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Kurzfassung

Datenanalysen spielen heutzutage eine äußerst wichtige Rolle, da auf deren Grundlage
oft wesentliche Entscheidungen getroffen werden. Die ständig wachsende Menge an
Daten führt jedoch zu immer größeren Herausforderungen, wie z.B. Dateninkorrektheit,
schwierige Datenbereinigung und -verarbeitung, Laufzeitprobleme, etc. Ein häufiges
Problem, mit dem die meisten Datensätze konfrontiert sind, ist die Unvollständigkeit.
Datensätze sind sehr häufig unvollständig und ein angemessener Umgang mit fehlenden
Werten ist essenziell, um zuverlässige und robuste Ergebnisse zu erzielen.

Die vorliegende Arbeit beschäftigt sich mit der Problematik, geeignete Strategien für den
Umgang mit fehlenden Werten in realen Datensätzen zu finden, wenn ein Entscheidungs-
baum oder ein Zufallswald trainiert wird. Im theoretischen Teil werden verschiedene
Strategien analysiert, die von Entscheidungsbäumen und Zufallswäldern angewandt wer-
den, um fehlende Werte direkt während des Trainierens zu behandeln. Außerdem wird
eine einfache und mehrfache Imputationsmethode erläutert, nämlich k-nearest neighbor
(kNN) Imputation und multivariate imputation by chained equations (MICE). Für den
praktischen Teil werden reale Datensätze verwendet, die von UNIQA Insurance Group zur
Verfügung gestellt wurden. Diese Datensätze wurden zusammengeführt, mit zusätzlichen
Informationen angereichert, aufbereitet und analysiert. Der praktische Teil besteht aus
zwei Abschnitten: einer Simulationsstudie und einer Fallstudie. Ziel der Simulationsstudie
ist, festzustellen, ob die Techniken zur Behandlung fehlender Daten die Klassifizierungsge-
nauigkeit im Vergleich zu Entscheidungsbäumen und Zufallswäldern, die nur vollständige
Beobachtungen der Daten berücksichtigen, verbessern. Außerdem soll untersucht werden,
wie sich die Performance von Entscheidungsbäumen und Zufallswäldern, die fehlende
Werte direkt verarbeiten, im Vergleich zu Entscheidungsbäumen und Zufallswäldern,
die imputierte Daten verwenden, verändert. Zu diesem Zweck werden verschiedene Pro-
zentsätze an fehlenden Werten in dem vollständigen Datensatz künstlich erzeugt, und
die Auswirkungen der verschiedenen Methoden zur Behandlung der unvollständigen
Daten untersucht. Ziel der Fallstudie ist, zu prüfen, inwieweit die fehlende "Nutzungsart"
von Gebäuden in den Daten, d. h. die Nutzung oder der Zweck von Gebäuden wie
z.B. Bäckerei, Familienhaus, Krankenhaus, usw., mit Hilfe eines Entscheidungsbaums
oder eines Zufallswalds und einer geeigneten Technik zur Behandlung der fehlenden
Daten vorhergesagt werden kann. Dafür wird der vielversprechendste Ansatz aus der
Simulationsstudie mit dem gesamten bereitgestellten Datensatz trainiert und bewertet.
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Die Ergebnisse der Simulationsstudie zeigen, dass die Leistung der getesteten Entschei-
dungsbäume und Zufallswälder nicht wesentlich von der Technik zur Behandlung der
fehlenden Daten abhängt. Entscheidungsbäume bzw. Zufallswälder, welche auf imputierte
Daten trainiert sind oder welche die fehlenden Werte direkt beim Trainieren handhaben,
weisen keine wesentliche Verbesserung der Performance im Gegensatz zu Entscheidungs-
bäumen bzw. Zufallswäldern, welche nur vollständige Daten verwenden, auf. Außerdem
zeigt sich, dass einfache Strategien zur direkten Behandlung von fehlenden Werten kon-
kurrenzfähig zu komplexen Imputationsmethoden sind. Diese Ergebnisse lassen sich in
erster Linie durch das spezielle Muster der fehlenden Werte in den Daten erklären. Die
Wahl der konkreten Methode von Entscheidungsbäumen oder Zufallswäldern hat jedoch
tatsächlich einen erheblichen Einfluss auf die Performance. Die wichtigsten Ergebnisse der
Fallstudie sind, dass Zufallswälder zusammen mit der Separate Class Method zur Behand-
lung der fehlenden Werte, bei der fehlende Daten als eigene Klasse behandelt werden,
sehr zufriedenstellende Ergebnisse bei der Vorhersage der Nutzungsart von Gebäuden
liefern, wobei sie eine Genauigkeit von bis zu 90% erreichen.

Diese Masterarbeit bietet einen bedeutenden Einblick in die Technologie des maschinellen
Lernens und ihre Auswirkungen auf die Zukunft der Industrie, während sie sich mit
realen Datensätzen und einer der wichtigsten inhärenten Herausforderungen, nämlich der
Unvollständigkeit der Daten, befasst. Sie unterstreicht, wie wichtig es ist, die Limitationen
realer Datensätze, wie fehlende Werte und deren Muster, zu verstehen und richtig damit
umzugehen. Zusätzlich zeigt die Arbeit, dass bestehende Modelle des maschinellen Lernens
erfolgreich angewandt werden können, um Vorhersagen zu treffen, die zum Beispiel zur
Verbesserung der Qualität realer Daten genutzt werden können und somit auch zu
einer Verbesserung der Genauigkeit der Ergebnisse von Analysen, die mit diesen Daten
durchgeführt werden, führen.



Abstract

Nowadays, data analyses are playing a significant role, as important decisions are often
taken based on them. The continuous growth of data increases the challenges of the
analyses, for example, data incorrectness, difficult data cleaning and processing, runtime
issues, etc. A common challenge that most of the data sets face is incompleteness. More
often than not, data sets are incomplete and appropriate handling of missing values is
very crucial to achieve reliable and robust results.

The present thesis focuses on the problematic of finding appropriate strategies to handle
missing values in real data when training a decision tree or random forest classifier. In
the theoretical part, it analyzes several strategies applied by decision trees and random
forests to handle missing values directly during training time, in addition to outlining a
single and multiple imputation approach, namely k-nearest neighbor (kNN) imputation
and multivariate imputation by chained equations (MICE). For the study part, real
data sets provided by UNIQA Insurance Group are used. These data sets have been
merged, enriched with additional information, pre-processed and explored. The study
part is divided in two sections: a simulation study and a case study. The goal of the
simulation study is to identify if the missing data handling techniques improve the
classification accuracy compared to decision trees and random forests that take only
complete observations of the data into account. Additionally, it aims to examine how
the performance of decision trees and random forests that directly handle missing values
changes compared to decision trees and random forests that use imputed data. For that
purpose, different percentages of missing values are artifically created on the complete
data set to study the effect of the different methods for handling the incomplete data. The
aim of the case study is to check the extent to which the missing "occupancy" attributes
of buildings in the data, that is, the use or purpose of buildings such as bakery, family
house, hospital, etc., can be predicted using a decision tree or random forest classifier with
appropriate missing data handling techniques. Therefore, the most promising approach
from the simulation study is trained and evaluated with the full provided data set.

The simulation study concludes that the performance of decision trees and random forests
is similar for all the missing data handling techniques used. Training decision trees or
random forests on imputed data or using techniques applied by decision trees or random
forests to handle missing values directly during training, does not considerably improve the
performance compared to simply using the data that is complete. Furthermore, simple
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strategies of decision trees and random forests to handle missing values directly are
competitive to complex imputation approaches. These outcomes are primarily explained
by the special missingness pattern reflected in the data. However, the choice of the
decision tree or random forest method has indeed a significant impact on the performance.
The key findings of the case study are that random forests along with the separate
class method, where missing values are treated as a separate category, exhibit highly
satisfactory results in predicting the occupancy for buildings by achieving an accuracy of
up to 90%.

This master thesis offers a significant insight into machine learning technology and its
impact on the future of industry, while dealing with real-world data sets and one of the
most relevant inherent challenges, which is incompleteness of the data. It highlights
the importance of understanding and properly handling the limitations of real-world
data sets, such as missing values and their patterns. Additionally, it shows that existing
machine learning models can be successfully applied to make predictions, which can be
used, for example, to improve the quality of real-world data and consequently to improve
the accuracy of the results of the analyses performed with these data.
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CHAPTER 1
Introduction

The first chapter of the thesis describes the motivation to the topic and defines the
problem to solve. It states its contributions and explains the methodological approach
before outlining the structure of the thesis.

1.1 Motivation
We live in a world where data and data analysis is playing the most important role ever.
Governments and private companies put immense effort to gather large data sets and
analyze them to take decisions that influence people’s behaviors and quality of life, such
as policy formation, public service delivery, marketing efficiency, new pharmaceutical
products, etc. [Kau23] [Agg23] Incorporating data and analytics into decision-making
and business operations exhibits an extreme amount of benefits across a variety of
industries. The amount of data collected is increasing every day, and so is the complexity.
One of the main challenges of data scientists is that the data sets are more often than
not incomplete and data sets sometimes are not large enough after data cleansing and
preparing. Correctly processing data to achieve data correctness and accurateness is
demanding. These challenges may particularly appear when dealing with real-world data
sets and companies and governments often hire data scientists to cope with them. [Cao17]

This thesis examines missing values in data sets provided by UNIQA Insurance Group
(UIG), and more concretely from the Natural Catastrophes Competence Center (NCCC),
which funds this thesis. The NCCC is the owner of a large database which contains
the buildings insured by UIG along with their attributes such as geographical location,
insurance conditions, building characteristics, occupancy, and so on. This data has key
applications in insurance such as the determination of capital requirements and the
optimization and pricing of protection covers for the purpose of risk transfer, among
many others.
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1. Introduction

A vast literature has been generated on statistical analysis of data with missing values
and on general methods that handle missing values, e.g. Little and Rubin (2019)
[LR19], Schafer and Graham (2002) [SG02], Van Buuren and Groothuis-Oudshoorn
(2011) [VBGO11]. However, in this thesis the focus is on state-of-the-art methods
such as decision trees and random forests, and their ability to cope with missing data.
Within this context, there is scarce literature. Decision trees and random forests represent
commonly used machine learning algorithms that are used to accurately classify unlabeled
observations. They are simple and transparent, yet effective. Decision trees and random
forests are very flexible and handle well data consisting of variables of mixed types, which
contributed to the choice of these models. While missing values can occur in training
data as well as in test data and affect learning and classification accuracy. Therefore,
handling missing values appropriately is essential for classifier learning. Furthermore,
using appropriate missing data handling techniques reduces introducing bias and receiving
misleading conclusions. In order to select the correct missing data handling technique,
various considerations may be decisive, such as the percentage of missingness, the size of
the data, missingness patterns and missingness mechanisms. [Twa09]

1.2 Problem Definition
One of the challenges of real-world data sets is incompleteness, that is, attribute values
are missing in the data. Appropriate handling of such omissions is crucial when using
machine learning algorithms, like decision trees or random forests, in order to learn a
classifier and for enhancing the prediction accuracy.

The most prevalent approach to handle missing values in the data when the aim is to fit
a decision tree or random forest classifier is the deletion of all observations containing
missing values and imputation of missing values in a separate step before fitting the
model. However, decision trees and random forests can also handle missing values directly
during the training phase and consequently no explicit imputation step is needed before
fitting the model. For that, different techniques can be used.

The present thesis focuses on the problematic of finding appropriate strategies for handling
missing values in the data when learning a decision tree or random forest classifier. The
study data set provided by UIG consists of buildings and their properties being one of
them the "occupancy". The occupancy is defined as the "use or purpose of the building";
e.g. bakery, family house, hospital, etc. Whereas this information is very relevant for any
insurer, it is not always included. Therefore, to improve the quality of the provided data
set, a classifier should be fitted that predicts the occupancy type for an insured object.

The following research questions should be answered in the present thesis:

• How do decision trees and random forests that use imputed data or that directly
handle missing values improve classification accuracy compared to decision trees
and random forests that take only complete instances into account?

2



1.3. Contributions

• How do decision trees and random forests that directly handle missing values
perform compared to decision trees and random forests that use imputed data?

• To which extent the missing "occupancy" attributes of buildings can be predicted
using a decision tree or random forest classifier with appropriate missing data
handling techniques?

1.3 Contributions
The main contribution of this thesis is a summary, analysis and comparison of state-of-
the-art techniques for handling missing attribute values using decision trees and random
forests whereby these missing values appear in the training data. While in the literature
several methods proposed to deal with missing values resort to imputation techniques,
this study focuses on multiple imputation and on strategies to deal with missing data
directly at the training time without an explicit imputation step, where, on the other
hand, the amount of literature is relatively small. The thesis discusses the assumptions
behind the different techniques and their appropriateness.

The second relevant contribution is a comparison of the performance of decision tree
and random forest classifiers that use imputation approaches for the missing values in
the data and the performance of decision tree and random forest classifiers that directly
handle missing values. This outlines the effect of the different methods for handling
incomplete data. It highlights the most promising approaches for different proportions,
patterns, and mechanisms of missing data.

Additionally, many experimental studies, e.g. Twala et al. (2008, 2009) [TJH08] [Twa09]
or Gavankar and Sawarkar (2015) [GS15], focus on selected techniques of decision trees to
handle the missing values in the data directly. However, a full overview and comparison
of existing applicable strategies for dealing with missing values while growing a decision
tree or random forest is missing in the literature.

And finally, the third contribution worthwhile to mention is the demonstration of an
appropriate strategy to deal with the missing values in the input data set provided by
UIG. A random forest classifier that predicts the occupancy of such buildings based on
various attributes with mixed characteristics is trained. The extent is checked to which
the occupancy of the buildings can be predicted based on the information given, while
appropriate methods are used for the missing values.

1.4 Methodological Approach
The first part of the thesis which comprises Chapter 2, 3 and 4 is a review of peer reviewed
scientific literature where the most widely used and promising techniques for dealing
with incomplete data in decision trees and random forests are summarized, analyzed and
compared. [Sny19] The study of the similarities and differences between the methods

3



1. Introduction

and the discussion of the assumptions of each method contribute to the understanding of
their appropriateness.

In the second part of the thesis which comprises Chapter 5, a simulation study is
conducted. For a correct design, analysis and reporting, the paper of Morris et at. (2019)
[MWC19] is considered. Promising imputation approaches and different strategies of
handling missing data directly at learning time are compared to the complete-case analysis
approach, where the observations with missing values are deleted. Different proportions,
patterns, and mechanisms of missing data are synthetically created on a complete real-
world data set with mixed characteristics in order to study the effects of the different
methods for handling the incomplete data. The performance of the different methods is
then compared. Afterwards, it is analyzed how missing data handling techniques along
with decision trees and random forests improve the classification accuracy compared to
classification taking only complete instances into account.

Finally, based on the understanding gained from the literature review and the outcome
of the simulation study, the thesis deals in Chapter 6 with the case study of learning a
decision tree or random forest classifier for predicting the missing occupancy attributes
in the supplied data set by UNIQA Insurance Group. [Fid84] Based on the information
included in the data set such as location, insurance conditions, building properties, and
other building characteristics the aim is to predict the missing occupancy attribute for
buildings using decision trees or random forests. The data set consisting of variables of
mixed types contains missing values for several attributes in different amounts. With
the use of different missing data handling techniques, it is analyzed to which extent
the occupancy attribute can be classified based on the available information using a
decision tree or a random forest. After comparing the most auspicious approaches from
the simulation study a final decision tree is learned within the case study.

