
D I S S E R T A T I O N

Hierarchical Grid Algorithms

for Topography Simulation

ausgeführt zum Zwecke der Erlangung des akademischen Grades
eines Doktors der technischen Wissenschaften

unter der Betreuung von
Associate Prof. Dipl.-Ing. Dr.techn. Josef Weinbub

O.Univ.Prof. Dipl.-Ing. Dr.techn. Dr.h.c. Siegfried Selberherr

eingereicht an der Technischen Universität Wien
Fakultät für Elektrotechnik und Informationstechnik

von

Dipl.-Ing. Christoph Lenz, BSc

Matrikelnummer 0828641

Wien, im Juni 2023

Abstract

The continuously high pace of semiconductor device developments puts
massive pressure on novel device designs and on manufacturing processes.
Technology computer-aided design tools are critically important to aid these
processes and, thereby, help reduce costly conventional experimental efforts.
One key tool in the process technology computer-aided design tool-chain is
topography simulation. Topography simulations allow to describe a plethora
of time-dependent processing steps which change the wafer surface topography
(e.g., etching or deposition).

The geometry, i.e., the topography, of modern semiconductor devices has
become ever more critical in recent years due to the use of new materials and
vertical structures with high aspect ratio. However, semiconductor device
topographies are characterized by large areas with little to no geometric
variation (e.g., Ćat parts of the topography) and small areas with pronounced
geometric variation (e.g., sharp corners) Ű so-called features Ű for example,
trench or hole structures which are very common in modern memory devices.
This, in principle, requires an increase of the resolution of speciĄc areas
of interest of the simulation domain to accurately capture these features,
which is efficiently achieved using a hierarchical grid. However, it has to be
considered that the higher the resolution of the simulation domain is chosen,
the bigger the detrimental impact on simulation performance, potentially
leading to unpractical simulation run-times. Therefore, to improve simulation
performance, strategies that automatically detect topographical features
and locally adapt the conĄguration of the hierarchical grid accordingly are
required.

A well-known metric that measures the geometric variation of a surface
is the surface curvature, which is often used for automatic feature detection.
This, however, Ąrst requires the availability of surfaces, and for that different
surface representations are available, which can be broadly categorized into
explicit and implicit representations. Depending on the type of simulation,
certain surface representations have advantages over others. Implicit surfaces
intrinsically handle the merging of materials during a simulation, while
explicit surfaces improve the performance of Ćux calculations.

In this work, new geometry-aware algorithms for surfaces originating from
topography simulations are introduced. The algorithms automatically detect
features of the device topography. The detected features are then used to
improve the simulation performance of topography simulations by locally
adapting the resolution of the hierarchical grid.

A general feature detection algorithm for topography simulations was
developed and is presented here. Four different methods for calculating the
surface curvatures of level-set functions (i.e., implicit surface representation)
are investigated. Three of the investigated methods are taken from literature,
and one is a novel improvement of the de facto standard method. The
novel method has a higher numerical accuracy than the other methods, while
only insigniĄcantly increasing the computational effort, making it the optimal
choice for feature detection for semiconductor topography simulations.

The feature detection algorithm is used to guide a hierarchical grid
placement algorithm, which locally increases the resolution of the simulation
domain around features of the topography.

i

This hierarchical grid placement algorithm is integrated into a topography
simulation workĆow and used to simulate selective epitaxial growth of SiGe
for evaluation purposes. The simulation performance is improved by up to
58% while maintaining accuracy.

Another developed algorithm improves the simulation performance of
thin material layer etching, which is a common fabrication technique. The
etching process can be simulated with Boolean operations between implicit
surfaces. Depending on the thickness of the etched material layer, numerical
artifacts develop. A specialized feature detection algorithm is presented that
analyzes the thickness of the material layers and calculates a minimal required
resolution to prevent the formation of numerical artifacts.

The developed feature detection algorithm can also be used to selectively
simplify the simulated topography of a wafer. Therefore, a surface mesh
(i.e., explicit surface) simpliĄcation algorithm is presented, which considers
the features of the surface. This simpliĄcation algorithm maintains a high
resolution at features of the topography, while simplifying non-features to a
greater degree. The simpliĄed surface meshes are then shown to improve the
computational performance of Ćux calculations simulated with Monte Carlo
ray tracing by 15%.

ii

Kurzfassung

Das andauerende, hohe Tempo von Halbleiter-Bauelemente-Entwicklungen
erzeugt massiven Druck auf neuartiger Bauelementedesigns und auf Her-
stellungsprozesse. Technologische, rechnerunterstützte Entwurfswerkzeuge
sind von entscheidender Bedeutung, um diese Prozesse zu unterstützen
und dadurch kostspielige konventionelle Expermimente zu reduzieren.
Ein wichtiges Werkzeug in der Werkzeugkette des technologischen,
rechnerunterstützten Entwurfs sind Topographie-Simulationen. Topographie-
Simulationen ermöglichen die Beschreibung einer Vielzahl an zeitabhängigen
Prozessschritten, die die Wafer-OberĆächen-Topographie verändern (z.B.
Ätzen oder Abscheiden).

Die Geometrie, d. h. die Topographie, moderner Halbleiterbauelemente
ist in den letzten Jahren durch die Verwendung neuer Materialien und
vertikaler Strukturen mit hohem Verhältnis immer kritischer geworden.
Allerdings zeichnen sich Topographien moderner Halbleiterbauelementen
durch große Flächen mit geringer oder gar keiner geometrischen Variation
(z. B. Ćache Teile der Topographie) und kleine Bereiche mit ausgeprägten
geometrischen Variationen (z.B. scharfe Kanten) aus Ű sogenannte Merkmale
Ű z.B., Graben- oder Lochstrukturen, die in modernen Speicher-Bauelementen
sehr verbreitet sind. Dies erfordert prinzipiell eine Erhöhung der AuĆösung
von speziĄschen Bereichen von Interesse des Simulations-Bereichs, um
diese Merkmale akkurat zu beschreiben, was effizient durch hierarchische
Gitter erreicht wird. Allerdings muss beachtet werden, dass umso höher
die AuĆösung des Simulations-Bereichs gewählt wird, umso höher ist der
nachteilige Effekt auf die Simulationsperformanz, welches potenziell zu
unpraktischen Simulationslaufzeiten führen kann. Um Simulationslaufzeiten
zu verbessern, sind darum Strategien erforderlich, die automatisch
topograĄsche Merkmale erkennen und die KonĄguration des hierarchischen
Gitters lokal dementsprechend anpassen.

Eine bekannte Metrik zur Messung der geometrischen Variation einer
OberĆäche ist die OberĆächenkrümmung, die häuĄg zur automatischen
Erkennung von Merkmalen verwendet wird. Dies erfordert jedoch zunächst
die Verfügbarkeit von OberĆächen, und dafür stehen verschiedene
OberĆächenrepräsentationen zur Verfügung, die sich grob in explizite und
implizite Repräsentationen kategorisieren lassen. Je nach Art der Simulation,
haben bestimmte OberĆächendarstellungen Vorteile gegenüber anderen.
Implizite OberĆächen bewältigen von Haus aus das Zusammenwachsen von
Materialien während einer Simulation, indes verbessern explizite OberĆächen
die Leistung von Flussberechnungen.

In dieser Arbeit werden geometriesensible Algorithmen für OberĆächen
aus Topographie-Simulationen entwickelt. Die Algorithmen erkennen
automatisch Merkmale der Topographie. Diese erkannten Merkmale
werden dann zur Verbesserung der Simulationsleistung von Topographie-
Simulationen verwendet, indem die AuĆösung des hierarchischen Gitters lokal
angepasst wird.

Ein
allgemeiner Algorithmus zur Erkennung von Merkmalen für Topographie-
Simulationen wurde entwickelt und wird hier präsentiert. Es werden vier
verschiedene Methoden zur Berechnung der OberĆächenkrümmungen von
Level-Set-Funktionen (d.h. implizite OberĆächendarstellung) untersucht.

iii

Drei der untersuchten Methoden stammen aus der Literatur, und eine ist eine
neuartige Verbesserung der De-facto-Standardmethode. Die neue Methode
hat eine höhere numerische Genauigkeit als die anderen Methoden, während
sie den Rechenaufwand nur unwesentlich erhöht, was sie zur optimalen Wahl
für die Merkmalserkennung in Halbleitertopographie-Simulationen macht.

Der Algorithmus zur Merkmalserkennung wird zur Steuerung eines
hierarchischen Gitterplatzierungs-Algorithmus verwendet, der die AuĆösung
des Simulations-Bereichs rund um Merkmale der Topographie erhöht. Dieser
hierarchische Gitterplatzierungs-Algorithmus wird in einen Topographiesi-
mulations-ArbeitsĆuss integriert und verwendet, um selektives epitaktisches
Wachstum von SiGe zu Evaluierungszwecken, zu simulieren. Die Simulati-
onsgeschwindigkeit wird bei gleichbleibender Genauigkeit um bis zu 58%
verbessert.

Ein weiterer entwickelter Algorithmus verbessert die Simulationsge-
schwindigkeit des Ätzens dünner Materialschichten, was eine gängige
Fertigungstechnik ist. Der Ätzprozess kann mit Booleschen Operationen
zwischen impliziten OberĆächen simuliert werden. Abhängig von der Dicke
der geätzten Materialschicht entstehen numerische Artefakte. Es wird ein
spezieller Algorithmus zur Merkmalserkennung vorgestellt, der die Dicke
der Materialschichten analysiert und eine minimal erforderliche AuĆösung
berechnet, um die Bildung dieser numerischen Artefakte zu verhindern.

Der entwickelte Merkmalserkennungs-Algorithmus kann auch zur se-
lektiven Vereinfachung der simulierten Wafer-Topographie verwendet
werden. Daher wird ein Vereinfachungs-Algorithmus für OberĆächengitter
(d.h. explizite OberĆächen) vorgestellt, welcher die Merkmale der
OberĆäche berücksichtigt. Dieser Vereinfachungs-Algorithmus behält eine
hohe AuĆösung bei den Merkmalen der Topographie, während die Nicht-
Merkmale stärker vereinfacht werden. Es wird gezeigt, dass die vereinfachten
OberĆächengitter die Berechnungsperformanz von Flussberechnungen, welche
mit Monte Carlo Strahlenverfolgung simuliert wurden, um 15% verbessern.

iv

Acknowledgement

First, I want to thank my primary supervisor Josef Weinbub, who is the
head of the Christian Doppler Laboratory for High Performance Technology
Computer-Aided Design. His steady support and encouragement throughout
my studies provided lots of motivation for my research. Furthermore, I want
to thank him for his precise and timely feedback when I needed it. I also
want to thank my secondary supervisor Siegfried Selberherr for the excellent
working environment and room for discussion he has provided.

In this context, I want to thank Dr. Andreas Hössinger from Silvaco
Europe Ltd., who was the primary company partner representative within the
Christian Doppler Laboratory for High Performance Technology Computer-
Aided Design. His input led to several research ideas and productive
discussions with my colleagues.

Additional thanks go to the Institute for microelectronics (iµe) at TU
Wien, which provided a great work environment.

Research is a collaborative effort. I want to thus thank my colleagues at
the iµe and laboratory. Special thanks go to Luiz Felipe Aguinsky, Michael
Quell, and Florian Bogner, who gave me valuable feedback on different aspects
of this work. I also want to give my thanks to Paul Manstetten for the
numerous, often long, and sometimes infuriating discussions, which almost
always lead to good results. My gratitude also goes to Xaver Klemenschits,
Frâncio Rodrigues, Alexander Scharinger, Alexander ToiĆ, and Felipe Riberio
for our numerous, very productive discussions.

I want to thank my partner Julia Gutschireiter who always stood by my
side and supported me. Furthermore, I want to thank my dog Luci (my
light-bringer), who always supported me with her unconditional love when
I was frustrated, and gave me a reason to regularly leave my Ćat and enjoy
nature.

My thanks also go to my close friends, who helped me relax and clean my
head after long and intense work weeks. Special thanks go to Johannes Gams
and Milena Zečević, who helped me navigate these intense times.

Finally, I want to thank my parents, who always supported me during my
studies.

v

Contents

Abstract i

Kurzfassung iii

Acknowledgement v

Contents vi

List of Acronyms ix

List of Symbols x

1 Introduction 1
1.1 Research Goals . 4
1.2 Thesis Outline . 5

2 Surface Representations 6
2.1 Point Clouds . 7

2.1.1 Geometric Properties . 7
2.2 Surface Meshes . 8

2.2.1 Geometric Properties . 11
2.2.2 Boolean Operations between Surface Meshes 11

2.3 Level-Set Functions (Implicit Surfaces) 12
2.3.1 Geometric Properties . 13
2.3.2 Discretization . 14
2.3.3 Boolean Operations between Level-Set Functions 16

2.4 Switching Between Surface Representations 17
2.4.1 Generating Surface Meshes from Implicit Surfaces (Marching

Cubes) . 17
2.4.2 Generating Point Clouds from Implicit Surfaces 19
2.4.3 Generating an Implicit Surface from a Surface Mesh 20

3 Surface Classification Methods 24
3.1 Curvature of Continuous Surfaces . 24

3.1.1 2D Surface (Curves) . 24
3.1.2 3D Surface . 26

3.2 Curvature Calculation for Point Clouds 32

vi

3.3 Curvature Calculation for Surface Meshes 33
3.4 Curvature Calculation for Implicit Surfaces 36

3.4.1 General Formula . 37
3.4.2 Shape Operator . 38
3.4.3 Variation of Normal . 40
3.4.4 Curvature of 2D Implicit Surfaces (Curves) 40

3.5 Intuitive Approach to Surface ClassiĄcation 41

4 Topography Simulation and Simulation Platforms 43
4.1 Evolution of Surfaces (Advection) . 43

4.1.1 Solving the Level-Set Equation 44
4.1.2 Reconstructing the Signed Distance Function (Re-Distancing) 46
4.1.3 Velocity extension . 49

4.2 Surface Flux Calculation . 50
4.2.1 Constant Approach . 52
4.2.2 Bottom-Up Approach . 52
4.2.3 Top-Down Approach (Monte Carlo Ray Tracing) 53

4.3 Multi-Material Simulations . 54
4.4 Application of Surface Representations in Topography Simulations . . 56
4.5 Topography Simulation WorkĆow . 56
4.6 Computational Hardware . 58

4.6.1 Caches . 59
4.6.2 Parallelization . 60
4.6.3 Benchmark Systems . 61

4.7 Software Tools . 61

5 Fast Feature Detection for Level-Set Functions 63
5.1 Feature Detection . 64

5.1.1 Feature DeĄnition . 64
5.1.2 Algorithm . 66
5.1.3 Curvature Based Feature Detection for Level-Set Functions . . 66
5.1.4 Surface Normal Based Feature Detection 68
5.1.5 2D Feature Detection . 70

5.2 Comparison and Evaluation . 70
5.2.1 Geometries and Mean Curvature Values 71
5.2.2 Parameter Study . 75
5.2.3 Empirical Evaluation . 77
5.2.4 Parallel Run-Time and Speedup 79

5.3 Summary . 81

6 High Accuracy Hierarchical Grids for Topography Simulation 83
6.1 Hierarchical Grids . 85

6.1.1 Nesting . 86
6.1.2 Grid Generation . 87

6.2 Hierarchical Grid Placement . 89
6.2.1 Extended Topography Simulation WorkĆow 91

vii

6.3 Benchmark Example Selective Epitaxial Growth 91
6.3.1 Simulation Setup . 92
6.3.2 Example 1 . 94
6.3.3 Example 2 . 96

6.4 Summary . 99

7 Thin Material Layer Refinement for Etching Simulations 100
7.1 Etching Simulations with Boolean Operations 102
7.2 Hierarchical Grid Placement for Thin Material Layers 102

7.2.1 Calculating the Minimal Required Resolution 103
7.2.2 Detection of Affected Material Layers 104
7.2.3 Thin Layer ReĄnement Algorithm 105

7.3 Benchmark Example LED Pixel Fabrication 106
7.3.1 Simulation Setup . 106
7.3.2 Discussion . 107

7.4 Summary . 109

8 Surface Mesh Simplification for Efficient Top Down Flux
Calculation 110
8.1 Surface Mesh SimpliĄcation . 112

8.1.1 Edge Collapse Algorithm . 112
8.1.2 Lindstrom-Turk Algorithm . 113

8.2 Region SimpliĄcation Algorithm . 113
8.2.1 Feature Detection . 113
8.2.2 Mesh Partitioning and Extension of Regions 114

8.3 Comparison and Evaluation . 116
8.3.1 Distance to Original Geometry 116
8.3.2 SimpliĄcation Run-Time . 120
8.3.3 Flux Calculation and Monte Carlo Ray Tracing Run-Time . . 120

8.4 Summary . 121

9 Summary and Outlook 123

Bibliography 127

Own Publications 141

Curriculum Vitae 143

viii

List of Acronyms

2D two-dimensional
3D three-dimensional
AMR adaptive mesh reĄnement
CPU central processing unit
CSG constructive solid geometry
FinFET Ąn Ąeld-effect transistor
FMM fast marching method
GGA gate-all-around
HRLE hierarchical run length encoding
LED light-emitting diode
MOSFET metal-oxide-silicon Ąeld-effect transistor
PDE partial differential equation
SDF signed distance function
SEG selective epitaxial growth
SOC system on a chip
TCAD technology computer aided design
VSC Vienna scientiĄc cluster
VTK visualization toolkit

ix

List of Symbols

R real numbers
Z integers
N natural numbers
¶. . . ♢ a set
x⃗ a vector
x a point
∪ union
∩ intersection
A\B relative complement
∇f(x) gradient of a function
n⃗ normal vector−→
ab vector from point a to point b
∥ · ∥ L2-norm
i, j, k, l indices in Z

· dot product
× cross product
AT , a⃗T transposed matrix or vector
det(A) determinant of a matrix A
trace(A) trace of a matrix A
adj(A) adjoint matrix A
I identity matrix
min(X) minimum of set X
max(X) maximum of set X
conv(X) convex hull
simplex(X) simplex created by the points in X
ω, σ simplex
vi a vertex (1-simplex)
ei a edge (2-simplex)
fi a triangle (3-simplex)
SC a simplical complex
M a mesh
ϕ(x) a level-set function
∆x grid resolution
dE(x, y) Euclidean distance

x

d1(x, y) Manhattan distance
D+

x (ϕ) Ąnite forward difference
D−

x (ϕ) Ąnite backwards difference
Dx(ϕ) Ąnite central difference
Dxx(ϕ) second-order Ąnite central difference in same

coordinate direction
Dxy(ϕ) second-order Ąnite central difference in different

coordinate directions
Li ith layer of a sparse Ąeld level-set function
ηS(x) star stencil around point
ηP (x) plane stencil
ηB(x) box stencil
γ(s) regular parametrized curve
k(t) curvature of a regular parametrized curve in s
N Gauss map
κ1, κ2 principle curvatures
H mean curvature
K Gaussian curvature
N1(x) 1-ring neighborhood of x
E(P) efficiency of a patch
dH′(X, Y) one-sided Hausdorff distance
dH(X, Y) Hausdorff distance

xi

Chapter 1

Introduction

The rapid development of integrated semiconductor devices started with the metal-
oxide-silicon Ąeld-effect transistor (MOSFET) in the 1960s [1], which was used to
put 16 transistors on an integrated device. Over the decades, these integrated
devices became more and more complex up to the modern systems of today, such
as systems on a chip (SOC). These advancements in chip design are driven by the
constant miniaturization of individual devices, which today reached the single-digit
nanometer regime [2]. This observation of constant miniaturization is described by
MooreŠs law, which was coined by Gordon Moore in an article in 1965 [3].

The constant pressure to design and fabricate ever-shirking semiconductor
devices requires considerable and growing resources, ranging from research into
material science to optimizing device geometries [4]. To aid the research of
novel semiconductor device structures, so-called technology computer aided design
(TCAD) tools are utilized [5]. TCAD tools are software tools that simulate multiple
aspects of a semiconductor device and circuit design process. These tools allow
to minimize the costs of conventional experiments [4]. Figure 1.1 shows the three
branches of a TCAD toolchain: process TCAD, device TCAD, and circuit TCAD [5].
As is indicated in the Ągure, the three branches link with each other, allowing
iterative cycles of development. The general workĆow of designing or improving
a semiconductor device starts with process TCAD. During a process TCAD
simulation, the entire fabrication process is simulated, either considering an entire
wafer or individual devices, depending on the type of simulation. In subsequent
device TCAD simulation, the electrical characteristics of a semiconductor device
are simulated. Finally, during a circuit TCAD simulation, several semiconductor
devices are linked into an electrical circuit, and the behavior of an entire circuit is
simulated [5].

The focus of this thesis lies in the process TCAD branch. More precisely, this
work focuses on feature scale simulations of the device topography, and is in this
work referred to as topography simulation.

Process TCAD Device TCAD Circuit TCAD

Figure 1.1: Three main branches of a TCAD toolchain.

1

Example processes which are simulated by topography simulations cover deposition
steps that add materials to the simulated structure or, inversely, etching steps
that selectively remove materials [6, 7]. The considered topography-changing
processing steps are typically modeled with a time-dependent partial differential
equation (PDE) [8]. Furthermore, there are processing steps that do not change the
topography of the wafer but modify its electrical properties, like dopant implantation
and diffusion [9].

Historically, the electrical properties of the simulated semiconductor device
were the primary focus of process TCAD simulations. However, due to the
rapid miniaturization of semiconductor devices, non-planar structures have been
introduced like the Ąn Ąeld-effect transistor (FinFET), gate-all-around (GGA)
transistors or three-dimensional (3D) NAND Ćash memories [10]. For these
structures, the actual geometries of the devices grew signiĄcantly in importance [11],
which also puts more emphasis on the representation of the discretized topography
and also demands to switch from the previously sufficient two-dimensional (2D) to
3D simulations to uphold accuracy.

Figure 1.2 shows two examples of discretized topographies of modern
semiconductor devices. Obviously, the quality of the discretization directly relates to
the quality of the resulting topography. However, three additional aspects must be
considered: First, not all parts of the topography of a semiconductor device beneĄt
equally from a high-quality discretization (e.g., Ćat parts). Second, the higher the
discretization quality, the higher the impact on computational performance. Third,
the choice of discretization is important as it has to be tailored to the actual use
case, i.e., different types of subsequent numerical processing steps require a speciĄc
discretization for optimal execution, as will be discussed in the following.

Discretization strategies of surfaces can be broadly categorized into parametric,
implicit, and explicit representations [14]; this work focuses on the latter two.
Implicit representations deĄne a set of points (i.e., a surface) that satisĄes an
equation of the form f(x, y, z) = c, which is used to represent the topography of the
semiconductor device. In the here considered topography simulations utilizing the
so-called level-set method, the implicit function is expressed as a level-set function.

(a) Stacked nanosheet FET [12] (b) FinFET [13]

Figure 1.2: Examples of two discretized semiconductor device topographies.

2

Level-set functions are usually discretized on a grid that stores the distance to
the surface, because it allows for an efficient and robust handling of surface
deformations [8, 15]. Explicit representations directly describe points, or even entire
regions, of the discretized domain. An example of an explicit surface representation
is a surface mesh which discretizes a surface by covering it with interconnected
polygons (e.g., triangles) [16]. As indicated before, depending on the prerequisites
of a given simulation, different surface representations have beneĄts over others [17,
18].

The surfaces depicted in Figure 1.2 show that semiconductor device topographies
are characterized by relatively vast areas with little to no geometric variation (e.g.,
the Ćat areas of the topography) and comparably fewer parts with signiĄcant
variation (e.g., the corners of the topography). As discussed previously, the
parts of the device topography with signiĄcant geometric variation beneĄt from a
higher quality discretization, while the other parts do not, as it would introduce
unnecessary considerable computational overhead. These observations motivate
the use of a domain discretization that adaptively increases the quality of the
discretization depending on the geometric variation of the topography [19, 20, 21, 22,
23, 24]. A typical adaptive data structure used in process TCAD is a hierarchical
grid. Hierarchical grids consist of a base grid and a plethora of nested grids at
various resolution levels to realize a locally higher resolution of the discretization.
These nested grids can be manually or automatically placed inside the simulation
domain. As the topography changes during the simulation (e.g., simulating the
gradual etching of a trench), the nested grids need to be continuously adapted,
requiring a metric which allows for measuring the topography variation.

A well-known metric, originating from the Ąeld of differential geometry, is the
surface curvature. The surface curvature measures the variation of a surface in a
small neighborhood around a point on the surface [25, 26, 27, 28, 29]. The surface
curvature is thus in principle ideal for the automatic classiĄcation of parts of the
surface. The concept of the surface curvature of a differentiable surface can be
discretized to encompass discrete surfaces, which allows this concept to be used in
the here considered context. The surface curvature can be used to develop geometry-
aware algorithms that allow to focus computational efforts on parts of a discretized
surface that beneĄt from a higher quality of the discretization (i.e., features).

On the one hand these geometry-aware algorithms can be used to increase the
resolution of the simulation domain at parts with signiĄcant geometric variation, on
the other hand this information about the surface can also be used to decrease the
resolution of parts of the simulation domain with little to no geometric variation. An
important simulation step during a topography simulation is the so-called surface
Ćux calculation. The surface Ćux describes how much of a reactant (e.g., an etchant)
interacts with the surface during a simulation step. One strategy to estimate
the surface Ćux is Monte Carlo ray tracing [30]. Monte Carlo ray tracing can
be efficiently performed on surface meshes which can be extracted from level-set
functions. However, these contain an impractical amount of triangles in Ćat regions
of the topography, which increases the run-time of Monte Carlo ray tracing.

3

Therefore, surface mesh simpliĄcation algorithms are used to reduce the number of
triangles to improve performance.

Furthermore, the adaptation of the resolution of the simulation domain may not
only be guided by geometric features of the topography, but may also be guided by
other metrics. Many semiconductor devices like 3D NAND Ćash memories or light-
emitting diodes (LEDs) are fabricated by depositing thin material layers on top of
each other [31, 32]. These stacked thin material layers are affected by subsequent
processing steps like etching processes that create patterns on the device topography,
or separates individual devices that have been fabricated on the same wafer. During
the simulation of etching process steps on thin material layers, numerical artifacts
occur due to an inadequate resolution of the simulation domain, which again can
be mitigated by the use of hierarchical grids.

1.1 Research Goals

The primary research goal of this work is the formulation of a general algorithm
that automatically detects parts of the wafer surface that beneĄt from a higher
discretization of the simulation domain. This general algorithm is then used to,
on the one hand, guide a hierarchical grid placement algorithm to selectively
increase the resolution of the simulation domain at critical points to improve
simulation performance while minimizing computational overhead. On the other
hand, this algorithm is used to selectively coarsen surface meshes to maintain a
higher resolution at critical parts of the device topography. The coarsened meshes
are then used to accelerate surface Ćux calculations required to accurately simulate
the effects of speciĄc processing steps on the wafer surface. Furthermore, different
methods of calculating the curvatures (i.e., the metric used to analyze the wafer
surface) on level-set functions are investigated, and two complementary methods
(i.e., performance focus, numerical accuracy focus) are obtained. Another important
goal is formulating a specialized feature detection algorithm for thin material layers
affected by an etching simulation.

Research Setting

The research presented in this work was conducted within the scope of the
Christian Doppler Laboratory for High Performance TCAD. The Christian Doppler
Association funds cooperation between companies and research institutions pursuing
application-orientated basic research. In this case, cooperation was established
between the Institute for Microelectronics at the TU Wien and Silvaco Inc., a
company developing and providing electronic device automation and TCAD software
tools. The computational resources of the Vienna ScientiĄc Cluster have been
utilized during this work.

4

1.2 Thesis Outline

Chapter 2 gives a theoretical overview and reviews the discrete surface
representations used in this thesis. Surface representations are deĄned, and
approaches to calculate geometric properties for each surface presentation are
introduced. Furthermore, it is discussed how a surface that is given in one
representation can be transformed into another representation.

Chapter 3 introduces the mathematical concept of curvatures of a differentiable
surface and their discretization for different surface representations. Several methods
for calculating the surface curvature of discrete surfaces are reviewed. The surface
curvatures are the primary metric that is used throughout this thesis to detect
features of the considered geometries.

Chapter 4 reviews a typical topography simulation workĆow as a frame of
reference. It is discussed how the surface representations introduced in Chapter 2 are
used during a topography simulation. The representation and evolution of different
materials are introduced. Moreover, various strategies for surface Ćux calculations
are presented. In the last part of this chapter, a brief overview of the used computer
hardware and software tools in this thesis is given.

Chapter 5 introduces a new feature detection algorithm which is based on the
surface curvatures. Different strategies for calculating the surface curvature on level-
set functions are discussed. The investigation focuses on the qualitative results of
the feature detection on the one hand and on the run-time on the other.

In Chapter 6, it is shown how the hierarchical grid placement is directed by
the algorithm presented in Chapter 5. Furthermore, it is demonstrated how the
performance of a practically relevant epitaxial growth simulation is improved.

Chapter 7 introduces a new algorithm for detecting features that occur when
performing Boolean operations with thin material layers. Additionally, this
algorithm is able to suggest a required minimal resolution to represent thin material
layers after an etching simulation properly.

Chapter 8 introduces a new surface mesh simpliĄcation algorithm. This
algorithm also uses the feature detection algorithm presented in Chapter 5 to guide
the simpliĄcation process. The performance of surface meshes simpliĄed with the
algorithm is investigated in the context of Ćux calculation with Monte Carlo ray
tracing.

Finally, Chapter 9 concludes with a summary of this thesis and presents ideas
for future research.

5

Chapter 2

Surface Representations

Many problems in engineering investigate the properties or deformation of surfaces.
For example, the change of the position of a surface when a physical process deforms
it, on what parts of a surface materials accumulate, or how much of the surface area
is exposed to a particle source [33, 34, 35]; the interaction at the interfaces of
different liquids, gasses, and solid boundaries during a multiphase Ćow [36, 37];
or the detection of objects in the vicinity of a laser scanner, that creates real time
scans of the area around the scanner [38, 39, 40].

For many of these aforementioned engineering problems mathematical models
exist that offer solution strategies. One fundamental aspect required to solve
these engineering problems is the representation of the investigated surfaces.
Most surfaces originating from real world geometries that are used in engineering
applications are arbitrary, and thus, do not have a readily available differentiable
mathematical description. Thus, the surfaces that describe these geometries have
to be discretized to numerically apply these mathematical models. An example
of three surface representations (i.e., point clouds, surface meshes, and implicit
surfaces) used in this work, are shown in Figure 2.1.

(a) Point Cloud (b) Surface Mesh (c) Implicit Surface

Figure 2.1: Example of a 2D trench geometry using three different surface representations.

6

Furthermore, some surface representations offer certain advantages depending on
the mathematical models used in a simulation. Certain surface Ćux calculations use
an explicit surface representations [18], since there exist powerful and performant
algorithms to accomplish these tasks [41]. On the other hand, the merging of two
different surfaces is better handled with an implicit surface representation [17].

In this chapter the discrete surface representations used in this thesis are formally
deĄned. It is discussed how one basic geometric property (i.e., the normal vector)
of the discrete surfaces can be deĄned. Additionally, methods of switching between
the discrete surface representations are described.

2.1 Point Clouds

One of the most natural ways to represent a surface in a domain (e.g., X ⊂ R
n)

is to deĄne a coordinate system and then determine a set of points relative to this
coordinate system. It is then assumed that these points describe the desired surface.
The formalization of this intuition is achieved through the deĄnition of a point cloud
as follows [42]:

2.1.1 Definition (Point Cloud) A set of points xi with i = 1, . . . , k embedded
in an n-dimensional Cartesian space R

n, is called a point cloud, if the points are
assumed to have some kind of spatial coherence. Additionally, it is assumed that
the points in the point cloud are sampled from a piecewise continuous surface,
thus a normal vector and a tangent plane exist.

The term cloud reĆects the fact that a priori the relation between the points is not
know. Point clouds usually originate from measurement data obtained from real
world objects generated by, e.g., laser scanners [43]. However, point clouds can also
be generated from other discrete surface representations, which is discussed in detail
in Section 2.4.2.

2.1.1 Geometric Properties

As already mentioned in DeĄnition 2.1.1, the spatial coherence of the points in
the point cloud is only assumed and not explicit. Thus, before determining the
geometric properties of a speciĄc point xi in a point cloud a suitable neighborhood
Mi = ¶xi, xi1

, · · · , xim
♢ of this point has to be determined. There are several

methods of determining a neighborhood of a point xi in a point cloud, for example,
a K-d-tree can be spanned over the entire domain [44]. After a neighborhood has
been found a quadratic optimization problem is solved. The optimization problem
approximates the tangent plane of the surface by calculating a plane that minimizes
the distance from the plane to all points in the neighborhood Mi. So, the normal
vector of the point xi is approximated by the normal vector of the plane created
by the optimization problem [45, 46]. Figure 2.2 shows an illustration of the
approximation of the normal vector of a 2D point cloud. The calculation of the
curvatures of a point cloud is discussed in Section 3.2.

7

x0

n⃗
Point Cloud

Neighborhood of x0

Tangent Plane

Figure 2.2: Illustration of the approximation of the surface normal of a surface represented by a
point cloud. The tangent plane minimizes the distance to all points in the neighborhood.

The previously discussed approach of approximating the surface normal of
a point cloud suggests that handling point clouds is computationally expensive,
since both required steps (i.e., determining a neighborhood for each point in the
point cloud and solving the quadratic optimization problem) are computationally
demanding steps. However, when a point cloud is generated from an implicit surface
(see Section 2.4.2) it is possible to maintain information about the spatial relation
between the points. Furthermore, geometric properties of the implicit surface, e.g.,
the normal vector or the surface curvatures, can be preserved when a point cloud
is generated from an implicit function. Thus, computationally expensive steps such
as Ąnding the neighborhood and solving a quadratic optimization problem can be
substituted by the comparably cheap calculations on the implicit surface.

2.2 Surface Meshes

One big disadvantage of point clouds is the lack of explicit information of the
position of points relative to each other. To obtain a surface representation that
also stores information about its local neighborhood only considering points in
space is not sufficient. Thus, a surface representation is needed that discretely
represents a complex surface as a union of simple elements. The meaning of the
term simple element is discussed further down in this section. Intuitively simple
elements are the simplest geometries that describe a part of a surface (e.g., a line in
2D). Furthermore, these elements have to be consistently connected to each other,
such that there are no partially connected (dangling) elements on the surface. A set
of elements that fulĄlls these properties is called a mesh. Especially the condition
about the consistent connectivity of the elements is important since otherwise the
mesh would not represent a continuous surface and the deĄnition of mathematical
surface properties would not be possible.

The elements used to describe an n dimensional mesh are a combination of
1 . . . n − 1 dimensional subsets of Rn. Before these elements can formally be deĄned
some mathematical terminology has to be introduced [47, 48].

8

2.2.2 Definition (Affine Combination) Let X = ¶x1, x2, . . . , xk♢ ⊂ R
n be

a set of points in R
n, then the linear combination

k

i=1

ωixi with ωi ∈ R and
k

i=1

ωi = 1

is called an affine combination of the set of points X.
A point xi is called affinely independent of X if there exists no affine combination
of xi in X.

2.2.3 Definition (Convex Set) A set X ⊂ R
n is called convex if it fulĄlls

λx1 + (1 − λ)x2 ∈ X for every two points x1, x2 ∈ X and all 0 ≤ λ ≤ 1.

2.2.4 Definition (Convex Hull) The convex hull of a set X ⊂ R
n is deĄned

as

conv(X) :=
X⊂K,K is convex

K.

The Convex hull of a set of points X describes the smallest convex set that contains
all points of X. With these deĄnitions the most basic mesh elements can be deĄned
as follows:

2.2.5 Definition (k-simplex) Let X = ¶x1, x2, . . . , xk+1♢ be a set of affinely
independent points then

simplex(X) = conv(X)

is called a k-simplex. A k-simplex has dimension k.

A k-simplex ω contains all 1 . . . k −1 simplices of the points used to create ω. Thus,
each k-simplex of a set of n points can be described as its own object.

2.2.6 Definition (Face) Let Y be a non-empty subset of points in X then,
the k-simplex σ = simplex(Y) is called a face; σ is a face of σ. A proper face of
σ is any face expect σ.

When only the 1 . . . k − 1 simplices are discussed they are called a facet:

2.2.7 Definition (Facet) Let σ be a face of a set of points X then, all (k-1)
faces of σ are the facets of σ. Every k-simplex has k+1 facets.

A 0-simplex (vertex) is equivalent to a point in space.

9

The smallest faces needed to represent a surface are 1-simplices (edges) for 2D
surfaces and 2-simplices (triangles) for 3D surfaces. Figure 2.3 shows examples
for the Ąrst three types of simplices. To consistently represent a 3D surface with
2-simplices certain requirements have to be fulĄlled [47].

2.2.8 Definition (Simplical Complex) A Ąnite set of simplices is called a
simplical complex SC if

1. SC contains every face of every simplex in SC.
2. The intersection σ ∩ ω of any two simplices σ, ω ∈ SC is empty, or a face

of σ and ω.

2.2.9 Definition (Triangulation) Let X be a closed set of points in R
n. Then

a simplical complex T is called a triangulation of X if
1. X is the set of vertices in SC.
2. conv(X) = ∪σ∈Tσ.

There are several deĄnitions of meshes in literature, for this work a mesh is
considered to be a special triangulation of a closed domain. The deĄnition of
a triangulation is expanded to preserve information about the boundary of the
domain. Consider for example a domain that represents the geometry of a cube
that has a hole, when this geometry is triangulated the holes at the bottom and
top of the cube would be Ąlled with elements. Thus, to gain a triangulation that
maintains the original geometry (i.e., the hole in the cube) some elements from the
triangulation have to be removed. The purpose of a mesh is to preserve the explicit
information of the domain while constructing a triangulation [16].

2.2.10 Definition ((Conforming) Mesh) Let Ω be a closed domain in R
n,

and σ a simplex, then M is called a mesh of X if
1. Ω = ˚∪σ∈Mσ.
2. The interior of every simplex in M is non-empty.
3. The intersection of the interior of two faces in M is empty, or a face

v1

(a) 0-simplex (Vertex)

e1

v1

v2

(b) 1-simplex (Edge)

f1

e1

e2

e3

v1

v2

v3

(c) 2-simplex (Triangle)

Figure 2.3: Example of the k-simplices considered in this work.

10

The last condition in the previous deĄnition guarantees that the faces of the mesh
do not overlap with each other. Note that the terms mesh and surface mesh are
used interchangeably in this work.

Mesh Quality

The shape of triangles is important for the quality, and robustness of numerical
simulations using 3D surface meshes [47]. There are several metrics that measure
the quality of triangles [49]. In general, equilateral triangles tend to produce the
best results in numerical simulations. Thus, the smaller a single angle of a triangle
gets, the worse the results of the numerical simulation. Triangles with one very
obtuse angle (i.e., α > 100 degree) or equivalently one or two very acute angles (i.e.,
α < 40 degree) are called needles. Triangles with a bad quality are particularly
problematic for numerical simulations, and a single bad quality triangle may cause
the solution of a numerical simulation to diverge [16, 50].

2.2.1 Geometric Properties

A vertex of a surface mesh cannot have a uniquely deĄned surface normal since in
2D a vertex connects 2 edges which normals may point in different directions. The
normal of an edge

−→
ab with vertices a = (a1, a2), b = (b1, b2) of a 2D mesh can be

calculated by deĄning a∗ = a2 − a1 and b∗ = b2 − b1

n⃗ =
(−b∗, a∗)

∥(−b∗, a∗)∥ . (2.1)

These calculations can be interpreted in the following way: the normal vector of the
edge is perpendicular to the tangent line, therefore, the normal vector is equivalent
to the normalized tangent line (i.e., the edge) rotated by 90 degrees. On a 3D mesh
a vertex is part of at least three edges and faces, and thus, again the surface normal
is not uniquely deĄned. Furthermore, a similar problem effects the edges of a 3D
mesh, since, each edge is part of two faces. The surface normal of a face (i.e., a
triangle) with vertices a, b, c and edges

−→
ab,

−→
bc,

−→
ca is easily calculated with the cross

product

n⃗ =
−→
ab × −→

bc

∥−→
ab × −→

bc∥
. (2.2)

A similar discussion to the surface normal is required to deĄne the surface curvatures
of a mesh. On a mesh the surface curvatures can only be reasonably deĄned at
vertices, since on edges the surface can only bend in one direction, and triangles are
Ćat, thus they have a curvature of 0. The calculation of the surface curvatures of
the vertices of a mesh is discussed in Section 3.3.

