
Analysis and Bypass of Android
Application Anti-Reverse
Engineering Mechanisms

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering und Internet Computing

eingereicht von

Paul Kalauner
Matrikelnummer 11776818

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Thomas Grechenig
Mitwirkung: Raphael Kiefmann

Clemens Hlauschek

Wien, 28. August 2023
Unterschrift Verfasser Unterschrift Betreuung

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Analysis and Bypass of Android
Application Anti-Reverse
Engineering Mechanisms

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Paul Kalauner
Registration Number 11776818

to the Faculty of Informatics

at the TU Wien

Advisor: Thomas Grechenig
Assistance: Raphael Kiefmann

Clemens Hlauschek

Vienna, 28th August, 2023
Signature Author Signature Advisor

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Analysis and Bypass of Android
Application Anti-Reverse
Engineering Mechanisms

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Paul Kalauner
Registration Number 11776818

ausgeführt am
Institut für Information Systems Engineering
Forschungsbereich Business Informatics
Forschungsgruppe Industrielle Software
der Fakultät für Informatik der Technischen Universität Wien

Advisor: Thomas Grechenig

Wien, 28th August, 2023

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Paul Kalauner

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 28. August 2023
Paul Kalauner

vii

Acknowledgements

First and foremost, I would like to thank Raphael Kiefmann and Clemens Hlauschek for
providing valuable technical and formal feedback on this work.

Further, I wish to express my gratitude to my parents, friends, and girlfriend who
supported me during the time of working on this thesis.

Finally, I want to thank my colleagues, especially Daniel Marth, who provided me with
beneficial technical input.

ix

Kurzfassung

Im Laufe der Zeit ist die Popularität von mobilen Applikationen deutlich gestiegen. Da die
Nutzung von mobilen Applikationen die Verarbeitung sensibler Daten inkludiert, haben
sich verschiedenste Empfehlungen und Spezifikationen bezüglich des Schutzes mobiler
Applikationen mittels Anti-Reverse Engineering Mechanismen wie Obfuskierung und
Root-Detektierung etabliert. Aufgrund der Erfordernis, mobile Applikationen zu schützen,
wurden kommerzielle Anti-Reverse Engineering Tools, welche verschiedene Anti-Reverse
Engineering Mechanismen implementieren, entwickelt. Allerdings haben Entwickler von
Schadsoftware die Möglichkeit, Anti-Reverse Engineering Tools und Mechanismen zu
nutzen, um die Analyse ihrer bösartigen Applikationen zu erschweren. Daher strebt diese
Arbeit an, detaillierte Einblicke in die Funktionalität von verschiedenen durch Anti-
Reverse Engineering Tools bereitgestellten Mechanismen zu erlangen, um Forschenden im
Bereich der IT-Sicherheit eine effiziente Analyse von bösartigen mobilen Applikationen
zu ermöglichen.

Diese Arbeit analysiert Anti-Reverse Engineering Mechanismen dreier Anti-Reverse
Engineering Tools, indem eine Evaluations-Applikation, auf die die Mechanismen der Tools
nacheinander angewandt wurden, statisch und dynamisch analysiert wird. Im engeren
Sinne nutzt diese Arbeit verschiedene Reverse Engineering Techniken wie Dekompilierung
und dynamische Code-Instrumentierung, um die Implementierungen von String- und
Klassen-Verschlüsselung, TLS-Zertifikat-Pinning, und Root-Detektierungsmechanismen
zu analysieren.

Basierend auf den in dieser Arbeit erhaltenen Analyseergebnissen werden Unterschiede
zwischen den Implementierungen der analysierten Tools und Mechanismen diskutiert.
Daraus resultierend werden im Rahmen dieser Arbeit Skripte, welche es erlauben den
Großteil der analysierten Anti-Reverse Engineering Mechanismen dynamisch zu umgehen,
entwickelt. Zusätzlich werden zwei Ansätze, die es ermöglichen automatisch zu detektieren,
welches der drei analysierten Tools auf eine Applikation angewandt wurde, vorgestellt.
Damit ist es möglich, die entsprechenden Skripte zur Umgehung der Mechanismen
automatisiert auszuführen. Abschließend – basierend auf den vorgehenden Resultaten
und Umgehungsstrategien – präsentiert diese Arbeit mögliche Ideen und Ansätze, um die
analysierten Anti-Reverse Engineering Mechanismen und Tools zu verbessern.

Keywords: Android, Mobile Sicherheit, Applikationsanalyse, Anti-Reverse Engineering

xi

Abstract

In the course of time, the popularity of mobile applications has increased drastically.
As the usage of mobile applications includes the processing of sensitive data, various
recommendations and specifications regarding the protection of mobile applications
through anti-reverse engineering mechanisms, such as obfuscation and root detection,
have been established. Due to the need for mobile application protection, commercial
anti-reversing tools implementing various anti-reverse engineering mechanisms have
emerged. However, malware developers might take advantage of anti-reversing tools
and mechanisms in order to hinder analysis of their malicious applications. Therefore,
this thesis aims to gain detailed insights into the functionality of various mechanisms
provided by anti-reverse engineering tools in order to enable security researchers to
analyse malicious mobile applications efficiently.

This thesis inspects anti-reverse engineering mechanisms of three anti-reverse engineering
tools through statically and dynamically analysing an evaluation application, where the
mechanisms provided by the tools have been applied to one after the other. More specifi-
cally, this work makes use of various reverse engineering techniques, such as decompilation
and dynamic code instrumentation, in order to analyse the implementations of string as
well as class encryption, TLS certificate pinning, and root detection mechanisms.

Based on the analysis results obtained in this work, implementation differences between
the analysed tools and mechanisms are discussed. As a result, this work develops scripts for
dynamically bypassing the majority of the analysed anti-reverse engineering mechanisms.
In addition, this thesis introduces two approaches for automatically detecting which of
the three analysed tools has been applied to an application, allowing to automatically
execute the corresponding scripts for bypassing the applied mechanisms. Finally, building
upon the previous findings and bypassing strategies, this work presents possible ideas
and approaches for improving the analysed anti-reversing tools and mechanisms.

Keywords: Android, mobile security, application analysis, anti-reverse engineering

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Problem Description . 1
1.2 Goals . 2
1.3 Methodological Approach . 3
1.4 Structure . 4

2 Related Work 5
2.1 Android Application Security . 5
2.2 Anti-Reverse Engineering Tools . 5
2.3 Code Obfuscation . 6
2.4 Code Encryption . 6
2.5 String Encryption . 7
2.6 TLS Certificate Pinning . 7
2.7 Root Detection . 8
2.8 Hooking and Debugging Detection . 8
2.9 Emulation Detection . 9

3 Background 11
3.1 Android Fundamentals . 11
3.2 Android Application Reverse Engineering Techniques 25
3.3 Android Application Anti-Reverse Engineering Mechanisms 29
3.4 Reverse Engineering Tools . 37

4 Mobile Anti-Reverse Engineering Tools 45
4.1 DexProtector . 46
4.2 LIAPP . 46
4.3 DashO . 47

xv

5 Analysis of Mobile Anti-Reverse Engineering Mechanisms 49
5.1 Analysis Approach and Setup . 49
5.2 Analysis Procedure and Results . 52
5.3 Main Differences Between Analysed Tools and Mechanisms 71

6 Bypass of Anti-Reverse Engineering Mechanisms 75
6.1 DexProtector . 75
6.2 LIAPP . 78
6.3 DashO . 79
6.4 Automatic Identification of Applied Anti-Reversing Tool 80

7 Possible Improvements of Anti-Reverse Engineering Mechanisms 85
7.1 Possible Improvements . 85
7.2 Expert Evaluation . 89

8 Conclusion and Future Work 93

A Appendix 95
A.1 Expert Interview Guide . 95

List of Figures 99

List of Tables 101

List of Listings 103

Acronyms 105

Bibliography 109

Online References 121

CHAPTER 1
Introduction

This chapter introduces the problem, goals, methodological approach, and structure of
this thesis.

1.1 Problem Description
Mobile applications have become more and more present over the years. Nowadays,
a majority of online activities – such as browsing the web or using online banking –
are accomplished using applications on mobile devices. From the security engineering
perspective, mobile devices and applications represent a whole new potential attack
vector, especially as mobile devices tend to store a lot of sensitive data [130].

Applications running on the most popular mobile operating system Android [233] are
usually not compiled to machine code but to bytecode, which is later executed by the
Android Runtime (ART) [44]. As bytecode is a higher-level representation and typically
includes more meta information than machine code, Android applications tend to be
easier to decompile than applications built for other operating systems.

To counteract possible reverse engineering attempts, various security and anti-reverse
engineering mechanisms, as presented by several authors, such as Graux et al. [115],
Haupert et al. [124], Sihag et al. [227], or Zhang et al. [265], were developed and improved
subsequently. Developers often make use of obfuscation, the process of changing code
in order to make it harder to understand without changing its intended functionality.
In addition to obfuscation, several other anti-reverse engineering mechanisms, such as
root detection [188] [234] or TLS certificate pinning [58] [61], can be employed to impede
comprehending the logic and implementation of an application. Although anti-reversing
mechanisms do not guarantee protection against all possible reverse engineering attempts,
such mechanisms aim to increase the effort, time, and cost needed for reverse engineering
up to a point where analysis is practically not attractive anymore.

1

1. Introduction

As reverse engineering became a prominent problem in mobile application development,
various recommendations and specifications regarding the usage of anti-reversing mech-
anisms have arisen. For example, the Open Worldwide Application Security Project
(OWASP) [200] maintains the OWASP Mobile Top 10 [199], which represents a list
of the ten most common risks for mobile applications, including reverse engineering.
Additionally, the OWASP maintains the OWASP Mobile Application Security Verification
Standard [197] and OWASP Mobile Application Security Testing Guide [198], aiming
to establish and test the compliance of security requirements for developing secure mo-
bile applications. From these lists and recommendations containing common security
risks, security requirements, and testing criteria, requirements for employing anti-reverse
engineering mechanisms are derived.

Aiming to mitigate reverse engineering and to fulfil recommendations and/or potential
requirements, several commercial anti-reverse engineering tools implementing various
anti-reversing mechanisms have emerged. While some anti-reversing tools are business-
to-business products or only available as part of complex frameworks, such as the mobile
protection solution developed by Thales1 [238], some of the more accessible and popular
tools are DexProtector [145], LIAPP [165], and DashO [205].

Berlato and Ceccato [57], Haupert et al. [124], or Sihag et al. [227], for example, actively
analyse anti-reverse engineering techniques for Android applications. However, to the
best of our knowledge, specific implementation details of anti-reversing mechanisms
provided by anti-reversing tools used in practice and potential approaches for bypassing
the applied mechanisms are mostly unknown. Furthermore, the field of mobile application
security is constantly evolving and therefore represents an arms race between attackers
and defenders, thus requiring continuous research. Additionally, also malware authors
have the possibility of taking advantage of anti-reversing tools and mechanisms to make
analysis of their developed malware unattractive. Thus, it is in the interest of security
analysts to have the possibility of efficiently analysing malicious applications despite
anti-reverse engineering mechanisms being employed, for which a better understanding
of current anti-reversing tools and mechanisms as well of their weaknesses is required.

1.2 Goals
Due to the specific implementations of anti-reversing mechanisms provided by current
anti-reversing tools mostly being unknown, this thesis aims to fill the gap in research by
getting a detailed insight into the functionality and weaknesses of anti-reverse engineering
tools and mechanisms. This work provides a detailed analysis of the implementations of
several mechanisms employed by the three mobile application anti-reverse engineering
tools DexProtector [145], LIAPP [165], as well as DashO [205]. While these tools
provide several anti-reverse engineering mechanisms, this work focuses on class and string
encryption, TLS certificate pinning, and root detection. The mechanisms in focus are
offered by several popular anti-reverse engineering tools [124] [257].

1Personal communication

2

1.3. Methodological Approach

Further, based on results of the analysis of the anti-reversing mechanisms, this thesis
develops procedures that allow analysts to bypass anti-reverse engineering mechanisms
in order to analyse malicious applications more efficiently. This work also realises
approaches for identifying which of the analysed tools was applied to an application,
allowing to execute the established bypass approaches automatically. Additionally, this
thesis establishes a list of possible approaches and ideas for improving the analysed
mechanisms and tools.

More specifically, this thesis aims to answer the following research questions:

• RQ1: How do DexProtector, LIAPP, and DashO implement class and string
encryption, TLS certificate pinning, and root detection mechanisms?

• RQ2: How can the mechanisms that have been analysed as part of RQ1 be
bypassed?

• RQ3: Based on the results of RQ1 and RQ2, what are possible improvements
of the analysed mechanisms in order to mitigate the identified possible bypassing
strategies?

1.3 Methodological Approach
As a starting point, literature research is performed. In addition to fundamental theoretical
aspects of Android and the relevant technologies, existing work related to Android security,
class as well as string encryption, TLS certificate pinning, and root detection mechanisms
is researched, as the literature could give some pointers on how anti-reversing mechanisms
are typically implemented. Researching existing work regarding bypassing anti-reverse
engineering mechanisms is also part of this phase, as the following practical analysis part
could benefit from existing bypassing strategies.

After establishing a proper understanding of the Android platform and (anti-)reverse
engineering tools and mechanisms, we analyse how DexProtector [145], LIAPP [165],
and DashO [205] implement string and class encryption, TLS certificate pinning, and
root detection mechanisms. As all three tools this thesis focuses on are closed source
tools, we perform several steps for each of the investigated tools: (1) Applying the tool
to an evaluation Android application, (2) statically analysing the resulting protected
application, and (3) dynamically analysing the application during runtime.

First, we develop a minimal evaluation Android application, allowing to analyse the
applied mechanisms without additional overhead. For the purposes of this research the
evaluation application must only include a basic HTTPS request with the corresponding
pinned TLS certificate. Afterwards, for each of the analysed mechanisms, we create a
build of the developed evaluation application, where the corresponding mechanism that
is currently analysed has been applied to.

3

1. Introduction

Second, we employ static analysis (e.g. by using decompilation tools) aiming to gain
an understanding of the functionality and code structure of the anti-reversing tools and
mechanisms. In the context of this work, we check the produced evaluation application
after the tool with the corresponding anti-reversing mechanism has been applied to it,
which potentially reveals details on how the mechanism and tool are operating.

Third, we employ dynamic analysis with a focus on code instrumentation by executing
the protected evaluation application while observing and modifying its behaviour. For
analysing anti-reversing mechanisms, we assume some of the executed operations of the
protected application and check the made assumptions through executing the application.
For example, root detection mechanisms commonly check existing files that indicate
a rooted device [234]. In this case, employing code instrumentation and intercepting
functions used to open files allows verifying this behaviour.

Based on the results of the previous analysis phase, we develop approaches for auto-
matically bypassing the anti-reversing mechanisms provided by DexProtector, LIAPP,
and DashO. In practice, the anti-reversing tool and mechanisms that have been applied
to a given application are usually not known up front. Therefore, in order to provide
an automatic way to bypass the anti-reversing mechanisms of a given application, we
additionally develop an approach to identify which of the anti-reversing tools this work
focuses on was applied to an application.

Lastly, based on the results of the previous analysis and developed bypassing strategies,
we conceptualise possible improvements of anti-reverse engineering mechanisms and the
analysed tools to help mobile application developers protecting their applications. The
presented improvements are evaluated by means of interviews with several experts in the
field of IT security.

1.4 Structure
The remainder of this work is structured as follows: Chapter 2 provides an overview of
related literature. Chapter 3 provides the necessary theoretical foundation of the Android
operating system, reverse engineering techniques, anti-reverse engineering mechanisms,
and reverse engineering tools, as the following chapters build upon this knowledge. Next,
chapter 4 presents the anti-reverse engineering tools this work focuses on. The main part
of this thesis consists of chapters 5 to 7. Firstly, chapter 5 concerns RQ1 and analyses
several anti-reversing mechanisms provided by anti-reversing tools through employing
various reverse engineering tools and techniques. Secondly, RQ2 is addressed in chapter 6,
which develops strategies for bypassing the analysed mechanisms based on the previous
analysis results. Thirdly, in chapter 7, we present and evaluate possible approaches for
improving the investigated anti-reverse engineering tools, thus answering RQ3. Finally,
we conclude the work in chapter 8.

4

CHAPTER 2
Related Work

The following literature is either tangential or directly relevant to our work.

2.1 Android Application Security
Makan and Alexander-Bown [171] describe reverse engineering approaches for Android
applications and demonstrate simple emulator/root detection and obfuscation mecha-
nisms.

Gunasekera [118] focuses on reverse-engineering Android applications as well and addi-
tionally presents several reverse engineering tools, such as Frida [95].

He et al. [125] focus on Android malware and argue that, compared to other mobile
platforms, Android is more prone to attacks due to its openness. This openness does
not only lead to an increased malware risk, it also allows employing reverse engineering
techniques more easily compared to other platforms.

Enck et al. [89], Vidas et al. [248], Shabtai et al. [225] as well as Xu et al. [260] describe
how Android tries to establish security through its built-in security features, such as the
permission and sandboxing system.

2.2 Anti-Reverse Engineering Tools
Cho et al. [64] present “DexMonitor”, an approach that aims to print all executed
bytecode of an application by placing hooks in the Dalvik VM where Dalvik instructions
are about to be executed. For evaluating their approach, the authors use three applications
protected with obfuscation and tamper detection. However, there is no information
about the tools and protection mechanisms that have been employed for protecting the
evaluation applications. Nevertheless, the authors outline a selection of anti-reversing

5

2. Related Work

tools, including DexProtector [145]. The authors also provide a feature overview table of
the tools.

Lim and Yi [150] analyse the structure of two anti-reverse engineering tools, with one of
them being DexProtector. However, as the paper was written in 2016, implementation
details have changed since then. Hence, the analysis results are most likely out of date.

Haupert et al. [124] provide an overview of available runtime application self-protection
(RASP)/anti-reversing tools and their features, such as code obfuscation or root detection.
Further, the authors analyse the popular tool PromonShield [209] and present static and
dynamic approaches for bypassing its offered security measures.

Sihag et al. [227] discuss and compare several Android application hardening/anti-
reversing techniques. Additionally, the authors compare various Android application
hardening tools by their offered hardening techniques.

2.3 Code Obfuscation
With the intention of impeding reverse engineering and protecting intellectual property,
code obfuscation was firstly discussed in an academic context by Collberg et al. [72].
The authors distinguish between layout obfuscation (scrambling identifiers, removing
comments, etc.), data obfuscation (reordering methods, splitting and merging arrays,
etc.), and control flow obfuscation (inlining methods, reordering statements, extending
loop conditions, etc.).

Graux et al. [115] as well as Faruki et al. [92] discuss different kinds of obfuscation
(identifier renaming, control flow obfuscation, obfuscation through reflection, etc.) and
available tools applicable to Android applications.

Guo et al. [120] investigate different strategies for obfuscating Android applications and
discuss several approaches for analysing and deobfuscating obfuscated applications. These
approaches include techniques based on machine learning and dynamic analysis.

Furthermore, several approaches for detecting obfuscated Android applications have been
proposed. Primarily, researchers, e.g. Mirzaei et al. [182], Jiang et al. [132], or Conti et
al. [77], leverage machine learning-based techniques.

2.4 Code Encryption
One of the first occurrences of code encryption were packers, which were primarily
leveraged by malware developers in order to conceal malicious programs. Guo et al. [119]
discuss the underlying mechanisms of packers and potential solutions to unpack packed
binaries intending to enable malware analysis. Packers transform a binary program
into another form, leading to a different appearance than the original, thus evading
signature-based malware detection. During this process, packers might also employ code

6

2.5. String Encryption

encryption and/or compression to make manual unpacking and static analysis even more
cumbersome.

In the context of Android, the principles of code encryption are discussed in the work
of Graux et al. [115]. On Android, the most popular form of encrypting code is class
encryption, the process of encrypting entire classes. Thus, viewing the source code of the
encrypted classes by using usual decompilation tools is prevented.

Geethanjali et al. [100] developed a tool for encrypting and dynamically loading and
decrypting code at an Android application’s runtime.

Zhang et al. [266] propose a technique for extracting hidden code from Android applica-
tions. The authors describe the basic idea and process of code hiding/encryption and
discuss extracting strategies.

2.5 String Encryption
String encryption is used to hide the content of string constants by encrypting them
using cryptographic operations. This way, the encrypted strings stay hidden, even if the
code is decompiled. As a result, string encryption helps hiding sensitive data, such as
URLs of command and control servers.

String encryption is a type of the more generalised technique string obfuscation, the tech-
nique of hiding strings, regardless whether this is achieved using cryptographic operations
or other methods. Glanz et al. [107] provide empirical evidence that string obfuscation
is widely used in malicious as well as benign Android applications. Furthermore, the
authors propose “StringHound”, an approach for automatically deobfuscating strings in
Java bytecode.

Yoo et al. [261] present a method to decrypt encrypted strings and discuss the deobfusca-
tion tool “dex-oracle” [101].

2.6 TLS Certificate Pinning
Sierra and Ramirez [226] research how effective common reverse engineering techniques
are against TLS certificate pinning and give a general introduction to TLS certificate
pinning. This mechanism is used to restrict an application’s secure connection to specific
certificates by providing the trusted certificate(s) or its/their public key(s). Doing so
will prevent any other connections using certificates that are not pinned, preventing
man-in-the-middle attacks. Malware authors employ TLS certificate pinning to conceal
the information exchange of their malicious applications. Sierra and Ramirez present
three methods to bypass TLS certificate pinning: Reverse engineering and modifying the
source code, hooking during runtime, and dynamic library manipulation. In addition, the
authors discuss mitigation techniques, such as emulator detection or code obfuscation.

7

2. Related Work

Ramirez et al. [215] present multiple mechanisms, such as root or debugging detection,
to protect against methods aiming to bypass TLS certificate pinning.

Fahl et al. [91] analyse the potential risk of flawed TLS certificate pinning. The tool
“MalloDroid”, which the authors developed as part of their work, helps detecting potential
vulnerabilities to protect against man-in-the-middle attacks within Android applications.

2.7 Root Detection
Nguyen-Vu et al. [188] present the fundamentals of rooting Android devices. As the name
suggests, rooting allows obtaining root access on Android. Due to the higher privileges,
rooting often represents a security risk. Applications that deal with sensitive data often
use root detection to prevent the execution in case the device is rooted. Malware authors
use root detection to prevent the analysis of their malicious applications as, e.g. dynamic
code instrumentation tools rely on the device being rooted. Furthermore, the authors
discuss different methods for detecting a rooted Android device. In addition, they apply
various evasion techniques and analyse their effectiveness.

Sun et al. [234] present further methods for detecting a rooted device. For each of the
presented methods, the authors propose a corresponding evasion technique.

Ibrahim et al. [128] analyse several applications that are using the SafetyNet Attestation
API [35]. The SafetyNet Attestation API, nowadays replaced by the Play Integrity
API [34], is an anti-abuse API offered by Google aiming to ensure that a genuine Android
device (i.e. amongst other checks, it is verified that the device is not rooted) is used for
running an application. The authors conclude that out of the analysed applications, none
of them is using the API correctly, resulting in the possibility of attackers being able to
bypass the checks.

2.8 Hooking and Debugging Detection
Berlato and Ceccato [57] conduct a large-scale study about the usage of anti-debugging
and anti-tampering techniques in popular Android applications. Their results suggest that
about two out of three applications leverage such techniques. However, the ratio of Java
to native implementations of such mechanisms is 99 to 1, implying that most developers
rely on fundamental and known approaches to detect debugging and tampering.

Szczepanik et al. [237] present an approach to detect the usage of the common hooking
framework Xposed [258]. Their approach relies on analysing stack traces of the executed
application and comparing them to the expected executed statements and program flow
using machine learning approaches. The expected program flow is retrieved through
analysing the Dalvik bytecode contained in the DEX file(s) of an application’s APK.

Wan et al. [253] introduce an approach for detecting the usage of debugging or hooking
tools through “check points” (memory addresses). In case the control flow of an application

8

2.9. Emulation Detection

is modified through debugging or hooking, the check points will usually be tampered
with. In order to detect tampered check points, the authors’ approach collects and stores
various memory addresses, such as the addresses of methods stored in the virtual table,
as a preliminary step. During runtime, the approach frequently checks whether the actual
addresses match with the stored ones. If not, the application is terminated.

2.9 Emulation Detection
Vidas and Christin [247] present several approaches for detecting emulated devices. A
fundamental approach consists of retrieving system properties that hold different values
on physical and emulated devices. Further, the authors discuss the possibility of detecting
emulators based on the differences in behaviour, performance, and components.

Petsas et al. [202] discuss different heuristics for detecting emulators: Static, e.g. system
properties, dynamic, e.g. sensor information, and hypervisor heuristics. Hypervisor
heuristics aim to detect emulators by analysing the behaviour of the underlying execution
environment.

Choi et al. [67] present EmuID, an approach for detecting ARM emulators through
a specific behaviour regarding caching on ARM architectures. EmuID uses a crafted
code that causes a specific cache behaviour on native environments. However, emulated
environments are usually not able to reproduce this exact behaviour, leading to the
possibility of detecting emulators.

Lin et al. [151] introduce an emulator detection approach consisting of three layers to
detect the respective characteristics, namely the OS, hardware, and hypervisor layers.
The authors evaluate their approach on various common emulators.

9

CHAPTER 3
Background

The following chapter introduces background information related to the Android mobile
operating system, reverse engineering techniques, anti-reverse engineering mechanisms,
and reverse engineering tools.