Figure 1.1: Project Organization

Figure 1.1 gives an overview of the time taken for each of the described parts. While
the author worked full time on this project for a total of 6 months, a large part of the
time, about 40%, was spent on business understanding and data mining, cleaning and
preparing. This part was very time-consuming, but extremely important in this project
to achieve well-performing and reliable results.
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1.5. Structure of the Thesis

1.5 Structure of the Thesis
The thesis starts with an introduction for the reader in Chapter 2 regarding the theoretical
basics of decision trees and random forests. Additionally, it outlines the fundamentals of
missing data. It continues with Chapter 3 with missing data imputation techniques which
are theoretically explained and discussed. Single imputation and multiple imputation are
compared and specific methods are analyzed. In Chapter 4, decision tree and random
forest missing data handling techniques are introduced which can handle missing values
directly during training phase without a separate imputation step. All theoretically
analyzed methods are tested on the data set provided by UNIQA Insurance Group within
a simulation study in Chapter 5. In Chapter 6, an appropriate strategy to deal with the
missing values in the UIG data set is used and a final classifier is fitted to predict the
missing occupancy attribute of individual buildings based on various attributes. Finally,
the conclusions and the correspoding discussion are included in Chapter 7.
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CHAPTER 2
Methodological Foundations

In this chapter an introduction to the methodological foundations of decision tree and
random forest classification is given. Different performance criteria to evaluate a machine
learning model are discussed. The concept of missing data is introduced with a main
focus on different patterns and mechanisms of missing data.

2.1 Decision Tree Classification
Decision trees represent a simple yet effective methodology for supervised classification. In
a classification problem, measurements on explanatory variables are available for multiple
observations and based on these, the aim is to predict the values for the categorical
response variable, that is, to which class out of a finite, predefined set of classes the
observations belong. [Bre17]

A decision tree follows a tree structure and it is created with a root, nodes, and branches.
It starts from the root, which corresponds to the first node of the tree, and moves
downwards. For each node of the tree, multiple branches can originate from it into other
nodes. The node where the branches begin is called parent node and the nodes where the
branches end are called child nodes. The nodes with no extended branches are called leaf
or terminal nodes. All nodes that are no leaf nodes are called internal nodes. [AKAM12]

Decision trees partition the space of the explanatory variables by applying a sequence
of splits on single variables. The root of the tree contains the full space and the final
partition is defined by the leaf nodes of the tree. Since each internal node is split based
on the value of one explanatory variable, these are interpreted as certain characteristics.
On the other hand, the branches define ranges of values and consequently define the
outcomes for the characteristics. The variable on which the split is based is often called
split variable and the ranges of the values that are represented by the branches are
defined by so-called split points. For a continuous split variable Xi, the binary split with
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2. Methodological Foundations

split point c can be illustrated as in Figure 2.1. All observations with a value smaller
than c for the split variable are assigned to the left child node, and all observations with
a higher value than c for the split variable go to the right child node. If the split variable
Xi is categorical with a finite set of categories, then a binary split can be defined by
assigning all observations with a value for Xi from a subset of categories Si ⊂ S to the
left child node and all other observations to the right child node as in Figure 2.2.

Figure 2.1: Split on a continuous split variable Xi with split point c [CCS12]

Figure 2.2: Split on a categorical split variable Xi using Si ⊂ S for split definition [CCS12]

Usually, the splits for the nodes in the tree are defined by doing an exhaustive search
over all possible split variables and split points, and by selecting the one that ’best’ splits
the data. ’Best’ is based on a splitting criterion, which is a measure of the purity of a
node, that is, the homogeneity of the instances within a node with respect to their target
values. The exact definition is given later in Chapter 4. [CCS12]

A node is not split further and is declared to be a terminal node if it is 100% pure, that
is, if it contains only observations from the same class, or if a split does not result in an
improvement of the node purity or if a stopping criterion is reached. Possible stopping
criteria are the minimum number of observations in a node or the maximal depth of the

8



2.2. Random Forest Classification

tree, which is defined by the length of the longest path from the root of the tree to one
leaf node.

After a tree is grown, it is often very complex, especially when it is fully grown until
all nodes are pure and no stopping criterion is used. Then the tree often overfits the
data which means that more structure is inferred to the tree by the training data than
is justified. By pruning, that is, by removing branches of the tree that do not provide
much power to classify instances, overfitting is tackled, and at the same time the tree is
simplified. This improves the accuracy for new unseen data. [Qui93]

Once a decision tree is grown and therefore trained, it can be used to make predictions
for new observations where the output label is not known. This classification for a new
observation x, which is assumed to be complete without any missing values, is done by
passing it down the tree until it reaches a terminal node. All the observations of that
terminal node are used to make the classification for the new variable by calculating the
category that appears most often. [CCS12]

One major advantage of decision trees is their interpretability. They are simple and yet
effective. Decision trees can handle different types of data and there are no assumptions
about the distribution of the data. Therefore, decision trees are recommended to be used
when a simple and flexible approach for making predictions, which is highly interpretable
and can handle nonlinear relationships, is needed. [ZZ08] However, caution is required
in terms of overfitting, since too complex trees often exhibit poor performance on new
data, and in terms of instability, since small changes in the data can lead to significantly
different trees and this to inconsistent results. Decision trees might not be advisable
when dealing with high-dimensional or complex data, since they could become too big
and complex to generalize well for new, unseen data or could have difficulties to cope
with the data, which results in high training-time complexity costs. [Dec23]

2.2 Random Forest Classification
A Random Forest is a methodology for supervised classification. As in decision trees,
the goal is to find a function of the explanatory variables to predict the output variable,
which is categorical. A random forest consists of an ensemble of decision trees, where
each of the trees in the forest depends on multiple random elements. The prediction
function is created by this collection of trees, which are the so-called base learners. So,
the base learners are combined to form the ensemble predictor.

Each of the decision trees is grown as usual. However, in contrast to using all the given
data for fitting the tree, only a random subspace of the data is used for each of the trees.
So, an independent bootstrap sample from the original data is chosen for each of the trees
to train them. Furthermore, when splitting a node, a search for the best split variable is
not done among all variables of the data but rather among only randomly selected ones.
These two steps are necessary to uncorrelate the trees and minimize the variance. Each
of the trees in the forest is fully grown until no more improvement can be made with a
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2. Methodological Foundations

split of a node or until a stopping criterion is reached. Pruning is not done for the trees
in a random forest, although this is important for individual decision tree classifiers. The
reason for this is that the two layers of randomization applied when creating a random
forest lead to a diverse set of decision trees which prevents overfitting anyway.

Once all trees are grown a prediction for a new unseen observation with unknown class
label can be made. For each of the trees, the new observation is passed down until it
reaches a terminal node and the observations in the specific terminal node are used to
specify a label. So, a label is returned by each of the trees and these are combined
by majority voting to form the prediction. Majority voting means to take the most
frequently predicted class label.

Random forests have multiple advantages. They are powerful and flexible. They can
handle high-dimensional problems well and can be implemented in parallel. Therefore,
the training and prediction is rather fast. [CCS12] Random forests are recommended to
be used when the accuracy of single decision trees should be improved and when dealing
with complex data with possible outliers, since random forests are robust and reduce
overfitting. However, random forests are not advisable when interpretability is extremely
crucial, since it could be challenging to comprehend specific outcomes, especially if a
forest consists of a vast number of trees. [Ran23]

2.3 Performance Criteria
Performance indicators are needed to evaluate and compare the performance of different
machine learning methods or the performance of the same method using different tuning
parameters.

One important performance indicator used to evaluate a classifier is called confusion
matrix. It is a cross table that counts the number of occurrences between the true class
labels and the predicted class labels of a classification. Figure 2.3 is showing an example.
The true classes are listed in the rows and the predicted class labels are in the columns,
both in the same order. The diagonal, highlighted in green, is denoting the number of
observations for which the prediction and the true class label agree. For a good classifier,
the values are high in the diagonal and low everywhere else. The confusion matrix forms
the basis for many other performance indicators as it contains all the relevant information
about the performance of an algorithm.

The accuracy is a very simple and intuitive metric that can be derived from the confusion
matrix. It is defined as the ratio of the number of the correctly classified observations
and the total number of observations. Therefore, it is the ratio of the sum of the diagonal
elements of the confusion matrix and the sum of all elements of the confusion matrix. It
takes values within [0,1]. The accuracy is a measure for the overall performance, when all
observations have the same weight and contribute equally. Thus, it is useful when the aim
is to correctly predict as many observations as possible regardless of the class distribution.
However, if the aim is that the algorithm should work for all classes equally well, then
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Figure 2.3: Example of a confusion matrix [GBV20]

the accuracy is not suitable, especially in case of imbalanced data sets. Classes with
many observations would have a higher weight compared to classes with less observations
and consequently, classification errors for small classes where the algorithm is performing
poorly are not noticeable.

Another performance criterion that accounts for this is the F1-Score. It is derived from
the precision and the recall. The precision for one class k is the fraction of the correctly as
class k predicted elements, denoted as TPk (true positives), divided by the total number
of observations predicted to have class k. This is composed of the sum of the correctly as
class k predicted observations TPk and the incorrectly as class k predicted observations
FPk (false positives). Thus, the precision for class k is definied as

Precisionk = TPk

TPk + FPk
. (2.1)

The precision is a measure of trust of the model’s prediction for an observation belonging
to class k.

The recall for class k is the fraction of the correctly as class k predicted observations
divided by the total number of observations belonging to class k, which is the sum of
the correclty classified observations TPk and the incorrectly classified observations FNk

from class k (false negatives):

Recallk = TPk

TPk + FNk
(2.2)

Thus, the recall is a measure of the accuracy for class k and measures the performance of
the model in finding all observations of class k.

The F1-Score is a weighted average between precision and recall. It is definied as

F1 Score = 2
Precision−1 + Recall−1 = 2 ∗ Precision ∗ Recall

Precision + Recall
. (2.3)
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Precision and recall could refer here either to the ones of a binary classification problem
or to the ones of a specific class of a multi-class problem. The F1-score takes values
within [0,1]. If precision and recall are both high, the F1-score will also be high, being 1
the maximum possible value. This is the ideal scenario, indicating high accuracy and high
trust of the model’s prediction. If both the precision and the recall are low, the F1-score
will be low. If the recall is high and the precision is low, or the other way around, the
F1-score will be low. High recall and low precision indicates good performance in finding
observations of a specific class but also predicting a significant number of observations
wrongly as this class. Low recall and high precision indicates overall less observations
being predicted to be of a specific class but a higher trust in these predictions. If either
the precision or the recall is 0, the F1-score will be 0, which is the lowest possible value.

The so-called macro average precision and macro average recall are then defined as

Macro Average Precision =
�K

k=1 Precisionk

K
(2.4)

and
Macro Average Recall =

�K
k=1 Recallk

K
, (2.5)

where K is the total number of different classes.

The Macro F1-Score, which includes all classes of a multi-class problem, is defined as the
harmonic mean of the macro average precision and the macro average recall, thus

Macro F1 Score = 2 ∗ Macro Average Precision ∗ Macro Average Recall

Macro Average Precision−1 + Macro Average Recall−1 .

(2.6)

In contrast to the accuracy, all classes have the same weight in the macro F1-score and
huge classes have the same importance as small classes. It takes values between 1 and 0,
whereby high macro F1-scores indicate good performance on all different classes and low
macro F1-scores indicate poor performance for the classes. More precisely, if precision and
recall are high across all classes, the macro F1-score will be high, being 1 the maximum
possible value. If either the macro average precision and/or the macro average recall is
low, the macro F1-score will be low. If either the macro average precision or the macro
average recall is 0, the macro F1-score will be 0, being the lowest possible value.

All in all, it is important to assess in addition to the accuracy the (macro) F1-score
to obtain a good understanding of the performance of a classifier, especially in case of
imbalanced classes. [GBV20]

2.4 Missing Data
Missing data is a common problem when working with real-world data sets, and its origin
is due to various reasons such as missing answers in a questionnaire, failures in a manual
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data entry process, failures in measurements or experiments, and censored or anonymous
data. [Kai14]

Little and Rubin (2019) [LR19] defined missing data as unobserved values that would be
meaningful for the analysis if they were observed and stated that missing values hide
meaningful values. If this applies, they state that it makes sense to fill in the missing
values appropriately to gain back this information.

Assuming to have a rectangular data set matrix, where the rows represent the observations
or units and the columns represent the variables or characteristics measured for each
observation, missing values are usually indicated in the data matrix as NULL, NA, empty
strings or as symbols like question marks. Missing values expressed in one of these ways
are easy to detect. However, sometimes missing values are indicated as outliers with
values like 999, and then it is more difficult to detect them. [Kai14]

Missing values can occur in training data as well as in test data or in both. Therefore,
handling them appropriately is very important for classifier learning to achieve good
prediction accuracy. Incomplete data may have an impact on the interpretations of
the data and the models resulting from this data as well. Using appropriate missing
data handling techniques avoids introducing bias. Furthermore, misleading and invalid
conclusions for a research study are avoided and limitations of the generalizability of the
research findings are prevented. [Twa09]

For the choice of the correct missing data technique, various considerations may be decisive,
such as the percentage of missingness in the data or the size of the sample. [Twa09]
According to Pyle (1999) [Pyl99], percentages of missing values of 0-1% are trivial and of
1-5% are manageable. Rates of 5-15% require sophisticated methods while rates of more
than 15% may influence the interpretation severely.

To assess the potential impact of missing data for choosing the correct missing data
techniques, it is very common to distinguish the missingness pattern and the missingness
mechanisms. While the missingness pattern simply defines which values in the data
matrix are observed and which values are missing, the missingness mechanism descibes
the possible relationship between missingness and other variables. [LR19]

2.4.1 Patterns of Missing Data

The pattern of missing data defines which values in a data matrix are missing and which
values are observed. Some missing data techniques are applicable to any missingness
pattern, other techniques, however, are only intended for specific patterns.

The pattern of missing data is defined as follows. Let X = (xij) be a rectangular data
set matrix of dimension (n × p) without any missing values and therefore a complete
data set. The rows xi = (xi1, ..., xip), for i = 1, ..., n, represent the observations while xij

denotes the value of variable j measured for observation i. In case of missing data in the
matrix X, let M = (mij) denote the missingness indicator matrix with mij = 1 if xij is
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missing and mij = 0 if xij is not missing. Thus, this missingness indicator matrix M
specifies the pattern of missing data. [LR19]

Some examples of missingness patterns can be seen in Figure 2.4. The rows in the figure
correspond to observations and the columns to variables. The most frequently occurring
patterns of missing data are univariate, monotonic, and arbitrary. Univariate missing
data means that missingness is limited to a single variable. Monotonic missing data
means that if the data is missing for the variable j, then the data is also missing for
the variables j + 1, ..., j + l, and a so-called staircase line can divide the data matrix
into missing and observed data. When any variable values may be missing for any
observations, then the pattern is arbitrary or general. [Twa09]

Figure 2.4: Examples of missingness patterns. (a) Univariate, (b) multivariate with two
patterns, (c) monotone, (d) general. [LR19]

2.4.2 Mechanisms of Missing Data
Mechanisms of missing data describe the relationships between missingness of variables
and the underlying values of the variables in the data set. The dependencies in these
mechanisms severely influence the properties of missing data imputation techniques.
Therefore, it is crucial to investigate the mechanism of missingness and thus the process
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that could have generated the missing data. Little and Rubin (2019) [LR19] summarized
three different missingness mechanisms: missing completely at random (MCAR), missing
at random (MAR), missing not at random (MNAR).

These missingness mechanisms are defined as follows. Let X = (xij) denote the complete
data matrix with rows xi and M = (mij) be the missingness indicator matrix with rows
mi as specified in Section 2.4.1. Let the rows (xi, mi) be independent and identically
distributed over i. Then the mechanisms of missing data can be explained with the
conditional distribution of mi given xi, thus with fM |X(mi|xi, φ), while φ represents
unknown parameters.

Data is missing completely at random (MCAR) if the missingness does not relate to the
missing or observed values of the data, which means that for all i and any distinct values
xi and x∗

i in the sample space of X the equation

fM |X(mi|xi, φ) = fM |X(mi|x∗
i , φ) (2.7)

applies.