2.2.2 Boolean Operations between Surface Meshes

Constructive solid geometry (CSG) is a technique which allows for the creation
of complex geometries out of simple geometries utilizing Boolean operations [51].

11

This technique can, for example, be used to create the geometry of a hammer by
combining a cylinder with a cube. Performing a Boolean operation between two
surface meshes requires the following steps [52]:

(a) Calculate the bounding boxes of the two meshes
(b) Use the bounding boxes to identify where the meshes intersect
(c) Identify faces that are affected by the Boolean operation
(d) Determine the domains that are changed by the Boolean operation
(e) Re-triangulate the domains.

Several of the above described steps are computationally expensive. Thus, in
performance oriented applications, if possible, it should be avoided to perform CSG
on surface meshes. In Sections 2.3.3 and 2.4.3 an efficient strategy for CSG using
implicit surfaces is discussed [53].

2.3 Level-Set Functions (Implicit Surfaces)

Surface meshes allow to effectively describe surfaces and simultaneously allow
easy access to neighboring elements of the surface. Although, as discussed in
Section 2.2.2, topographical changes in a surface mesh require special considerations
(e.g., Boolean operations on surface meshes). A surface representation that naturally
handles topographical changes without special considerations, and still maintains
the easy access to neighboring elements of the surface is an implicit representation
of the surface [17].

An implicit surface can be motivated by considering a soap bubble, the soap
Ąlm separates the inside of the soap bubble from the outside. Thus, the surface of
the soap bubble is described by the set of points that separates the inside of the
soap bubble from the outside. Implicit surfaces describe a surface by constructing
an interface that splits a domain (e.g., S ⊂ R

n) into an inside and outside, thereby,
separating the domain. The level-set method introduced by Osher and Sethian
utilizes implicit surfaces for a robust simulation of advancing fronts [54].

In an open domain Ω ⊂ R
n a subset S ⊂ Ω that describes a curve (2D) or a

surface (3D), splits the domain into an inside Ω− ⊂ Ω and an outside Ω+ ⊂ Ω\Ω−.
The subset that splits the domain into the inside and the outside is called the
interface (i.e., S). The interface can be described by an iso-contour of a function ϕ
deĄned in Ω.

2.3.11 Definition (Level-Set function) A continuous function ϕ(x) that
fulĄlls

ϕ(x) =

> 0 x ∈ Ω+

= 0 x ∈ S

< 0 x ∈ Ω−

,

is called a level-set function.

In literature such functions are sometimes also referred to as signed distance
functions.

12

2.3.12 Definition (Zero Level-Set) The set of points deĄned by

S = ¶x ∈ Ω : ϕ(x) = 0♢,

is called the zero level-set.

It should be mentioned here that the choice of negative values for the inside and
positive values for the outside is a common arbitrary convention. Furthermore, any
other value than zero could be chosen to deĄne the interface of the level-set function.
However, choosing 0 allows for a straightforward distinction between the inside and
the outside of the domain, by checking the sign of the level-set function. In this
work, 2D and 3D level-set functions are considered. An example of a 2D level-set
function with the interface S is shown in Figure 2.4.

2.3.1 Geometric Properties

If the gradient of the level-set function ϕ exists it is given by

∇ϕ =
∂ϕ

∂x
,
∂ϕ

∂y
,
∂ϕ

∂z
, (2.3)

this expression can be naturally reduced to 2 dimensions. The gradient is orthogonal
to the iso-contours of the level-set function ϕ [15]. Therefore, normalizing the
gradient of the zero level-set yields the normal vector of the surface

n⃗ =
∇ϕ

∥∇ϕ∥ . (2.4)

Furthermore, this geometric interpretation motivates the investigation of other
geometric properties like the surface curvatures of the zero level-set, which is
discussed in Section 3.4.

ϕ < 0

ϕ > 0

S : ϕ = 0

Figure 2.4: Schematic of a 2D level-set function with the zero level-set S.

13

2.3.2 Discretization

Modern computer systems only have a limited amount of resources, therefore, it
is unfeasible to store every value of an implicit function ϕ(x). In the level-set
method the level-set function ϕ(x) is discretized on a grid with grid resolutions
(∆x, ∆y, ∆z). When the resolution is equal in all coordinate directions and the
coordinate directions are orthogonal the grid is called a regular grid (or Cartesian
grid) with grid resolution ∆x. The level-set functions considered here are always
discretized on a regular grid. In this work the lattice points of the regular grid are
indexed as integers and are called grid points. The lines that pass through all grid
points when one coordinate is Ąxed are called grid lines. Another important concept
for discretized level-set functions is the grid cell.

2.3.13 Definition (Grid Cell) Let g = (i, j) ∈ Z
2 be a grid point. Then,

the volume enclosed by

[(i − 0.5)∆x, (i + 0.5)∆x] × [(j − 0.5)∆x, (j + 0.5)∆x]

is called a grid cell.

This deĄnition can naturally be adapted for 3D grid cells.
The values of the level-set function ϕ(g) on the grid points g = (i, j) ∈ Z

2 are
referred to as the ϕ-values. The ϕ-values describe the distance from a grid point to
the zero level-set. Thus, the level-set function ϕ(g) can be written as

ϕ(g) =

+d(S, g) g ∈ Ω+

0 g ∈ S

−d(S, g) g ∈ Ω−,

(2.5)

where d(p, q), p, q ∈ R
n is a metric. The level-set method initially presented by

Osher and Sethian uses the Euclidean distance as the metric [54]:

dE(p, q) =
n

i=1

(pi − qi)2, (2.6)

with p, q ∈ R
n.

However, this is not the only metric that can be used to discretize the level-set
function. Whitaker proposed a level-set framework that uses the Manhattan norm
(also known as the taxicab metric) to discretize the level-set function [55]

d1(p, q) =
n

i=1

♣pi − qi♣, (2.7)

where again p, q ∈ R
n.

Furthermore, since not all ϕ-values of the level-set function have to be known all
the time, so-called narrow band techniques have been introduced [56]. The idea of
the narrow band is to only consider a subset of ϕ-values that is sufficient to describe
the surface, and to perform calculations to evolve the zero level-set. An integer
multiple of the grid resolution i∆x is called the width of the narrow band, which
characterizes the subset of ϕ-values in the narrow band.

14

Euclidean Normalization

When the Euclidean distance is used to describe the level-set function (see
Figure 2.5a) it fulĄlls the Eikonal equation with F (x) = 1 [15]. In an open domain
Ω ⊂ R

n the Eikonal equation can be formulated as follows [57]

∥∇ϕ(x)∥ = F (x), ∀x ∈ Ω

ϕ(x) = G(x), ∀x ∈ S.
(2.8)

This equation describes a wave front, where G(x) describes the initial values of the
front, emerging form S that travels with a speed of 1

F (x)
into the domain Ω. The

speed has to be positive since otherwise the wave would not propagate into the
entire domain, and the problem would not be well-deĄned.

Manhattan Normalization (Sparse Field Method)

Considering Equation 2.5 every point in R
n has a distance to the zero level-set.

When the level-set function is discretized (see Equation 2.5) only a certain subset of
these points is used. This subset of points can be further reduced by the following
considerations. A level-set function that passes through a grid cell intersects at least
two grid lines, so the distance to the zero level-set can be described by the distance to
these intersections (i.e., the Manhattan distance). So the zero level-set is described
by the shortest grid line intersection to the adjacent grid point. Furthermore, the
zero level-set is the interface between the inside and the outside of a volume. Thus,
it is sufficient to only store the shortest distance on one side of the level-set function,
except for the rare case in which the level-set function lies directly on a grid point
and has a value of 0. Figure 2.5b shows an illustration of this deliberation.

∆x

(a) Euclidean normalization

∆x

Grid Points
Active Grid Points
Stored Distance
Level-Set Function

(b) Manhattan normalization

Figure 2.5: Illustration of the difference between a level-set function normalized with the
Euclidean and Manhattan metric.

15

Which leads to the following description of the level-set function [55, 58]

ϕLi(x) =

Li = ¶x : i − 0.5 ≤ ϕ(x) < i + 0.5♢, i < 0

Li = ¶x : −0.5 ≤ ϕ(x) ≤ 0.5♢, i = 0

Li = ¶x : i − 0.5 < ϕ(x) ≤ i + 0.5♢, i > 0

. (2.9)

Where the level-set values are normalized to a unit cell of length 1. This
representation of the level-set function is also referred to as the sparse Ąeld
representation. However, one drawback of using the Manhattan metric is that the
level-set function no longer fulĄlls the Eikonal equation (see Equation 4.12). Thus,
♣∇ϕ(x)♣ = 1 can no longer be assumed in the entire domain Ω.

Difference between Manhattan and Euclidean
Normalization

The primary difference between Euclidean and Manhattan normalized level-sets is
the way the signed distance function is constructed (see Section 4.1.2). When the
Manhattan normalization is used it is sufficient to only store grid points at one side
of the zero level-set (i.e., on the inside or the outside). This is also possible when
the Euclidean normalization is used, however, this negatively impacts the quality
of the ϕ-values in the entire domain. Thus, when the Euclidean normalization is
used a narrow band around the interface is stored. Figure 2.5 shows an illustration
of a discretized level-set function in both normalizations. This example shows that
a Manhattan normalized level-set function has to store signiĄcantly fewer ϕ-values
of grid points to describe the zero level-set. Naturally, a Manhattan normalized
level-set has a bigger error in the numerical approximation. However, this error is
small enough so that it does not signiĄcantly affect the simulation results [55].

2.3.3 Boolean Operations between Level-Set Functions

Boolean operations between implicit surfaces (e.g., level-set functions) are described
by the following functions [8]

Union: ϕA ∪ ϕB = min(ϕA, ϕB) (2.10)

Intersection: ϕA ∩ ϕB = max(ϕA, ϕB) (2.11)

Relative Complement: ϕA\ϕB = max(ϕB, −ϕA). (2.12)

Figure 2.6 shows an illustration of each of the Boolean operation between two level-
set functions, which can be interpreted as Boolean operations between two volumes.
The big advantage of performing Boolean operations with level-set functions is its
performance, since the information about the inside and the outside of the volumes
that are part of the Boolean operation is already encoded into the discretization,
Boolean operations on level-set functions only need to iterate over the points of the
level-set functions and compare ϕ-values [59, 60]. After a Boolean operation has
been performed the signed distances of the resulting level-set functions may not
be accurate anymore, so the signed distance function has to be reconstructed (see
Section 4.1.2).

16

ϕ χ

Ω

ψ

Ω

ψ

Ω

ψ

Ω

ϕ ∪ χ
ϕ ∩ χ ϕ\χ

Figure 2.6: Illustration of the Boolean operations union, intersection, and relative complement
between two level-set functions and the resulting level-set function. Adapted from Lenz et al., Solid

State Electron. 191, (2023), p. 108258 [61], © The Authors, licensed under the CC BY-NC-ND
4.0 License, https://creativecommons.org/licenses/by-nc-nd/4.0/.

2.4 Switching Between Surface Representations

During a single simulation step several different mathematical models may be
utilized to achieve the Ąnal result of this simulation step. These mathematical
models can require different surface representations to achieve complementary goals
(e.g., higher performance and more robust results). So a discussion on how
to switch between different surface representations used during process TCAD
simulations is presented in this section. Figure 2.7, shows the three discussed surface
representations and the in this work discussed conversion between them.

2.4.1 Generating Surface Meshes from Implicit Surfaces
(Marching Cubes)

A widely used and performant approach to extract a surface mesh from an implicitly
deĄned surface is the marching cubes algorithm [62]. Depending on the dimension
of the implicit surface the algorithm is also referred to as the marching squares
algorithm (i.e., for 2D implicit surfaces) [63].

Point Cloud Implicit Surface Surface Mesh

Figure 2.7: The arrows represent the conversions between the surface representations relevant
for topography simulations.

17

https://creativecommons.org/licenses/by-nc-nd/4.0/.

The marching cubes algorithm iterates over all chunks (i.e., the 4, or 8 grid points
making up the corners of a square, or a cube) of the implicitly deĄned function. If
at least one sign of the ϕ-values making up the chunk is not equal to the others
at least one face of the surface lies within the chunk. There are 24 = 16 possible
intersections in 2D and 28 = 256 in 3D, which can be reduced to 4, and 14, cases
respectively, through the exploitation of symmetries. A lookup table is created that
stores all possible grid intersection. Figure 2.8 shows the element of the lookup table
for 2D surfaces, and Figure 2.9 shows some examples for 3D surfaces. The required
surface elements for the current chunk are retrieved from the lookup table and added
to the surface mesh. An example of this process on a 2D level-set function is shown
in Figure 2.10.

(a) Case: 1 (b) Case: 2 (c) Case: 3 (d) Case: 4a (e) Case: 4b

Figure 2.8: All possible chunks intersections, except for rotations, of the marching squares
algorithm. The red vertices indicate the grid points where the signs of the implicit function
change.

Figure 2.9: Triangulation examples of four chunks created by the marching cubes algorithm.
The red vertices indicate the grid points where the signs of the implicit function change.

− − + +

+ − + +

− + − +

2 3 1

4b 4a 2

Figure 2.10: Example of the marching squares algorithm operating on a 2D level-set function.
The signs of the ϕ-values of each chunk are checked and the corresponding triangulation is inserted.
The numbers inside the chunks relate to the possible triangulation shown in Figure 2.8.

18

Figure 2.11 shows a 3D surface mesh extracted with the marching cubes
algorithm. This mesh has several bad mesh elements (see red boxes). Furthermore,
the marching cubes algorithm works on the chunks of the grid thus, it creates several
mesh elements that may not be required to represent the geometry. In Chapter 8 a
surface simpliĄcation algorithm is presented that addresses the problem of surface
elements that do not contribute information about the geometry.

2.4.2 Generating Point Clouds from Implicit Surfaces

A level-set function can easily be converted into a point cloud, since due to the
construction of the level-set function we know the distance from each grid point to
the zero level-set. When the level-set function satisĄes the Eikonal equation (see
Equation 4.12) then the closest point on the zero level-set (xS) can be calculated
with [8]

xS = x − ϕ(x)∥∇(ϕ(x))∥, (2.13)

where ϕ(x) denotes the ϕ-value of the level-set function on the grid point x.
For level-set functions using the Manhattan normalization Equation 2.13 should

not directly be used to create an explicit point cloud. A level-set function utilizing
the Manhattan normalization only stores the distance to the intersection point
between the level-set function and the closest Cartesian grid line (see Figure 2.5).
Thus, a different factor has to be used in Equation 2.13 that takes into account
the different normalization of the ϕ-values. Figure 2.12 shows an illustration of the
calculation of this factor. To calculate the angle α the Cartesian coordinate direction
of the grid line intersection has to be calculated, which is achieved by checking the
adjacent grid points. The angle α can now be determined by calculating the inner
product of the surface normal in the grid point x and the previously calculated
coordinate direction. Finally, the distance to the surface (dn) can be calculated
with the relation between the trigonometric functions and the right triangle:

dn = cos(α)ϕ(x). (2.14)

Figure 2.11: Surface mesh extracted with the marching cubes algorithm from the fabrication
simulation of a FinFET. The red boxes indicate parts of the surface with bad mesh elements.

19

α

∇ϕ(x)

d
n

ϕ(x)

Figure 2.12: Illustration of the normal distance calculation in a Sparse Field level-set.

The point on the surface of the implicit surface can be calculated by using
Equation 2.13 and substituting dn for ϕ(x). A performance-focused approximation
to the calculations described above is to use the maximum coordinate value of
the normal vector max(∥∇(ϕ(x))∥). The normal vector of the implicit surface is
required to compute the point cloud, in both cases no additional calculations or
memory accesses have to be performed.

One big advantage of point clouds generated from implicit surfaces is that there
still exists a relation between a point on the explicit surface (i.e., the point cloud)
and the associated grid point of the implicit surface. As long as the topography
of the point cloud is not changed, this association allows for a direct mapping of
calculated values on the point cloud (e.g., surface Ćux originating from Monte Carlo
ray tracing simulations) back to the grid points of the level-set function.

2.4.3 Generating an Implicit Surface from a Surface Mesh

Another important conversion is the conversion from surface meshes to implicit
surfaces. Basic geometries are straightforward to describe as surface meshes and
Boolean operations are easily performed with implicit surfaces. Thus, creating initial
geometries using CSG is realized by creating surface meshes of simple geometries
(e.g., planes or cuboids) and subsequently convert them into implicit surfaces to
perform the Boolean operations. The idea of the conversion for Manhattan and
Euclidean normalized level sets is similar. However, the implementation differs
quite signiĄcantly, so the two methods are discussed separately.

Euclidean Normalization

The conversion algorithm for Euclidean normalized level-set functions starts by
calculating a bounding box of the surface mesh. Each grid point in the bounding
box is visited and the distance to the surface mesh is calculated.

20

If the normal distance to the closest surface mesh face is smaller than a desired
threshold parameter (e.g., the thickness of the narrow band) the distance to the
surface mesh is then inserted into the level-set data structure at the grid point,
otherwise the next grid point is considered. The distance calculation differs
depending on the dimension of the surface mesh. Figure 2.13 shows the three cases
excluding reĆections of how a point can lie in relation to a 2D surface segment (e.g.,
an edge) between P1 and P2. In case 1 the projection of the point P0 onto the line
created by the line segment lies closest to P1. Thus, the shortest normal distance
to the line segment is the distance to P1. The same argument is used for case 2
concerning the point P2. When the projection of P0 lies directly on the line segment
the normal distance is given by the distance between the intersection point and P0.

For 3D surface meshes a more complex approach is required [64]. Consider the
triangle created by the points P1, P2, and P3. First a rotation and translation
matrix is calculated that rotates one point of the triangle (e.g., P1) into the origin
and the other two points into the Y Z-plane. This matrix is then used to also
transform the point P0. Thus, the distance from P0 to the triangle is given by the
x-coordinate of P0 (see Figure 2.14), if the projection point lies inside the triangle.
Otherwise, it has to be determined which edge or vertex is closest to the projection
of P0 and the distance to vertex or edge intersection has to be calculated.

P1

P2

P0

(a) Case: 1

P1

P2

P0

(b) Case: 2

P1

P2

P0

(c) Case: 3

Figure 2.13: Illustration of the three cases a point can lie relative to a line segment, excluding
reĆections.

P1

P2

P3

P0

n⃗

P1

P2

P3

P0

x

y

z

(0,0,0)

Rotation

Figure 2.14: Illustration of calculating the normal distance from a point to a triangle in 3D.

21

The sign of the point P0 (e.g., if it lies on the inside or outside of the volume) is
determined by calculating the normal vector n⃗ of the triangle and the point P1 to
calculate the sign of:

n⃗ · (P0 − P1).

If the sign is positive P0 lies on the outside, when the sign is 0 the point lies directly
on the face, and on the inside otherwise.

Manhattan Normalization

In a level-set framework that uses the Manhattan distance the distance calculation
has to be adapted. It has to be checked if the grid lines in each coordinate direction
intersect the faces of the surface mesh. The algorithm for Manhattan normalized
level-set functions is an adaptation of the algorithm used for Euclidean level-sets. It
is sufficient to calculate a bounding box for each face of the surface mesh and then
determine all grid line intersections for that face.

As with the Euclidean normalized level-set the intersection test differs depending
on the dimension of the surface. In the 2D case each Cartesian coordinate direction
is checked if it intersects the line segment. This is achieved by calculating the
difference between the x and y coordinates of the point P0 and the points P1 and
P2 of the line segment. Afterwards the sign of the calculated differences is checked.
If the sign of the differences changes then the current grid line intersects the line
segment and the intersection point q is calculated. Figure 2.15 shows an illustration
of the grid line intersection test.

For 3D surfaces the intersection test is more complicated. To determine if a grid
line intersects a triangle in 3D the signed areas of the triangle have to be calculated.
Given a triangle with the points P1, P2, P3, and a line deĄned by a point P0 and a
unit vector v⃗. The signed areas of the triangle projected into the plane perpendicular
to the vector v⃗ are given by [58]

Ai =
(Pi+1 − P0) × (Pi+2 − P0)

2
· v⃗ =

det(Pi+1 − P0, Pi+2 − P0, v⃗)
2

i ∈ 1, 2, 3.

If all three areas have the same sign, then the line intersects the triangle. Figure 2.16
shows an illustration of a succeeding and a failing intersection test. If the intersection
test is successful the intersection point can be calculated as follows [58]

q =
3
i=1 Ai · Pi

3
i=1 Ai

. (2.15)

Thus, the ϕ-value of the grid point P0 can be calculated by evaluating

ϕ(P0) = ±d1(P0 − q). (2.16)

The sign can be determined by consulting the sign of the coordinate of the normal
vector of the face.

22

P1

P2

Grid line

+ −qP0

(a) Succeeding intersection test.

P1

P2

Grid line

+ +P0

(b) Failing intersection test.

Figure 2.15: Illustration of the grid line intersection calculation with a line segment in 2D.

P1

P2

P3

P0

q v⃗

A1

A2

A3

(a) The grid line intersects the triangle since all
areas Ai have the same sign.

P1

P2

P3

P0

v⃗

A1

A2

A3

(b) The grid line does not intersect the triangle since
the area A2 has a different sign than A1 and A3.

Figure 2.16: Illustration of the grid line intersection calculation with a triangle in 3D. The
triangle is projected into the plane perpendicular to the vector v⃗.

23

Chapter 3

Surface Classification Methods

Among the goals of this thesis is to devise an algorithm that automatically detects
parts of a discretized surface, originating from a simulation workĆow, that beneĄts
from a higher resolution of the simulation domain. This requires mathematically
analyzing the surfaces so that the regions of interest can be efficiently detected.

In chapter 2 three different surface representations and how to obtain one of their
basic geometric properties (i.e., the surface normal) have been discussed. Surfaces
have more geometric properties than just the surface normal vector (e.g., the tangent
plane). Another property of orientable surfaces, which will be discussed later, is the
surface curvature. The surface curvature describes how the direction of the normal
vector changes when it is moved from one point on the surface to a neighboring
point in an inĄnitesimal area around the point. Thus, the surface curvature can be
used to classify parts of a surface.

In this chapter the mathematical concept of surface curvature on continuous
surfaces is introduced. This is followed by a discussion on how these concepts can
be discretized for the previously discussed surface representations. For implicit
surfaces several methods for calculating surface curvatures are reviewed. The last
section in this chapter discusses how discrete surfaces can be analyzed without prior
knowledge of surface curvatures.

3.1 Curvature of Continuous Surfaces

The constructions and deĄnitions presented within this section are extracted and
simpliĄed from [25]. Only the results needed for further investigations in this work
are discussed and proofs are omitted. The goal of this section is to give a rigorous
understanding of how the curvatures of a continuous surface are constructed and
which properties of the surface they express.

3.1.1 2D Surface (Curves)

First 2D surfaces are discussed. In differential geometry 2D surfaces are referred to
as parametrized curves and are deĄned as follows [25]:

24

3.1.1 Definition (Parametrized Curve) Let I = (a, b) be an open interval
then the differentiable map γ : I → R

2 is called a parametrized curve.

For example consider the map γ(t) = (t3, t2), the parametrized curve created by
this expression is shown in Figure 3.1. This curve has a point p = (0, 0) for which
γ′(p) = 0, these points are called singular points.

For the further investigations in this section it is important that a parametrized
curve γ(t) does not have any singular points. Thus, the deĄnition of a parametrized
curve is extended to a regular parametrized curve.

3.1.2 Definition (Regular Parametrized Curve) Let γ : I → R
2 be a

parametrized curve. If γ′(t) ̸= 0 for all t, then γ is called a regular parametrized
curve.

Excluding curves with singular points allows for the deĄnition of the length of a
curve. The arc length of a regular parametrized curve is deĄned as follows:

3.1.3 Definition (Arc Length) Let γ : I → R
2 be a regular parametrized

curve. Then, for a given t0 ∈ I the arc length of the curve γ is deĄned as

s(t) =
t

t0

∥γ′(x)∥dx.

A regular curve that fulĄlls ∥γ′(t)∥ = 1 for all t ∈ I is called a curve parametrized
by arc length. For such curves the arc length is given by s(t) = t − t0.

−2 −1 1 2

−1

1

2

3

x

y

Figure 3.1: Illustration of a parametrized curve (semicubical parabola) with a singular point in
(0, 0).

25

The Tangent Line and Curvature of a Curve Parametrized by Arc
Length

In each point γ(t) on a curve parametrized by arc length there exists a straight line,
deĄned by γ′(t) which has a length of ∥γ′(t)∥ = 1. This vector passes through the
point γ(t) and is called the tangent line (γ′(t)). In singular points it is not possible
to deĄne the tangent line and so, it is not possible to discuss geometric properties
of such curves.

Consider a curve parametrized by arc length γ which in a point γ(t) fulĄlls
γ′′(t) ̸= 0, in this case a unit vector n⃗(t) is well-deĄned by γ′′(t) = ∥γ′′(t)∥n⃗(t).
Furthermore, differentiating γ′(t) · γ′(t) = 1 yields γ′′(t) · γ′(t) = 0, which proves
that γ′′(t) and γ′(t) are orthogonal. Therefore, the vector n⃗(t) is normal to γ′(t)
and is called the normal vector in γ(t).

Since γ′(t) has length 1, the norm of the second derivative ♣γ′′(t)♣ measures the
rate of change of the angles of the neighboring tangent planes at the tangent plane
in γ(t). In other words the curve parametrized by arc length γ(t) pulls away from
the tangent line in γ(t) at a rate determined by ∥γ′′(t)∥.

3.1.4 Definition (Curvature of a Curve Parametrized by Arc Length)
Let γ : I → R

3 be a curve parametrized by arc length and t ∈ I. Then
κ(t) := ∥γ′′((t))∥ is called the curvature of γ at t.

A straight line γ(t) = u⃗t+v⃗ with constant vectors u⃗, v⃗ has a curvature of 0. Inversely
if ∥γ′′(t)∥ = 0 is integrated the curve γ(t) has to be a straight line. Thus, the
curvature of a curve can be used as a metric to distinguish between parts of a curve
that are Ćat and parts that are not, e.g., curved.

Furthermore, it can be shown that each regular parametrized curve can be
expressed as a curve parametrized by arc length [25]. Thus, the concept of the
curvature can be expanded to any regular parametrized curve. The curvature of
the regular parametrized curve γ(t) is given by the curvature of the reparametrized
(i.e., parametrized by arc length) curve γ∗(t).

3.1.2 3D Surface

In this section a similar construction to the one presented in the previous section
is given for 3D surfaces. However, deĄning geometric properties like the tangent
plane or the curvature for 3D surfaces (which are also referred to as regular surfaces)
requires additional considerations. The Ąrst major difference is that a regular surface
is not deĄned as a function but as a set [25].

26

3.1.5 Definition (Regular surface) A subset S ⊂ R
3 is called a regular

surface, if for each point p ∈ S there exists an open set U ⊂ R
2, a neighborhood

V ∈ R
3, and a map

x : U → V ∩ S ⊂ R
3,

such that:
1. x := (x(u, v), y(u, v), z(u, v)) with u, v ∈ U is differentiable.
2. x is a homeomorphism: x−1 : V ∩ S → U exists and is continuous.
3. For each q ∈ U , the differential dxq : R2 → R

3 is one to one.

To further elaborate the meaning of DeĄnition 3.1.5 consider Figure 3.2. A regular
surface is a subset of the plane that gets deformed in R

3. The deformation is
handled in such a way that the resulting surface has no sharp points, edges or
self-intersections. This deĄnition allows for the deĄnition of a tangent plane in each
point on the surface and ensures that the surface is smooth enough to apply methods
from calculus. The map x is called a parametrization of the surface S. A surface
S may have several parametrizations, however, certain properties of the surface do
not depend on the parametrization but only on the set S.

DeĄnition 3.1.5 is a technical deĄnition of a regular surface, which is useful
for the theoretical investigation of surfaces and their properties. In this work, the
geometric properties of discretized surfaces are investigated, thus, two less technical
descriptions of regular surfaces are given which result from DeĄnition 3.1.5.

3.1.6 Proposition If f : U ⊂ R
3 → R is a differentiable function and a ∈ f(U)

fulĄlls 0 /∈ f ′(f−1(¶a♢)) = ¶f ′(x)♣f(x) = a, x ∈ U♢, then f−1(¶a♢) is a regular
surface in R

3.

Proposition 3.1.6 can be interpreted in a more descriptive way. The set of points
in R

3 that fulĄll an implicitly deĄned function f(x, y, z) = a, which has a non-
vanishing gradient in each point of the image, describes a regular surface. Consider,
for example, the following function f(x, y, z) = x2 +y2 +z2 −1, all points except for
p = (0, 0, 0) have a non-vanishing gradient, however, f−1(0) is not in the preimage
of f , thus it is a regular surface (i.e., a sphere with radius 1).

U

(u, v)
V ∩ S

S

p
x

(x(u, v), y(u, v), z(u, v))

Figure 3.2: Illustration of a regular surface. The local parametrization x deforms the 2D set U

into a 3D set V ∩ S around a point p on a regular surface S.

27

3.1.7 Proposition Let S ⊂ R
3 be a regular surface and p ∈ S a point on the

surface, then there exists a neighborhood V of p in S in such a way that V is
the graph of a differentiable function in one of the forms:
x = f(y, z), y = f(x, z), z = f(x, y).

Proposition 3.1.7 guarantees that in a neighborhood around each point on a regular
surface S the surface can be expressed as the graph of a differentiable function.

The Tangent Plane and Curvatures of a Regular Surface

Consider a regular surface S and a point on the surface p ∈ S, and a regular
parametrized curve γ : (−ϵ, ϵ) → S with γ(0) = p. Since γ is a regular parametrized
curve the tangent line γ′(0) exists. Let x : U ⊂ R

2 → S be a parametrization of S
and let q ∈ U . Then the set of all tangent lines of regular parametrized curves on
the surface S passing through p span a 2D subspace. The plane dxq, that passes
through x(q) = p, does not depend on the parametrization and is called the tangent
plane to S denoted by (Tp(S)) at the point p. The basis vectors that span Tp(S)
are written as xu and xv and are determined by the parametrization. By choosing
a parametrization x, a unit normal vector in the point p ∈ x(U) can be deĄned as
follows

n⃗(p) =
xu × xv

∥xu × xv∥(p), (3.1)

which is called the normal vector of the surface S in p (see Figure 3.3).
It is not always possible to continuously deĄne a unique normal vector n⃗(p) on

every point of a regular surface, see, for example, the Möbius strip (see Figure 3.4).

Tp(S)

n⃗p

p
xu

xv

γ1

γ2

Figure 3.3: Illustration of the tangent plane Tp(S), the corresponding basis vectors [xu, xv], and
two parametrized curves γ1, γ2 in the point p on a regular surface.

28

p

n⃗p

n⃗′
p

Figure 3.4: Illustration of a Möbius strip, a non-orientable surface. The Möbius strip is non-
orientable since the choice of a normal vector in the point p is not unique. The normal vector n⃗p

can be traced along the red line until it ends up in the point p again, but then it points in the
opposite direction (e.g., n⃗′

p
). This holds true for all points on the Möbius strip.

When a normal vector and a closed curve that traces over the Möbius strip is chosen,
and the normal is moved along this curve it ends up in the same point, however, the
normal now points in the opposite direction. This observation can also be described
with the help of parametrizations. On each point of the Möbius strip there exist
different parametrizations of the surface, these parametrizations describe the same
tangent plane. However, the normal vectors deĄned by the parametrizations point
in opposite directions (see Figure 3.4) and it is not possible to continuously change
from one parametrization to the other.

For the following discussions it is essential that the discussed surfaces allow to
continuously deĄne a unique normal vector in each surface point. To that end a
parametrization of a neighborhood of each point on a regular surface is Ąxed, the
set of all these parametrizations is called a family of coordinate neighborhood. If this
family of coordinate neighborhood describes a positive movement around each point
of the surface it is called an orientation of the surface which is formally deĄned as
follows:

3.1.8 Definition (Orientable Surface) A regular surface S is called
orientable if there exists a family of coordinate neighborhoods such that for
each point p that belongs to two neighborhoods of the family, the change of the
parametrization has a positive Jacobian (i.e., the determinant of the Jacobian
matrix).
Otherwise, the surface is called non-orientable.

Intuitively, DeĄnition 3.1.8 expresses that on an orientable surface the change in the
direction of the normal vector is continuous when switching between two neighboring
parametrizations.

29

If a regular surface S is deĄned by a differentiable function f : U ⊂ R
3 → R as

follows S = ¶(x, y, z) ∈ R
3 : f(x, y, z) = a♢ and f−1(a) ̸= 0 then S is orientable.

3.1.9 Definition (Orientation of a Surface) Let S be a regular orientable
surface then a differentiable mapping N : U → R

3 of an open set U ⊂ S that
associates each point p ∈ U with the unit normal vector n⃗(p) is called an
orientation of S on U .

It should be mentioned that an orientation can locally be deĄned on every regular
surface, however, orientability is a global property that concerns the entire surface.

To gain further insights into the geometry of a surface the orientation (i.e., N)
deĄned on the entire surface is further investigated.

3.1.10 Definition (Gauss Map) Let S be a regular surface with an orientation
N deĄned on the entire surface S. Then N maps all normal vectors on S into
the unit sphere and is called the Gauss map.

Figure 3.5 visualizes how the Gauss map operates on the hyperbolic paraboloid.
Another easily visualized example of the Gauss map is the image of the torus which
simply is the entire surface of the unit sphere.

The derivative of the Gauss map dNp in a point p maps the tangent plane Tp(S)
into itself. Now consider a curve γ(t) in S with γ(0) = p, when the normal vector of
the surface n⃗S(p) is restricted to the curve γ(t) the map dNp(γ(0)) = n⃗′

S(p) results
in a tangent vector in Tp(S). So dNp measures how fast n⃗S(p) pulls away from the
surface in the curve γ(0). This is a similar construction to the one discussed for
regular parametrized curves with the difference that the curvature is measured by
a linear map and not by the norm of a vector. The construction is independent of
the chosen regular parametrized curve, so the following deĄnition can be given:

3.1.11 Definition (Normal Curvature) Let S be an orientable surface,
p ∈ S a point on the surface, γ a regular parametrized curve passing through p
with curvature κ, and cos(θ) = n⃗S(p) · n⃗γ(p). Then the number kn⃗γ(p) = κ cos(θ)
is called the normal curvature of γ ⊂ S in p.

S N(S)

N

Figure 3.5: Illustration of the Gauss map of the hyperbolic paraboloid. All normal vectors on the
surface are mapped into the unit sphere. The image of the Gauss map of the hyperbolic paraboloid
is the hemisphere. The colors on both surfaces correspond to their respective normal vectors.

30

This deĄnition results in a curvature value dependent on the chosen curve on
the surface, which leads to the question if these curves can be classiĄed in some
way. To get further insights into this question the Gauss map N of a surface S is
further investigated. The negative differential −dN of the Gauss map (sometimes
referred to as the Weingarten map or shape operator) is a self-adjoint linear operator
(II). Thus, its Eigenvectors are orthogonal, and the Eigenvalues are real [25]. The
matrix II is also known as the second fundamental form of the surface S. Recall, that
−dNp measures the normal curvature for each regular parametrized curve passing
through p. Since the map −dNp is a self-adjoint linear operator the maximum and
minimum normal curvatures in each point can be calculated, which leads to the
following deĄnition:

3.1.12 Definition (Principal Curvatures) Let S be an orientable surface,
and p ∈ S a point on the surface S. Then, the maximum normal curvature κ1

and the minimum normal curvature κ2 are called the principal curvatures of the
surface S in the point p.

The corresponding Eigenvectors to the principal curvatures are called the principal
directions of S in p. Since the map −dN is a linear map the trace and the
determinant of the map can be calculated.

3.1.13 Definition (Gaussian Curvature) Let S be an orientable surface,
p ∈ S be a point on the surface, and Np the Gauss map in p, then

det(−dNp) = K = κ1κ2

is called the Gaussian curvature of S in the point p.

3.1.14 Definition (Mean Curvature) Let S be an orientable surface, p ∈ S
be a point on the surface, and Np the Gauss map in p, then

trace
1
2

(−dNp) = H =
κ1 + κ2

2

is called the mean curvature of S in the point p.

The mean and Gaussian curvature are used to deĄne two special classes of
surfaces. Surfaces with a constant Gaussian curvature of 0 are called developable
surfaces, these surfaces can be "rolled" into the plane, or in other words folded out
of paper. A cylinder is an example of a developable surface and the sphere is an
example of a non-developable surface.

Surfaces with a constant mean curvature of 0 are called minimal surfaces, if
these surfaces are bounded they minimize the Dirichlet energy in each point [65].
The plane is a trivial example of a minimal surface, where an example for a non-
trivial minimal surface is the helicoid. Minimal surfaces play an important role in
the remainder of this work.

31

Until this point the curvatures of a surface have been derived from the deĄnition
of the Gauss map without any explicit reference to a local coordinate system (i.e., a
parametrization). For the calculation of the surface curvatures of discrete surfaces a
description of the Gauss map in a local coordinate system ¶xu, xv♢ is required and
is given by [25]

dN =
a11 a12

a21 a22
:= − e f

f g

II

E F
F G

−1

I

, (3.2)

with

E = xu · xu −f = n⃗v · xu = n⃗u · xv

F = xu · xv −e = n⃗u · xu

G = xv · xv −g = n⃗v · xv

, (3.3)

I (see Equation 3.2) is also referred to as the Ąrst fundamental form. The mean and
Gaussian curvature can thus be expressed in any basis as

K =
det(II)
det(I)

, (3.4)

H =
trace(I adj(II))

2 det(I)
(3.5)

where adj(M) stands for the adjugate matrix.
Some methods of calculating the curvatures of discretized surfaces further down

in this chapter only calculate the mean and the Gaussian curvature. The principal
curvatures can be calculated from the mean and Gaussian curvature by solving the
following equation

κ1,2 = H ±
√

H2 − K. (3.6)

3.2 Curvature Calculation for Point Clouds

When estimating the surface curvatures of a point cloud similar obstacles, such
as the approximation of the surface normal discussed in Section 2.1.1, have to be
overcome. Since there is no information about the spatial coherence of the points
in a point cloud, a suitable neighborhood has to be estimated Ąrst. After a suitable
neighborhood has been identiĄed, recall Proposition 3.1.7, which states that in a
local neighborhood a surface can be expressed by a differentiable function f(x, y),
which is also called the height function [66]. The goal now is to estimate f(x, y)
with the points in the previously estimated neighborhood. f(x, y) can be expressed
by a Taylor series of order n

f(x, y) = JB⃗,n(x, y) + O(∥(x, y)∥n+1),

JB⃗,n(x, y) is called a jet of order n or an n-jet.

32

To obtain an n-jet of the height function deĄned by the points in a neighborhood
around a point p it has to be approximated. The n-jet is approximated in the least
square sense which leads to the following optimization problem

min
N

i=1

(JB⃗,n(xi, yi) − f(xi, yi))2 .

This optimization problem results in a vector B⃗ that holds the Ąrst n coefficients of
the Taylor polynomial associated with the n-jet.

JB⃗,n = B0,0 + B1,0x + B0,1y +
1
2

(B2,0x
2 + 2B1,1xy + B0,2y

2) + (3.7)

To calculate the curvatures of a surface requires at least a 2-jet. The coefficients
of the Taylor polynomial can then be used to calculate the Weingarten map (see
Equation 3.2) with [66]

E = 1 + B2
1,0 −f = 2B0,2√

1+B2
1,0+B2

0,1

F = B1,0B0,1 −e = 2B1,1√
1+B2

1,0+B2
0,1

G = 1 + B2
0,1 −g = 2B0,2√

1+B2
1,0+B2

0,1

. (3.8)

The here presented discussion on 3D surfaces can be similarly adapted for 2D
surfaces [66].

3.3 Curvature Calculation for Surface Meshes

Estimating the curvatures of a 3D surface mesh requires less computational effort
than for point clouds, since the neighborhood of a vertex and information about the
geometry is already present in the discretization. The general idea for calculating
the curvatures of a surface mesh is to associate an inĄnitesimal area around a vertex
with the value of an operator, further referred to as spatial averaging. Two different
operators are required to calculate the Gaussian and mean curvatures. When the
area around a vertex converges towards zero the value of the quotient between these
operators and the area converges towards the desired curvature value [67]. Thus, Ąrst
an appropriate area around each vertex on a surface mesh has to be determined. An
appropriate area around a given vertex is given by the so-called Voronoi region [67].
Furthermore, each Voronoi cell (i.e., the Voronoi area each triangle contributes to
the Voronoi region) minimizes the error introduced by the spatial averaging and the
discretization [68].

