ing subsurface scattering, Psub, and the subsurface scattering
signal strength, Ssub, are based on a method that assesses
the capability of two backscatter models (one with and one
without a subsurface scattering term) to explain the observed
behavior of ASCAT backscatter measurements with changing
soil moisture conditions as captured by in situ and modeled
soil moisture data sets. The merit of the method is that it
is physically based, revealing pronounced spatial patterns,
particularly in desert regions. However, it is not very robust
against data outliers and differences in signal dynamics. As a
result, Psub and Ssub underestimate the extent of subsurface
scattering areas while at the same time exhibiting spurious
signals over higher latitude/altitude regions with seasonal snow
cover and water bodies.

The third indicator is the probability of the occurrence of
backscatter anomalies, Pano, which is a statistical method that
looks for the ”fingerprints” of subsurface scattering, i.e., an
anti-correlation between backscatter and soil moisture. Even
though there is a certain risk that it overestimates the extent
of subsurface scattering, results obtained in this study suggest
that, at the spatial scale of ASCAT, it is a robust indicator
that exhibits the expected dependencies on external variables
and classes well. Furthermore, it can be computed on a
monthly basis, making it possible to use it for masking only
measurements acquired during the dry season.

On a global scale, the three subsurface indicators exhibit
the expected behavior, with subsurface scattering detected
predominately in the arid climate zone, continental climates
with dry summer, and the hot-summer Mediterranean climate.
In these regions, the soil is typically bare or covered by low
to medium vegetation, and soils tend to be poorly developed
with a large fraction of coarse fragments in the soil profile.
Nevertheless, there is great spatial variability on a local to
regional scale that is not captured by ASCAT. This shows the
need for further research to better understand environmental
conditions and soil profile properties that give rise to sub-
surface scattering. Much can be learned from high-resolution
Synthetic Aperture Radar (SAR) backscatter measurements
that can be more readily related to in situ observations than is
the case for ASCAT. For example, Ullmann et al. [63] analyzed
Sentinel-1 SAR time series over the Atacama Desert, finding
that thick atmospheric dust deposits on top of subsurface ce-

mented crusts give rise to strong subsurface scattering effects.
The results of this study are relevant not only for ASCAT

but for any active microwave sensor operating at lower mi-
crowave frequencies. As the penetration depth increases with
the wavelengths, a correct treatment of subsurface scattering
effects might be even more challenging for sensors operating
at S-, L-, and P-band. Furthermore, subsurface scattering is
not only important in the context of soil moisture studies but
for any effort to map land surface properties (vegetation, land
cover, etc.) under dry climatic conditions. However, for the
time being, there are no provisions for treating subsurface
scattering effects in soil moisture and biomass retrievals from
upcoming missions such as NISAR [64] or BIOMASS [65].

Within the context of the H SAF, the next step will be to
investigate retrieval approaches that are able to deal with the
ambiguity of the backscatter signal over subsurface scattering
areas. Drawing from the experiences with ASCAT wind re-
trievals [66], a solution might be to provide two soil moisture
values and then apply constraints to select the most likely
solution. As long as no solution to the subsurface scattering
problem exists, users of H SAF ASCAT soil moisture data can
mask subsurface scattering effects using one of the indicators
developed in this study and setting a threshold to match
their requirements. As a baseline, we recommend using the
monthly subsurface scattering masks developed within this
study. Together with all indicators and ancillary data, it is
available from the TU Wien Research Data repository (DOI:
https://doi.org/10.48436/9a2y9-e5z14).
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TABLE I
ANCILLARY DATA