3.1 Android Fundamentals
Android [2] is a mobile operating system, developed and maintained by Google. At the
time of writing, Android holds ~70% market share amongst mobile operating systems [233].

This section provides the necessary Android-related background information for this
work. This includes knowledge about the Android system’s architecture, structure as
well as components of Android applications, and the security model of Android.

3.1.1 Architecture
Android is composed of several layers, forming a stack, as shown in Figure 3.1. The
following sections describe each layer/component of the Android platform.

Kernel

The Linux kernel represents the foundation of the operating system. As common in
other Unix operating systems, the Android kernel provides several drivers for networking,
file-system access, process and memory management, etc. [87]. Android uses a modified
and feature-enhanced Linux kernel.

Hardware Abstraction Layer

On top of the kernel, the hardware abstraction layer (HAL) is located. The HAL provides
interfaces that expose hardware capabilities to upper layers of the stack and allows

11

3. Background

Figure 3.1: Android architecture [33].

porting Android to a wide range of different devices [183] [33]. It consists of multiple
modules, with each module implementing an interface for a particular type of hardware
component, such as Bluetooth [33].

12

3.1. Android Fundamentals

Native User Space

The native user space layer consists of several native (C/C++) libraries, e.g. bionic [109],
the Android-specific implementation of libc [155], used by the Android operating system
as well as core system services [87].

Core system services are needed to setup the underlying OS environment [83]. These
services include init that is the first user space process launched by the kernel on Linux
and therefore also Android systems. init mounts several directories and executes a
series of commands (“startup scripts”) to setup the user space environment, e.g. starting
services [83] [187].

Part of the Android-specific init process is the property service, which provides a
mapping of key-value pairs. These mappings are shared between all processes and include
properties such as network interface configuration or device information [83] [75].

Furthermore, init starts several daemons, including the volume daemon vold, which
is responsible for mounting and unmounting file systems [83].

After starting the daemons, init launches the zygote process [183]. zygote launches
the first instance of the Dalvik Virtual Machine (DVM) / Android Runtime (ART) and
preloads core classes and resources. When a new application is started, it creates a new,
separate instance of the DVM/ART, inheriting from the initially created instance with
its preloaded classes and resources [183] [83]. Thus, new VM instances can be created
in an efficient way. Another responsibility of zygote is starting the system_server
process that in turn starts the system services.

Dalvik VM / Android Runtime

Android applications are commonly written in the Java or Kotlin language and compiled
into bytecode as an intermediary step before they are compiled into the DEX (Dalvik
Executable) format stored in .dex files within packaged Android applications.

A virtual machine (VM) – similar to the Java Virtual Machine (JVM) – is needed
to interpret and execute the bytecode, which the Dalvik Virtual Machine (DVM) was
used for originally. The main difference between the DVM and JVM is that Dalvik is
register-based as opposed to the JVM that uses a stack-based approach. Furthermore,
DVM was designed to run efficiently on devices with limited memory and processing
power. As a result, it is more lightweight than the JVM and allows multiple instances to
be run at the same time [63].

The DVM is using a just-in-time (JIT) compilation approach, meaning that the compila-
tion of bytecode to machine code is delayed until it is actually needed during runtime.
This approach leads to worse performance and the need of additional resources during
the execution of an application [63].

To circumvent this loss in performance, Android 5.0 introduced the Android Runtime
(ART), which replaces the Dalvik VM [63] [260]. As opposed to the Dalvik VM, ART

13

3. Background

introduced ahead-of-time (AOT) compilation during the installation of applications. AOT
compilation converts bytecode to machine code, which is stored in .oat binary files.
Consequently, the installation process became more time consuming. Furthermore, the
size of applications increases noticeably due to the majority of application code being
compiled to machine code when using AOT compilation. However, the AOT approach
increases application load times and responsiveness [63].

To leverage the advantages of both DVM and ART, Android 7.0 introduced a hybrid
combination of AOT and JIT compilation to ART. This hybrid approach, which is
specified in the Android Open Source Project documentation [45], eliminates the need
of bytecode having to be compiled to machine code during an application’s installation.
Instead, during the first few application launches code is interpreted with frequently
used methods being JIT compiled. Additionally, the first few runs are profiled and
frequently used code is determined. At a later point of time (e.g. when the device is
idle and/or charging), the frequently used code detected previously is AOT compiled
and permanently stored on the device. Therefore, future application launches can take
advantage of precompiled code of frequently needed code segments.

Java Core Libraries

Android provides an own set of Java core libraries that were derived from the Apache
Harmony project [50], which aimed to develop an open-source Java implementation. Over
time, the implementation of Android’s runtime libraries diverged more and more from
Apache Harmony [87]. The runtime libraries can be accessed from applications as well as
system services.

System Services

System services implement fundamental Android features, e.g. display/touch screen sup-
port and telephony. Most services are implemented in Java, although some fundamental
ones are written in C/C++ [87]. Communication between system services is established
using Binder, described in section 3.1.3.

Java API Framework

The Java API Framework consists of Java libraries that are not part of the standard
Java runtime. The framework includes classes for fundamental components of Android
applications. Furthermore, classes that enable interactivity with hardware and system
services (“managers”) are part of the framework [87].

Applications

On the top of the stack, Android applications are located. It is differentiated between
system and user-installed applications. System applications are pre-installed and include

14

3.1. Android Fundamentals

browsers or calendar applications. In contrast, user-installed applications are installed by
the users themselves.

3.1.2 Applications
Android differentiates between pre-installed (system) and user-installed applications.
System applications are included in the OS image and usually installed in the read-only
mounted /system partition [87]. Hence, these applications cannot be uninstalled or
modified by normal users and may have elevated privileges compared to user-installed
applications. In contrast, user-installed applications are installed from Android’s applica-
tion market Google Play [112] or sideloaded, i.e. installed from sources other than the
Google Play Store, e.g. a web download. Applications installed by the user reside in the
/data/app directory [83].

Android applications are packaged in Android application package (APK) files which
comprise the files necessary for a fully installation-ready application. An APK is a
ZIP-archive with the structure shown in Figure 3.2. More precisely, it contains the
following files and directories [183] [63]:

• AndroidManifest.xml: The Android manifest contains meta information and
configuration of application components.

• classes.dex: This file contains the Dalvik bytecode of an application that will be
run through the DVM/ART. Note that nowadays, multidex is enabled per default,
leading to an application’s code potentially being split into multiple DEX files [24].

• resources.arsc: Pre-compiled resources, e.g. binary XML files to reduce
processing costs, are stored in resources.arsc.

• META-INF/: The META-INF directory commonly includes meta data of the appli-
cation, such as signature information.

• assets/: This directory contains resources that are packaged as-is. Developers
access these files in a typical file system-like manner.

• res/: This directory contains pre-processed – but not pre-compiled – resources,
such as layouts or images. Developers can access resources stored here using unique
resource identifiers.

• lib/: Native libraries used by the application are typically stored as shared
objects (.so files) inside the lib directory, which contains a subdirectory for each
architecture.

In the following, we describe the main components of an Android application.

15

3. Background

Figure 3.2: Structure of an APK file.

Android Manifest

The AndroidManifest.xml file contains various kinds of information about the appli-
cation, such as its unique package name (e.g. com.example.app) and device compati-
bility [83] [10]. Other essential parts of the manifest are the following.

First, the components of the applications have to be declared. These include Activities,
Services, Broadcast Receivers, and Content Providers.

Furthermore, the permissions (e.g. to access location data) needed by the application
have to be declared. Additionally, for each activity, service, and broadcast receiver, the
manifest declares which intents (see section 3.1.2) can be handled [10]. These declarations
are called intent filters.

Intents

Intents are asynchronous messaging objects used for requesting actions from another
application component [28].

Android distinguishes between two types of intents [28]:

• Explicit intents specify which application or component will handle the intent [28].
They are often used to start an application component within the same application.

16

3.1. Android Fundamentals

To do so, the class name of the component has to be known and specified. For
example, explicit intents are often used to switch to another activity.

• Implicit intents do not declare a specific application or component. Instead, they
declare an action to perform, e.g. opening an URL or sending an email. The Android
system then chooses a suitable application/component to perform the action.
Usually, this decision is delegated to the user by showing an application picker. For
an application component being selectable for a specific action, a corresponding
intent filter must be declared in the Android manifest by the developer [63].

Activities

As stated by the Android developer guide regarding application components [13], activities
are entry points for interacting with the user. To name some examples, an activity
could represent a screen showing a list of messages and another one could provide the
functionality to compose a new message. While multiple activities usually work together,
they are independent of others. As a result, an application can start an arbitrary activity
of another application if it allows it.

Nowadays, applications are often developed using a single activity and multiple fragments
for different views [116]. A fragment represents a reusable part of the UI/sub-activity
which is displayed inside the layout of an activity [26] [116].

Services

Services are components running in the background without an user interface [83]. They
are used for performing long-running operations – such as playing music or downloading
a file – and usually keep running even if the application that started the service is moved
to the background or another application is opened [63].

There are two types of services [13] [63]:

• Started services typically do not need to communicate back to the application
that started them and are kept running until their work is completed. Regular
background services are not directly visible to the user and may be stopped by
the system if more resources for other tasks are needed. In contrast, services that
should not be stopped in any circumstances are required to indicate that they are
running by showing a notification to the user (“foreground services”).

• Bound services are started because another application or the system wants to make
use of the service. Consequently, a bound service communicates the results back to
the calling application. However, as bound services are bound to the application
that started them, they are killed as soon as the calling application is terminated.

17

3. Background

Broadcast Receivers

Broadcast receivers respond to system-wide events (“broadcasts”), such as an incoming
SMS message [87]. If an application registers for a specific event using a broadcast
receiver, the system is able to deliver events to the application even if it is not running
at the moment the event is triggered [13]. Thus, the receiving application can specify
code that should be executed as soon as the event is received.

Content Providers

Content providers manage access to an application’s data – either stored by itself or other
applications – and provide a way to share data with other applications [18]. Therefore, if
an application needs to share data, it may declare a content provider that exposes the
data to other applications. The data exposed by content providers typically originates
from an SQLite database or file system path [83].

Furthermore, content providers provide an abstraction to the specific data storage imple-
mentation. This way, application developers can exchange the storage implementation
accessed by the content provider without affecting other applications that access the
data [18]. An example for this procedure is illustrated in Figure 3.3, where an SQLite
database is migrated to another storage system. However, due to the content provider’s
abstraction, this migration is performed transparently to the accessing applications.

Figure 3.3: Android content provider overview and storage migration [18].

Native Libraries

Although Android applications are mostly written in Java or Kotlin, Android allows
embedding native code (using languages such as C/C++) via the Android Native De-
velopment Kit (NDK) [8]. The NDK builds native libraries from native code, which are

18

3.1. Android Fundamentals

then included in the lib/ directory of the final APK. However, as native libraries are
compiled for a specific target processor architecture, it is required that the APK contains
several native libraries – one for each architecture that the application should run on.

While bytecode (compiled from Java/Kotlin) is executed by the ART, machine code
(compiled from native code) is directly executed by the processor of the mobile device [228].
Therefore, for bytecode being able to interact with native code and vice-versa, the Java
Native Interface (JNI) [194] is needed [29]. JNI allows native code to access fields
and invoke methods defined in the Java/Kotlin code. At the same time, JNI allows
Java/Kotlin code to invoke methods implemented in the native part of the application,
which results in a two-way communication between these components [164]. Figure 3.4
illustrates the described relationship and interaction between Java/Kotlin code, native
code and ART.

Figure 3.4: Interaction between Java/Kotlin-, native code, and ART, adapted from [164].

Using the NDK may improve the performance of applications, as native code is directly
compiled to machine code, thus avoiding code execution on a virtual machine [142].
Especially computationally intensive tasks commonly benefit from an implementation in
native code.

In addition, reverse engineering program logic implemented in native code is generally
more cumbersome, as machine code preserves significantly less information from the
original source code compared to bytecode [88] [121]. Therefore, implementing sensible
logic in native code can help protecting intellectual property, although it is still possible
to extract implementation details with enough effort and resources.

Furthermore, using the NDK allows developers to reuse existing libraries. This also
enables developers to port their logic written in native code to other platforms as well.

3.1.3 Security Model
Security features of Android are deeply embedded into the operating system and design
of the platform itself [173] [180] [183]. Most security mechanisms are provided by the

19

3. Background

Linux kernel that represents the foundation of Android OS [228]. On top of the security
features provided by the kernel, Android implements additional mechanisms, such as
application-specific permission management.

The remaining part of this section introduces the major components of Android’s security
model.

Sandboxing

One of Android’s core security principles is application sandboxing that ensures that
applications cannot access data or memory of other applications [228].

The fundamental mechanism behind Android’s sandboxing implementation is discre-
tionary access control (DAC) of typical Linux desktop systems with physical users [260] [93].
As Linux is a multi-user operating system, the kernel isolates user resources and processes
from one another [87]. Linux establishes this isolation by assigning each user a user ID
(UID). In addition, users can be added to groups that are identified by group IDs (GIDs).
Each resource, e.g. a file, is assigned a UID of the owner, who may alter the permissions
of the resource [228]. On Android, UIDs are not assigned to physical users, as Android
was originally designed for smartphones that are usually single-user devices [87]. Instead,
Android automatically assigns a unique UID to each application at installation [87] [138].
The installed application is then run in an own process under this UID. In addition, each
application has its own data directory with read and write permissions only granted to
its UID. This way, no other application has permissions to read and write its data [87].
As a result, Android applications are sandboxed (isolated) at file and process level [87].
Sandboxing on process level is achieved through running each application in a dedicated
process. File level sandboxing is a result of each application having its own isolated data
directory.

Additionally, Android 4.2 introduced multi-user support, with a unique user ID – inde-
pendently from the Linux UID – and a dedicated data directory, containing user-specific
settings, being assigned to each user [87]. As the Linux kernel only supports a single
numerical range for UIDs, applications installed for each user are assigned a new effective
UID, also called Android ID (AID), in order to still be able to distinguish applications
installed for each user and guarantee application sandboxing [87] [173]. The AID is a
composition of the user’s ID and the application’s UID [87]. More precisely, device users
are separated through a large offset and UIDs for applications installed per user are
assigned in a defined range [173]. Therefore, the effective UIDs differ, even if the same
application is installed by different users. As a result, each application instance runs in
its own sandbox [87].

Nonetheless, applications can also be installed using the same user ID, forming an
exception to this principle of strict isolation. Applications with shared UIDs can share files
and run in the same process [87]. Shared UIDs are mostly used by system applications and
not recommended for third party applications. Nevertheless, if third party applications
are signed with the same key (see section 3.1.3) and the corresponding attribute is

20

3.1. Android Fundamentals

included in the Android manifest file, third party applications are installed using the
same UID as well [87].

Permissions

Due to the sandboxing of Android applications, they are limited in terms of accessing files
and resources of the device [87]. More access rights – called permissions can be granted
to applications, which allows access to several resources, such as internet connectivity.
Applications have to declare the needed permissions inside the Android manifest [264].

Permissions are enforced at different levels of the Android stack. For example, access
to application files is enforced by the Linux kernel, as applications’ unique UIDs and
GIDs are only given access to their corresponding data directories on the file system [83].
Similarly, if an application is permitted to access the network, the application’s UID is
added as a member of the inet group and therefore granting the application the ability
to open network sockets [83].

Android differentiates between different types of permissions [32]:

• Install-time permissions give limited access to data and allow an application
to perform actions that minimally affect other applications or the Android OS.
Permissions of this type are requested before the user installs an application. There
are two subtypes of install-time permissions:

– Normal permissions allow limited access with minimal risk to data and actions
beyond the sandbox of applications. For example, the ability to access the
network is a normal permission.

– Signature permissions can be used to share resources between multiple ap-
plications [227]. They are only granted if the application that declares the
signature permission and the application that defines it are signed by the same
developer certificate (see section 3.1.3) [56]. Signature permissions are also
often used by system applications to change device settings.

• Runtime permissions (or dangerous permissions) allow applications to perform
actions that affect other applications or the Android OS more significantly. Addition-
ally, access to restricted data (e.g. private user data) may be granted. As the name
implies, runtime permissions have to be requested during runtime of an application.
For example, the ability to access the device’s camera is a runtime/dangerous
permission.

• Special permissions can only be defined by the original equipment manufacturer
(OEM) and include powerful application operations, such as picture-in-picture mode
or access to notifications. These permissions have to be granted manually in the
system settings.

21

3. Background

Binder

Binder is an inter-process communication (IPC) mechanism based on OpenBinder [201]
and represents the central messaging channel on Android, providing application commu-
nication with the system, services, and each other [70]. Although Linux has built-in IPC
mechanisms, Android uses Binder to remove the overhead and complexity of the standard
IPC facilities. IPC is necessary as – on a Unix-like system – a process cannot access other
processes directly [87]. Instead, the kernel has control over all processes and can expose
an interface that enables IPC [87]. On Android, this interface is the /dev/binder
device, implemented by the Binder kernel driver [87]. Figure 3.5 illustrates the communi-
cation between two processes using Binder. Through Binder’s abstraction, two processes
seem to be able to communicate with each other directly. In reality, all IPC calls take
place via the Binder driver [87]. The driver performs the kernel-level tasks necessary
for IPC, such as copying data from one process to another [53]. The kernel driver also
adds the process ID and Android ID of the calling process to the transaction data [87].
This way, the called process can inspect the PID and Android ID in order to control
access to resources. The second key component of Binder is the libbinder.so library
(“Binder framework”), which is loaded into most processes [53]. The Binder framework is
responsible for wrapping and unwrapping objects into simplified objects (“Parcels”) and
uses the ioctl [154] system call used to control a device via its driver to transfer the
relevant data to the kernel/Binder driver [53] [78].

In addition to establishing the communication between system services, Binder is also
used as a low-level foundation for higher-level IPC abstractions, such as Intents [87] [175].
Furthermore, Binder enables the communication for bound services. In order to allow
clients (components, such as activities) to bind to the service, Android provides the
IBinder interface, which developers can use to specify how clients can communicate
with the service [14].

Figure 3.5: Simplified illustration of IPC via Android Binder.

22

3.1. Android Fundamentals

Application Signing

The Android operating system requires Android applications to be signed by their
developers in order to be executed [87]. While only the developer holds the private key of
the certificate to sign the application, the public key is visible to everyone to verify the
signature [254]. The use of a certificate authority to sign the certificate is not required,
as self-signed certificates are sufficient [118].

Android uses the signing mechanism to ensure that updates for an application were
created from the same, original author and not tampered with by a third-party. This
verification is carried out by comparing the certificate of the currently installed application
with the one of the updated application at installation time [87]. Furthermore, developers
might sign two ore more applications with the same key in order to use a shared UID
across multiple applications, allowing multiple applications to share files or to run in the
same process [87]. In addition, application signing also allows the Android system to
distinguish system applications from other applications, as the former are signed with
the same certificate as the Android firmware. However, application signing on Android
does neither guarantee that the signed code originates from a trusted developer nor that
it is safe to run [87] [136].

Since August 2021, Google requires applications that are published in the official Play
Store [112] to be uploaded using the Android App Bundle (AAB) format [5]. Applications
that are distributed using APKs (e.g. for uploading them to alternative stores), still
require the developer to sign the APK directly [37].

The AAB publishing format includes the complete compiled code and resources of an
application, but is not distributed to end users as-is [37]. The introduction of AABs
also required some changes to the application signing process, which is illustrated in
Figure 3.6.

First, AABs must be signed using an upload key which is provided to Google and can
be replaced with a newly generated one in case it gets compromised or lost [37]. After
uploading the signed application bundle, Google builds several APKs tailored to specific
device properties, such as display resolutions or processor architectures [140]. These
APKs are signed with the app signing key – a key other than the upload key, which never
changes [37]. Building different APKs for different devices results in smaller APKs, as
only the needed resources are packaged [140].

SELinux

Android relies on Linux’ discretionary access control (DAC) to enforce sandboxing and
permissions. With DAC, a program runs with the permissions of the user who executes
it, meaning that the program could perform all actions that the user is allowed to [174].
Although Android prevents applications from misusing granted permissions by assigning
a unique UID to each application, two main weaknesses of DAC remain.

23

3. Background

Figure 3.6: Application signing process using AAB, adapted from [37].

First, DAC allows users with permissions to a specific resource to change the permissions
of said resource [83]. This could lead to exposing a potentially private resource to
the public, intentionally or due to a programming error [83]. Second, DAC lacks the
possibility to define permissions in a fine-grained way [230]. This is especially relevant
for system processes that run as the root user [83] [174].

To overcome these shortcomings, Android integrated an Android-specific implementation
of the mandatory access control (MAC) mechanism SELinux, short for Security Enhanced
Linux [230]. MAC enforces a system-wide, fine-grained security policy that can only be
changed by the system, not by unprivileged users/applications [87]. This security policy
explicitly specifies which actions are allowed and is primarily enforced by the kernel [173].
As a result, even if users have access to a specific resource, they cannot modify the policy,
e.g. in order to grant others access to the resource [87] [174].

This MAC model is based on three main concepts [83] [174]:

• Subjects are active actors that perform actions on objects. Usually, subjects are
running processes.

• Objects are resources, such as directories, files, and processes.

• Actions are performed upon objects by subjects. Actions include operations such
as reading, writing and executing.

These three concepts are the foundation of the core operation performed by SELinux
– checking whether a certain subject is allowed to perform a certain action on a given
object [174]. MAC does not replace, but supplements DAC [187]. DAC rules are checked
first and if (and only if) access is allowed, the SELinux/MAC policies are checked
afterwards [187].

Furthermore, SELinux has three modes of operations, which can be changed using the
setenforce command [87]:

• Disabled: No policies are loaded, fallback to DAC security enforcement.

24

3.2. Android Application Reverse Engineering Techniques

• Permissive: Policies are loaded and checked. However, violations of policies, i.e.
access denials, are only logged and not enforced.

• Enforcing: Used on Android per default and can only be changed with root
privileges. Policies are loaded and enforced. In addition, violations are logged.

3.2 Android Application Reverse Engineering Techniques
While the Android system provides a sophisticated security model, which provides
fundamental security features, such as the isolation of applications, applications themselves
are open to reverse engineering. In the following, we describe reverse engineering
techniques for Android applications that analysts perform commonly.

3.2.1 Decompilation
Decompilation is the process of translating compiled code back into source code [190].
Although this translation rarely leads to a 1:1 representation of the original source code,
the reverse engineered code is usually enough for an analyst to gain a comprehensive
understanding of an application’s logic and control flow [122] [190].

In the case of Android, decompilation aims to translate the bytecode stored inside DEX
files contained in APKs into easily readable Java code, regardless whether the application
was written in Java or Kotlin. Compared to machine code, Java and Dalvik bytecode,
which is later interpreted by a virtual machine, contains much information of the original
source code, such as variable and method names [189] [190]. In addition, applications are
installed on the users’ devices itself, allowing users to directly access and analyse them.
As a result, decompilation is especially easily feasible on Android and requires special
attention, as decompilation usually leads to an application’s code being revealed, which
could put intellectual property at risk.

Decompilation is performed due to various reasons. Analysts might be trying to extract
confidential information from the application that is not intended to be revealed to the
user, such as cryptographic keys [222]. Malicious reasons for decompilation include the
intention to uncover implementation details, e.g. in order to pirate and redistribute a
paid application [172]. Furthermore, analysing the implementation of an application
could allow a malicious actor to create a malicious, repackaged version thereof.

In order to make application decompilation less effective, obfuscation can be employed.

3.2.2 Man-in-the-Middle Attack
A majority of Android applications perform network requests in order to communicate
with remote servers. As a result, secure network communication should not be neglected.

One of the most common attacks on network traffic is the man-in-the-middle (MITM)
attack [60]. This attack allows an attacker to intercept messages sent between two or

25

3. Background

more communicating parties [76]. In a passive attack, an attacker might only eavesdrop
on the communication, while an active attack allows modifying and/or blocking network
traffic [91] [256]. Besides the malicious background of MITM scenarios, malware ana-
lysts typically observe network traffic of applications as well. By doing so, important
information about transmitted data and remote servers can be acquired.
MITM attacks are possible under various circumstances. For example, open access points
or evil twins (fake access points that trick users to connect to it) are commonly used for
MITM attacks [255].
While there are many different possible attack scenarios, according to Conti et al. [76],
a common scenario involves intercepting the public keys of the victims when they are
trying to initialize a secure connection and is illustrated in Figure 3.7. First, the attacker
intercepts the two public keys of the victims (M1 and M2) and returns his/her public key
to them (M3 and M4). As a result, the two communication parties still believe that they
received each others’ keys. Afterwards, one victim sends a message – encrypted with the
attacker’s public key – (M5) to the other user. However, the attacker is able to intercept
and decrypt the message with his private key. Finally, the attacker can redirect – and
optionally modify – the message to the intended recipient (M6).

Figure 3.7: Man-in-the-middle attack scenario [76].