Before the calculation of the Voronoi region is presented another concept has to
be introduced. The set of all vertices incident to a vertex xi is referred to as the
1-ring neighborhood of xi (N1(xi)) (see Figure 3.6a).

33

xi

xi7

xi1

xi2

xi3

xi4
xi5

xi6

(a) All vertices in the 1-ring neighborhood
N1(xi) of the vertex xi of an exemplary
triangulation.

xi

xj

αij
βij

(b) Voronoi region formula illustration.

Figure 3.6: Illustration of the neighborhood of a vertex.

Thus, the Voronoi region of a vertex xi in a triangle mesh is calculated as follows

AVoronoi =
1
8

j∈N1(xi)

(cot αij + cot βij)∥xi − xj∥2, (3.9)

see Figure 3.6b. This deĄnition only holds for triangle meshes with non-obtuse
triangles, which can in general not be guaranteed. The operators discussed further
down in this section also result in valid curvature values for 1-ring neighborhoods
which consist only of obtuse triangles. Therefore, the calculation of the area has
to be adapted (see Algorithm 1) [67]. The algorithm checks each triangle in the
1-ring neighborhood, if a triangle is obtuse a fraction of its area is added to Amixed,
otherwise the area of the Voronoi cell is added. Amixed denotes the surface area of
the mixed region around a vertex, the set of points making up the mixed region is
referred to as AM .

Algorithm 1: Calculation of the mixed area of the 1-ring neighborhood of
a vertex xi (Amixed).

input : 1-ring neighborhood of the vertex xi

output: Amixed

1 Amixed = 0;
2 foreach Triangle T in the 1-ring neighborhood of xi do
3 if T is non-obtuse then

// Calculate area of Voronoi cell see (3.9)
4 Amixed += Voronoi region of T ;
5 else
6 if the angle of T at xi is obtuse then
7 Amixed += area(T)/2;
8 else
9 Amixed += area(T)/4;

34

Mean Curvature

As previously hinted, surfaces with a constant mean curvature of 0 describe a special
class of surfaces: minimal surfaces. Minimal surfaces minimize the surface area of a
surface, which lead to an ample body of literature [69, 70]. One of the investigated
operators is the mean curvature normal operator which establishes a direct relation
between the mean curvature Ćow and the minimization of the surface area [71]

lim
diam(Ap)→0

∇Ap

Ap

= 2Hpn⃗p, (3.10)

where ∇Ap stands for the gradient, and Ap for the area around the point p. The
mean curvature normal operator, also known as the Laplace-Beltrami operator, is
deĄned as follows:

3.3.15 Definition (Mean Curvature Normal Operator) Let S be an
orientable surface and p a point on S, further let n⃗p be the normal vector and
Hp the mean curvature in that point. Then the mean curvature normal operator
is deĄned as

H(p) = 2Hpn⃗p.

The integral of the Laplace-Beltrami operator over the area Amixed in a vertex xi on
a surface mesh can be discretized as follows [67]

AM

H(xi)dA =
1
2

j∈N1(xi)

(cot αij + cot βij)(xi − xj).

After inserting the discretized value of the Laplace-Beltrami operator and Amixed

into Equation 3.10. The mean curvature of a vertex xi on a surface mesh can be
expressed as

Hxi
=

∥ j∈N1(xi)(cot αij + cot βij)(xi − xj)∥
4Amixed

. (3.11)

Gaussian Curvature

The Gaussian curvature, like the mean curvature, can also be expressed as a fraction
of an inĄnitesimal area around a point as follows [72]

lim
diam(Ap)→0

AG
p

Ap

= K.

To elaborate the meaning of AG
p , recall the deĄnition of the Gauss map N, it maps

all normal vectors from a surface into the unit sphere. Consider a small surface area
around a point p on an orientable surface, then the image of that area under N

describes a small area on the surface of the unit sphere (e.g., AG
p).

35

Instead of directly calculating the integral over the image of the Gauss map the
Gauss-Bonnet theorem is used [67]

AM

K dA +
k

i=0

εi = 2π.

This is a simpliĄed version of the theorem since the surface area of the sphere is
investigated which has a geodesic curvature of 0 [25]. The εi stand for the external
angles of the boundary of the Voronoi region. For Voronoi regions it is easy to see
that the angle at the vertex xi is θi = εi, because both edges of the Voronoi cell are
perpendicular to the edges of the triangle and, therefore, θi+αi = π (see Figure 3.7).
Thus, the Gaussian curvature of a vertex xi on a surface mesh can be expressed as

Kxi
=

2π − f
j=1 θj

Amixed

, (3.12)

where f stands for the number of all triangles in N(xi).

3.4 Curvature Calculation for Implicit Surfaces

The computationally least expensive way to estimate the surface curvatures of a
discrete surface considered in this work is the estimation for implicit surfaces, since,
derivatives can be approximated directly from the discretization.

In this section three different approaches of calculating the surface curvatures of
an implicitly deĄned surface are presented: The general formula for implicit surfaces,
mean curvature estimation by calculating the variation of the normal vector, and
mean curvature estimation through the shape operator. These three approaches are
further analyzed in Chapter 5.

xi

θ1
θ2

ε1

ε2

Figure 3.7: Angles in the 1-ring neighborhood required for the calculation of the Gaussian
curvature.

36

3.4.1 General Formula

The goal is to express Equations 3.4 and 3.5 with the derivatives of an implicit
function ϕ. This is achieved in the following way, the determinants and traces are
transformed such that they are expressed with respect to a local parametrized x
and the normal vector n⃗ deĄned by the chosen parametrization [73]

K =
(xu × xv) · (n⃗u × n⃗v)

∥xu × xv∥2
, (3.13)

H =
(xu × xv) · ((xv × n⃗u) − (xu × n⃗v))

2∥xu × xv∥2
. (3.14)

Afterwards, the terms of the above equations are transformed such that they are
expressed as the derivatives of the implicit function. This is achieved with the help
of matrix identities, which transform the above expressions into [73]

K =
∇ϕ adj(Hess(ϕ)) ∇ϕT

∥∇ϕ∥4
, (3.15)

H =
∇ϕ Hess(ϕ) ∇ϕT − ∥∇ϕ∥2 trace(Hess(ϕ))

2∥∇ϕ∥3
, (3.16)

where Hess(ϕ) stands for the Hessian matrix of ϕ. Furthermore, the mean curvature
of an implicit surface can be expressed as

H = ∇ · ∇ϕ

∥∇ϕ∥ , (3.17)

which can be seen by expanding Equation 3.16 and Equation 3.17 and comparing
the resulting terms.

Now that an expression for the curvatures of an implicit surface is available it
has to be discussed how these formulas can be used on discretized implicit surfaces.
Considering a discretized implicit surface as deĄned in Section 2.3 (e.g., a level-set
function), the derivatives of a level-set function can be approximated by central
differences as follows

Dx(ϕi,j,k) ≈ ϕi+1,j,k − ϕi−1,j,k

2∆x
, (3.18)

Dxx(ϕi,j,k) ≈ ϕi+1,j,k − 2ϕi,j,k + ϕi−1,j,k

∆x2
, (3.19)

Dxy(ϕi,j,k) ≈ ϕi+1,j+1,k − ϕi−1,j+1,k − ϕi+1,j−1,k + ϕi−1,j−1,k

4∆x∆y
, (3.20)

where ϕi,j,k stands for the ϕ-value of the level-set function at the grid point (i, j, k),
if the subscript indices are omitted it is assumed that they are (i, j, k).

37

Using these approximations and an expanded form of Equation 3.16, the discretized
mean curvature of a level-set function can be approximated as follows

H =

Dx(ϕ)2(Dyy(ϕ) + Dzz(ϕ))
+Dy(ϕ)2(Dxx(ϕ) + Dzz(ϕ))

+Dz(ϕ)2(Dxx(ϕ) + Dyy(ϕ))
−2Dx(ϕ)Dy(ϕ)Dxy(ϕ)

−2Dy(ϕ)Dz(ϕ)Dyz(ϕ)
− 2Dz(ϕ)Dx(ϕ)Dxz(ϕ)

2∥∇ϕ∥3
. (3.21)

This method of calculating the mean curvature will be referred to as the General
Formula method. The Gaussian curvature can be calculated similarly by using an
expanded form of Equation 3.15

K =

Dx(ϕ)2(Dyy(ϕ)Dzz(ϕ) − Dyz(ϕ)2)
+Dy(ϕ)2(Dxx(ϕ)Dzz(ϕ) − Dxz(ϕ)2)

+Dz(ϕ)2(Dxx(ϕ)Dyy(ϕ) − Dxy(ϕ)2)
+2Dx(ϕ)Dy(ϕ)(Dxz(ϕ)Dyz(ϕ) − Dxy(ϕ)Dzz(ϕ))

+2Dx(ϕ)Dz(ϕ)(Dxy(ϕ)Dyz(ϕ) − Dxz(ϕ)Dyy(ϕ))
+ 2Dy(ϕ)Dz(ϕ)(Dxy(ϕ)Dxz(ϕ) − Dyz(ϕ)Dxx(ϕ))

(Dx(ϕ)2 + Dy(ϕ)2 + Dz(ϕ)2)2
. (3.22)

Calculating the Gaussian curvature requires the same derivatives as calculating the
mean curvature.

The Ąnite difference approximations used for calculating the surface curvatures
require a certain amount of grid points to be calculated. The set of all grid
points required for the calculation of a set of Ąnite differences is referred to as a
Ąnite difference stencil, or just stencil (η(x)). A Ąnite difference stencil is always
considered with respect to the central grid point x = (i, j, k). Two Ąnite difference
stencils are of particular importance for this work, the 7 point star stencil (ηS(x)),
and the 19 point plane stencil (ηP (x)). Figure 3.8 shows an illustration of these
stencils. Calculating the surface curvature with the General Formula requires a
plane stencil.

Lastly it should be mentioned that the maximal curvature a level-set function
can describe is bound by ±1/∆x [15], since the smallest circle radius which can be
represented with a given resolution is ∆x.

3.4.2 Shape Operator

Recalling Equation 3.17, the formula states that the mean curvature of an implicit
surface can be expressed as the gradient of the normal vector. This expression can
be expanded and leads to the following expression [75]

∇ · ∇ϕ

∥∇ϕ∥ = ∇n⃗ = − 1
∥∇ϕ∥(I − n⃗n⃗T)Hess(ϕ), (3.23)

where I stands for the Identity matrix.

38

ϕi,j,k

ϕi+1,j,kϕi−1,j,k
ϕi,j,k−1

ϕi,j,k+1

ϕi,j+1,k

ϕi,j−1,k

ϕi+1,j+1,k

ϕi+1,j−1,k

ϕi,j+1,k−1

ϕi,j−1,k−1

ϕi,j+1,k+1

ϕi,j−1,k+1

ϕi−1,j+1,k

ϕi−1,j−1,k

ϕi+1,j,k+1

ϕi+1,j,k−1ϕi−1,j,k−1

ϕi−1,j,k+1

x
y

z

(a) Plane stencil (ηP ((i, j, k)))

ϕi,j,k

ϕi+1,j,kϕi−1,j,k

ϕi,j,k−1

ϕi,j,k+1

ϕi,j+1,k

ϕi,j−1,k

x
y

z

(b) Star stencil (ηS((i, j, k)))

Figure 3.8: 3D Ąnite difference stencils used for curvature calculation. Adapted from Lenz et al.,
J Sci Comput. 71, (2023), p. 108258 [74], © The Authors, licensed under the CC BY-NC-ND 4.0
License, https://creativecommons.org/licenses/by-nc-nd/4.0/.

Assuming that the level-set function fulĄlls the Eikonal equation (see
Equation 2.8) with F (x) = 1, then the term 1/∥ϕ∥ can be ignored. The matrix
(I − n⃗n⃗T) projects onto the tangent plane of the implicit surface. Restricting ∇n⃗ to
the tangent plane shows that it is symmetric [75]. Thus, there exists an orthonormal
basis [p⃗1, p⃗2] in R

2 of the tangent plane, this basis can be expanded to an orthonormal
basis in R

3 as follows [p⃗1, p⃗2, n⃗]. When the gradient of the normal vector is expressed
in this basis it results in the following matrix

∇n⃗ =

κ1 0 σ1

0 κ2 σ2

0 0 0

 . (3.24)

Here, κ1 and κ2 stand for the principal curvatures with the principal directions p⃗1

and p⃗2, σ1 and σ2 stand for the so-called Ćow line curvatures [75]. So the mean
curvature of the surface can be expressed as trace(∇n⃗)/2. Furthermore, the trace of
a matrix is independent of the chosen basis, thus the mean curvature of a level-set
function ϕ with ∥∇ϕ∥ = 1 can be expressed as

H =
trace(Hess(ϕi,j,k))

2
=

Dxx(ϕi,j,k) + Dyy(ϕi,j,k) + Dzz(ϕi,j,k)
2

. (3.25)

This method is referred to as the Shape Operator method. In Section 4.1.2 a
method is discussed that describes how a level-set function can be constructed that
fulĄlls ∥∇ϕ∥ = 1. Calculating the mean curvature of the zero level-set using the
Shape Operator method requires a star stencil ηS. It should be mentioned that the
quality of the mean curvature calculated with this method on a discretized surface
is highly dependent on the quality of the discretization, which is discussed further
in Section 5.1.3.

39

https://creativecommons.org/licenses/by-nc-nd/4.0/.

3.4.3 Variation of Normal

The third method calculates the mean curvature of the level-set function by
again using Equation 3.17 which is approximated through the Euler-Lagrange
derivative [76, 77]. In addition to the Ąrst-order central differences, this
approximation requires the Ąrst-order forward and backward differences which can
be approximated by

D+
x (ϕi,j,k) ≈ ϕi+1,j,k − ϕi,j,k

∆x
, (3.26)

D−

x (ϕi,j,k) ≈ ϕi,j,k − ϕi−1,j,k

∆x
. (3.27)

In turn, the mean curvature can be approximated as [77]

H = ∇ · ∇ϕ

∥∇ϕ∥ ≈ 1
2∆x

D+
x (ϕ)

∥g⃗+
x ∥ − D−

x (ϕ)
∥g⃗−

x ∥ +

D+
y (ϕ)

∥g⃗+
y ∥ − D−

y (ϕ)

∥g⃗−
y ∥ +

D+
z (ϕ)

∥g⃗+
z ∥ − D−

z (ϕ)
∥g⃗−

z ∥ , (3.28)

where g⃗±
x is deĄned as

g⃗±

x := (D±

x (ϕi,j,k),
1
2

(Dy(ϕi j,k) + Dy(ϕi±1,j,k)),

1
2

(Dz(ϕi±1,j,k) + Dz(ϕi,j,k))),
(3.29)

g⃗±

y := (D±

y (ϕi,j,k),
1
2

(Dx(ϕi,j±1,k) + Dx(ϕi,j,k)),

1
2

(Dz(ϕi,j±1,k) + Dz(ϕi,j,k))),
(3.30)

g⃗±

z := (D±

z (ϕi,j,k)),
1
2

(Dx(ϕi,j,k±1) + Dx(ϕi,j,k)),

1
2

(Dy(ϕi,j,k±1) + Dy(ϕi,j,k)).
(3.31)

To calculate all the required Ąnite differences a plane stencil ηP is required, this
method is referred to as the Variation of Normal method. This method only
calculates the mean curvature, thus, the Gaussian curvature has to be estimated
separately by using Equation 3.22.

3.4.4 Curvature of 2D Implicit Surfaces (Curves)

An analogous construction to the one presented in Section 3.4.1 can be done for
regular curves (i.e., 2D surfaces) [73]. Recall that regular curves only have one type
of curvature which can be approximated for a 2D level-set function with the formula

κ =
Dy(ϕ)2Dxx(ϕ) − 2Dx(ϕ)Dy(ϕ)Dxy(ϕ) + Dx(ϕ)2Dyy(ϕ)

∥∇ϕ∥3
. (3.32)

40

3.5 Intuitive Approach to Surface Classification

When considering the construction of the normal curvature presented in
Section 3.1.2 one can see that the normal curvatures are deĄned through the
curvature of a parametrized curve and the cosine of the angle between the surface
normal and the normal of the considered parametrized curve. It is tempting to drop
the formal mathematics behind curvature calculation and try to directly use the
angle between the normal vectors of surface points in a neighborhood on a discretized
surface for surface classiĄcation. However, this approach has several drawbacks
which are discussed in the remainder of this section. The most striking drawback is,
that this approach can only estimate angles with points of the discretization without
any knowledge of the underlying parametrization of the surface.

Point Clouds

Consider a point cloud and a neighborhood Mi(xi) of a point xi. The relative spatial
position of the points in the neighborhood with respect to the investigated point xi is
not known. So, it is possible that two points in the neighborhood describe the same
curve on the surface and that one point is farther away from xi. In this scenario
it is not known which of the two points should be chosen for the classiĄcation of
the surface which can lead to wrong classiĄcations. Therefore, this approach is not
suited for point clouds.

Surface Meshes

The triangles of a surface mesh are Ćat, thus, they have a mean and Gaussian
curvature of 0. A similar argument can be used for edges, since the surface can only
bend in one direction over an edge. Consequently, using the angle between normal
vectors can of course only be used on vertices on a surface mesh, but there is no
straightforward way to calculate the surface normal of a vertex. Which again, as
with point clouds, makes this approach unsuited for surface meshes.

Level-Set Functions (Implicit Surfaces)

Finally, considering level-set function, some merit can be found in applying the
normal vector angle approach. All points on a regular grid have the same distance
from each other, so one could check if the points that lie in a box stencil (see
Figure 3.9) are surface points (i.e., the level-set function changes sign from the
point xi to this neighboring point). However, depending on the position of the zero
level-set more points in the stencil are required, i.e., 21 in 2D and 81 in 3D, which
is a lot more than calculating the derivatives for curvature calculation. Further
drawbacks of this method on level-set functions are discussed in Section 5.1.4.

41

ϕi,j,k

x
y

z

Figure 3.9: 3D box stencil (ηB((i, j, k))) required for normal based feature detection on implicit
surfaces.

42

Chapter 4

Topography Simulation and
Simulation Platforms

The fabrication of a semiconductor device consists of many process steps. In
some of them materials are stacked on top of the wafer or other materials
(i.e., deposited). Others remove parts of the materials on the wafer (i.e., etch
selectively) [78]. Furthermore, there are processing steps that do not change the
topography of the semiconductor device, yet they change its electrical properties
(i.e., ion implantation). When such fabrication processes are simulated they are
abstracted into a process model. These process models describe how reactants (e.g.,
molecules or ions) generated inside a reactor interact with the wafer surface.

Fabricating semiconductor devices typically involves a plethora of materials.
Consequently, the fabrication process models tend to be material dependent and
each material on the simulated wafer has to be uniquely represented. The movement
of the materials when they are affected by the process model is described by the
level-set equation (see Equation 4.2), a time-dependent PDE.

This chapter gives an overview of the numerical methods used during topography
simulations. These methods are subsequently consolidated into the general
simulation Ćow of a topography simulation. Additionally, the computing systems
and software tools used in this thesis are introduced.

4.1 Evolution of Surfaces (Advection)

Consider a given process model which describes the movement of the wafer surface
in each surface point. Furthermore, assume that the process model has already
been evaluated. Consequently, a so-called velocity value, based on physical inputs, is
produced by the process model for every point on the wafer surface, which expresses
the movement of the surface points in time. The set of all velocity values is referred
to as the velocity Ąeld (V (x, t)). Depending on the sign of the velocity Ąeld an
etching (i.e., positive sign), or a deposition process (i.e., negative sign) is modeled.
The objective is to move all surface points according to this velocity Ąeld.

43

This can be accomplished by solving the ordinary differential equation [15]

dx

dt
= V (x, t) (4.1)

for each point on the surface. This description of the surfaceŠs movement is referred
to as the Lagrangian formulation. The Lagrangian formulation for the evolution
of the surface requires an explicit representation of the surface, since it describes
the movement of individual points on the surface. In addition to the already
discussed problems with the deformation of explicit surface representations (see
Section 2.2), the Lagrangian formulation also has problems with instabilities and
requires topological repairs of the surface [15].

A more stable description which avoids the aforementioned issues of the surface
when it evolves in time is an implicit representation of the surface (see Section 2.3).
An implicit surface ϕ(x) with dimension n is embedded into an n + 1 dimensional
space to describe its evolution in time. The evolution of the surface is accomplished
by solving the so called level-set equation [54]

∂ϕ(x, t)
∂t

+ V (x, t)∥∇ϕ(x, t)∥ = 0, (4.2)

which is also referred to in literature as the convection or advection equation. This
method of tracking the evolution of the zero level-set (i.e., the surface) is commonly
referred to as an Eulerian formulation. When using an Eulerian formulation the
velocity values have to be known in the entire domain instead of only on the surface.
Section 4.1.3 discusses how the velocity values are expanded from the surface into
the domain Ω.

4.1.1 Solving the Level-Set Equation

Substituting H(x, ϕ(x, t), ∇ϕ(x, t), t) for V (x, t)∥∇ϕ(x, t)∥ in Equation 4.2 yields

∂ϕ(x, t)
∂t

+ H(x, ϕ(x, t), ∇ϕ(x, t), t) = 0, (4.3)

which shows that the level-set equation belongs to the class of Hamilton-Jacobi
equations, H is also referred to as the Hamiltonian. The arguments to V and ϕ are
omitted for the remainder of this section. Hamilton-Jacobi equations are utilized in
classical mechanics to describe mechanical systems, thus there has been substantial
research into numerically solving these types of equations [79, 80, 81, 82, 83]. The
solution schemes used in this work are discussed further down in this section.

44

Upwind Schemes

Assume that V is known in the entire domain, a Ąrst-order accurate scheme to solve
Equation 4.2 is the so-called forward Euler method [84]

ϕ(tn+1) − ϕ(tn)
∂t

+ H(x, ϕ(tn), ∇ϕ(tn), tn) = 0, (4.4)

where tn is a point in time and tn+1 = tn + ∆t is the point after one time step.
However, simply using this scheme to solve the level-set equation will not result in
accurate solutions, as a consequence of numerical instabilities [15, 54]. To improve
the solution of the level-set equation Engquist and Osher proposed a modiĄed
scheme [81]

H ≈ max(V, 0)D+(ϕ) + min(V, 0)D−(ϕ), (4.5)

with the Ąrst-order accurate approximation D
+(ϕ) = (n

l=1 D+
l (ϕ))2 and D

−(ϕ) =

(n
l=1 D−

l (ϕ))2. This scheme is referred to as the Engquist Osher scheme. The
idea is to look at the values of the velocity Ąeld and the characteristics that
Ćow out of the zero level-set. This information is subsequently used to bias the
one-sided Ąnite difference approximation dependent on the direction in which the
information Ćows [81]. The drawback of this method is that it only works for convex
Hamiltonians (i.e., if the Hessian matrix of the Hamiltonian ∂nH

∂x1...∂xn
is positive semi-

deĄnite) [8].

Lax-Friedrichs Schemes

In topography simulations the Hamiltonian is not necessarily always convex [85].
Thus, a different scheme is required, to calculate the discretization of the
Hamiltonian. The Lax-Friedrichs scheme uses Ąrst-order central Ąnite difference
approximations (see Equation 3.18) to calculate the Hamiltonian. Using central
differences to solve Equation 4.2 leads to numerical instabilities, like strong
oscillation in the solution, that have to be handled [78]. The Lax-Friedrichs scheme
is deĄned as follows [82]

H ≈ V
n

l=1

Dl(ϕ)2 −
n

l=1

αl

D+
l (ϕ) − D−

l (ϕ)
2

DT

, (4.6)

with the dissipation coefficients αl and the dissipation term DT . The dissipation
coefficients have to fulĄll

max
xi∈x

∂H

∂qi

≤ αl, (4.7)

with qi = ∂ϕ
∂xi

for a stable propagation of the solution [82]. The choice of the
dissipation coefficients has to be handled with great care.

45

When the dissipation term is chosen to be too large it over-smooths the solution
of Equation 4.2. This over-smoothing then leads to inconsistently rounded corners
with respect to the process model. On the other hand, if it is chosen too small the
solution is not stable [79, 86]. To address these problems several strategies have
been introduced [13, 15]. In this work a so-called Stencil Lax-Friedrichs schemes is
used [87]. A Stencil Lax-Friedrich scheme only considers a subset of the domain close
to a given point in which the numerical Hamiltonian is solved. Thus, the dissipation
coefficients are only calculated in a local domain around the point, which prevents
over-smoothing of the solution. ToiĆ et al. proposed the following calculation of the
dissipation terms for a grid point x in a 9 grid points (2D) and 27 grid points (3D)
stencil (e.g., ηB(x)) for selective epitaxy and wet etching [87]

αl = max
p∈η(x)

V ni +
∂V

∂ni

ϕ2
j + ϕ2

k

∥∇ϕ∥2
− ∂V

∂nj

ϕjϕi

∥∇ϕ∥2
− ∂V

∂nk

ϕkϕi

∥∇ϕ∥2
, (4.8)

where ni stands for the i-th coordinate of the normal vector and ∂V
∂nl

is deĄned as
follows

∂V

∂ni

≈ V (ni + ∆n, nj, nk, t) − V (ni − ∆n, nj, nk, t)
2∆n, t

, (4.9)

with ∆n = ϵ
1

3 V where ϵ stands for the Ćoating point accuracy.

Courant-Friedrichs-Lewy Condition

When numerically solving time-dependent PDEs (e.g., Equation 4.2) the stability
of the solution has to be considered when it evolves in time. A solution to a PDE
is called stable if small errors in the numerical approximation are not magniĄed
as the solution moves forward in time [88]. This can be achieved by enforcing the
Courant-Friedrichs-Lewy (CFL) condition [89], the CFL condition for the forward
Euler method can be expressed as [88]

∆t <
∆x

max(♣V ♣) . (4.10)

The maximal time step ∆t is thus calculated as follows

∆t = α
∆x

max(♣V ♣) , (4.11)

with α ∈ (0, 1). In the context of the level-set method the CFL condition restricts
how far the zero level-set can move with respect to the grid resolution ∆x on a
regular grid, during a single time step.

4.1.2 Reconstructing the Signed Distance Function
(Re-Distancing)

During simulations using the level-set method the zero level-set is moved through
the simulation domain.

46

Thus, the description of the zero level-set (i.e., the surface described by the level-set
function) changes in every time step. The quality of the ϕ-values away from the
zero level-set deteriorate with each time step (i.e., the distances between the level-
sets of the level-set function move closer together or spread out) [90]. To reduce
numerical errors in the propagation of the surface, the signed distance function has
to be reconstructed. To that end, depending on the normalization used to describe
the level-set function, different strategies must be applied.

Euclidean Normalization

The level-set function is constructed in such a way that it fulĄlls the Eikonal equation
(Equation 2.8 revisited)

∥∇ϕ(x)∥ = F (x), ∀x ∈ Ω

ϕ(x) = G(x), ∀x ∈ S,

when the Euclidean normalization is used.
To construct a signed distance function originating from the zero level-set S with

a departure time of 0 and a constant speed of 1 the following Re-Distancing PDE
has to be solved

∥∇ϕ(x)∥ = 1, ∀x ∈ Ω

ϕ(x) = 0, ∀x ∈ S.
(4.12)

This method only calculates positive signed distance values (i.e., values on the
outside of the volume Ω+). Thus, to calculate the signed distance values on the
inside of the volume (i.e., Ω−) the calculated distance values on the inside have to
be multiplied by −1.

Constructing the Signed Distance Function (Fast Marching Method)

The previously described scheme to construct a signed distance function is achieved
by using the fast marching method (FMM) [91]. The FMM is a numerical method
that solves the Eikonal equation on a grid. The numerical solution requires Ąrst-
order forward and backwards Ąnite difference approximations (see Equation 3.26 and
3.27). Thus, the solution of the Eikonal equation can be discretized as follows [92]

max(−D+

x (ϕi,j,k), D−
x (ϕi,j,k), 0)2 +

max(−D+
y (ϕi,j,k), D−

y (ϕi,j,k), 0)2 +
max(−D+

z (ϕi,j,k), D−
z (ϕi,j,k), 0)2

 =

1
F 2

i,j,k

. (4.13)

47

When the following substitutions are used

V = ϕi,j,k,

V1 = min(ϕi−1,j,k, ϕi+1,j,k),

V2 = min(ϕi,j−1,k, ϕi,j+1,k),

V3 = min(ϕi,j,k−1, ϕi,j,k+1),

Equation 4.13 can be simpliĄed to

max
V − V1

∆x
, 0

2

+ max
V − V2

∆y
, 0

2

+ max
V − V3

∆z
, 0

2

=
1

F 2
i,j,k

. (4.14)

Furthermore, since it is assumed that the speed of the waves emerging from the
front (e.g., the zero level-set) is positive, V − Vi must be greater than 0. Therefore,
the problem can further be simpliĄed to the quadratic equation

V − V1

∆x

2

+
V − V2

∆y

2

+
V − V3

∆z

2

=
1

F 2
i,j,k

. (4.15)

When the Eikonal equation is solved on a regular grid, the n dimensional solution
to the quadratic equation can be expressed as follows

V =
1
n

n

l=1

Vl +
1
n

n

l=1

Vl

2

− n
n

l=1

V 2
l − ∆x2

F 2
i,j,k

. (4.16)

It is possible that during this calculation not all grid points needed to solve
Equation 4.13 have a Ąnite value or that Equation 4.16 does not have a real solution.
In this case a so-called lower dimensional update has to be performed. To that
end the largest value Vmax = maxl∈1...n(Vl) is removed and Equation 4.16 is solved
with one less value. Note that this process always produces a valid solution for
the Eikonal equation since a one-dimensional update is minl∈1...n(Vl) + Δx

Fi,j,k
, which

always results in a Ąnite value. The grid points associated with ϕ-values Vi used to
solve Equation 2.8 are also referred to as the upwind neighbors.

During the FMM a grid point can have one of three states: accepted, calculated,
and far. The FMM starts by assigning all grid points neighboring the zero level-set
S the state of accepted and all other points the state far. Afterwards, all grid points
adjacent to the zero level-set S are collected, and their distance is calculated using
Equation 4.16. The grid points are marked as calculated and stored in a minimum
heap. Next, the head of the minimum heap is removed, the respective grid point
is marked as accepted and new values for the grid points in a star stencil (i.e., ηS)
that are not yet accepted are calculated with Equation 4.16. This process continues
until the heap is empty and all points in the domain have a distance value.

The FMM is not the only method for numerically solving Equation 2.8 on a
grid [93]. However, it is to this day a widely used method, particularly due its
numerical stability [94].

48

Manhattan Normalization

In the sparse Ąeld method the level-set function is considered in layers. The layer
L0 represents the zero level-set and the layers Lj with j ∈ Z\¶0♢ represent the
iso-contours further away from the zero level-set. Calculating the next layers Li+1

relative to an already known layer Li is achieved by updating all points in the new
layer as follows [55, 58]

ϕLi(x) =

miny∈ηS(x)∩Li−1

ϕLi−1(y) + 1 if i > 0

maxy∈ηS(x)∩Li+1
ϕLi+1(y) − 1 if i < 0

, (4.17)

where ηS(x) describes a star stencil in the point x and ϕLi(x) the ϕ-value of the
level-set function on the layer Li in the grid point x.

Constructing the signed distance function with this approach is computationally
much more efficient than using the FMM. Since, the computational overhead
of managing the heap and solving the quadratic Equation 4.16 is replaced by
determining the minimum or maximum in ηS(x) and a summation.

4.1.3 Velocity extension

In Section 4.1 methods to numerically solve Equation 4.2 have been discussed. Until
now, it has been assumed that the values of the velocity Ąeld V (x, t) are known in the
entire domain. However, the process models used to describe the propagation of the
zero level-set in topography simulations can only be meaningfully deĄned directly
on the surface [78, 95, 96, 97]. In order to solve Equation 4.2, the values of V (x, t)
have to be known in the entire domain. Dependent on the level-set normalization
different strategies have to be employed to propagate the surface information as far
into the domain as necessary.

Euclidean Normalization

Equation 2.8 describes the waves that propagate outwards from the zero level-set
in normal direction with a given speed of 1

F (x)
. So, any information deĄned on

the zero level-set can be propagated into the entire domain using this method.
This propagation of information (e.g., velocity values) is described by the so-called
velocity extension equation [95]

∇Φ(x⃗) · ∇V (x⃗) = 0 x⃗ ∈ Ω

V (x⃗) = VS(x⃗) x⃗ ∈ S,
(4.18)

where VS stands for the calculated velocity values at the cross points of the zero
level-set [95].

The solution of Equation 4.18 can be calculated using the FMM. Yet, during
this simulation step (see Figure 4.7) it can be assumed that the FMM has already
been performed to construct the signed distance function [15]. Thus, the direction
of the information propagating outwards, orthogonal to the zero level-set, is already
known.

49

This available information can be reused during the velocity extension by
constructing the heap in such a way that the new velocity values are calculated
only once for each grid point. This is possible since all the upwind neighbors for
each grid point of the level-set function have already been calculated. Furthermore,
this process can be parallelized by considering the problem in the context of graph
theory [98].

Manhattan Normalization

The previously described extension process is not necessary for Manhattan
normalized level-set functions. In this case, these level-set functions directly
describe the cross points of the zero level-set (i.e., L0) on which the models are
deĄned. Nevertheless, to achieve the movement of the layer L0 a rebuilding step is
required [55]. This rebuilding step is in essence the same as the construction of the
signed distance function discussed in Section 4.1.2 (see Equation 4.17) combined
with the pruning of larger values (i.e., ϕ(x) ≥ 0.5; see discussion in Section 2.3.2).
The velocity values are calculated for all surface points (i.e., L0) and stored in this
layer. Consequently, the layers L1 and L−1 are calculated. Note that only these two
layers are needed since the maximal distance the zero level-set can move during one
time step is bound by the CFL condition. To reconstruct the layer L0 all values of
the signed distance function that are larger than 0.5 are removed (since in the here
considered case the ϕ-values are normalized between −0.5 and 0.5; see Section 2.3.2).
This results in the zero level-set (i.e., layer L0) after one time step.

4.2 Surface Flux Calculation

During the fabrication of a semiconductor device the wafer is placed inside a reactor
that produces reactants that interact with the wafer surface. These interactions
can remove (i.e., etching) add material (i.e., deposition) from/to the wafer surface
[78, 96, 97, 99, 100, 101]. In a topography simulation the above discussed surface
interactions are captured by the process model. The two main parts that have to
be considered in the process model are:

• Reactor Scale Transport Model: The chamber in which the reactants for the
process are created is modeled. This model has to take into account the gases
or plasma put into the chamber in addition to the temperature, pressure,
chemical reactions, and the geometry of the chamber [102]. The output is
the concentration, energy distribution, and the velocities of different reactant
species.

• Feature Scale Transport Model: The transport through the feature geometry
until a reactant species interacts with the wafer surface is modeled.
Furthermore, the actual interaction of the different reactant species with the
wafer surface is described.

In topography simulations the results of the reactor scale model are used as inputs
for the feature scale model.

50

This is achieved through the virtual so-called source plane (P), which allows to
model the distribution of the reactant species created during the reactor scale
simulation. The source plane separates the reactor scale from the feature scale.
The reactant (source) Ćuxes and their energy and angular distributions are Ąxed
on this plane. Feature scale transport is modeled by combining several reactants
of the same species into particles. Furthermore, a particle may also represent the
aggregation of multiple species with similar chemical behavior. This is a necessary
abstraction since there could be an order of 1020 reactants present in the reactor,
easily overcoming available computing resources and thus not allowing for practically
relevant simulations. Additionally, it is assumed that the surface stays constant
during the modeling of the particle transport and that the particles are distributed
according to the reactor scale transport model in the source plane. During this
approach a surface coverage (Θ) of the reactants on the wafer surface is calculated,
which is subsequently used to determine the velocity Ąeld V (x, t) according to the
process model. The surface coverage is calculated by estimating the surface Ćuxes
Γ(x) for the particles according to the process model. The surface Ćux a point x on
the surface receives is modeled by the following equation [103]

Γ(x) =
Ω

Γin(x, ωdΩ)dΩ

=
Pvis

ωxsrc
· nx

∥x − xsrc∥2
(Γsrc(xsrc, −ωxsrc

)) dxsrc

+
Svis

ωxre
· nx

∥x − xre∥2
(Γre(xre, −ωxre

)) dxre,

(4.19)

where Pvis stands for the visible part of the source plane and Svis stands for the
visible part of the surface. Equation 4.19 describes the Ćux on the entire surface by
integrating over the amount of Ćux each point on the surface receives (see Figure 4.1).

p
er

io
di

c
b

ou
nd

ar
y

re
Će

ct
iv

e
b

ou
nd

ar
y

source planexsrc

Γsrc

−ωxsrc

ωxsrc

xre

−ωxre

ωxre

n⃗x

Γin

x

Figure 4.1: Illustration of the surface Ćux calculation. A point x on the surface is affected by
two types of Ćuxes. The Ćux it receives from the source Γsrc and the Ćux that is reĆected from
the geometry Γre.

51

A point on the surface x receives Ćuxes from two sources, Ąrst, the direct Ćux
received from the source Γsrc and second, the Ćux from reĆections of particles in the
domain Γre. The amount of Ćux a point on the surface receives is affected by how
much of the source plane is visible xsrc and how many other points on the surface
that reĆect particles are visible xre.

Since not the entire wafer is simulated some particles will leave the simulation
domain. To avoid loosing the information of these particles so-called boundary
conditions are employed. There are two kinds of boundary conditions: periodic and
reĆective. Periodic boundary conditions check where a particle leaves the domain
and re-emit this particle on the opposite side of the domain, with the same trajectory.
ReĆective boundary conditions re-emit the particles that hit the boundary back into
the domain at the point of impact.

For computational reasons, it is not feasible to calculate the surface Ćux
directly from Equation 4.19, thus, the surface Ćux has to be estimated. The
following sections discuss different approaches to estimate the surface Ćux (i.e.,
Equation 4.19): constant, bottom-up, and top-down [101].

4.2.1 Constant Approach

The straightforward way to approximate the surface Ćux on the wafer surface is to
assume that it is constant. In this case it is assumed that each point on the surface
receives the same amount of Ćux from P. However, the simulated structure still has
to be checked for eventual voids that are not exposed to P [104].

This simplistic surface Ćux approach is valid for some cases. For example
in anisotropic wet etching the surface is exposed to enough reactant that the
assumption of constant Ćux holds [105, 106]. However, this assumption does not
hold in general and more sophisticated approaches for calculating the surface Ćux
are required (e.g., for processes where a Ćux distribution is observed on the wafer
surface) [101].

4.2.2 Bottom-Up Approach

The constant Ćux approach does not take shadowing and other geometry-dependent
effects into consideration, e.g., points on the surface that receive fewer particles
due to parts of the geometry blocking a direct path to the source plane P (see
Figure 4.2). To alleviate this problem, a bottom-up approach is used. In a bottom-
up approach each point on the wafer surface (i.e., bottom) is considered, and it
is calculated how much of the source plane P is visible (i.e., up) from this point.
Computationally the performance of this approach can be improved by adaptively
sampling the hemisphere and only calculating the Ćux on certain surface elements
[107]. These calculations can be performed directly on the level-set function ϕ(x, t).
This approach lends itself to model processes in which the reactants interact with
the surface with little to no re-sputtering [6, 108].

52

p
er

io
di

c
b

ou
nd

ar
y

re
Će

ct
iv

e
b

ou
nd

ar
y

source plane

P2

P3P1

Figure 4.2: Illustration of the bottom up Ćux calculation approach. Not all surface points receive
the same amount of Ćux. The Ćux each of the illustrated surface point receives is indicated by the
red cones.

4.2.3 Top-Down Approach (Monte Carlo Ray Tracing)

The bottom-up approach does not take the reĆection of individual particles from the
geometry back into the domain into consideration. Although it is possible to model
these reĆections with a bottom up approach, it would require multiple iterations of
bottom-up Ćux calculations on the entire surface, which would thus be unfeasible
since it would require a lot of computational resources. To efficiently model the
reĆections of particles from the surface back into the domain, so-called ray tracing
is utilized, which is a Monte Carlo based strategy to model the surface Ćux [103,
109]. During a ray tracing simulation, the source plane P is split into equally
sized areas. The to be emitted particles are grouped together into packages which
subsequently are emitted into the domain with a direction t⃗ given by the distribution
of the particle source. The particles are traced from the source plane (i.e., top) until
they interact with the wafer surface (i.e., down). When a particle interacts with the
wafer surface a part of its ĆuxŠs payload is absorbed by the surface and, depending
on the remaining Ćux payload, is subsequently re-emitted into the domain. The
amount of particles that are absorbed by a surface element from all particles are
summed up and result in the Ćux at the respective surface element. Figure 4.3 shows
an illustration of this process.

