Yu. Vetyukov

Motivation

Mathematical model

Finite elements

Simulations

Analytica solution

Conclusions

Dancing rod problem in the context of Lagrangian mechanics

Yury Vetyukov

TU Wien, Vienna, Austria

yury.vetyukov@tuwien.ac.at

INSTITUT FÜR MECHANIK UND MECHATRONIK Mechanics & Mechatronics

TECHNISCHE UNIVERSITÄT WIEN Vienna Austria

Alexander Humer

Johannes Kepler University Linz, Austria

alexander.humer@jku.at

EURODYN 2023 XXII International Conference on Structural Dynamics 2-5 July 2023 | Delft | The Netherlands

Yu. Vetyukov

Motivation

Mathematical model

Finite elements

Simulations

Analytica solution

Conclusions

Motivation Dancing rod problem

Journal of the Mechanics and Physics of Solids . Volume 130, September 2019, Pages 82-100

Configurational forces and nonlinear structural dynamics

C. Armanini, F. Dal Corso, D. Misseroni, D. Bigoni 🝳 🖾

- Flexible rod, low friction, concentrated mass
- Configurational force at the tip of the sleeve is related to energy release rate and prevents full injection.

Yu. Vetyukov

Motivation

Mathematical model

- Finite elements
- Simulations
- Analytical solution
- Conclusions

Mathematical model

Flexible rod partially sliding in a rigid sleeve

- Inextensible unshearable rod
- Distributed mass
- No friction
- Lagrangian (material) description inefficient
- Non-material mixed Eulerian-Lagrangian model
- Material coordinate s, length l
- Length of the free part $\eta(t)$
- Configurational force at the tip of the sleeve is proportional to local curvature and is work conjugate to η.

Motivation

Mathematical model

Finite elements

Simulations

Analytical solution

Conclusions

Mathematical model Kinematic description Parametrization of free part:

 $\boldsymbol{x} = x\boldsymbol{e}_x + y\boldsymbol{e}_y = \boldsymbol{x}(\sigma, t),$

- $0 \le \sigma \le 1$
- Mapping:

$$s = l - \eta + \eta \sigma,$$

$$\sigma = 1 - (l - s)/\eta$$
(2)

• Strain energy requires 2nd order derivatives:

$$\partial_s \boldsymbol{x} = \partial_\sigma \boldsymbol{x} \, \partial_s \sigma = rac{1}{\eta} \partial_\sigma \boldsymbol{x},$$

 $\partial_s^2 \boldsymbol{x} = rac{1}{\eta^2} \partial_\sigma^2 \boldsymbol{x}$ (3)

Yu. Vetyukov

Motivation

Mathematical model

Finite elements

Simulations

Analytical solution

Conclusions

Mathematical model Kinematic description

XX

• Material velocity of a particle:

$$\dot{m{x}} = \partial_t m{x}|_{s= ext{const}} =$$

$$=\partial_t \boldsymbol{x}|_{\sigma= ext{const}}+\dot{\sigma}\,\partial_\sigma \boldsymbol{x}$$

$$\dot{s} = 0 \Rightarrow \dot{\sigma} = \frac{(1-\sigma)\dot{\eta}}{\eta}$$
(4)

• Boundary conditions at the tip of the sleeve:

$$x(0,t) = y(0,t) = 0,$$

 $\partial_{\sigma} y(0,t) = 0$ (5)

$$\eta$$
 g $\tilde{\alpha}$
 y $L-\eta$ H L

Motivation

Mathematical model

Finite elements

Simulations

Analytical solution

Conclusions

Finite element approximation

- We divide the domain $0 \leq \sigma \leq 1$ into n finite elements.
- Generalized coordinates: nodal unknowns $m{x}_i,\,(\partial_\sigmam{x})_i$

• Cubic approximation on an element e

 $\begin{aligned} \boldsymbol{x}(\sigma) &= S_1(\sigma)\boldsymbol{x}_e + S_2(\sigma)(\partial_{\sigma}\boldsymbol{x})_e + S_3(\sigma)\boldsymbol{x}_{e+1} + S_4(\sigma)(\partial_{\sigma}\boldsymbol{x})_{e+1} \\ \text{(6)} \\ \text{guarantees } C^1 \text{ interelement continuity.} \end{aligned}$

- Further generalized coordinate is length of free part η.
- Axial strain

$$\varepsilon = \frac{1}{2} (\partial_s \boldsymbol{x} \cdot \partial_s \boldsymbol{x} - 1) \tag{7}$$

is penalized and $\varepsilon \to 0$ when $n \to \infty.$

Bending strain is curvature

$$\kappa = \partial_s^2 \boldsymbol{x} \cdot (\boldsymbol{e}_z \times \partial_s \boldsymbol{x}), \quad |\kappa| = |\partial_s^2 \boldsymbol{x}|.$$
 (8)

Yu. Vetyukov

Motivation

Mathematical model

Finite elements

Simulations

Analytical solution

Conclusions

Finite element approximation Energies and equations of motion

• Total energy of bending + penalty for axial strain:

$$U = \int_0^1 \frac{1}{2} (a\kappa^2 + b\varepsilon^2) \partial_\sigma s \,\mathrm{d}\sigma \tag{9}$$