For observation i let x(0)i be the components of xi that are observed and x(1)i be the
components of xi that are missing. Then the data is missing at random (MAR) if the
missingness depends only on the observed components x(0)i of observation i. This means
that for all i and any distinct missing components x(1)i and x∗

(1)i in the sample space of
x(1)i,

fM |X(mi|x(0)i, x(1)i, φ) = fM |X(mi|x(0)i, x∗
(1)i, φ). (2.8)

If the distribution of mi depends on x(1)i, the missing components of xi, the mechanism
is denoted as missing not at random (MNAR). This means that Equation (2.8) does not
apply to all i and all distinct missing components x(1)i and x∗

(1)i. [LR19]

MCAR is the strongest assumption of the three missingness mechanisms and Twala
(2009) stated that missingness is ignorable if it is MCAR or MAR, which means that the
reasons for missing data can be ignored in the analysis of the data and this simplifies the
methods used for estimating missing values. In practice, however, the assumption of data
being MCAR is rarely met. The least restrictive assumption is MNAR. This mechanism
is sometimes also called informatively missing and cannot be ignored. [Twa09]
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CHAPTER 3
Missing Data Imputation

The main approaches to deal with missing values when learning a classifier are omission
and imputation of missing values, or using classifier methods that can directly handle
missing values. In this chapter, the focus is on the former one. Popular methods of single
and multiple imputation are analyzed to enable later comparisons with decision tree
methods that directly handle missing values.

3.1 Listwise Deletion/Complete Case Analysis
One of the simpler approaches to handle missing values in a data set is called Listwise
Deletion or Complete Case Analysis. In this approach all observations containing missing
values are ignored and deleted to obtain one complete data set for further analysis.
Therefore, all observations with missing values are simply not used for training a classifier.
Although listwise deletion is a frequently used method, a large amount of useful informa-
tion could be lost with this methodology. This could result in a loss of prediction power,
especially if the data size is small and the number of missing values is high. However, if
the number of missing values is small and the sample is large, it could be a reasonable
strategy only if the missing data are missing completely at random (MCAR), otherwise it
may cause bias in the results when applying it to data that do not fulfill the assumption
of MCAR. [GS16]

3.2 Single Imputation - kNN
In single imputation, each missing value is replaced by one imputed value, which results
in one complete data set. [TJH08] A very common and well-known method of single
imputation is k-nearest neighbor (kNN) imputation. In this method, a missing value is
imputed by taking the k nearest neighbors into account and calculating their aggregation.
Depending on the type of the missing variable, a different aggregation is used.
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To find the k nearest neighbors, that is, the k observations that are most similar to the
observation with the missing value to impute, a distance measure is needed. For that
purpose, kNN uses an extension of the Gower distance, which calculates the distance
between two observations by taking the weighted mean of the contributions of each
variable. Thus,

dij =
�p

t=1 wijtδijt�p
t=1 wijt

(3.1)

specifies the distance between the ith and jth observation with wijt denoting the weight
of the tth variable and δijt denoting the contribution of the tth variable. The weights
wijt in the distance measure are defined by

wijt =
�

1 if xit and xjt not missing
0 if xit or xjt or both missing.

(3.2)

The distance measure can deal with distance variables of all types such as continuous,
ordinal, binary, nominal and semi-continuous. For continuous variables, the contribution
of the tth variable in the distance measure between the ith and jth observation is defined
by

δijt = |xit − xjt|
rt

, (3.3)

where xit denotes the value of the tth variable of observation i and rt denotes the range
of the variable t. Thus, the contribution is the absolute distance of the variable values for
the observations divided by the total range for the variable. The same is used for ordinal
variables but converting them to integer variables beforehand. For binary and nominal
variables, the contribution of the tth variable δijt is calculated by a 0/1 distance as

δijt =
�

0 if xit = xjt

1 if xit �= xjt.
(3.4)

A semi-continuous variable is a variable that consists of a continuously distributed part
and a probability mass at one point, e.g. a variable that is 0 for one part of the observation
and continuously distributed for the other part of the observations. The contribution for
such a variable, where st denotes the point of the probability mass, e.g. 0, is defined as

δijt =

����������
0 if xit = st ∧ xjt = st

1 if xit �= st ∧ xjt = st

1 if xit = st ∧ xjt �= st

|xit − xjt|/rt if xit �= st ∧ xjt �= st.

(3.5)

All distances dij between two observations are in [0,1], since all contributions are inside
this interval.

Once the k nearest neighbors are defined for the observation with missing value for the
tth variable, their values are aggregated to obtain the imputation for the missing value.
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If the variable is continuous, the median of the values of the k nearest neighbors is taken.
For categorical variables, a majority voting is used, where the category that appears most
often in the k nearest neighbors is selected. In case of a tie between two categories, one
of them is selected at random.

In this method, the distances are only calculated for the observations with missing values.
Therefore, not the whole distance matrix has to be calculated and therefore the method
is appropriate for large data sets. [KT16] [D’O21]

kNN imputation as described above is implemented in the R software for statistical
computing in the package VIM and can be applied by using the function kNN (see
Chapter 5.2). [KT16]

In single imputation, each missing value is replaced by one imputed value, which is treated
as true value. However, this approach is not taking the uncertainty of the imputation
into account and therefore underestimates the variance. This could lead to invalid tests
and confidence intervals. [Twa09]

3.3 Multiple Imputation - MICE
A popular class of imputation methods that should overcome limitations of single
imputation is multiple imputation (MI). Rubin (1996) [Rub96] defined multiple imputation
by three main steps. These are imputation, analysis, and pooling. In contrast to single
imputation, the missing values are imputed not once but multiple times, more precisely
m times, with plausible values in the first step of the process. The variable m can take
integer values, and theoretically higher values yield better results. However, high values
for m increase the runtime and the required memory enormouosly, and often a value
between 5 and 20 leads to sufficiently good results. [VB18] The imputed values are drawn
from a distribution, that is separately modelled for each of the missing values. This
results in m complete data sets, which are identical for the non-missing values of the
original data set and differ in the imputed values for the missing values. In the second
step, each of the imputed data sets is analyzed by using a method that would have been
used if the data had been complete such as linear regression or decision tree. This leads
to one analysis per imputed data set, so in total in m analyses. These outcomes differ
from each other as their input data differ for each analysis. Lastly, the m results are
pooled or combined to one output. By using m imputations and analyses, a measure of
the variability, e.g. calculated with the standard deviation, that reflects the uncertainty
of the imputation, is obtained in the pooling step of multiple imputation. [Twa09] Figure
3.1 illustrates the three-step process of multiple imputation for m = 5.

In the following, let’s assume to have observed a (n × p) matrix Xobs = (Xobs
1 , ..., Xobs

p )
which contains data values on p variables Xj , j = 1, ..., p, for n observations, and
which contains missing values. The hypothetically complete matrix is denoted by
X = (X1, ..., Xp) and is obtained by taking together the observed and the missing data
part as X = (Xobs, Xmis), where Xmis = (Xmis

1 , ..., Xmis
p ) is a matrix of the same size
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Figure 3.1: Three-step process of multiple imputation [Twa09]

containing only the actual true values for all the ones that are missing in Xobs. One
could imagine stacking the two matrices on top of each other to get X. Furthermore,
assume that X(h) denotes the hth of the m imputed data sets. The p − 1 variables, where
variable j is excluded, are denoted as X−j = (X1, ..., Xj−1, Xj+1, ..., Xp) and the quantity
or model of scientific interest is denoted by Q. These can be, for example, regression
coefficients.

Therefore, when applying multiple imputation, m imputed data sets X(1), ..., X(m) are
created and for each of them an analysis is done to receive an estimate for the quantity
of interest, that is, Q̂(1), ..., Q̂(m). These m estimates are pooled into one estimate,
denoted by Q̄, by e.g. calculating the mean in case of approximately normally distributed
quantities of interest. [VBGO11] In case of decision trees the same approach as for
ensemble learning is followed for pooling the results of the individually trained trees, as
described in detail in Chapter 4.5. [Twa09]

A very common approach to specify the imputation model needed in step one of the
multiple imputation process is the technique of chained equations. The method is then
called multivariate imputation by chained equations (MICE). It defines the imputation
model separately for each variable containing missing values by conditional densities.
After starting with an initialization, imputations are drawn by iterating over these
conditional densities. Often only a few iterations are needed.

In more detail, let P (X|θ) be the p-variate distribution, from which X is a partially
observed random sample, that is hypothetically complete. Further, let’s assume that
this distribution is completely specified by θ, which is an unknown vector. In the MICE
method the posterior distribution of θ is then derived by iteratively sampling from the
conditional distributions

P (X1|X−1, θ1)
...

P (Xp|X−p, θp).

(3.6)
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The parameters θ1, ..., θp in the conditional distributions are different for the individual
conditional densities and their product may differ from the joint distribution. The initial
imputation is done by drawing from the observed marginal distributions, while a Gibbs
sampler defines the tth iteration of chained equations by drawing

θ
∗(t)
1 ∼ P (θ1|Xobs

1 , X
(t−1)
2 , ..., X(t−1)

p )

X
∗(t)
1 ∼ P (X1|Xobs

1 , X
(t−1)
2 , ..., X(t−1)

p , θ
∗(t)
1 )

...

θ∗(t)
p ∼ P (θp|Xobs

p , X
(t)
1 , ..., X

(t)
p−1)

X∗(t)
p ∼ P (Xp|Xobs

p , X
(t)
1 , ..., X(t)

p , θ∗(t)
p ),

(3.7)

one after the other. A Gibbs sampler is a Markov chain Monte Carlo algorithm that is
usually used to create a sample approximated from a multivariate probability distribution,
where directly sampling is not possible. X

(t)
j = (Xobs

j , X
∗(t)
j ), which is the observed

variable completed with the imputations X
∗(t)
j for the contained missing values, denotes

the imputed variable j at iteration t. In the formulas above one can observe that in X
∗(t)
j

the imputations X
∗(t−1)
j appear only indirectly through the relation of X

∗(t)
j with other

variables. The algorithm typically converges after 10-20 iterations. The algorithm is
quite powerful and can work with variables of mixed types. However, the computational
speed can be an issue for large data sets.

In R, the method is implemented in the package mice (see Chapter 5.2). By using the
function mice, multiple imputations by chained equations can be received. With the
function with of the same package one can apply an analysis to all imputed data sets
and the results can be combined by the function pool. [VBGO11]
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CHAPTER 4
Decision Tree/Random Forest

Missing Data Handling Techniques

In this chapter existing decision tree and random forest methods for classification are
explored and analyzed. Each method has a specific built-in strategy to handle missing
values in the data. By making use of them, it is not required to have a separate process
for handling the missing values and learning the classifier.

4.1 CART - Classification and Regression Trees

The well-known CART - Classification and Regression Trees - algorithm, introduced by
Breiman et al. in 1984 [BFSO84], constructs trees by recursive partitioning. Binary trees,
that are trees where every node has at most two child nodes, are built by a two-step
procedure: In the first step a single variable is found that best splits the data in a node -
the definition of best used by CART is stated in Section 4.1.1 - and then the observations
are separated into two subsets (nodes) defined by a split. Subsequently, these steps
are applied again to each of these subsets separately and recursively repeated until no
improvement can be made or until a stopping criterion is reached, such as a minimum
number of observations in the final subsets. After the tree has reached its full size, it
is trimmed back again in the second step of the procedure. By using cross-validation,
estimates of the risk for trees of different sizes are computed and the smallest tree with
the lowest estimate of risk is chosen. [TA+97]

The fundamentals of CART are implemented in the packages rpart [TARR22] and
tree [RR16] of the R software for statistical computing (see Table 5.2). The two
implementations differ mainly in its handling of missing data. More details about this
are given in Section 4.1.2.
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4.1.1 Building the Tree
For splitting the observations in a node of the tree into two distinct subsets a variable
that best splits the data has to be found. ’Best’ is based on a splitting criterion, that
gives a measure of the purity of a node. Purity refers to the homogeneity of the instances
within a node with respect to their target values. In the context of CART, the purity is
defined and measured with either the Gini impurity or the information impurity, and is
specified in the following paragraph.

CART is building the tree by choosing the split with maximum impurity reduction. For a
node A that is split into two child nodes AL (left) and AR (right) the impurity reduction
is given by

ΔI = P (A)I(A) − P (AL)I(AL) − P (AR)I(AR), (4.1)

whereby P denotes the probability of node A for future observations and I denotes the
impurity of node A. For some impurity function f , the impurity for a node A is defined
as

I(A) =
K�

k=1
f(pkA). (4.2)

pkA is the proportion of observations in A that belong to class k for future samples and
K is the number of classes.

When A is completely pure and thus all observations in A belong to the same class, the
equation I(A) = 0 should be fulfilled, and therefore the impurity function f must be
concave with f(0) = f(1) = 0.

Two options for f proposed in CART are the Gini index and the information index. The
Gini index is given by

f(p) = p(1 − p) (4.3)

while the information index is defined as

f(p) = −p log(p). (4.4)

Here p denotes the probability of a given class. For a two-class problem, the two impurity
functions are nearly the same. Both can also handle multi-class problems and work well
in practice.

While Gini is used as default splitting criterion for both R packages tree and rpart,
there is also the option to use the information index in rpart.

4.1.2 Missing Data
Instead of just discarding all observations containing missing attribute values, CART is
able to cope in a more ambitions way. When training a classification tree, two steps are
affected by missing values: the step of finding a variable that best splits the data in a
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node and, once a splitting variable and split point are selected, the step of separating the
observations into two different subsets when the values of that relevant attribute might
be missing.

For CART, all observations with at least one value for an explanatory variable are used
for modelling. The criterion to be maximized when looking for a split of node A into two
child nodes AL and AR is still the impurity reduction

ΔI = P (A)I(A) − P (AL)I(AL) − P (AR)I(AR). (4.5)

While the term P (A)I(A) is equal for all variables and splits, no matter if there are
missing values or not, the terms P (AL)I(AL) and P (AR)I(AR) are adjusted in case of
missing values. For the impurity measures I(AL) and I(AR) as well as for the calculation
of the probabilities p(AL) and p(AR) only the observations with known values for the
relevant attribute are taken into account. Then the probabilities are modified in a way
that the sum is equal to p(A). This guarantees that the sum of the probabilities of the
terminal nodes is equal to 1.

Once a split is selected, CART uses surrogate variables to decide how to separate
the observations with missing values for the split variables. Surrogate variables are
variables used as alternative split variables that replace the original split variables as
good as possible. For finding the surrogate variables the partitioning algorithm is applied
again to predict the two categories defined by the split with the help of the other
explanatory variables. An optimal split point and the corresponding misclassification
error are determined for each explanatory variable. In addition, the prediction based
on the majority denoted as ’go with the majority’ is evaluated. For this blind rule the
misclassification error is min(p, (1 − p)) with p = (# in A assigned to AL)/|A|, where
|A| is the number of observations in node A. All surrogate variables that predict worse
than the ’go with the majority’ rule are tossed out and the remaining ones are ranked by
misclassification error.

So, when the attribute value of an observation for the original splitting variable is not
known, then the first surrogate variable is used instead. If this value is missing too, the
next best surrogate variable is invoked and so on. If all surrogate variables are missing
for an observation, then the ’go with the majority’ rule is used. [TA+97]

In the R package tree surrogate variables are not implemented. Observations with
missing values for the splitting variable are simply not sent further down the tree. [RR16]
In the package rpart three different options are given for handling the observations with
missing values for the split variable. Observations can either be not sent further down
the tree as in the package tree or they can be sent down with the help of surrogate
variables. If for an observation the values for all surrogate variables are missing, there are
two options: the observation is not sent further down or the observation is sent down the
tree with the ’go with the majority’ rule. The last opportunity is the default in rpart
and suggested by CART. [TARR22]
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4.2 Conditional Inference Trees
Conditional inference trees were introduced by Hothorn et al. in 2006 [HHZ06]. They
use recursive binary partitioning, that is, recursively building binary trees like CART,
embedded in the theory of permutation tests by Strasser and Weber (1999) [SW99].
The relation of the explanatory variables to the response variable is determined via the
conditional distribution of statistics and is the basis for selecting the split variables among
all the variables. This enables a comparison independent of the different variable scales
and overcomes the bias towards continuous variables or variables with many different
outcomes. After the strongest relation between a variable and the response is found,
multiple test procedures are used to check the significance. The recursion stops as soon
as no further significant association between any variable and the response can be found.