To efficiently compute the top-down ray tracing an explicit representation of
the geometry of the wafer surface (e.g., a surface mesh or a point cloud) is
preferable [110]. Furthermore, since ray tracing is a Monte Carlo process, numerical
noise is introduced into the resulting Ćux, values which does not have a physical
meaning. The magnitude of the numerical noise can be reduced by increasing the
number of simulated particles. However, the numerical noise can never be entirely
removed, and the more particles are simulated, the more computational resources
are required.

53

p
er

io
di

c
b

ou
nd

ar
y

re
Će

ct
iv

e
b

ou
nd

ar
y

source plane

Figure 4.3: Illustration of the top-down Ćux calculation approach. In this approach, a particle
can be re-emitted from the surface and thus simulate specular effects.

4.3 Multi-Material Simulations

A typical topography simulation consists of several materials that are stacked on
top of a wafer. To model different interactions of the process model with different
materials each of these materials has to be represented by its own level-set function.
The most natural approach would be to deĄne a level-set function that envelopes
each material (see Figure 4.4a).

However, this approach has some disadvantages concerning the interfaces
between materials. Figure 4.5 illustrates the problems that can occur with such
a description of the material layers. In Figure 4.5a an overlap of the two material
layers is shown. These non-physical overlaps can form due to small numerical errors
in the discretization of the level-set function. The same problem can also lead
to non-physical voids shown in Figure 4.5b. A special kind of void is shown in
Figure 4.5c (a triple junction). This void occurs because of the discretization of the
level-set function, which leads to rounded corners. Reducing the grid resolution also
reduces the rounding effect.

Most of the research on circumventing the formation of the previously discussed
voids or overlaps originates from the study of multiphase Ćow [36, 111, 112, 113].
The strategies employed during such simulations are, on the one hand, to artiĄcially
keep the level-set functions together by changing the velocities of the velocity
Ąeld. On the other hand, Boolean operations are employed to prevent the level-
set functions from overlapping.

In multi-material topography simulations consisting of M materials usually
M − 1 level-set functions are required, since the vacuum or gas above the simulated
device is usually not represented explicitly. The most common approach to handle
multiple materials in topography simulations is the so-called additive or wrapping
approach [114].

54

(a) Level-set functions representing
materials.

(b) Additive level-set functions (wrapping
approach).

Figure 4.4: Illustration of two strategies of representing three material layers with level-set
functions.

(a) Overlap (b) Void (c) Triple Juncture

Figure 4.5: Illustration of problems that occur when enveloping material layers with level-set
functions.

In the additive approach, each level-set function ϕi describing a material Mi is
designed in such a way that it represents the union of all underlying materials
Mj ̸= ∅

Mi =
i−1

j=1

Mj where Mj = ϕj. (4.20)

Figure 4.4b shows an illustration of this approach. The additive approach Ąxes
another problem that often occurs in topography simulations (see Figure 4.6): When
a material layer is stacked on top of another material, the rounding that occurs at
the edges of the material interfaces leads to the formation of non-physical voids.
Figure 4.6b illustrates how this problem is resolved by using the wrapping approach.

55

(a) Without the additive
approach non-physical voids occur
at the border of the materials.

(b) Using the additive approach
avoids the formation of these non-
physical voids.

Figure 4.6: Illustration of a thin material layer on top of another material layer.

4.4 Application of Surface Representations in

Topography Simulations

During a topography simulation it can be advantageous, or in some cases even
essential, to utilize different surface representations. As discussed in Section 4.1,
an implicit surface representation is preferred during a topography simulation
for the evolution of the surface. An implicit surface representation intrinsically
handles topographical changes of the surface, such as the merging of two fronts,
due to material merging which often occures during topography simulations [17].
In Chapter 7 a strategy for simulating etching processes with Boolean operations
is discussed where again an implicit surface representation is advantageous (see
Section 2.3.3). Furthermore, it is easier to perform CSG on implicit surfaces, so the
generation of initial geometries is handled with implicit surfaces.

On the other hand, some Ćux calculation methods require an explicit surface
representation (e.g., Monte Carlo ray tracing) [18]. Moreover, the visualization
of surfaces, especially 3D surfaces, is much simpler with an explicit surface
representation than with an implicit surface representation. Therefore, for Ćux
calculations and the visualization of the surface the implicit surface is converted
into an explicit surface as discussed in Section 2.4.

4.5 Topography Simulation Workflow

The effects of the process models on different materials on the wafer surface during
a topography simulation is governed by the level-set equation (see Equation 4.2).
In a discrete setting, a time-dependent PDE like the level-set equation is solved
by calculating small time-steps that allow for a stable propagation of the solution
according to the CFL condition [88], and is from heron referred to as level-set
method. A simulation based on the level-set method is discretized in time as well
as space.

An example of a topography simulation workĆow based on the level-set method
is shown in Figure 4.7, the stimulation steps this thesis focuses on are highlighted
in red.

56

Extract Surface

Pre-Process Surface

Run Calculations
(External)

Flux Calculation

Process Model

Calculate Surface
Velocities

Velocity Extension

Advection (Solve
Level-Set Equation)

Advection

Reconstruct Signed
Distance Function

Re-Distancing

Simulation Finished ? End

Initial Geometry

Create a Signed
Distance Function

Start

Figure 4.7: Flowchart describing the typical topography simulation workĆow of a simulation
based on the level-set method. The steps marked in red are discussed in this work.

The general Ćow of a simulation is independent of the chosen level-set normalization.
The simulation starts with the initialization of the geometry. The initial geometry
usually originates from a previous simulation step or is created by CSG using
Boolean operations of simple level-set functions (e.g., planes and boxes). After
the initialization the main time-loop starts, and repeats the following three steps
until the process model concludes.

Flux Calculation

Dependent on the process model used during the simulation certain pre-processing
steps have to be performed (e.g., surface Ćux calculations). The surface Ćux obtained
form this pre-processing step is then used during the evaluation of the process model.
The extraction of the surface has been discussed in Section 2.4, a pre-processing
step to improve the performance of Monte Carlo ray-tracing based Ćux calculation
is discussed in Chapter 8. This step is not necessary for process models where a
constant Ćux can be assumed.

Advection

The advection step is the core part of a level-set based topography simulation.
During the advection step the process model is evaluated by taking into account the
values generated by the Ćux calculation. The level-set equation is solved, and the
velocities calculated by the process model are extended into the domain to propagate
the surface. In a level-set framework based on the Manhattan normalization the
velocity extension step is not required.

57

Re-Distancing

This step is required to prevent the propagation of numerical errors which emerge
during the advection step. In Chapter 6 this step is further discussed to allow for
simulations utilizing hierarchical grids.

4.6 Computational Hardware

The computational performance results discussed in the following chapters are
computed on commercially available computer systems. Therefore, the performance
of the to be presented experiments is bound by the limitations of these computer
systems. To get a more precise understanding of these limitations the relevant
concepts of modern computer systems are discussed in this section.

Modern microprocessor are schematically composed of three parts, see
Figure 4.8 [115]. The central processing unit (CPU) handles all computations and
interactions with data stored in the main memory, the main memory holds all
information required for a program to run, and input/output allows for interactions
between the program and the user. A core is the combination of the control and
arithmetic logic unit. Modern CPUs consist of several cores on a single chip, which
allows for the parallel execution of instructions. Furthermore, modern CPUs offer
simultaneous multithreading and thereby offering for each physical core two logical
cores, further increasing parallel computing capabilities. In turn, compute clusters
are composed of nodes, each offering at least one CPU and potentially also additional
accelerators, such as general purpose graphics processing units.

The speed at which the CPU can fetch information from the main memory is the
primary limiting factor for performance also known as the von Neumann bottleneck.
To partially overcome this issue so-called caches have been introduced to the CPU
chip. Caches are small memories with very fast read and write speeds. They store
small amounts of information and act as a buffer between CPU and main memory.
Figure 4.9 shows an illustration of a modern computer system, which, conceptually,
also represents one form of the previously mentioned node.

Memory

CPU

Control
Unit

Arithmetic
Logic
Unit

Input/Output

Figure 4.8: Illustration of the basic theoretical parts of a digital computer and their interactions.

58

This illustration shows an extended version of the basic principle described by
Alan Turing in the 1930s [115]. The use of different cache levels is a historical
development, since CPU clock speed (i.e., the amount of instruction the CPU can
process during a certain time interval) grew much faster than the memory bandwidth
(i.e., the speed at which data can be moved from the main memory to the CPU).
This discrepancy is also commonly referred to as the DRAM gap [116].

4.6.1 Caches

As can be seen in Figure 4.9 there are different kinds of caches, usually the
closer a cache is to the CPU register the faster it is [115]. Caches have different
responsibilities, the instruction cache (i.e., L1 I) stores the order of instructions the
CPU has to perform. In the data cache (i.e., L1 D) the data is stored on which the
CPU wants to perform its instructions. If the data is not present in the cache the
data has to be fetched from a higher level cache (e.g., L2 or L3), in the worst case
it has to be fetched from the main memory. Some caches are exclusive to one core
(e.g., L1 and L2), others are shared between all cores (e.g., L3).

As discussed in the previous section when the CPU requests data from the
memory, it is Ąrst checked if the data resides in the cache. If the requested data is
present in a cache it is called a cache hit, otherwise it is called a cache miss and the
data has to be fetched from the main memory.

Cache memory is built with SRAM cells, SRAM cells take up a huge amount
of physical space on a CPU. Furthermore, the fabrication of SRAM cells is more
expensive than DRAM thus, it is not feasible to create huge caches [117].

Computer

CPU

Core 0

L2 Cache

L1 I L1 D

T0 T1

Core 1

L2 Cache

L1 I L1 D

T2 T3

Core 2

L2 Cache

L1 I L1 D

T4 T5

L3 Cache

Main Memory

Figure 4.9: Illustration of a modern computer system. It is made up of a single CPU with three
cores. Three different cache levels and the main memory.

59

In a scientiĄc framework the geometries that are simulated are large (i.e., large
in the sense that the geometries do not Ąt into the cache of a CPU). Thus, much
of the run-time required for a topography simulation is dedicated to the fetching of
data from memory or higher cache levels. When the primary effort in executing a
program consists of memory access and not calculation speed the problem is called
memory bound.

4.6.2 Parallelization

In the mid 2000s CPUs hit the so-called heat barrier, which describes the effect
that an increase in clock speed yields a disproportional amount of heat that has to
be dissipated [115]. Thus, different strategies had to be developed to increase the
performance of CPUs. Since MooreŠs law is still observable the size of semiconductor
devices is still shrinking which frees up space on a wafer and ultimately the individual
chips. To utilize this additional space vendors started introducing additional cores
to the CPU. However, the speedup that can be expected by adding n cores to a CPU
is in general smaller than n. This can have several reasons, ranging from limited
memory bandwidth over non-optimal cache use up to load balancing issues (i.e.,
when a problem cannot efficiently be split into n parts).

The efficiency of a parallel program can be measured by putting the serial (s)
and the parallel (p) parts into relation [115]

s + p = 1. (4.21)

LetŠs Ąrst assume that there is one worker (e.g., a core) that works on a task (e.g.,
a program) the time it takes to Ąnish the task can be expressed as

Ts = s + p. (4.22)

Now assume that in the perfect scenario the run-time of a parallel task T is reduced
to T

n
when using n workers. As previously mentioned there are limitations to the

speedup a parallel program running on n cores can achieve. The ideal achievable
speedup trough parallelization (also known as strong scaling) can be expressed as

Tp(n) = s +
p

n
. (4.23)

Conversely, in case of weak scaling the number of processes and the problem size is
increased, leading to a constant workload per process.

To deĄne a measurement for the speedup of a program when it is parallelized
a metric for the performance (i.e., the work that is done during the run-time of a
program) is required. The performance of a serial program can be deĄned as [115]

P s =
s + p

Ts

= 1, (4.24)

and the performance of a parallel program as

P p =
s + p

Tp(n)
=

1
s + 1−s

n

. (4.25)

60

Combining these two performance metrics leads to the speedup

S =
P p

P s
=

1
s + 1−s

n

(4.26)

of a parallel program. Equation 4.26 is also known as AmdahlŠs Law, which describes
an upper limit of speedup for a problem of Ąxed size [118]. When n → ∞ it is easily
seen that the speedup that can be achieved trough parallelization is bound by the
run-time of the serial parts of the program. Furthermore, there is GustafsonŠs law
which estimates the parallel speedup of weak scaling programs [119].

4.6.3 Benchmark Systems

To evaluate the run-times of the algorithms presented in this work the used
benchmarking systems are introduced in this section. The Benchmarking systems
are a single node from the Vienna ScientiĄc Cluster (VSC). The VSC is a
collaboration of several Austrian universities that provides supercomputer resources
and corresponding services to their users [120]. Furthermore, an industrial computer
system (ICS) and a workstation (Workstation 1) are used. Table 4.1 summarizes
the key metrics of the three used benchmark systems.

4.7 Software Tools

The research results presented in this work have been produced by the use of several
open- and closed-source software tools. In this section all used tools are introduced
and a brief description of the relevant features is given.

Victory Process

Victory Process is commercial process TCAD simulation tool developed by
Silvaco [121]. It features several etching, deposition and oxidation models for
semiconductor fabrication simulations as well as an interface to implement user
speciĄc process models.

Workstation 1 Workstation 2 VSC4 ICS
Frequency (GHz) 4.4 4.6 3.1 2.8

Sockets 1 1 2 2
Cores per CPU 4 12 24 10

Logical cores per CPU 8 24 48 20
L1i cache 32 KByte 384 KByte 32 KByte 32 KByte
L1d cache 32 KByte 384 KByte 32 KByte 32 KByte
L2 cache 256 KByte 6 MB 1024 KByte 256 KByte
L3 cache 8 MByte 64 MB 33 MByte 26 MByte

Main memory 32 GByte 32 GByte 96 GByte 226 GByte

Table 4.1: Benchmarking systems used to run simulations in this work.

61

The modeling of the process models is based on the level-set method. Victory
Process is written in C++, parallelization is achieved with pThreads and OpenMP.
The results presented in Chapter 6 and Chapter 7 where produced with Victory
Process. Victory Process uses a hierarchical grid data structure to store the level-
set functions representing the different material layers in a topography simulation.

ViennaLS

ViennaLS is an open source level-set library which can be used for process TCAD
simulations developed at the Institute for Microelectronics TU Wien [13]. It is
developed in C++, uses OpenMP for parallelization and is accessible as a Python
library. The results presented in Chapter 5 where produced with ViennaLS.
ViennaLS uses a Hierarchical Run-Length Encoding (HRLE) data structure to store
the level-set function.

Visualization Toolkit (VTK)

The Visualization Toolkit (VTK) is an open source collection of algorithms to
manipulate and visualize scientiĄc data [122]. It is developed in C++, however,
it is available on several other platforms like Java or Python. In this work, VTK is
used to store and visualize data. Furthermore, it is used to calculate the Hausdorff
distance between two meshes in Chapter 8.

Computational Geometry Algorithms Library (CGAL)

The Computational Geometry Algorithms Library (CGAL) is a high performance
library for geometric algorithms developed in C++ [123]. The surface mesh
simpliĄcation algorithm presented in Chapter 8 is based on the implementation
of the edge-collapse algorithm of CGAL. CGAL uses a half-edge data structure to
store meshes. It is a high performance data structure that allows for fast access
to neighboring vertices, edges faces and an efficient method to iterate over the
unstructured mesh data sets.

Vienna Mesh

Vienna Mesh is a meshing framework developed at the Institute for Microelectronics
TU Wien [124]. It is developed in C++ and uses a modular approach to combine
multiple external mesh generation and adaptation tools (e.g., CGAL or VTK). The
surface simpliĄcation algorithm presented in Chapter 8 has been developed with
ViennaMesh.

Embree

Embree is an open source high performance CPU based ray tracing kernel library [41,
125]. It is used in Chapter 8 to perform Monte Carlo ray tracing.

62

Chapter 5

Fast Feature Detection for
Level-Set Functions

Surface geometries originating from process TCAD simulations are often
characterized by small areas with pronounced geometric variations, and large areas
which are only slightly bent or even entirely Ćat areas. Consider, for example, the
corners and side walls of a trench, respectively.

The areas with pronounced geometric variations are referred to as features.
During a process TCAD simulation the wafer surface evolves in time, which
dynamically changes the surface geometry during each simulation time step.
Therefore, an algorithm is needed that detects where on the surface new features
emerge or dissolve. Additionally, depending on the used process model strict quality
requirements are imposed on the feature detection (e.g., ignoring noise in the level-
set function). Geometric feature detection or extraction of 2D and 3D data sets
is a widely studied Ąeld, where the surface curvature is the primary metric [26,
27, 28, 29]. In the context of level-set method, the curvatures of the zero level-set
have also been used in numerous ways to gain more insights into the geometry of
the surface [126, 127, 128]. Moreover, the surface curvature is of high interest in
other Ąelds of computer science, such as Ćuid dynamics, where the relation between
surface curvature and surface tension is of interest [129]. These simulations require a
high numerical accuracy of the calculated curvature values, which in turn increases
the run-time. However, since in this work the surface curvature is used to indicate
parts of the simulation domain that can beneĄt from a higher resolution the quality
of the calculated curvature values is less of a concern, as long as the numerical error
is not too big. Thus, the dominant metric for feature detection is the run-time.

In this chapter, a general feature detection algorithm based on the geometric
properties of a discrete surface is introduced (Section 5.1). The algorithm is
independent of the chosen surface representation and is used throughout the
remainder of this thesis. Due to the context of this thesis in topography simulation
the primarily used surface representation are level-set functions 2D feature detection
is a simpliĄed version of the 3D case, thus, the discussion focuses on the latter and
the adaptations for the 2D case are presented at the end of the discussion.

63

Furthermore, in Section 5.2 the different curvature calculation methods for implicit
surfaces presented in Section 3.4, and a novel method presented in this section,
are tested for their feasibility considering geometries originating from topography
simulations. These geometries are then further investigated with respect to the
run-times of the feature detection algorithm and are used to calibrate a numerical
feature detection parameter for topography simulations.

Own Contributions

The original contributions in this chapter are the formulation of a feature
detection algorithm for discrete surface representations (see Chapter 2) for
process TCAD simulations. Additionally, an alternative way of calculating
the Ąnite differences for curvature calculation has been developed. This work
was partially presented at the ASHPC 2021 conference [130] and was published
as an article in the Journal of ScientiĄc Computing [74].

5.1 Feature Detection

This section introduces a formal deĄnition of which parts of a surface are considered
to be a feature. To that end, the effects of minimal surfaces on the deĄnition of
a feature are discussed. Furthermore, two feature detection algorithms based on
the two classes of surface classiĄcations (i.e., surface curvature and angle between
normal vectors) are introduced [22, 127].

In Section 5.1.1 a feature of a 3D surface is formally deĄned. Next, in
Section 5.1.2 the feature detection algorithm for 3D discrete surfaces using the
surface curvatures is introduced. The for this thesis developed Big Stencil method
is presented in Section 5.1.3. Furthermore, it is discussed how the calculation of
the Gaussian curvature can be avoided when using the Shape Operator method for
feature detection and still obtain a robust detection of the features of the surface.
In Section 5.1.4 a variation of the feature detection algorithm is discussed that uses
the surface classiĄcation method based on the normals of the surface. Furthermore,
some preliminary performance tests are discussed. Finally, in Section 5.1.5 the
adaptations to the feature detection algorithm for 2D surfaces are presented.

5.1.1 Feature Definition

As already mentioned in Section 3.1.2, a minimal surface is one that has a mean
curvature H of 0. However, the principal curvatures κ1 and κ2 might not necessarily
be equal to 0 on each point of the surface (see DeĄnition 3.1.14). Another way of
describing minimal surfaces is the following: Minimal surfaces are surfaces on which
every point on the surface is a saddle point. The plane is a trivial example of a
minimal surface, however, there are several non-trivial examples. See, for example,
the surfaces depicted in Figure 5.1. For the purpose of this work it is important to
distinguish parts of a surface that locally describe a minimal surface that is not a
plane (e.g., a local saddle point) from an actual plane.

64

(a) Catenoid (b) Enneper surface

Figure 5.1: Examples of non-trivial minimal surfaces which represent a curved geometry.

These observations indicate that simply considering the mean curvature of a discrete
surface is not sufficient to distinguish Ćat parts of the surface from parts that are
curved. The surfaces depicted in Figure 5.1 are obviously not a plane and bend,
thus, the points on these surfaces describe features of the geometry. So, a necessary
and sufficient condition for a surface point to be part of a plane is H = K = 0,
which implies that its principal curvatures also fulĄll κ1 = κ2 = 0. Therefore, if a
point on a surface only fulĄlls H = 0 and its Gaussian curvature fulĄlls K ̸= 0 it
should be considered a feature.

If a point on a discrete surface is considered to be a feature and if it fulĄlls H ̸= 0
or K ̸= 0 the following two problems arise:

• The curvature values calculated for a discrete surface are numerical
approximations, thus, small numerical errors can cause the calculated values
to deviate from an analytical plane.

• If the discrete surface only bends slightly, e.g., has a small numerical mean
curvature value, it should not be considered a feature since only sharp
geometric variations lead to problems in the discretization of the surface.

Therefore, a feature can be deĄned as follows:

5.1.1 Definition (Feature) A feature of a discrete surface is a point on
the discrete surface that has an absolute mean curvature value higher than a
threshold parameter C > 0, and ♣H♣ > C or ♣H♣ < C and ♣K♣ > C.

DeĄnition 5.1.1 is similar to calculating the curvedness of a surface [131]. However,
the here discussed approach of deĄning a feature is computationally more efficient.
The curvature calculation methods for surface meshes and discrete implicit functions
discussed in Chapter 3 calculate the mean and Gaussian curvature of a surface.
Thus, additional computational resources have to be devoted to calculating the
principal curvatures in addition to calculating the curvedness. Additionally, the
in DeĄnition 5.1.1 given description of a feature avoids calculating the Gaussian
curvature if the mean curvature is already sufficient to identify a surface point as a
feature.

65

5.1.2 Algorithm

The features of a discrete surface are detected by iterating over all surface points:
• Point Clouds: All points of the point cloud.
• Surface Meshes: All vertices of the surface Mesh.
• Level-Set Functions: The grid points in the narrow band around the zero

level-set.
For each surface point the absolute mean curvature ♣H♣ is calculated. If ♣H♣ is bigger
than the feature threshold parameter (i.e., feature detection parameter) C, then the
point on the surface is considered to be a feature. Otherwise, if ♣H♣ < C the point
is checked if it is part of a minimal surface by calculating the Gaussian curvature K
and comparing it against ♣K♣ > C. Therefore, the algorithm detects a feature when
either of the following conditions is met:

♣H♣ > C, or

♣H♣ < C and ♣K♣ > C.
(5.1)

The parallelization of the feature detection algorithm is straightforward since the
curvatures of each point on a discrete surface have to be calculated independently of
each other. Thus, the parallel speed-up is memory-bound and limited by the quality
of the used domain decomposition of the discrete surface.

5.1.3 Curvature Based Feature Detection for Level-Set
Functions

In Section 3.4 three different methods of calculating the surface curvatures of an
implicit surface (e.g., a level-set function) are introduced. The General Formula and
Variation of Normal methods can be implemented directly as they are presented
in Section 3.4. The Shape Operator method, however, requires further discussion
before it can be utilized for feature detection, which is done later in this section.
Furthermore, a novel way of calculating the derivatives required for the curvature
calculation is presented that does not increase the stencil size but uses underutilized
grid points already present in the stencil to improve accuracy.

Big Stencil

Consider that a 19 point plane stencil ηP is present to calculate the Ąnite differences
required to determine the mean curvature of the zero level-set (c.f., Section 3.4.1
and Figure 3.8a). There exist more accurate Ąnite difference approximations to
calculate the Ąnite differences Dx and Dxx [132]. These Ąnite differences require
no additional grid points, thus, they do not increase the size of the Ąnite difference
stencil. They can be calculated by the following Ąnite difference formulas

D̃x(ϕi,j,k) ≈ ϕi+1,j+1,k − ϕi−1,j+1,k + ϕi+1,j−1,k − ϕi−1,j−1,k

4∆x
, (5.2)

D̃xx(ϕi,j,k) ≈
ϕi+1,j+1,k − 2ϕi,j+1,k + ϕi−1,j+1,k + ϕi+1,j,k − 2ϕi,j,k

+ ϕi−1,j,k + ϕi+1,j−1,k − 2ϕi,j−1,k + ϕi−1,j−1,k

3∆x2
. (5.3)

66

When the mean curvature is calculated using Equation 3.21 utilizing the Ąnite
difference approximations Dxy, D̃x, and D̃xx, it is henceforth referred to as the
Big Stencil method. The here suggested method uses the same Ąnite difference
stencil as the General Formula method. However, it utilizes more information of
the level-set function (e.g., more ϕ-values) to calculate the derivatives required in
Equation 3.21. Therefore, the numerical accuracy of the calculated mean curvature
values is improved. The Gaussian curvature can be calculated by using the
more accurate Ąnite difference approximations and Equation 3.22. Therefore, no
additional calculations are required when using this method for feature detection.

Addendum Shape Operator

The Shape Operator method uses the trace of the Hessian to calculate the mean
curvature of the discrete surface. By only requiring the trace this method can be
calculated with a 7-point star stencil ηS (see Section 3.4.1), however, calculating the
Gaussian curvature still requires a plane stencil ηP . That larger stencil ηP would
negate the performance gains achieved through the smaller stencil and fewer Ąnite
differences that have to be evaluated. Therefore, a different strategy to determine
if a surface point is part of a minimal surface is desired. This can be achieved by
utilizing the fact that the value of the mean curvature is expressed by half the trace of
the Hessian. Thus, conditions of the feature detection algorithm (see Equation 5.1)
are simultaneously checked if

♣Dxx(ϕi,j,k)♣ + ♣Dyy(ϕi,j,k)♣ + ♣Dzz(ϕi,j,k)♣ > 2C. (5.4)

Let the grid point (i, j, k) be part of a minimal surface that is not a plane, so H = 0
and without loss of generality

−Dyy(ϕi,j,k) = Dxx(ϕi,j,k) + Dzz(ϕi,j,k) ̸= 0. (5.5)

Thus, ♣Dyy(ϕi,j,k)♣ ≠ 0 and Equation 5.4 holds for points on a minimal surface that
describe a feature of the zero level-set.

Nonetheless, it is possible that each element in the trace of the Hessian is equal
to 0 when a point on a minimal surface that is not a plane is investigated. However,
this case can be ignored considering the following deliberations. If all second-order
derivatives of the trace are 0, then the basis in which the shape operator in the
point x is expressed has a speciĄc form. For example, let x be the saddle point
of a hyperbolic paraboloid parametrized by (x2 − y2) − (x − y)2 = z. When the
basis vectors spanning the tangent plane of the shape operator in x, point in a
45 degree angle between the cartesian coordinate axes x and y, then the second-
order derivatives along these basis vectors are 0 since the curves are straight lines
(see Figure 5.2). However, this implies that the basis of the shape operator in the
adjacent points to x has to be different, thus, the trace of the Hessian in these
adjacent points does not contain only zero entries.

67

x
Basis of the shape operator

Parametrized curves

Figure 5.2: Illustration of a hyperbolic paraboloid and a basis of the shape operator in the point
x where all second-order derivatives are 0.

The Shape Operator method is an often neglected method of calculating the
mean curvature of a level-set function. Its numerical accuracy is highly dependent
on the numerical accuracy of the signed distance function, which in performance
oriented applications is only Ąrst-order accurate (see Equation 4.13). However, in
Section 5.2.3 it is shown that the numerical accuracy is high enough to use this
method for feature detection.

5.1.4 Surface Normal Based Feature Detection

As mentioned in Section 3.5, when considering level-set functions the angle between
the surface normal vectors can be used for surface classiĄcation. To that end, the
deĄnition of a feature (see DeĄnition 5.1.1) has to be adapted.

5.1.2 Definition (Angle Feature) A point on the surface of a level-set
function is called an angle feature, if the angle between the normal vector n⃗x

and one normal vector n⃗xi
on each surface point in a box stencil (ηB(x)) around

the point x is bigger than an angle Cangle.

This method intrinsically handles minimal surfaces since it approximates the angle
between the normal vector of a parametrized curve and the central normal vector
in the direction of the maximum curvature κ1 and not the mean curvature.

Algorithm Adaptation

The algorithm presented in Section 5.1.2 must be adapted to work with angle
features. Instead of calculating the curvatures in each point on the surface, the
surface normal in each surface point is calculated. Afterwards, a box stencil is
moved over each surface point. Each point in the box stencil is checked if it is a
surface point, when this point is a surface point the angle α between the central
normal and the normal of the surface point is calculated, and is checked if α < Cangle.
If α > Cangle the central point is marked as a feature and the box stencil is moved
to the next surface point, otherwise the next point in the box stencil is checked.

68

Run-Time Evaluation of Surface Normal Based Feature
Detection

The primary drawbacks of a surface normal based feature detection on level-set
functions are discussed here. Depending on the position of a surface normal on the
surface it is possible that the angle between the central normal and an adjacent
normal is greater than the parameter Cangle although the central surface normal is
not part of a feature. Figure 5.3 shows an illustration of such a problem. The
point p1 would be Ćagged as a feature even though it is part of a plane.

Furthermore, the computational performance (See Section 5.2) of the surface
normal and curvature based feature detection are experimentally compared. In what
follows, the studies have been performed on a trench geometry shown in Figure 5.4.

The run-times and speedup of the curvature based feature detection algorithm
using the General Formula, the Shape Operator method to approximate the surface
curvature, and the surface normal based feature detection algorithms presented in
Section 5.1 are investigated.

p1

n⃗p1

p2

n⃗p2

C
a
n
g
le

Figure 5.3: Illustration of the problems that may occur when using a surface normal based
feature detection. If p1 is the central grid point, the angle between n⃗p1

and n⃗p2
would be bigger

than Cangle, thus p1 is Ćagged as a feature, although it is part of a plane.

Figure 5.4: Trench geometry with 4 subdomains which hold an approximately equal amount of
grid points.

69

1 4 8 12

106

107

Number of Threads

T
im

e
(m

s)

(a) Run-Times

1 4 8 12

2

4

6

8

Number of Threads

Sp
ee

du
p

General Formula
Shape Operator
Normal Flagging

(b) Speedup

Figure 5.5: Run-time and speedup of the feature detection algorithms on the Trench geometry.

The feature detection parameters C and Cangle have been chosen in such a way
that they Ćag the same amount of grid points as features. Figure 5.5 shows the
benchmarks executed on Workstation 2. The results show that the performance
of the surface normal based feature detection is far worse compared to using the
surface curvatures. The additional drawback of potentially Ćagging more surface
points than needed yields the conclusion that surface normal based feature detection
is the vastly inferior choice to detect features of a level-set function compared to
feature detection based on surface curvature.

5.1.5 2D Feature Detection

Feature detection on 2D surfaces is a simpliĄed version of the feature detection
algorithm presented in Section 5.1.2. The deĄnition of a feature (see DeĄnition 5.1.1)
also holds for 2D surfaces, when the term mean curvature is substituted by curvature
(i.e., κ). Furthermore, in the 2D case the calculation of the Gaussian curvature and
discussion about minimal surfaces is immaterial, since minimal surfaces only occur in
3D. Thus, the algorithm presented in Section 5.1.2 is easily adapted for 2D discrete
surfaces. In this case, the algorithm simpliĄes to calculating the absolute curvature
♣κ♣ and comparing it to the feature threshold parameter C.

Surface normal based feature detection can also be used on 2D surfaces, by
modifying the box stencil which only consists of 9 grid points in 2D.

5.2 Comparison and Evaluation

The simulation results presented in this section have been generated with ViennaLS
and where executed on a single node of VSC4 (see Section 4.6.3).

70

Hierarchical Run-Length Encoding

ViennaLS uses a Hierarchical Run-Length Encoding (HRLE) data structure to store
the level-set function. The HRLE data structure only stores the narrow band around
the zero level-set up to a predetermined thickness (see Section 2.3) [133]. This is
achieved through a segmentation of the coordinate directions. This data structure
naturally lends itself to be used in a level-set framework based on the sparse Ąeld
approach [114].

Parallelization Strategy

Parallelization in ViennaLS is achieved through a domain decomposition approach
that splits the entire simulation domain into subdomains. The domain is split along
a coordinate axis in such a way that approximately the same amount of grid points
are present in each subdomain [134].

5.2.1 Geometries and Mean Curvature Values

The applicability of the curvature calculation methods presented in Section 3.4
and the newly developed Big Stencil method for the feature detection algorithm
presented in Section 5.1.2 is evaluated on several test geometries:

1. Sphere
2. Stacked nanosheet FET [12]
3. Selectively grown epitaxial crystal [87]

Sphere

In case of the sphere the mean curvature can be analytically calculated and compared
to numerical approximations. A sphere with radius r has an analytical mean
curvature of 1/r. Furthermore, every time step in a level-set based simulation
is a numerical approximation which introduces small numerical errors into the
discretization of the surface. Thus, to compare the analytical mean curvature values
of the sphere to values calculated during a simulation workĆow, the sphere has been
subjected to a velocity Ąeld. By way of example the here considered sphere is
initialized with a radius of 15, and subsequently subjected to a constant velocity
Ąeld with a velocity of −1 for 5 time units. This results in a sphere that should
have an analytical radius of 10, and thus, a mean curvature H of 0.1. A Ąrst-order
Engquist Osher scheme is used to solve the level-set equation (see Section 4.1.1).
The distribution of the calculated mean curvature values of all points on the zero
level-set, for the Big Stencil and the methods discussed in Section 3.4, is shown
in Figure 5.6. Due to the numerical errors introduced by the discretization of the
level-set function, the distance to the center of the sphere from all points on the zero
level-set is between 9.9 and 9.6, with an average distance of 9.7. The smaller radius
compared to the analytical sphere is explained by a loss in volume originating from
the discretization into the regular grid.

71

0.1 0.12 0.14 0.16
0

500

1,000

Analytical Curvature

Mean Curvatures (H)

N
um

b
er

of
Su

rf
ac

e
P

oi
nt

s General Formula
Big Stencil

Shape Operator
Variation of Normal

Figure 5.6: Mean curvature values for a sphere with radius 9.7 and grid resolution 0.27 after 5 time
units. Adapted from Lenz et al., J Sci Comput. 71, (2023), p. 108258 [74], © The Authors, licensed
under the CC BY-NC-ND 4.0 License, https://creativecommons.org/licenses/by-nc-nd/4.

0/.

Thus, the calculated mean curvature values are distributed around the analytical
mean curvature of a sphere with radius 9.7, which is indicated by the black line in
Figure 5.6.

The mean curvature values computed with the General Formula and the
Variation of Normal methods do not signiĄcantly differ from each other. The mean
curvature values calculated with the Shape Operator method deviate the most from
the analytical solution. However, this is expected since the star stencil uses fewer
grid points, thus the numerical error of the discretization is more pronounced, as
discussed in Section 5.1.3. The Big Stencil method produces the best match with the
expected mean curvature values from the analytical solution. These investigations
show that the mean curvature calculation methods, except for the Big Stencil
method, tend to overestimate the mean curvature of the sphere. Furthermore, the
Shape Operator method overestimates the mean curvature values by up to 75%.
However, the empirical analysis presented in Section 5.2.3 shows that this error
does not disqualify the Shape Operator method from being used for the purpose of
feature detection.

Stacked Nanosheet FET

The Ąrst geometry originating form a topography simulation workĆow is a stacked
nanosheet FET. As discussed in Section 4.3, different materials are represented by
their individual level-set functions, which are combined through layer wrapping to
represent the topography of the semiconductor device. Therefore, it is sufficient to
only investigate certain material layers, since the features of the underlying layers are
already captured in the upper layer. Figure 5.7 shows two representative material
layers (layer 3 and layer 5) after the 24th process step of a stacked nanosheet FET
fabrication simulation (see Table II of [12]): the surfaces are the result of several
processing steps, which have undergone considerable geometric changes due to the
employed process models. For all the above-mentioned processing steps a Ąrst-order
Engquist Osher scheme is used to solve the level-set equation.

72

https://creativecommons.org/licenses/by-nc-nd/4.0/.
https://creativecommons.org/licenses/by-nc-nd/4.0/.

(a) Material layer 3

−2

0

+2

(b) Material layer 5

Figure 5.7: Calculated mean curvature values of two material layers of a stacked nanosheet FET,
calculated with Shape Operator. Adapted from Lenz et al., J Sci Comput. 71, (2023), p. 108258
[74], © The Authors, licensed under the CC BY-NC-ND 4.0 License, https://creativecommons.

org/licenses/by-nc-nd/4.0/.

0.000.250.500.751.001.251.501.752.00

100

101

102

103

104

Absolute Mean Curvatures (♣H♣)

N
um

b
er

of
Su

rf
ac

e
P

oi
nt

s General Formula
Big Stencil
Shape Operator
Variation of Normal

(a) Material layer 3

0.000.250.500.751.001.251.501.752.00

100

101

102

103

104

Absolute Mean Curvatures (♣H♣)

N
um

b
er

of
Su

rf
ac

e
P

oi
nt

s General Formula
Big Stencil
Shape Operator
Variation of Normal

(b) Material layer 5

Figure 5.8: Distribution of the calculated absolute mean curvature values of the two material
layers of a stacked nanosheet FET shown in Figure 5.7. Adapted from Lenz et al., J Sci Comput.
71, (2023), p. 108258 [74], © The Authors, licensed under the CC BY-NC-ND 4.0 License,
https://creativecommons.org/licenses/by-nc-nd/4.0/.

In Figure 5.8 the distribution of the absolute mean curvatures of layers 3 and 5
are shown. A similar behavior of the calculated mean curvature values as for the
sphere can be identiĄed. SpeciĄcally, the mean curvature values calculated with
the Shape Operator method overestimate the mean curvature more than the other
methods. About 96% of the calculated absolute mean curvature values fall in the
interval between 0.0 and 0.5. This illustrates that most of the geometry is Ćat or
only slightly bent, without many sharp features.

Selectively Grown Epitaxial Crystal

The second considered geometry of a topography simulation workĆow is a
heteroepitaxially grown SiGe crystal on a Si Ąn.

73

https://creativecommons.org/licenses/by-nc-nd/4.0/.
https://creativecommons.org/licenses/by-nc-nd/4.0/.
https://creativecommons.org/licenses/by-nc-nd/4.0/.

These crystals are fabricated using strongly anisotropic processing techniques which
are a common fabrication steps for non-planar semiconductor device geometries
(e.g., FinFETs) [135]. The simulation of such processes result in non-convex
Hamiltonians. In Section 4.1.1 the Lax-Friedrichs scheme is discussed. It is
required to solve the level-set equation when simulating crystallographic orientation-
dependent growth. Furthermore, the process model depends upon special
interpolation schemes to calculate the velocities for all points on the zero level-
set [136]. The selective epitaxial growth (SEG) of the SiGe crystal is characterized
by crystal facets (i.e., the planes formed by the different growth characteristics
depending on the crystallographic planes). The resulting device topographies
contain areas with high-curvatures and essentially Ćat areas [137]. Simulating such
processes results in level-set functions with sharp corners that have to be maintained
during the simulation of the growth process.

Figure 5.9 depicts the SiGe material layer of the simulated crystal surface, and
Figure 5.10 shows the distribution of the calculated absolute mean curvature values.

Comparing the calculated mean curvature values of Figure 5.9a and Figure 5.9b
shows that there is slight noise on crystalline facets when using the General Formula
method. The noise is introduced by the numerical methods used to solve the process
model (e.g., the Lax-Friedrichs scheme and the interpolation of the velocity values).
However, the mean curvature values calculated with the Big Stencil method shown
in Figure 5.9b are only marginally affected by the noise in the level-set function. The
superior results achieved with the Big Stencil method concerning the noise in the
level-set function is explained by the additional grid points used to approximate the
second-order derivatives: As discussed in Section 3.4.2 the trace of the Hessian of the
level-set function contains all information needed to calculate the mean curvature.