Data set Description Source
Köppen-Geiger climate+ The Köppen-Geiger climate classification is divided into five main

classes and 30 sub-types based on seasonality of monthly air tempera-
ture and precipitation. By this classification, complex climate gradients
are aggregated into a simple but ecologically meaningful scheme. [67]

https://doi.org/10.6084/m9.figshare.6396959

Land cover+ The 300 m ESA CCI land cover classification is based upon the
Medium Resolution Imaging Spectrometer archive as a basline and
change detected from the Sentinel-3 OLCI time series for 2020. [68]

https://doi.org/10.24381/cds.006f2c9a

Soil groups+ SoilGrids™ maps available from the International Soil Reference and
Information Centre (ISRIC) are a collection of soil property maps
produced using machine learning at 250 m. The classification of most
probable soil groups follows the World Reference Base. For more
efficient processing, the 5-km-aggregated products were used for all
datasets obtained from ISRIC. [69]

https://doi.org/10.17027/isric-soilgrids.
c4dc161c-d62d-11ea-a1a3-292680b15169

Sand content++ The sand content, defined by particle sizes of 50/63-2000 µm in the
surface layer (0-5 cm) and given in g kg−1, was also extracted from
SoilGrids. These predictions were derived using a digital soil mapping
approach based on Quantile Random Forest, drawing on a global
compilation of soil profile data and environmental layers.

https://doi.org/10.17027/isric-soilgrids.
713396fa-1687-11ea-a7c0-a0481ca9e724

Coarse fragments (CFVO)++ The 5-15 cm coarse fragment layer was extracted from the Soil-
Grids250m 2.0 data base alike. It represents the volumetric content of
fragments larger than 2 mm in the whole soil and is given in units of
cm3dm−3. The depth of the layer chosen corresponds to the predicted
penetration depth of C-band waves into dry soil.

https://doi.org/10.17027/isric-soilgrids.
713396f8-1687-11ea-a7c0-a0481ca9e724

Elevation ++ Elevation (in meters) was extracted from the global 60 arc-second
ETOPO 2022 global relief model resting on a combination of airborne
lidar and satellite-derived topography information. The land topogra-
phy data used in this study mainly originates from the Copernicus
Digital Elevation Model (DEM) [70] as well as the Forest and
Buildings Removed Copernicus DEM (FABDEM) [71] both provided
at a 30 m grid. [72]

https://doi.org/10.25921/fd45-gt74

Leaf area index (LAI)++ A mean LAI map was created by averaging data from the Copernicus
Global Land Service over snow free days from 2007 to 2020. The LAI
is defined as half the total area of green elements of the canopy per
unit horizontal ground area in units of m2 m−2. Practically, the LAI
quantifies the thickness of the vegetation cover. [73]

https://land.copernicus.eu/global/products/lai

Lakes and wetlands+ The Global Lakes and Wetlands Database (GLWD) charts large lakes
and reservoirs, smaller water bodies, rivers, and wetlands at a 30-
second grid. GLWD proved to represent a comprehensive database of
global lakes and to provide a good representation of the maximum
global wetland extent in validations against documented data. [53]

https://www.worldwildlife.org/pages/
global-lakes-and-wetlands-database

+ Categorical values were gridded to the 12.5 km fixed Earth grid used for ASCAT by selecting the dominant class within the ASCAT pixels.
++ Continuous variables where gridded to the 12.5 km fixed Earth grid used for ASCAT by averaging values from the source grids over the ASCAT pixels.
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TABLE II
NETWORKS AND NUMBER OF IN SITU STATIONS PER CONTINENT AFTER MASKING.

Network Number Reference
Africa
AMMA-CATCH 7 Mougin et al. [74]
DAHRA 1 Tagesson et al. [75]
SD DEM 1 Ardö [76]
TAHMO 4 van de Giesen et al. [77]
Australia
OZNET 20 Smith et al. [78]
Europe
FR Aqui 4 Al-Yaari et al. [79]
HOAL 19 Blöschl et al. [80]
HOBE 30 Jensen and Refsgaard [81]
HYDROL-NET PERUGIA 2 Flammini et al. [82]
IPE 1 Aldai et al. [83]
ORACLE 5 Riffard et al. [84]
REMEDHUS 22 González Zamora et al. [85]
RSMN 19 Ontel et al. [86]
SMOSMANIA 21 Calvet et al. [87]
TERENO 5 Bogena et al. [88]
UDC SMOS 3 Schlenz et al. [89]
North America
ARM 23 Cook 2016 [90]
FLUXNET-AMERIFLUX 2 Baldocchi et al. [91]
PBO H2O 93 Larson et al. [92]
RISMA 9 Ojo et al. [93]
SCAN 154 Schaefer et al. [94]
SNOTEL 76 Leavesley et al. [95]
SOILSCAPE 80 Moghaddam et al. [96]
USCRN 86 Bell et al. [97]
South America
LAB-net 1 Mattar et al. [98]
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TABLE III
FRACTION OF PIXELS OR STATIONS, fc IN %, FOR WHICH Pano , Psub AND Ssub INDICATE THE OCCURRENCE OF SUBSURFACE SCATTERING WITHIN