Conditional inference trees are implemented in R in the function ctree (see Table 5.2).
While the original implementation is available in the R package party, the new and
improved reimplementation can be found in the package partykit. Only the latter one
will be improved and developed further in the future. [HHZ15]

4.2.1 Building the Tree

Let the response variable Y be from the sample space Y and the variable vector X =
(X1, ..., Xp) consisting of the p explanatory variables from the sample space X = X1 ×
... × Xp, while both of them can be of different scales. The conditional distribution of
the response variable, given the p explanatory variables, is denoted by D(Y |X) and
dependent on a function f , so that

D(Y |X) = D(Y |X1, ..., Xp) = D(Y |f(X1, ..., Xp)). (4.6)

It is assumed to have partition based regression relationships, so the variable space
X = ∪r

l=1Bl is partitioned by the disjoint sets B1, ..., Br. Based on the training set L =
{(x1, y1), ..., (xn, yn)} consisting of n independent and identically distributed observations
with yi denoting the response and xi = (xi1, ..., xip) denoting the values for the p
explanatory variables for observation i, a regression relationship model needs to be
trained.

Recursive binary partitioning can be formulated with the use of case weights w =
(w1, ..., wn) for the individual observations, which are non-negative integer values. So,
each node in the tree consists of case weights wi, i = 1, ..., n, where each weight wi is
non-zero if the observation i is part of the node and zero otherwise. The steps are:

1. Given the weights wi in a node, the global null hypothesis that the response variable
is independent of all p explanatory variables is tested. The algorithm is stopped if
this cannot be rejected. If this hypothesis can be rejected, the variable Xj∗ that is
most strongly related to the response is selected.
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2. Xj∗ is splitted into two sets A∗ and Xj∗\A∗ and the case weights of the two generated
subsets are calculated via wleft,i = wiI(xij∗ ∈ A∗) and wright,i = wiI(xij∗ /∈ A∗) with
the indicator function I. xij∗ refers to the value of observation i for variable Xj∗ .

3. The steps 1. and 2. are repeated recursively with updated weights for each round.

With this algorithm the bias to variables with many possible outcomes is overcome. A
partition of the variable space X into {B1, ..., Br} is created, where a vector of case
weights w exists for each Bl.

The first two steps of this recursive binary partitioning algorithm are examined now in
more detail. By the usage of the permutation test framework by Strasser and Weber
(1999) [SW99] independence tests by means of the conditional distribution of linear
statistics, that are explained in detail in the following section, are conducted and the
best split point is determined based on standardized linear statistics. [HHZ15]

Variable Selection

In each node that consists of case weights w, the global null hypothesis H0 = ∩p
j=1Hj

0
with the p partial hypotheses Hj

0 : D(Y |Xj) = D(Y ), which is checking the independence
between the response variable and the p explanatory variables, is tested in the first step of
the algorithm. If the global null hypothesis cannot be rejected at a predefined significance
level α, the recursion is stopped. If it is rejected, the relations between the response
Y and all the p variables Xj are measured. This is done by test statistics or p-values
specifying the deviation of the partial hypotheses Hj

0 .

Assume that the case weights are either 0 or 1 and let S(L, w) be the group of all
permutations of the elements (1, ..., n) with case weights wi = 1, i = 1, ..., n. This group
of permutations is symmetric. The linear statistic that is specifying the relation between
Y and Xj is given by

Tj(L, w) = vec
�

n�
i=1

wigj(xij)h(yi, (y1, ..., yn))T

�
∈ Rmjq, j = 1, ..., p. (4.7)

gj : Xj → Rmj represents a transformation of Xj of the form gji(x) = x if variable
Xj is numeric and gji(t) = eT (t) if variable Xj is categorical with T different classes.
eT (t) is a T dimensional unit vector with a value equal to 1 at the t-th position. h :
Y×Yn → Rq denotes an influence function that is based on the responses in a permutation
symmetric way. If K is the number of different classes, the influence function is defined
as h(yi, (y1, ..., yn)) = eK(yi), which is a K dimensional unit vector with 1 at the yi-th
element. The function ’vec’ transforms a matix into a column vector by columns. In
Equation (4.7), the matrix with dimension (mj × q) is transformed via the function ’vec’
to a vector with dimension mjq.

The distribution of Tj(L, w) under the partial null hypothesis Hj
0 can be derived by fixing

the variables Xj and having a condition on all potential permutations of the responses.
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This results in so-called permutation tests. Given all these permutations S(L, w), Strasser
and Weber (1999) [SW99] defined the conditional expectation of Tj(L, w) as

µj = E(Tj(L, w)|S(L, w)) = vec
��

n�
i=1

wigj(xij)
�
E(h|S(L, w))T

�
∈ Rmjq, (4.8)

while the influence function has the conditional expectation

E(h|S(L, w) = w.−1
n�

i=1
wih(yi, (y1, ..., yn)) ∈ Rq (4.9)

with w. = �n
i=1 wi.

The conditional covariance of Tj(L, w) under the H0 is given as

Σj = V(Tj(L, w)|S(L, w))

= w.

w. − 1V(h|S(L, w)) ⊗
�

n�
i=1

wigj(xij) ⊗ wigj(xij)T

�

− w.

w. − 1V(h|S(L, w)) ⊗
�

n�
i=1

wigj(xij)
�

⊗
�

n�
i=1

wigj(xij)
�T

∈ Rmjq×mjq

(4.10)

with

V(h|S(L, w)) = w.−1
n�

i=1
wi(h(yi, (y1, ..., yn)) − E(h|S(L, w)))

(h(yi, (y1, ..., yn)) − E(h|S(L, w)))T ∈ Rq×q

(4.11)

and ⊗ denoting the Kronecker product.

Then a univariate, standardized test statistic c depending on the observed multivariate
linear test statistic t ∈ Rmq, specified with Equation (4.7) for a m ∈ {m1, ..., mp}, can be
formulated by

cmax(t, µ, Σ) = max
s=1,...,mq

(t − µ)s

(Σ)ss

, (4.12)

using the conditional expectation µ and the conditional covariance Σ for the considered
variable, where (.)s denotes the element of the input vector on position s and (.)ss denotes
the element of the input matrix on position ss.

Since the explanatory variables may be of different scale, the test statistics c(tj , µj , Σj)
for j = 1, ..., p cannot be compared directly without creating a bias. However, p-values
for the conditional distribution of the test statistics can be compared among variables
with different scales in an unbiased way and therefore the partial null hypotheses Hj

0
are tested with the use of p-values. Thus, in step 1 of the procedure the variable with
strongest association to the response is identified by selecting the variable Xj∗ with
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smallest p-value of the conditional test for Hj
0 , that is Xj∗ with j∗ = argminj=1,...,pPj

and
Pj = P

Hj
0
(c(Tj(L, w), µj , Σj) ≥ c(tj , µj , Σj)|S(L, w)). (4.13)

However, before testing each partial hypothesis Hj
0 in step 1 of the procedure, the global

null hypothesis H0 needs to be tested to check if there is an association between any
of the explanatory variables and the response at all or if the recursion needs to stop.
Aggregating the transformations gj , j = 1, ..., p, leads to the following linear statistic to
test the H0.

T (L, w) = vec
�

n�
i=1

wi(g1(xi1)T , ..., gp(xip)T )T h(yi, (y1, ..., yn))T

�
(4.14)

As this approach is inconvenient when dealing with missing values, test procedures on
the basis of the p-values Pj , j = 1, ..., p, are used. Applying a Bonferroni-adjustment on
the p-values as 1 − (1 − Pj)p at first, the global null hypothesis H0 is rejected when the
smallest adjusted p-value is less than α, which is a predefined level. If the null hypothesis
cannot be rejected the recursion needs to stop. Therefore, the parameter α may also be
seen as control parameter for the size of the tree. [HHZ15]

Variable Split Point

Once the variable Xj∗ that best splits the data is selected, the optimal split point
that separates the data of a node into two subsets needs to be found in step 2 of the
procedure. This is done by considering the goodness of a split that is assessed by two-
sample linear statistics similar as in Equation (4.7). The discrepancy between the sets
{yi|wi > 0 ∧ xij ∈ A; i = 1, ..., n} and {yi|wi > 0 ∧ xij /∈ A; i = 1, ..., n} is determined by
a two-sample statistic that is generated by the linear statistic

T A
j∗(L, w) = vec

�
n�

i=1
wiI(xij∗ ∈ A)h(yi, (y1, ..., yn))T

�
∈ Rq (4.15)

for all subsets A of the sample space Xj∗ , while the conditional expectation µA
j∗ and the

conditional covariance ΣA
j∗ are calculated in analogous to Equations (4.8) and (4.10). So,

for all subsets A the test statistics c(tA
j∗ , µA

j∗ , ΣA
j∗) are evaluated and the subset A∗ with

the maximum test statistic is chosen for the split, that is,

A∗ = argmaxAc(tA
j∗ , µA

j∗ , ΣA
j∗). (4.16)

[HHZ15]

4.2.2 Missing Data
Conditional inference trees can deal with missing values in the explanatory variables in a
similar way as CART. Both, step 1 and step 2, of the procedure of learning a conditional
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inference tree or generally of recursive binary partitioning are affected when there are
missing values in the data.
Let the value xij of the variable Xj be missing for some i ∈ {1, ..., n} and j ∈ {1, ..., p}.
Then in the first step of the procedure when calculating Tj(L, w), only the observations
with known values for Xj are taken into account. Therefore, the case weights wi for the
observations with missing values are set to zero in the calculation of Tj(L, w). Similarly,
once a split variable Xj is selected the case weights wi are set to zero when calculating
T A

j (L, w) in the second step of the procedure.
As soon as the subset A∗ that is defining the split for the split variable Xj is selected,
conditional inference trees use surrogate variables to separate the observations with missing
values for Xj . So, as already stated for CART, surrogate variables with corresponding
split points are variables that produce the split that is most similar to the original split.
For evaluating them, the binary variable I(xij ∈ A∗) is used as response variable and
predicted with the help of the other explanatory variables using the same procedure as
described before. Then, when for an observation i the value xij for the original split
variable is missing, the first surrogate variable is used to assign it to a subset. If the
value for this is missing too, then the second surrogate is used and etc. [HHZ15]
While in the package party only surrogate variables can be used to deal with the missing
values, there is an additional approach implemented in the package partykit. It is
called missingness incorporated in attributes (MIA). [HZH23]
MIA is a generalization of the separate class method defined in Chapter 4.4. While
MIA can be used for every decision tree classification method, it is explained here with
the notation of conditional inference trees. Let Xj be the split variable for a node in
the decision tree. Then the approach is considering 3 possible splits. While all the
observations with missing values for variable Xj are handled as separate group, this
group can be either put to one of the two subsets defined for the observations with no
missing values or can define a separate split based on the missingness information. So,
when deciding on a split, one out of the following 3 options is selected for a subset A∗ of
the sample space of Xj .

• Split A: {xij ∈ A∗ or xij missing} vs. {xij /∈ A∗}

• Split B: {xij ∈ A∗} vs. {xij /∈ A∗ or xij missing}

• Split C: {xij missing} vs. {xij not missing}

While MIA is a rather simple method, the literature shows that it can also be extremely
effective. [TJH08]

4.3 C4.5 and C5.0 Decision Trees
Quinlan’s C4.5 algorithm is an advancement of the so-called ID3 algorithm of Quinlan
(1986) [Qui86] and C5.0 decision trees are again an advancement of the C4.5 decision
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trees. The ideas to build and train a C4.5 classification tree are similar as for CART. By
applying the so-called divide-and-conquer algorithm a variable that best splits the data
in a node, denoted as test by Quinlan, and multiple split points are found and then the
observations are separated into the multiple subsets defined by the split. Once the subsets
are created the same steps are again applied separately to all of them and repeated
recursively until all observations are from the same class or until a stopping criterion
is reached. C4.5 decision trees can also handle missing values in a more ambitious way
than just deleting the observations with missing values. But instead of using surrogate
variables like CART, C4.5 uses so-called fractional cases (observations) to treat the
missing values, which are defined in Section 4.3.2. [Qui93]

In R two implementations of such algorithms are available. In the package RWeka the
function J48 fits a C4.5 decision tree, while a C5.0 decision tree can be generated with
the function C5.0 of the package C50 (see Table 5.2). [HBH+23] [KWC+23]

C5.0 decision trees rely on the same principles as C4.5 decision trees, however, they exhibit
some advances. Compared to C4.5, C5.0 shows improvements in speed and memory
usage. While C5.0 performs similar to C4.5, its built decision tree is substantially smaller.
C5.0 also allows the usage of methods to improve the tree and of weighting of different
variables and misclassification types. [PT13]

4.3.1 Building the Tree
To find the variable that best splits the data in a node A with corresponding split points,
Quinlan (1993) [Qui93] relied on information-based methods, that are explained in the
following.

The original ID3 algorithm utilizes the information gain as splitting criterion. The
information gain measures the information that is gained by the partition of a node A
defined by a split on variable X and is given by

gain(X) = info(A) − infoX(A). (4.17)

In this formula, info(A) denotes the average amount of information that is needed for
the class identification of an observation in node A and can be derived as follows: Assume
that one observation is randomly chosen from set A of observations and assume that it’s
from class k. Then the probability of this message is given as

freq(k, A)
|A| (4.18)

where freq(k, A) is the number of observations in node A belonging to class k and |A|
is the total number of observations in node A. The information of the message can be
calculated as

− log2

�
freq(k, A)

|A|
	

. (4.19)
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according to the information theory. [Kul97] It is measured in bits.

The sum over all K classes relatively to their frequencies in A yields the expected
information from such a message:

info(A) = −
K�

k=1

freq(k, A)
|A| ∗ log2

�
freq(k, A)

|A|
	

bits (4.20)

This measure is also called entropy.

On the other hand, infoX(A) denotes the expected information after separating the
observations in A according to split X into m different subsets that form the nodes Ai.
It is given by

infoX(A) = −
m�

i=1

|Ai|
|A| ∗ info(Ai). (4.21)

All in all, the ID3 algorithm selects the variable X for which the information gain is
maximized and declares it to be the split variable at node A.

Using the information gain as splitting criterion, however, produces a bias in favor of
variables with many different output capabilities. To overcome this issue, the C4.5
algorithm uses the information gain ratio as splitting criterion instead. In the information
gain ratio, the gain attributed to such a variable with many outcomes is revised by a
normalization. Let’s assume to select one observation at random from set A and to
announce that it belongs now to a specific outcome of the splitting variable X instead of
announcing the class. Similar to Equation (4.20) the expected information produced by
splitting A into m subsets Ai can be defined as

split info(X) = −
m�

i=1

|Ai|
|A| ∗ log2

� |Ai|
|A|

	
. (4.22)

The information gain ratio is then given by

gain ratio(X) = gain(X)/split info(X). (4.23)

Finally, C4.5 selects the split for which this ratio is maximized with the constraint that
the information gain is large. The additional constraint ensures that the ratio will not be
unstable for splits that are nearby trivial, since for such splits the split information is
small. [Qui93]

According to Quinlan (1993) [Qui93], the information gain ratio is more robust and
chooses better splits than the gain ratio.

4.3.2 Missing Data
C4.5 is dealing with missing values in the data by taking two questions into account
when learning a classification tree. The first question that needs to be addressed is how
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to compute the splitting criterion and how to take the number of missing values for the
specific variables into account when weighting their attractiveness for being the split
variable. The second question is how to treat the observations with missing value for the
split variable in the partitioning step.

For choosing the variable that best splits the data in a node A that can contain missing
values for some attributes, an adjusted form of the information gain ratio is used. At
first, the measures info(A) and infoX(A) are calculated only over the observations with
known values for the relevant attribute that performs the split. Then the information
gain is adjusted by

gain(X) = F ∗ (info(A) − infoX(A)) (4.24)

where F denotes the fraction of observations in A with known value for the relevant
attribute. So, the information gain looking only at the observation with known values
is adjusted by the fraction of such observations. The split information, split info(X),
is calculated by treating the missing values as additional group. So, when a variable is
splitting the data into m subsets, the information split is calculated over m + 1 subsets.
The final information gain ratio is then calculated as in Equation (4.23) with the adjusted
measures.