(a) General Formula method

−1.5

0

+1.5

(b) Big Stencil method

Figure 5.9: Calculated mean curvature values of the zero level-set of the material layer of a
heteroepitaxially grown SiGe crystal on a Si Ąn. The noise on the crystal facets introduced by the
crystallographic orientation-dependent velocity Ąeld is reduced when using the Big Stencil method.
Adapted from Lenz et al., J Sci Comput. 71, (2023), p. 108258 [74], © The Authors, licensed under
the CC BY-NC-ND 4.0 License, https://creativecommons.org/licenses/by-nc-nd/4.0/.

74

https://creativecommons.org/licenses/by-nc-nd/4.0/.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

100

101

102

103

104

Absolute Mean Curvatures (♣H♣)
N

um
b

er
of

Su
rf

ac
e

P
oi

nt
s General Formula

Big Stencil
Shape Operator
Variation of Normal

Figure 5.10: Distribution of the calculated absolute mean curvature values for the SiGe material
layer shown in Figure 5.9. Adapted from Lenz et al., J Sci Comput. 71, (2023), p. 108258 [74],
© The Authors, licensed under the CC BY-NC-ND 4.0 License, https://creativecommons.org/

licenses/by-nc-nd/4.0/.

Thus, increasing the numerical accuracy of the second order derivatives in the same
direction (i.e., the elements of the trace of the Hessian) increases the accuracy of
the calculated mean curvature. Figure 5.10 supports the above observations since
most of the absolute mean curvature values are smaller than 2 and most of them
are close to 0, compared to the other three methods.

5.2.2 Parameter Study

In the previous section the calculated mean curvature values of several geometries
originating from process TCAD simulations have been investigated. The feature
detection algorithm presented in Section 5.1.2 requires a feature threshold parameter
C. Thus, to obtain such a parameter for the investigated topographies a parameter
study is conducted. The parameter search starts with a (for this case appropriate)
value of 0.01 for the feature detection parameter C up to 1/∆x with a step length
of 0.01. 1/∆x is chosen as the maximum value, since it is the maximal absolute
curvature a level-set function with a given grid resolution of ∆x can describe (see
Section 3.4). 0.01 is chosen as the minimum value as smaller values tend to Ćag
nearly the entire surface as a feature. Figure 5.11 shows the different feature
detection parameters C compared to the surface points detected as features for
the two representative material layers of the stacked nanosheet FET.

The observations from the previous section still hold, thus, the Shape Operator
identiĄes more surface points as features than the other methods. However, as long
as the additional grid points which are detected as features are still adjacent to
other features of the geometry they can be ignored. This suggests that the Shape
Operator method is still able to reliably detect features of the zero level-set. The
other three methods identify approximately the same number of surface points as
features with only minor deviations.

The graphs depicted in Figure 5.11 indicate that the feature detection parameter
C for the here considered representative topographies should be chosen between 0.1
and 1.0:

75

https://creativecommons.org/licenses/by-nc-nd/4.0/.
https://creativecommons.org/licenses/by-nc-nd/4.0/.

0.000.250.500.751.001.251.501.752.00

0

5000

10000

15000

20000

25000

30000

Feature Threshold Parameter C

G
ri

d
P

oi
nt

s
D

et
ec

te
d

as
F

ea
tu

re
s

General Formula
Big Stencil
Shape Operator
Variation of Normal

(a) Material layer 3.

0.000.250.500.751.001.251.501.752.00

0

5000

10000

15000

20000

25000

30000

Feature Threshold Parameter C

G
ri

d
P

oi
nt

s
D

et
ec

te
d

as
F

ea
tu

re
s

General Formula
Big Stencil
Shape Operator
Variation of Normal

(b) Material layer 5.

Figure 5.11: Surface points detected as features of the zero level-set compared to the chosen
feature detection parameter C for the stacked nanosheet FET shown in Figure 5.7. Adapted from
Lenz et al., J Sci Comput. 71, (2023), p. 108258 [74], © The Authors, licensed under the CC
BY-NC-ND 4.0 License, https://creativecommons.org/licenses/by-nc-nd/4.0/.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0

500

1000

1500

2000

Feature Threshold Parameter C

G
ri

d
P

oi
nt

s
D

et
ec

te
d

as
F

ea
tu

re
s

General Formula
Big Stencil
Shape Operator
Variation of Normal

Figure 5.12: Surface points detected as features of the zero level-set compared to the chosen
Ćagging parameter C for the heteroepitaxially grown SiGe crystal shown in Figure 5.9. Adapted
from Lenz et al., J Sci Comput. 71, (2023), p. 108258 [74], © The Authors, licensed under the CC
BY-NC-ND 4.0 License, https://creativecommons.org/licenses/by-nc-nd/4.0/.

If the feature detection parameter is larger than 1.0 almost no grid points are
detected as features leading to less and less features being identiĄed. On the other
hand if the feature detection parameter is chosen smaller than 0.1 it is possible that
nearly all surface points are detected as features. These deliberations and Figure 5.8
suggest that a feature detection parameter of C = 0.5 identiĄes most features and
simultaneously avoids capturing only slightly bent parts of the zero level-set.

Figure 5.12 depicts the same parameter search for the heteroepitaxially grown
SiGe crystal surface as for the stacked nanosheet FET. The Big Stencil method
identiĄes far fewer grid points as features in the range of 0.2 and 1.1 than the other
three methods, which contrasts the behavior of the feature detection parameter
observed for the stacked nanosheet FET. As argued in Section 5.2.1 the lower amount
of grid points detected as features stems from the higher accuracy of the Big Stencil
method, which enables it to ignore the noise in the crystal facets.

76

https://creativecommons.org/licenses/by-nc-nd/4.0/.
https://creativecommons.org/licenses/by-nc-nd/4.0/.

At a feature detection parameter of C = 1.1 (see Figure 5.12) the amount of grid
points detected as features between the General Formula, Variation of Normal, and
Big Stencil equalizes. However, as previously discussed this is a relatively high value
(see the distribution of the mean curvature values in Figure 5.8 and Figure 5.10)
for the feature detection parameter, which can lead the feature detection to miss
important features of the investigated geometry. The amount of grid points detected
as features is constant between the feature threshold parameters 0.4 and 1.1 when
using the Big Stencil method. Thus, C = 0.5 is a sensible choice for the feature
detection parameter when the Big Stencil method is used to calculate the curvatures
of the SiGe crystal.

5.2.3 Empirical Evaluation

Here, the feature detection algorithm presented in Section 5.1.2 combined with
the identiĄed feature detection parameter C (see Section 5.2.2) are evaluated for
their feasibility to detect features on geometries originating from process TCAD
simulations. Figure 5.13 depicts the features detected by the feature detection
algorithm using the Shape Operator and the Big Stencil methods on the topography
of a stacked nanosheet FET.

(a) Shape Operator material layer 3 (b) Shape Operator material layer 5

(c) Big Stencil material layer 3

Flat
Feature

(d) Big Stencil material layer 5

Figure 5.13: Detected features of the stacked nanosheet FET using a feature detection
parameter C of 0.5. Adapted from Lenz et al., J Sci Comput. 71, (2023), p. 108258 [74], ©
The Authors, licensed under the CC BY-NC-ND 4.0 License, https://creativecommons.org/

licenses/by-nc-nd/4.0/.

77

https://creativecommons.org/licenses/by-nc-nd/4.0/.
https://creativecommons.org/licenses/by-nc-nd/4.0/.

As already suggested by the results in Section 5.2.2, the Variation of Normal
and General Formula method detect similar features to the other two methods.
Furthermore, Figure. 5.13 conĄrms that a feature detection parameter of 0.5 is well
suited to distinguish features from Ćat parts.

In Section 5.2.2 a feature detection parameter of 1.1 is suggested for the SiGe
crystal, the results of the feature detection using this parameter are shown in
Figure 5.14. Figure 5.12 shows that all curvature calculation methods detect a
similar amount of grid points as features with a feature threshold parameter of
C = 1.1. However, when consulting Figure 5.14, it is evident, that the features
detected with this feature threshold parameter are inadequate, since on the one
hand points on the crystal facets are detected as features and on the other hand
points at the edges of the crystal are not. The falsely detected features at the
crystal facets are a consequence of noise introduced into the level-set function by
the process model. Reevaluating Figure 5.12 with the above deliberations in mind,
it has to be concluded that the General Formula, Shape Operator, and Variation of
Normal methods are not suited for feature detection in this scenario.

(a) Variation of Normal (b) General Formula

(c) Shape Operator

Flat
Feature

(d) Big Stencil

Figure 5.14: Detected features of a SiGe crystal with a feature detection parameter C of 1.1.
Adapted from Lenz et al., J Sci Comput. 71, (2023), p. 108258 [74], © The Authors, licensed under
the CC BY-NC-ND 4.0 License, https://creativecommons.org/licenses/by-nc-nd/4.0/.

78

https://creativecommons.org/licenses/by-nc-nd/4.0/.

Nonetheless, the results generated with the Big Stencil method still appear
promising, since the higher quality of the curvature calculation allows this method to
ignore the noise on the crystal facets. Therefore, the results reported in Figure 5.12
for the Big Stencil method have to be reassessed: These results show that the
amount of grid points detected as features stays nearly constant between a feature
detection parameters of 0.5 and 1.0. Thus, a feature detection parameter of 0.5
is considered for the SiGe crystal, the feature detection results for the General
Formula, and Big Stencil method with this feature detection parameter are shown
in Figure 5.15. The results obtained with the Shape Operator, and Variation of
Normal method are omitted since they are similar to the results of the General
Formula method. The detected features of the SiGe crystal shown in Figure 5.15b
illustrates that the Big Stencil method achieves an adequate feature detection of
the SiGe crystal using a feature detection parameter of 0.5.

5.2.4 Parallel Run-Time and Speedup

The average performance (run-time and parallel speedup) of the feature detection
algorithm applied to the geometries introduced in Section 5.2.1 is tested in this
section. All four discussed curvature calculation methods are evaluated. In all three
run-time tests (see Figure 5.16, Figure 5.17, and Figure 5.18) the fastest curvature
calculation method is the Shape Operator method, while the other three methods
have a comparable performance.

The speedup shown in Figure 5.16b illustrates the best case scenario. In light
of the convexity of the sphere the domain decomposition algorithm is able to create
subdomains with a very similar number of surface points. Thus, this speedup should
not be expected from the more complex geometries originating from process TCAD
simulations. Furthermore, the run-time and the speedup can differ due to load
balancing issues, which can be observed by comparing Figure 5.17 and Figure 5.18
to Figure 5.16.

(a) General Formula

Flat
Feature

(b) Big Stencil

Figure 5.15: Detected features of a SiGe crystal with a feature parameter C of 0.5. Adapted
from Lenz et al., J Sci Comput. 71, (2023), p. 108258 [74], © The Authors, licensed under the CC
BY-NC-ND 4.0 License, https://creativecommons.org/licenses/by-nc-nd/4.0/.

79

https://creativecommons.org/licenses/by-nc-nd/4.0/.

1 6 12 24 48

103

104

Number of Threads

T
im

e
(m

s)

(a) Run-Times

1 6 12 24 48
0

5

10

15

20

25

Number of Threads

Sp
ee

du
p

General Formula
Big Stencil
Variation of Normal
Shape Operator

(b) Speedup

Figure 5.16: Run-time and speedup of the feature detection algorithm on a sphere with radius
9.7 and grid resolution 0.27. Adapted from Lenz et al., J Sci Comput. 71, (2023), p. 108258 [74],
© The Authors, licensed under the CC BY-NC-ND 4.0 License, https://creativecommons.org/

licenses/by-nc-nd/4.0/.

1 6 12 24 48

105

106

Number of Threads

T
im

e
(m

s)

(a) Run-Times

1 6 12 24 48

2

4

6

Number of Threads

Sp
ee

du
p

General Formula
Big Stencil
Variation of Normal
Shape Operator

(b) Speedup

Figure 5.17: Run-time and speedup of the feature detection algorithm for all material layers of
the stacked nanosheet FET after 24 process steps. Adapted from Lenz et al., J Sci Comput.
71, (2023), p. 108258 [74], © The Authors, licensed under the CC BY-NC-ND 4.0 License,
https://creativecommons.org/licenses/by-nc-nd/4.0/.

80

https://creativecommons.org/licenses/by-nc-nd/4.0/.
https://creativecommons.org/licenses/by-nc-nd/4.0/.
https://creativecommons.org/licenses/by-nc-nd/4.0/.

1 6 12 24 48
104

105

Number of Threads

T
im

e
(m

s)

(a) Run-Times

1 6 12 24 48

1

2

3

4

Number of Threads

Sp
ee

du
p

General Formula
Big Stencil
Variation of Normal
Shape Operator

(b) Speedup

Figure 5.18: Run-time and speedup of the feature detection algorithm for the SiGe crystal.

In these examples the domain decomposition splits the narrow band into roughly
equally sized subdomains, considering the entire grid, however, the number of surface
points is not equal in each subdomain. Another issue leading to the worse speedup
for the considered process TCAD geometries is the fact that feature detection (i.e.,
curvature calculation) is memory bound since the primary effort is the movement
of the Ąnite difference stencil over the grid.

The results presented in this section support the considerations in the previous
section. Since the Big Stencil method does not result in a considerable increase
in run-time compared to the General Formula and Variation of Normal methods
it should be the primary choice for complex process models with noise. However,
if the process model is simple and the primary concern is performance the Shape
Operator method is the better choice.

5.3 Summary

In this chapter, the surface classiĄcation methods presented in Chapter 3 for the
surface representations from Chapter 2 have been used to formulate a feature
detection algorithm for topography simulation. Furthermore, a novel way to
calculate the surface curvature using the general formula for implicit surfaces has
been developed. The performance of the algorithm on 3D level-set functions with
all discussed methods of calculating the curvatures has been investigated. In the
course of these investigations two methods for curvature calculation of a level-set
functions stood out.

The Big Stencil method displayed the highest numerical accuracy of the
calculated curvature values. Furthermore, the Big Stencil method is less affected by
noise in the level-set function introduced by certain process models, which has been
demonstrated with the noise introduced by crystallographic orientation-dependent
velocity Ąelds. These improvements have been achieved without increasing the size
of the Ąnite difference stencil that is used for curvature calculation compared to the
General Formula or Variation of Normal methods.

81

The Shape Operator method requires the smallest Ąnite difference stencil to
approximate the mean curvature of the level-set function. Moreover, when using the
Shape Operator method the calculation of the Gaussian curvature can be avoided to
check if a point on the zero level-set is part of a minimal surface, which makes this
method the best performing method with respect to computational effort. However,
the Shape Operator method has the lowest numerical accuracy of the investigated
curvature calculation methods. Nonetheless, this does not preclude it from being
utilized for feature detection as demonstrated in Section 5.2.3.

In summary, the insights obtained from the research in this chapter are: If
run-time is the most important aspect for the feature detection the Shape Operator
method is the preferred method to calculate the curvatures of the level-set function.
On the other hand, if accuracy is the most important aspect or if there is slight
noise in the level-set function, then the Big Stencil method should be used. Due
to the Big Stencil methods higher numerical accuracy and similar performance to
the General Formula and Variation of Normal methods. Furthermore, a parameter
search for the feature detection parameter C for process TCAD simulations has been
performed which resulted in a feature detection parameter of 0.5 for all presented
methods.

82

Chapter 6

High Accuracy Hierarchical Grids
for Topography Simulation

In Chapter 5, an algorithm is presented that detects areas of a discretized
surface with signiĄcant geometric variations (i.e., features). As discussed in
Chapter 5, typical device topographies originating from process TCAD simulations
are composed of extensive areas which are essentially Ćat and small areas with
features. These observations motivate using a simulation domain with varying
resolutions (e.g., higher resolutions for features and lower resolutions for non-
features) to improve simulation performance.

Locally increasing the resolution of a discretized simulation domain to improve
the accuracy of the solution when numerically solving PDEs (e.g., the level-set
equation) is a common strategy [19, 20, 21, 22, 23, 24]. Furthermore, these
techniques are also employed in other numerical simulations like Monte Carlo
simulations [138]. For process TCAD simulations, the foundations are presented
in [139]. The technique of locally adapting the resolution of the simulation domain
is typically referred to as adaptive mesh reĄnement (AMR). It should be mentioned
here that the term mesh in AMR is a different mathematical object than a
conforming mesh (see DeĄnition 2.2.10). To avoid confusion, when the word mesh
is used in this work, it refers to DeĄnition 2.2.10, meshes in the context of AMR are
called grids.

In level-set based topography simulations that utilize AMR, the entire simulation
domain is covered by a so-called base grid (or level 0 grid) and several rectangular
reĄned grids (or level 1 grids) with higher resolutions. Furthermore, it is possible
that reĄned grids (i.e., level 2 grids) with an even Ąner resolution are nested inside
a reĄned grid (i.e., level 1), which is further discussed in Section 6.1.1. A base grid
with all its reĄned nested grids is called a hierarchical grid. The general term grid
refers to all kinds of grids (i.e., the base grid and reĄned grids). Figure 6.1 illustrates
three reĄnement levels with different resolutions.

A straightforward approach that utilizes hierarchical grids in a level-set based
simulation is to cover the entire narrow band around the zero level-set with reĄned
grids [140, 141, 142]. However, this approach still resolves non-features of the
geometry with a high resolution, which leads to large areas that do not beneĄt
from the higher resolution.

83

(a) Δx = 1 (level 0) (b) Δx = 0.25 (level 1) (c) Δx = 0.0625 (level 2)

Figure 6.1: Illustration of three grid levels of a hierarchical grid.

A computationally more efficient way of covering the simulation domain with reĄned
grids is to detect areas of interest in the simulation domain and cover them with
reĄned grids [143]. Therefore, a hierarchical grid placement algorithm is proposed
that analyzes the device topography and only covers areas of interest (i.e., features)
with reĄned grids [22, 144].

Figure 6.2 illustrates a level-set function with three features covered by reĄned
grids with higher spatial accuracy (i.e., three times Ąner). In order to maximize the
performance gains from this hierarchical approach, these reĄned grids need to be
optimally placed, guided by an automatic feature detection method.

The automatic hierarchical grid placement algorithm consists of two parts
1. An automatic feature detection step where areas of interest (i.e., features) are

marked (Ćagged) as presented in Chapter 5.
2. An automatic grid generation algorithm that clusters the Ćagged grid

points and places reĄned grids with a Ąner resolution at these clusters (see
Section 6.1.2).

Base Grid
Sub-Grid
Level-Set Function ϕ
Feature of ϕ
Flat Part of ϕ

∆x
y

x

Figure 6.2: Illustration of a level-set function ϕ (blue/red line segments) with three features (i.e.,
red line segments) on a hierarchical grid. The base grid has a resolution of ∆x and the features of
ϕ are covered by reĄned grids with a three times higher resolution (green boxes). Adapted from
Lenz et al., Solid State Electron. 191, (2023), p. 108258 [61], © The Authors, licensed under the
CC BY-NC-ND 4.0 License, https://creativecommons.org/licenses/by-nc-nd/4.0/.

84

https://creativecommons.org/licenses/by-nc-nd/4.0/.

In Section 6.1 sub-grids (i.e., reĄned grids with additional properties) are deĄned.
Furthermore, nesting criteria, to avoid computational overhead, for these sub-
grids and how they are placed in the simulation domain are discussed. Next, in
Section 6.2 a hierarchical grid placement algorithm is introduced that places sub-
grids based on the detected features of the level-set function (see Section 5.1). This
hierarchical grid placement algorithm is then incorporated into the general workĆow
for topography simulations (see Section 4.5). Section 6.3 evaluates the performance
of the hierarchical grid placement algorithm by simulating SEG of silicon-germanium
(SiGe) Ąns in narrow oxide trenches.

Own Contributions

This chapter introduces a combination of the previously presented feature
detection algorithm (Chapter 5) with an algorithm for automatic grid
generation to realize a hierarchical grid placement algorithm for topography
simulations based on the level-set method. The work has been presented at
the EUROSOI-ULIS 2021 conference [145] and was published as a journal
article in Solid-State Electronics [61].

6.1 Hierarchical Grids

In the introduction to this chapter, the basic terminology for hierarchical grids is
introduced (e.g., base grid, reĄned grids, and level n grids). For further deliberations
in this work, additional terms have to be deĄned: A positive integer describes the
so-called reĄnement ratio (Rratio) which describes the ratio of the resolution between
two grid levels of the simulation domain. When the reĄnement ratio is even, a grid
point on a coarser grid level is covered by the intersection of the 4 (2D) or 8 (3D)
closest grid cells on the next Ąner level. In the uneven case, the grid point on the
coarser level is directly covered by the central grid point of the reĄned grid with
a Ąner resolution. Figure 6.3 illustrates a grid cell covered by reĄned grids with
different reĄnement ratios.

The reĄnement ratio between two grid levels must not necessarily be equal, as
suggested in [146]. In the remainder of this thesis, the reĄnement ratio between
grid levels is assumed to be constant with a reĄnement factor of Rratio = 4, which
is considered an industry standard [147].

(a) Rratio = 3 (b) Rratio = 4

Figure 6.3: Illustration of a grid point with two reĄned grids with different reĄnement ratios
Rratio.

85

However, in Chapter 7, this convention is broken, and the last grid level reĄnement
ratio is dynamically chosen to improve simulation performance.

To solve the level-set equation, at least a star stencil ηS(x) is required (see
Section 4.1.1). However, points on the border of a reĄned grid are missing at least
one ϕ-value to calculate the Ąnite differences. This, however, is tackled by expanding
the deĄnition of a reĄned grid to a sub-grid [147].

6.1.1 Definition (Sub-Grid) A sub-grid is a reĄned grid that stores:
• Its resolution ∆x.
• Its position relative to the grid on the next coarser level.
• Its extent (i.e., the number of grid points) in all Cartesian directions.
• A set of ghost cells.

The ghost cells directly neighbor the grid cells at the border of the reĄned grid
(see Figure 6.4). This construction allows for calculating Ąnite differences even
when the Ąnite difference stencil extends beyond the boundary of a reĄned grid.
Furthermore, the ghost cells are used to transfer data between neighboring sub-
grids and set boundary conditions. Using ghost cells increases the required memory
footprint since each sub-grid has to store its ghost cells. Additionally, if two sub-
grids are adjacent, the ghost cells must be stored multiple times. If bigger Ąnite
difference stencils are required, the number of ghost cells may be increased. The
concept of level n grids (for n > 0) can naturally be expanded to sub-grids, e.g., a
level 2 sub-grid is a sub-grid with a R2

ratio Ąner resolution than the base grid.

6.1.1 Nesting

During a typical topography simulation workĆow, numerous nested sub-grids are
present in the simulation domain. Furthermore, these sub-grids have to exchange
data amongst each other (e.g., between sub-grids on the same level or between
grid-levels). If the sub-grids could be placed arbitrarily in the simulation domain, a
substantial computational overhead would be necessary to handle the data exchange
between the sub-grids since all possible relations between sub-grids have to be
treated. Thus, the sub-grid placement is restricted to only allow for speciĄc sub-
grid conĄgurations. These restrictions allow for efficient handling of the interactions
between sub-grids.

Sub-Grid
Grid Cells Inside the Sub-Grid
Grid Cells Outside the Sub-Grid
Ghost Cells

Figure 6.4: Illustration of a sub-grid: A reĄned grid with ghost cells on a regular grid.

86

When a grid G1 on a grid level overlaps a sub-grid G2 on a Ąner level, G1 is referred
to as the parent of G2, inversely G2 is referred to as the child of G1.

The placement restrictions (nesting criteria) for sub-grids used in this work are
as follows [147]:

1. Sub-grids may not overlap other sub-grids on the same level.
2. Each sub-grid has a unique parent grid on the next lower level (i.e., a sub-grid

or the base grid).
3. Sub-grids have to be aligned to their parentŠs grid cells (i.e., each sub-grid is

either fully covered by a grid cell of its parent or is not covered at all).
4. A sub-grid may not border an area not reĄned on a lower grid level.

The Ąrst two criteria guarantee that each sub-grid has a single unique parent grid,
which improves computational efficiency when exchanging data between levels. The
last two criteria ensure that there is a gradual reĄnement from a coarser to a Ąner
resolution.

Figure 6.5 illustrates hierarchical grids that fulĄll and do not fulĄll the nesting
criteria.

6.1.2 Grid Generation

This section discusses how sub-grids are obtained from the Ćags created by the
feature detection algorithm. For the remainder of this section, it is assumed that
a single 2D grid with several Ćagged grid points is given. The extension of the
presented algorithm to hierarchical grids is presented in Section 6.2. Furthermore,
the general algorithm is independent of the dimension of the grid [148].

The basic grid generation algorithm used in this thesis is a slight variation of the
grid generation algorithm of Berger and Rigoutsos [148]. This algorithm considers
the Ćagged and non-Ćagged grid points in a grid as a black and white image. In this
context, the Ćagged grid points are considered to be black "1", and the non-Ćagged
grid points are considered to be white "0".

1.

4.

3.

2.

2.

Figure 6.5: Illustration of a hierarchical grid with several nested sub-grids. The sub-grids that
violate the nesting criteria are marked in red. The numbers inside the sub-grids correspond to the
violated nesting criteria.

87

The thus deĄned image (i.e., the currently examined grid) is called a patch (P),
which is put into a queue. This queue stores all patches until they are considered
to be efficient, the efficiency of the patch P is determined by evaluating

E(P) =
number of Ćagged grid points in P

total number of grid points in P
. (6.1)

Furthermore, the minimum extent in all Cartesian directions of the patch is
determined. If the calculated efficiency value of the patch is smaller than a threshold
parameter E or the minimum extent of the patch has reached a minimum width M ,
the patch is considered efficient. The efficient patch is removed from the queue and
placed into a separate pre-grid list.

If one of the previously discussed criteria is not met, the patch is not efficient
and has to be split. The position of the split is determined by calculating the
signature (Σ) at the borders of the patch. Starting at each point at the borders
of the patch, the number of Ćagged grid points that lie on a straight line (i.e., a
grid line) passing through the patch is calculated. If an element in the signature
has a value of 0, the patch can be split along this grid line. In case there are no
0s in the signature, an approach related to edge detection in images is used [148].
To that end, the Laplacian (∆L) of the signature has to be calculated by using the
Ąnite difference formula shown in Equation 3.19 with ∆x = 1. The values of the
Laplacian of the signature array are evaluated regarding so-called zero crossings (or
inĆection points), which are points where the sign of the second derivatives changes.
In general, there are multiple zero crossings. Thus, the zero crossing with the biggest
numerical change is chosen as the position to split the patch. Furthermore, there
may be no clear point at which to split the patch, in this case, the patch is split in
half. After the split, all grid lines bordering a new patch with a signature of 0 are
removed. The newly created patches are added to the queue, and the next patch in
the queue is considered.

Figure 6.6 shows an example of how the above discussed grid generation
algorithm operates on a 2D grid. In this example, the efficiency parameter is set to
E(P) = 0.3 and the minimum patch side size to M = 2. The signature of the patch
has no 0s, so the Laplacian of the signature array has to be calculated. There are
two zero crossings (i.e., between -1 and 1 on the x-axis and between -2 and 2 on the
y-axis). Thus, the zero crossing on the y-axis is chosen, and the patch is split along
the indicated line in Figure 6.6b.

The grid generation algorithm terminates when the queue is empty. Afterwards,
for each patch stored in the pre-grid list, a sub-grid, with a Ąner resolution (according
to Rref), is created that covers the patch. The ϕ-values of the newly created
sub-grids are calculated in a two-step process. First, the ϕ-values on the newly
created sub-grid are initialized using bilinear interpolation from the parent grid;
This step initializes the position of the zero level-set on the new sub-grid. Second, a
hierarchical re-distancing step is performed that calculates the Ąnal ϕ-values of the
new sub-grid [149].

88

(a) Illustration of a grid with a level-set
function, flagged grid points, and a patch.

1 1 1 2 2 1
1

1

3

3

0 1 -1 -1

2

-2

∆L

Σ

(b) The signature (Σ) of the patch (i.e., the
numbers closest to the grid) and the Laplacian
(ΔL), the second derivatives, of the signature
(i.e., the numbers next to the signature). The
red dotted line indicates where the patch is split.

(c) The original patch and the two patches it
is split into. Both new patches are considered
efficient and the grid generation algorithm stops.

Grid Points
Level-Set Function ϕ
Flagged Grid Points
Patch Before Split
Patches After Split

Figure 6.6: 2D example of the grid generation algorithm. With an efficiency parameter of
E(P) = 0.3 and a minimum patch side size of M = 2. Adapted from Lenz et al., Solid State

Electron. 191, (2023), p. 108258 [61], © The Authors, licensed under the CC BY-NC-ND 4.0
License, https://creativecommons.org/licenses/by-nc-nd/4.0/.

6.2 Hierarchical Grid Placement

In this section, the algorithms presented in Section 5.1.2 and Section 6.1.2 are
combined into a single algorithm for hierarchical grid placement for level-set
functions (see Algorithm 2). Moreover, this algorithm is incorporated into a
topography workĆow. This algorithm is further referred to as the regridding
algorithm. The regridding algorithm starts with a feature detection step that
iterates over all grids in the simulation domain and Ćags the features of the level-set
functions (see Section 5.1.2). It should be noted that during the Ćagging procedure,
not only geometric features (i.e., features deĄned by the curvatures of the geometry)
may be of interest. Examples of such non-geometric features are interfaces between
multiple material layers (i.e., level-set functions). After the Ćagging procedure,
the automatic grid placement algorithm starts by computing the new sub-grids
on the base grid. The Ćagging and grid generation steps are executed iteratively
until a pre-deĄned number of reĄnement levels Ű the general reĄnement level (Gref)
Ű is reached, which then terminates the grid placement algorithm. If during this
process, a sub-grid is found that has not changed position and size from the previous
simulation step, the previous data (e.g., the ϕ-values) is copied into the new sub-
grid. Furthermore, it is checked if the sub-grids fulĄll the nesting criteria (see
Section 6.1.1).

89

https://creativecommons.org/licenses/by-nc-nd/4.0/.

Algorithm 2: Regridding algorithm for hierarchical grids.
input : Hierarchical grid G; Feature detection parameter C; General

reĄnement level Gref; ReĄnement ratio Rratio

output: Updated hierarchical grid G

1 recomputeSDF(G); // Update signed-distance function (SDF), see

Section 4.1.2

2 foreach Grid g in G with grid level < Gref − 1 do
3 detectFeatures(g, C, Gref); // see Section 5.1

4 preGridList ← ∅;
5 currLevel ← 0;
6 while currLevel < Gref − 1 do
7 tmpGridList ← ∅;
8 foreach Grid g in G with grid level currLevel do
9 tmpGridList ← tmpGridList ∪ gridPlacemnt(g); // see

Section 6.1.2

10 if checkNestingCriteria(tmpGridList,G) = False then
/* nesting violation */

11 addAdditionalFlags(G);
12 preGridList = preGridList / getLevelNGrids(G, currLevel -1) ;

// remove already generated sub-grids on this level

13 currLevel ← currLevel -1;
14 else
15 preGridList ← preGridList ∪ tmpGridList;
16 currLevel ← currLevel +1;

17 Gnew ← getBaseGrid(G);
18 foreach Patch P in preGridList do
19 if P is not equal to an existing sub-grid g then
20 Gnew ← Gnew ∪ g
21 else
22 Gnew ← Gnew ∪ generateNewGrid(P, Rratio);

23 G ← Gnew;
24 recomputeHierarchicalSDF(G); // Hierarchical SDF update[149]

90

The Ąrst three criteria are automatically fulĄlled due to the construction of the grid
generation algorithm (see Section 6.1.2)

1. Sub-grids on the same level cannot overlap since each patch is split into smaller
non overlapping patches.

2. Sub-grids always have a unique parent since the grid generation is executed
on each grid on the same grid level individually.

3. All sub-grids are aligned to their parents grid cells since only grid cells of the
parent grid are reĄned (see Section 6.1).

Only the fourth criteria has to checked manually. If a sub-grid is found that borders
an unreĄned area on the previous grid level, the points on the border are Ćagged as
features. Afterwards, the grid generation algorithm is executed again on the previous
grid level. The algorithm concludes with a hierarchical re-distancing step [149].

6.2.1 Extended Topography Simulation Workflow

The major difference introduced into the simulation workĆow due to the utilization
of hierarchical grids is after the advection step, where the regridding algorithm has
to be executed. During the advection step, the velocities and the solution to the
level-set equation must be calculated on each grid. These steps can be executed
on all grids simultaneously. However, the CFL condition (see Equation 4.11) is
bound by the grid resolution of the Ąnest sub-grid in the simulation domain. This
restriction is necessary since otherwise, the zero level-set on the coarser sub-grids
would evolve faster than the zero level-set on the Ąner sub-grids. Thus, the zero
level-set of the level-set function would have two different positions depending on
the observed sub-grid. It should be mentioned here that it is possible to evolve the
zero level-set on different grid levels with different CFL conditions. However, this
has two primary drawbacks. First, the ϕ-values of the coarser grid level have to be
interpolated in time to solve the level-set equation on the Ąner grid level. Second,
several edge cases need to be handled, e.g., when another part of the zero level-set
evolves into a Ąner sub-grid during a time step on the coarser level.

Figure 6.7 depicts an updated topography simulation workĆow (see Figure 4.7).
The reconstruction of the signed distance function has to be done before the feature
detection to guarantee accurate ϕ-values of the level-set function after the advection
step, which avoids errors in the feature detection. Furthermore, the regridding does
not need to be invoked every simulation time step. Ideally, it should only be invoked
when a feature moves out of a sub-grid. Thus, for this work it has been empirically
determined, that the regridding procedure should be called every 4 time steps.

6.3 Benchmark Example Selective Epitaxial

Growth

This section presents an evaluation of the extended topography simulation workĆow
introduced in Section 6.2.1. By comparing it to simulations of two SEG processes
investigated by Jang et al. [137]. To that end, the run-time and accuracy of the
simulated device topographies are analyzed.

91

Extract Surface

Pre-Process Surface

Run Calculations
(External)

Flux Calculation

Process Model

Calculate Surface
Velocities

Velocity Extension

Advection (Solve
Level-Set Equation)

Advection

Reconstruct Signed
Distance Function

Flag Grid Points
for ReĄnement

Hierarchical
Grid Placement

Reconstruct Signed
Distance Function

Regridding

Simulation Finished ? End

Initial Geometry

Create a Signed
Distance Function

Start

Figure 6.7: Updated Ćowchart describing a topography simulation workĆow utilizing hierarchical
grids.

As previously shown in Section 5.2, topographies originating from SEG processes
result in geometries with pronounced features which beneĄt from a higher resolution.
Furthermore, in this section, to ensure a well-resolved description of the level-set
functions, the material interfaces with the SiGe material are considered as features.
The simulations were performed with SilvacoŠs Victory Process and were executed
on the ICS (see Section 4.6.3).

6.3.1 Simulation Setup

In the experiments presented in Jang et al. [137], the authors grow SiGe Ąns inside
SiO2 trenches. The trenches are formed in an initial dry etching step on top of a
Si substrate. The SiGe is grown in a cyclic process inside the SiO2 trench. Si2H6

and GeH4 is deposited for 15 seconds from Ćowing source gases. Afterwards, the
SiO2 surface has to be cleaned from nucleated Si1−xGex, which is achieved by a 12s
etching step by Ćowing Cl2. These two steps compose a single SEG cycle. The
composition of the produced Si1−xGex alloy is inĆuenced by the rate of the GeH4.
This cyclic process leads to the formation of high-quality ¶1 0 0♢, ¶1 1 1♢, and ¶3 1 1♢
crystal facets.

The cyclic SEG process is modeled as a continuous epitaxy process that is
perfectly selective (i.e., the deposition rate on the SiO2 walls is 0). The process
model (i.e., the velocity Ąeld) is constructed from experimentally characterized
growth rates presented in Jang et al. [137]. Note that the process model does
not directly simulate the cyclic process.

92

Nevertheless, the simulated surface of the SiGe crystal (that is created after one of
these cycles) is referred to as a SEG step or a SEG cycle. One SEG cycle can consist
of several level-set simulation time steps (i.e., advection steps).

In Jang et al. [137], the deposition rates on the crystallographic facets for two
different alloys Si0.64Ge0.36 (SEG1) and Si0.45Ge0.55 (SEG2) were measured. For
the ¶1 0 0♢, ¶1 1 1♢, and ¶3 1 1♢ facets (the rates used for the crystal orientation-
dependent process model are reported in Table 6.1). To apply these rates during a
topography simulation, the process model utilizes a four-rate Hubbard interpolation
to calculate velocity values for all grid points [136].

The epitaxial growth simulations of the SiGe crystals SEG1 and SEG2 are
performed with three different grid settings, shown in Table 6.2: A singular grid
without sub-grids is utilized when performing the SEG simulations with the Fine
and Coarse grid settings. The simulation domains are comprised of ≈ 3 · 105 grid
points when using Fine grid settings and ≈ 1.9 · 104 grid points when using the
Coarse grid settings, which is why it was omitted in the here presented analysis.
These two grid settings are intended to create a frame of reference against which
the performance and accuracy of the hierarchical approach can be compared. For
the sake of completeness, a grid resolution of 0.00125 µm is considered, which is
the grid resolution between Fine and Coarse. However, a simulation using a single
grid and a grid resolution of 0.00125 µm does only perform marginally better than
a simulation utilizing the Coarse grid-setting.

The SEG simulations using the Multi-Grid grid settings utilize a base grid with
the same spatial resolutions as Coarse grid settings and a general reĄnement level
Gref of 1, which leads to the generation of a plethora of sub-grids with the same
spatial resolution as the Fine grid settings. On average, a simulation run with
Multi-Grid grid settings consists of ≈ 2.7 · 104 grid points (i.e., the sum of the
grid points of the base grid and sub-grids). The interfaces of SiO2 and SiGe are
considered as features (see Section 6.2). For the grid placement algorithm, the
efficiency parameter is set to E(P) = 0.7 and the minimal patch width is set to
M = 6.

Table 6.1: Simulation parameters employed for the SEG cycles in trench arrays [137] (i.e., process
model). The number of deposition cycles Pi refers to the number of SEG cycles needed to achieve
the topographies in Figure 6.8 and Figure 6.12.

Rates [nm/cycle]
Number of Deposition

Cycles for ProĄle P
Name R1 0 0 R1 1 0 R3 1 1 R1 1 1 P1 P2 P3

SEG1 13 5 3.1 1.6 5 24 47
SEG2 5 3 3.5 1 8 33 55

Table 6.2: Grid resolutions employed for the SEG in trench arrays (i.e., grid settings).

Simulation Base Grid Resolution Sub-Grid Resolution
Coarse 0.002 µm -
Fine 0.0005 µm -

Multi-Grid 0.002 µm 0.0005 µm

93

In what follows, the simulation results attained with the Multi-Grid grid settings
are compared to the measurement data reported by Jang et al. [137]. Furthermore,
the Ąnal SiGe crystal surfaces generated with Fine, Coarse, and Multi-Grid grid
settings are analyzed and compared against each other. The SiGe crystal surface
generated with the Fine grid settings is considered the comparisonŠs reference surface
since it has the highest numerical accuracy. Therefore, the error introduced by
the Coarse and Multi-Grid grid settings is investigated by calculating the smallest
Euclidean distance (i.e., dE) between each surface point of the SiGe crystal simulated
with Coarse and Multi-Grid grid settings and the closest point on the reference
surface (dE-error).

6.3.2 Example 1

The simulated SiGe surfaces after several SEG cycles using the SEG1 process
model (see Table 6.1) and the Multi-Grid grid settings compared to the experiment
are shown in Figure 6.8. The simulation results are in good agreement with the
experiment after all three measured cycles. Figure 6.9 shows the Ąnal surfaces
(i.e., after 47 SEG cycles) of the SEG1 simulation with all grid settings reported in
Table 6.2. The Fine and Multi-Grid simulation results are in good agreement. On
the other hand, the simulated SiGe crystal surface utilizing the Coarse grid settings
does not match the other simulated surfaces. The error in the crystal surface is
most pronounced in the mismatch of the peak of the SiGe crystal.

Distance [µm]

H
ei

gh
t

[µ
m

]

Figure 6.8: Simulated surface of the SiGe crystal using the SEG1 velocity-parameters and Multi-

Grid grid settings compared with the experimental results from [137] after 5 (orange), 24 (green),
and 47 (red) SEG cycles. The simulation results show good agreement with the experimental data.
Adapted from Lenz et al., Solid State Electron. 191, (2023), p. 108258 [61], © The Authors, licensed
under the CC BY-NC-ND 4.0 License, https://creativecommons.org/licenses/by-nc-nd/4.

0/.

94

https://creativecommons.org/licenses/by-nc-nd/4.0/.
https://creativecommons.org/licenses/by-nc-nd/4.0/.