THE GIVEN CLIMATE, LAND COVER AND SOIL CLASSES. RESULTS ARE SHOWN FOR ERA5-LAND (E5L) WHEN THE NUMBER OF ASCAT PIXELS IS
LARGER THAN 1000. FOR ISMN THE MINIMUM REQUIREMENT WAS 10 STATIONS PER CLASS. VALUES OF fc > 30% AND CORRESPONDING CLASSES

ARE HIGHLIGHTED IN BOLD.

Number of Pano Psub Ssub
Class Pixels Stations E5L ISMN E5L ISMN E5L ISMN
Köppen-Geiger Climate Classification
Af - Tropical, rainforest 2 220 – 2.5 – 4.1 – 2.2 –
Am - Tropical, monsoon 8 370 – 2.7 – 3.1 – 1.0 –
Aw - Tropical, savannah 79 959 – 4.7 – 1.2 – 0.5 –
BWh - Arid, desert, hot 133 615 26 86.3 46.2 50.9 34.6 30.8 30.8
BWk - Arid, desert, cold 37 745 41 53.5 51.2 32.6 61.0 16.2 39.0
BSh - Arid, steppe, hot 46 690 – 38.7 – 7.5 – 4.0 –
BSk - Arid, steppe, cold 42 889 181 24.0 39.8 12.8 43.6 5.5 15.5
Csa - Temperate, dry hot summer 6 450 94 44.1 9.6 25.9 20.2 9.9 17.0
Csb - Temperate, dry warm summer 3 427 15 24.6 20.0 14.4 21.4 5.7 13.3
Cwa - Temperate, dry winter, hot summer 22 395 – 14.4 – 8.9 – 6.3 –
Cwb - Temperate, dry winter, warm summer 8 954 – 2.9 – 4.6 – 2.8 –
Cfa - Temperate, no dry season, hot summer 27 647 185 0.4 2.2 7.3 21.6 4.7 7.0
Cfb - Temperate, no dry season, warm summer 8 981 67 2.0 7.5 11.2 40.3 8.0 25.4
Dsa - Cold, dry hot summer 1 416 – 82.3 – 51.4 – 27.5 –
Dsb - Cold, dry warm summer 1 867 24 52.4 37.5 37.0 45.8 22.9 8.3
Dwa - Cold, dry winter, hot summer 7 008 – 0.0 – 23.9 – 9.9 –
Dwb - Cold, dry winter, warm summer 4 001 – 0.0 – 20.7 – 16.5 –
Dfa - Cold, no dry season, hot summer 11 468 61 0.0 0.0 10.0 21.3 2.6 4.9
Dfb - Cold, no dry season, warm summer 29 518 146 0.3 6.8 12.3 37.7 8.4 26.0
Dfc - Cold, no dry season, cold summer 1 980 – 1.1 – 30.0 – 18.4 –
ESA CCI Land Cover Classification
10 - Cropland, rainfed 50 219 47 12.3 6.4 5.3 17.0 2.4 8.5
11 - Cropland, rainfed, herbaceous cover 43 663 263 4.7 7.2 9.0 33.5 2.2 16.7
20 - Cropland, irrigated or post-flooding 12 280 – 27.9 – 26.1 – 10.2 –
30 - Mosaic cropland (>50%)/natural vegetation (<50%) 10 604 – 6.9 – 5.0 – 2.6 –
40 - Mosaic natural vegetation (>50%)/cropland (<50%) 8 785 13 10.0 10.0 6.5 7.7 3.2 0.0
50 - Tree cover, broadleaved, evergreen, closed to open (>15%) 15 542 – 1.9 – 8.3 – 6.7 –
60 - Tree cover, broadleaved deciduous, closed to open (>15%) 25 574 30 6.1 10.0 12.9 36.7 9.1 13.3