Nowadays, HTTP is usually replaced by HTTPS, i.e. HTTP over SSL or HTTP
over TLS, the SSL protocol’s successor [219], as it represents the de facto standard
for establishing secure network connections. HTTPS prevents eavesdropping and was
designed for bringing confidentiality, message integrity, as well as authentication to HTTP
connections [71]. Although HTTPS minimizes the risk of MITM attacks, they cannot be
prevented completely [58] [71].
A MITM attack on HTTPS could look like the following. Usually, SSL/TLS sessions start
with the SSL/TLS handshake – a simple message exchange between client and server.
The client initiates the exchange by sending a client hello and verifies the identity of the
server [192]. This identity verification is mostly performed through digital signatures
based on X.509 certificates that are signed by a certificate authority (CA) [60] [215].
After the client connects to the server, the server transmits the certificate to the client
who then validates the certificate [91]. This validation process is critical and can lead
to an insecure SSL/TLS connection in case it is flawed or manipulated. For example, a
flawed validation process could involve trusting and accepting all certificates [192]. A

26

3.2. Android Application Reverse Engineering Techniques

similar behaviour – namely passing the verification process with an invalid certificate –
occurs when the victim ignores potential security warnings [76]. Furthermore, on most
operating systems, including Android, all pre-installed CAs are trusted per default [30].
If any of these CAs issue a malicious certificate or a malicious certificate is installed
explicitly, connections are at risk of man-in-the-middle (MITM) attacks [30].

In order to prevent MITM attacks to a certain degree, TLS certificate pinning, integrated
in many anti-reversing tools along with other mechanisms and described in subsection 3.3.2,
can be employed.

3.2.3 Rooting
Rooting describes the process of obtaining the highest user privileges (“root”) in the
operating system [188]. Therefore, rooting is not a reverse engineering technique as
such, but often a prerequisite for further reverse engineering techniques described in this
chapter.

In Android and typically in other Linux systems as well, “root” privileges are held by the
root user [188]. To switch to the root user, the su binary can be used, which is installed
during the rooting process [234]. When su is invoked, a root management application
(such as Magisk [241] or SuperSU [235]) typically shows a confirmation dialogue before
root privileges are granted to the process/application.

Rooting is generally categorised into two types [188] [263]:

• Soft roots aim to gain root privileges on an already booted system. They rely on
exploiting vulnerabilities of the kernel or system processes running as root. However,
soft roots are not persistent per se, as the integrity of the system is checked on
each reboot.

• Hard roots are persistent but typically require the support of manufacturers for
unlocking the bootloader. They are performed by directly flashing the su binary
on the device or by replacing the operating system with a new one that has su
installed [188] [176].

With root privileges, many actions that are normally not possible due to limited permis-
sions, e.g. killing processes or accessing protected directories, can be performed [244] [62].
Therefore, rooting allows users to fully explore and customize their devices [213]. Further-
more, root access is often an requirement for reverse engineering tools (see section 3.4)
to work properly [59].

However, rooting entails the risk of weakening the device’s security, as it undermines
Android’s security model [123] [249]. On the one hand, malicious applications could
simply request root access, instead of having to exploit a kernel or system vulnerability to
gain root privileges [234]. Inexperienced users might grant the requested root permissions,
allowing malware to gain control over the whole device [234]. On the other hand, malware

27

3. Background

could exploit vulnerabilities within the su binary or root management application itself
to gain root access [234].

Due to the security risks that are implied by a rooted device, developers of applications
handling sensitive data often employ root detection (see subsection 3.3.3) to be able to
react accordingly. In addition, root detection is also implemented by developers who
strive for protecting their application logic, since reverse engineering tools often require
root privileges.

3.2.4 Repackaging
Repackaging refers to the process of modifying an existing application and distributing
it [177]. Typically, attackers download an existing (usually popular) application. After-
wards, the application can be reverse engineered, e.g. through decompilation. At this
stage, nearly arbitrary modifications can be performed, including removing or redirecting
application earnings and injecting malicious payloads or advertisements [66] [178]. Fi-
nally, the application is redistributed. Therefore, repackaging is a form of application
cloning/plagiarism [143].

Repackaging is especially commonly employed within the Android ecosystem, as appli-
cations can easily be distributed on the official store by registering as an application
developer and self-signing the application [135]. In addition, applications can also be
distributed without relying on application stores through sideloading.

From a reverse engineer’s perspective, unpacking and modifying an application allows
disabling potential further anti-reverse engineering mechanisms.

In order to protect applications from being modified and/or repackaged, tamper protection,
described in subsection 3.3.4, can be employed.

3.2.5 Hooking and Debugging
Hooking allows running arbitrary code within an application by hooking function calls
and inserting additional functionality [124]. This way, the behaviour of applications
can be changed completely. For example, method parameters, return values or whole
implementations may be changed [227].

Although debugging is primarily used during development, it can also be used for altering
the control flow and return values [124] [227]. On Android, two types of debuggers
can be utilised: Native code debuggers or the Java-based debugger building upon the
Java Debug Wire Protocol (JDWP) [193] [124]. The former typically makes use of
ptrace [158] to directly attach to the process of the target application [65] [124]. In
contrast, JDWP was designed for communication between the debugger and the JVM [65].
The ART/DVM also supports JDWP, which allows debugging Android applications
using the same protocol as long as the android:debuggable attribute within the
AndroidManifest.xml is set to true [65] [226].

28

3.3. Android Application Anti-Reverse Engineering Mechanisms

Both techniques – hooking and debugging – are often used for analysing applications
in-depth. The techniques can also be employed to circumvent security/anti-reversing
mechanisms, such as root detection [231].

To prevent applications from being hooked or debugged, hooking and debugging detection,
see subsection 3.3.5, can be employed. Besides developers, who use detection mechanisms
to protect their applications, malware developers often employ hooking/debug detection
to hinder researchers from analysing their malicious applications with the help of hooking
or debugging tools [242].

3.2.6 Emulation
For easier analysis, applications are often ran in emulators instead of physical devices.
This allows inspecting and resetting the application/system state or monitoring how the
application operates [124]. In addition, emulators provide analysts with a controlled and
isolated environment, which can be used for further dynamic (malware) analysis [202] [247].

As a result, malware developers tend to employ emulation detection (see subsection 3.3.6)
to force researchers to avoid the usage of emulators for analysis purposes.

3.3 Android Application Anti-Reverse Engineering
Mechanisms

In this section, we introduce anti-reverse engineering mechanisms often implemented
by anti-reverse engineering tools aiming to prevent the previously described application
reverse engineering techniques as far as possible.

3.3.1 Code Obfuscation
Code obfuscation is the process of changing the appearance of code into a form that is
difficult to analyse. On Android, the compiled code is stored within one or more DEX
files. Without obfuscation, it is trivial to analyse the human-readable Dalvik bytecode.
With obfuscation applied, significantly more resources are required to gain a sufficient
understanding of an application’s logic as – depending on the level of obfuscation – the
code becomes barely readable. As a result, code obfuscation helps protecting sensitive logic
and intellectual property as well as preventing piracy [92]. In addition, obfuscation can
hinder malware developers from publishing malicious versions of legitimate applications
through repackaging (see subsection 3.2.4).

A common tool that employs basic obfuscation techniques is ProGuard [117], an open-
source code transformer that compresses, optimizes and obfuscates bytecode [36]. It was
integrated into the Android software development kit until Android switched to the R8
compiler to fulfil the tasks ProGuard was used for previously [36].

In the remainder of this section, we present three common obfuscation techniques.

29

3. Background

Identifier Renaming

Usually, programmers choose meaningful names for identifiers (variables, method names,
etc.) to achieve better readability. However, meaningful identifiers are also useful for
reverse engineers to understand the functionality of an application more easily. As a
result, obfuscators tend to rename identifiers of an application to meaningless names such
as ab, ba, and alike [106]. Some obfuscators choose short strings in lexicographic order,
others may generate strings in a completely random manner [182] [74]. Although renamed
identifiers are usually easy to identify due to their length and meaninglessness, identifier
renaming makes it harder to understand the semantics of an application. Listing 3.1
shows an example for identifier renaming, where non-descriptive names are assigned to
two class variables.

1 public class ExampleClass {
2 String someString = "...";
3 int someInt = 1;
4 }

1 public class ExampleClass {
2 String aaa = "...";
3 int aab = 1;
4 }

Listing 3.1: Identifier renaming example.

Control Flow Obfuscation

Control flow obfuscation aims to hinder static analysis by changing the logical control
flow of a program. This way, the execution paths of an application are changed while
maintaining the intended functionality. Control flow obfuscation can be realised through
(a combination of) several ways. For example, dead code that is never executed, e.g.
additional methods or conditional statements that are never fulfilled, can be inserted [139].
Furthermore, loop conditions can be modified or extended by complex statements that
have no influence on the result, i.e. the number of iterations remains the same.

Listings 3.2 and 3.3 illustrate a simple example for control flow obfuscation. The for-loop
has been modified to run backwards and the reference to the variable i has been adjusted
accordingly. In addition, an if-statement with a condition that is never fulfilled has
been inserted.

Further control flow transformation techniques include the addition of redundant oper-
ations and reordering of statements [55] [54]. In addition to several other techniques,
control flow flattening is an advanced technique that moves all function bodies, loops
and conditional branches into a single loop that controls the program flow by using a
switch or multiple if statements [141] [246].

30

3.3. Android Application Anti-Reverse Engineering Mechanisms

1 for (int i = 0; i < 10; i++) {
2 System.out.println(i);
3 }

Listing 3.2: Control flow obfuscation example: original code.

1 for (int i = 10; i > 0; i--) {
2 if (i % 11 == 0) break;
3 System.out.println(10 - i);
4 }

Listing 3.3: Control flow obfuscation example: obfuscated code.

Obfuscation through Reflection

Reflection is a Java programming technique that allows invoking methods dynamically.
The goal of using the reflection mechanism for obfuscation purposes is to hide methods
and fields that the code is calling [115]. This is realised by removing the direct references
to methods and instead retrieving them dynamically via the reflection API [196] [115].
Therefore, obfuscation through reflection modifies the control flow of an application and
can be seen as a variant of control flow obfuscation. However, the primary focus is to
hide method and field names.

Although reflection can also be used for non-obfuscation purposes, this technique can
provide a powerful way to impede reverse engineering, especially when used in combination
with other obfuscation techniques [115]. An example for obfuscation through reflection is
presented in Listings 3.4 and 3.5.

1 ExampleClass example = new ExampleClass();
2 example.exampleMethod();

Listing 3.4: Reflection example: original code.

1 Object c = Class.forName("com.example.ExampleClass")
2 .getDeclaredConstructor().newInstance();
3 Method m = c.getClass().getMethod("exampleMethod");
4 m.invoke(c);

Listing 3.5: Reflection example: obfuscated code.

31

3. Background

String Encryption

String encryption aims to replace string constants by encrypted representations based
on cryptographic functions [82]. During runtime, before a string is used, the decryption
routine is called. Therefore, when statically decompiling an application, original/plain
strings are not visible to a reverse engineer.

Encryption and decryption routines may use a large variety of ciphers, such as simple
XOR operations, AES, etc. [107]. In addition, to make implementations more robust,
white-box cryptography (WBC) is often employed. WBC aims to protect cryptographic
keys even if the attacker has full insights into the internal algorithm details [68].

Encrypting strings makes it more difficult for reverse engineers to understand program
flow and logic, as (plain text) strings in source code are usually excellent reference points.
Furthermore, string encryption helps hiding sensitive data, such as API endpoints, to a
certain degree.

Listings 3.6 and 3.7 show a simple example of string encryption, with the former repre-
senting the original, unobfuscated code, and the latter showing its obfuscated counterpart.
In this example, an additional class and method StringEncryption.decrypt() was
added, which allows decrypting encrypted strings during runtime.

1 public class ExampleClass {
2 String url = "https://example.org";
3 String apiKey = "ABC1234567890";
4 }

Listing 3.6: String encryption example: original code.

1 public class ExampleClass {
2 String url = StringEncryption.decrypt("/&Wi(rsdhu");
3 String apiKey = StringEncryption.decrypt("(/&ajshd");
4 }

Listing 3.7: String encryption example: code with encrypted strings.

Class Encryption

Class encryption aims to encrypt code on a per class basis. A typical approach of class
encryption mechanisms applied to Android applications is illustrated in Figure 3.8. Note
that in this illustration, we assume that the APK only contains a single classes.dex
file. The depicted approach encrypts the executable code stored inside the classes.dex
file and stores the encrypted code as a resource/asset within the newly created protected
APK [115]. The initial DEX file is replaced with an unpacking routine that is responsible

32

3.3. Android Application Anti-Reverse Engineering Mechanisms

for decrypting and loading the original code at runtime, usually immediately after
the application was started [265] [170]. On Android, dynamic class loading can be
implemented using the DexClassLoader API [22], which provides the functionality
to load DEX files during runtime [129]. This process is similar to the functionality of
packers, which were originally designed to compress software that unpacks itself during
runtime [84].

Class encryption prevents usual decompilation approaches, as only the code for decrypting
the original code is present in its original, unencrypted form. As with string encryption,
class encryption implementations often make use of white-box cryptography to prevent
reverse engineers from manually decrypting the encrypted classes.

However, class encryption is also often abused by malware, as signature-based detection
can easily be evaded due to the only code being visible is the decryption routine [216].

Figure 3.8: Typical class encryption process on Android.

3.3.2 TLS Certificate Pinning
TLS certificate pinning is a technique to mitigate MITM attacks over HTTPS. The
main idea of TLS certificate pinning is to explicitly specify, i.e. “pin”, certificates that
should be trusted and refuse connections using other certificates [90]. Therefore, an
application’s secure connection is restricted to specific certificates. This specification
of trusted certificates can be carried out in two ways. On the one hand, developers
may directly specify the trusted TLS certificates [226]. However, when the specified
certificate is replaced, e.g. due to expiration, an application update with the newly
pinned certificates has to be distributed in order to maintain functionality. Therefore,
developers also have the possibility to specify the hashes of the trusted certificates’ public
keys [226]. Thus, even when certificates are swapped out, the underlying public key
usually remains static, making swapping out certificates much easier for developers [252].

33

3. Background

A typical TLS certificate pinning implementation process is illustrated in Figure 3.9.
First, when the client device initiates the communication with the server, the certificate is
transferred to the client [91]. Afterwards, the client hashes the public key of the retrieved
certificate. The hash is then compared with the one that is stored in the application [215].
If and only if the two hashes match, the communication is established. Therefore, even if
the client tries to establish a connection using, e.g. a fraudulent certificate that was issued
by a operating system-wide trusted CA, TLS certificate pinning prevents establishing
the connection, as the hash comparison fails.

Figure 3.9: TLS certificate pinning process, adapted from [215].

On Android, trusted CAs are stored in the TrustManager [40] [192]. Since Android
7.0, the built-in pinning mechanism can be used by defining a network security config-
uration [30] and providing a set of public key hashes of certificates without having to
write custom code [191]. An example configuration for pinning certificates is illustrated
in Listing 3.8.

1 <?xml version="1.0" encoding="utf-8"?>
2 <network-security-config>
3 <domain-config>
4 <domain includeSubdomains="true">example.com</domain>
5 <pin-set>
6 <pin digest="SHA-256">7HIpactkIA...</pin>
7 </pin-set>
8 </domain-config>
9 </network-security-config>

Listing 3.8: TLS certificate pinning using Android’s network security configuration [30].

34

3.3. Android Application Anti-Reverse Engineering Mechanisms

3.3.3 Root Detection

To ensure that an application is running in a safe/unrooted environment, root detection
can be employed. Typically, the corresponding code that performs various checks to
determine whether a device is rooted is executed at the start of the application. In
case the results imply a rooted device, an action – such as showing an appropriate error
message and exiting the application – can be performed.

Root checks can be implemented using various methods. In the following, we will present
the most common methods according to a study conducted by Sun et al. [234]. The
presented methods are commonly used by root detection tools, such as the open-source
library RootBeer [223].

Checking Installed Applications

Specific applications, such as root management applications like Magisk [241] or Su-
perSU [235], are commonly installed on rooted devices. On Android, the PackageManager
class [31] allows to retrieve a list of the package names of all installed applications. Com-
mon root detection implementations iterate through this list and check whether certain
(root-indicating) packages are installed.

Instead of using the PackageManager Java API, the command pm list packages,
which lists all installed packages, can also be used.

Checking Existence of Files

To switch to the privileged “root” user, the su binary is used usually. As this binary is
not present on unrooted devices, the existence of this file is a good indication of a rooted
device.

Checking the existence of files can be done through various ways, such as using Java’s
File.exists() [25] method. As the su binary may be present in one of several
directories, multiple directories, such as /system/bin/su, have to be checked.

Alternatively, which su can be executed which outputs the path to the superuser binary
in case it exits. Otherwise, an error code is returned.

Checking System Properties

Android stores several different system properties, which can be accessed using the
getprop command or the System.getProperty() method of the Java API. Some of
the stored properties indicate a rooted device. In particular, the ro.debuggable and
ro.secure properties set to 1 and 0, respectively, indicate possible root privileges [188].
In addition, the ro.build.tags property might be equal to test-keys when using
an inofficial Android build (in contrast to release-keys on official Android builds).

35

3. Background

Checking Directory Permissions

Rooting a device might change some permissions of certain directories. For example, the
/system directory is usually restricted to read-only access. If said directory turns out to
be writeable, e.g. by using File.canWrite() [25], a rooted device can be concluded.

Checking Processes

Similar to checking installed applications, the currently running processes can also be
checked. If one of the processes is likely to be a root management application, such as
Magisk [241], a rooted device can be concluded.

For retrieving the running processes the getRunningAppProcesses() method of
the ActivityManager class [6] can be used. In addition, executing the ps command
returns a list of the running processes as well.

3.3.4 Tamper Protection
Tamper protection or integrity protection aims to ensure that an application has not
been altered by a third party [227]. A basic approach for checking the integrity of an
application consists of checking the signature of the APK [124]. If the signature does not
match the expected one, the application was very likely modified. For this approach, it is
necessary to embed the original signature/digest at build time, e.g. as a constant. Most
implementations try to hide the check inside the application’s code to prevent attackers
from easily bypassing the detection.

More sophisticated approaches make use of feature extraction, filtering and similarity
analysis [262]. In addition, checks are often embedded in multiple locations inside the
application, thus making it harder for attackers to circumvent the detection of an altered
application [218].

However, repackaging might also be utilised by security researchers to enable easier
analysis of potential malicious applications. For example, anti-analysis techniques – such
as root detection – could be disabled by modifying the corresponding code segments. As
a result, malware authors often employ tamper protection as well.

3.3.5 Hooking and Debugging Detection
Hooking and debugging detection can be employed to prevent the execution of an applica-
tion in case a hooking or debugging framework is attached.

Hooking tools can be detected by checking installed application packages, files or processes,
similar to checking whether a device is rooted [198]. As there are different dynamic code
instrumentation tools (see subsection 3.4.2) that provide hooking functionality available,
further detection techniques depend on the specific tool that is used.

The detection of debuggers considers the two possible types of debugging on Android:
Native code and Java-based debugging. One method for detecting native code debugging

36

3.4. Reverse Engineering Tools

is measuring the execution time between two points in the control flow [99]. A large
difference in time is an indication that the execution of the process was paused (e.g.
through breakpoints) [99]. Another possible indicator is the TracerPid, which can be
retrieved by inspecting the status file of the process (proc/self/status [157]) [198].
If a debugger is attached, the TracerPid has a value different from 0 [198].

A simple method to detect debugging using JDWP is checking whether the debuggable
attribute within the Android manifest is set to true as this should never be the case with
unmodified published applications [226]. In addition, the isDebuggerConnected()
method of the android.os.Debug class [20] can be used to check whether a debugger
is attached [198]. Furthermore, the technique of measuring the time difference between
two points in the executed code that was pointed out previously can also be applied to
detect JDWP based debugging [198].

In addition to detecting hooking or debugging tools, applications might aim to prevent
the usage of such tools in advance. A common prevention technique leverages the fact
that debuggers and hooking frameworks typically make use of ptrace [158] to observe
and control a target process. However, only one tracer is allowed per process, meaning
that if the process attaches to itself, no debugging/hooking tools that rely on the usage
of ptrace can be attached [124].

3.3.6 Emulation Detection

Emulation detection aims to detect the execution of an application within an emulator.
The detection of an emulated device is possible due to the fact that recreating a complete
and real emulated system is difficult [227]. Thus, emulation detection techniques focus
on detecting small differences of certain system artefacts and properties – statically and
dynamically [133] [227].

Static checks inspect system properties, such as device ID, serial number, model, man-
ufacturer, etc. [169] [198]. Dynamic checks might retrieve values from different device
sensors, including the accelerometer, gyroscope, and GPS [202]. In general, static sensor
values indicate emulated devices.

Although – like with other anti-reversing mechanisms – emulation detection can be
bypassed, e.g. by simulating varying sensor values, it represents another necessary step
and therefore impedes application analysis.

3.4 Reverse Engineering Tools

The following section provides an overview of a variety of tools that are typically used
for reverse engineering applications and Android applications in particular.

37

3. Background

3.4.1 Decompilers and Disassemblers
Decompilers are tools that attempt to perform the inverse process of a compiler [69].
They take an executable (machine-dependent) program compiled to machine code as an
input and aim to produce code written in a high-level language that behaves the same as
the original executable given [69].

Disassemblers perform a subset of this reverse operation [250]. Instead of transforming a
program into a high-level language, the program is transformed into a human readable
representation of machine code, called assembly [250].

Decompilation in the case of Android aims to translate the compiled Dalvik bytecode
(instead of machine code) stored in DEX files into easily readable Java source code. Ana-
logically, Android disassemblers transform bytecode into a human readable representation
called smali [103].

In order to perform decompilation and disassembly on the Android platform, a wide
range of tools exists, with the most popular ones being introduced in the following:

apktool

apktool [243] is an open-source command-line tool for reverse engineering Android appli-
cations [83]. As some resources are encoded into binary XML format, simply unzipping
APKs would result in some files being unreadable [198]. When using apktool to unpack
APKs, XML files are decoded to text-based XML format, resources are extracted, and
DEX files are disassembled to smali representations [198] [83]. The unpacked resources
(e.g. layout XML files) and smali code can be modified and eventually be reassembled to
produce an APK [83].

dex2jar

dex2jar [210] is an open-source project providing a set of tools for working with Android
DEX and Java class files [83]. Typically, dex2jar is used to convert DEX files into the
Java Archive (JAR) format. This conversion allows using common Java decompilers,
such as JD [131], for decompiling Android applications.

Further features include reading and writing to DEX files as well as disassembling DEX
files to their corresponding smali representation and vice versa [52].

Java Decompiler (JD) and jadx

The Java decompiler project [131] consists of a few tools aimed to decompile and analyse
Java bytecode. There also exists a standalone version with a graphical user interface
(JD-GUI) that allows browsing the decompiled source code of JAR files. In combination
with dex2jar, JD is also suitable for decompiling Android applications.

In contrast, jadx [229] directly produces Java source code from DEX or APK files. In
addition, binary XML files and other resources are decoded. Furthermore, the graphical

38

3.4. Reverse Engineering Tools

user interface provides additional functionality, such as jumping to declarations or
searching for specific statements and strings.

IDA Pro and Ghidra

IDA Pro [126] is a commercial disassembler, which is commonly referred to as the
industry standard reverse engineering tool [220]. In addition to the commercial license,
the developing company Hex-Rays also offers a limited-functionality freeware version [85].

Ghidra [186] is an open-source reverse engineering framework developed by the National
Security Agency (NSA) and was released to the public in 2019 [86] [220]. Ghidra
encompasses a disassembler, decompiler as well as a scripting engine for advanced use
cases [198].

Both – IDA Pro and Ghidra – are primarily known to be reverse engineering frameworks
for disassembling programs compiled to machine code. For one, this allows disassembling
and analysing native libraries of Android applications. Additionally, both tools are
capable of opening, disassembling, and decompiling DEX files directly.

3.4.2 Dynamic Code Instrumentation Tools
Dynamic code instrumentation describes the process of modifying the instructions of a
program during runtime [214]. Dynamic code instrumentation tools allow hooking function
calls. Through hooking, a function call can be intercepted before the original function is
called. Instead of the original function, custom code is executed, which may or may not
call the original function implementation. Thus, hooking allows running arbitrary code
within an application. Due to the possibility of changing the behaviour of applications
completely, e.g. through substituting return values, dynamic code instrumentation is
a powerful technique for analysing the functionality of applications as well as applied
anti-reversing tools and their mechanisms.

Frida

Frida [95] is a popular, state-of-the-art dynamic code instrumentation tool, which allows
the instrumentation of native code and Java bytecode. It is also the foundation of various
other tools, such as the mobile exploration toolkit objection [224]. Objection offers
some built-in functionality for interacting with mobile applications, e.g. bypassing TLS
certificate pinning or dumping memory.

Frida consists of multiple components, such as [98]:

• frida-core: The frida-core component contains the main injection code.

• Gum: Frida uses the instrumentation library Gum, which includes a JavaScript
engine.

• frida-helper : The frida-helper is responsible for the injection of the frida-agent.

39

3. Background

• frida-agent: Frida injects a shared library, called frida-agent, into the target process.
This library receives commands and forwards them to the instrumentation library.

• frida-server : In order to make the frida-core accessible for remote hosts via TCP,
the frida-server component is needed.

By injecting a JavaScript engine into the target process, Frida allows to write the
instrumentation code in the high-level language JavaScript. For injecting the agent, Frida
first leverages ptrace [158] to interact with the target process and store the current
program status. Afterwards, Frida allocates memory for inserting the loader code and
copies the loader to the corresponding memory location. Next, the loader is executed
to inject an agent. Finally, the program execution continues normally by restoring the
previously stored program status.

Further, Frida is organised as a client-server architecture, which allows instrumenting
processes running on a remote machine. In the case of Android, the remote machine
represents an Android device or emulator. Frida supports various operating systems,
including Android, by providing the corresponding server binaries compiled for different
architectures. The server binary requires root access on the device and allows instru-
menting any installed application. If root access is not available, the frida-gadget library
can be used. This shared library has to be embedded into the target application by
unpacking, modifying and repacking the APK manually.