-0.04 0.0 0.04
0.7

0.8

0.9

0.10

0.11

0.12

0.13

0.14

SiGe

SiO2

Distance [µm]
H

ei
gh

t
[µ

m
]

Trench
Fine
Coarse
Multi-Grid

Figure 6.9: Surface for the Ąnal simulation result of the SEG1 process after 47 SEG cycles
using Coarse, Fine, and Multi-Grid grid settings. The error in the peak of the SiGe crystal
using Coarse resolution is the largest since the grid resolution is not high enough to simulate
the SEG process at this feature properly. Adapted from Lenz et al., Solid State Electron.
191, (2023), p. 108258 [61], © The Authors, licensed under the CC BY-NC-ND 4.0 License,
https://creativecommons.org/licenses/by-nc-nd/4.0/.

-0.04 0.00 0.04

0.000

0.001

0.002

0.003

0.004

Distance [µm]

d
E

-e
rr

or
to

F
in

e
[µ

m
] Coarse

Multi-Grid

Figure 6.10: Smallest dE-error measured from the surface points of Multi-Grid and Coarse

to the nearest surface point of Fine, in the Ąnal simulation result of the SEG1 process (see
Figure 6.9). The simulation error using the Multi-Grid grid settings is negligible compared to
the error when using the Coarse grid settings. Adapted from Lenz et al., Solid State Electron.
191, (2023), p. 108258 [61], © The Authors, licensed under the CC BY-NC-ND 4.0 License,
https://creativecommons.org/licenses/by-nc-nd/4.0/.

The dE-error between the SiGe crystal surfaces is reported in Figure 6.10. As
again indicated by the spike in the dE-error, the simulation results obtained with
the Coarse grid settings do not offer sufficient accuracy compared to the other grid
settings. Furthermore, the dE-error between the Multi-Grid and Fine grid settings is
negligible (i.e., it is much smaller than the grid resolution), showing the anticipated
increase in accuracy of the hierarchical approach. The dE-error of the surface using
the Multi-Grid grid settings is as big as the expected error from a simulation run
using the Fine grid settings.

The simulation run-times of the SEG1 and SEG2 simulations run with the
three studied grid settings are shown in Table 6.3: The results show that the Fine
grid settings have the worst simulation run-times. This is expected since the high
resolution used in the entire simulation domain unnecessarily resolves non-features
that do not beneĄt from the high resolution. In contrast and as expected, the
simulation using the Coarse grid-setting results in the fastest run-times.

95

https://creativecommons.org/licenses/by-nc-nd/4.0/.
https://creativecommons.org/licenses/by-nc-nd/4.0/.

Table 6.3: Run-times (ICS) for the entire simulation (47/55 SEG cycles) of the SEG in trench
arrays with respective grid settings.

Simulation Run-Time SEG1 Run-Time SEG2
Coarse 28 s 18 s
Fine 19 min54 s 9 min25 s

Multi-Grid 13 min38 s 3 min58 s

However, as discussed previously, the quality of the Ąnal simulated surface is
insufficient. The Multi-Grid grid settings improves the simulation performance by
32% compared to the Fine grid settings.

The Ćagged grid points and thus generated sub-grids after 24 SEG cycles, using
the SEG1 process model, are shown in Figure 6.11. During this simulation step
of the SEG process, a new feature forms between the ¶1 1 1♢ and ¶3 1 1♢ crystal
facets, which are detected by the feature detection algorithm. The hierarchical
grid placement algorithm places the sub-grids accordingly, as indicated by (a) in
Figure 6.11.

6.3.3 Example 2

The simulated SiGe surfaces utilizing the SEG2 process model and Multi-Grid grid
settings compared to the experiment are shown in Figure 6.12. The Ąnal surfaces
(i.e., after 55 SEG cycles) of the SiGe crystal using all grid settings given in Table 6.2
are shown in Figure 6.13.

-0.05 0.00 0.05

0.0

0.05

0.1

0.15

SiGe

SiO2

Si

¶3 1 1♢
¶1 1 1♢

(a)

Distance [µm]

H
ei

gh
t

[µ
m

]

UnĆagged
Flagged Grid Points
Sub-Grids

Figure 6.11: Grid points near the level-set function for the base grid of the simulation using
Multi-Grid grid settings after 24 SEG cycles using the SEG1 process model. The Ćagged grid
points (red) and generated sub-grids (blue boxes) for this time step are shown. (a) indicates sub-
grids over Ąne features that develop during the SEG1 process. Adapted from Lenz et al., Solid

State Electron. 191, (2023), p. 108258 [61], © The Authors, licensed under the CC BY-NC-ND
4.0 License, https://creativecommons.org/licenses/by-nc-nd/4.0/.

96

https://creativecommons.org/licenses/by-nc-nd/4.0/.

Distance [µm]

H
ei

gh
t

[µ
m

]

Figure 6.12: Simulated surface of the SiGe crystal using the SEG2 velocity-parameters compared
with the experimental results from [137] after 8 (orange), 33 (green), and 55 (red) SEG cycles.
The simulation results show good agreement with the experimental data. Adapted from Lenz
et al., Solid State Electron. 191, (2023), p. 108258 [61], © The Authors, licensed under the CC
BY-NC-ND 4.0 License, https://creativecommons.org/licenses/by-nc-nd/4.0/.

-0.04 0.0 0.04
0.7

0.8

0.9

0.10

0.11

0.12

0.13

0.14

SiGe

SiO2

Distance [µm]

H
ei

gh
t

[µ
m

]

Trench
Fine
Coarse
Multi-Grid

Figure 6.13: Surface for the Ąnal simulation result of the SEG2 process after 55 SEG cycles
using Coarse, Fine, and Multi-Grid grid settings. The entire SiGe crystal surface using Coarse

grid settings is below the other computed surfaces. Thus, in this example, the entire crystal
surface has an error due to the too small resolution. Adapted from Lenz et al., Solid State

Electron. 191, (2023), p. 108258 [61], © The Authors, licensed under the CC BY-NC-ND 4.0
License, https://creativecommons.org/licenses/by-nc-nd/4.0/.

97

https://creativecommons.org/licenses/by-nc-nd/4.0/.
https://creativecommons.org/licenses/by-nc-nd/4.0/.

The error between the Coarse and Fine grid settings is not as pronounced as in the
Ąrst experiment (i.e., SEG1), although there is still a mismatch between the surfaces,
especially at the peak of the crystal. The surfaces obtained from the Multi-Grid and
Fine simulations are again in good agreement.

Figure 6.14 reports the dE-error of the crystal surfaces simulated with the SEG2
process model. The dE-error of the Coarse grid settings is again larger than the
error of the Multi-Grid grid settings. Furthermore, the minimal dE-error between
the surfaces is bigger than in the SEG1 experiment. These results again conĄrm the
anticipated increase in accuracy obtained by the hierarchical grid with a negligible
dE-error.

Considering the run-times reported in Table 6.3 for the SEG2 process model, the
observations made in the previous experiment still hold. The Coarse grid-setting
again has the fastest run-time, with the drawback of an inaccurate description of the
SiGe crystal surface. In the SEG2 experiment the Multi-Grid grid settings improve
the simulation run-time by 58% compared to the Fine grid settings.

Another point that requires discussion is the difference in total run-time between
the SEG1 and SEG2 experiments (see Table 6.3). The SEG2 experiment simulates
55 SEG cycles, while the SEG1 experiment only simulates 47 cycles with more than
double the simulation run-time compared to SEG2. This difference in run-time
is explained by the complexity of the velocity Ąeld (i.e., process model), which
inĆuences how far the zero level-set can propagate in a single time step. A closer
investigation of the actual time steps the level-set method has to calculate during the
SEG simulation shows that for the Multi-Grid grid settings the SEG1 simulation has
to perform 2259 time steps compared to 819 for SEG2. This explains the difference
in simulation run-times between SEG1 and SEG2, which is due to the different
number of simulation time steps that must be performed.

Figure 6.15 shows the Ćagged grid points and sub-grids generated by the
hierarchical grid placement algorithm after 33 SEG cycles using the SEG2 process
model. The process model for the SEG2 process does not generate a new feature
during the SEG process.

-0.04 0.00 0.04

0.0000

0.0005

0.0010

0.0015

Distance [µm]

d
E

-e
rr

or
to

F
in

e
[µ

m
]

Coarse
Multi-Grid

Figure 6.14: Smallest dE-error measured from the surface points of Multi-Grid and Coarse

to the nearest surface point of Fine, in the Ąnal simulation result of the SEG2 process (see
Figure 6.13). The largest error is around the peak of the SiGe crystal of the simulation when
using Coarse and Multi-Grid grid settings. Adapted from Lenz et al., Solid State Electron.
191, (2023), p. 108258 [61], © The Authors, licensed under the CC BY-NC-ND 4.0 License,
https://creativecommons.org/licenses/by-nc-nd/4.0/.

98

https://creativecommons.org/licenses/by-nc-nd/4.0/.

-0.05 0.00 0.05

0.0

0.05

0.1

0.15

SiGe

SiO2

Si

Distance [µm]

H
ei

gh
t

[µ
m

]

UnĆagged
Flagged Grid Points
Sub-Grids

Figure 6.15: Grid points near the level-set function for the base grid of the simulation using
Multi-Grid grid settings after 33 SEG cycles using the SEG2 process model. The Ćagged grid
points (red) and generated sub-grids (blue boxes) for this time step are shown. Adapted from
Lenz et al., Solid State Electron. 191, (2023), p. 108258 [61], © The Authors, licensed under the
CC BY-NC-ND 4.0 License, https://creativecommons.org/licenses/by-nc-nd/4.0/.

Thus no additional sub-grids are needed on the crystalline surface. Still, the peak
of the SiGe crystal is detected as a feature, and a sub-grid is correctly placed
accordingly.

6.4 Summary

The feature detection algorithm presented in Chapter 5 has been combined with
an AMR algorithm to create a hierarchical grid placement algorithm. It has
been discussed how the AMR algorithm determines the size and position of sub-
grids. Furthermore, nesting criteria for nested sub-grids as well as a strategy to
calculate Ąnite differences at the borders of these sub-grids, have been discussed.
The hierarchical grid placement algorithm has been integrated into the topography
simulation workĆow. To demonstrate the efficiency of the hierarchical grid
placement algorithm for topography simulations, representative and practically
relevant simulations of selectively grown epitaxial SiGe Ąns in oxide trenches have
been performed. The SEG process with two different parameter sets has been
successfully simulated. During the simulation of the SEG processes, the hierarchical
grid placement algorithm allows for a low base grid resolution combined with sub-
grids with a higher resolution which are optimally placed to cover the features of the
SiGe crystal. The hierarchical grid placement algorithm presented in this chapter
improves the simulation run-time by 32% and 58% with respect to the two process
models, SEG1 and SEG2, respectively compared to a simulation run with a single
high resolution grid while also upholding accurately.

99

https://creativecommons.org/licenses/by-nc-nd/4.0/.

Chapter 7

Thin Material Layer Refinement
for Etching Simulations

Thin material layers are structures that commonly occur during the fabrication
of semiconductor devices (e.g., LEDs or staircase patterns in 3D NAND Ćash
memories) [31, 32]. During the fabrication of such devices, thin material Ąlms
are deposited on top of the wafer, which are subsequently partially etched to create
the desired device topography. Therefore, the appropriate handling of thin material
layers is important to enable highly accurate process TCAD simulations of cutting
edge electronic devices. The fabrication processes utilized during the fabrication of
such devices (i.e., LEDs or NAND Ćash memories) contain multiple etching process
steps. Etching processes can be simulated with Boolean operations of level-set
functions, which will be discussed in Section 7.1. As long as a Ćat thin material
layer (e.g., in the nm regime) continuously passes through the simulation domain,
i.e., after the deposition of a thin material Ąlm, the level-set method is able to
represent these material layers with a coarse (e.g., µm) resolution. However, when
these thin material layers are etched in a subsequent process step (i.e., using Boolean
operations), the low resolution of the simulation domain gets exposed and numerical
artifacts manifest, such as those shown in Figure 7.1:

∆x

(a) Δx = 0.75µm

∆x

(b) Δx = 0.25µm

Si
SiO2

Si3N4

∆x

(c) Δx = 0.005µm

Figure 7.1: Thin material layers with a thickness of 0.25µm after a Boolean operation with
different grid resolutions. Adapted from Lenz et al., Solid State Electron. 200, (2023), p. 108534
[150], © The Authors, licensed under the CC BY-NC-ND 4.0 License, https://creativecommons.

org/licenses/by-nc-nd/4.0/.

100

https://creativecommons.org/licenses/by-nc-nd/4.0/.
https://creativecommons.org/licenses/by-nc-nd/4.0/.

The relative thickness d of the thin material layers stays constant in all three depicted
scenarios, whereas the grid resolution is varied. The resolution in Figure 7.1a is
4d, in Figure 7.1b 2d, and in Figure 7.1c, d/6. As is shown, the effects of the
numerical artifacts are reduced when the resolution of the simulation domain is
increased. However, as discussed in Chapter 6, merely increasing the resolution
of the simulation domain is prohibitive due to its impact on the simulation
performance.

To alleviate this issue, the hierarchical grid placement algorithm presented in
Section 6.2 is used. This algorithm is based on the geometric features of the zero
level-set (i.e., surface curvatures). It can thus detect where a thin material layer
has been etched. However, the detection of the features happens after the Boolean
operation has been performed. Therefore, the entire Boolean operation has to be
performed again after the newly created sub-grids have been placed. Thus, the
performance of the simulation can be improved by performing the reĄnement before
the Boolean operation is applied. Furthermore, the geometric feature based feature
detection strategy does not utilize additional information about the topography
available when considering etching simulations of thin material layers (e.g., the
thickness of the material layers). Nevertheless, the hierarchical grid placement
algorithm based on geometric features serves as a benchmark for the algorithm
proposed in this chapter.

Furthermore, it is important to note that the here discussed problem cannot
be solved by the wrapping layer approach presented in Section 4.3 (see Figure 4.6).
The problems in the discretization of the level-set functions discussed in this chapter
stem from an insufficient resolution of the simulation domain, whereas the wrapping
layer approach presented in Section 4.3 prevents the formation of undesirable voids
when two level-set functions are stacked on top of each other.

In Section 7.1 it is discussed how etching processes can be simulated using
Boolean operations. Section 7.2 describes the newly developed thin layer reĄnement
algorithm. First the two primary aspects of the algorithm are discussed as well as
how to determine the required resolution and how to detect the material layers
affected by a Boolean operation, which are then combined into the thin layer
reĄnement algorithm. Finally, the thin layer reĄnement algorithms performance
is benchmarked by simulating the fabrication of a single LED pixel of an LED array
(Section 7.3).

Own Contributions

The contributions in this chapter are the formulation of a Ćagging algorithm
for Boolean operations on thin material layers. Furthermore, the algorithm
is able to determine a desired target resolution to properly represent the thin
material layers after the simulated etching process. This work was presented
at the SISPAD 2022 conference [151] and was published in a journal article
in Solid-State Electronics [150].

101

7.1 Etching Simulations with Boolean

Operations

As discussed in Section 2.3.3 a Boolean operation between two level-set functions
can be interpreted as a Boolean operation between volumes. An etching simulation
can be interpreted as the removal of materials from the wafer surface until a speciĄc
volume is removed. Thus, a process step that etches the wafer surface can be
simulated in a level-set based simulation framework by Boolean operations between
level-set functions [58].

First, a description of the volume (i.e., the material) that is removed (i.e.,
etched) from the wafer surface is required, which is represented by an additional
level-set function χ. Figure 7.2 shows an illustration of this process. The etching
process is simulated by calculating the relative complement of all level-set functions
representing material layers and the level-set function χ representing the volume
removed from the wafer.

7.2 Hierarchical Grid Placement for Thin

Material Layers

The algorithm for Boolean operations presented in this section determines the
distance between the two closest material layers affected by the Boolean operation.
This information is then further used to calculate a minimal required local resolution
(∆xtar) to prevent the artifacts shown in Figure 7.1 from forming. Suppose the
resolution of the Ąnal sub-grid is not Ąne enough to represent the thin material
layers after the Boolean operation adequately. In that case, the grid cells are Ćagged
for reĄnement, and a modiĄed version of the hierarchical grid placement algorithm
presented in Section 6.2 is executed.

First the procedure used to calculate ∆xtar from the ϕ-values of the level-set
functions is discussed. Next, a procedure is described that is able to determine
if and where a level-set function is affected by a Boolean operation with another
level-set function. These two procedures are then combined to formulate the thin
layer reĄnement algorithm.

Etch

Material 1
Material 2
Substrate
Volume to
Remove

Figure 7.2: Illustration of four stacked material layers on a wafer and a simulated etching
process using a Boolean operation. Adapted from Lenz et al., Solid State Electron. 200,
(2023), p. 108534 [150], © The Authors, licensed under the CC BY-NC-ND 4.0 License,
https://creativecommons.org/licenses/by-nc-nd/4.0/.

102

https://creativecommons.org/licenses/by-nc-nd/4.0/.

7.2.1 Calculating the Minimal Required Resolution

To calculate ∆xtar for accurately representing a thin material layer affected by a
Boolean operation, the distance to the closest other material layer (i.e., the distance
between the zero level-sets) affected by the Boolean operation (dclosest) has to be
determined. In general the distance d between two level-set functions (i.e., ϕ and
ψ) can be determined by utilizing the ϕ/ψ-values of the level-set function at a grid
point (i, j) by calculating

d(ϕi,j ,ψi,j) = ϕi,j − ψi,j. (7.1)

An illustration of this calculation is shown in Figure 7.3.
In Section 2.3, the convention that negative ϕ-values describe the inside and

positive ϕ-values the outside of the volume represented by the level-set function has
been introduced. This convention is essential in the following considerations since
the sign of two level-set functions following this convention gives information about
the direction of the outward pointing normal vector of the zero level-set.

In the case that dϕi,j ,ψi,j
> 0 the level-set function ϕ lies in outward normal

direction of ψ, in the case dϕi,j ,ψi,j
< 0 it does not. If dϕi,j ,ψi,j

= 0, the two level-
set functions overlap each other in that point and are treated as if ϕ does not lie
in outward normal direction of ψ. Only checking the distances in outward normal
direction guarantees that each material layer on top of the wafer gets a distance
value assigned. Figure 7.4 shows an illustration of two level-set functions and three
examples of distances in outward normal direction.

Therefore, the closest distance (in outward normal direction) between a Ąxed
level-set function ψ and all other level-set functions ϕk∈1..n with ϕk ̸= ψ in the
domain in the grid point (i, j) is calculated as follows

dclosest = minϕk∈1..n(¶d(ϕk,ψ)♣d(ϕk,ψ) > 0♢). (7.2)

i, j

ϕi,j

ψi,j

d(ϕi,j ,ψi,j)

∆x

Grid Points
Material 1 (ϕ)

Material 2 (ψ)

Etch Volume (χ)

Figure 7.3: Level-set functions involved in a Boolean operation: ϕ and ψ represent material
layers and χ represents the material to be removed. The distance between the level-set functions
d(φi,j ,ψi,j) is calculated by using the ϕ, ψ-values of the grid point (i, j). Adapted from Lenz et
al., Solid State Electron. 200, (2023), p. 108534 [150], © The Authors, licensed under the CC
BY-NC-ND 4.0 License, https://creativecommons.org/licenses/by-nc-nd/4.0/.

103

https://creativecommons.org/licenses/by-nc-nd/4.0/.

Level-Set Function 1
Level-Set Function 2
Outward Normal Direction

Figure 7.4: Illustration of two level-set functions representing material layers and examples of
the distance in outward normal direction with respect to the level-set function 1 at different points
of the level-set function.

To associate the calculated thickness of a material layer (i.e., dclosest) with a
grid resolution, an additional parameter is required. The parameter describes the
minimal number of grid points that are required to represent a single material layer
(Nmin).

By combining the thickness of a material layer with the minimal number of grid
points, the minimal required resolution ∆xtar can be expressed as

dclosest

Nmin

= ∆xtar. (7.3)

7.2.2 Detection of Affected Material Layers

To detect if the zero level-sets of two level-set functions ϕ and χ intersect each other
near a grid point (i, j), the ϕ and χ-values in a star stencil ηS around the grid point
have to be analyzed. First, the absolute ϕ and χ-values of the central grid point of
the star stencil (i.e., the grid point (i, j)) are examined. If both are smaller than
the resolution of the currently examined sub-grid (∆xcurr), then the two level-set
functions may intersect each other close to the examined grid point. However, only
considering the central grid point also detects zero level-sets that run parallel to each
other or are part of the wrapping layer. Thus, the other points in the star stencil
have to be examined. When the signs of at least two of the ϕ or χ-values change in
two coordinate directions, the two zero level-sets intersect each other near the grid
point (i, j). Otherwise, the two zero level-sets do not intersect each other near the
grid point (i, j). An illustration of two intersecting and two non-intersecting zero
level-sets are shown in Figure 7.5.

104

−
+

−
+

−
+

+
+

−−
(a) Non-intersecting
zero level-sets

−− +−−−

−
+

−−
(b) Intersecting zero
level-sets

Grid Points
Zero Level-Set χ
Zero Level-Set ϕ

+ - Sign of χ-values
+ - Sign of ϕ-values

Figure 7.5: Two level-set functions and the signs of the ϕ-values for non-intersecting (a)
and intersecting (b) zero level-sets. Adapted from Lenz et al., Solid State Electron. 200,
(2023), p. 108534 [150], © The Authors, licensed under the CC BY-NC-ND 4.0 License,
https://creativecommons.org/licenses/by-nc-nd/4.0/.

StartCalculate χ(x)

For All Material Layers
Affected by

the Boolean Operation

Calculate Δxtar
for Current Material Layer

Δxtar < Δxcurr
Mark for

Refinement

General Refinement
Level Reached

Refine Grid
Using Fref

Refine Grid
Using Lref

Calculate χ(x)
Calculate

Relative Complement
End

Next
Material Layer

True

False

All Material Layers Processed

False True

Figure 7.6: Flowchart of the thin layer reĄnement algorithm operating on hierarchical grids.
Adapted from Lenz et al., Solid State Electron. 200, (2023), p. 108534 [150], © The Authors,
licensed under the CC BY-NC-ND 4.0 License, https://creativecommons.org/licenses/

by-nc-nd/4.0/.

7.2.3 Thin Layer Refinement Algorithm

The procedures described in Section 7.2.1 and Section 7.2.2 are now combined into
the thin layer reĄnement algorithm, Figure 7.6 depicts a Ćowchart of the entire
algorithm. The algorithm starts by determining the volume that has to be removed
on the base grid and calculates the respective level-set function χ. Then all level-
set functions in the simulation domain intersecting the level-set function χ are
determined (see Section 7.2.2). The level-set functions with their respective grid
points that identify the intersections are stored in a list.

Next, the minimal distance in outward normal direction from all zero level-sets
at the intersecting grid points to all other zero level-sets is calculated. This is
achieved by calculating the distances with Equation 7.1 and checking the signs of
the calculated distances if they are positive (see Section 7.2.1).

105

https://creativecommons.org/licenses/by-nc-nd/4.0/.
https://creativecommons.org/licenses/by-nc-nd/4.0/.
https://creativecommons.org/licenses/by-nc-nd/4.0/.

When the calculated distance is negative, it is disregarded, and the distance to the
next level-set function is calculated. If the resolution of the currently examined
grid ∆xcurr is bigger than ∆xtar (see Equation 7.3), the grid points are Ćagged for
reĄnement.

After all level-set functions stored in the intersection list have been processed,
the hierarchical grid placement algorithm is executed (see Section 6.2). The level-
set function χ is updated accordingly to the newly placed hierarchical grids. This
reĄnement process is repeated on the newly generated sub-grids until the maximum
reĄnement level (i.e., Gref) is reached.

In a Ąnal reĄnement step, the resolution required to represent the thinnest
material layer properly is calculated. The reĄnement ratio for the Ąnal sub-grids
(Fref) is calculated by combining the target resolution (i.e., ∆xtar), the resolution of
the current sub-grid (i.e., ∆xtar), and the reĄnement ratio (i.e., Rratio)

log(Δxcurr

Δxtar
)

log(Rratio)

 = Fref. (7.4)

Thus, the calculated resolution is used in a concluding hierarchical grid placement
step.

The advantage of the reĄnement algorithm presented in this chapter over an
algorithm based on geometrical features of the surface (see Chapter 5) is its ability
to dynamically adapt the reĄnement based on the thickness of the material layers
involved in a Boolean operation. Additionally, the knowledge about the thickness of
the material layers enables the algorithm to deviate from a Ąxed reĄnement ratio.

7.3 Benchmark Example LED Pixel Fabrication

The in Section 7.2.3 presented algorithm is evaluated by simulating the fabrication
of an individual LED pixel of a LED array reported in the literature [32, 152].
The simulations presented in this section have been executed with SilvacoŠs Victory
Process and where executed on the ICS (see Section 4.6.3).

7.3.1 Simulation Setup

The fabrication process of an LED pixel starts by growing a 1.9µm thick GaN layer
on a (0001) sapphire substrate. In the next ten process steps alternating layers of
InGaN and GaN with different thicknesses are deposited up to a total height of
117.5nm. Afterwards, a p-GaN cap layer with a thickness of 210nm is grown on
top of the structure [32, 152]. The thinnest material layer in the entire structure is
a 3nm thick InGaN layer. The excess material is etched to fabricate an individual
LED pixel with a diameter of 75µm.

The base grid resolution of the simulation is set to 0.125µm. The minimal
number of grid points to represent the thinnest material layer (i.e., Nmin) is set to
6. The parameters for the automatic Grid placement are E(P) = 0.7 and M = 6.

106

Additionally, a minimum of two grid reĄnement levels is presupposed (i.e., Gref = 2)
to guarantee an accurate description of corners in the simulation domain. The
here presented simulation study focuses on the Ąnal etching step of the fabrication
simulation. Evaluating Equation 7.4 with the discussed simulation parameters shows
that the Ąnal sub-grid needs at least a 256 times Ąner resolution than the base-grid
for an accurate representation of the thinnest material layer.

Four different conĄgurations of the entire simulation Ćow are assessed in the
following. To demonstrate the necessity of the previously calculated minimal
required resolution, the Ąrst conĄguration utilizes a Ąxed reĄnement ratio Rratio and
a general reĄnement level of Gref of 3 (4-4-4) (e.g., the Ąnest sub-grid resolution
is only 64 times Ąner than the base grid resolution). In the second and third
simulation conĄgurations, the previously calculated minimal required resolution is
reached by reĄning the simulation domain with a general reĄnement level Gref of
4 and a constant reĄnement ratio (4-4-4-4). These two conĄgurations differ from
each other in the chosen feature detection approach. The second conĄguration uses
the benchmark hierarchical grid placement algorithm presented in Section 6.2 with
geometric feature detection. For the third conĄguration the algorithm presented in
Section 7.2.3 is utilized, excluding the dynamic adaptation of the grid resolution
of the Ąnal sub-grid. The Ąnal conĄguration uses the entire algorithm presented
in Section 7.2.3 utilizing a general reĄnement level of 2 with a constant reĄnement
ratio and a concluding sub-grid with a 16 times Ąner resolution (4-4-16).

7.3.2 Discussion

Figure 7.7 depicts the entire LED device after the etching process step and zoomed-
in versions of the thin material layers (active region). It can clearly be seen (see
the visible kinks in Figure 7.7b) that using a 4-4-4 reĄnement is not sufficient, due
to its too coarse Ąnal resolution, to properly resolve the thin InGaN material layers
after the etching simulation. Thus, the following discussion focuses on reĄnement
conĄgurations that reach the minimum required resolution. Using the 4-4-16 and
the 4-4-4-4 reĄnement produces the same Ąnal topography after the etching step
(see Figure 7.7c).

The run-times for the etching process step are reported in Table 7.1. The
simulation run with the hierarchical grid placement algorithm based on geometric
features is the slowest. This is explained by the fact that it has to calculate the entire
Boolean operation for each reĄnement level used. These observations are conĄrmed
by the faster simulation time of the experiment using the 4-4-4-4 reĄnement and
the in this section presented algorithm. Furthermore, when the hierarchical grid
placement algorithm for Boolean operations is allowed to dynamically set the
Ąnal sub-grid reĄnement level, it achieves a three times faster run-time than the
hierarchical grid placement algorithm based on geometric features. On the one
hand, this speedup is achieved by only calculating the Boolean operation once. On
the other hand, this approach reduces the number of placed sub-grids since one
entire grid level is skipped due to the dynamic reĄnement parameter.

107

1µm

Sapph
GaN
InGaN
p-GaN

(a) LED device

0.02µm

(b) 4-4-4

0.02µm

(c)
4-4-16 /
4-4-4-4

Figure 7.7: LED device: (a) entire device, (b) active region with 3 grid levels (Ąxed reĄnement
ratio) Ű red circles highlight kinks resulting from the inadequate, low resolution, (c) active region
with 4 grid levels. Adapted from Lenz et al., Solid State Electron. 200, (2023), p. 108534 [150],
© The Authors, licensed under the CC BY-NC-ND 4.0 License, https://creativecommons.org/

licenses/by-nc-nd/4.0/.

Table 7.1: Etching simulation run-times based on the ICS for different reĄnement level
conĄgurations.

Feature Detection Method ReĄnement Ratios Run-Time
Our method 4-4-16 4 min 22 s
Our method 4-4-4-4 8 min 45 s

Benchmark, geometrical 4-4-4-4 11 min 45 s

108

https://creativecommons.org/licenses/by-nc-nd/4.0/.
https://creativecommons.org/licenses/by-nc-nd/4.0/.

7.4 Summary

A hierarchical grid placement algorithm for thin material layers affected by
Boolean operations (i.e., etching simulations) has been presented. The algorithm
automatically determines the thickness of the material layers affected by the Boolean
operation and calculates the required reĄnement level based on the minimal amount
of grid points that should be used to represent a material layer. The ability to
consider the material layer thickness allows the algorithm to prevent the formation
of numerical artifacts that occur due to an insufficient grid resolution before the
Boolean operation is executed. This algorithm complements the general hierarchical
grid placement algorithm presented in Section 6.2.

Moreover, the run-time of the Boolean operation is improved as a result
of the ability of the algorithm to determine the minimum necessary reĄnement
dynamically. Thus, the algorithm is able to avoid the formation of additional
sub-grids. Therefore, the algorithm has a two times faster run-time when using a
dynamic reĄnement level and a three times faster run-time than the benchmarking
algorithm that utilizes geometric features of the topography for feature detection.

109

Chapter 8

Surface Mesh Simplification for
Efficient Top Down Flux
Calculation

A crucial step during a process TCAD simulation workĆow is the estimation of the
surface Ćux (see Section 4.2): Several process models require top-down ray tracing
to efficiently calculate the surface Ćux used to calculate the velocity Ąeld. The Ćux
calculation takes up a signiĄcant portion of the overall run-time of a process TCAD
simulation [103]. Therefore, methods that reduce the run-time of the Ćux calculation
are required to improve overall simulation performance. One attractive approach
is to optimize the surface meshes needed for ray tracing. However, the challenge is
that the surface meshes extracted from implicit level set representations tend to be
vastly inefficient due to unnecessarily dense meshes (large number of mesh elements,
i.e., triangles, in geometrically irrelevant areas of the mesh) if left untreated.

Figure 8.1 shows two example geometries extracted from a process TCAD
simulation utilizing hierarchical grids and a marching cubes algorithm.

(a) Surface 1: 70831 vertices. (b) Surface 2: 175550 vertices

Figure 8.1: Examples of surface meshes extracted during a process TCAD simulation workĆow.

110

These Ągures illustrate that the marching cubes algorithm generates a considerable
amount of triangles in Ćat regions of the geometry, which stem from the
discretization of the level-set function on the grid. Obviously, improving the
performance of any algorithm operating on such dense surface meshes, e.g., ray
tracing, the number of mesh elements must be drastically reduced whilst preserving
the features of the geometry.

Reducing the number of elements of a surface mesh is widely studied in computer
graphics and is often referred to as surface mesh simpliĄcation. Several algorithms
exist that simplify surface meshes with respect to a given metric [153, 154, 155, 156].
On the one hand, these algorithms operate in such a way that all triangles have
approximately the same size [153, 154], thus, homogeneously simplifying the surface
mesh. On the other hand, these algorithms use computationally expensive metrics
during the simpliĄcation process [155, 156]. Both of these strategies have drawbacks
when applied during a process TCAD simulation. A homogenous simpliĄcation of
the entire surface may lead to the degradation of topographical features when a
signiĄcant amount of surface elements is removed. Although a simpliĄed surface
mesh using an algorithm with an expensive metric may result in a suitable
representation of the topography, such an approach is prohibitive since the surface
Ćux calculation has to be performed in every time step. These constraints lead to
the following consideration: To efficiently simplify a surface mesh extracted with the
marching cubes algorithm, a computationally performant simpliĄcation strategy is
required that is aware of the previously indicated feature of the geometry. Therefore,
this chapter introduces a combination of the feature detection algorithm introduced
in Section 5.1.2 with a surface mesh simpliĄcation algorithm using a computationally
efficient metric (e.g., the Lindstrom-Turk algorithm [153]) to realize a so-called
region simpliĄcation algorithm. The developed algorithm is evaluated using problem
cases originating from process TCAD simulations, underlining practical application.

Section 8.1 introduces the edge collapse and Lindstrom-Turk algorithm, which
are the fundamental algorithms used for mesh simpliĄcation in this work. Next,
the developed region simpliĄcation algorithm is introduced (Section 8.2), which
simpliĄes features of the geometry to a lower degree than non-features, allowing
for a signiĄcantly improved balance between number of mesh elements and feature
preservation. In the last section of this chapter (Section 8.3) the performance of the
region simpliĄcation algorithm is evaluated. The geometric error introduced by the
simpliĄcation is analyzed by calculating the Hausdorff-distance between the original
and simpliĄed surface meshes. Furthermore, the region simpliĄcation and the ray
tracing run-times are evaluated.

Own Contributions

The key contribution presented in this chapter is the feature aware region
simpliĄcation algorithm. This work was presented at the SCEE 2020
conference [157] and published as a book chapter in ScientiĄc Computing
in Electrical Engineering [158].

111

8.1 Surface Mesh Simplification

This section introduces the underlying, key algorithms used for the developed region
simpliĄcation algorithm presented in Section 8.2. First, the edge collapse algorithm
is presented, which provides the basic mechanism to remove elements from the mesh.
Next, the Lindstrom-Turk algorithm is discussed, which provides the basic metrics
to decide which mesh elements should be removed.

8.1.1 Edge Collapse Algorithm

As previously mentioned, the utilized algorithm for surface mesh simpliĄcation is
the edge collapse algorithm [159]. This algorithm requires three functions: First, a
weight function that determines which edge should be removed. Second, a placement
function that determines a point in space where a new vertex is placed after an edge
is removed from the surface mesh. Third, a termination function which stops the
simpliĄcation process.

The algorithm starts by calculating the weight of all edges (see Section 8.1.2)
in the surface mesh and storing them in a minimum heap h. Afterwards, the edge
with the lowest weight is chosen; this edge is removed from the surface mesh and
replaced by a vertex. For the new vertex, a position is calculated (see Section 8.1.2),
and all edges that were previously connected to the vertices of the removed edge
are connected to the newly created vertex. Figure 8.2 shows an illustration of
this process. Next, the weights of the affected edges are recalculated and put
into the heap h. This process is repeated until the termination function ends the
simpliĄcation process. Each collapsed edge removes one vertex, two triangles, and
three edges from the surface mesh. In this work, the following two termination
criteria are used:

• If the edge length of the to be removed edge is larger than a user supplied
edge length (lmax).

• If no edges have been removed in the previous simpliĄcation step.

v1

v2

v3

v4

v5

v6

v7

v8

e

v1

v2

v3

v4

v5

v6
vn

Edge

Collapse

Figure 8.2: Illustration of an edge collapse on a surface mesh. The edge e is removed from
the surface mesh and replaced by the vertex vn. All edges connected to the removed edge are
connected to the new vertex.

112

8.1.2 Lindstrom-Turk Algorithm

The method used to calculate the weights of the edges and the position of
the newly placed vertices is provided by the Lindstrom-Turk algorithm [153].
This algorithm is based on four constraints that aim to minimize the change
in the volume characterized by the surface mesh. These four constraints are
boundary preservation, volume preservation, volume optimization, and triangle shape
optimization. Depending on the examined edge, three of the four constraints are
chosen. Each constraint can then be interpreted as a plane in R

3, which is linearly
independent of the planes of the other constraints. The intersection point of these
three planes describes the optimal position (i.e., the minimal change in volume
after the edge is removed) of the to be placed vertex, and the weight of the edge
is determined by the weighted (a user supplied parameter) sum of all optimization
parameters.

The Lindstrom-Turk algorithm allows for an efficient calculation of the weights
of the edges as well as the position of the new vertex. Furthermore, the Lindstrom-
Turk algorithm takes the quality of the newly created triangle into consideration
(i.e., aiming to create equilateral triangles).

8.2 Region Simplification Algorithm

The region simpliĄcation algorithms start by analyzing the features of the surface
mesh, which are used to split the surface mesh into two disjunct so-called feature
and transition regions, as will be discussed in detail below. These regions can then
be simpliĄed using different strategies, allowing for a higher resolution at features of
the geometry. In this work, the Lindstrom-Turk algorithm with different parameter
sets is used to guide the simpliĄcation process in both regions of the surface mesh,
however, the region simpliĄcation algorithm is not limited to the Lindstrom-Turk
algorithm. Thus, other simpliĄcation methods can be used to simplify the transition
and feature region respectively.

This section starts by discussing the feature detection strategy. Next, it is
described how the detected features are used to split the mesh into regions. Finally,
the simpliĄcation of the different regions and a strategy to create a smooth transition
from smaller to bigger mesh elements is discussed.

8.2.1 Feature Detection

The simpliĄcation algorithm starts by performing a feature detection on the entire
surface mesh. This is achieved by using the feature detection algorithm from
Section 5.1.2 and applying it to the vertices of the surface mesh. Furthermore,
the mean (H) and Gaussian curvature (K) for the vertices are calculated with
the curvature calculation methods presented in Section 3.3. The feature detection
algorithm, with a feature detection parameter of C = 0.5, is used to classify each
vertex in the surface mesh as either a Ćat or a feature vertex. A vertex is considered
to be a feature vertex if it is detected as a feature and Ćat otherwise.

113

An illustration of the detected features on the two surface meshes introduced in
Figure 8.1 is shown in Figure 8.3.

8.2.2 Mesh Partitioning and Extension of Regions

As previously mentioned, the detected features are used to partition the surface
mesh into regions, the feature regions (i.e., feature vertices) and the transition
regions (i.e., Ćat vertices). The partitioning of the mesh allows the surface mesh
simpliĄcation algorithm to simplify the transition region to a greater extent. Thus,
removing more mesh elements from Ćat parts of the geometry while maintaining
a higher resolution at features of the surface mesh. However, the straightforward
approach of only simplifying triangles in the transition region up to a Ąxed edge
length produces a signiĄcant number of low quality triangles (see Section 2.2), as
can be seen in Figure 8.4. Therefore, the region simpliĄcation utilizes a mesh grading
that linearly increases the edge length of the triangles the further they reach into
the transition region, to minimize the number of low quality triangles. This is
achieved in the following way: After the feature region and the transition region
are identiĄed, the iterative simpliĄcation algorithm starts by simplifying the entire
surface mesh, including the feature region, with a minimum edge length of l0. In the
case that the feature region should not be simpliĄed, l0 is set to 0. The subsequent
simpliĄcation step starts at the border between the transition and the feature region.
The transition region is simpliĄed until a minimal edge length of l1 = l0+sl, where sl
denotes a user speciĄed step length, is reached. Next, the feature region is extended
into the transition region (i.e., moved) by adding all vertices that are adjacent (e.g.,
connected by an edge) to the feature region. The contracted transition region is
again simpliĄed until a minimal edge length of li+1 = li+sl with i ∈ ¶0, 1, . . . , n ∈ N♢
is reached.

Feature Region
Transition Region

(a) Surface 1 (b) Surface 2

Figure 8.3: Detected features of the surface meshes from Figure 8.1.

114

(a) Surface 1 (b) Surface 2

Figure 8.4: Surface meshes where only the transition region has been simpliĄed. The not
simpliĄed elements in the upper third of Surface 2 are a consequence of the feature detection
(see Figure 8.3) and the Lindstrom-Turk algorithm assigning large weights to the edges between
the features.