61 - Tree cover, broadleaved, deciduous, closed (>40%) 3 392 – 8.0 – 7.7 – 7.0 –
62 - Tree cover, broadleaved, deciduous, open (15-40%) 23 926 – 9.1 – 0.9 – 0.2 –
70 - Tree cover, needleleaved, evergreen, closed to open (>15%) 13 372 140 9.6 32.1 18.7 48.6 13.0 22.1
90 - Tree cover, mixed leaf type (broadleaved and needleleaved) 3 276 – 6.7 – 29.5 – 23.0 –
100 - Mosaic tree and shrub (>50%)/herbaceous cover (<50%) 8 222 – 21.5 – 12.6 – 7.7 –
110 - Mosaic herbaceous cover (>50%)/tree and shrub (<50%) 2 693 – 9.4 – 3.6 – 2.2 –
120 - Shrubland 58 124 129 38.8 42.6 13.8 49.6 7.5 27.9
122 - Deciduous shrubland 9 750 – 32.8 – 8.9 – 5.0 –
130 - Grassland 55 550 207 31.5 8.2 12.6 18.4 7.4 11.6
150 - Sparse vegetation (<15%) 31 211 – 54.4 – 16.7 – 8.5 –
153 - Sparse herbaceous cover (<15%) 1 482 – 86.5 – 39.9 – 25.7 –
190 - Urban areas 1 961 – 8.0 – 25.6 – 13.1 –
200 - Bare areas 106 304 – 88.8 – 60.5 – 36.4 –
ISRIC Soil Groups
1-6 - Acrisols 46 127 45 4.5 0.0 3.8 13.3 2.2 0.0
7-9 - Albeluvisols 7 344 – 0.1 – 15.6 – 8.7 –
10-11 - Alisols 4 039 – 0.8 – 15.4 – 13.8 –
12-14 - Andosols 2 032 – 5.1 – 5.8 – 4.3 –
15-20 - Arenosols 85 611 11 76.6 54.5 35.5 0.0 16.1 9.1
21-24 - Calcisols 35 455 41 63.7 46.3 35.9 51.2 21.5 24.4
25-35 - Cambisols 43 205 127 41.7 11.0 15.5 33.9 9.4 19.7
36-38 - Chernozems 15 031 55 1.6 0.0 5.6 36.4 0.6 16.4
43-47 - Ferralsols 38560 – 2.9 – 1.0 – 0.4 –
48-52 - Fluvisols 7 432 – 20.3 – 25.3 – 12.4 –
53-58 - Gleysols 3 293 – 4.4 – 5.7 – 2.5 –
59-60 - Gypsisols 10 072 – 84.8 – 63.4 – 42.8 –
66-67 - Kastanozems 23 165 224 9.0 23.2 6.0 35.3 1.1 14.3
68-72 - Leptosols 44 915 19 84.5 47.4 60.5 36.8 42.9 15.8
73-75 - Lixisols 13 150 – 14.5 – 1.3 – 0.4 –
76-84 - Luvisols 50 083 217 20.5 12.4 11.6 30.9 6.8 15.7
85-86 - Nitisols 1 186 – 0.3 – 2.5 – 3.7 –
87-89 - Phaeozems 13 633 18 2.3 16.7 9.2 22.2 1.7 22.2
90-94 - Planosols 1 215 – 2.7 – 2.0 – 0.7 –
97-98 - Podzols 2 913 64 3.8 0.0 39.0 35.9 35.9 31.3
99-104 - Regosols 10 735 – 73.7 – 46.4 – 30.8 –
105-107 - Solonchaks 2 998 – 68.0 – 39.7 – 20.8 –
108-111 - Solonetz 5 479 – 13.1 – 9.2 – 2.5 –
115-118 - Vertisols 18 786 12 16.9 0.0 4.7 16.7 1.7 0.0
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TABLE IV
RANK CORRELATIONS BETWEEN THE THREE INDICATORS Pano , Psub AND Ssub AND SEVERAL LAND SURFACE VARIABLES. RESULTS ARE SHOWN