For hooking arbitrary functions, Frida offers the Interceptor API [96], which allows
hooking functions by providing the memory address of the target function. Additionally,
Frida allows hooking and modifying Java methods by specifying the exact class and
method names. Furthermore, Frida’s code tracing engine Stalker [97] allows tracing every
executed instruction.

Xposed / LSPosed Framework

The Xposed framework [258] aims to change the behaviour of the system and applications
without changing APKs by allowing developers to replace any method in any class
of applications or the system [179]. The injection of custom behaviour is achieved
by extending /system/bin/app_process – the binary which executes a runtime
environment for Dalvik classes – by a JAR file [179]. Xposed itself only provides the
functionality to modify methods. The actual functionality (i.e. modified behaviour) is
implemented in Xposed modules, which can easily be published and shared with other
users.

As Xposed is not actively maintained anymore, its successor LSPosed [104] has evolved.
LSPosed provides similar functionality as Xposed and supports devices running Android
8.1 and above.

40

3.4. Reverse Engineering Tools

Cydia Substrate

Cydia Substrate [221] is a tool originally developed for customising iOS devices. Later on,
a version for Android, supporting versions 2.3 through 4.3, was released. Cydia Substrate
allowed modifying applications without requiring source code. Similar to the Xposed
framework, Substrate only provides the toolkit for allowing instrumentation [179]. The
modifications themselves are implemented in substrate extensions.

3.4.3 Diagnostic and Debugging Tools
Diagnostic and debugging tools allow monitoring and modifying the execution of processes.
Simple monitoring might only consist of tracing executed system calls of an application.
Debugging extends the idea of monitoring a process with the possibility of intervening in
the execution of a program. For example, values of variables can be changed, which might
cause a complete change of the program’s behaviour. Thus, diagnostic and debugging
tools are also crucial when analysing the behaviour of unknown software.

System Call Tracing With strace and jtrace

strace [160] is a Unix utility used to monitor system calls. One simple use case of strace
is to specify a command that should be executed. During the execution, strace records
the system calls that are called by the process.

Each output line contains the system call name, along with its arguments in parentheses
and its return value after the equal sign. The following line is a snippet of the output when
using strace on the command cat /dev/null as the manual page of strace [160]
shows:

open("/dev/null", O_RDONLY) = 3

Tracing system calls can provide useful insights into the functionality of closed-source
programs as many functions that are available in high-level languages rely on low-level
system calls. For example, functions used for reading contents from files inevitably
leverage open and read system calls. Therefore, we will perform system call tracing
during the analysis of anti-reverse engineering tools in this work.

In addition to strace, jtrace [134], developed by Jonathan Levin, can be used when
tracing system calls on Android. jtrace is comparable to strace enriched with some
additional, Android-specific features. For example, jtrace is able to automatically parse
Binder messages, thus providing insights into Android’s inter-process communication.
Furthermore, jtrace provides a plugin architecture, allowing to extend its functionality.

Debugging with Android Studio and GDB / LLDB

For debugging Android applications, Android recommends the debugging tools contained
in Android Studio [9], which is the official IDE for Android application development [21].

41

3. Background

In order to debug an application, the debuggable attribute in the Android manifest
has to be set to true.

In addition, Android Studio also supports debugging native code as long as the source
code is available. However, when confronted with unknown shared libraries that are part
of Android applications, source code is usually not obtainable. In such cases, GDB [94]
or LLDB [239] can be used.

GDB, the GNU project debugger, is a popular command line debugger for Unix systems. It
provides various common debugging features, such as stopping on breakpoints, examining
stack traces and modifying variables. For debugging applications running on remote
machines, such as Android applications running on Android devices, gdbserver has to
be started on the remote system [232]. This program allows connecting GDB running on
another machine to a process via TCP.

LLDB is part of the LLVM project [240] and provides similar functionality as GDB
although some commands differ. Using LLDB is Google’s recommended way for debugging
native code of Android applications [21]. In addition, the debugger integrated in Android
studio is based on LLDB [21].

3.4.4 HTTP(S) Proxies
An HTTP(S) proxy server is an intermediary in the network between a client and
server [236]. Thus, the client does not connect directly to the server, but instead sends
its requests to the proxy server which proxies, i.e. redirects, the requests to the actual
target server. This behaviour is illustrated in Figure 3.10.

(a) HTTP communication without proxy. (b) HTTP communication with proxy.

Figure 3.10: HTTP communication with and without proxy server.

Although there are various reasons for using proxy servers in the wild, e.g. to access
external sources from within a firewall or to increase anonymity when accessing a target
server, they can also be used for network analysis [168] [236].

As the whole network traffic is transmitted through the proxy server, it may act as a
man-in-the-middle, thus allowing to intercept network requests in order to observe or
even modify them. Besides the possibility of malicious usage, e.g. observing traffic of
strangers, proxies are very commonly used when analysing applications.

However, the communication of most modern web and mobile applications is performed
using HTTP over SSL/TLS (HTTPS) to prevent eavesdropping and tampering, e.g.
as part of man-in-the-middle attacks. When using a proxy server, clients now directly
connect to the proxy instead of the original server. As a result, the proxy server needs
to create X.509 certificates through a custom certificate authority (CA). During the

42

3.4. Reverse Engineering Tools

SSL/TLS handshake, the client tries to verify these newly generated certificates. However,
the client usually rejects the connection as the custom CA is not trusted per default.
Thus, in order to enable a successful verification, the custom CA certificate has to be
installed and trusted on the client device. In the case of TLS certificate pinning being
employed, further measures, e.g. bypassing the pinning mechanism, have to be taken in
order to allow traffic analysis.

In the following, we present two popular tools that allow creating proxy servers for testing
and analysing (Android) applications.

Burp Suite

Burp Suite [203] is a popular web application security testing tool developed by PortSwig-
ger [204]. The suite provides a large feature set, such as automated security testing,
fuzzing, and quality analysis of randomised values [212]. A fundamental feature is an
HTTP(S) proxy server, which is not only suitable for web, but mobile applications as
well. The proxy server, along with other helpful tools, is part of Burp Suite Community
Edition, which is free to use. In addition to monitoring network traffic, traffic can also
be modified, repeated, and analysed.

mitmproxy

mitmproxy [79] is an open-source HTTPS proxy. It is primarily developed as a command
line tool providing the functionality to intercept, inspecting, modifying, and replaying
web traffic. In addition, mitmproxy offers a graphical web interface and Python [211]
API allowing to write add-ons and scripts. Furthermore, entire HTTP conversations can
be saved for later replay and analysis.

43

CHAPTER 4
Mobile Anti-Reverse Engineering

Tools

This chapter gives an overview of the three anti-reverse engineering tools that are analysed
in this work. While the following sections describe the tools in more detail, Table 4.1
provides a high-level comparison of the tools’ offered mechanisms that were introduced
in section 3.3.

Tool Id
en

tifi
er

R
en

am
in

g

C
on

tr
ol

Fl
ow

O
bf

us
ca

tio
n

O
bf

us
ca

tio
n

th
ro

ug
h

R
efl

ec
tio

n

St
rin

g
En

cr
yp

tio
n

C
la

ss
En

cr
yp

tio
n

T
LS

C
er

tifi
ca

te
Pi

nn
in

g

R
oo

t
D

et
ec

tio
n

Ta
m

pe
r

Pr
ot

ec
tio

n

H
oo

ki
ng

an
d

D
eb

ug
gi

ng
D

et
ec

tio
n

Em
ul

at
io

n
D

et
ec

tio
n

DexProtector [145] • • • ✓ ✓ ✓ ✓ ✓ ✓ ✓

LIAPP [165] • • • ✓ ✓ • ✓ ✓ ✓ ✓

DashO [205] ✓ ✓ • ✓ • • ✓ ✓ ✓ ✓

Table 4.1: Feature comparison of DexProtector, LIAPP, and DashO.

45

4. Mobile Anti-Reverse Engineering Tools

4.1 DexProtector
DexProtector [145] is a mobile security solution for Android and iOS platforms developed
by Licel [149].

According to the documentation [146], main features of DexProtector include:

• Encryption of several app components in order to impede static analysis and reverse
engineering.

• Various environment checks to make dynamic analysis more cumbersome.

• Integrity checks to avoid code tampering and repackaging.

In addition to encryption of strings and classes, DexProtector also implements encryption
routines for application resources. Furthermore, DexProtector offers a dedicated TLS
certificate pinning mechanism, which makes it stand out against the other two analysed
tools. However, even though the rough outline of the features [146] states that code
obfuscation is applied, a closer look on the feature matrix [147] reveals that DexProtector
only provides the possibility of renaming resource names as well as hiding JNI methods
and refers to this process as “obfuscation”. Nonetheless, the JVM-based codebase (i.e.
Java or Kotlin) can be encrypted, provided that the tool was configured correspondingly.
As a result, bypassing or reverting the class encryption mechanisms reveals unobfuscated,
well-readable source code. Nevertheless, DexProtector can be used in combination with
R8 [36], in order to additionally perform basic renaming and obfuscation techniques.

DexProtector operates on APK, AAB (Android App Bundle), or AAR (Android Archive,
used for libraries [19]) files as an input. In addition, DexProtector can be integrated into
an existing build process using its plugin for Gradle [113], the standard build system
used for Android projects. Based on the provided configuration in form of an XML file,
the configured protection mechanisms are applied and a protected APK, AAB, or AAR
file is generated as an output. DexProtector also supports signing the application as
part of the protection process. Thus, the protected application is ready for distribution
without the need for further processing.

4.2 LIAPP
LIAPP [165] is a cloud-based mobile protection tool for Android and iOS developed by
Lockin Company [167].

Main features of LIAPP include [165]: Protection of code through class and string
encryption, tampering protection, and several environment checks, such as debugging
and rooting detection.

As LIAPP is cloud-based, no software has to be downloaded. Instead, the whole process
of protecting an application is conducted using a web interface. After logging in, a

46

4.3. DashO

new record for an application can be created where configuration options can be set.
Afterwards the APK or AAB file that should be protected can be uploaded. Finally,
after the protection process was completed, the protected application can be downloaded.
However, in order to be able to distribute and install the application on devices, it has
to be signed afterwards.

4.3 DashO
DashO [205], developed by PreEmptive [208], is an obfuscation and hardening tool
for Java, Kotlin, and Android applications. Although DashO does not support class
encryption, it supports identifier renaming and control flow obfuscation. In addition
to the alteration of class, method, and variable names, DashO’s identifier renaming
implementation applies an additional technique, which PreEmptive refers to as overload
induction [206]. Overload induction aims to rename as many methods as possible to
the same name. As the name implies, this is possible due to overloading, i.e. creating
multiple functions of the same name but different parameters. However, when using
DashO for Android applications, DashO’s renaming implementation is not available, as
it expects renaming to be handled by R8 [36].

Furthermore, DashO supports string and resource encryption as well as tampering
protection. For Android applications, DashO implements several environment checks,
such as root detection. Additionally, the tool supports watermarking in order to track
unauthorized copies of software.

DashO offers a “wizard” with a graphical user interface for automatically integrating
DashO into an existing Android project using a Gradle plugin [207]. Nevertheless, the
wizard also allows to select an APK file that should be protected, without having to
integrate DashO into the build process [207]. PreEmptive recommends to configure the
protection mechanisms using the DashO graphical user interface, which generates an
XML configuration file with the specified options [207]. Nonetheless, DashO can also be
configured by modifying the XML file manually.

47

CHAPTER 5
Analysis of Mobile Anti-Reverse

Engineering Mechanisms

This chapter analyses several anti-reverse engineering mechanisms provided by the anti-
reverse engineering tools DexProtector [145], LIAPP [165], and DashO [205]. First,
we present the general analysis approach and setup along with the tools we are using
throughout the process. Afterwards, we thoroughly describe the performed techniques
and results of the analysis. Finally, this chapter concludes with an overview of the
differences between the analysed tools.

5.1 Analysis Approach and Setup
This section describes this work’s analysis approach and setup.

5.1.1 Approach
This work follows the analysis approach illustrated in Figure 5.1. Step (1) consists of
implementing an evaluation application, as described in subsection 5.1.2. Step (2) applies
one of the three anti-reversing tools (DexProtector, LIAPP, and DashO) with one specific
protection mechanism to the application.

Afterwards, step (3) analyses the protected evaluation application. As a first analysis step,
static analysis is performed in step (3a). By using several decompilation and disassembling
tools, such as apktool [243] and jadx [229], some insights regarding the implementation of
the applied protection mechanism are gained. Afterwards, step (3b) employs dynamic
analysis based on the results of (3a). The focus of (3b) rests on applying dynamic code
instrumentation and function hooking using Frida [95], allowing to trace function calls
and replace function implementations. Leveraging the analysis results of (3b), further
static analysis (step (3a)) helps to gain further comprehension of the mechanism’s internal

49

5. Analysis of Mobile Anti-Reverse Engineering Mechanisms

functionality. After the analysis of one tool with one specific protection mechanism, steps
(2) and (3) are repeated with another tool and/or mechanism.

Subsequently, after we analysed all of the tools and mechanisms in question, step (4)
works out the main implementation differences of the tools.

Based on the analysis results, chapter 6 describes step (5) that implements several
bypassing approaches for each of the analysed mechanisms as well as functionality to
automatically determine which of the anti-reversing tools this work focuses on was applied
to a given application. Step (6), which is covered in chapter 7, conceptualises possible
approaches for improving the analysed mechanisms and tools based on the previous
analysis results and developed bypassing strategies.

Figure 5.1: Analysis process.

50

5.1. Analysis Approach and Setup

5.1.2 Evaluation Android Application

In order to properly analyse the stated tools, a simple Android application with one
activity, one fragment, as well as some basic features is implemented as part of analysis
step (1) (see Figure 5.1). The application’s main (and only) activity displays the result
of the root check mechanisms offered by the tools. In addition, the application provides
two buttons that can be pressed to perform an HTTPS GET or POST – depending on the
button – request to the fake/mock REST API server JSONPlaceholder [245] using the
networking library Fuel [137]. More specifically, GET requests are performed to https:
//jsonplaceholder.typicode.com/posts/1 and POST requests to https://
jsonplaceholder.typicode.com/posts/. The UI additionally contains two text
fields where the id and post title, used for the GET and POST requests, respectively, can
be specified. A screenshot of the described application is shown in Figure 5.2.

Figure 5.2: Screenshot of evaluation application.

5.1.3 Analysis Environment

For developing and building the Android application for analysing the applied anti-
reversing tools, a MacBook Pro 2020 running macOS 12.6 was used. In addition, all
reverse engineering tools that were used for this analysis, were installed and executed on
this machine.

For executing different builds of the evaluation Android application, a Google Pixel 4a
with Android 11 was used. The Android device was rooted using Magisk [241].

51

https://jsonplaceholder.typicode.com/posts/1
https://jsonplaceholder.typicode.com/posts/1
https://jsonplaceholder.typicode.com/posts/
https://jsonplaceholder.typicode.com/posts/

5. Analysis of Mobile Anti-Reverse Engineering Mechanisms

5.2 Analysis Procedure and Results
This section describes the analysis procedure and results for each of the three anti-reversing
tools.

5.2.1 DexProtector
For analysing DexProtector we use version 12.0.1.

The mechanisms that should be applied are configured in an XML file [144], as shown in
Listing 5.1. In the shown example, only the string and class encryption mechanisms are
enabled.

1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>
2 <dexprotector>
3 <verbose>true</verbose>
4 <optimize>false</optimize>
5 <signMode>release</signMode>
6 <licenseFile>dexprotector.licel</licenseFile>
7
8 <stringEncryption/>
9 <classEncryption/>

10 </dexprotector>

Listing 5.1: DexProtector: Example configuration file.

General

For gaining a rough overview of the internals of DexProtector, we first apply the tool
with an empty configuration, i.e. no protection mechanisms are applied but DexProtector
still processes the Android application.

As a starting point, we unpack the resulting APK with apktool. Navigating through the
unpacked directories reveals that an assets directory containing four encrypted shared
libraries – one for each architecture (arm, arm64, x86, and x86_64) – was added. Usu-
ally, shared libraries are stored inside the lib directory located in the root directory of an
APK. However, DexProtector seems to decrypt and extract the needed library from the
assets directory just before loading the shared library using System.loadLibrary()
or System.load() calls [38]). This behaviour can be confirmed by decompiling the
APK using jadx. In the application’s main package, DexProtector added three addi-
tional classes. First, a custom exception called MessageGuardException, which is
thrown on a few occasions, e.g. when the initialisation of the application failed or
certain anti-reversing mechanisms take effect. Second, DexProtector added a custom
AppComponentFactory [11] called AppComponentFactoryDP, which is used to man-
age the instantiation of elements defined in the Android manifest. Finally, DexProtector

52

5.2. Analysis Procedure and Results

added an Application class, which is instantiated before any other class upon starting
an application [12]. The inserted Application class leverages several obfuscation tech-
niques, such as identifier renaming and control flow obfuscation. Nonetheless, the method
shown in Listing 5.2 can be identified. Note that we renamed the identifiers for easier
readability. It includes a System.load() call (line 6) and a subsequent delete()
call (line 11) on the file that was previously passed to System.load(). Furthermore,
it is called with a string as parameter that is generated based on the contents of a file.
Due to string encryption being applied, static analysis does not reveal the exact name of
the file. However, this is a strong indication that the encrypted shared library inside the
assets directory is read.

1 private void extractAndLoadLib(String strFromFile) {
2 File decryptedLib = initFile();
3 try {
4 try {
5 decryptLibToFile(decryptedLib, strFromFile);
6 System.load(decryptedLib.getAbsolutePath());
7 } catch (Exception e) {
8 throw new RuntimeException(valueOf("<encrypted string>")

+ decryptedLib + valueOf("<encrypted string>"), e);�→
9 }

10 } finally {
11 decryptedLib.delete();
12 }
13 }

Listing 5.2: DexProtector: Loading and deletion of shared library.

In order to further validate our assumptions, we use strace [160] for tracing system
calls of the evaluation application. One possibility for doing so is to attach strace
with the option to follow child processes enabled to zygote, the process that spawns
other application/ART instances. Upon launching the application, the strace out-
put shown in Listing 5.3 can be observed: First, the encrypted so.dat file located
in the assets directory is read (line 2). Afterwards, the target file with the name
libdexprotector.<process ID>.so is opened and the resulting file descriptor is
passed to a subsequent write [162] call (lines 5 and 6). Finally, after the library was
decrypted and written to the target .so file (lines 9 and 10), unlinkat [161] is called
in order to remove the decrypted library again (line 15).

For retrieving the decrypted shared library, we create a Frida script that hooks the
System.load() method. Whenever this method is called, a “sleep” instruction is
inserted, allowing to copy the shared library to another location before it is deleted. This
approach along with the decryption procedure is illustrated in Figure 5.3, where the
injected operations are depicted in blue. Afterwards, Ghidra [186] can be used to inspect

53

5. Analysis of Mobile Anti-Reverse Engineering Mechanisms

1 # Reading encrypted library (com.risingapp.arm-v8.so.dat)
2 20336(evalapp): pread64 (45 </data/app/~~yP-Nn6KoLdtrug0-zbQV4A

==/a.b.app-ira19lTlpmzcGwt6QvatGw==/base.apk>,
"assets/com.risingapp.arm-v8.so.dat",34,239516) = 34

�→
�→

3
4 # Opening target file (libdexprotector.20336.so)
5 20336(evalapp): openat (AT_FDCWD,

"/data/user/0/a.b.app/app_outdex/libdexprotector.20336.so",577)
= descriptor 47

�→
�→

6 20336(evalapp): fstat64 (47
</data/user/0/a.b.app/app_outdex/libdexprotector.20336.so>,{
device: 1,2 inode: 19180 mode: 0100600 links: 1, uid: 10283 gid:
10283 size: 0}) = 0

�→
�→
�→

7
8 # Writing decrypted library
9 20336(evalapp): write (47

</data/user/0/a.b.app/app_outdex/libdexprotector.20336.so>,
"\x7fELF\x02\x01\x01\x00DPLF\x00\x00\x00\x00\x03\x00\xb7...",512
) = 512

�→
�→
�→

10 20336(evalapp): write (47
</data/user/0/a.b.app/app_outdex/libdexprotector.20336.so>, ...�→

11
12 # Several write and other calls for loading DexProtector library...
13
14 # Call unlink to remove loaded library
15 unlinkat (AT_FDCWD,

"/data/user/0/a.b.app/app_outdex/libdexprotector.20336.so",0) =
0

�→
�→

Listing 5.3: DexProtector: strace output when loading native library.

the library, revealing that it is heavily obfuscated and employing techniques similar to
packers, which dynamically extract and load code during runtime [84]. Another notable
aspect is that – for obfuscation purposes – the shared library does not explicitly declare
the functions called by the Java side of the application via JNI [194]. Instead, the JNI
function RegisterNatives [195] is used to register native functions during runtime.
Nonetheless, leveraging Frida, the RegisterNatives function can be hooked in order
to log the signatures of the registered functions.

Finally, the added Application class contains a method that is responsible for checking
the signature of the application as shown in Listing 5.4. The returns method (lines 2
and 6) takes a non-readable/encrypted string as a parameter and presumably returns
the original, readable string. The shown method (azive) retrieves the signature of the
current application using PackageManager [31] (line 3), calculates the SHA-256 hash of
the signature (line 5) and compares it with a predefined byte sequence (line 7). This byte

54

5.2. Analysis Procedure and Results

Figure 5.3: DexProtector: Extraction of native library.

sequence is equal to the hash of the certificate that was used for signing the application.
If the hashes do not match, an exception is thrown and the application crashes (line 8).
Thus, repackaging/resigning is prevented. Note that this check is always employed when
building an application with DexProtector and there is no configuration option for this
mechanism.

1 private void azive() {
2 MessageDigest instance = MessageDigest.getInstance(returns("..."

)); // SHA-256�→
3 Signature[] signatureArr = getPackageManager().getPackageInfo(

getPackageName(), 64).signatures;�→
4 // ...
5 String bigInteger = new BigInteger(1, instance.digest(

signatureArr[0].toByteArray())).toString(16);�→
6 String returns = returns("...");
7 if (!returns.equals(bigInteger)) {
8 throw new RuntimeException(...);
9 }

10 }

Listing 5.4: DexProtector: Integrity check.

55

5. Analysis of Mobile Anti-Reverse Engineering Mechanisms

String Encryption

For evaluating the string encryption feature of DexProtector only <stringEncryption/>
was enabled inside DexProtector’s configuration XML file.

Decompiling the protected application using jadx shows that the added Application
class contains the additional method public static native String s(String)
used for mapping encrypted to decrypted (plain) strings. DexProtector realises this
method as a native call using JNI. As a result, the source code of the s method is not
visible in the decompiled Java code but is instead part of the shared library that is
decrypted and loaded during runtime. Furthermore, the assets directory also contains
the file se.dat (possible abbreviation for “String Encryption”) that might act as a key
for the encryption process. Using strace, we can confirm that this file is mapped into
memory during runtime.

By hooking the native s function with Frida, the calls and corresponding return values
of the function can be logged. Analysing this output shows that the s function was
called with strings containing various characters of the unicode table, not restricted to
printable ones. While the function calls were already partially revealed by previous de-
compilation of the application, hooking also reveals the corresponding return values. For
example, spotted parameters of the s function include "\u00e3\u0090\u00b6" and
"\u00e3\u0090\u00b7". The return values of the s function, i.e. decrypted/original
strings, called with these parameters are "MainActivity" and
"https://jsonplaceholder.typicode.com/posts/", respectively. Thus, as
subsequent byte sequences used as inputs lead to completely different outputs, it can be
concluded that the string encryption mechanism is realised through a mapping of byte
sequences to the corresponding original strings.

By applying the string encryption mechanism to only a handful of classes (using
<filters> in the DexProtector configuration), it can be observed that the “encrypted”
strings (i.e. the parameters passed to Application.s()) are generated determinis-
tically. The classes are alphabetically traversed and each string occurrence is replaced
by Application.s() calls with unicode characters as parameter that are increased
by 1 for each string, i.e. \u0000, \u0001, \u0002, etc. Note that – due to this
implementation – identical strings are assigned different “encrypted” values.

Class Encryption

For evaluating the class encryption feature of DexProtector only <classEncryption/>
was enabled inside the configuration XML file.

Decompiling the protected application using jadx shows that the Application class
was added again. Original source files, such as the MainActivity class, were removed.
Instead, two .dex.dat files were added to the assets directory. Those files presumably
correspond to the encrypted classes.dex file.

56

5.2. Analysis Procedure and Results

Lim and Yi [150], who analysed DexProtector’s class encryption mechanism in 2016,
describe the process as follows: First, the original (unencrypted) classes.dex file
is moved to the assets directory and another classes.dex, which generates an
“decryptor” APK, is added to the root directory (default location) of the APK. Because
the primary classes.dex file is now the one that was newly added, the decryptor APK
is generated and ran on the application’s startup. Thus, on the application’s startup,
the encrypted classes.dex file located in the assets directory is decrypted and the
original, unencrypted classes.dex file is restored. Finally, the original application is
executed by loading the restored classes.dex file with DexClassLoader [22], for
example. After loading the .dex file, it is removed again to make its extraction more
cumbersome.