Once a split variable is selected based on the information gain ratio, a probabilistic
approach is used to separate the observations. Assume that based on the split variable
and split points, a node A is split into subsets Ai with outcomes Oi of the split variable.
For each observation of node A, probabilities are measured with that the observation
belongs to each subset Ai of A. These probabilities are also called weights and are
assigned as follows: If the value Oi of the split variable is known for an observation and
if it is assigned to subset Ai, then the probability that the observation is part of Ai is
1 and the probability that this observation belongs to any of the other subsets is 0. If
the value of the split variable for an observation is not known, then only weaker and
not clear assignments to the individual subsets Ai via weights can be made. The weight
of an observation for each subset Ai is the probability of outcome Oi at A, for which
the estimate is given below. Each subset Ai consists therefore of a collection of weights
which indicate the probabilities with that the observations belong to this subset and |Ai|
in the formulas above needs to be interpreted as the sum of the fractional weights of all
observations in Ai.

Since A might be a subset of an earlier partition and therefore might consist of nonunit
weights for the observations, the new weight for an observation with weight w where the
outcome Oi of the split variable is not known is calculated by

w ∗ probability of outcome Oi. (4.25)

The probability of outcome Oi can be estimated by the sum of the weights of the
observations in A with known value for the split variable and outcome Oi, divided by the
sum of the weights of all observations in A with known value for the split variable. [Qui93]
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This strategy of handling the missing attribute values in the data is often called fractional
cases. [Fee99]

4.4 Separate Class Method/Null Value Strategy
A strategy to deal with missing values in the data that is not dependent on a particular
decision tree algorithm is called separate class method or null value strategy. It treats
missing values as a separate class or value. When the variable with the missing values is
categorical, then the missing values are just simply replaced with a new category denoted
for example as ’missings’. When the variable with missing values is numerical, then the
missing values are replaced by a new value that is clearly outside the range. This gap
between the original data range and this extreme value ensures the separation between
the missing and non-missing attribute values. [DS10]

This method has some disadvantages since it deals with the missing values just like with
the non-missing values and does not try to determine the actual true value. Furthermore,
it treats all missing values as ’missing’ although there might be more than one actual
missing value category. [GS15] Advantages are, however, that the method is easy to
implement and use and can deal with missing values at training and testing time.
According to Ding and Simonoff (2010) [DS10], this technique has the best performance
when attribute values are missing not at random and the missingness is dependent on
the response variable.

4.5 Random Forests
Random Forests were introduced by Breiman in 2001. [Bre01] A random forest is a
combination of decision trees such that each tree depends on a randomly selected subset
of the data. It is called to be a tree-based ensemble.

While the aim is to predict the response Y with a function f of the given input data X,
the function f is constructed by an ensemble of so-called base learners h1, ..., hJ , where
J is the number of base learners. These base learners are combined by so-called ’voting’
for classification and form the ensemble predictor f . Constructing such ensembles of base
learners can substantially improve the classification performance.

In random forests each of these base learners is a decision tree, denoted as hj(X, Θj),
j = 1, ..., J . All Θj ’s represent a set of random variables and they are all independent
of each other. Let L = {(x1, y1), ..., (xn, yn)} be the training data with yi denoting the
response and xi = (xi1, ..., xip)T denoting the values for the p explanatory variables for
observation i. For fitting the base learner decision trees, independent bootstrap samples
Lj , j = 1, ..., J , of size n are taken from the training data L. For each of these bootstrap
samples a decision tree is fitted by using binary recursive partitioning and the Gini index
as splitting criterion, similar as for CART explained in Section 4.1. The only difference
is that the best split for a node in the decision tree is not found by a search over all p
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variables but rather by a search over only m variables that were randomly selected from
the p explanatory variables. This random selection is done independently at each node
of the tree. Pruning is done for none of the trees, since the two layers of randomization
applied when building the individual trees create a diverse forest that already prevents
overfitting. While Breiman stated to grow each of the trees until each leaf node is pure,
that is, each leaf node contains only observations with the same class label, more recent
literature stated to use a maximum number of leaf nodes as stopping criteria.

The finally fitted trees are denoted by ĥj(x, θj , L), j = 1, ..., J , where x denotes input
data for which the tree can be used to make a prediction and where θj is a realization of
Θj , indicating the randomness in a tree.

To make a classification for a new instance x in the end, the J decision trees are combined
by voting to form the ensemble predictor as

f̂(x) = argmaxy

J�
j=1

I(ĥj(x) = y), (4.26)

where ĥj(x) denotes the prediction of the outcome variable for x with the j-th tree and
where I(ĥj(x) = y) = 1 if the prediction ĥj(x) is equal to y and 0 otherwise. [CCS12]

CART decision trees handle missing values in the data with surrogate variables, however,
this is not appropriate for random forests. The reason is that finding surrogate variables at
each node is computationally expensive, especially when many trees are built. Moreover,
when looking for the variable that best splits the data of a node for one base learner,
the search is done over p randomly selected explanatory variables. Thus, it could
be that there are no meaningful surrogate splits as the variables in a node may be
uncorrelated. [IKBL08]

In Breiman’s random forests missing values are handled by using proximities between
the observations. The proximity between two observations in the training data is defined
as the proportion of times in which the two were determined to be in the same leaf node
among all trees of the forest. Their proximity is 1 if they end up in the same leaf node
for all the trees. When the two observations are in two different leaf nodes for all the
trees, their proximity is 0. Thus, the proximity defines the closeness of two observations
in the explanatory variable space, while the variables with high importance for predicting
the response get more weight.

The proximities between all observations are used to impute missing values in random
forests using an iterative procedure. Initially, all missing values are imputed by using
median imputation, which is the replacement of all missing values of a variable with
the median of that specific variable. Then a random forest is fitted and the proximities
between all observations are calculated. With the use of the proximities, new imputations
for the missing values are done by using the proximity-weighted average for the continuous
variables and the proximity-weighted vote for the categorical variables. Then a new
random forest is fitted, the new proximities are calculated for this new model and
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new imputations for the missing values are done as before. These steps are iteratively
repeated until stable results are achieved, which is usually already after a few iterations.
So, random forests use a kind of proximity-based nearest neighbors imputation for dealing
with the missing values in the data. This is an indication that the method is valid for
data that contains missing values that are missing at random (MAR). [CCS12]

Breiman’s random forest algorithm is implemented in the R package randomForest (see
Table 5.3). While previous versions could not handle missing values, the above described
strategy of using proximities for imputation should be implemented from version 4.0 on
and possible to use with the function rfImpute from the same package. [BC11]

Imputing missing values with proximities has several advantages, as this strategy works
without specific modifications of the random forest algorithm. Moreover, proximity
imputation utilizes the property of random forests of clustering the data. However, this
strategy has also some drawbacks. Firstly, the out-of-bag (OOB) error rate is biased, as
it is overestimated. This out-of-bag error rate is the average error for the observations
using the predictions only from the trees that do not contain this observation in their
bootstrap sample. Further, the random forest cannot classify test observations with
missing values.

To overcome these issues, Ishwaran et al. (2008) [IKBL08] found a new algorithm to
handle missing values in Breiman’s random forests. They developed an approach called
adaptive tree imputation. When a tree of the forest is grown, missing data are imputed
by drawing randomly from all the nonmissing data that are contained in the respective
bootstrap sample, anew at each node. The data in a specific bootstrap sample are also
called in-bag data. Since for the missing data imputation in one tree, only the in-bag data
are used, the OOB error rate is not biased as for proximity imputation. It is assumed
that only a limited number of all variables contain missing values. Then the following
steps are done:

1. Assume to be at node A for one tree in the training process. Before the split is
performed, the missing values of the data in the node are imputed. For each variable
z of the variables that contain missing values, let Sz,A be the set of nonmissing
values for variable z that are contained in the bootstrap sample of that specific tree
with the empirical distribution function Fz,A. For each observation in node A with
missing value for the variable z, the value is imputed with a random value from
Fz,A. As soon as all missing values are imputed, the split of the data in the node
into two subsets is performed as without having any missing values. So, both the
imputation and the performance of the split is only based on the in-bag data.

2. The OOB data is also imputed by randomly drawing from Fz,A but does not play
an active role in the learning process of the tree.

3. As soon as the split is performed the imputed values are again considered as missing
in the child nodes of A and the steps 1 and 2 are repeated for each of the created
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subsets separately. These steps of imputing and splitting are repeated until no
more improvement in a node of the tree can be made or until a stopping criterion
is reached.

The final imputation for a missing value in the data is considered to be created out of
all in-bag imputations for this value in the terminal nodes across all trees of the forest.
For missing values of continuous variables the average of the imputed in-bag values is
taken, while for categorical variables the most frequently occurring in-bag value is chosen.
When two imputed in-bag values occur equally often, then one of them is selected at
random.

This strategy can also handle missing values in the test data. An observation from the
test data is dropped down the tree while the missing value for variable z at node A of
the tree is imputed by randomly drawing from Fz,A.

The adaptive tree imputation algorithm can also be iteratively repeated, which makes
sense if there are many missing values in the data, because the higher the amount of
missing values the lower is the accuracy of the imputation. So, after applying the steps
of adaptive tree imputation explained above, an initial forest is built. The missing
values are then imputed with the OOB summary values. These are the averaged or
frequently occurring imputations of the OOB data in the terminal nodes of all trees.
Using the imputed data, a new forest is built. Then for each observation where a value
was originally missing, a random value is drawn from all nonmissing in-bag observations
in the same terminal node for each tree of the forest. By using these drawn values and
the values of the OOB data the average or the frequently occurring value is used as
imputation. This imputed data is used to grow a new forest and the steps are repeated
iteratively. [IKBL08]

Breiman’s random forest using the missing data imputation method from Ishwaran et al.
is implemented in the R package randomForestSRC (see Table 5.3). It does fast parallel
computing of random forests for survival analysis, regression, and classification. [IKK23]

4.6 Conditional Random Forests
A Conditional Random Forest is a tree-based ensemble like a Breiman’s random forest
described in Chapter 4.5 but where the base-learners h1, ..., hJ are conditional inference
trees as described in Chapter 4.2.

After the J base-learners ĥj(x, θj , L), j = 1, ..., J are fitted with the realizations θj of
Θj , they are combined for making predictions. However, instead of averaging for a new
observation the predictions from the J trees directly as in Breiman’s random forests, in
conditional random forests the observation weights are averaged.

When there are missing values in the data, conditional random forests deal with them by
simply allowing the individual base learners to handle them. As the base learners are
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conditional inference trees, missing values are handled by using either surrogate variables
or the MIA approach as described in Section 4.2.2. When the base learners are fitted
with the appropriate strategy for the missing values, they are combined to build the
forest. As in this strategy each base learner must deal with the missing values separately,
this approach is computationally very intensive, especially when a large number of trees
is grown.

Since Breiman’s random forests use CART decision trees as base learners, they are also
biased in favor of variables with many different outcomes, whereas conditional random
forests overcome this problem since they use conditional inference trees as base learners,
which are unbiased regarding this.

In R conditional random forests are implemented in the function cforest (see Table 5.3).
Similar as for conditional inference trees, the original implementation can be found in the
package party, while the new implementation, which is written completely in R, is in the
package partykit. [HZH23] According to Hothorn (2023) [HZH23], conditional random
forests have not yet been tested in much detail and their use is rather experimental.
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CHAPTER 5
Simulation Study

The use and comparison of the different missing data handling techniques of decision
trees and random forests is explored in an extensive simulation study by using data from
the UNIQA Insurance Group (UIG). The simulation study is thoroughly explained and
then the results are discussed.

5.1 Data
UNIQA Insurance Group, as most large insurances, is host of several large data sets.
The data owner of the provided data for the present study is the Natural Catastrophes
Competence Center (NCCC) which belongs to the Group Actuarial Division. The data
consists of a list of buildings and their physical attributes such as location, type of
construction, number of floors, etc. and of insurance-based attributes such as sum
insured, limits and deductibles, etc. As most real-world data sets, the provided data
contains missing fields because of, for example, missing answers or failures in manual
data entry processes. The missing building attribute the present study focused on is
the occupancy of the building, that is, the usage of the building, e.g. bakery, school,
family house, etc. Therefore, the aim of this study was to improve the data quality of
the provided data set by predicting the missing occupancy attributes in the data.

The use and comparison of different techniques for dealing with missing values in the
data while training a decision tree or random forest classifier are illustrated with the
provided data.

The data consists of various information assigned per building. These are

• the location, thus country, postal code, street, number, and latitude and longitude
coordinates
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• the insurance conditions such as the value of the building, limits1 and deductibles2

• the building use or occupancy

• building physical properties such as type of construction, number of floors, year
built and existence of a basement

• a classification of the insurance line of business3

UNIQA provided three data sets, data set A, B and C, of this type. As a first step
of data preparation, the three data sets A, B and C were merged. Only the insurance
conditions such as limits and deductibles change from data set to data set. Therefore,
the data set A was taken as a basis and columns with the insurance conditions given
in data set B and C were added in addition to 3 new binary columns specifying if the
buildings are included in each of the data sets or not.

The data was enriched with additional information, namely with the industry category
and the type of business, that was extracted from an industrial-based database from
UNIQA. The industry category for a building is assigned out of a predefined list of
options such as food, electronic, etc. and the type of business is a description of the
business done in the building. Each building has a unique identifier where the 3 first
digits represent the insurance branche, which was stored as an additional categorical
variable.

To meaningfully make use of the address information in the context of this study, the
publicly available data set called Corine Land Cover (CLC) 20184 was used. The data
set is coordinated by the European Environment Agency (EEA) and is part of the Pan-
European component of the Copernicus Land Monitoring Service. It provides detailed
information on land cover and land use status across Europe assigning every unit of
area one of 44 CLC classes5. Using the exact latitude and longitude coordinates when
available or the postal code when not, the address for each building in the data set was
mapped to one of these 44 CLC classes. An illustration of this data can be seen in Figure
5.1.

In the original data there are more than 375 different occupancy classes. To avoid facing
computational limitations, excessive complexity, or difficulties in evaluating performance
or with highly imbalanced classes, the different occupancy classes had to be grouped
to end up with a lower number of classes for the response variable. This was done
with a mapping of the occupancy to the NACE code. NACE denotes the French term
"nomenclature statistique des activités économiques dans la Communauté européenne" and

1https://www.insuranceopedia.com/definition/450/policy-limit (accessed 20.08.2023)
2https://en.wikipedia.org/wiki/Deductible (accessed 20.08.2023)
3https://en.wikipedia.org/wiki/Line_of_business (accessed 20.08.2023)
4https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (accessed 15.06.2023)
5https://land.copernicus.eu/user-corner/technical-library/corine-land-cover-nomenclature-

guidelines/html/ (accessed 15.06.2023)
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Figure 5.1: Corine land cover 2018

refers to the Statistical Classification of Economic Activities in the European Community.
It is a classification system of economic activities in the Eurpean Union (EU) which
uses four hierarchical levels. In this study only level 1 of the hierarchy was used, which
consists of 21 sections identified by alphabetical letters from A to U. The list of the level
1 sections with a description can be found in Table 5.1. [Nac]

The mapping of the occupancy to the NACE code was done by taking information
from several different resources. The first data source, that was used, is a commercial
ESG database. Via the screening solution it was possible to extract all company names
included in the database along with their NACE code. After adding the company name
for the individual buildings as additional column to the UNIQA data set, the information
of the NACE code from the commercial ESG database could be added. However, not all
companies included in the data are also contained in the ESG database.