USING ERA5-LAND (E5L) AND ISMN SOIL MOISTURE DATA AS INPUT.

Pano Psub Ssub
Variable E5L ISMN E5L ISMN E5L ISMN
Soil moisture –0.79 –0.48 –0.43 –0.04 –0.45 0.03
Leaf area index –0.74 –0.43 –0.44 –0.16 –0.51 –0.11
Coarse fragments 0.55 0.55 0.44 0.22 0.47 0.23
Sand fraction 0.30 0.16 –0.00 0.05 –0.00 0.11
Elevation 0.24 0.41 0.13 0.22 0.07 0.10
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Fig. 1. Backscattering behavior of vegetation-covered soil with (a) dominant subsurface scattering, (b) mixed scattering, and (c) dominant surface scattering.
Modified after [33].
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Fig. 2. Selected ancillary data sets for the analysis of the ASCAT backscatter data record and soil moisture retrievals: (a) Köppen-Geiger climate classification,
(b) Mean ERA5-Land soil moisture over snow and frost-free days, (c) Land cover map from the ESA Climate Change Initiative (CCI), (d) Mean leaf area
index (LAI) map from Copernicus Global Land Monitoring service (CGLS), (e) Soil groups from the International Soil Reference and Information Centre
(ISRIC), (f) Volume fraction of coarse fragments in the 5–15 cm soil profile (CFVO) from ISRIC.
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Fig. 3. Time series of ASCAT backscatter, σ0(20) in m2 m−2, and ERA5-Land soil moisture, θE in relative units, over the Sahel zone of Mali (14.128◦ N,
8.451◦ W) for the years 2011 and 2012. The light blue strips indicate where the short-term rank correlation ρ is higher than 0.4, and the light red strips that
ρ is lower than −0.4.
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Fig. 4. Subsurface scattering indicators over the contiguous United States computed using ERA5-Land (top row) and ISMN (bottom row) soil moisture data
as a reference.
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Fig. 5. Geographic distribution of subsurface scatterers as depicted by the three indicators: (a) probability of occurrence of backscatter anomalies, Pano, (b)
probability of detecting subsurface scattering, Psub, and (c) subsurface scattering signal strength, Ssub.
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Fig. 6. Box plots of the three subsurface scattering indicators (a) Pano, (b) Psub and (c) Ssub for an increasing number of coarse fragments in the 5–15 cm
soil layer (separated in ten groups defined by the deciles of the worldwide CFVO histogram). The upper (lower) row shows the results using ERA5-Land
(ISMN) soil moisture data as input for the calculation of the three indicators.
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Fig. 7. Seasonality of the occurrence of backscatter anomalies Pano over Africa.
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Fig. 8. Pearson correlation R between ASCAT SSM and ERA5-Land soil moisture data for the years 2007 to 2021 without masking (top) and after applying
masks for frozen soil/snow cover, dense vegetation, wetlands, and subsurface scattering, masking months with Pano > 0.1 (bottom).
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Fig. 9. Smoothed histograms of the Pearson correlation R between ASCAT SSM and ERA5-Land soil moisture data for different subsurface scattering
masking criteria: no mask, Pano > 0.1, Psub > 0.1, Ssub > 0.005 m2 m−2, and monthly Pano > 0.1. The smoothed lines are based on 100 histogram
bins per distribution of R.
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