However, through hooking class loader functions and tracing system calls, we de-
tected that DexProtector switched to a different approach over the years. Instead
of writing the decrypted classes.dex to a file, everything happens in-memory di-
rectly. More precisely, function hooking and system call tracing reveals that the
DexFileLoader::OpenCommon [4] function, which is invoked by InMemoryDex-
ClassLoader [27], is used to directly open a DEX file from a given memory address.
At the given address, memory was allocated and the decrypted content of the DEX file
was copied to previously. Furthermore, decompilation shows that the protected APK
does not contain any code for generating a decryptor APK or similar functionality. The
only remaining class with actual functionality is the added Application class, which
is mainly responsible for decrypting and loading DexProtector’s shared library, leading
to the conclusion that the described decryption procedure is performed by the loaded
shared library.

TLS Certificate Pinning

For configuring the TLS certificate pinning mechanism of DexProtector the same
structure as Android’s built in network security configuration [30] as shown in List-
ing 3.8 is used. The <network-security-config> tag has to placed inside the
<publicKeyPinning> tag of DexProtector’s XML configuration file.

For analysing the TLS certificate pinning mechanism a custom CA certificate of mitm-
proxy [79] was installed on the Android device. Further, the IP address of a machine
running mitmproxy was configured as a proxy server on the Android device. This setup
allows intercepting HTTPS requests as long as no TLS certificate pinning is in place.

The user manual of DexProtector [148] states that the Android Security API – including
TrustManager [40], which is used to enforce Android’s built-in TLS certificate pinning
through the network security configuration – is not used in DexProtector’s TLS certificate
pinning mechanism. Further, the manual states that, as a result, DexProtector is resistive
against attacks on the TrustManager.

We verify this statement by overwriting the implementation of the checkTrusted-
Recursive method contained in the TrustManagerImpl class [102]. Usually, this

57

5. Analysis of Mobile Anti-Reverse Engineering Mechanisms

method recursively builds certificate chains while verifying each certificate. We replace
the implementation with a single statement that returns an empty list of certificates, thus
skipping the entire certificate verification process. This approach is commonly used for
bypassing Android’s built-in TLS certificate pinning mechanism, e.g. by objection [224], a
tool built upon Frida. This approach was applied to the protected evaluation application.
However, neither a simple Frida script replacing the checkTrustedRecursive method
nor the TLS certificate pinning bypass functionality of objection allowed intercepting
the requests with mitmproxy due to the checkTrustedRecursive method not being
called. Instead, when a network request is performed, a stack trace, describing that a
CertificateException [16] has been thrown due to a failed pin verification, was
logged. The stack trace further points out that the exception is thrown inside of classes of
Fuel [137], the networking library our evaluation application uses to perform the network
requests.

In order to identify the specific method/class that is causing the exception to be thrown,
we unpack both – the original, unprotected evaluation application and the one with
the TLS certificate pinning mechanism being employed – using apktool. Afterwards,
we calculate the differences of the unpacked applications. Besides the addition of
DexProtector classes, one difference stands out. As shown in Listing 5.5 (line 7), within
one of Fuel’s classes, a url.openConnection() call, which is used for setting up the
actual network connection [41], is replaced by a DexProtector specific method with a
randomly generated name.

1 private final HttpURLConnection establishConnection(Request request)
{�→

2 URLConnection uRLConnection;
3 URL url = request.getUrl();
4 Proxy proxy = this.proxy;
5 if (proxy == null || (uRLConnection = url.openConnection(proxy))

== null) {�→
6 // originally 'url.openConnection()'
7 uRLConnection = Application.BuildConfig.ayzkAHq(url);
8 }
9 if (uRLConnection != null) {

10 return (HttpURLConnection) uRLConnection;
11 }
12 throw new NullPointerException(

"null cannot be cast to non-null type " +�→
13 "java.net.HttpURLConnection");
14 }

Listing 5.5: DexProtector: Replacement of url.openConnection() call to enforce
TLS certificate pinning.

As the original url.openConnection() call was not part of the standard Android

58

5.2. Analysis Procedure and Results

Java/Kotlin API but a third-party library, we conclude that DexProtector actively scans
for url.openConnection() calls in order to inject its custom certificate verification
logic.

Further investigation reveals that the Application.BuildConfig class, which is
accessed in line 7 of Listing 5.5, is not present when unpacking/decompiling the protected
APK. Instead, the class is loaded at runtime as soon as it is needed, i.e. when an HTTP
request is performed for the first time. This behaviour can be observed when enumerating
all loaded classes and hooking the DefineClass method using a Frida script. The
script prints the loaded classes at startup, which is only the AppComponentFactoryDP
class, and hooks all of its methods, revealing that the instantiateApplication and
instantiateActivity methods – used for instantiating the corresponding elements
the names imply – are called. Furthermore, the JNI DefineClass method [195], which
is used for loading a class from a buffer, is hooked. This procedure reveals that the
Application$BuildConfig class is loaded when performing the first HTTP request.
In addition, we can observe that several classes inside a dedicated com.licel.dex-
protector package are loaded. These classes are used to perform the certificate verifi-
cation process and eventually also the initial url.openConnection() call, provided
that the verification was successful.

Due to Application$BuildConfig and other corresponding classes not being present
when simply decompiling the APK, the classes must be extracted at runtime. In order
to retrieve the classes, the approach that is also used for extracting the decrypted classes
when using class encryption (see subsection 6.1.2) can be used. Note that – because the
classes are only generated when the first HTTP request was sent – a request has to be
sent before extracting the classes in form of DEX files. One of the extracted DEX files
contains the generated classes that are specific to TLS certificate pinning. As an example,
Listing 5.6 shows the Application$BuildConfig class, which contains the method
that DexProtector calls instead of url.openConnection(). The method of this class
checks whether protocol of the URL is equal to "https" (line 6). If this is the case,
further action, i.e. verifying the certificate, is taken. The implementation of the validation
is spread across several obfuscated classes, starting with Application$Application.

1 public class Application$BuildConfig {
2 public static URLConnection ayzkAHq(URL url) {
3 if ("http".equals(url.getProtocol())) {
4 return new ApplicationRinteger(url);
5 }
6 return "https".equals(url.getProtocol()) ? new

Application$Application(url) : url.openConnection();�→
7 }
8 }

Listing 5.6: DexProtector: Generated class to enforce TLS certificate pinning.

59

5. Analysis of Mobile Anti-Reverse Engineering Mechanisms

Root Detection

For the root detection mechanism, DexProtector requires specifying three methods within
the <root> element of the configuration file [148]:

• negativeCheckCallback() is called when the device has not been classified
as rooted.

• positiveCheckCallback() is called when a rooted device has been classified
as rooted.

• doProbe() collects the environment data and must be called before being able
to use the check results. According to DexProtector’s documentation [148], a call
to a function that is responsible for detecting root is inserted at the doProbe()
method at build time.

These methods are defined by specifying the class and method names of existing
Java/Kotlin methods that should be used for the purposes described above. In addition,
the two callback methods should have an Object parameter in order for DexProtector
being able to pass additional information regarding the result of the root check.

Decompiling the protected APK using jadx reveals that a call to an r() method of a
class with a randomly generated name was inserted at the beginning of the specified
doProbe() method. Inspecting the class of the native r() method reveals several
other, additional native methods, such as d() and e(). Some of them are used for
other environment checks, such as hooking and emulator detection. In this work, we
focus on the r() method, which is used for the root detection mechanism. It is called
at the beginning of the specified doProbe() function, performs the root checks inside
DexProtector’s native library, and calls one of the two callbacks depending on the check’s
result, as depicted in Figure 5.4.

Figure 5.4: DexProtector: Root detection process.

60

5.2. Analysis Procedure and Results

By hooking the callbacks and logging the Object parameters with Frida, we can observe
that the callbacks receive a JSON string (shown in Listing 5.7) that reveals a bit of
information about the checks. On the analysis device three checks were positive (lines 6,
9, and 11). In the following, we analyse the internal implementations (within the native
DexProtector library) of each of the properties/checks outlined in the JSON. However,
due to the native library being heavily obfuscated, analysis thereof is not possible in an
efficient way. Instead, we primarily trace system calls using strace for investigating the
performed actions as root checks heavily rely on executing system calls [234].

1 {
2 "DetectTestKeys": 0,
3 "DetectRootManagmentApps": 0,
4 "DetectPotentiallyDangerousApps": 0,
5 "DetectRootCloakingApps": 0,
6 "CheckForSuBinary": 1,
7 "CheckForDangerousProps": 0,
8 "CheckForRWPaths": 0,
9 "CheckForMagiskFiles": 1,

10 "CheckForMagiskManagerApp": 0,
11 "CheckSuExists": 1
12 }

Listing 5.7: DexProtector: Root detection result in JSON.

Upon launching the application, we can observe that stat [159] is called several times
to check if files indicating a rooted device are present. This primarily concerns the
superuser binary (su), which can be located in various locations. Parts of the strace
output is shown in Listing 5.8. On the analysis device the /system/bin/su binary
was present, causing this particular stat call to succeed (line 4). When renaming this
binary, the stat call now returns -1. In addition, renaming the binary causes the
CheckForSuBinary and CheckSuExists properties of the JSON string to be set to
0.

Further, the strace output reveals that DexProtector opens and reads /proc/self/
mounts. On our analysis device the rooting software Magisk is installed and mounted
into the application’s process. Thus, the /proc/self/mounts file contains the string
"magisk". As a result, CheckForMagiskFiles is set to 1, while the similar named
property CheckForMagiskManager is set to 0, which is assumed to have been used
for indicating the presence of Magisk Manager, the predecessor of Magisk [241]. However,
SELinux often blocks access to system paths, such as /proc/self/mounts. In order to
bypass this restriction, DexProtector creates a service with the isolatedProcess prop-
erty set to true. According to the documentation regarding SELinux policies [49] and the
defined rules for isolated processes [110], services declared as isolatedProcess bypass
certain SELinux restrictions, even when using SELinux’ “enforcing” mode. In addition,

61

5. Analysis of Mobile Anti-Reverse Engineering Mechanisms

1 ...
2
3 17970 10:53:39.398542 newfstatat(AT_FDCWD, "/system_ext/bin/su",

0x7fc794c1f0, 0) = -1 ENOENT (No such file or directory) <
0.000023>

�→
�→

4 17970 10:53:39.398606 newfstatat(AT_FDCWD, "/system/bin/su", {
st_mode=S_IFREG|0755, st_size=170176, ...}, 0) = 0 <0.000054>�→

5 17970 10:53:39.398707 newfstatat(AT_FDCWD, "/system/xbin/su",
0x7fc794c1f0, 0) = -1 ENOENT (No such file or directory) <
0.000021>

�→
�→

6
7 ...

Listing 5.8: DexProtector: strace output when checking root-indicating files.

spawning an isolated process to perform the checks might bypass root hiding mechanisms,
due to isolated processes might not being detected by root hiding tools [80] [108]. This
service can be seen in the decompiled APK, provided that the root detection mechanism
is enabled. In addition, the service is declared in the Android manifest.

When executing the application on our evaluation Android device, the properties
DetectRootManagmentApps [sic], DetectRootCloakingApps, and DetectPoten-
tiallyDangerousApps are set to 0. Although the property names already provide
some guidance regarding the functionality of the checks, assumptions can be confirmed
using jtrace [134]. The jtrace output reveals that DexProtector uses Android’s
PackageManager [31] to check if any root management, hiding, or other “danger-
ous” applications requiring root are installed on the device.

The strace output further shows that system properties are accessed. System properties
on Android provide information about the software and device, such as the product name
and brand [111]. In particular, strace shows that the ro.build.tags property is ac-
cessed. This property is often equal to test-keys when using an emulator (i.e. developer
build) or an inofficial build of the Android OS, as opposed to release-keys on Android
builds provided by OEMs [234]. Further, DexProtector accesses the ro.debuggable
property, where a value equal to 1 indicates possible root privileges [188]. We confirm
this behaviour by installing the evaluation application on an Android emulator running
Android 11. Inspecting the emulator’s system properties reveals that ro.build.tags
and ro.debuggable are set to test-keys and 1, respectively. Launching the ap-
plication and inspecting the returned JSON string shows that DetectTestKeys and
CheckForDangerousProps are now both set to 1, confirming our assumption.

Finally, we investigate the remaining CheckForRWPaths property. As described earlier,
we already discovered that DexProtector reads from /proc/self/mounts. Based on
the property name, we assume that DexProtector additionally uses the read value to

62

5.2. Analysis Procedure and Results

determine whether certain paths that are usually mounted as read-only are mounted as
writeable. The popular open-source root detection library RootBeer [223] implements
this approach as well and checks various system paths, such as /system. To confirm
this assumption for DexProtector, we mounted several system directories – particularly
those that are checked by RootBeer – as writeable. However, the CheckForRWPaths
property of the passed JSON string was still set to 0, leaving the described assumed
behaviour unconfirmed.

5.2.2 LIAPP
All APKs used for the following analysis were generated on 16 August 2022 (LIAPP does
not state an explicit version number).

Instead of a configuration file, the protection mechanisms that should be applied to an
application are configured using the LIAPP web interface. However, the mechanisms
“Source Code Encryption”, “Anti-Debugging”, and “Anti-Tamper” are enabled by de-
fault [166] and cannot be disabled with the LIAPP license we are using for analysis, as
stated by Lockin company after further enquiry. After configuring the mechanisms and
uploading the application, the (unprotected) APK is processed and the protected version
can be downloaded afterwards.

General

First, we apply the tool with only the default/necessary options stated above.

Unpacking the resulting APK with apktool fails because of “invalid bytes” in one of
the contained files. To circumvent this error, the -s flag of apktool can be used in
order to prevent it from decoding sources. By specifying this flag, the APK is unpacked
successfully, revealing the modified and added contents shown in Figure 5.5. Four shared
libraries – one for each architecture (arm, arm64, x86, and x86_64) – with the name
libxbyabz.so were added to the lib directory. Additionally, the file LIAPP.ini
was added to the assets directory, containing plain text informing that the APK has
been protected with LIAPP. Furthermore, the unpacked directory contains two DEX
files – classes.dex as well as classes2.dex. As the DEX files are not decoded
yet, we use jadx to disassemble and decompile them. While this process succeeds for
classes.dex, it fails for classes2.dex due to “bad bytes”, similar to before when
apktool was applied initially. Therefore, we assume that classes2.dex is stored in an
encrypted form inside the APK and decrypted as well as loaded during runtime.

Nonetheless, the decompiled code of the classes.dex file can be analysed. LIAPP
added the package com.liapp to the APK. This package contains several obfuscated
classes with identifiers containing non-printable characters. In addition, all strings were
replaced by method calls with obfuscated strings as parameters returning the original
strings, thus representing a form of string obfuscation. However, the deobfuscation
method is directly implemented in one of the added classes and relies on simple bitwise
XOR and AND instructions, allowing to reimplement the deobfuscation algorithm. In

63

5. Analysis of Mobile Anti-Reverse Engineering Mechanisms

Figure 5.5: LIAPP: Contents of protected APK.

combination with a regular expression that identifies the obfuscated strings/deobfuscation
method calls, all strings of the decompiled classes can be deobfuscated automatically,
allowing a more efficient analysis of the added classes. One of the added classes is a custom
Application class, which is also specified in the Android manifest and contains several
functions for retrieving information about the device, such as the Android OS version
and the Android application itself, such as its package name and granted permissions.
In addition, the class is responsible for loading LIAPP’s shared library. Furthermore,
the custom Application class contains a single native method declaration that is
called multiple times during initialisation. The other classes seem to be responsible for
loading DEX files and their respective classes, as they leverage the loadDex() method
of Android’s DexFile [23] class used for loading DEX files during runtime. Additionally,
the ClassLoader [17] class is used within several methods of the added classes in order
to load classes of the loaded DEX file during runtime. In the case of the analysed APK,
the DexFile and ClassLoader classes might be used for loading the classes2.dex
file (after it has been decrypted) as well as its contained classes.

However, as one of the necessary options is “Anti-Debugging”, attempts to hook the
application using Frida fail, thus preventing a more detailed dynamic analysis. More
precisely, the connection to Frida is disconnected within the native method that is defined
in the custom Application class. Moreover, trying to circumvent this mechanism by
overwriting the implementation of said method, causes the application to crash immedi-
ately due to some classes not being found. This leads to the conclusion that the previously
described class decryption and loading routines are embedded within the method that
also contains the anti-debugging/hooking mechanism, preventing overwriting the im-
plementation without affecting the behaviour of the protected application. In addition,
when trying to attach Frida to an already running application that is protected with
LIAPP, the connection is terminated immediately, indicating the usage of ptrace [158]
to attach to the own process in order to prevent debugging and hooking tools from

64

5.2. Analysis Procedure and Results

attaching. As the analysis of debug/hook detection mechanisms is not in the scope of
this work, the matter of bypassing these mechanisms remains open for further research.

String Encryption

For analysing LIAPP’s string encryption mechanism, the corresponding option in addition
to the necessary ones was enabled.

Decompiling the protected APK using jadx shows that strings are replaced with different
methods containing unprintable characters in their names. Every “decryption” method
takes an integer as a single parameter and returns the original, decrypted string. Further-
more, the methods are defined in a single class (com.liapp.y) that is not present in
the APK. One of the classes of the added com.liapp package contains a method that
explicitly loads the class com.liapp.y using a ClassLoader. Thus, it is assumed
that the class containing the “decryption” methods is contained in the additionally
added DEX file and thus loaded during runtime, as described in the previous section.
However, the corresponding method for decrypting the strings cannot be hooked without
circumventing LIAPP’s anti-hooking mechanism.

Class Encryption

For analysing LIAPP’s class encryption mechanism, the “class protection” option in
addition to the necessary ones was enabled. LIAPP allows specifying a filter for the
classes that should be protected to avoid a drastic performance impact caused by
protecting/encrypting a large amount of classes, such as the default Android API and
embedded libraries.

Decompiling the protected APK using jadx shows that the classes of the evaluation
application have been completely removed from the APK/classes.dex file. Instead,
the com.liapp package that was added during the protection process file makes use of
Android’s DexFile [23] and ClassLoader [17] classes in order to load classes during
runtime, as described in the “General” section. Furthermore, the classes2.dex file’s
size increased by approximately 4 kilobytes when using the class encryption mechanism.
Thus, we expect that the protected classes where encrypted and stored within the
classes2.dex file. This way, LIAPP does not need to perform additional operations
for decrypting encrypted classes, as said DEX file is decrypted on the application’s startup
regardless of enabling the class encryption mechanism. However, similar to before, the
methods for decrypting and loading the encrypted classes cannot be hooked without
circumventing LIAPP’s anti-hooking mechanism.

Root Detection

For analysing LIAPP’s root detection mechanism, the corresponding option in addition
to the necessary ones was enabled.

65

5. Analysis of Mobile Anti-Reverse Engineering Mechanisms

Decompiling the protected APK using jadx shows no change in functionality in comparison
with the APK where only the necessary protection mechanisms have been applied to.
Thus, we assume that the root checks are executed immediately after LIAPP’s native
library is loaded.

We further analyse the strace output upon the application’s startup. Multiple
openat [156] calls – used for attempting to open su binaries at different locations – can
be observed. Additionally, files installed and required by Magisk, such as /system/bin
/magisk, are checked. This way, the presence of potential superuser binaries and Magisk
files can be determined by checking the return values of the openat calls. However,
note that the same behaviour/system calls can be observed with only the necessary
protection mechanisms enabled in LIAPP’s web interface (i.e. root detection mechanism
is disabled), leading to the conclusion that no additional functionality – except crashing
the application on a positive check result – is added to the APK. On the physical Android
device used for analysis, rooting is immediately detected and a corresponding dialogue is
shown before the application crashes. Further, renaming the superuser binary on the
physical device rooted through Magisk does not bypass LIAPP’s root detection, as the
existence of several Magisk-related files is checked.

In order to confirm this assumption, we execute the evaluation application on an x86_64
Android emulator, running Android OS 11 without Google Play Services, causing the
emulator to include an su binary. After renaming the binary, LIAPP still classifies the
device as rooted, due to the device being detected as an emulator, as the dialogue depicted
in Figure 5.6 implies. The shown message suggests that one or more system properties
have been read in order to conclude that the executing device is an emulator. Modifying
various potential related system properties reveals that merely the ro.build.type
property, representing the build flavour of the OS image [15] [43], is compared against
the string "userdebug", which is the typical value on emulator images. Changing the
ro.build.type property to any other, arbitrary value bypasses LIAPP’s root detection
mechanism (also see subsection 6.2.3).

In conclusion, LIAPP’s root detection mechanism operates as follows:

1. Various potential locations of su binary are checked.

2. The property ro.build.type is checked against "userdebug".

3. If the previous checks (1. and 2.) are negative, the existence of files required by
Magisk is determined.

5.2.3 DashO
For analysing DashO we use version 11.2.1.

The mechanisms that should be applied are configured in a graphical user interface or
directly in an XML file [207], as shown in Listing 5.9. In this example, only the string
encryption mechanism is enabled.

66

5.2. Analysis Procedure and Results

Figure 5.6: LIAPP: Dialogue indicating rooted device (emulator) was detected.

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <dasho mode="android" version="11.2.1">
3 <stringencrypt option="on" />
4 </dasho>

Listing 5.9: DashO: Example configuration file.

General

We first apply the tool with an empty configuration, i.e. no protection mechanisms are
applied, but DashO still processes the Android application.

Unpacking the resulting APK with apktool reveals no visible changes to the contents of
the APK, i.e. no added classes or libraries. We further compute the differences of the
bytecode (in smali representation). This comparison shows that there are no remarkable
changes, except the insertion of if statements that check whether a certain time has
passed and throw an exception in order to exit the application if this is the case. This
behaviour is related to the usage of DashO’s trial license, which allows using the tool
and resulting applications for a short period of time. After the evaluation period expired,
protected applications become unusable through the procedure described above.

String Encryption

DashO’s string encryption mechanism allows configuring the “string encryption level”
as well as the “number of decrypters” [207]. The former controls the strength of the
used encryption algorithms. However, stronger algorithms reduce the performance of

67

5. Analysis of Mobile Anti-Reverse Engineering Mechanisms

the application as decryption at runtime consumes more time. The latter controls
how many different methods used for decrypting encrypted strings are added to the
application. For analysing the string encryption mechanism, we exclusively enabled string
encryption (using the <stringencrypt/> element in the configuration file) and set
both parameters to their default values of 2.

Decompiling the protected APK with jadx reveals that strings were replaced by a sequence
of newly generated method calls as shown in Listing 5.10. The generated methods are
part of anonymous classes that were inserted into existing, randomly selected classes of
the Java/Kotlin and Android APIs. For example, line 1 of Listing 5.10 calls a method
of an inserted anonymous class of the StringKt class in order to generate a random
integer. Based on this random number, one of the (in this case two) decrypter methods is
selected to decrypt the encrypted strings (line 2). Note that in the case of the protected
evaluation application analysed in this work, the selected decrypter method is always the
same one, as the randomly generated number is multiplied by an integer and reduced
modulo itself. The result is then compared to 0, which always evaluates to true.

1 int subSequence3 = StringKt.AnonymousClass1.subSequence();
2 Log.i(..., StringKt.AnonymousClass1.subSequence((subSequence3 * 4) %

subSequence3 == 0 ?
"Jf}giceci/]p{}Uvb~npnb<jwkh!`vmibSqyo++io|x~5" :
ForwardingListener.AnonymousClass1.split(56, "))4($3'.nxs"), 6
));

�→
�→
�→
�→

Listing 5.10: DashO: Replaced strings.

The anonymous class inserted into the StringKt class is shown in Listing 5.11. As
explained previously, one method (lines 2 - 4) is used for generating a random integer,
while the other one (lines 6 - 16) is used for the actual string decryption process. However,
the decryption routine solely applies simple bit operations to each character, such as XOR
and AND, allowing to reimplement the algorithm (see subsection 6.3.1).

In this example – as we have specified two decrypter methods in the DashO configuration –
a second decryption method (ForwardingListener.AnonymousClass1.split())
is involved (see Listing 5.10). However, the implementation of this method only differs
slightly to the one shown in Listing 5.11.

Root Detection

DashO allows developers to configure various “responses” for its root detection mechanism
and environment checks in general [207]. For example, DashO can be configured to
throw an exception or cause the application to “freeze” if a rooted device was detected.
In addition, the specified responses can be configured to occur only with a specified
probability. As a result, the observed behaviour is not deterministic when trying to

68

5.2. Analysis Procedure and Results

1 public class AnonymousClass1 {
2 public static int subSequence() {
3 return new Random().nextInt(75) + 1;
4 }
5
6 public static String subSequence(String str, int i) {
7 char[] charArray = str.toCharArray();
8 int length = charArray.length;
9 int i2 = 0;

10 while (i2 != length) {
11 charArray[i2] = (char) (charArray[i2] ^ (i & 95));
12 i++;
13 i2++;
14 }
15 return String.valueOf(charArray, 0, length);
16 }
17 }

Listing 5.11: DashO: Inserted anonymous class used for decrypting strings.

analyse a protected application. Additionally, DashO can be configured to inject the
environment checks into various methods within the source code.

For the purpose of analysing the functionality of the root detection mechanism itself, we
configure DashO to inject the root detection functionality into a single method and call a
method for setting the result of the check – without taking advantage of any additionally
configurable behaviour, such as throwing an exception. The configuration for achieving
this behaviour is shown in Listing 5.12. Line 5 specifies the field or method that is called
to store the result of the check. Further, the class and method where the detection
functionality should be injected into is specified in lines 7 and 8.