For all other buildings, for that the company name was not found in the ESG database,
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Code Economic Area

A Agriculture, Forestry and Fishing
B Mining and Quarrying
C Manufacturing
D Electricity, Gas, Steam and Air Conditioning Supply
E Water Supply; Sewerage, Waste Management and Remediation Activities
F Construction
G Wholesale and Retail Trade; Repair of Motor Vehicles and Motorcycles
H Transportation and Storage
I Accommodation and Food Service Activities
J Information and Communication
K Financial and Insurance Activities
L Real Estate Activities
M Professional, Scientific and Technical Activities
N Administrative and Support Service Activities
O Public Administration and Defence; Compulsory Social Security
P Education
Q Human Health and Social Work Activities
R Arts, Entertainment and Recreation
S Other Service Activities
T Activities of Households as Employers; Undifferentiated Goods and

Services Producing Activities of Households for Own Use
U Activities of Extraterritorial Organisations and Bodies

Table 5.1: Statistical classification of economic activities in the European community

the industrial-based database from UNIQA was used as a second data source and the
NACE code was taken from there.

A third data source was used for completion. By taking the descriptions of the NACE
code for all the different hierarchy levels, a list of the most discriminating keywords was
created for each level 1 NACE code. These keyword lists were prepared using natural
language processing. So, for each level 1 NACE code the descriptions of the codes of all
the sublevels were joined at first and then tokenized. Case folding was applied to have all
words in lowercase letters and all the stop words were removed. Afterwards, punctuation,
numbers, dashes, and quotes were removed. To remove affixes from a word so that only
the stem of a word is left, stemming was used. Since the occupancy in the data provided
can be given in German or English, two different keyword lists were created per level 1
NACE code, one in German and one in English, and they were merged. After applying
the same natural language processing functions to the occupancy column of the data
set, it could be checked if the occupancy is included in one of the keyword lists for the
different level 1 NACE codes. If the occupancy was uniquely found in one keyword list,
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the corresponding NACE code was assigned. However, there were still buildings for that
the occupancy was not mapped to a NACE code up to this step.

For these buildings the occupancy group was used, which is a side information in the
data set denoting one group out of a predefined list of options for the occupancy of each
building. By using the occupancy group a manual mapping of all the occupancies in a
specific occupancy group to one NACE code could be defined. For all buildings with no
given occupancy group that were left, the occupancy was manually mapped to a NACE
code. In the end, the number of different output classes, that should be classified, could
be reduced from more than 375 to maximal 21.

After performing all the steps explained above, the prepared and processed data set
consists of 1620 buildings in total. After dropping the location variables, except the state,
as this information was already translated to the land use information, and the unique
identifier, as this was transcribed to the insurance branche, 52 explanatory variables were
left.

The number of observations for each class label is clearly not balanced. While there
are just a few observations in the data set with class label A or S, there are more than
500 observations with class label C. This unequal distribution of classes is depicted in
Figure 5.2. A classification problem with unequal class distribution is called imbalanced
classification.

Figure 5.2: Class frequencies

The data set has also missing values in the building physical properties, in the industry
category and type of business variables and in the state and land use features. Specifically,
the proportion of missing values in the building physical properties is higher than 90%
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and therefore they were removed before further study. The industry category and the
type of business is missing for 11.4% and 11.8% of the buildings, respectively. While
the land use could not be extracted for 6.6% of the buildings, the proportion of the
missing values for the state is 5.6%. Interestingly, a multivariate missingness pattern
can be observed. In all cases where industry category is missing, the type of business is
also missing. So, except for 6 instances either the values for both variables are given, or
the values are missing for both of them, which is the case for 170 buildings. A similar
phenomenon is given for the variables state and land use. For 75 buildings both values
for these variables are missing, while only land use is missing for 17 buildings. The
missingness pattern does not automatically indicate a special missingness mechanism.
While no relation between the missingness of variables and other observed or unobserved
information is known, graphical comparisons of the missingness pattern across different
subgroups of the data do not clearly indicate any dependencies of the missingness of the
specified variables and other variables in the data, while taking the missingness pattern
into account. An illustration of the proportions of missing values and of the missingness
pattern can be seen in Figure 5.3.

Figure 5.3: Proportions and combinations of missing values

For almost all categorical variables in the data set a one hot encoding was used, that
converts a categorical variable to multiple binary variables, one for each possible attribute
value of the variable, indicating whether or not that attribute value is assigned to an
observation. For the type of business variable, a manual embedding had to be found.
Several binary variables, 30 to be exact, were created by checking if specific keywords
such as hotel, hospital, bank etc. are included in the description of type of business or
not. The embeddings increased the number of variables to 136. As a missing value for
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a variable for one observation creates also missing values in all associated columns of
the embedding for this specific observation, an even more extreme missingness pattern
is observed after the embedding. An illustration is seen in Figure 5.4. Every column
illustrates one of the 136 variables, and the rows refer to the observations. Known values
are grey, while the missing values are highlighted in black. Before the embedding there
were 170 observations with missing values for the two variables industry category and
type of business and 75 observations with missing values for the two variables state
and land use, as can be seen in Figure 5.3. After the embedding, the 170 observations
have 47 missing values for all the columns of the embeddings for industry category and
type of business and the 75 observations have missing values for the 30 variables of the
embeddings for state and land use.

Figure 5.4: Missingness pattern after the embedding. The x-axis is showing the 136
variables.

5.2 Study Design
The aim was to find a suitable classification method to classify the NACE code, as grouping
of the occupancy, for the buildings in combination with an appropriate technique for
handling the missing values using the data set provided. An extensive simulation study
was conducted where different decision tree methods and random forest methods in
combination with various missing data handling techniques were compared. All methods
used in the simulation study are theoretically analyzed in Chapter 3 and 4.

The use and comparison of the different techniques are illustrated through an analysis
performed with the R software for statistical computing6, version 4.2.3.

In order to conduct a controlled simulation study, all observations containing missing
values for any variables were deleted to end up with a complete data set. This complete
data set consists of 1337 observations.

The data was randomly split into training and test data with a ratio of 80:20, meaning
80% of the observations were used for training the model, and the remaining 20% of the
observations were used to evaluate the model’s performance. For the simulation, different

6https://www.r-project.org/ (accessed 10.08.2023)
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percentages of artificial missing values were created in the training data. Artificially
creating missing values means that specific known values are deleted and considered
as missing. More precisely, missing values were introduced in 5%, 10%, 20%, 30% and
50% of the observations, respectively. The missingness pattern in the originally prepared
data set, as illustrated in Figure 5.3, showed that for approximately two-thirds of the
observations with missing values, both the industry category and the type of business
missing are missing, while for around one-third, both the state and land use are missing.
In the simulation study, this missingness pattern of the originally prepared data set
was taken into account in order to simulate a similar pattern. Therefore, in 5%, 10%,
20%, 30% and 50% of the observations of the training data, respectively, missing values
were artificially created in all columns of the embeddings of industry category and type
of business for two-thirds of these observations, and in all columns of the embeddings
for state and land use for the remaining one-third of these observations. Using the
training data with varying amounts of artificially created missing values and taking
the missingness pattern into account, different decision trees and random forests, in
combination with various missing data handling techniques, were trained, and evaluated
on the test data. All these steps were repeated 100 times to obtain an overview of the
variance and the stability of the methods and of the results.

The focus of the first part of the simulation study was on strategies of decision trees to
handle missing values directly during the training phase, without the need for explicitly
imputating them before fitting the model. The decision tree methods that were analyzed
are: conditional inference trees, CART (classification and regression trees), C4.5 decision
trees and C5.0 decision trees. For all these methods pre-implemented functions of R
packages with their default parameter values were used. The manually implemented
missing data handling techniques are the listwise deletion (LD) strategy and the separate
class (SC) method. Listwise deletion refers to deleting all rows of the data set containing
any missing values, which is easy to perform. By applying the separate class method,
the missing values in the categorical variables of the data set were replaced by a separate
category. This separate category can be denoted arbitrarily and it only has to be different
from the two categories that already denote the two classes of the binary variables.
Additionally, each of the aforementioned decision tree methods has a different built-
in strategy to handle missing values directly during the fitting. Whereas conditional
inference trees can incorporate missingness in attributes (MIA), CART decision trees
apply surrogate variables (SV) or eliminate observations with missing values (El), while
C4.5 and C5.0 decision trees can handle missing values using fractional cases (FC). All
these missing data handling strategies are pre-implemented in the respective R functions
of the decision trees. An overview about the different tested combinations of decision
trees, with their implementation in R and the version used, and the corresponding missing
data handling techniques is provided in Table 5.2.

Next, the focus was on strategies of random forests that handle the missing values
directly without an explicit imputation step. The random forest methods tested are
Breiman’s random forest and conditional random forests. For both of these methods
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Decision Tree Method R Function R Package (version) Missing Data
Handling Technique

Conditional Inference Tree ctree() partykit (1.2.19) Listwise Deletion
CART rpart() rpart (4.1.19) Listwise Deletion
CART tree() tree (1.0.43) Listwise Deletion
C4.5 J48() RWeka (0.4.46) Listwise Deletion
C5.0 C50() C50 (0.1.8) Listwise Deletion
Conditional Inference Tree ctree() partykit (1.2.19) MIA
CART rpart() rpart (4.1.19) Surrogate Variables
CART tree() tree (1.0.43) Elimination
C4.5 J48() RWeka (0.4.46) Fractional Cases
C5.0 C50() C50 (0.1.8) Fractional Cases
Conditional Inference Tree ctree() partykit (1.2.19) Separate Class
CART rpart() rpart (4.1.19) Separate Class
CART tree() tree (1.0.43) Separate Class
C4.5 J48() RWeka (0.4.46) Separate Class
C5.0 C50() C50 (0.1.8) Separate Class

Table 5.2: Tested combinations of decision tree methods and missing data handling
techniques

pre-implemented functions of R packages with their default parameter values were used.
Similar to decision trees, the manually implemented missing data handling techniques
applied are listwise deletion and the separate class method. Each of the aforementioned
random forests has also a different built-in strategy to handle missing values directly
during training without the need for imputation. Whereas conditional random forests
can incorporate missingness in attributes for each of its trees, Breiman’s random forests
can handle missing values through adaptive tree imputation. These strategies of handling
missing values in random forests are pre-implemented in the corresponding R functions
of the random forest methods. All tested combinations of random forests and missing
data handling techniques, along with their R implementations and the versions used, are
listed in Table 5.3. In the table, random forest is abbreviated with RF.

In addition to these various strategies of decision trees and random forests to deal with
the missing values in the data directly during the learning phase, two different imputation
methods were tested, namely single imputation and multiple imputation. Imputation
refers to the process of replacing the missing values with estimated reasonable values,
resulting in a complete imputed data set that can be used for further analysis, such
as training decision trees or random forests. The selected single imputation method is
the k-nearest neighbor (kNN) imputation, and the chosen multiple imputation method
is multivariate imputation by chained equations (MICE). Pre-implemented R packages
were used for both imputation methods, while the default parameter values of the
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Random Forest R Function R Package (version) Missing Data
Method Handling

Technique

Random Forest randomForest() randomForest (4.7.1.1) Listwise Deletion
Conditional RF cforest() partykit (1.2.19) Listwise Deletion
Random Forest randomForestSRC() randomForestSRC (3.2.1) Listwise Deletion
Conditional RF cforest() partykit (1.2.19) MIA
Random Forest randomForestSRC() randomForestSRC (3.2.1) Adaptive Tree

Imputation
Random Forest randomForesst() randomForest (4.7.1.1) Separate Class
Conditional RF cforest() partykit (1.2.19) Separate Class
Random Forest randomForestSRC() randomForestSRC (3.2.1) Separate Class

Table 5.3: Tested combinations of random forest methods and missing data handling
techniques

corresponding R functions were not changed. For kNN imputation, the default value for
the parameter k - representing the number of nearest neighbors used - is 5. For MICE, the
default number of multiple imputations, denoted by m, is 5. A classical CART decision
tree and Breiman’s random forest, respectively, were fitted on the imputed data sets
generated by kNN imputation and MICE imputation. Comparisons were made with the
strategies of CART decision trees and Breiman’s random forests that deal with missing
values directly without an explicit imputation step. All tested combinations of decision
trees and random forests, respectively, and strategies applied to handle missing values in
the data, along with the used R implementations and versions, are summarized in Table
5.4.

Classification R Function R Package (version) Missing Data
Model Handling Technique

(R Package version)

CART rpart() rpart (4.1.19) Listwise Deletion
CART rpart() rpart (4.1.19) Surrogate Variables
CART rpart() rpart (4.1.19) Separate Class
CART rpart() rpart (4.1.19) kNN (VIM 6.2.2)
CART rpart() rpart (4.1.19) MICE (mice 3.15.0)
Random Forest randomForest() randomForest (4.7.1.1) Listwise Deletion
Random Forest randomForest() randomForest (4.7.1.1) Separate Class
Random Forest randomForest() randomForest (4.7.1.1) kNN (VIM 6.2.2)
Ranodm Forest randomForest() randomForest (4.7.1.1) MICE (mice 3.15.0)

Table 5.4: Tested imputation methods
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After training the models using the training data, the model’s performance was measured
using the test data. The performance indicators used are the accuracy, the F1-Score, and
the confusion matrix to gain a more accurate understanding. The effectiveness of the
models was assessed and insights into the model’s strengths and weaknesses were gained
by analyzing the output of these performance indicators.

5.3 Results
In this chapter, the results of the simulation study are presented and analyzed. In the first
section, the performance of decision trees and random forests in predicting the NACE
code for buildings included in the data set is assessed. Various strategies for handling
missing values in the data directly during the learning phase are tested. Afterwards, the
performance of a classical decision tree and random forest is evaluated by training them
on imputed data sets resulting from kNN imputation and MICE imputation, respectively.

5.3.1 Decision Trees/Random Forests Missing Data Handling
Techniques

First, the performance of the aforementioned decision trees in predicting the NACE code,
along with the specified strategies for handling the missing values in the data directly,
is presented. As described in Chapter 5.2, the training data contains missing values in
5%, 10%, 20%, 30% and 50% of the observations, integrating the missingness pattern
analyzed above.

In Figure 5.5, the results are presented for missing values in 10% of the training data.
The boxplots represent the performance measures calculated while executing the 100
runs. Whereas the y-axis of Figure 5.5a depicts the accuracy, the y-axis of Figure 5.5b
depicts the F1-score. Each boxplot outlines the distribution of the performance measure
of predicting the NACE code using a specific decision tree method in combination
with a missing data handling technique. The concrete combination of missing data
handling technique and decision tree is stated below each boxplot, separated by an
underscore. For example, LD_ctree refers to listwise deletion (LD) combined with
conditional inference trees implemented in the R function ctree. In total, the results of
all 15 tested configurations, which are listed in Table 5.2, are shown.