(1)

→

(2)

→

(3)

→

(4)

Transition
Region

Feature
Region

Figure 8.5: Example of the simpliĄcation process: (1) shows the mesh after it has been divided
into regions. (2) shows the simpliĄcation of the transition region. (3) shows the extension of the
feature region. (4) shows again the simpliĄcation of the transition region with an increased edge
length considered for the simpliĄcation of the transition region. Reproduced with permission from
Springer Nature from Lenz et al., Math Indust. (2021), pp. 73-81 [158], © 2020, under exclusive
license to Springer Nature Switzerland AG.

These last two steps continue until one of the two termination conditions
introduced in Section 8.1.1 is fulĄlled, thus, terminating the simpliĄcation process.
Figure 8.5 illustrates the above discussed extension and, subsequent, simpliĄcation
of the regions. Furthermore, Figure 8.6 depicts a Ćow chart of the simpliĄcation
process.

To avoid the generation of too large triangles in this iterative scheme, the
previously mentioned parameter lmax can be chosen accordingly. This terminates
the simpliĄcation process when the minimal edge length in the transition region li
has reached an edge length equal or larger than lmax.

115

Start

Partition Mesh
into Regions

Simplify up to
Edge Length l0

Move Feature
Region

li = li−1 + sl
Simplify up to
Edge Length li

li ≥ lmax

or
Edges Removed = 0

End

True

False

Figure 8.6: Flow chart of the region simpliĄcation algorithm.

In a surface mesh extracted from a level-set function, the parameter l0 can be
chosen in concordance with the smallest sub-grid resolution ∆x. For other surface
meshes, the parameter l0 can be chosen by averaging the length of all edges in the
feature region. Furthermore, empirically it has been observed that the step length sl
should not be chosen bigger than l0: Although the amount of mesh elements would
be reduced by choosing a larger parameter, the triangle quality of the surface mesh
suffers.

8.3 Comparison and Evaluation

The region simpliĄcation algorithm is evaluated with respect to three metrics:
• The distance between the original and simpliĄed surface mesh (i.e., the error

introduced by the simpliĄcation).
• The run-time of the simpliĄcation process.
• The run-time of surface Ćux calculations using Monte Carlo ray tracing.

To that end, the two example meshes (see Figure 8.1) are simpliĄed using the
region simpliĄcation algorithm and the Lindstrom-Turk algorithm. Each of the
example meshes is simpliĄed using eight different parameter sets, which reduced the
number of vertices in the mesh by 20 to 90%. An exemplary, comparative result
is shown in Figure 8.7. This comparison illustrates that the region simpliĄcation
algorithm primarily removes triangles in the Ćat region and keeps a higher resolution
at the features of the geometry. The surface meshes have been simpliĄed using
ViennaMesh and CGAL and were executed on the benchmark platform Workstation
1 (see Section 4.6.3).

8.3.1 Distance to Original Geometry

The simpliĄcation process introduces minor errors in the discretization of the
surface. Although the Lindstrom-Turk algorithm tries to minimize this error, it is
unavoidable since each edge collapse removes information about the surface. Thus, a
metric is required that is able to capture the introduced error and allows to compare
the two algorithms.

116

(a) Simplification algorithm: Lindstrom-
Turk.

(b) Simplification algorithm: Region
simplification.

Figure 8.7: Example of a simpliĄed mesh with the two discussed simpliĄcation strategies. The
same number of vertices has been removed from both surface meshes. Reproduced with permission
from Springer Nature from Lenz et al., Math Indust. (2021), pp. 73-81 [158], © 2020, under
exclusive license to Springer Nature Switzerland AG.

A commonly used metric that calculates the distance between two sets (e.g., surface
meshes) is the Hausdorff distance [160]. The Hausdorff distance is deĄned as
follows [161]:

8.3.1 Definition (Hausdorff Distance) Let X, Y ⊂ R
3 be two sets. Then

the Hausdorff distance is deĄned as:

dH(X, Y) = max(dH′(X, Y), dH′(Y, X)).

dH′(X, Y) stands for the one-sided Hausdorff distance:

8.3.2 Definition (One-Sided Hausdorff Distance) Let X, Y ⊂ R
3 be two

sets. Then the one-sided Hausdorff distance is deĄned as follows:

dH′(X, Y) := max
p∈X

(min
q∈Y

(∥p − q∥)).

In the case of surface meshes, the Hausdorff distance is measured from the vertices of
one surface mesh to the closest triangle intersection of the other surface mesh [161].
The error introduced by the simpliĄcation process is determined by calculating the
Hausdorff distance from the original geometry (e.g., the not simpliĄed surface mesh)
to the simpliĄed surface mesh.

117

(a) Simplified surface mesh
(region simplification).

(b) Simplified surface mesh
(Lindstrom-Turk).

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·10−3

100

101

102

103

104

105

Hausdorff Distance (dH)

N
um

b
er

of
V

er
ti

ce
s

Only Lindstrom-Turk
Region SimpliĄcation

(c) Hausdorff distances from
the original geometry.

Figure 8.8: SimpliĄed Surface 1 with the parameters l0 = 0.0 and sl = 0.01. The meshes have
been simpliĄed to have the same number of vertices.

(a) Simplified surface mesh
(region simplification).

(b) Simplified surface mesh
(Lindstrom-Turk).

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·10−3

100

101

102

103

104

Hausdorff Distance (dH)
N

um
b

er
of

V
er

ti
ce

s

Only Lindstrom-Turk
Region SimpliĄcation

(c) Hausdorff distances from
the original geometry.

Figure 8.9: SimpliĄed Surface 1 with the parameters l0 = 0.019 and sl = 0.018. The meshes have
been simpliĄed to have the same number of vertices. Reproduced with permission from Springer
Nature from Lenz et al., Math Indust. (2021), pp. 73-81 [158], © 2020, under exclusive license to
Springer Nature Switzerland AG.

Figure 8.8 and Figure 8.9 show the simpliĄed Surface 1 and the Hausdorff
distances to the original geometry. The Hausdorff distances reported in Figure 8.8c
show that there is no geometric error introduced into the simpliĄed geometry, since
the region simpliĄcation algorithm does not simplify the feature region (i.e., l0 = 0).
Furthermore, this indicates that the feature detection is able to detect all features
of the surface mesh correctly and thus only simpliĄes triangles in Ćat parts of the
surface mesh, which does not alter the geometry represented by the surface mesh.
On the other hand, when the feature region is simpliĄed, to achieve an overall higher
degree of simpliĄcation, geometric errors are introduced into the simpliĄed surface
mesh, as can be seen in Figure 8.9c. The smaller geometric error is a consequence of
the feature region being simpliĄed to a lesser degree and more elements are removed
from the Ćat region when using the region simpliĄcation algorithm compared to
the Lindstrom-Turk algorithm. Nevertheless, the surface mesh simpliĄed with the
region simpliĄcation algorithm has a smaller error than the one simpliĄed with the
Lindstrom-Turk algorithm.

Figure 8.10 and Figure 8.11 again show the Hausdorff distances to the original
geometry and the simpliĄed surface mesh of Surface 2. First, it has to be mentioned
that the average Hausdorff distance of Surface 2 is one order of magnitude smaller
than that of Surface 1.

118

(a) Simplified surface mesh
(region simplification).

(b) Simplified surface mesh
(Lindstrom-Turk).

0 0.5 1 1.5 2 2.5 3

·10−4

101

102

103

104

105

Hausdorff Distance (dH)

N
um

b
er

of
V

er
ti

ce
s

Only Lindstrom-Turk
Region SimpliĄcation

(c) Hausdorff distances from
the original geometry.

Figure 8.10: SimpliĄed Surface 2 with the parameters l0 = 0.0 and sl = 0.0006. The meshes
have been simpliĄed to have the same number of vertices.

(a) Simplified surface mesh
(region simplification).

(b) Simplified surface mesh
(Lindstrom-Turk).

0 0.5 1 1.5 2 2.5 3

·10−4

101

102

103

104

105

Hausdorff Distance (dH)

N
um

b
er

of
V

er
ti

ce
s

Only Lindstrom-Turk
Region SimpliĄcation

(c) Hausdorff distances from
the original geometry.

Figure 8.11: SimpliĄed Surface 2 with the parameters l0 = 0.0014 and sl = 0.0008. The meshes
have been simpliĄed to have the same number of vertices. Reproduced with permission from
Springer Nature from Lenz et al., Math Indust. (2021), pp. 73-81 [158], © 2020, under exclusive
license to Springer Nature Switzerland AG.

The reason for that difference is the base grid resolution of the underlining simulation
from which the two meshes where extracted. In Figure 8.10c, a small error in the
Hausdorff distance can be seen, even though the feature region is not simpliĄed.
This error occurs since Surface 2 has Ąner features than Surface 1, which are not
captured by the feature detection algorithm. However, in general, a small error in the
feature detection is to be expected since a feature detection parameter has to be used
(see Section 5.1), which is going to miss features smaller than the feature detection
parameter. Additionally, the surface mesh simpliĄed with region simpliĄcation has a
far smaller error than the mesh simpliĄed with the Lindstrom-Turk algorithm, since
it removes more mesh elements from the transition region than from the feature
region, which is further conĄrmed in Figure 8.11c for the case of simplifying the
feature region.

On average region simpliĄcation has a 20 - 40 % lower Hausdorff distance to the
original geometry than using the Lindstrom-Turk algorithm.

119

Next, the simpliĄcation run-times of the two simpliĄcation algorithms are
investigated to study the computational effort of both simpliĄcation algorithms.

8.3.2 Simplification Run-Time

The simpliĄcation run-times of the example meshes using the different parameters
are reported in Figure 8.12. As expected, it is shown that region simpliĄcation
introduces an overhead into the simpliĄcation process compared to the Lindstrom-
Turk algorithm. The main reason is the feature detection used to split the surface
mesh into regions. Compared to the Lindstrom-Turk algorithm, region simpliĄcation
has, on average, a 17 % longer simpliĄcation time. However, when considering entire
process TCAD workĆows (see Section 4.5), the additional time spent on improved
surface mesh simpliĄcation easily pays of with costly subsequent process simulation
steps, such as ray tracing for Ćux calculations, as signiĄcantly less triangles have to
be processed.

8.3.3 Flux Calculation and Monte Carlo Ray Tracing
Run-Time

The run-times of Ćux calculations using Monte Carlo ray tracing based on the
simpliĄed example meshes (see Figure 8.1) are shown in Figure 8.13. It is shown
that the speedup of the ray tracing also depends on the underlying geometry. For
geometries that represent deep trenches (i.e., Surface 2), the speedup achieved by
the surface mesh simpliĄcation is more dependent on the size of the triangles than
for geometries with smaller horizontal variation(i.e., Surface 1). These differences
are explained by the difference in the bounding volume hierarchy (i.e., the data
structure used for ray tracing), which can be traversed faster in a deep trench with
bigger elements.

19 32 52 65 78 84 89 92
0.5

1

1.5

2

2.5

Amount of SimpliĄcation [%]

Si
m

pl
iĄ

ca
ti

on
T

im
e

[s
ec

]

Only
Lindstrom-Turk
Region
SimpliĄcation

(a) Surface 1

39 42 47 52 67 73 78 81

3

4

5

6

7

Amount of SimpliĄcation [%]

Si
m

pl
iĄ

ca
ti

on
T

im
e

[s
ec

]

(b) Surface 2

Figure 8.12: Surface mesh simpliĄcation run-times with different degrees of simpliĄcation. The
degree of simpliĄcation denotes the number of vertices that have been removed. Reproduced with
permission from Springer Nature from Lenz et al., Math Indust. (2021), pp. 73-81 [158], © 2020,
under exclusive license to Springer Nature Switzerland AG.

120

19 32 52 65 78 84 89 92

60

65

70

Amount of SimpliĄcation [%]

E
xe

cu
ti

on
T

im
e

[s
ec

] Original Geometry
Only Lindstrom-Turk
Region SimpliĄcation

(a) Surface 1

39 42 47 52 67 73 78 81

240

260

280

300

320

Amount of SimpliĄcation [%]

E
xe

cu
ti

on
T

im
e

[s
ec

]

(b) Surface 2

Figure 8.13: Execution time of Monte Carlo ray tracing using 108 rays. The amount of
simpliĄcation denotes the number of vertices that have been removed from the original mesh.
Reproduced with permission from Springer Nature from Lenz et al., Math Indust. (2021), pp.
73-81 [158], © 2020, under exclusive license to Springer Nature Switzerland AG.

When tracing Surface 1, the simpliĄed surface meshes improve the run-times of
the Ćux calculation. Furthermore, both simpliĄcation methods perform similarly to
each other. The run-times of ray tracing performed on Surface 2 are also improved
by the surface mesh simpliĄcation. Additionally, the surface meshes simpliĄed
with the region simpliĄcation algorithm outperform the meshes simpliĄed with the
Lindstrom-Turk algorithm. The biggest ray tracing performance differences between
the two algorithms is about 12 % at the simpliĄcation levels between 52 and 67 %.

Comparing the run-times for the surface mesh simpliĄcation (see Figure 8.12)
and the ray tracing (see Figure 8.13) shows that the speedup achieved for the ray
tracing on the simpliĄed surface meshes is bigger than the cost of simplifying the
surface mesh, conĄrming the previously stated justiĄcation in Section 8.3.2.

8.4 Summary

A new surface mesh simpliĄcation algorithm has been presented. The algorithm uses
the features of a surface mesh to divide it into disjunct regions that are simpliĄed
with different parameters. The algorithm is well suited for surface meshes originating
from process TCAD simulations used for surface Ćux calculations. The surface mesh
simpliĄcation algorithm has been evaluated by investigating the distance to the
original geometry, the run-times of the surface mesh simpliĄcation, and a subsequent
Ćux calculation step using Monte Carlo ray tracing. Surface meshes simpliĄed with
the proposed surface mesh simpliĄcation algorithm have an improved geometric
distance to the original surface mesh compared to a surface mesh simpliĄed with the
reference algorithm. The average Hausdorff distance of the investigated geometries
is improved by 20 - 40 %. On average, the ray tracing performance on the simpliĄed
surface meshes is improved by 15 %. Additionally, geometries from process TCAD
simulations with deep trenches, simpliĄed with the region simpliĄcation algorithm,
perform much better in ray tracing.

121

The time spent on simpliĄcation is, on average, 17 % slower when using region
simpliĄcation compared to the reference algorithm. Therefore, when considering
the entire process of Ćux calculation, the acceleration of the ray tracing due to the
simpliĄed surface exceeds the time spent on surface mesh simpliĄcation, underlying
the importance of surface mesh simpliĄcation in relevant process TCAD workĆows.

122

Chapter 9

Summary and Outlook

This thesis introduces a set of newly developed geometry-aware algorithms
for hierarchical grids which are centered around identifying and utilizing the
discrete surface curvatures of topographies arising in semiconductor process
TCAD simulations to optimize computational processing. These geometry-
aware algorithms signiĄcantly increase the performance of topography simulations
by selectively reĄning or simplifying the discrete representation of the device
topography during a simulation.

The three most prominently used discrete surface representations during
topography simulations were introduced; level-set functions, surface meshes, and
point clouds. Furthermore, the most common ways of switching between these
surface representations and their role during topography simulations were discussed.
The primary numerical methods used during a topography simulation were
considered: The representation of materials on the wafer surface, the evolution
of these materials in time (i.e., the level-set method), and three strategies for
estimating the surface Ćux. These discussed methods were then combined into
a general workĆow for topography simulations. Finally, the concept of the surface
curvature on continuous surfaces was discussed, as well as several strategies of how
to use this concept on the previously discussed discrete surface representations.

The surface curvatures of the discretized surfaces were used to formulate an
automatic feature detection algorithm which detects parts of a discrete surface with
signiĄcant geometric variation. For 3D level-set functions three methods from the
literature and a novel extension of the standard calculation method of the surface
curvatures have been investigated for their applicability in topography simulations.
Two methods stood out, depending on the quality requirements of the feature
detection. For performance oriented applications the Shape Operator method is
superior to all other methods. This method uses the smallest Ąnite difference
stencil to calculate the mean curvature of the level-set function, while avoiding
the calculation of the Gaussian curvature for a robust feature detection. The
second method is the novel Big Stencil method, which has a similar computational
performance to the other tested methods, yet it has a higher numerical accuracy and
is less susceptible to numerical noise. Additionally, a feature detection parameter
for topography simulations has been obtained through a parameter study performed
on typical device topographies.

123

The feature detection algorithm and feature detection parameter were used to
guide a hierarchical grid placement algorithm to reĄne the simulation domains of
topography simulations. Due to the detected features of the device topography, the
hierarchical grid placement algorithm was able to precisely place sub-grids at parts
of the simulation domain that improve the discrete description of the topography,
while minimizing impacts on simulation performance. This hierarchical approach
has been used to simulate selective epitaxial growth of SiGe crystals, which leads to
an improvement in computation time, while maintaining an accurate description of
the crystal surface.

Furthermore, the feature detection algorithm has been used to improve Monte
Carlo ray tracing based surface Ćux calculations on surface meshes. The detected
features have been used to split the surface mesh into two separate regions which are
used to guide a surface mesh simpliĄcation algorithm. Depending on the previously
calculated regions, the surface mesh simpliĄcation algorithm is able to remove more
or less triangles from the original surface mesh. Additionally, the quality of the
triangles between the regions is taken into consideration to create a steady increase
in the size of the triangles to prevent the formation of bad mesh elements. This
approach maximizes the amount of triangles that are removed from the surface
mesh, while maintaining a detailed description of its features.

A specially designed feature detection algorithm for etching simulations of thin
material layers utilizing Boolean operations has been developed. This algorithm
analyzes the thickness of the material layers that are affected by an etching
simulation and determines a minimal required reĄnement level. Thus, it prevents
the formation of numerical artifacts as a consequence of a too coarse resolution of
the simulation domain. The computational performance of the algorithm is further
improved by dynamically increasing the resolution of the Ąnal sub-grid to reach the
previously determined minimal required reĄnement level.

Some possible, future extensions of the geometry-aware algorithms introduced
in this work for topography simulations are discussed in the following paragraphs.
Monte Carlo ray tracing based surface Ćux calculations introduce numerical noise
into the discrete surface description. This noise prevents more straightforward
implementations of feature detection strategies from accurately detecting the
features of the surface. The Big Stencil method is able to ignore surface noise
introduced by the process model and the Ąnite difference scheme used to solve
the level-set equation. Thus, the Big Stencil method could be able to only detect
features of the topography and ignore the noise from Monte Carlo based simulations.
Furthermore, Ąnite difference schemes with even bigger Ąnite difference stencils could
be investigated, which may lead to a more reliable feature detection on surfaces with
noise.

The introduced feature detection algorithm can be used to speed up Monte Carlo
ray tracing based surface Ćux calculations on point clouds. In this case, the features
of the device topography can be detected with the help of the implicitly deĄned
level-set function, thus redistributing the expensive curvature calculations on point
clouds to their computationally cheaper calculations on level-set functions.

124

The detected features could then be further used to simplify the point cloud during
its extraction from the level-set function.

The initial motivation of the feature detection algorithm and hierarchical grid
placement algorithm described in this work was to improve simulation performance
of topography simulations by selectively reĄning the simulation domain at features of
the topography. Clearly, the feature detection and hierarchical grid placement steps
introduce an overhead into a topography simulation, which is evidently small enough
to improve simulation performance. However, it is possible that for particularly
complex topographies the amount of required sub-grids is so high that the overhead
of the hierarchical approach exceeds the performance gains. Thus, it can be of
interest to develop a heuristic that determines if a simulation should use a certain
amount of grid levels and sub-grids or use a higher base grid resolution with fewer
grid-levels.

125

Bibliography

[1] S. Hofstein and F. Heiman. ŞThe Silicon Insulated-Gate Field-Effect
TransistorŤ. In: Proceedings of the IEEE 51.9 (1963), pp. 1190Ű1202. doi:
10.1109/PROC.1963.2488.

[2] Y. Yasuda-Masuoka, J. Jeong, K. Son, S. Lee, S. Park, Y. Lee, J. Youn Kim,
J. Lee, M. Cho, S. Lee, S. Hong, H. Hong, Y. Jung, C. Yoon, Y. Ko, K. Jung,
T. Myung, J. M. Youn, and G. Jeong. ŞHigh Performance 4nm FinFET
Platform (4LPE) with Novel Advanced Transistor Level DTCO for Dual-
CPP/HP-HD Standard CellsŤ. In: Proceedings of the IEEE International
Electron Devices Meeting (IEDM). 2021, pp. 13.3.1Ű13.3.4. doi: 10.1109/

IEDM19574.2021.9720656.

[3] G. E. Moore. ŞCramming More Components Onto Integrated Circuits,
Reprinted From Electronics, Volume 38, Number 8, April 19, 1965, pp.114
ff.Ť In: IEEE Solid-State Circuits Society Newsletter 11.3 (2006), pp. 33Ű35.
doi: 10.1109/N-SSC.2006.4785860.

[4] M. G. S. and S. Costas J. Fundamentals of Semiconductor Manufacturing
and Process Control. John Wiley & Sons, 2006. doi: 10.1002/0471790281.

[5] M. C. K. Introducing Technology Computer-Aided Design (TCAD). 1st. John
Wiley & Sons, 2017. doi: 10.1201/9781315364506.

[6] A. Yanguas-Gil. Growth and Transport in Nanostructured Materials: Reactive
Transport in PVD, CVD, and ALD. Springer, 2016. doi: 10.1007/978-3-

319-24672-7.

[7] L. M. A. and L. A. J. Principles of Plasma Discharges and Materials
Processing. Jenny Stanford Publishing, 2005. doi: 10.1002/0471724254.

[8] S. J. A. Level Set Methods and Fast Marching Methods: Evolving Interfaces in
Computational Geometry, Fluid Mechanics, Computer Vision, and Materials
Science. Cambridge University Press, 1999.

[9] E. Chason, S. T. Picraux, J. M. Poate, J. O. Borland, M. I. Current, T. Diaz
de la Rubia, D. J. Eaglesham, O. W. Holland, M. E. Law, C. W. Magee, J. W.
Mayer, J. Melngailis, and A. F. Tasch. ŞIon Beams in Silicon Processing and
CharacterizationŤ. In: Journal of Applied Physics 81.10 (1997), pp. 6513Ű
6561. doi: 10.1063/1.365193.

127

https://doi.org/10.1109/PROC.1963.2488
https://doi.org/10.1109/IEDM19574.2021.9720656
https://doi.org/10.1109/IEDM19574.2021.9720656
https://doi.org/10.1109/N-SSC.2006.4785860
https://doi.org/10.1002/0471790281
https://doi.org/10.1201/9781315364506
https://doi.org/10.1007/978-3-319-24672-7
https://doi.org/10.1007/978-3-319-24672-7
https://doi.org/10.1002/0471724254
https://doi.org/10.1063/1.365193

[10] K. K. Bhuwalka, H. Wu, W. Zhao, G. Rzepa, O. Baumgartner, F. Benistant,
Y. Chen, and C. Liu. ŞOptimization and Benchmarking FinFETs and
GAA Nanosheet Architectures at 3-nm Technology Node: Impact of Unique
BoostersŤ. In: IEEE Transactions on Electron Devices 69.8 (2022), pp. 4088Ű
4094. doi: 10.1109/TED.2022.3178665.

[11] H. Kwon, H. Huh, H. Seo, S. Han, I. Won, J. Sue, D. Oh, F. Iza, S. Lee, S. K.
Park, and S. Cha. ŞTCAD Augmented Generative Adversarial Network for
Hot-Spot Detection and Mask-Layout Optimization in a Large Area HARC
Etching ProcessŤ. In: Physics of Plasmas 29.7 (2022), p. 073504. doi: 10.

1063/5.0093076.

[12] X. Klemenschits, P. Manstetten, L. Filipovic, and S. Selberherr. ŞProcess
Simulation in the Browser: Porting ViennaTS using WebAssemblyŤ. In:
Proceedings of the International Conference on Simulation of Semiconductor
Processes and Devices (SISPAD). 2019, pp. 339Ű342. doi: 10.1109/SISPAD.

2019.8870374.

[13] X. Klemenschits. ŞEmulation and Simulation of Microelectronic Fabrication
ProcessesŤ. Doctoral Dissertation. TU Wien, 2022.

[14] N. Patrikalakis and T. Maekawa. Shape Interrogation for Computer Aided
Design and Manufacturing. 1st. Springer, 2002. doi: 10.1007/978-3-642-

04074-0.

[15] S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces.
Vol. 153. Springer, 2003. doi: 10.1007/b98879.

[16] P. Frey and L. George Paul. Mesh Generation: Application to Finite
Elements. 2nd. Wiley-ISTE, 2013.

[17] X. Klemenschits, S. Selberherr, and L. Filipovic. ŞModeling of Gate Stack
Patterning for Advanced Technology Nodes: A ReviewŤ. In: Micromachines
9.12 (2018), p. 631. doi: 10.3390/mi9120631.

[18] P. Manstetten, J. Weinbub, A. Hössinger, and S. Selberherr. ŞUsing
Temporary Explicit Meshes for Direct Flux Calculation on Implicit SurfacesŤ.
In: Procedia Computer Science 108 (2017), pp. 245Ű254. doi: 10.1016/j.

procs.2017.05.067.

[19] M. J. Berger and J. Oliger. ŞAdaptive Mesh ReĄnement for Hyperbolic
Partial Differential EquationsŤ. In: Journal of Computational Physics 53.3
(1984), pp. 484Ű512. doi: 10.1016/0021-9991(84)90073-1.

[20] B. Zönnchen and G. Köster. ŞA Parallel Generator for Sparse Unstructured
Meshes to Solve the Eikonal EquationŤ. In: Journal of Computational Science
32 (2019), pp. 141Ű147. doi: 10.1016/j.jocs.2018.09.009.

[21] Å. Ervik, K. Y. Lervåg, and S. T. Munkejord. ŞA Robust Method For
Calculating Interface Curvature and Normal Vectors Using an Extracted
Local Level SetŤ. In: Journal of Computational Physics 257 (2014), pp. 259Ű
277. doi: 10.1016/j.jcp.2013.09.053.

128

https://doi.org/10.1109/TED.2022.3178665
https://doi.org/10.1063/5.0093076
https://doi.org/10.1063/5.0093076
https://doi.org/10.1109/SISPAD.2019.8870374
https://doi.org/10.1109/SISPAD.2019.8870374
https://doi.org/10.1007/978-3-642-04074-0
https://doi.org/10.1007/978-3-642-04074-0
https://doi.org/10.1007/b98879
https://doi.org/10.3390/mi9120631
https://doi.org/10.1016/j.procs.2017.05.067
https://doi.org/10.1016/j.procs.2017.05.067
https://doi.org/10.1016/0021-9991(84)90073-1
https://doi.org/10.1016/j.jocs.2018.09.009
https://doi.org/10.1016/j.jcp.2013.09.053

[22] R. A. Trompert and J. G. Verwer. ŞA Static-Regridding Method for Two-
Dimensional Parabolic Partial Differential EquationsŤ. In: Applied Numerical
Mathematics 8.1 (1991), pp. 65Ű90. doi: 10.1016/0168-9274(91)90098-K.

[23] P. Lu and X. Xu. ŞA Robust Multilevel Preconditioner Based on a Domain
Decomposition Method for the Helmholtz EquationŤ. In: Journal of ScientiĄc
Computing 81 (2019), pp. 291Ű311. doi: 10.1007/s10915-019-01015-z.

[24] C. Wang, W. Wang, S. Pan, and F. Zhao. ŞA Local Curvature Based Adaptive
Particle Level Set MethodŤ. In: Journal of ScientiĄc Computing 91 (2022).
doi: 10.1007/s10915-022-01772-4.

[25] M. P. d. Carmo. Differential Geometry of Curves & Surfaces. 2nd. Dover
Publications, Inc., 2016.

[26] H. T. Ho and D. Gibbins. ŞMulti-Scale Feature Extraction for 3D
Models using Local Surface CurvatureŤ. In: Proceedings of the International
Conference on Digital Image Computing: Techniques and Applications
(DICTA). 2008, pp. 16Ű23. doi: 10.1109/DICTA.2008.64.

[27] Q. Mérigot, M. Ovsjanikov, and L. J. Guibas. ŞVoronoi-Based Curvature
and Feature Estimation From Point CloudsŤ. In: IEEE Transactions on
Visualization and Computer Graphics 17 (2011), pp. 743Ű756. doi: 10.1109/

TVCG.2010.261.

[28] H. S. Kim, H. K. Choi, and K. H. Lee. ŞFeature Detection of Triangular
Meshes Based on Tensor Voting TheoryŤ. In: CAD Computer Aided Design
41 (2009), pp. 47Ű58. doi: 10.1016/j.cad.2008.12.003.

[29] U. Clarenz, M. Rumpf, and A. Telea. ŞRobust Feature Detection and
Local ClassiĄcation for Surfaces Based on Moment AnalysisŤ. In: IEEE
Transactions on Visualization and Computer Graphics 10 (2004), pp. 516Ű
524. doi: 10.1109/TVCG.2004.34.

[30] L. F. Aguinsky. ŞPhenomenological Modeling of Reactive Single-Particle
Transport in Semiconductor ProcessingŤ. Doctoral Dissertation. TU Wien,
2022. doi: 10.34726/hss.2023.107502.

[31] P. Hong, Z. Zhao, J. Luo, Z. Xia, X. Su, L. Zhang, C. Li, and Z. Huo.
ŞAn Improved Dimensional Measurement Method of Staircase Patterns with
Higher Precision in 3D NANDŤ. In: IEEE Access 8 (2020), pp. 140054Ű
140061. doi: 10.1109/ACCESS.2020.3012012.

[32] X. Zhou, P. Tian, C. W. Sher, J. Wu, H. Liu, R. Liu, and H. C. Kuo.
ŞGrowth, Transfer Printing and Colour Conversion Techniques Towards Full-
Colour Micro-LED DisplayŤ. In: Progress in Quantum Electronics 71 (2020),
p. 100263. doi: 10.1016/j.pquantelec.2020.100263.

[33] O. Ertl and S. Selberherr. ŞThree-Dimensional Level Set Based Bosch Process
Simulations using Ray Tracing for Flux CalculationŤ. In: Microelectronic
Engineering 87.1 (2010), pp. 20Ű29. doi: 10.1016/j.mee.2009.05.011.

129

https://doi.org/10.1016/0168-9274(91)90098-K
https://doi.org/10.1007/s10915-019-01015-z
https://doi.org/10.1007/s10915-022-01772-4
https://doi.org/10.1109/DICTA.2008.64
https://doi.org/10.1109/TVCG.2010.261
https://doi.org/10.1109/TVCG.2010.261
https://doi.org/10.1016/j.cad.2008.12.003
https://doi.org/10.1109/TVCG.2004.34
https://doi.org/10.34726/hss.2023.107502
https://doi.org/10.1109/ACCESS.2020.3012012
https://doi.org/10.1016/j.pquantelec.2020.100263
https://doi.org/10.1016/j.mee.2009.05.011

[34] L. F. Aguinsky, F. Rodrigues, G. Wachter, M. Trupke, U. Schmid, A.
Hössinger, and J. Weinbub. ŞPhenomenological Modeling of Low-Bias Sulfur
HexaĆuoride Plasma Etching of SiliconŤ. In: Solid-State Electronics 191
(2022), p. 108262. doi: 10.1016/j.sse.2022.108262.

[35] T. Reiter, X. Klemenschits, and L. Filipovic. ŞImpact of Plasma Induced
Damage on the Fabrication of 3D NAND Flash MemoryŤ. In: Solid-State
Electronics 192 (2022). invited, p. 108261. doi: 10 . 1016 / j . sse . 2022 .

108261.

[36] H.-K. Zhao, T. Chan, B. Merriman, and S. Osher. ŞA Variational Level
Set Approach to Multiphase MotionŤ. In: Journal of Computational Physics
127.1 (1996), pp. 179Ű195. doi: 10.1006/jcph.1996.0167.

[37] S. C. Endres, M. Avila, and L. Mädler. ŞA Discrete Differential Geometric
Formulation of Multiphase Surface Interfaces for Scalable Multiphysics
Equilibrium SimulationsŤ. In: Chemical Engineering Science 257 (2022),
p. 117681. doi: 10.1016/j.ces.2022.117681.

[38] L. Ma, Y. Li, J. Li, C. Wang, R. Wang, and M. A. Chapman. ŞMobile Laser
Scanned Point-Clouds for Road Object Detection and Extraction: A ReviewŤ.
In: Remote Sensing 10.10 (2018). doi: 10.3390/rs10101531.

[39] M. Engelcke, D. Rao, D. Z. Wang, C. H. Tong, and I. Posner. ŞVote3Deep:
Fast Object Detection in 3D Point Clouds Using Efficient Convolutional
Neural NetworksŤ. In: Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA). 2017, pp. 1355Ű1361. doi: 10.1109/ICRA.

2017.7989161.

[40] S. B. Walsh, D. J. Borello, B. Guldur, and J. F. Hajjar. ŞData Processing of
Point Clouds for Object Detection for Structural Engineering ApplicationsŤ.
In: Computer-Aided Civil and Infrastructure Engineering 28.7 (2013),
pp. 495Ű508. doi: 10.1111/mice.12016.

[41] I. Wald, S. Woop, C. Benthin, G. S. Johnson, and M. Ernst. ŞEmbree: A
Kernel Framework for Efficient CPU Ray TracingŤ. In: ACM Transactions
on Graphics 33.4 (2014), pp. 1Ű8. doi: 10.1145/2601097.2601199.

[42] J. Otepka, S. Ghuffar, C. Waldhauser, R. Hochreiter, and N. Pfeifer.
ŞGeoreferenced Point Clouds: A Survey of Features and Point Cloud
ManagementŤ. In: ISPRS International Journal of Geo-Information 2.4
(2013), pp. 1038Ű1065. doi: 10.3390/ijgi2041038.

[43] T. Mølhave, P. K. Agarwal, L. Arge, and M. Revsbæk. ŞScalable Algorithms
for Large High-Resolution Terrain DataŤ. In: Proceedings of the International
Conference and Exhibition on Computing for Geospatial Research &
Application (COM-GEO). 2010. doi: 10.1145/1823854.1823878.

[44] H. Samet. Foundations of Multidimensional and Metric Data Structures. 4th.
Morgan Kaufmann, 2006.

130

https://doi.org/10.1016/j.sse.2022.108262
https://doi.org/10.1016/j.sse.2022.108261
https://doi.org/10.1016/j.sse.2022.108261
https://doi.org/10.1006/jcph.1996.0167
https://doi.org/10.1016/j.ces.2022.117681
https://doi.org/10.3390/rs10101531
https://doi.org/10.1109/ICRA.2017.7989161
https://doi.org/10.1109/ICRA.2017.7989161
https://doi.org/10.1111/mice.12016
https://doi.org/10.1145/2601097.2601199
https://doi.org/10.3390/ijgi2041038
https://doi.org/10.1145/1823854.1823878

[45] T. Caelli and J. Berkmann. ŞComputation of Surface Geometry and
Segmentation Using Covariance TechniquesŤ. In: IEEE Transactions on
Pattern Analysis & Machine Intelligence 16.11 (1994), pp. 1114Ű1116. doi:
10.1109/34.334391.

[46] K. Klasing, D. Althoff, D. Wollherr, and M. Buss. ŞComparison of
Surface Normal Estimation Methods for Range Sensing ApplicationsŤ.
In: Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA). 2009, pp. 3206Ű3211. doi: 10 . 1109 / ROBOT . 2009 .

5152493.

[47] C. Siu-Wing, D. Tamal K., and S. Jonathan. Delaunay Mesh Generation.
1st. Chapman and Hall/CRC, 2013.

[48] M. Berg, M. Kreveld, M. Overmars, and O. Schwarzkopf. Computational
Geometry: Algorithms and Applications. Springer, 2000. doi: 10.1007/978-

3-662-03427-9.

[49] P. P. Pébay and T. J. Baker. ŞAnalysis of Triangle Quality MeasuresŤ. In:
Mathematics of Computation 72 (2003), pp. 1817Ű1839. doi: 10 . 1090 /

S0025-5718-03-01485-6.

[50] I. Babuška and A. K. Aziz. ŞOn the Angle Condition in the Finite Element
MethodŤ. In: SIAM Journal on Numerical Analysis 13.2 (1976), pp. 214Ű226.
doi: 10.1137/0713021.

[51] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer Graphics:
Principles and Practice. 2nd. Addison-Wesley, 1997.

[52] M. Chen, X. Chen, K. Tang, and M. Yuen. ŞEfficient Boolean Operation
on Manifold Mesh SurfacesŤ. In: Computer-Aided Design and Applications 7
(2013), pp. 405Ű415. doi: 10.3722/cadaps.2010.405-415.

[53] A. Requicha and H. Voelcker. ŞBoolean Operations in Solid Modeling:
Boundary Evaluation and Merging AlgorithmsŤ. In: Proceedings of the IEEE
73.1 (1985), pp. 30Ű44. doi: 10.1109/PROC.1985.13108.

[54] S. Osher and J. A. Sethian. ŞFronts Propagating with Curvature Dependent
SpeedŤ. In: Journal of Computational Physics 79.1 (1988), pp. 12Ű49. doi:
10.1016/0021-9991(88)90002-2.

[55] R. T. Whitaker. ŞA Level-Set Approach to 3D Reconstruction from Range
DataŤ. In: International Journal of Computer Vision 29 (1998), pp. 203Ű231.
doi: 10.1023/A:1008036829907.

[56] D. Adalsteinsson and J. A. Sethian. ŞA Fast Level Set Method for
Propagating InterfacesŤ. In: Journal of Computational Physics 118.2 (1995),
pp. 269Ű277. doi: 10.1006/jcph.1995.1098.

[57] E. L. C. Partial Differential Equations. 2nd. Berkeley: Graduate Studies in
Mathematics, 1998. doi: 10.1090/gsm/019.

[58] O. Ertl. ŞNumerical Methods for Topography SimulationŤ. Doctoral
Dissertation. TU Wien, 2010. doi: 10.34726/hss.2010.001.

131

https://doi.org/10.1109/34.334391
https://doi.org/10.1109/ROBOT.2009.5152493
https://doi.org/10.1109/ROBOT.2009.5152493
https://doi.org/10.1007/978-3-662-03427-9
https://doi.org/10.1007/978-3-662-03427-9
https://doi.org/10.1090/S0025-5718-03-01485-6
https://doi.org/10.1090/S0025-5718-03-01485-6
https://doi.org/10.1137/0713021
https://doi.org/10.3722/cadaps.2010.405-415
https://doi.org/10.1109/PROC.1985.13108
https://doi.org/10.1016/0021-9991(88)90002-2
https://doi.org/10.1023/A:1008036829907
https://doi.org/10.1006/jcph.1995.1098
https://doi.org/10.1090/gsm/019
https://doi.org/10.34726/hss.2010.001

[59] B. Wyvill, A. Guy, and E. Galin. ŞExtending the CSG Tree. Warping,
Blending and Boolean Operations in an Implicit Surface Modeling SystemŤ.
In: Computer Graphics Forum 18.2 (1999), pp. 149Ű158. doi: 10.1111/1467-

8659.00365.

[60] A. Pasko, V. Adzhiev, A. Sourin, and V. Savchenko. ŞFunction
Representation in Geometric Modeling: Concepts, Implementation and
ApplicationsŤ. In: The Visual Computer 11 (1995), pp. 429Ű446. doi: 10.

1007/BF02464333.

[61] C. Lenz, A. ToiĆ, M. Quell, F. Rodrigues, A. Hössinger, and J. Weinbub.
ŞCurvature Based Feature Detection for Hierarchical Grid ReĄnement in
TCAD Topography SimulationsŤ. In: Solid-State Electronics 191 (2022),
p. 108258. doi: 10.1016/j.sse.2022.108258.

[62] W. E. Lorensen and H. E. Cline. ŞMarching Cubes: A High Resolution
3D Surface Construction AlgorithmŤ. In: Proceedings of the Special Interest
Group on Computer Graphics and Interactive Techniques Conference
(SIGGRAPH) 21.4 (1987), pp. 163Ű169. doi: 10.1145/37401.37422.

[63] C. Maple. ŞGeometric Design and Space Planning Using the Marching
Squares and Marching Cube AlgorithmsŤ. In: Proceedings of the International
Conference on Geometric Modeling and Graphics (GMAG). 2003, pp. 90Ű95.
doi: 10.1109/GMAG.2003.1219671.

[64] M. W. Jones. 3D Distance from a Point to a Triangle. Tech. rep. Department
of Computer Science, University of Wales Swansea Technical Report CSR-5,
1995.