Decompiling the protected APK with jadx reveals that the root detection functionality
was inserted into the specified performCheck() method. However, the implementation
is obfuscated through reflection and string encryption. Thus, method calls are not directly
visible. Nonetheless, DashO applies the same procedure for encrypting its own strings as
when explicitly enabling the string encryption mechanism as described previously. As a
result, the same approach for decrypting strings can be used (see subsection 6.3.1). In
combination with the usage of a regular expression in order to identify encrypted strings,
all strings of (decompiled) class files can be decrypted automatically. Applying this
procedure reveals the methods that are called through reflection and used for detecting
a rooted device. The decompiled and “string-decrypted” source code reveals that it
fulfils two primary purposes: Checking whether certain files, such as su binaries, exist
by using several File.exists() [25] calls, and checking whether certain applications,
such as root management applications, are installed on the device by leveraging Android’s

69

5. Analysis of Mobile Anti-Reverse Engineering Mechanisms

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <dasho mode="android" version="11.2.1">
3 <injection>
4 <checks>
5 <rootCheck action="setRooted()">
6 <locations>
7 <classes name="a.b.app.DashORootCheck">
8 <method name="performCheck" signature="" />
9 </classes>

10 </locations>
11 </rootCheck>
12 </checks>
13 </injection>
14 </dasho>

Listing 5.12: DashO: Root detection configuration.

PackageManager [31]. A snippet of the decompiled code containing the former purpose
is shown in Listing 5.13. In lines 4 - 8 an array is filled with various strings representing
different locations where a superuser binary could be present. The injected code then
proceeds to iterate through this array, checking whether the file with the respective path
exists (lines 10 - 19). If this is the case, a variable is set to some value (line 14), which is
used later on to check whether any indication for a rooted device has been found (line
23). In addition to the decompiled code, strace shows several faccessat [152] calls
to check whether files exist, confirming the described behaviour.

Between checking potential superuser binaries and the final assignment of the check’s
result, the seconds mechanic of the root check – namely checking whether certain
applications are installed on the device – is performed (not depicted in Listing 5.13).
First, several package names are stored in an array. Afterwards, the array is iterated
and the getPackageInfo() method of the PackageManager class is used to check
whether the respective package is installed on the device. Again, if this is the case, a
variable is set to some value, indicating that a rooted device was detected. In addition to
the decompiled code, jtrace confirms the usage of Android’s PackageManager for
checking installed packages.

On top of the primary checks described above, the existence of /system/etc/
security/otacerts.zip is checked. This file is used to verify the signature of
over-the-air (OTA) updates of the Android OS [48]. A missing file indicates that
a custom Android OS image that is not updated through OTA updates is installed.
Furthermore, it is checked whether the Build.TAGS constant [15] (corresponding to the
ro.build.tags system property) is equal to test-keys, which indicates an emulator
(i.e. developer build) [234].

70

5.3. Main Differences Between Analysed Tools and Mechanisms

1 private final void performCheck() {
2 // ...
3
4 String[] strArr = new String[10];
5 strArr[0] = "/system/bin/su";
6 strArr[1] = "/system/bin/sudo";
7 // ...
8 strArr[9] = "/vendor/bin/sudo";
9 int i4 = 0;

10 for (int i5 = 10; i4 < i5; i5 = 10) {
11 File file = new File(strArr[i4]);
12 Class<?> cls = Class.forName("java.io.File");
13 if (((Boolean) cls.getMethod("exists").invoke(file)).

booleanValue()) {�→
14 d = 100.125d;
15 break;
16 } else {
17 i4++;
18 }
19 }
20
21 // Checking whether certain applications are installed...
22
23 if (d < 100.0d) {
24 setRooted(false);
25 return;
26 }
27 setRooted(true);
28 }

Listing 5.13: DashO: Snippet of root detection implementation.

5.3 Main Differences Between Analysed Tools and
Mechanisms

Based on the results of the previous analysis, the following section describes several
differences in the implementations of anti-reverse engineering tools and mechanisms.

5.3.1 Native vs Bytecode Implementation
Some mechanisms offered by anti-reversing tools, such as environment checks and string
encryption, are suited to be implemented in native code, which is compiled to machine
code and stored inside an APK as a shared object. Implementing such mechanisms
in native code makes reverse engineering more cumbersome, as machine code reveals
less information when decompiled compared to bytecode [88]. Additionally, native code

71

5. Analysis of Mobile Anti-Reverse Engineering Mechanisms

implementations can be obfuscated using well studied, advanced obfuscation techniques,
thus further impeding reverse engineering [114]. For example, packing techniques can be
employed in order to unpack and load code during runtime, making static analysis even
more difficult.

In our analysis, we observed that DexProtector pursues the native approach. DexPro-
tector’s native library, which is stored in an encrypted form and additionally employs
packing techniques, implements the offered environment checks and decryption routines
for the string and class encryption mechanisms.

In contrast, DashO directly injects the implementations of the environment checks into the
specified Java methods. Although the injected code is obfuscated through reflection and
string encryption, it is reversible and implementation details can be revealed. Similarly,
DashO injects the decryption routines for its string encryption mechanism directly into
Java classes, allowing to reimplement them and thus restore the original strings.

LIAPP provides a combination of the two approaches. While its environment checks are
deeply embedded into the initialisation routine of the native library, impeding overwriting
the implementations directly, the string decryption routine is implemented as bytecode.
However, the corresponding code segments for decrypting strings are not available when
statically analysing the APK, as they are loaded dynamically during runtime.

5.3.2 Mandatory Hooking Detection
For analysing the mechanisms that are focus of this work, we aimed to exclusively enable
the mechanisms in question. However, out of the three analysed tools, one of them,
namely LIAPP, prevents some “default” options, with one of them being the inclusion
of hooking detection, to be turned off. As the hooking detection mechanism prevents
dynamic analysis of the application with tools like Frida, the mandatory hooking detection
does not only protect the application where LIAPP was applied to but also LIAPP and
its applied mechanisms.

In comparison, DexProtector and DashO do not force their hooking detection mechanisms
to be enabled. Instead, the mechanism can be enabled or disabled in the respective
configuration file where other environment checks, such as root detection, are configured
as well. This allows dynamically analysing other anti-reversing mechanisms provided by
the tools without the need of bypassing a hooking detection mechanism.

5.3.3 Entry Points of Environment Checks
The three analysed tools differ in the way the environment checks are called. Besides the
usability aspect from an application developer’s perspective, single entry points make it
easier for reverse engineers to analyse and bypass the checks.

DexProtector only provides a single (native) method per environment check that is called
to perform the respective check. Additionally, two callback methods can be configured,
with one of them being called based on the check’s result. Overwriting either the method

72

5.3. Main Differences Between Analysed Tools and Mechanisms

that invokes the environment check or the one that is called on a positive check result
allows bypassing the check.

DashO allows configuring multiple methods that perform an environment check and
multiple methods/actions that are called/performed for handling the result of the check.
Thus, it might not be sufficient to intercept a single method call that performs an
environment check, as there could be multiple entry points present.

LIAPP takes a different approach. Instead of injecting calls to methods that perform
the environment checks, the checks are already embedded into the loading routine of
the native library. Hence, no direct entry point is visible and the trivial approach of
overwriting the loading routine to bypass the hooking detection fails, as it impedes the
correct functionality of the application.

5.3.4 Complexity of Root Detection
In addition to the fact that environment checks – in particular root detection as we
analysed it as part of this work – can be implemented in native or Java code, the
complexity of the mechanisms’ implementations varies.

DexProtector performs several separate checks, ranging from checking the existence of
superuser binaries to analysing /proc/self/mounts, for detecting a rooted device.
Should one of these check results turn out to be positive, the device is classified as rooted.

LIAPP and DashO rely on less indicators. Both tools check various potential locations
of the su binary as well as the value of a system property. While LIAPP additionally
checks the existence of Magisk-related files, DashO determines whether a root manage-
ment application, such as Magisk, is installed. Further, DashO checks the existence of
certificates used for over-the-air updates.

5.3.5 Obfuscation of Tool-Related Code
All of the analysed tools aim to conceal implementation details by applying various
obfuscation techniques, which vary from tool to tool, to the injected bytecode.

DexProtector and LIAPP apply identifier renaming, control flow obfuscation, as well as
string encryption to their respective injected classes, such as the Application class.
Furthermore, some tool-related functionality, such as DexProtector’s TLS certificate
pinning mechanism or LIAPP’s string decryption routine, is loaded during runtime.

DashO applies more rudimentary obfuscation techniques, namely string encryption and
obfuscation through reflection, to its injected functionality. In addition, the injected code
segments are directly present in the APK, allowing to statically analyse the injected
functionality.

73

CHAPTER 6
Bypass of Anti-Reverse

Engineering Mechanisms

The following chapter describes how anti-reverse engineering mechanisms provided by
the analysed tools can be bypassed by utilising the knowledge of internal implementation
details gained through the previous analysis. Further, we present a basic approach for
automatically identifying the applied anti-reverse engineering tool in order to provide a
solution for bypassing the anti-reversing mechanisms applied by any of the three tools
that are focus of this work.

6.1 DexProtector
In the following, we describe several approaches to revert/bypass DexProtector’s [145]
class and string encryption, TLS certificate pinning, as well as root detection mechanisms.
We implemented these approaches as Frida [95] scripts and tested them by applying them
to our evaluation application protected with DexProtector version 12.0.1.

6.1.1 String Encryption
In order to revert DexProtector’s string encryption mechanism to reveal all original,
decrypted strings, we present two approaches.

First, the native s function that takes an encrypted string and returns the decrypted
one can be hooked in order to track the function calls with the passed parameters and
corresponding return values. This procedure can be realised by hooking the JNI function
RegisterNatives [195], which is used to register native functions during runtime. By
hooking this function, the address of the s function can retrieved, allowing to hook the
function using Frida’s Interceptor API [96]. Whenever the s function is called, the Frida
script converts the passed string parameter, i.e. the encrypted string, into hexadecimal

75

6. Bypass of Anti-Reverse Engineering Mechanisms

representation as it might contain unprintable characters and logs it. Before the function
returns, the Frida script logs the returned value, i.e. the corresponding decrypted string.
Furthermore, we extended the script to store the mappings of encrypted to decrypted
strings in a file, allowing further processing, e.g. automatically replacing the encrypted
strings within a decompiled class with its decrypted counterparts.

The second approach consists of dumping the memory of the application during runtime.
As the strings must be decrypted before usage, i.e. the s function has to be called
with the corresponding parameter, a memory dump of the application usually contains
the strings that have been loaded up to the point in time when the memory was
retrieved. Various methods for extracting the memory of an Android application exist.
For example, the command line tool Android Debug Bridge (adb) [7], which enables
communication with an Android device, can be used to create a heap dump of a specified
application. Afterwards, the resulting dump can be opened with the Android Profiler [39],
which is directly integrated into Android Studio [9]. This method provides a very
clearly represented overview of all Java instances (including strings) stored on the heap.
However, Android does only allow dumping the heap of applications that are built
with the android:debuggable attribute set to true inside the Android manifest.
Therefore, already built release applications have to be set to “debuggable” through
repackaging and resigning.

In addition, memory dumps can be created using various (open-source) projects developed
for this purpose. For example, fridump [105] leverages Frida in order to extract the
memory of an application. The memory contents are written to several files, which can
be used for further analysis and/or filtering, e.g. only including all printable strings.

6.1.2 Class Encryption
Similar to the string encryption mechanism, encrypted classes must be decrypted during
runtime in order to be executed. Thus, DexProtector’s class encryption mechanism can
be reverted by extracting the decrypted classes during runtime in order to analyse them
further, e.g. through decompilation. To do so, we present two approaches.

As a first approach, the DexFileLoader::OpenCommon [4] function, which is used
to load a DEX file during runtime, can be hooked in order to extract the DEX file at
the address passed as a parameter. Further, the total size of the DEX file (in bytes) is
passed as another parameter and is also included within the header of the DEX file [47].
Based on the address and size, the DEX file can be extracted from memory using Frida.
In addition to hooking OpenCommon, the ClassLinker::DefineClass [3] function
has to be hooked in the same way as described above, as this function is used to load
specific classes from DEX files. However, when applying this approach to our evaluation
application, inspection of the dumped files revealed that the extracted DEX files are valid
but not complete, i.e. parts of the application’s bytecode are missing. This observation
leads to the conclusion that DexProtector splits up the DEX file(s) that is/are loaded
during runtime and distributes loading the subfiles across various functions, such as

76

6.1. DexProtector

OpenCommon and DefineClass. As there could be additional functions used to load
DEX files, extracted DEX file(s) might not be complete.

To circumvent the problem described above, another approach, consisting of extracting
DEX files from the application’s memory based on the DEX file structure [47], can
be applied. The open-source project frida-dexdump [127] implements this approach
leveraging Frida to identify and dump the corresponding memory sections. In order to
identify DEX files within an application’s memory, two criteria are used: First, DEX
files must start with the bytes 64 65 78 0a ("dex\n"), followed by a version number.
Second, the map_list element [47], a list of the entire contents of the DEX file, must
exist and be valid. frida-dexdump enumerates all readable memory segments and checks
both conditions for each of the segments. If at least one of these two conditions is
fulfilled, the relevant memory section is dumped after retrieving the size of the DEX file
by reading the corresponding header field or, if the header is not or only partly present,
by subtracting the address of the map_list ending with the starting address.

6.1.3 TLS Certificate Pinning

Based on the analysis results, bypassing DexProtector’s TLS certificate pinning mechanism
is possible through overwriting the implementation of the method that replaced the
previous url.openConnection() call and performs further method calls in order
to invoke the certificate verification process. By returning url.openConnection(),
we prevent further verification logic from being executed and thus are able to bypass
the pinning mechanism. However, the class and name of the target method have to be
determined first, as class and method name are generated randomly. Therefore, we hook
the ClassLinker::DefineClass [3] function, which is used to load classes during
runtime. For each loaded class, we check if it contains a method with java.net.URL [41]
as a single parameter. If this is the case, the implementation of the found method has
to be modified as described above in order to circumvent the TLS certificate pinning
routine.

6.1.4 Root Detection

DexProtector’s root detection mechanism can be bypassed through a variety of ways.
First, by hooking the RegisterNatives [195] function, which is used to register
native functions during runtime, the registered native functions can be retrieved. One
of the registered functions is the r() function, which was inserted into the specified
doProbe() method and used to execute the actual root detection mechanism within
DexProtector’s native library. Overwriting the doProbe() or r() function with an
empty implementation causes the root check to not being executed, resulting in none
of the specified callbacks being called. If this behaviour is not desired, one of the two
functions can be overwritten with an implementation that calls the callback used for
indicating a negative root check result. Alternatively, the positive check callback can be
overwritten such that it calls the negative check callback. In addition, in order to cause

77

6. Bypass of Anti-Reverse Engineering Mechanisms

as little side effects as possible, the JSON object that is passed as a parameter to one
of the callbacks should be retrieved and modified accordingly, i.e. setting all flags to 0,
before passing it to the negative check callback.

6.2 LIAPP
In the following, we present potential approaches to bypassing LIAPP’s [165] string
encryption, class encryption, and root detection mechanisms. However, due to LIAPP’s
necessary hooking/Frida detection, we could not evaluate the effectiveness of those ap-
proaches. Nonetheless, we additionally provide an approach for bypassing LIAPP’s root
detection mechanism that does not leverage Frida or another dynamic code instrumenta-
tion/hooking tool, and instead relies on modifying files on an Android emulator. The
latter approach has been tested on the basis of our evaluation application protected with
LIAPP on 16 August 2022.

6.2.1 String Encryption
LIAPP’s string encryption mechanism depends on a method that takes an integer as a
parameter and returns the decrypted string. Although this decryption method is not
present in the APK and loaded during runtime, the method can potentially be retrieved
by hooking the ClassLinker::DefineClass [3] function. This approach is similar
to the one used for identifying the relevant method in order to bypass DexProtector’s
TLS certificate pinning mechanism. Hooking the loaded decryption method and logging
the parameter as well as return value should reveal the mappings of integers to strings.

Additionally, dumping the application’s memory, as described in subsection 6.1.1, could
succeed in dumping the decrypted strings, as the strings must be decrypted before usage.

6.2.2 Class Encryption
For bypassing LIAPP’s class encryption mechanism, two approaches, similar to the ones
used for reverting DexProtector’s class encryption mechanism, could be successful. On the
one hand, as LIAPP leverages the ClassLoader [17] API in order to load classes during
runtime, the corresponding functions, such as OpenCommon [4] and DefineClass [3],
can be hooked. On the other hand, the approach consisting of dumping the application’s
memory and identifying as well as extracting present DEX files based on the structure of
DEX files [47] can be applied. Both of these approaches are the same as for DexProtector,
see subsection 6.1.2.

6.2.3 Root Detection
Tracing LIAPP’s performed system calls revealed that openat [156] is called several times
to determine whether a superuser binary or Magisk-related [241] files exist in different
possible locations. Therefore, using Frida’s Interceptor [96] to hook the corresponding

78

6.3. DashO

open function could potentially succeed in bypassing the root detection mechanism. In
doing so, the passed path is examined and – if it contains su or magisk – the return
value is replaced by -1, simulating the respective file not being present. Note that we
neglect the check of the ro.build.type property for this approach, as we assume that
the described procedure is performed on a physical device.

In addition, we could confirm the success of a Frida-less approach using an x86_64
Android emulator, running Android OS 11 without Google Play Services, thus including
a superuser binary and behaving similar to a rooted, physical device. The approach
consists of trivially renaming the su binary, which bypasses the first check. As Magisk-
related files are not present on the emulator, no further action has to be taken in that
regard. However, the ro.build.type property, which is equal to "userdebug", has
to be modified. To do so, the Android emulator has to be booted with a writeable
system partition. Afterwards, the corresponding line in the /system/build.prop file
containing all system properties, can be modified. While the typical other values of the
ro.build.type property are "user" or "eng" [43], the property can be changed
to an arbitrary value other than "userdebug". After a reboot of the emulator, the
modification can be confirmed using the getprop [42] command, which lists all present
system properties. If the modification was successful, LIAPP no longer classifies the
device/emulator as rooted.

6.3 DashO

In the following, we describe our approaches for reverting/bypassing DashO’s [205] string
encryption and root detection mechanisms. We have implemented the approaches as
Frida scripts and tested them on the basis of our evaluation application protected with
DashO version 11.2.1.

6.3.1 String Encryption

Due to DashO’s string decryption routine only relying on simple bit operations, it can
be reimplemented in other languages, such as Python [211]. As an example, Listing 6.1
shows a Python implementation of DashO’s string decryption routine that was revealed
during the analysis phase (see Listing 5.11). After reimplementing the decryption routine,
further, automatic processing can be performed. For example, using regular expressions,
calls of the decryption functions within decompiled code can be identified and replaced
by the respective decrypted strings that are obtained by calling the reimplemented string
decryption routine.

In addition to statically decrypting strings, a dynamic approach can be used. After
identifying the decryption functions, e.g. through static analysis, the identified func-
tions can be hooked in order to monitor the passed parameter (encrypted string) and
corresponding return value (decrypted string).

79

6. Bypass of Anti-Reverse Engineering Mechanisms

1 def decrypt(encrypted, i):
2 arr = list(encrypted)
3 i2 = 0
4 while i2 != len(encrypted):
5 arr[i2] = chr(ord(arr[i2]) ^ (i & 95))
6 i += 1
7 i2 += 1
8 return ''.join(arr)

Listing 6.1: Python implementation of DashO’s string decryption routine.

6.3.2 Root Detection

DashO’s root detection mechanism consists of two primary checks – determining whether
certain files exist and checking whether certain applications are installed. For bypassing
the former measure, the corresponding File.exists() [25] calls can be overwritten in
order to change the return value to false, in case a root-indicating file is checked. Alter-
natively, the return value of the underlying native function faccessat [152] (which calls
the identically named system call, as revealed through system call tracing) can be mod-
ified. For bypassing the latter measure, the PackageManager.getPackageInfo()
is hooked and the passed package name is replaced with a non-existent one in case the
method was called with a package name indicating a rooted device. Afterwards, the
original implementation of the method is called with the original or modified package
name in order to provide an appropriate return value. We assume that the described
procedure/Frida script is executed on a physical device running an unmodified An-
droid version, which allows neglecting the two additional root check measures, namely
the comparison of the Build.TAGS [15] constant as well as checking the existence of
/system/etc/security/otacerts.zip.

6.4 Automatic Identification of Applied Anti-Reversing
Tool

For identifying which of the analysed anti-reversing tools has been applied to a given
application, we present two techniques. On the one hand, a static approach, implemented
by the tool APKiD [217], can be used. On the other hand, a dynamic approach that
we implement as a Frida [95] script, can be applied. Regardless of the used approach,
the output of the “identification process” can be used in order to execute the bypassing
mechanisms/scripts depending on the identified tool.

80

6.4. Automatic Identification of Applied Anti-Reversing Tool

6.4.1 Static Approach – APKiD
APKiD [217] – named after the popular tool PEiD [1], which provides a similar functional-
ity for Portable Executable (PE) files [181] – aims to identify the compiler, packer, and/or
obfuscator that was applied to an APK. The tool unpacks the given APK and applies
YARA [251] rules to the APK (e.g. in order to determine whether certain files are present),
potential native binaries, and the DEX bytecode. YARA was initially developed to help
identifying malware samples through specified descriptions based on textual or binary
patterns [251]. In the case of APKiD, YARA is used to describe the characteristics of
various obfuscation and anti-reverse engineering tools in order to identify them. APKiD
implements YARA rules for two out of the three tools that were analysed in this work –
DexProtector and LIAPP. For identifying DashO, we implement a custom YARA rule
that is applied to the DEX bytecode. In the following, we will briefly describe the YARA
rules that are used to identify DexProtector, LIAPP, and DashO:

• DexProtector : As DexProtector stores its (encrypted) native libraries inside the
assets directory, a YARA rule checking the existence of such is capable of
identifying DexProtector.

• LIAPP: For identifying LIAPP, a YARA rule that checks the existence of the
LIAPP.ini file that has been added to the assets directory is used.

• DashO: As DashO does not add native libraries or other files to the APK, a different
approach than determining the existence of such files must be pursued. DashO
injects additional code segments, e.g. for performing various environment checks or
decrypting strings during runtime, depending on the configuration. The methods
for decrypting strings are also included when the string encryption mechanism is
not enabled, as DashO’s injected code takes advantage of its own string encryption
mechanism in order to hide the intended functionality. Additionally, the executed
statements always follow a specific pattern: First, a random number is generated.
The generated number is then used as part of a multiplication and modulo operation.
The result is then used within an if condition to determine which decryption function
is finally called. Therefore, the corresponding bytecode [46] of the instruction
sequence can be used within a YARA rule that determines whether the DEX file(s)
of an APK contain(s) the specified byte sequence.

6.4.2 Dynamic Approach – Frida
In addition to statically analysing an APK, Frida [95] can be used to reveal operations
that are performed during runtime and allow inferring the applied anti-reverse engineering
tool. For example, the System.loadLibrary() function [38] that is called to load
native libraries can be hooked in order to determine the passed parameter, i.e. the file
name of the library. As the name of the loaded libraries are fixed and known beforehand,
the applied anti-reversing tool can be determined through comparing the parameter of the
System.loadLibrary() call against pre-defined values. In particular, our developed

81

6. Bypass of Anti-Reverse Engineering Mechanisms

Frida script determines whether the library name is equal to "dexprotector" or
"xbyabz", in order to identify DexProtector and LIAPP, respectively.

Alternatively, as an immediate execution of a bypassing script might be necessary but
the System.loadLibrary() call might be delayed, Frida can be used to enumerate
the present classes during runtime. If certain tool-specific classes are present, the
applied tool can be implied. In addition to the enumeration of all loaded classes,
Frida’s Java.use() function [96] may be used to attempt retrieving a wrapper for
the given class, provided that the exact class (and package) name is known beforehand.
If no exception is thrown, it can be inferred that the specified class exists. In the
case of DexProtector, the presence of the injected AppComponentFactoryDP and
MessageGuardException classes implies the usage of said tool. Additionally, in
contrast to the presented static approach using APKiD, dynamically enumerating classes
also reveals classes that are loaded during runtime, which might be the case when certain
mechanisms, such as class encryption, are applied. This approach is also necessary for
detecting tools that do not rely on native libraries, such as DashO. More specifically, the
presence of injected anonymous classes that contain the methods used for decrypting
strings during runtime, can be determined for identifying DashO. As there are several
possible classes where DashO injects its anonymous classes, the existence of various
classes, such as androidx.core.text.StringKt$1 ($1 indicates an anonymous
class), has to be checked using the previously described approach leveraging Frida’s
Java.use() function. The whole described dynamic approach, which allows determining
if DexProtector, LIAPP, or DashO has been applied to an application, is depicted in
Figure 6.1.

82

6.4. Automatic Identification of Applied Anti-Reversing Tool

Figure 6.1: Dynamic approach for identifying applied anti-reversing tool.

83

CHAPTER 7
Possible Improvements of
Anti-Reverse Engineering

Mechanisms

Based on the previous analysis results and bypassing strategies, this chapter presents
and evaluates possible approaches for improving the analysed anti-reverse engineering
mechanisms and tools.

7.1 Possible Improvements
This section presents several possible improvements for improving the analysed anti-
reverse engineering mechanisms and tools.