Figure 5.5a demonstrates that the median accuracy for all decision tree methods is
between 75% and 87%. Conditional inference trees exhibit the poorest performance with
a median accuracy of 75-78% across all three missing data handling techniques - listwise
deletion, missingness incorporated in attributes (MIA), and the separate class method.
While the median accuracy does not significantly change accross the missing data handling
technique used, MIA shows slightly higher variance. C4.5 and C5.0 decision trees perform
the best with a median accuracy of 86-87%. The figure proves that both these methods
exhibit similar accuracy and that the choice of the missing data handling technique does
not have a significant impact on the performance. Listwise deletion, fractional cases, and
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(a) Accuracy

(b) F1-score

Figure 5.5: Performance of decision tree methods with missing values in 10% of the data

the separate class method yield identical results. CART decision trees produce moderate
results with a median accuracy of 78-80%. While they outperform conditional inference
trees, they perform worse than C4.5 and C5.0 decision trees. The two implementations of
CART, namely rpart and tree, produce slightly different outcomes: rpart achieves a
higher accuracy than tree of 1-2% accross all missing data handling techniques. While
the performance of tree deos not significantly vary with the missing data handilng
technique used, it can be observed that the built-in missing data handling technique,
referred to as elimination (El), yields the exact same results as listwise deletion (LD) -
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the combinations El_tree and LD_tree lead to the exact same boxplots. Similarly, the
median accuracy remains relatively consistent across all missing data handling techniques
- listwise deletion, surrogate variables, and the separate class method - for rpart.
In Figure 5.5b, the results are presented similar to Figure 5.5a, but the F1-score instead
of the accuracy. The figure depicts the distribution of F1-scores for different decision tree
methods in combination with various missing data handling techniques for predicting
the NACE code. Compared to the accuracy measure, the median F1-score is lower, and
there is a greater variability in F1-scores across all combinations of decision tree methods
and missing data handling techniques. Nevertheless, the figure shows that the F1-score
significantly changes with the decision tree method used but it stays constant across
the different missing data handling techniques for a fixed decision tree method. C4.5
and C5.0 decision tree methods consistently perform the best, regardless of the chosen
missing data handling technique, achieving a median F1-score of 78-80%. These methods
show not only an overall strong performance, as observed in Figure 5.5a, but also exhibit
relatively good performance across all classes, as seen in the F1-score. Achieving an
average F1-score of up to 80% is possible.
The results in Figure 5.5 demonstrate that, when dealing with missing values in 10% of
the training data, the classification accuracy and the F1-score for predicting the NACE
code are primarily influenced by the choice of the decision tree classifier rather than the
specific missing data handling technique applied.
In Figure 5.6, the results are presented for missing values in 50% of the training data.
Similar to previous figures, the boxplots show the accuracy obtained while executing
the 100 runs, and the combination of decision tree method and missing data handling
technique is stated below each boxplot. The visualization closely resembles Figure 5.5a.
Conditional inference trees exhibit the poorest performance with a median accuracy
of 71-74%, while C4.5 and C5.0 decision trees consistently perform the best with a
median accuracy of 81-84%, depending on the missing data handling technique. CART
decision trees perform moderate with a median accuracy of 72-77%. The figure shows
that the choice of the decision tree method strongly influences the performance, while
the impact of the different missing data handling techniques used is minimal. Compared
to the results with missing values in only 10% of the training data, the accuracy is
lower when dealing with missing values in 50% of the data. While conditional inference
trees achieve an average accuracy between 70% and 74%, depending on the missing data
handling technique, C4.5 and C5.0 decision trees achieve an average accuracy of up to
84%. Overall, also the variance of the accuracy is higher, when dealing with more missing
values, particularly for conditional inference trees.
For all other amounts of missing values in the data, that were tested, the results look
similar. No matter if there are missing values in 5%, 10%, 20%, 30% or 50% of the
training data, the results show that the performance of the classifier used highly depends
on the decision tree method and hardly on the strategy that is used to handle the missing
values. Additionally, the performance decreases as the number of missing values in the
data increases. This is clearly observed in Figure 5.7.
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Figure 5.6: Accuracy of decision tree methods with missing values in 50% of the data

Next, the performance is evaluated of the above defined random forests in predicting the
NACE code, along with the random forest missing data handling techniques specified.
All tested combinations are listed in Table 5.3. The methods are evaluated for 5%, 10%,
20%, 30% and 50% of the data containing missing values, while the aforementioned
missingness pattern is reflected in the data.

In Figure 5.8, the results are presented for missing values in 10% of the training data. The
boxplots visualize the distribution of the performance measures evaluated during the 100
runs. Whereas in Figure 5.8a the accuracy is depicted, the F1-score is depicted in Figure
5.8b. The tested combination of random forest and missing data handling technique is
indicated below each boxplot. The R function randomForest is abbreviated as "rF"
and randomForestSRC as "rFSRC".

Figure 5.8a shows that random forests achieve a median accuracy of 79-91%, depending
on the chosen random forest method and missing data handing technique. Compared to
decision trees, random forests exhibit better performance in terms of accuracy. Among
all tested random forests, Breiman’s random forests perform the best, with a median
and average accuracy of around 90%. The average accuracy is roughly equal for all
missing data handling techniques and for both implementations of random forests, that
are available in R through the functions randomForest() and randomForestSRC.
Conditional random forests perform worst, with a median and average accuracy of
approximately 77-79%, which is almost identical to the accuracy achieved by a single
conditional inference tree. Overall, it can be observed that the performance is highly
dependent on the random forest method used and remains almost unaffected by the
selected missing data handling technique.
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Figure 5.7: Averaged accuracy of decision tree methods for different proportions of
missing data

Figure 5.8b presents the distribution of F1-scores that is achieved by the random forest
methods. In contrast to the accuracy, the median F1-score is lower for all specifications
and the variability of the results is higher. All Breiman’s random forests achieve a median
and average F1-score of approximately 87%, whereas onditional random forests exhibit
a median and average F1-score of 76-77%, across all missing data handling techniques.
Similar as for decision trees, the figure shows that the performance on predicting the
NACE code heavily relies on the random forest method applied and not on the missing
data handling technique.

In Figure 5.9 the results for missing values in 50% of the data are visualized. The boxplots
depict the distribution of the accuracy obtained while executing the 100 runs. Breiman’s
random forests achieve an accuracy of 86-88% and conditional random forests exhibit an
accuracy of 70-75%. The behavior of the random forest methods, along with their missing
data handling techniques, is similar to that observed when there are missing values in
only 10% of the data. While the overall accuracy is of course lower, the figure shows
that the choice of the random forest method has significant impact on the performance.
Additionally, it is to observe that the performance hardly depends on the missing data
handling technique.

For the other tested amounts of missing values in the training data, the results of the
random forest methods, along with the tested missing data handling techniques, look
similar. However, the performance tends to decrease as the number of missing values
increases. The average accuracy of all specifications of random forest method and missing
data handling technique in classifying the NACE code is displayed in Figure 5.10 for all
considered amounts of missing values in the training data.
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(a) Accuracy

(b) F1-score

Figure 5.8: Performance of random forest methods with missing values in 10% of the
data

5.3.2 Imputation
In this section the performance of a classical decision tree and a random forest method
fitted on imputed data to classify the NACE code of buildings is evaluated. The missing
values in 5%, 10%, 20%, 30% and 50% of the training data, respectively, are imputed
once by applying kNN imputation with k = 5, and once by applying MICE imputation
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Figure 5.9: Accuracy of random forest methods with missing values in 50% of the data

Figure 5.10: Averaged accuracy of random forest methods for different proportions of
missing data

with m = 5. A CART decision tree and a Breiman’s random forest are then built with
the imputed training data sets. Their performance is compared to CART decision trees
and Breiman’s random forests along with strategies to handle the missing values directly
without an explicit imputation step. All tested combinations are listed in Table 5.4.

In Figure 5.11, the accuracies of the tested CART decision trees in classifying the NACE
code, obtained while executing the 100 runs, are presented as boxplots. Figure 5.11a
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presents the results for having missing values in 5% of the data, Figure 5.11b for having
missing values in 20% of the data and Figure 5.11c shows the results for having missing
values in 50% of the data. To train the CART decision trees, the R function rpart was
used. The concrete missing data handling technique that was used in combination with
CART is stated below each boxplot. The first three techniques shown in each figure,
which are listwise deletion, surrogate variables, and separate class method, are strategies
of decision trees to handle the missing values directly during training the model, while
kNN and MICE are the two imputation methods tested. For missing values in 5% of
the data, the median accuracy is roughly the same for all techniques, as seen in Figure
5.11a. It ranges from 80-82%. Therefore, the strategies of decision trees to handle missing
values directly during training the model are competitive to kNN imputation, where an
explicit additional imputation step is needed before training the model. Even decision
trees trained on imputed data resulting from more complex imputation methods like
MICE do not show an improvement in the performance.
In Figure 5.11b and 5.11c, it can be seen that the accuracy decreases with increasing
number of missing values in the data. Also with higher amount of missing values, it is
observed that CART decision trees perform similarly independent of the missing data
handling technique used. CART trained on kNN imputed data performs slightly better
than CART trained on MICE imputed data, with a median accuracy of 79% compared
to 77% for missings in 20% of the training data. Additionally, even for more missing
values in the data, imputation does not outperform strategies of decision trees to deal
with the missing values directly.
Figure 5.12 presents the accuracies of the tested Breiman’s random forests in classifying
the NACE code, obtained while executing the 100 runs, as boxplots. The individual
subfigures show the results for having 5%, 20% and 50% missing values in the training
data, respectively. The missing values in the training data were imputed by using a
single and a multiple imputation method, namely by kNN and MICE imputation, and a
classical random forest was trained on these imputed data sets. For the random forest
classifiers the R function randomForest was used. Their accuracy was evaluated and
compared to the accuracy of random forests that use strategies to handle the missing
values directly. Therefore, for each of the three subfigures, the first two boxplots represent
the performance of random forest missing data handling techniques, namely listwise
deletion and separate class, and the last two boxplots represent the performance of
random forests trained on imputed data.
When having missing values in 5% of the data, the performance of all tested specifications
of random forests and missing data handling techniques perform equally well, as seen
in Figure 5.12a. The strategies of random forests to handle the missing values directly
during training them, are competitive to single imputation methods like kNN and to
even more complex multiple imputation methods like MICE. All techniques reach an
average accuracy of more than 90%.
For more missing values in the data, the accuracy decreases for all combinations of
random forests and missing data handling techniques. Figure 5.12b shows the results for
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(a) Missing values in 5% of the data (b) Missing values in 20% of the data

(c) Missing values in 50% of the data

Figure 5.11: Decision tree methods with imputed data

missing values in 20% of the data. While listwise deletion or the separate class method
along with random forests are competitive to random forests trained on kNN imputed
data, achieving a median accuracy of 90%, random forests trained on MICE imputed
data performs slightly worse with 89%. The results for having missing values in 50% of
the data are shown in Figure 5.12c. Small variations in the performance of the different
techniques can be observed. Keeping in mind the spread of the results, these deviations
are rather small and all of the techniques perform rather equally well. The results for
having missing values in 10% or 30% of the data lead to the same observations.
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(a) Missing values in 5% of the data (b) Missing values in 20% of the data

(c) Missing values in 50% of the data

Figure 5.12: Random forests with imputed data

5.4 Discussion
The simulation study examined the performance of decision trees and random forests in
classifying the NACE code for buildings in the data set provided by UNIQA, along with
different strategies to handle the missing values in the data directly during training the
model or with a single or multiple imputation step before training the model. The aim
was to find appropriate missing data handling techniques along with a decision tree or
random forest classifier for different proportions of missing data while considering the
specific missingness pattern explained above.

Considering various factors such as the size and structure of the data set, the missingness
pattern and the impact of misclassifications, the threshold for the accuracy for considering
results as satisfactory within the simulation study was defined as 80% and the threshold
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for the F1-score was defined as 75% for missing values in 10% of the training data, which
matches the median performance of a classical CART decision tree combined with the
simple approach of listwise deletion for handling the missing values in the data. It is a
threshold that is feasible to achieve, but one that ensures reliable results at the same time.
The thresholds were decreased for higher amounts of missing values in the training data.
Therefore, for missing values in 50% of the data the results are considered as satisfactory
if an accuracy of more than 75% and an F1-score of more than 70% is achieved.

Among the tested decision tree methods, sufficient good results in the context of this
study were achieved. For missing values in 10% of the training data, C4.5 and C5.0
decision trees exhibit a median accuracy of 86-87% and median F1-score of 78-80%.
These values clearly exceed the chosen threshold values. Conditional inference trees
exhibit poor performance with a median accuracy of 75-78% and CART decision trees
show sufficient good results with a median accuracy up to 80%.

One possible reason is that C4.5 and C5.0 decision trees use the information gain ratio
to evaluate the quality of splitting attributes during training the model compared to
CART decision trees which use the Gini index or information index. The information
gain ratio is especially suitable when dealing with mixed, continuous, and categorical
variables in the data. Furthermore, it considers the intrinsic information of a variable.
This prevents bias towards variables with many distinct values. [Qui93] In order to prove
and understand the influence of the information gain ratio comparison tests would need
to further be performed. By using the exact same implementation of decision trees once
with the information gain ratio and once with the Gini or information index as splitting
criterion and by using cross-validation the performance could be directly compared based
on several performance metrics. Afterwards statistical tests could be applied to test the
significance of the difference in the performance. On the other hand, a possible reason
for the poor performance of conditional inference trees is the presence of imbalanced
classes in the data, as the permutation tests performed when building a conditional
inference tree are affected. Tests with balanced datasets, achieved by applying resampling
techniques, would need to be performed to prove this. Another reason may be nonlinear
relationships in the data. An assumption of the statistical tests in conditional inference
trees are linear relationships between the explanatory variables and the output variable.
In case of non-linear relationships, the performance may suffer. [May] To give evidence
for this, statistical tests would need to further be performed to test the linearity of the
relationships between the explanatory variables and the output variable.

C4.5 and C5.0 decision trees show similar performance since they rely on the same key
concepts as explained in Chapter 4.3. Similarly, the R functions rpart and tree are
both implementations of CART decision trees and lead therefore to a similar performance.
The main differences of these two implementations are the built-in strategies for handling
missing values. As noted in Section 4.1.2, the built-in missing data handling technique of
the function rpart handles missing values in a more ambitious way by using surrogate
variables, as proposed by the theorie of CART decision trees, than the built-in missing
data handling technique of the function tree. Therefore, rpart comprehensibly leads to
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a slightly higher median accuracy of 1-2% than tree, when using the built-in techniques.
The built-in missing data handling technique of the R function tree, referred to as
elimination (El), simply eliminates or ignores observations with missing values. This is
equivalent to listwise deletion (LD) and this is the reason why the combinations LD_tree
and El_tree yield the exact same results in previous figures, such as Figure 5.5.

Among the tested random forests, Breiman’s random forests exhibit high performance
in predicting the NACE code for the buildings with a median accuracy of 90% while
conditional random forests perform with a median accuracy of only 77-79%. The
explanation for the poor performance of conditional random forests may be the same
as for conditional inference trees since the forest consists of an ensemble of conditional
inference trees.

For each decision tree and random forest method, no significant difference in the per-
formance across the techniques for handling the missing values in the data could be
observed. All strategies of decision trees and random forests to handle the missing
values directly during training the model led to the same performance as simple listwise
deletion, where the observations containing missing values are just dropped. The special
missingness pattern reflected in the data is an explanation, as addressed in detail again
below. Techniques of decision trees and random forests to handle missing values improve
the performance compared to considering only the complete observations, if values are
only occasionally missing. If for observations many values are missing and especially
many of the most important ones as in the study data set and as evaluated in Chapter 6.3,
the performance is not improved when considering them. In case of CART decision trees,
for example, surrogate variables are used to handle the missing values in the data. When
deciding on a split variable at one node of the tree, only the observations with known
values of the specific considered attribute are used in the calculation of the splitting
criterion. Since observations with missing values contain missing values for almost all
variables worth to consider for the split variable due to the missingness pattern, they
only have minor influence on deciding on the primary split variable. The same applies to
the choice of the surrogate variables. Furthermore, as soon as the primary split variable
and all surrogate variables are selected at one node, the observations with the missing
values are assigned to a child node based only on surrogate variables ranked further
down the list, since these observations have missing values for many important surrogate
variables due to the missingness pattern. Therefore, these observations might end up in
child nodes, where they don’t fit.

Neither single imputation, using kNN, nor multiple imputation, using MICE, could
improve the classification compared to strategies of decision trees and random forests
to handle the missing values directly. One possible reason is the quality of the imputed
data. Due to the special missingness pattern, the imputation is very difficult as further
explained in the next paragraph. In order to prove this, further tests about the quality
of the imputed data might be performed in the future, by comparing the distribution
and descriptive statistics for the observed and imputed data or by performing graphical
checks.
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Overall, these insights shows that observations containing missing values don’t improve
the classifier in the study data set. Nevertheless, several results and findings from other
studies in the literature show that appropriate handling of missing values can indeed
improve the classification. However, it is very difficult to impute or to handle the missing
values in the data set consisting of buildings in another meaningful and appropriate
manner due to the missingness pattern in the data. For two-thirds of all the observations
containing missing values both variables, industry category and type of business, and
consequently all values of their embeddings are not known. This results in missing
values for 47 columns of the prepared data set. For the remaining one-third of all the
observations containing missing values both of the variables, state and land use, and as a
consequence all values of their embeddings are not known, resulting in missing value for
30 columns in the prepared data set. Therefore, if an observation has a missing value,
it has missing values for multiple variables and less information remains that can be
used for imputation or handling the missing values in another way. Furthermore, the
variables containing missing values, like industry category and type of business, belong to
the most important variables for predicting the NACE code and it is difficult to impute
them based on the other information given for an observation. The imbalanced classes in
the data add another challenge for the classification.