[65] U. Pinkall and K. Polthier. ŞComputing Discrete Minimal Surfaces and Their
ConjugatesŤ. In: Experimental Mathematics 2.1 (1993), pp. 15Ű36. doi: 10.

1080/10586458.1993.10504266.

[66] F. Cazals and M. Pouget. ŞEstimating Differential Quantities Using
Polynomial Fitting of Osculating JetsŤ. In: Computer Aided Geometric
Design 22.2 (2005), pp. 121Ű146. doi: 10.1016/j.cagd.2004.09.004.

[67] M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr. ŞDiscrete Differential-
Geometry Operators for Triangulated 2-ManifoldsŤ. In: Proceedings of
Visualization and Mathematics III (MATHVISUAL). Ed. by H.-C. Hege and
K. Polthier. Springer Berlin Heidelberg, 2003, pp. 35Ű57. doi: 10.1007/978-

3-662-05105-4_2.

[68] Q. Du, V. Faber, and M. Gunzburger. ŞCentroidal Voronoi Tessellations:
Applications and AlgorithmsŤ. In: SIAM Review 41.4 (1999), pp. 637Ű676.
doi: 10.1137/S0036144599352836.

[69] D. Ulrich, H. Stefan, K. Albrecht, and W. Ortwin. Minimal Surfaces II.
1st ed. Springer, 1992.

[70] D. Ulrich, H. Stefan, K. Albrecht, and W. Ortwin. Minimal Surfaces I. 1st ed.
Springer, 1992.

132

https://doi.org/10.1111/1467-8659.00365
https://doi.org/10.1111/1467-8659.00365
https://doi.org/10.1007/BF02464333
https://doi.org/10.1007/BF02464333
https://doi.org/10.1016/j.sse.2022.108258
https://doi.org/10.1145/37401.37422
https://doi.org/10.1109/GMAG.2003.1219671
https://doi.org/10.1080/10586458.1993.10504266
https://doi.org/10.1080/10586458.1993.10504266
https://doi.org/10.1016/j.cagd.2004.09.004
https://doi.org/10.1007/978-3-662-05105-4_2
https://doi.org/10.1007/978-3-662-05105-4_2
https://doi.org/10.1137/S0036144599352836

[71] E. Abbena, S. Salamon, and A. Gray. Modern Differential Geometry of
Curves and Surfaces with Mathematica. 3rd. Chapman and Hall/CRC, 2006.
doi: 10.1201/9781315276038.

[72] K. Polthier and M. Schmies. ŞStraightest Geodesics on Polyhedral SurfacesŤ.
In: Mathematical Visualization: Algorithms, Applications and Numerics.
Springer Berlin Heidelberg, 1998, pp. 135Ű150. doi: 10.1007/978-3-662-

03567-2_11.

[73] R. Goldman. ŞCurvature Formulas for Implicit Curves and SurfacesŤ. In:
Computer Aided Geometric Design 22.7 (2005), pp. 632Ű658. doi: 10.1016/

j.cagd.2005.06.005.

[74] C. Lenz, L. F. Aguinsky, A. Hössinger, and J. Weinbub. ŞA Complementary
Topographic Feature Detection Algorithm Based on Surface Curvature for
Three-Dimensional Level-Set FunctionsŤ. In: Journal of ScientiĄc Computing
94 (2023), p. 21. doi: 10.1007/s10915-023-02133-5.

[75] G. Kindlmann, R. Whitaker, T. Tasdizen, and T. Moller. ŞCurvature-Based
Transfer Functions for Direct Volume Rendering: Methods and ApplicationsŤ.
In: Proceedings of the IEEE Visualization Conference (VIS). 2003, pp. 513Ű
520. doi: 10.1109/VISUAL.2003.1250414.

[76] R. T. Whitaker and X. Xue. ŞVariable-Conductance, Level-Set Curvature for
Image DenoisingŤ. In: Proceedings of the International Conference on Image
Processing (ICIP). 2001, pp. 142Ű145. doi: 10.1109/icip.2001.958071.

[77] A. Lefohn and R. T. Whitaker. A GPU-Based, Three-Dimensional Level Set
Solver with Curvature Flow. Tech. rep. UC Davis: Institute for Data Analysis
and Visualization, 2002.

[78] J. A. Sethian and D. Adalsteinsson. ŞAn Overview of Level Set Methods for
Etching, Deposition, and Lithography DevelopmentŤ. In: IEEE Transactions
on Semiconductor Manufacturing 10 (1997), pp. 167Ű184. doi: 10.1109/66.

554505.

[79] C.-W. Shu and S. Osher. ŞEfficient Implementation of Essentially Non-
Oscillatory Shock-Capturing SchemesŤ. In: Journal of Computational Physics
77.2 (1988), pp. 439Ű471. doi: 10.1016/0021-9991(88)90177-5.

[80] R. J. Spiteri and S. J. Ruuth. ŞA New Class of Optimal High-
Order Strong-Stability-Preserving Time Discretization MethodsŤ. In: SIAM
Journal on Numerical Analysis 40.2 (2002), pp. 469Ű491. doi: 10.1137/

S0036142901389025.

[81] B. Engquist and S. Osher. ŞStable and Entropy Satisfying Approximations
for Transonic Flow CalculationsŤ. In: Mathematics of Computation 34.149
(1980), pp. 45Ű75. doi: 10.2307/2006220.

[82] M. G. Crandall and P.-L. Lions. ŞTwo Approximations of Solutions of
Hamilton-Jacobi EquationsŤ. In: Mathematics of Computation 43 (1984),
pp. 1Ű19. doi: 10.1090/S0025-5718-1984-0744921-8.

133

https://doi.org/10.1201/9781315276038
https://doi.org/10.1007/978-3-662-03567-2_11
https://doi.org/10.1007/978-3-662-03567-2_11
https://doi.org/10.1016/j.cagd.2005.06.005
https://doi.org/10.1016/j.cagd.2005.06.005
https://doi.org/10.1007/s10915-023-02133-5
https://doi.org/10.1109/VISUAL.2003.1250414
https://doi.org/10.1109/icip.2001.958071
https://doi.org/10.1109/66.554505
https://doi.org/10.1109/66.554505
https://doi.org/10.1016/0021-9991(88)90177-5
https://doi.org/10.1137/S0036142901389025
https://doi.org/10.1137/S0036142901389025
https://doi.org/10.2307/2006220
https://doi.org/10.1090/S0025-5718-1984-0744921-8

[83] S. K. Godunov and I. Bohachevsky. ŞFinite Difference Method for
Numerical Computation of Discontinuous Solutions of the Equations of Fluid
DynamicsŤ. In: Matematičeskij sbornik 47(89).3 (1959), pp. 271Ű306.

[84] W. H. Press. Numerical Recipes: The Art of ScientiĄc Computing. 3rd ed.
Cambridge University Press, 1986.

[85] B. Radjenović, J. K. Lee, and M. Radmilović-Radjenović. ŞSparse Field Level
Set Method for Non-Convex Hamiltonians in 3D Plasma Etching ProĄle
SimulationsŤ. In: Computer Physics Communications 174.2 (2006), pp. 127Ű
132. doi: 10.1016/j.cpc.2005.09.010.

[86] A. Harten and S. Osher. ŞUniformly High-Order Accurate Nonoscillatory
Schemes. IŤ. In: SIAM Journal on Numerical Analysis 24.2 (1987), pp. 279Ű
309. doi: 10.1137/0724022.

[87] A. ToiĆ, M. Quell, X. Klemenschits, P. Manstetten, A. Hössinger, S.
Selberherr, and J. Weinbub. ŞThe Level-Set Method for Multi-Material Wet
Etching and Non-Planar Selective EpitaxyŤ. In: IEEE Access 8 (2020),
pp. 115406Ű115422. doi: 10.1109/ACCESS.2020.3004136.

[88] J. C. Strikwerda. Finite Difference Schemes and Partial Differential
Equations, Second Edition. Society for Industrial and Applied Mathematics,
2004. doi: 10.1137/1.9780898717938.

[89] R. Courant, K. Friedrichs, and H. Lewy. ŞÜber die Partiellen
Differenzengleichungen der Mathematischen PhysikŤ. In: Mathematische
Annalen 100 (1928), pp. 32Ű74.

[90] D. L. Chopp. ŞComputing Minimal Surfaces via Level Set Curvature FlowŤ.
In: Journal of Computational Physics 106.1 (1993), pp. 77Ű91. doi: 10.1006/

jcph.1993.1092.

[91] J. A. Sethian. ŞA Fast Marching Level Set Method for Monotonically
Advancing FrontsŤ. In: Proceedings of the National Academy of Sciences 93.4
(1996), pp. 1591Ű1595. doi: 10.1073/PNAS.93.4.1591.

[92] E. Rouy and A. Tourin. ŞA Viscosity Solutions Approach to Shape-From-
ShadingŤ. In: SIAM Journal on Numerical Analysis 29.3 (1992), pp. 867Ű
884.

[93] J. V. Gomez, D. Alvarez, S. Garrido, and L. Moreno. ŞFast Methods for
Eikonal Equations: An Experimental SurveyŤ. In: IEEE Access 7 (2019),
pp. 39005Ű39029. doi: 10.1109/ACCESS.2019.2906782.

[94] J. Weinbub and A. Hössinger. ŞComparison of the Parallel Fast Marching
Method, the Fast Iterative Method, and the Parallel Semi-Ordered Fast
Iterative MethodŤ. In: Procedia Computer Science 80 (2016), pp. 2271Ű2275.
doi: 10.1016/j.procs.2016.05.408.

[95] D. Adalsteinsson and J. A. Sethian. ŞThe Fast Construction of Extension
Velocities in Level Set MethodsŤ. In: Journal of Computational Physics 148.1
(1999), pp. 2Ű22. doi: 10.1006/jcph.1998.6090.

134

https://doi.org/10.1016/j.cpc.2005.09.010
https://doi.org/10.1137/0724022
https://doi.org/10.1109/ACCESS.2020.3004136
https://doi.org/10.1137/1.9780898717938
https://doi.org/10.1006/jcph.1993.1092
https://doi.org/10.1006/jcph.1993.1092
https://doi.org/10.1073/PNAS.93.4.1591
https://doi.org/10.1109/ACCESS.2019.2906782
https://doi.org/10.1016/j.procs.2016.05.408
https://doi.org/10.1006/jcph.1998.6090

[96] D. Adalsteinsson and J. A. Sethian. ŞA Level Set Approach to a UniĄed
Model for Etching, Deposition, and Lithography I: Algorithms and Two-
Dimensional SimulationsŤ. In: Journal of Computational Physics 120 (1995),
pp. 128Ű144. doi: 10.1006/JCPH.1995.1153.

[97] D. Adalsteinsson and J. A. Sethian. ŞA Level Set Approach to a UniĄed
Model for Etching, Deposition, and Lithography II: Three-Dimensional
SimulationsŤ. In: Journal of Computational Physics 122 (1995), pp. 348Ű
366. doi: 10.1006/JCPH.1995.1221.

[98] M. Quell, A. ToiĆ, A. Hössinger, S. Selberherr, and J. Weinbub.
ŞParallelized Level-Set Velocity Extension Algorithm for Nanopatterning
ApplicationsŤ. In: Proceedings of the International Conference on Simulation
of Semiconductor Processes and Devices (SISPAD). 2019, pp. 335Ű338. doi:
10.1109/SISPAD.2019.8870482.

[99] A. L. Magna and G. Garozzo. ŞFactors Affecting ProĄle Evolution in Plasma
Etching of SiO2 : Modeling and Experimental VeriĄcationŤ. In: Journal
of The Electrochemical Society 150 (2003), F178ŰF185. doi: 10.1149/1.

1602084.

[100] F. Rodrigues, L. F. Aguinsky, A. ToiĆ, A. Scharinger, A. Hössinger, and
J. Weinbub. ŞSurface Reaction and Topography Modeling of Fluorocarbon
Plasma EtchingŤ. In: Proceedings of the International Conference on
Simulation of Semiconductor Processes and Devices (SISPAD). 2021,
pp. 229Ű232. doi: 10.1109/SISPAD54002.2021.9592583.

[101] L. F. Aguinsky, F. Rodrigues, G. Wachter, M. Trupke, U. Schmid, A.
Hössinger, and J. Weinbub. ŞPhenomenological Modeling of Low-Bias Sulfur
HexaĆuoride Plasma Etching of SiliconŤ. In: Solid-State Electronics 191
(2022), p. 108262. doi: 10.1016/j.sse.2022.108262.

[102] M. J. Kushner. ŞHybrid Modelling of Low Temperature Plasmas for
Fundamental Investigations and Equipment DesignŤ. In: Journal of Physics
D: Applied Physics 42.19 (2009), p. 194013. doi: 10.1088/0022-3727/42/

19/194013.

[103] P. Manstetten. ŞEfficient Flux Calculations for Topography SimulationŤ.
Doctoral Dissertation. TU Wien, 2018. doi: 10.34726/hss.2018.57263.

[104] O. Ertl and S. Selberherr. ŞA Fast Void Detection Algorithm for Three-
Dimensional Deposition SimulationŤ. In: Proceedings of the International
Conference on Simulation of Semiconductor Processes and Devices
(SISPAD). 2009, pp. 174Ű177. doi: 10.1109/SISPAD.2009.5290221.

[105] K. Bean. ŞAnisotropic Etching of SiliconŤ. In: IEEE Transactions on Electron
Devices 25.10 (1978), pp. 1185Ű1193. doi: 10.1109/T-ED.1978.19250.

[106] I. Zubel. ŞAnisotropic Etching of SiŤ. In: Journal of Micromechanics and
Microengineering 29.9 (2019), p. 093002. doi: 10.1088/1361-6439/ab2b8d.

135

https://doi.org/10.1006/JCPH.1995.1153
https://doi.org/10.1006/JCPH.1995.1221
https://doi.org/10.1109/SISPAD.2019.8870482
https://doi.org/10.1149/1.1602084
https://doi.org/10.1149/1.1602084
https://doi.org/10.1109/SISPAD54002.2021.9592583
https://doi.org/10.1016/j.sse.2022.108262
https://doi.org/10.1088/0022-3727/42/19/194013
https://doi.org/10.1088/0022-3727/42/19/194013
https://doi.org/10.34726/hss.2018.57263
https://doi.org/10.1109/SISPAD.2009.5290221
https://doi.org/10.1109/T-ED.1978.19250
https://doi.org/10.1088/1361-6439/ab2b8d

[107] P. Manstetten, A. Hössinger, J. Weinbub, and S. Selberherr. ŞAccelerated
Direct Flux Calculations Using an Adaptively ReĄned IcosahedronŤ. In:
Proceedings of the International Conference on Simulation of Semiconductor
Processes and Devices (SISPAD). 2017, pp. 73Ű76. doi: 10.23919/SISPAD.

2017.8085267.

[108] T. S. Cale, G. B. Raupp, and T. H. Gandy. ŞFree Molecular Transport and
Deposition in Long Rectangular TrenchesŤ. In: Journal of Applied Physics
68.7 (1990), pp. 3645Ű3652. doi: 10.1063/1.346328.

[109] R. Y. Rubinstein and D. P. Kroese. Simulation and the Monte Carlo Method.
3rd. Wiley, 2016.

[110] P. Manstetten, J. Weinbub, A. Hössinger, and S. Selberherr. ŞUsing
Temporary Explicit Meshes for Direct Flux Calculation on Implicit SurfacesŤ.
In: Procedia Computer Science 108 (2017), pp. 245Ű254. doi: 10.1016/j.

procs.2017.05.067.

[111] S. J. Ruuth. ŞA Diffusion-Generated Approach to Multiphase MotionŤ. In:
Journal of Computational Physics 145.1 (1998), pp. 166Ű192. doi: 10.1006/

jcph.1998.6028.

[112] K. Smith, F. Solis, and D. Chopp. ŞA Projection Method for Motion of Triple
Junctions by Level SetsŤ. In: Interfaces and Free Boundaries 4.3 (2002),
pp. 263Ű276. doi: 10.4171/IFB/61.

[113] H. Li, Y. Yap, J. Lou, and Z. Shang. ŞNumerical Modelling of Three-Fluid
Flow Using the Level-Set MethodŤ. In: Chemical Engineering Science 126
(2015), pp. 224Ű236. doi: 10.1016/j.ces.2014.11.062.

[114] O. Ertl and S. Selberherr. ŞA Fast Level Set Framework for Large
Three-Dimensional Topography SimulationsŤ. In: Computer Physics
Communications 180.8 (2009), pp. 1242Ű1250. doi: 10.1016/j.cpc.2009.

02.002.

[115] G. Hager and G. Wellein. Introduction to High Performance Computing for
Scientists and Engineers. 1st. Chapman and Hall/CRC, 2010. doi: 10.1201/

EBK1439811924.

[116] Mahapatra, N. R. and Venkatrao, Balakrishna. ŞThe Processor-Memory
Bottleneck: Problems and SolutionsŤ. In: XRDS 5.3 (1999), 2Űes. doi: 10.

1145/357783.331677.

[117] Null, L. and Lobur, J. The Essentials of Computer Organization and
Architecture. 5th. Jones and Bartlett Publishers, 2006.

[118] G. M. Amdahl. ŞValidity of the Single Processor Approach to Achieving Large
Scale Computing CapabilitiesŤ. In: Proceedings of the Spring Joint Computer
Conference (AFIPS). 1967, pp. 483Ű485. doi: 10.1145/1465482.1465560.

[119] J. L. Gustafson. ŞReevaluating AmdahlŠs LawŤ. In: Communications of the
ACM 31.5 (1988), pp. 532Ű533. doi: 10.1145/42411.42415.

[120] Vienna ScientiĄc Cluster. https://vsc.ac.at/; Accessed: 2023-5-18. 2022.

136

https://doi.org/10.23919/SISPAD.2017.8085267
https://doi.org/10.23919/SISPAD.2017.8085267
https://doi.org/10.1063/1.346328
https://doi.org/10.1016/j.procs.2017.05.067
https://doi.org/10.1016/j.procs.2017.05.067
https://doi.org/10.1006/jcph.1998.6028
https://doi.org/10.1006/jcph.1998.6028
https://doi.org/10.4171/IFB/61
https://doi.org/10.1016/j.ces.2014.11.062
https://doi.org/10.1016/j.cpc.2009.02.002
https://doi.org/10.1016/j.cpc.2009.02.002
https://doi.org/10.1201/EBK1439811924
https://doi.org/10.1201/EBK1439811924
https://doi.org/10.1145/357783.331677
https://doi.org/10.1145/357783.331677
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/42411.42415
https://vsc.ac.at/

[121] S. V. Process. https://www.silvaco.com/tcad/victory-process-3d/;
Accessed: 2023-5-18. 2022.

[122] W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit.
Kitware, 2006.

[123] The CGAL Project. CGAL User and Reference Manual. 4.12.1. CGAL
Editorial Board, 2018.

[124] F. Rudolf, J. Weinbub, K. Rupp, and S. Selberherr. ŞThe Meshing Framework
ViennaMesh for Finite Element ApplicationsŤ. In: Journal of Computational
and Applied Mathematics 270 (2014), pp. 166Ű177. doi: 10.1016/j.cam.

2014.02.005.

[125] Intel Embree. https://www.embree.org/; Accessed:2023-5-18. 2022.

[126] Y. Liu, F. Kong, and F. Yan. ŞLevel Set Based Shape Model for
Automatic Linear Feature Extraction from Satellite ImageryŤ. In: Sensors
and Transducers 159.11 (2013), pp. 39Ű45.

[127] B. Beddad and K. Hachemi. ŞBrain Tumor Detection by Using a ModiĄed
FCM and Level Set AlgorithmsŤ. In: Proceedings of the International
Conference on Control Engineering Information Technology (CEIT). 2016,
pp. 1Ű5. doi: 10.1109/CEIT.2016.7929114.

[128] N. Christoff, A. Manolova, L. Jorda, S. Viseur, S. Bouley, and J.-L. Mari.
ŞLevel-Set Based Algorithm for Automatic Feature Extraction on 3D Meshes:
Application to Crater Detection on MarsŤ. In: Proceedings of the Computer
Vision and Graphics Conference (ICCVG). 2018, pp. 103Ű114. doi: 10.1007/

978-3-030-00692-1_10.

[129] S. Popinet. ŞNumerical Models of Surface TensionŤ. In: Annual Review of
Fluid Mechanics 50 (2018), pp. 49Ű75. doi: 10 . 1146 / annurev - fluid -

122316-045034.

[130] C. Lenz, A. Scharinger, M. Quell, P. Manstetten, A. Hössinger, and J.
Weinbub. ŞEvaluating Parallel Feature Detection Methods for Implicit
SurfacesŤ. In: Proceedings of the Austrian-Slovenian HPC Meeting (ASHPC).
2021, p. 31. doi: 10.3359/2021hpc.

[131] C. Dorai and A. Jain. ŞCOSMOS-A Representation Scheme for 3D Free-
Form ObjectsŤ. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 19.10 (1997), pp. 1115Ű1130. doi: 10.1109/34.625113.

[132] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions: With
Formulas, Graphs, and Mathematical Tables. Dover Publications, 1974.

[133] B. Houston, M. B. Nielsen, C. Batty, O. Nilsson, and K. Museth.
ŞHierarchical RLE Level SetŤ. In: ACM Transactions on Graphics 25 (2006),
pp. 151Ű175. doi: 10.1145/1122501.1122508.

[134] L. Filipović, O. Ertl, and S. Selberherr. ŞParallelization Strategy for
Herarchical Run Length Encoded Data StructuresŤ. In: Proceedings of the
IASTED International Conference on Parallel and Distributed Computing
and Networks (PDCN). 2011, pp. 131Ű138. doi: 10.2316/P.2011.719-045.

137

https://www.silvaco.com/tcad/victory-process-3d/
https://doi.org/10.1016/j.cam.2014.02.005
https://doi.org/10.1016/j.cam.2014.02.005
https://www.embree.org/
https://doi.org/10.1109/CEIT.2016.7929114
https://doi.org/10.1007/978-3-030-00692-1_10
https://doi.org/10.1007/978-3-030-00692-1_10
https://doi.org/10.1146/annurev-fluid-122316-045034
https://doi.org/10.1146/annurev-fluid-122316-045034
https://doi.org/10.3359/2021hpc
https://doi.org/10.1109/34.625113
https://doi.org/10.1145/1122501.1122508
https://doi.org/10.2316/P.2011.719-045

[135] J. Peng, Y. Qi, H.-C. Lo, P. Zhao, C. Yong, J. Yan, X. Dou, H. Zhan, Y.
Shen, S. Regonda, O. Hu, H. Yu, M. Joshi, C. Adams, R. Carter, and S.
Samavedam. ŞSource/Drain eSiGe Engineering for FinFET TechnologyŤ. In:
Semiconductor Science and Technology 32.9 (2017), p. 094004. doi: 10.1088/

1361-6641/aa7d3f.

[136] Ted J. Hubbard. ŞMEMS Design: The Geometry of Silicon MicromachiningŤ.
PhD Thesis. California Institute of Technology, 1994. doi: 10.7907/TK4C-

M144.

[137] H. Jang, S. Koo, D.-S. Byeon, Y. Choi, and D.-H. Ko. ŞFacet Evolution
of Selectively Grown Epitaxial Si1−xGex Fin Layers in sub-100 nm Trench
ArraysŤ. In: Journal of Crystal Growth 532 (2020), p. 125429. doi: 10.1016/

j.jcrysgro.2019.125429.

[138] Z. Yang, J. Ming, C. Qiu, M. Li, and X. He. ŞA Multigrid Multilevel Monte
Carlo Method for StokesŰDarcy Model with Random Hydraulic Conductivity
and BeaversŰJoseph ConditionŤ. In: Journal of ScientiĄc Computing 90
(2022). doi: 10.1007/s10915-021-01742-2.

[139] W. Joppich and S. Mijalković. Multigrid Methods for Process Simulation. 1st.
Springer, 1993. doi: 10.1007/978-3-7091-9253-5.

[140] M. E. Hubbard. ŞAdaptive Mesh ReĄnement for Three-Dimensional Off-Line
Tracer Advection over the SphereŤ. In: International Journal for Numerical
Methods in Fluids 40.3-4 (2002), pp. 369Ű377. doi: 10.1002/fld.320.

[141] S. L. Cornford, D. F. Martin, V. Lee, A. J. Payne, and E. G. Ng. ŞAdaptive
Mesh ReĄnement Versus Subgrid Friction Interpolation in Simulations of
Antarctic Ice DynamicsŤ. In: Annals of Glaciology 57.73 (2016), pp. 1Ű9.
doi: 10.1017/aog.2016.13.

[142] F. Löffler, Z. Cao, S. R. Brandt, and Z. Du. ŞA new Parallelization Scheme
for Adaptive Mesh ReĄnementŤ. In: Journal of Computational Science 16
(2016), pp. 79Ű88. doi: 10.1016/j.jocs.2016.05.003.

[143] A. Talpaert. ŞDirect Numerical Simulation of Bubbles with Adaptive Mesh
ReĄnement with Distributed AlgorithmsŤ. PhD Thesis. Université Paris
Sacla, 2017.

[144] R. A. Trompert, J. G. Verwer, and J. G. Blom. ŞComputing Brine Transport
in Porous Media with an Adaptive-Grid MethodŤ. In: International Journal
for Numerical Methods in Fluids 16.1 (1993), pp. 43Ű63. doi: 10.1002/fld.

1650160104.

[145] C. Lenz, A. ToiĆ, A. Hössinger, and J. Weinbub. ŞCurvature-Based
Feature Detection for Hierarchical Grid ReĄnement in Epitaxial Growth
SimulationsŤ. In: Proceedings of the Joint International EUROSOI Workshop
and International Conference on Ultimate Integration on Silicon (EUROSOI-
ULIS). 2021, pp. 109Ű110.

[146] K. Museth. ŞVDB: High-Resolution Sparse Volumes with Dynamic
TopologyŤ. In: ACM Transactions on Graphics 32.3 (2013). doi: 10.1145/

2487228.2487235.

138

https://doi.org/10.1088/1361-6641/aa7d3f
https://doi.org/10.1088/1361-6641/aa7d3f
https://doi.org/10.7907/TK4C-M144
https://doi.org/10.7907/TK4C-M144
https://doi.org/10.1016/j.jcrysgro.2019.125429
https://doi.org/10.1016/j.jcrysgro.2019.125429
https://doi.org/10.1007/s10915-021-01742-2
https://doi.org/10.1007/978-3-7091-9253-5
https://doi.org/10.1002/fld.320
https://doi.org/10.1017/aog.2016.13
https://doi.org/10.1016/j.jocs.2016.05.003
https://doi.org/10.1002/fld.1650160104
https://doi.org/10.1002/fld.1650160104
https://doi.org/10.1145/2487228.2487235
https://doi.org/10.1145/2487228.2487235

[147] M. Quell. ŞParallel Velocity Extension and Load-Balanced Re-Distancing
on Hierarchical Grids for High Performance Process TCADŤ. Doctoral
Dissertation. TU Wien, 2022. doi: 10.34726/hss.2022.97084.

[148] M. Berger and I. Rigoutsos. ŞAn Algorithm for Point Clustering and Grid
GenerationŤ. In: IEEE Transactions on Systems, Man and Cybernetics 21.5
(1991), pp. 1278Ű1286. doi: 10.1109/21.120081.

[149] M. Quell, G. Diamantopoulos, A. Hössinger, and J. Weinbub. ŞShared-
Memory Block-Based Fast Marching Method for Hierarchical MeshesŤ. In:
Journal of Computational and Applied Mathematics 392 (2021), p. 113488.
doi: 10.1016/j.cam.2021.113488.

[150] C. Lenz, P. Manstetten, L. F. Aguinsky, F. Rodrigues, A. Hössinger, and
J. Weinbub. ŞAutomatic Grid ReĄnement for Thin Material Layer Etching
in Process TCAD SimulationsŤ. In: Solid-State Electronics 200 (2023),
p. 108534. doi: 10.1016/j.sse.2022.108534.

[151] C. Lenz, P. Manstetten, A. Hössinger, and J. Weinbub. ŞAutomatic
Grid ReĄnement for Thin Material Layer Etching in Process TCAD
SimulationsŤ. In: Proceedings of the International Conference on Simulation
of Semiconductor Processes and Devices (SISPAD). 2022, pp. 11Ű12.

[152] S. Zhang, Z. Gong, J. J. McKendry, S. Watson, A. Cogman, E. Xie, P.
Tian, E. Gu, Z. Chen, G. Zhang, A. E. Kelly, R. K. Henderson, and
M. D. Dawson. ŞCMOS-Controlled Color-Tunable Smart DisplayŤ. In: IEEE
Photonics Journal 4 (2012), pp. 1639Ű1646. doi: 10.1109/JPHOT.2012.

2212181.

[153] P. Lindstrom and G. Turk. ŞFast and Memory Efficient Polygonal
SimpliĄcationŤ. In: Proceedings of the Conference IEEE Visualization (VIS).
IEEE Computer Society Press, 1998, pp. 279Ű286. doi: 10.1109/VISUAL.

1998.745314.

[154] M. Garland and P. S. Heckbert. ŞSurface SimpliĄcation Using Quadric Error
MetricsŤ. In: Proceedings of the Special Interest Group on Computer Graphics
and Interactive Techniques Conference (SIGGRAPH). 1997, pp. 209Ű216.
doi: 10.1145/258734.258849.

[155] H. Borouchaki and P. Frey. ŞSimpliĄcation of Surface Mesh using Hausdorff
EnvelopeŤ. In: Computer Methods in Applied Mechanics and Engineering
194.48 (2005), pp. 4864Ű4884. doi: 10.1016/j.cma.2004.11.016.

[156] S. J. Kim, C. H. Kim, and D. Levin. ŞSurface SimpliĄcation Using a Discrete
Curvature NormŤ. In: Computers & Graphics 26.5 (2002), pp. 657Ű663. doi:
10.1016/S0097-8493(02)00121-8.

[157] C. Lenz, A. Scharinger, A. Hössinger, and J. Weinbub. ŞA Novel Surface
Mesh Coarsening Method for Flux-Dependent Topography Simulations of
Semiconductor Fabrication ProcessesŤ. In: Proceedings of the International
Conferences on ScientiĄc Computing in Electrical Engineering (SCEE). 2020,
pp. 99Ű100.

139

https://doi.org/10.34726/hss.2022.97084
https://doi.org/10.1109/21.120081
https://doi.org/10.1016/j.cam.2021.113488
https://doi.org/10.1016/j.sse.2022.108534
https://doi.org/10.1109/JPHOT.2012.2212181
https://doi.org/10.1109/JPHOT.2012.2212181
https://doi.org/10.1109/VISUAL.1998.745314
https://doi.org/10.1109/VISUAL.1998.745314
https://doi.org/10.1145/258734.258849
https://doi.org/10.1016/j.cma.2004.11.016
https://doi.org/10.1016/S0097-8493(02)00121-8

[158] C. Lenz, A. Scharinger, P. Manstetten, A. Hössinger, and J. Weinbub.
ŞA Novel Surface Mesh SimpliĄcation Method for Flux-Dependent
Topography Simulations of Semiconductor Fabrication ProcessesŤ. In:
ScientiĄc Computing in Electrical Engineering. Ed. by M. van Beurden, N.
Budko, and W. Schilders. Springer, 2021, pp. 73Ű81. doi: 10.1007/978-3-

030-84238-3_8.

[159] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle.
ŞMesh OptimizationŤ. In: Proceedings of the Special Interest Group on
Computer Graphics and Interactive Techniques Conference (SIGGRAPH).
1993, pp. 19Ű26. doi: 10.1145/166117.166119.

[160] T. Birsan and D. Tiba. ŞOne Hundred Years Since the Introduction of the
Set Distance by Dimitrie PompeiuŤ. In: Proceedings of the Conference on
System Modeling and Optimization (CSMO). 2006, pp. 35Ű39.

[161] R. Straub. ŞExact Computation of the Hausdorff Distance Between
Triangular MeshesŤ. In: EG Short Papers. Proceedings of the Conference
of The Eurographics Association (EG), 2007. doi: 10.2312/egs.20071023.

140

https://doi.org/10.1007/978-3-030-84238-3_8
https://doi.org/10.1007/978-3-030-84238-3_8
https://doi.org/10.1145/166117.166119
https://doi.org/10.2312/egs.20071023

Own Publications

Journal Articles

[1] Lenz, C., Aguinsky, L. F., Hössinger, A., Weinbub, J., ŞA Complementary
Topographic Feature Detection Algorithm Based on Surface Curvature for
Three-Dimensional Level-Set FunctionsŤ. In: Journal of ScientiĄc Computing
94 (2023), p. 21. doi: 10.1007/s10915-023-02133-5.

[2] Lenz, C., Manstetten, P., Aguinsky, L. F., Rodrigues, F., Hössinger, A.,
Weinbub, J., ŞAutomatic Grid ReĄnement for Thin Material Layer Etching
in Process TCAD SimulationsŤ. In: Solid-State Electronics 200 (2023),
p. 108534. doi: 10.1016/j.sse.2022.108534.

[3] Lenz, C., ToiĆ, A., Quell, M., Rodrigues, F., Hössinger, A., Weinbub, J.,
ŞCurvature Based Feature Detection for Hierarchical Grid ReĄnement in
TCAD Topography SimulationsŤ. In: Solid-State Electronics 191 (2022),
p. 108258. doi: 10.1016/j.sse.2022.108258.

Book Contributions

[4] Lenz, C., Scharinger, A., Manstetten, P., Hössinger, A., Weinbub,
J., ŞA Novel Surface Mesh SimpliĄcation Method for Flux-Dependent
Topography Simulations of Semiconductor Fabrication ProcessesŤ. In:
ScientiĄc Computing in Electrical Engineering. Ed. by M. van Beurden, N.
Budko, and W. Schilders. Springer, 2021, pp. 73Ű81. doi: 10.1007/978-3-

030-84238-3_8.

[5] Lenz, C., ToiĆ, A., Hössinger, A., Weinbub, J., ŞCurvature Based
Feature Detection for Hierarchical Grid ReĄnement in TCAD Topography
SimulationsŤ. In: Joint International EUROSOI Workshop and International
Conference on Ultimate Integration on Silicon (EUROSOI-ULIS). Ed. by B.
Cretu. IEEE, 2021, pp. 1Ű4. doi: 10.1109/EuroSOI- ULIS53016.2021.

9560690.

Conference Contributions

[6] Lenz, C., Manstetten, P., Hössinger, A., Weinbub, J., ŞAutomatic
Grid ReĄnement for Thin Material Layer Etching in Process TCAD
SimulationsŤ. In: Proceedings of the International Conference on Simulation
of Semiconductor Processes and Devices (SISPAD). 2022, pp. 11Ű12.

141

https://doi.org/10.1007/s10915-023-02133-5
https://doi.org/10.1016/j.sse.2022.108534
https://doi.org/10.1016/j.sse.2022.108258
https://doi.org/10.1007/978-3-030-84238-3_8
https://doi.org/10.1007/978-3-030-84238-3_8
https://doi.org/10.1109/EuroSOI-ULIS53016.2021.9560690
https://doi.org/10.1109/EuroSOI-ULIS53016.2021.9560690

[7] Lenz, C., ToiĆ, A., Hössinger, A., Weinbub, J., ŞCurvature-Based
Feature Detection for Hierarchical Grid ReĄnement in Epitaxial Growth
SimulationsŤ. In: Proceedings of the Joint International EUROSOI Workshop
and International Conference on Ultimate Integration on Silicon (EUROSOI-
ULIS). 2021, pp. 109Ű110.

[8] Lenz, C., Scharinger, A., Quell, M., Manstetten, P., Hössinger, A., Weinbub,
J., ŞEvaluating Parallel Feature Detection Methods for Implicit SurfacesŤ. In:
Proceedings of the Austrian-Slovenian HPC Meeting (ASHPC). 2021, p. 31.
doi: 10.3359/2021hpc.

[9] Lenz, C., Scharinger, A., Hössinger, A., Weinbub, J., ŞA Novel Surface
Mesh Coarsening Method for Flux-Dependent Topography Simulations of
Semiconductor Fabrication ProcessesŤ. In: Proceedings of the International
Conferences on ScientiĄc Computing in Electrical Engineering (SCEE). 2020,
pp. 99Ű100.

142

https://doi.org/10.3359/2021hpc

Curriculum Vitae

Personal Information

Name Christoph Lenz

Date of Birth September 16, 1988, Wien

Nationality Austrian

Place of Birth Vienna, Austria

Education

06/2019 - present Doctoral Program, Electrical Engineering,
Institute for Microelectronics,
TU Wien

04/2016 - 04/2019 Graduate Studies (MSc), Technical Mathematics,
Discrete Mathematics,
TU Wien,

10/2009 - 11/2017 Graduate Studies (BSc), Technical Mathematics,
TU Wien,

09/2003 - 06/2008 Matura, Majors: Accounting and Data Processing
HTL Donaustadt, Wien

143

Employment

06/2019 - 04/2023 Project Assistant, Christian Doppler Laboratory for
High Performance TCAD,
Institute for Microelectronics, TU Wien

09/2016 - 05/2019 Software Tester, Usoft GmbH, Wien

05/2013 - 06/2015 Salesman, McSHARK, Wien

02/2012 - 05/2013 Freelance Programmer, Tchibo Coffee Service (Austria)
GmbH, Wien

03/2010 - 05/2013 Salesman, MediaMarkt Österreich, Wien

144

	Abstract
	Kurzfassung
	Acknowledgement
	Contents
	List of Acronyms
	List of Symbols
	Introduction
	Research Goals
	Thesis Outline

	Surface Representations
	Point Clouds
	Geometric Properties

	Surface Meshes
	Geometric Properties
	Boolean Operations between Surface Meshes

	Level-Set Functions (Implicit Surfaces)
	Geometric Properties
	Discretization
	Boolean Operations between Level-Set Functions

	Switching Between Surface Representations
	Generating Surface Meshes from Implicit Surfaces (Marching Cubes)
	Generating Point Clouds from Implicit Surfaces
	Generating an Implicit Surface from a Surface Mesh

	Surface Classification Methods
	Curvature of Continuous Surfaces
	2D Surface (Curves)
	3D Surface

	Curvature Calculation for Point Clouds
	Curvature Calculation for Surface Meshes
	Curvature Calculation for Implicit Surfaces
	General Formula
	Shape Operator
	Variation of Normal
	Curvature of 2D Implicit Surfaces (Curves)

	Intuitive Approach to Surface Classification

	Topography Simulation and Simulation Platforms
	Evolution of Surfaces (Advection)
	Solving the Level-Set Equation
	Reconstructing the Signed Distance Function (Re-Distancing)
	Velocity extension

	Surface Flux Calculation
	Constant Approach
	Bottom-Up Approach
	Top-Down Approach (Monte Carlo Ray Tracing)

	Multi-Material Simulations
	Application of Surface Representations in Topography Simulations
	Topography Simulation Workflow
	Computational Hardware
	Caches
	Parallelization
	Benchmark Systems

	Software Tools

	Fast Feature Detection for Level-Set Functions
	Feature Detection
	Feature Definition
	Algorithm
	Curvature Based Feature Detection for Level-Set Functions
	Surface Normal Based Feature Detection
	2D Feature Detection

	Comparison and Evaluation
	Geometries and Mean Curvature Values
	Parameter Study
	Empirical Evaluation
	Parallel Run-Time and Speedup

	Summary

	High Accuracy Hierarchical Grids for Topography Simulation
	Hierarchical Grids
	Nesting
	Grid Generation

	Hierarchical Grid Placement
	Extended Topography Simulation Workflow

	Benchmark Example Selective Epitaxial Growth
	Simulation Setup
	Example 1
	Example 2

	Summary

	Thin Material Layer Refinement for Etching Simulations
	Etching Simulations with Boolean Operations
	Hierarchical Grid Placement for Thin Material Layers
	Calculating the Minimal Required Resolution
	Detection of Affected Material Layers
	Thin Layer Refinement Algorithm

	Benchmark Example LED Pixel Fabrication
	Simulation Setup
	Discussion

	Summary

	Surface Mesh Simplification for Efficient Top Down Flux Calculation
	Surface Mesh Simplification
	Edge Collapse Algorithm
	Lindstrom-Turk Algorithm

	Region Simplification Algorithm
	Feature Detection
	Mesh Partitioning and Extension of Regions

	Comparison and Evaluation
	Distance to Original Geometry
	Simplification Run-Time
	Flux Calculation and Monte Carlo Ray Tracing Run-Time

	Summary

	Summary and Outlook
	Bibliography
	Own Publications
	Curriculum Vitae