7.1.1 I1: Prioritise Debugging and Hooking Detection

In order to analyse (and bypass) various anti-reversing mechanisms provided by anti-
reverse engineering tools, this work leveraged dynamic analysis, especially function
hooking, to a large extent. Although each of the analysed tools provides the possibility
to detect whether a hooking framework is attached, two out of the three analysed
tools do not react to the detection’s result accordingly. More specifically, in the case of
DexProtector [145] as well as DashO [205], the environment checks are executed separately
from each other and do not influence the behaviour of the protected application. In
particular, the usage of a debugging or hooking tool, such as Frida, might have been
detected, but further measures, such as preventing further execution of the application,
are not taken. Such reactions have to be explicitly configured/implemented by the
application developer. As a result, implementation details of the ”protected“ application

85

7. Possible Improvements of Anti-Reverse Engineering Mechanisms

along with the anti-reversing tool can be revealed through dynamic approaches, even
though the usage of such tools might have already been detected.

In the interest of circumventing the described issue, we suggest to prioritise debugging and
hooking detection mechanisms in order to stop the execution of an application in case the
usage of such tools has been detected. Ideally, these checks are deeply integrated into the
loading procedure of the application, causing the application to immediately terminate
in case debugging or hooking tools are detected, thus preventing further analysis during
runtime.

Moreover, the described strategy can be used to prevent the execution of decryption
routines. In particular, anti-reverse engineering tools could aim to avoid executing
the decryption routines of corresponding mechanisms immediately at the start of the
application. Instead, the decryption of strings, classes, etc. could be performed after
various environment checks have been executed and determined a “safe” environment,
i.e. no debugging or hooking tools are attached. Therefore, decryption routines are not
executed when analysis tools are used, preventing the extraction of decrypted contents.

7.1.2 I2: Prevent Debugging and Hooking Tools From Attaching
In addition to detecting potentially attached debugging and hooking tools, mobile
application anti-reversing tools can aim to prevent reverse engineering tools from attaching
in the first place. A basic approach for doing so consists of forking a child process and
attaching it to the parent via ptrace [158]. As only one tracer per process is allowed,
further attempts to attach to the parent process will fail [198]. Although a rudimentary
implementation of this approach can be bypassed easily, e.g. through killing the child
process and therefore also the tracer of the parent process, more sophisticated techniques,
such as forking multiple processes tracing each other, can be employed [198].

7.1.3 I3: Run Environment Checks Repeatedly
Executing various environment checks is one of the essential features of the majority of
mobile anti-reverse engineering tools. However, during our analysis, we observed that
some protection tools only execute these checks at specific points during the runtime of
an application, e.g. at the start of the application. With such centralised approaches,
entry points to various environment checks are relatively straight-forward to identify for
reverse engineers, allowing to remove or overwrite the specific function calls. Further,
time-of-check to time-of-use problems when attaching debuggers or hooking tools during
the runtime of an application after the corresponding checks have already been executed
and the (negative) check results have been evaluated in order to evade detection might
arise.

To circumvent the described scenario, anti-reversing tools can aim to avoid executing
environment checks at one single point during the application’s runtime. Instead, the
environment check logic can be executed at different points in time of the application’s
runtime. On the one hand, this can be achieved by inserting multiple calls to the

86

7.1. Possible Improvements

check routines at different locations within the application’s code base. On the other
hand, anti-reverse engineering tools might inject calls to environment check routines into
commonly used Android/Java APIs, making it difficult to trace the relevant code sections.
Taking it one step further, anti-reversing tools could implement periodic executions of
environment checks. Ideally, a native library that starts a routine for repeatedly executing
the mechanisms’ implementations is used.

7.1.4 I4: Avoid Usage of C Standard Library Functions
Environment checks often rely on system calls to perform the required checks, as our
analysis shows. For example, root detection implementations might leverage open [156]
or stat [159] to determine whether certain files exist [234]. Typically, system calls are
not invoked directly, but by corresponding wrapper functions contained in the C standard
library (libc) [155] [153]. However, as libc is a dynamic library, it exports the system
call wrapper functions, allowing to dynamically instrument, e.g. hook, the functions
directly [81]. As a result, the executed operations used for providing anti-reversing
mechanisms, such as environment checks, can be intercepted and overwritten directly.

In order to mitigate the described attack vector, anti-reversing mechanisms could refrain
from using libc functions for essential operations. Instead, system calls can be called
directly. This task is not trivial, as libc functions usually perform other required steps,
such as copying arguments to the appropriate registers, in addition to invoking the
corresponding system call [153]. Thus, musl [184], an implementation of libc built on top
of the Linux system calls API and optimised for static linking, can be used. Although
system calls can still be traced/intercepted using dynamic code instrumentation, e.g. by
leveraging Frida’s Stalker API [97] allowing to trace executed instructions, the process of
identifying and intercepting the essential operations is made more cumbersome compared
to when wrapper functions of the C standard library are used.

7.1.5 I5: Introduce Indeterminism to Environment Checks
Analysing applications often represents a trial and error procedure, consisting of aiming
to verify assumptions through repeatedly executing the application in question and
observing the outcome and executed operations. Commonly, a deterministic behaviour is
assumed, allowing to conduct the described procedure. Therefore, indeterminism can
result in an impediment during analysis.

In the case of mobile anti-reversing tools, indeterminism can be implemented through
a variety of ways. For example, DashO allows configuring different behaviours, such
as terminating or freezing the application in case of a positive check result [207]. The
actual carried out behaviour is selected randomly. However, this approach only consists
of randomising the performed actions after the check routines have been executed and
relies on the developer to be configured accordingly. Thus, we suggest introducing
indeterminism within the implementations of anti-reversing mechanisms themselves. For
example, the execution order of the performed environment checks during initialisation

87

7. Possible Improvements of Anti-Reverse Engineering Mechanisms

can be randomised on each application run. Further, the instructions of each environment
check can be executed in different sequences, wherever possible. Finally, in case of a
positive check result, an approach similar to the one DashO applies might be used to
ensure that it is not possible to immediately imply the check result, e.g. by means of a
terminating application. Instead, reactions that differ on each application run could be
performed.

7.1.6 I6: Verify Execution of Environment Check Routines
Many bypassing strategies for mechanisms provided by anti-reversing tools rely on
overwriting specific functions that would otherwise perform various checks and result in
the application’s behaviour being changed drastically, e.g. by terminating the application.
Performing such bypassing strategies often remains undetected, which is commonly the
case when environment check routines are executed without being interwoven with other
parts of the application.

To counteract, anti-reversing tools can aim to ensure that/verify whether environment
check routines have been executed completely. An example for this approach has been
observed during the analysis of LIAPP [165]. LIAPP interweaves its hooking and
debugging detection mechanisms with the loading/initialisation procedure of its native
library that is required for a proper functionality of the protected application as it
implements other required mechanisms, such as the class decryption routines. Therefore,
the initialisation of the native library entails the execution of required environment checks,
such as hooking detection. Thus, as these checks are integrated into the initialisation
process, trivial bypassing strategies, such as overwriting the executed functions used for
initialisation and therefore also performing required environment checks, will result in
the application terminating, as the initialisation procedure was interfered with.

In addition to embedding environment checks into essential initialisation procedures,
implementations of anti-reverse engineering mechanisms might aim to verify whether the
intended functions have been executed completely. A fundamental approach for doing so
is to set one or multiple flags as part of the execution of the required checks. Later on,
during the runtime of the protected application, these flags can be checked at several
locations, and enforce immediate termination of the application in case one of the flags
was not set, indicating that one or more required checks have not been executed properly.
However, as debuggers and hooking frameworks could be used to modify the values of the
flags, such techniques should generally be implemented in combination with (advanced)
obfuscation techniques, for which we describe some examples in the following section.

7.1.7 I7: Implement Advanced Obfuscation Techniques
Anti-reversing tools commonly employ obfuscation techniques for two main reasons:
On the one hand, some tools support obfuscating the application code as part of the
offered anti-reversing mechanisms. On the other hand, most tools focus on obfuscating
the injected routines that implement various mechanisms, such as environment checks,

88

7.2. Expert Evaluation

themselves. During our analysis, we observed that – although obfuscation was applied to
the injected routines – the used obfuscation techniques were mostly restricted to standard
techniques, such as string encryption or obfuscation through reflection. As a result, we
were able to partly reconstruct the obfuscated code through restoring the original strings
in order to gain knowledge about implementation details of the implemented mechanisms.

To counteract, anti-reversing tools can aim to not only rely on standard obfuscation
techniques, but instead leverage advanced obfuscation techniques. For, example Mixed
Boolean-Arithmetics (MBAs) [267] represent a way to transform simple expressions into
representations that use arithmetic and boolean operators and are difficult to analyse [163].
Although the transformation changes an expression’s complexity drastically, the semantics
of the original expression is preserved. An example for an expression that was obfuscated
using an MBA transformation is shown in Listing 7.1, where the expression x+y was
transformed into a complex expression using both arithmetic and boolean operations
with an additional variable z that has no effect on the result [163].

1 int fun(int x, int y, int z) {
2 int c;
3 c = x+y;
4
5
6
7
8
9 return c;

10 }

1 int fun(int x, int y, int z) {
2 int c;
3 c = 4*(~x&y)-(x^y)-(x|y)+4

*~(x|y)-~(x^y)-~y-(x|~y)+1
+6*x+5*~z+(~(x^z))-(x|z)-2

~x-4(~(x|z))-4*(x&~z)+3*
(~(x|~z));

�→
�→
�→
�→

4
5 return c;
6 }

Listing 7.1: MBA transformation example [163].

Another technique aiming to increase the complexity of a program’s control flow are
opaque predicates [72] [73]. Opaque predicates can be applied for different purposes,
such as software watermarking [185] [51] or obfuscation [268] [139]. Typically, opaque
predicates refer to some constant values that are known during build time but difficult to
reveal during analysis, especially when combined with other obfuscation techniques [259].
In order to translate this concept for obfuscation purposes, constants can be replaced
with methods that contain complex expressions (potentially also MBAs [163]) and always
return the same value, regardless of the passed parameter(s).

7.2 Expert Evaluation
For evaluating the presented improvements, we interviewed 5 experts in the field of
IT security. After some introductory questions related to the experts’ opinions on and
experiences with anti-reversing mechanisms, the possible improvements were presented

89

7. Possible Improvements of Anti-Reverse Engineering Mechanisms

one after the other. For each of the presented possible improvements, the experts were
asked to estimate the effectiveness (regarding the impediment of bypassing anti-reversing
mechanisms and application analysis) of the given possible improvement on a scale from 1
to 5 (1 = not effective at all, 5 = very effective) and to justify their estimations in detail.
The experts were asked to consider the presented improvements separately from each
other, although in practice, multiple approaches could potentially be used in combination
with each other. The job roles and years of experience of the interviewed experts are
listed in Table 7.1.

Id Job Role(s) Years of Experience
E1 Assistant software and security engineer 3
E2 Various, e.g. security analyst or incident responder more than 15
E3 Security specialist (focus on mobile security) 10
E4 Penetration tester 5
E5 Penetration tester 3

Table 7.1: Job roles and years of experience of interviewed experts.

Figure 7.1 illustrates how the interviewed experts estimated the effectiveness of each of the
possible improvements introduced in section 7.1 based on the previously introduced scale
from 1 to 5. In general, the experts largely classified the presented possible improvements
as effective ways to further impede reverse engineering.

I1 I2 I3 I4 I5 I6 I7
1

2

3

4

5

4.0

4.6

3.8
3.6 3.6

3.9
3.5

Possible Improvement

A
rit

hm
et

ic
M

ea
n

of
Eff

ec
tiv

en
es

s
Es

tim
at

io
ns

Figure 7.1: Arithmetic mean values of effectiveness estimations of presented possible
improvements.

90

7.2. Expert Evaluation

The interviewed experts considered the usage of anti-reverse engineering mechanisms
in order to impede reverse engineering as reasonable and recommendable. Commonly
mentioned possible consequences of reverse engineering of mobile applications include
repackaging as well as theft of intellectual property. Additionally, the majority of the
participating experts have already been involved in projects employing anti-reverse
engineering mechanisms.
The experts classified the detection as well as prevention of the usage of debugging and
hooking tools (I1 and I2, respectively) as highly effective and important. The foundation
of these statements is that dynamic analysis through hooking and debugging can result
in detailed insights of an application and further potentially allows to bypass various anti-
reverse engineering mechanisms. Therefore, impeding the possibility of dynamic analysis
represents an effective obstacle for application analysis as the detection/prevention
mechanism has to be bypassed before further dynamic analysis is possible. However,
the experts expressed their doubts regarding the technical feasibility of implementing a
reliable mechanism that prevents the usage of debugging and hooking tools (I2), even
though the experts classified preventing the usage of such tools as more effective than
solely detecting them.
The interviewed experts considered running environment checks repeatedly (I3) as an
important addition in order to recognise potential debugging or hooking tools that are
attached later during an application’s runtime. E3 noted that the repeated execution of
check routines might cause performance issues and could negatively impact an applica-
tion’s usability. E1 and E5 advised that different entry points, e.g. different functions,
should be used when distributing the calls of environment check routines across an
applications’ code base. Otherwise, overwriting a single function that is responsible
for executing the check routines might be sufficient to bypass every further invocation.
Similarly, overwriting check routines on a lower level, e.g. through modifying the return
values of used C standard library functions, might lead to the bypass of check routines.
E2 suggested that the locations/points in time where check routines are called during an
application’s runtime could be randomised on each application build. With this addition,
reverse engineers would be potentially required to repeatedly perform analysis in order
to bypass anti-reverse engineering mechanisms when dealing with different application
builds.
The experts considered avoiding the usage of C standard library functions and calling
system calls directly (I4) as an impediment to reverse engineering. However, they stated
that tracing and overwriting system calls can still be done in reasonable time. Thus,
the interviewed experts classified this approach as less effective compared to most of the
other presented ones.
E1 and E2 saw great potential in introducing indeterminism to environment check routines
(I5). Their reasoning was that indeterminism potentially requires repeated and redundant
analysis of the same application, thus increasing the needed effort for reverse engineering
the given application. In contrast, E3, E4, and E5 stated that, although indeterminism
might lead to potentially requiring repeated and redundant analysis, in most cases the

91

7. Possible Improvements of Anti-Reverse Engineering Mechanisms

execution order of different environment checks or instructions does not greatly impede
analysis or bypass approaches. Nonetheless, E4 noted that when randomising the reaction
to a positive check result, e.g. terminating or freezing the application, the connection
between the execution of the check and the corresponding reaction might not be clearly
visible.

The experts considered verifying the execution of environment check routines (I6) as highly
effective. All interviewed experts particularly recommended embedding the execution of
check routines into mandatory initialisation procedures. By pursuing this approach, a
more detailed and fine-grained analysis could be required in order to be able to specifically
overwrite the check routines without affecting initialisation routines necessary for the
proper execution of an application. Additionally, E2 recommended employing obfuscation
techniques in order to impede a more detailed analysis, causing this approach to be more
effective. However, E2 and E3 noted that a reliable implementation of this approach
might be challenging. Alternatively, verifying values of certain variables that suggest
the complete execution of check routines is also an effective possibility, as the respective
variables have to be identified first, according to E4 and E5.

Compared to the other presented possible improvements, the experts assessed implement-
ing advanced obfuscation techniques (I7) as the least effective approach. E4 considers the
usage of advanced obfuscation techniques as an impediment for static analysis but argues
that dynamic analysis can still be conducted as it is typically largely unaffected from the
employment of obfuscation techniques. Most of the interviewed experts noted that also
for obfuscation techniques that have just emerged or are employed less often in practise,
deobfuscation or simplification tools can quickly break such techniques. In contrast, E2
and E5 are not concerned about the development of potential deobfuscation or simpli-
fication tools, as mobile application protection is an arms race between attackers and
defenders, and therefore requires developing and employing new anti-reverse engineering
approaches consistently.

92

CHAPTER 8
Conclusion and Future Work

Mobile anti-reverse engineering mechanisms, which are often employed through anti-
reverse engineering tools, aim to impede the reverse engineering process of mobile
applications. Thus, by applying anti-reversing tools and mechanisms, such as string/class
encryption and various environment checks, the functionality and implementation details
of applications can be concealed. Whilst developers might leverage such mechanisms to
protect intellectual property and prevent misuse of their benign applications, malware
developers can take advantage of anti-reversing tools and mechanisms to conceal their
malicious mobile applications. Therefore, this thesis aimed to analyse Android anti-
reversing mechanisms provided by commercial anti-reverse engineering tools in order to
gain insights into the implementations of the analysed tools and mechanisms.

After providing fundamental information about the Android operating system, common
reverse engineering techniques as well as anti-reverse engineering mechanisms, reverse
engineering tools, and the analysed anti-reversing tools, we conducted practical analysis.
Our analysis process built upon an evaluation application, where we applied string
as well as class encryption, TLS certificate pinning, and root detection mechanisms
provided by the tools DexProtector [145], LIAPP [165], and DashO [205], one mechanism
after the other. Through static and dynamic analysis and using common reversing and
diagnostic tools, such as jadx [229], Frida [95], and strace [160], we gained insights into
the implementations of the applied anti-reversing mechanisms. Based on our analysis,
we further worked out main implementation differences between the analysed tools and
mechanisms. For example, analysis showed that native implementations of anti-reverse
engineering mechanisms are typically more robust compared to bytecode implementations,
as decompilation is impeded. In addition, techniques for preventing typical bypassing
strategies through overwriting check routines can be employed by embedding checks into
the initialisation routines of native libraries. Further, we observed different prioritisation
approaches regarding hooking detection and distribution of entry points to environment
checks.

93

8. Conclusion and Future Work

Afterwards, we developed approaches for bypassing the analysed anti-reversing mecha-
nisms, primarily in the form of Frida scripts. Solely in the case of LIAPP [165], where the
hooking detection mechanism is integrated into the loading routine of its native library,
we refrained from using Frida and made use of an Android emulator with changed system
properties for bypassing LIAPP’s root detection mechanism. Besides LIAPP’s string
and class encryption mechanisms, we were able to develop working bypassing strategies
for all analysed mechanisms. Additionally, we developed a static and dynamic approach
using APKiD [217] and Frida [95], respectively, for automatically determining which of
the three analysed anti-reversing tools has been applied to a given application in order
to be able to execute the correct bypassing scripts. Both approaches can be extended in
the interest of adding support for additional anti-reversing tools.

Derived from our analysis results and bypassing strategies, we further presented possible
approaches for improving the analysed anti-reversing mechanisms and tools. For example,
as a majority of our analysis and bypassing procedure leveraged function hooking using
Frida, we suggest requiring mandatory hooking and debugging routines to be executed.
In case of a positive check result, the application could be terminated immediately
before potential encrypted strings or classes are decrypted in order to prevent further
dynamic analysis. Ideally, this and other mechanisms are implemented as part of a native
library and avoid using functions contained in the C standard library (libc) [155] in
order to impede traditional function hooking. In addition, anti-reversing tools could aim
to ensure that the required/configured mechanisms have been executed properly, e.g.
through embedding and verifying flags indicating a complete execution and hiding them
by applying advanced obfuscation techniques, such as Mixed Boolean-Arithmetics [267].
We evaluated the presented possible improvements by interviewing several experts in the
field of IT security. The interviewed experts mostly supported the presented ideas and
assessed them as effective ways to impede reverse engineering of Android applications.

In conclusion, this work provides detailed information about the internals of anti-reverse
engineering mechanisms provided by anti-reversing tools and shows how applied mech-
anisms can be bypassed automatically in order to enable efficient mobile application
analysis. Furthermore, this work shows that the field of mobile application security
and Android anti-reversing mechanisms and tools still represents an arms race between
attackers and defenders and thus requires continuous research.

On the basis of the results of this thesis, future research can be conducted in two main
directions. On the one hand, future works could extend the analysis of common anti-
reversing mechanisms and tools, include additional tools and mechanisms, and work out
further bypassing strategies in order to assist malware analysts. Since this work focused
on anti-reversing mechanisms for Android applications, future works could additionally
include the analysis of tools and mechanisms for iOS applications. On the other hand,
in favour of developers aiming to protect their benign mobile applications, future works
could build upon our findings as well as possible improvements and conduct further
research on the integration of advanced hardening techniques into anti-reversing tools
and mechanisms.

94

APPENDIX A
Appendix

A.1 Expert Interview Guide

1. Personal Information

1.1. What is your current job role?
1.2. How many years of experience do you have in your field?

[Provision of general information and background on common anti-reverse engineering
mechanisms]

2. Introductory Questions

2.1. In your opinion, how important is the usage of anti-reverse engineering mech-
anisms for Android applications? Please justify your answer.

2.2. In your opinion, how dangerous is reverse engineering in regards to Android
applications? What are potential (negative) consequences?

2.3. Have you already employed or are you planning to employ anti-reverse engi-
neering mechanisms for Android applications?

[Explanation of rating scheme (scale 1-5)]

3. Prioritise Debugging and Hooking Detection
[Presentation of possible improvement]

3.1. In your opinion, aiming to impede bypassing anti-reversing mechanisms in order
to analyse applications, how effective is prioritising hooking and debugging
detection?

95

A. Appendix

3.2. Please justify your rating as detailed as possible.

4. Prevent Debugging and Hooking Tools From Attaching
[Presentation of possible improvement]

4.1. In your opinion, aiming to impede bypassing anti-reversing mechanisms in order
to analyse applications, how effective is preventing debugging and hooking
tools from attaching?

4.2. Please justify your rating as detailed as possible.

5. Run Environment Checks Repeatedly
[Presentation of possible improvement]

5.1. In your opinion, aiming to impede bypassing environment checks in order to
analyse applications, how effective is running such checks repeatedly?

5.2. Please justify your rating as detailed as possible.

6. Avoid Usage of C Standard Library Functions
[Presentation of possible improvement]

6.1. In your opinion, aiming to impede bypassing anti-reversing mechanisms in
order to analyse applications, how effective is avoiding using C standard library
functions?

6.2. Please justify your rating as detailed as possible.

7. Introduce Indeterminism to Environment Checks
[Presentation of possible improvement]

7.1. In your opinion, aiming to impede the analysis and bypass of environment
checks, how effective is introducing indeterminism to such checks?

7.2. Please justify your rating as detailed as possible.

8. Verify Execution of Environment Check Routines
[Presentation of possible improvement]

8.1. In your opinion, aiming to impede bypassing anti-reversing mechanisms in order
to analyse applications, how effective is verifying the execution of environment
check routines?

8.2. Please justify your rating as detailed as possible.

9. Implement Advanced Obfuscation Techniques
[Presentation of possible improvement]

9.1. In your opinion, aiming to impede the analysis of applications and poten-
tially implemented anti-reversing mechanisms, how effective is implementing
advanced obfuscation techniques?

96

A.1. Expert Interview Guide

9.2. Please justify your rating as detailed as possible.

[Recap of introduced possible improvements with the possibility of changing the effectiveness
estimations]

97

List of Figures

3.1 Android architecture [33]. 12
3.2 Structure of an APK file. 16
3.3 Android content provider overview and storage migration [18]. 18
3.4 Interaction between Java/Kotlin-, native code, and ART, adapted from [164]. 19
3.5 Simplified illustration of IPC via Android Binder. 22
3.6 Application signing process using AAB, adapted from [37]. 24
3.7 Man-in-the-middle attack scenario [76]. 26
3.8 Typical class encryption process on Android. 33
3.9 TLS certificate pinning process, adapted from [215]. 34
3.10 HTTP communication with and without proxy server. 42

5.1 Analysis process. 50
5.2 Screenshot of evaluation application. 51
5.3 DexProtector: Extraction of native library. 55
5.4 DexProtector: Root detection process. 60
5.5 LIAPP: Contents of protected APK. 64
5.6 LIAPP: Dialogue indicating rooted device (emulator) was detected. 67

6.1 Dynamic approach for identifying applied anti-reversing tool. 83

7.1 Arithmetic mean values of effectiveness estimations of presented possible
improvements. 90

99

List of Tables

4.1 Feature comparison of DexProtector, LIAPP, and DashO. 45

7.1 Job roles and years of experience of interviewed experts. 90

101

List of Listings

3.1 Identifier renaming example. 30
3.2 Control flow obfuscation example: original code. 31
3.3 Control flow obfuscation example: obfuscated code. 31
3.4 Reflection example: original code. 31
3.5 Reflection example: obfuscated code. 31
3.6 String encryption example: original code. 32
3.7 String encryption example: code with encrypted strings. 32
3.8 TLS certificate pinning using Android’s network security configuration [30]. 34

5.1 DexProtector: Example configuration file. 52
5.2 DexProtector: Loading and deletion of shared library. 53
5.3 DexProtector: strace output when loading native library. 54
5.4 DexProtector: Integrity check. 55
5.5 DexProtector: Replacement of url.openConnection() call to enforce

TLS certificate pinning. 58
5.6 DexProtector: Generated class to enforce TLS certificate pinning. . . . 59
5.7 DexProtector: Root detection result in JSON. 61
5.8 DexProtector: strace output when checking root-indicating files. . . 62
5.9 DashO: Example configuration file. 67
5.10 DashO: Replaced strings. 68
5.11 DashO: Inserted anonymous class used for decrypting strings. 69
5.12 DashO: Root detection configuration. 70
5.13 DashO: Snippet of root detection implementation. 71

6.1 Python implementation of DashO’s string decryption routine. 80

7.1 MBA transformation example [163]. 89

103

Acronyms

AAB Android App Bundle 23, 46, 47

AAR Android App Archive 46

AES Advanced Encryption Standard 32

AID Android ID 20

AOT Ahead-Of-Time 14

API Application Programming Interface 8, 14, 31–33, 35, 40, 43, 51, 57, 59, 65, 75, 78,
87

APK Android Application Package 15, 19, 23, 32, 36, 38, 40, 46, 47, 52, 57, 59, 60,
62–69, 71–73, 78, 81

ART Android Runtime 1, 13–15, 19, 28, 53

CA Certificate Authority 26, 27, 34, 42, 43, 57

DAC Discretionary Access Control 20, 23, 24

DEX Dalvik Executable 13, 25, 33, 38, 39, 57, 59, 63–65, 76–78, 81

DVM Dalvik Virtual Machine 13–15, 28

GID Group ID 20, 21

GPS Global Positioning System 37

HAL Hardware Abstraction Layer 11

HTTP Hypertext Transfer Protocol 26, 42, 43, 59

HTTPS Hypertext Transfer Protocol Secure 3, 26, 33, 42, 43, 51, 57

ID Identification 20, 22, 37

105

IDE Integrated Development Environment 41

IP Internet Protocol 57

IPC Inter-Process Communication 22

IT Information Technology 4, 89, 94

JAR Java Archive 38, 40

JDWP Java Debug Wire Protocol 28, 37

JIT Just-In-Time 13, 14

JNI Java Native Interface 19, 46, 54, 56, 59, 75

JSON JavaScript Object Notation 61–63, 78

JVM Java Virtual Machine 13, 28, 46

MAC Mandatory Access Control 24

MBA Mixed Boolean-Arithmetic 89

MITM Man-In-The-Middle 25–27, 33

NDK Native Development Kit 18, 19

NSA National Security Agency 39

OEM Original Equipment Manufacturer 21, 62

OS Operating System 9, 13, 15, 20, 21, 62, 64, 66, 70, 79

OTA Over-The-Air 70

OWASP Open Worldwide Application Security Project 2

PE Portable Executable 81

PID Process ID 22

RASP Runtime Application Self-Protection 6

SHA Secure Hash Algorithm 54

SMS Short Message Service 18

SSL Secure Sockets Layer 26, 42, 43

106

TCP Transmission Control Protocol 40, 42

TLS Transport Layer Security xi, xiii, 1, 3, 7, 8, 26, 27, 33, 34, 39, 42, 43, 45, 46, 57–59,
73, 75, 77, 78, 93, 103

UI User Interface 17, 51

UID User ID 20, 21, 23

URL Uniform Resource Locator 17, 59

VM Virtual Machine 5, 13

WBC White-Box Cryptography 32

XML Extensible Markup Language 15, 38, 46, 47, 52, 56, 57, 66

107

Bibliography

[51] Genevieve Arboit. “A Method for Watermarking Java Programs via Opaque
Predicates”. In: The Fifth International Conference on Electronic Commerce
Research (ICECR-5) (2002).