All in all, Breiman’s random forests exhibit high performance in classifying the NACE
code, with an average accuracy of up to 90%, while missing values are present in the
training data with the specific missingness pattern described above. They achieve an
accuracy and F1-score that is clearly above the threshold and therefore considered to be
highly acceptable within the context of this study. They are worthwile to be taken into
account to predict the missing NACE code attributes in the data set and consequently
improve the data quality. Both R implementations of random forests, randomForest
and randomForestSRC, achieve almost identical results, since both of them are based
on the same key concepts of Breiman’s random forests.

While the performance decreases with increasing amount of missing values, the accuracy
and F1-score are higher than 86% for missing values in 5%, 10%, 20%, 30% or 50% of
the training data. The average accuracy ranges from 91% for missing values in 5% of the
data to 87% for missing values in 50% of the data. The explanation is that the higher the
amount of missing values in the data the higher the loss of information and consequently
the lower the available number of observations in case of the listwise deletion method.
Therefore, the more missing values the less information is available that the model can
use for the classification. As discussed above, the handling of the missing values such as
imputation is very difficult due to the missingness pattern and therefore observations
containing missing values don’t improve the classifier in this study data set. This means
that imputed values cannot compensate the loss of information of missing values in the
data set.

The performance of the random forest hardly depends on the technique that is used to
handle the missing values in the data. All strategies of random forests to handle the
missing values directly during training them lead to the same results. So, simple listwise
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deletion and the separate class method achieve the same accuracy as more complex
adaptive tree imputation. Imputation of the missing values before training the random
forest does not exhibit improvement compared to strategies of random forests to handle
missing values directly, neither kNN imputation nor more complex MICE imputation.

Therefore, for the UNIQA data set with the specific missingness pattern reflected in
especially less than 20% of the data, it is advisable to proceed arbitrarily in the choice of
the missing data handling technique, as long as a well performing classification model
like random forest is used.
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CHAPTER 6
Case Study

In the following case study a final classification model to predict the NACE code
for buildings, that is, the economic area attributed to a building such as agriculture,
manufacturing, education, etc., was trained and evaluated by using the data set provided
by UNIQA.

6.1 Classification Model
The aim of the case study was to train and evaluate a final classification model that
predicts the NACE code by using the original data set with the original missing values
provided by UNIQA. For this purpose, an appropriate decision tree or random forest
classifier along with an appropriate strategy to handle the missing values in the data had
to be chosen.

For this case study, the full provided data set was used. As examined in Chapter 5.1, the
full data consists of 1620 observations and 136 explanatory variables after applying one
hot encoding embeddings or manual embeddings to all categorical variables. The data
set contains a specific missingness pattern, shown in Figures 5.3 and 5.4. For most of
the observations, the values are either known for all columns of the embeddings of type
of business and industry category or missing for all of them. The same relation exists
between the variables state and land use, meaning that the values of the columns of the
embeddings of state and land use are either known or missing for all of them.

In total, 283 observations contain missing values, that it, around 17.5% of all observations
of the data contain missing values. From these, around 27% contain missing values for all
columns of the embeddings of both variables state and land use and around 60% contain
missing values for all columns of the embeddings of both variables industry category and
type of business.
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According to the simulation study in Chapter 5, Breiman’s random forest classification
models achieve an accuracy of more than 86% on the provided data for missing values in
any percentage of the observations of the data between 0 and 50. And the performance
hardly depends on the missing data handling strategy that is used in combination with a
random forest classifier. Simple listwise deletion or the separate class method exhibit
similar performance as the built-in random forest adaptive tree imputation. Applying
imputation to the missing values in the data in a separate step before fitting the random
forest doesn’t improve the performance compared to the mentioned strategies of random
forests to handle the missing values directly during fitting the model.

Therefore, an arbitrary strategy among the analyzed ones to handle the missing values
in the data can be chosen in combination with a random forest classifier. The chosen
option to classify the NACE code for buildings is a random forest classifier along with
the separate class method to handle the missing values directly during fitting the model
because the separate class method is an easy technique where no explicit imputation step
is needed before.

6.2 Study
A random forest classifier along with the separate class method to handle the missing
values in the data was used to predict the NACE code. The case study was conducted
with the R software for statistical computing while a train-test split with a ratio of 80:20
was used. That is, random 80% of the observations of the full data set, including missing
values, were used to train the model and the remaining 20% of the observations of the
full data set were used to evaluate its performance. Making a random train-test split
with a ratio of 80:20, fitting the random forest on the training data and evaluating its
performance on the test data was repeated 100 times to obtain an indication about the
stability of the results. For the random forest the R function randomForestSRC was
used and the separate class method to handle the missing values in the data as a separate
class in the random forest was implemented manually. The accuracy and the F1-score
were used as performance criteria.

Figure 6.1 presents the performance of the random forest predicting the NACE code
of buildings while using the separate class method to handle the missing values in the
data directly during training the model. Figure 6.1a shows the accuracy and Figure
6.1b shows the F1-score evaluated while executing the 100 runs as boxplots. The model
performance has an average accuracy of 0.918 over the 100 runs and an average F1-score
of 0.875. Except for some outliers, all measures of the 100 runs are close to the average.
Therefore, not only the overall performance is good but also the average performance on
all different classes.

Figure 6.2 presents the results of the random forest per class, and therefore per NACE
code. The F1-scores calculated in the 100 runs per class are shown as boxplots. Since
there are no observations with NACE code A or S in any of the 100 test sets, there is
no boxplot shown for these classes. While the median F1-score for many of the NACE
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(a) Accuracy (b) F1-score

Figure 6.1: Performance of random forest with separate class method

codes is above 0.8, the median F1-score is above 0.6 for all the classes. There is no single
class where the performance is extremely poor.

Comparing this visualization with Figure 5.2 of the number of observations per class,
a dependence can be observed. The median F1-score is lower and the variance of the
F1-scores is higher the smaller the class, that is, the less representatives of this class
are included in the training data. This can be observed especially for the classes F, N
and R. The number of observations in these classes is small and this is reflected in the
F1-score. Compared to the other classes, the median F1-score for F, N and R is below
0.8, respectively. On the other side, the F1-score is high and stable especially for the
classes C, G and H, as these classes are large and therefore have many representatives in
the training data.

It was also analysed if the performance of a class is related to an extreme missingness
pattern in the observations of that specific class by doing manual graphical checks.
However, all classes exhibit a similar missingness pattern as the total data set and
the classes with a worse performance don’t show a different, more extreme missingness
pattern.

A comprehensive view of the performance and the behavior of the model is delivered by
the confusion matrix of one of the 100 random forests fitted along with the separate class
method, shown in Figure 6.3. That specific random forest produced an accuracy of 95%,
that is, 95% of the observations are in the diagonal of the confusion matrix. Only 5% of
the observations were misclassified and are therefore off the diagonal of the confusion
matrix. It is to observe that 3 out of 21 observations with NACE code L were classified
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Figure 6.2: F1-score per class of random forest with separate class method

to have NACE code C. This indicates that the model has difficulties to decide between
NACE code L and C for observations having actually NACE code L.

6.3 Variable Importance

The variable importance (VIMP) for a variable x of the data is defined by the difference
between the prediction error calculated using the original ensemble and the prediction
error calculated for the ensemble where all values of variable x were randomly permuted.
It often indicates the same as the change in prediction error for a random forest trained
with and without variable x. Large values for the importance of variables specify
variables with high predictive ability, while low values specify variables with no predictive
ability. [IKBL08]

The importance of the 25 most important variables evaluated by a random forest along
with the separate class method are depicted in Figure 6.4. Every bar refers to the
importance of one variable, while the variables are ordered from top to bottom according
to their importance.

The visualization shows that especially the variables of the embeddings of type of business
and industry category are very predictive. 15 out of the 25 most important variables are
from the embeddings of these variables, while the most important variable is one column
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Figure 6.3: Confusion matrix of random forest with separate class method

of the embedding of the variable industry category. Further discussion is given in Section
6.4.

6.4 Discussion
The aim of the case study was to train and evaluate a final classification model that
predicts the NACE code by using the original data set with the original missing values
provided by UNIQA. For this purpose, a random forest classifier along with the separate
class method to handle the missing values directly during fitting the model was chosen.

The model achieved an average accuracy of 0.918 over the 100 runs and an average F1-
score of 0.875. In the context of this study, these are highly satisfactory results, as these
values clearly exceed the threshold values defined within the simulation study. Compared
to the data with artificially created missing values, the performance is 1-2% higher with
the full data set and the originally included missing values, since more observations are
available in the full data set to train the model. While considering the aim, the data size,
the data structure, the missingness pattern and the impact of miscalssifications, these
are highly acceptable results for the given project. The model does not only yield an
overall good performance, as seen in the accuracy, but also performs well on all different
classes, as seen in the F1-score. Based on these results the model is recommended to
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Figure 6.4: Variable importance of random forest with separate class method

be used in practice to predict the NACE code for the buildings to improve the quality
of the data set. Reliable analysis can be done on the improved data set in the future,
since the impact of the misclassifications, which concerns only a small number, is minor
proven by the confusion matrix.

While an average F1-score of 0.875 is achieved, a dependence between the size of the
classes and the classification performance can still be observed, when comparing Figure
5.2 and Figure 6.2. The median F1-score is lower and the variance of the F1-scores is
higher the smaller the class, that is, the less representatives of this class are included in
the training data. This is plausible since the larger the sample size and the larger the
number of observations of a specific class available for training the model, the better the
model performs for that class.

A detailed view of the performance is delivered by the confusion matrix of one trained
random forest, with that the impact of misclassifications can be better understood. Figure
6.3 shows that 3 out of 21 observations with NACE code L were classified to have NACE
code C and this indicates that the model struggels to distinguish between these classes.
Since this only affects 14.3% of the observations with NACE code L, it highlights only
minor weaknesses of the model’s performance for class L. To generalize this statement,
further test by considering the performance of multiple models, e.g. by analysing the
confusion matrix of all 100 runs, would need to be performed.

As seen in Figure 6.4, the variables that are most important and have the greatest

68



6.4. Discussion

predictive ability, are these of all variables that contain most missing values. Additionally,
if an observation has a missing value for one of the columns of the embeddings of industry
category and type of business, then it has missing values for all columns of the embeddings
without exception, as the missingness pattern shows. Therefore, many of the predictive
variables are not available for assigning such observations with missing values for the
variables industry category and type of business to nodes of the trees and only less
important variables can be used.

This is also related to the outcome of the simulation study that simple techniques for
handling the missing values in the data, like listwise deletion or the separate class method,
perform as good as more complex approaches or as single and multiple imputation
methods. When the most important variables, like all variables of the embeddings of
industry category and type of business, are missing, there is only little or not important
information left to replace the missing values with reasonable values or to improve the
classification model with the help of these observations while handling the missing values
directly during training the model.
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CHAPTER 7
Conclusion

The thesis examines a single imputation method, namely k-nearest neighbor (kNN)
imputation, and a multiple imputation method, namely multivariate imputation by
chained equations (MICE). It analyzes 15 combinations of decision trees and missing data
handling techniques and 8 combinations of random forests and missing data handling
techniques. These missing data handling techniques are strategies that are applied by
decision trees or random forests to handle missing data directly at training time without
the need of an explicit imputation step.
For the data set provided by UNIQA Insurance Group, outcomes of the simulation study
reveal similar performance across all tested missing data handling techniques, while using
a specific decision tree or random forest classifier, due to the special missingness pattern
reflected in the data. However, the choice of the decision tree or random forest method has
significant impact on the performance. Among all tested decision tree methods, C4.5 and
C5.0 decision trees exhibit an average accuracy of 81-87%, whereas conditional inference
trees yield an average accuracy of 71-78%, depending on the number of artifically created
missing values in the training data. CART decision trees lead to an accuracy of 72-80%,
meaning they achieve a higher accuracy than conditional inference trees but a lower
accuracy than C4.5 and C5.0 decision trees. Among all tested random forest methods,
Breiman’s random forests exhibit excellent performance with an average accuracy of
86-90% compared to conditional random forests, which achieve an average accuracy of
70-79%. Breiman’s random forests also outperform all tested decision tree methods. The
study shows that the higher the amount of missing values in the data, the lower the
prediction accuracy. However, even with missing values in 50% of the training data, all
methods exhibit an accuracy of more than 70%.
A Breiman random forest in combination with the separate class method to handle
the missing values in the training data is chosen as final model and fitted with the full
provided data set to classify the NACE code for buildings within a case study. An
average accuracy of 91% and average F1-score of 86% are achieved, when fitting and
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testing the model 100 times with different train-test splits. The performance differs
for the individual classes. Depending on the number of observations of a specific class
in the training data, the performance is higher the higher the number of observations.
Furthermore, the study outlines the importance of all variables. Especially the variables,
that contain the information of the type of the business and the industry category of the
buildings, are the most predictive variables with the highest importance.
The findings of the thesis have successfully addressed all research questions formulated in
Chapter 1.2 of the thesis: By using the data set provided containing a special missingness
pattern, imputation of missing values and strategies for handling missing values directly
in decision trees and random forests does not significantly improve the classification
accuracy compared to classification taking only the complete instances into account.
Simple strategies of decision trees and random forests that directly handle missing values
are competitive to single imputation methods and even to complex multiple imputation
approaches. The NACE code of buildings, as grouping of the occupancy, can be accurately
predicted with an accuracy of 91% by using a Breiman’s random forest along with the
separate class method for handling the missing values in the training data.
The thesis provides insights into decision tree and random forest classification and into
missing values, as well as their intersection. Previously unexplored comparisons between
various combinations of decision trees and random forests, respectively, and missing data
handling techniques are outlined. A focus is put on decision tree and random forest
strategies to handle missing values directly at training time with no explicit imputation
step before fitting the model. The importance of analyzing the missingness pattern of
the data is highlighted, as this significantly influences the performance of missing data
handling techniques. In this sense, new perspectives for future research and applications
are provided.
Beyond the theoretical implications, the outcomes of the thesis provide an example of a
practical application in the industry with a real-world data set, while dealing with one of
the most relevant inherent challenges, which data incompleteness. Real-world data sets
are more often than not incomplete, not large enough and immense effort needs to be
put in data cleaning and preparing. Only after proper data pre-processing, reliable and
robust results can be achieved. This is seen within this study where a major part of the
work was put on data preparation and exploration. The thesis also shows the importance
of understanding and of adequate handling the limitations of real-world data sets, such as
missing values and their patterns. The thesis additionally demonstrates that the existing
machine learning models can be successfully applied to make predictions to improve the
quality of real-world data and consequently to improve the accuracy of the results of
the analyses performed with these data. Within this study, a random forest classifier
combined with the separate class method to handle the missing values in the data was
successfully trained to classify the NACE code of buildings. This classifier is used to
improve the data quality of the industry data set by predicting missing NACE codes.
In future work, a greater focus should be put on the understanding of the performance
of the tested methods and the correlation between the algorithms and the data. The
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used data set within this study contains a specific missingness pattern, which is the
basis for the explanation of the outcomes, reflecting special features and limitations as
every real-world data set. It is therefore adviced to conduct controlled simulation studies
with multiple different real-world data sets. This would lead to more generalized results,
which would contribute to the understanding of the algorithms and their relation to the
data. Furthermore, the focus should be extended to missing values in the test data as
well. While some of the tested approaches, and especially the one that is used for the
final fitted model - Breiman random forest along with the separate class method -, can
also handle missing values in the test data, it is appropriate to conduct a further study
in this direction. Moreover, in the context of the data provided, missing values could
theoretically appear for new observations.
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