Total potential of gravity:

$$W = -\int_{0}^{1} \rho g \boldsymbol{x} \cdot (\boldsymbol{e}_{x} \cos \alpha + \boldsymbol{e}_{y} \sin \alpha) \partial_{\sigma} s \, \mathrm{d}\sigma - \frac{1}{2} \rho g \cos \alpha (l - \eta)^{2}$$
(10)

Total kinetic energy:

$$T = \int_0^1 \frac{1}{2} \dot{\boldsymbol{x}} \cdot \dot{\boldsymbol{x}} \, \partial_\sigma s \, \mathrm{d}\sigma + \frac{1}{2} \rho (l - \eta) \dot{\eta}^2 \tag{11}$$

- Dissipation function R proportional to $\dot{\varepsilon}^2$ to damp out high frequency axial vibrations
- Lagrange's equations of motion for nodal d.o.f. and η

Yu. Vetyukov

Motivation

Mathematical model

Finite elements

Simulations

Analytical solution

Conclusions

Simulation results Very flexible rod with small initial injection

- Parameters (SI units):
 - Length l = 1, thickness $h = 0.5 \cdot 10^{-3}$
 - Material $E = 2 \cdot 10^{11}$, $\rho_3 = 7800$
 - Gravity g = 9.8, $\alpha = \pi/4$
 - Initial length of free part $\eta_0 = 0.7l$
- Results for n = 8 f.e. almost converged
- Length and tip deflection until full ejection at $t \approx 2.71$

Simulation validated against

Han, S.; Bauchau, O.A.: Configurational forces in variable-length beams for flexible multibody dynamics. Multibody System Dynamics, pp. 1-24, 2022.

Yu. Vetyukov

Motivation

Mathematical model

Finite elements

Simulations

Analytical solution

Conclusions

Simulation results

Very flexible rod with small initial injection

• Animation of the dynamic process

Yu. Vetyukov

Motivation

Mathematica model

Finite elements

Simulations

Analytica solution

Conclusions

Simulation results Less flexible rod

• Same process, thickness $h = 2 \cdot 10^{-3}$

- Seemingly periodic process
- Small vibration amplitude, first mode dominating

Yu. Vetyukov

Motivation

Mathematical model

Finite elements

Simulations

Analytical solution

Conclusions

Analytical solution

Single term Ritz approximation at small vibrations

Assumptions

Wi

- Small vibration amplitude
- First mode dominating
- Same axial motion for all particles
- Approximation with two generalized coordinates:

$$\boldsymbol{x}(\sigma,t) = \sigma \eta(t) \boldsymbol{e}_x + \gamma(t) w(\sigma) \boldsymbol{e}_y$$
 (12)

- Shape function $w(\sigma)$ is first vibration mode, w(1)=1
- Energy expressions follow by integration:

$$U = ak_U \gamma^2 / \eta^3,$$

$$W = \rho g (l(l - 2\eta) \cos \alpha - 2k_W \gamma \eta \sin \alpha) / 2,$$

$$T = \rho (\eta \dot{\gamma}^2 + \gamma \dot{\gamma} \dot{\eta} + 4(2k_T \gamma^2 + l\eta) \dot{\eta}^2 / \eta) / 8$$
th $k_U = 1.5453, k_T = 0.094385, k_W = 0.39150$
(13)

Motivation

Mathematical model

Finite elements

Simulations

Analytical solution

Conclusions

Analytical solution Equations of motion and results

• Equations of motion take the form

$$\frac{1}{8}\rho\gamma\left(\ddot{\gamma} + \frac{32k_T\dot{\gamma}\dot{\eta}}{\eta} - 8gk_W\sin\alpha\right) + l\rho(\ddot{\eta} - g\cos\alpha) = \\
= \frac{\gamma^2(3ak_U + k_T\rho\eta^2(\dot{\eta}^2 - 2\eta\ddot{\eta}))}{\eta^4} \qquad (14)$$

$$\frac{2ak_U\gamma}{\eta^3} + \frac{1}{8}\rho\left(2\dot{\gamma}\dot{\eta} + 2\eta\ddot{\gamma} + \gamma\left(\ddot{\eta} - \frac{16k_T\dot{\eta}^2}{\eta}\right)\right) = \rho gk_W\eta\sin\alpha$$
• Results of time integration compared to f.e.

• Estimate for eigenfrequency $\omega = 2\sqrt{2ak_U/\rho}/\eta^2$ matches very well with numerical data.

Yu. Vetyukov

Motivation

- Mathematical model
- Finite elements
- Simulations
- Analytical solution
- Conclusions

Conclusions & Outlook

- Non-material finite element model for large vibrations problem of a rod with solution dependent length of the free part is developed and validated.
- Configurational force results into alternating injection and ejection of the rod, even full ejection is possible.
- Semi-analytical two-d.o.f. model provides good results at small vibrations.
- Closed form estimates for characteristic values like maximal injection length are yet to be found.
- Elaborate investigation on the nature of the configurational force would allow taking friction at the tip of the sleeve into account.
- Further extension to the case of flexible sleeve necessary for approaching practically relevant formulations like concentric tube robots, used in the medicine.

Thank you for attention!