[52] Yauhen Leanidavich Arnatovich et al. “A Comparison of Android Reverse Engi-
neering Tools via Program Behaviors Validation Based on Intermediate Languages
Transformation”. In: IEEE Access 6 (2018). doi: 10.1109/ACCESS.2018.
2808340.

[53] Nitay Artenstein and Idan Revivo. “Man in the Binder: He Who Controls IPC,
Controls the Droid”. In: Eur. BlackHat Conf. 2014.

[54] Alessandro Bacci et al. “Detection of Obfuscation Techniques in Android Ap-
plications”. In: ACM International Conference Proceeding Series. 2018. doi:
10.1145/3230833.3232823.

[55] Vivek Balachandran et al. “Control flow obfuscation for Android applications”.
In: Computers and Security 61 (2016). doi: 10.1016/j.cose.2016.05.003.

[56] David Barrera et al. “Understanding and Improving App Installation Security
Mechanisms through Empirical Analysis of Android”. In: Proceedings of the ACM
Conference on Computer and Communications Security. SPSM ’12. New York,
NY, USA: Association for Computing Machinery, 2012. doi: 10.1145/2381934.
2381949.

[57] Stefano Berlato and Mariano Ceccato. “A large-scale study on the adoption of
anti-debugging and anti-tampering protections in android apps”. In: Journal of
Information Security and Applications 52 (2020). doi: 10.1016/j.jisa.2020.
102463.

[58] Mahesh Bhor and Deepak Karia. “Certificate Pinning for Android Applications”.
In: Proceedings of the International Conference on Inventive Systems and Control,
ICISC. 2017. doi: 10.1109/ICISC.2017.8068748.

[59] Marie Rose Boueiz. “Importance of Rooting in an Android Data Acquisition”. In:
8th International Symposium on Digital Forensics and Security, ISDFS. 2020. doi:
10.1109/ISDFS49300.2020.9116445.

109

https://doi.org/10.1109/ACCESS.2018.2808340
https://doi.org/10.1109/ACCESS.2018.2808340
https://doi.org/10.1145/3230833.3232823
https://doi.org/10.1016/j.cose.2016.05.003
https://doi.org/10.1145/2381934.2381949
https://doi.org/10.1145/2381934.2381949
https://doi.org/10.1016/j.jisa.2020.102463
https://doi.org/10.1016/j.jisa.2020.102463
https://doi.org/10.1109/ICISC.2017.8068748
https://doi.org/10.1109/ISDFS49300.2020.9116445

[60] Damjan Buhov et al. “Network Security Challenges in Android Applications”.
In: Proceedings - 10th International Conference on Availability, Reliability and
Security, ARES. 2015. doi: 10.1109/ARES.2015.59.

[61] Damjan Buhov et al. “Pin it! Improving Android Network Security At Runtime”.
In: 2016 IFIP Networking Conference (IFIP Networking) and Workshops, IFIP
Networking. 2016. doi: 10.1109/IFIPNetworking.2016.7497238.

[62] Luca Casati and Andrea Visconti. “The Dangers of Rooting: Data Leakage
Detection in Android Applications”. In: Mobile Information Systems (2018). doi:
10.1155/2018/6020461.

[63] Dominic Chell et al. The Mobile Application Hacker’s Handbook. 1st ed. Wiley,
2015. isbn: 1118958527.

[64] Haehyun Cho, Jeong Hyun Yi, and Gail Joon Ahn. “DexMonitor: Dynamically
Analyzing and Monitoring Obfuscated Android Applications”. In: IEEE Access 6
(2018). doi: 10.1109/ACCESS.2018.2881699.

[65] Haehyun Cho et al. “Anti-debugging scheme for protecting mobile apps on android
platform”. In: Journal of Supercomputing 72.1 (2016). doi: 10.1007/s11227-
015-1559-9.

[66] Haehyun Cho et al. “Mobile application tamper detection scheme using dynamic
code injection against repackaging attacks”. In: Journal of Supercomputing 72.9
(2016). doi: 10.1007/s11227-016-1763-2.

[67] Yeseul Choi et al. “EmuID: Detecting Presence of Emulation through Microarchi-
tectural Characteristic on ARM”. In: Computers and Security 113 (2022). doi:
10.1016/j.cose.2021.102569.

[68] Stanley Chow et al. “White-box cryptography and an AES implementation”. In:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics). Vol. 2595. Springer Berlin
Heidelberg, 2003. doi: 10.1007/3-540-36492-7_17.

[69] Cristina Cifuentes and K John Gough. “Decompilation of Binary Programs”. In:
Software: Practice and Experience 25.7 (1995). doi: 10.1002/spe.4380250706.

[70] Onur Cinar. Android Apps with Eclipse. 1st ed. Apress, 2012. isbn: 1430244356.
[71] Jeremy Clark and Paul C Van Oorschot. “SoK: SSL and HTTPS: Revisiting past

challenges and evaluating certificate trust model enhancements”. In: Proceedings -
IEEE Symposium on Security and Privacy. 2013. doi: 10.1109/SP.2013.41.

[72] Christian Collberg, Clark Thomborson, and Douglas Low. A taxonomy of obfus-
cating transformations. Tech. rep. 1997.

[73] Christian Collberg, Clark Thomborson, and Douglas Low. “Manufacturing Cheap,
Resilient, and Stealthy Opaque Constructs”. In: Proceedings of the 25th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL
’98. New York, NY, USA: Association for Computing Machinery, 1998. doi:
10.1145/268946.268962.

110

https://doi.org/10.1109/ARES.2015.59
https://doi.org/10.1109/IFIPNetworking.2016.7497238
https://doi.org/10.1155/2018/6020461
https://doi.org/10.1109/ACCESS.2018.2881699
https://doi.org/10.1007/s11227-015-1559-9
https://doi.org/10.1007/s11227-015-1559-9
https://doi.org/10.1007/s11227-016-1763-2
https://doi.org/10.1016/j.cose.2021.102569
https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1002/spe.4380250706
https://doi.org/10.1109/SP.2013.41
https://doi.org/10.1145/268946.268962

[74] Christian S. Collberg and Clark Thomborson. “Watermarking, Tamper-Proofing,
and Obfuscation - Tools for Software Protection”. In: IEEE Transactions on
Software Engineering 28.8 (2002). doi: 10.1109/TSE.2002.1027797.

[75] William Confer and William Roberts. Exploring SE for Android. Community
experience distilled. Packt Publishing, 2015. isbn: 9781784390594.

[76] Mauro Conti, Nicola Dragoni, and Viktor Lesyk. “A Survey of Man in the Middle
Attacks”. In: IEEE Communications Surveys and Tutorials 18.3 (2016). doi:
10.1109/COMST.2016.2548426.

[77] Mauro Conti, P. Vinod, and Alessio Vitella. “Obfuscation detection in Android
applications using deep learning”. In: Journal of Information Security and Appli-
cations 70 (2022). doi: 10.1016/j.jisa.2022.103311.

[78] Jonathan Corbet, Greg Kroah-Hartman, and Alessandro Rubini. Linux device
drivers. 3rd ed. O’Reilly & Associates, 2005. isbn: 0596517432.

[82] Shuaike Dong et al. “Understanding Android Obfuscation Techniques: A Large-
Scale Investigation in the Wild”. In: Lecture Notes of the Institute for Com-
puter Sciences, Social-Informatics and Telecommunications Engineering, LNICST.
Vol. 254. 2018. doi: 10.1007/978-3-030-01701-9_10.

[83] Joshua J Drake. Android Hacker’s Handbook. Wiley, 2014. isbn: 9781118922255.
[84] Yue Duan et al. “Things You May Not Know About Android (Un)Packers: A

Systematic Study based on Whole-System Emulation”. In: NDSS. 2018. doi:
10.14722/ndss.2018.23296.

[85] Chris Eagle. The IDA Pro Book. 2nd ed. No Starch Press, 2011. isbn: 9781593272890.
[86] Chris Eagle and Kara Nance. The Ghidra Book. 1st ed. No Starch Press, 2020.

isbn: 1-7185-0103-X.
[87] Nikolay Elenkov. Android Security Internals: An In-Depth Guide to Android’s

Security Architecture. No Starch Press, Incorporated, 2014. isbn: 1-59327-581-1,
978-1-59327-581-5.

[88] Michael James Van Emmerik. “Static Single Assignment for Decompilation”. PhD
thesis. University of Queensland, 2007.

[89] William Enck, Machigar Ongtang, and Patrick McDaniel. “Understanding Android
Security”. In: IEEE Security and Privacy 7.1 (2009). doi: 10.1109/MSP.2009.
26.

[90] Sascha Fahl et al. “Rethinking SSL Development in an Appified World”. In:
Proceedings of the ACM Conference on Computer and Communications Security.
2013. doi: 10.1145/2508859.2516655.

[91] Sascha Fahl et al. “Why Eve and Mallory Love Android: An Analysis of Android
SSL (In)Security”. In: Proceedings of the ACM Conference on Computer and
Communications Security. 2012. doi: 10.1145/2382196.2382205.

111

https://doi.org/10.1109/TSE.2002.1027797
https://doi.org/10.1109/COMST.2016.2548426
https://doi.org/10.1016/j.jisa.2022.103311
https://doi.org/10.1007/978-3-030-01701-9_10
https://doi.org/10.14722/ndss.2018.23296
https://doi.org/10.1109/MSP.2009.26
https://doi.org/10.1109/MSP.2009.26
https://doi.org/10.1145/2508859.2516655
https://doi.org/10.1145/2382196.2382205

[93] Parvez Faruki et al. “Android Security: A Survey of Issues, Malware Penetration,
and Defenses”. In: IEEE Communications Surveys and Tutorials 17 (2015). doi:
10.1109/COMST.2014.2386139.

[99] Michael N. Gagnon, Stephen Taylor, and Anup K. Ghosh. “Software Protection
through Anti-Debugging”. In: IEEE Security and Privacy 5.3 (2007). doi: 10.
1109/MSP.2007.71.

[100] D Geethanjali et al. “AEON: Android Encryption based Obfuscation”. In: CO-
DASPY 2018 - Proceedings of the 8th ACM Conference on Data and Application
Security and Privacy. 2018. doi: 10.1145/3176258.3176943.

[106] Leonid Glanz et al. “CodeMatch: Obfuscation Won’t Conceal Your Repackaged
App”. In: Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering. ESEC/FSE 2017. New York, NY, USA: Association for Computing
Machinery, 2017. doi: 10.1145/3106237.3106305.

[107] Leonid Glanz et al. “Hidden in Plain Sight: Obfuscated Strings Threatening Your
Privacy”. In: Proceedings of the 15th ACM Asia Conference on Computer and
Communications Security, ASIA CCS. ACM, 2020. doi: 10.1145/3320269.
3384745.

[114] Pierre Graux. “Challenges of native android applications: obfuscation and vulner-
abilities”. PhD thesis. Université Rennes 1, 2020.

[115] Pierre Graux, Jean Francois Lalande, and Valérie Viet Triem Tong. “Obfuscated
Android Application Development”. In: ACM International Conference Proceeding
Series (2019). doi: 10.1145/3360664.3361144.

[116] Dawn Griffiths and David Griffiths. Head First Android Development, 3rd edition.
O’Reilly Media, Inc., 2021. isbn: 149207649X.

[118] Sheran Gunasekera. Android Apps Security: Mitigate Hacking Attacks and Security
Breaches. 2nd ed. 20. Apress L. P, 2020. doi: 10.1007/978-1-4842-1682-8.

[119] Fanglu Guo, Peter Ferrie, and Tzi Cker Chiueh. “A Study of the Packer Problem
and Its Solutions”. In: Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
Ed. by Richard Lippmann, Engin Kirda, and Ari Trachtenberg. Vol. 5230 LNCS.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. doi: 10.1007/978-3-
540-87403-4_6.

[120] Runsheng Guo et al. “A Survey of Obfuscation and Deobfuscation Techniques
in Android Code Protection”. In: Proceedings - 2022 7th IEEE International
Conference on Data Science in Cyberspace, DSC. 2022. doi: 10.1109/DSC55868.
2022.00013.

[121] James Hamilton and Sebastian Danicic. “An Evaluation of Current Java Bytecode
Decompilers”. In: 9th IEEE International Working Conference on Source Code
Analysis and Manipulation, SCAM. 2009. doi: 10.1109/SCAM.2009.24.

112

https://doi.org/10.1109/COMST.2014.2386139
https://doi.org/10.1109/MSP.2007.71
https://doi.org/10.1109/MSP.2007.71
https://doi.org/10.1145/3176258.3176943
https://doi.org/10.1145/3106237.3106305
https://doi.org/10.1145/3320269.3384745
https://doi.org/10.1145/3320269.3384745
https://doi.org/10.1145/3360664.3361144
https://doi.org/10.1007/978-1-4842-1682-8
https://doi.org/10.1007/978-3-540-87403-4_6
https://doi.org/10.1007/978-3-540-87403-4_6
https://doi.org/10.1109/DSC55868.2022.00013
https://doi.org/10.1109/DSC55868.2022.00013
https://doi.org/10.1109/SCAM.2009.24

[122] Nicolas Harrand et al. “The Strengths and Behavioral Quirks of Java Bytecode
Decompilers”. In: Proceedings - 19th IEEE International Working Conference on
Source Code Analysis and Manipulation, SCAM. 2019. doi: 10.1109/SCAM.
2019.00019.

[123] Mohamed Hassan and Lutta Pantaleon. “An Investigation into the Impact of
Rooting Android Device on User Data Integrity”. In: Proceedings - 2017 7th
International Conference on Emerging Security Technologies, EST. 2017. doi:
10.1109/EST.2017.8090395.

[124] Vincent Haupert et al. “Honey, I Shrunk Your App Security: The State of Android
App Hardening”. In: Detection of Intrusions and Malware, and Vulnerability
Assessment: 15th International Conference, DIMVA. 2018. doi: 10.1007/978-
3-319-93411-2_4.

[125] Daojing He, Sammy Chan, and Mohsen Guizani. “Mobile Application Security:
Malware Threats and Defenses”. In: IEEE Wireless Communications 22.1 (2015).
doi: 10.1109/MWC.2015.7054729.

[128] Muhammad Ibrahim, Abdullah Imran, and Antonio Bianchi. “SafetyNOT: On
the Usage of the SafetyNet Attestation API in Android”. In: MobiSys 2021 -
Proceedings of the 19th Annual International Conference on Mobile Systems,
Applications, and Services. ACM, 2021. doi: 10.1145/3458864.3466627.

[129] Stefan Ilić and Slavica Dukić. “Protection of Android Applications from De-
compilation Using Class Encryption and Native Code”. In: 2016 Zooming In-
novation in Consumer Electronics International Conference, ZINC. 2016. doi:
10.1109/ZINC.2016.7513642.

[130] Anurag Kumar Jain and Devendra Shanbhag. “Addressing Security and Privacy
Risks in Mobile Applications”. In: IT Professional 14.5 (2012). doi: 10.1109/
MITP.2012.72.

[132] Shuai Jiang et al. “Function-level obfuscation detection method based on Graph
Convolutional Networks”. In: Journal of Information Security and Applications 61
(2021). doi: 10.1016/j.jisa.2021.102953.

[133] Yiming Jing et al. “Morpheus: Automatically Generating Heuristics to Detect
Android Emulators”. In: Proceedings of the 30th Annual Computer Security Appli-
cations Conference. 2014. doi: 10.1145/2664243.2664250.

[135] Jin Hyuk Jung et al. “Repackaging attack on android banking applications and
its countermeasures”. In: Wireless Personal Communications 73.4 (2013). doi:
10.1007/s11277-013-1258-x.

[136] S. Karthick and Sumitra Binu. “Android Security Issues and Solutions”. In: IEEE
International Conference on Innovative Mechanisms for Industry Applications,
ICIMIA 2017 - Proceedings. 2017. doi: 10.1109/ICIMIA.2017.7975551.

113

https://doi.org/10.1109/SCAM.2019.00019
https://doi.org/10.1109/SCAM.2019.00019
https://doi.org/10.1109/EST.2017.8090395
https://doi.org/10.1007/978-3-319-93411-2_4
https://doi.org/10.1007/978-3-319-93411-2_4
https://doi.org/10.1109/MWC.2015.7054729
https://doi.org/10.1145/3458864.3466627
https://doi.org/10.1109/ZINC.2016.7513642
https://doi.org/10.1109/MITP.2012.72
https://doi.org/10.1109/MITP.2012.72
https://doi.org/10.1016/j.jisa.2021.102953
https://doi.org/10.1145/2664243.2664250
https://doi.org/10.1007/s11277-013-1258-x
https://doi.org/10.1109/ICIMIA.2017.7975551

[138] Srinivasa Rao Kotipalli and Mohammed A Imran. Hacking Android : explore every
nook and cranny of the Android OS to modify your device and guard it against
security threats. 1st ed. Community experience distilled. Packt Publishing, 2016.
isbn: 1785888005.

[139] Aleksandrina Kovacheva. “Efficient Code Obfuscation for Android”. In: Interna-
tional Conference on Advances in Information Technology. Springer. 2013. doi:
10.1007/978-3-319-03783-7_10.

[140] Rishikesh Kumar. “Android App Size Reduction: Analysis and different method-
ology”. In: 2021 4th International Conference on Electrical, Computer and Com-
munication Technologies, ICECCT. 2021. doi: 10.1109/ICECCT52121.2021.
9616819.

[141] Timea László and Ákos Kiss. “Obfuscating C++ Programs via Control Flow
Flattening”. In: Annales Universitatis Scientarum Budapestinensis de Rolando
Eötvös Nominatae, Sectio Computatorica 30.1 (2009).

[142] Sangchul Lee and Jae Wook Jeon. “Evaluating performance of Android platform
using native C for embedded systems”. In: ICCAS 2010 - International Conference
on Control, Automation and Systems. 2010. doi: 10.1109/iccas.2010.
5669738.

[143] Li Li, Tegawendé F. Bissyandé, and Jacques Klein. “Rebooting Research on
Detecting Repackaged Android Apps: Literature Review and Benchmark”. In:
IEEE Transactions on Software Engineering 47.4 (2021). doi: 10.1109/TSE.
2019.2901679.

[150] Jongsu Lim and Jeong Hyun Yi. “Structural analysis of packing schemes for
extracting hidden codes in mobile malware”. In: Eurasip Journal on Wireless
Communications and Networking 2016.1 (2016). doi: 10.1186/s13638-016-
0720-3.

[151] Jie Lin, Chuanyi Liu, and Binxing Fang. “Out-of-Domain Characteristic Based
Hierarchical Emulator Detection for Mobile”. In: Proceedings of the 2nd Interna-
tional Conference on Information Technologies and Electrical Engineering. 2020.
doi: 10.1145/3386415.3387091.

[163] Binbin Liu et al. “MBA-Blast: Unveiling and Simplifying Mixed Boolean-Arithmetic
Obfuscation”. In: Proceedings of the 30th USENIX Security Symposium. 2021.
isbn: 9781939133243.

[164] Feipeng Liu. Android Native Development Kit Cookbook. 1st ed. Packt Publishing,
2013. isbn: 9781849691505.

[168] Ari Luotonen and Kevin Altis. “World-Wide Web Proxies”. In: Computer Networks
and ISDN Systems 27.2 (1994). doi: 10.1016/0169-7552(94)90128-7.

114

https://doi.org/10.1007/978-3-319-03783-7_10
https://doi.org/10.1109/ICECCT52121.2021.9616819
https://doi.org/10.1109/ICECCT52121.2021.9616819
https://doi.org/10.1109/iccas.2010.5669738
https://doi.org/10.1109/iccas.2010.5669738
https://doi.org/10.1109/TSE.2019.2901679
https://doi.org/10.1109/TSE.2019.2901679
https://doi.org/10.1186/s13638-016-0720-3
https://doi.org/10.1186/s13638-016-0720-3
https://doi.org/10.1145/3386415.3387091
https://doi.org/10.1016/0169-7552(94)90128-7

[169] Dominik Maier, Tilo Muller, and Mykola Protsenko. “Divide-and-Conquer: Why
Android Malware Cannot Be Stopped”. In: Proceedings - 9th International Con-
ference on Availability, Reliability and Security, ARES. 2014. doi: 10.1109/
ARES.2014.12.

[170] Davide Maiorca et al. “Stealth Attacks: An Extended Insight into the Obfuscation
Effects on Android Malware”. In: Computers and Security 51 (2015). doi: 10.
1016/j.cose.2015.02.007.

[171] Keith Makan and Scott Alexander-Bown. Android Security Cookbook. 1st ed. Packt
Publishing, 2013. isbn: 178216717X.

[172] Noah Mauthe, Ulf Kargén, and Nahid Shahmehri. “A Large-Scale Empirical
Study of Android App Decompilation”. In: Proceedings - 2021 IEEE International
Conference on Software Analysis, Evolution and Reengineering, SANER. 2021.
doi: 10.1109/SANER50967.2021.00044.

[173] René Mayrhofer et al. “The Android Platform Security Model”. In: ACM Trans-
actions on Privacy and Security 24.3 (2021). doi: 10.1145/3448609.

[174] Bill McCarty. SELinux. O’Reilly Media, Inc, 2004. isbn: 9780596007164.
[175] G. Blake Meike. Android Concurrency. The Android deep dive series. Addison-

Wesley Professional, 2016. isbn: 9780134177618.
[176] Huasong Meng et al. “A Survey of Android Exploits in the Wild”. In: Computers

and Security 76 (2018). doi: 10.1016/j.cose.2018.02.019.
[177] Alessio Merlo et al. “ARMAND: Anti-Repackaging through Multi-pattern Anti-

tampering based on Native Detection”. In: Pervasive and Mobile Computing 76
(2021). doi: 10.1016/j.pmcj.2021.101443.

[178] Alessio Merlo et al. “You Shall not Repackage! Demystifying Anti-Repackaging
on Android”. In: Computers and Security 103 (2021). doi: 10.1016/j.cose.
2021.102181.

[179] Georg Merzdovnik. “Security and Privacy in Mobile Environments”. PhD thesis.
Technical University of Vienna, 2017.

[180] P. D. Meshram and R. C. Thool. “A survey paper on vulnerabilities in Android OS
and Security of Android Devices”. In: Proceedings - 2014 IEEE Global Conference
on Wireless Computing and Networking, GCWCN 2014. 2014. isbn: 9781479962983.
doi: 10.1109/GCWCN.2014.7030873.

[182] Omid Mirzaei et al. “AndrODet: An adaptive Android obfuscation detector”. In:
Future Generation Computer Systems 90 (2019). doi: 10.1016/j.future.
2018.07.066.

[183] Anmol Misra and Abhishek Dubey. Android Security: Attacks and Defenses.
Auerbach Publications, 2013. isbn: 9781439896464.

[185] Ginger Myles and Christian Collberg. “Software watermarking via opaque predi-
cates: Implementation, analysis, and attacks”. In: Electronic Commerce Research
6.2 (2006). doi: 10.1007/s10660-006-6955-z.

115

https://doi.org/10.1109/ARES.2014.12
https://doi.org/10.1109/ARES.2014.12
https://doi.org/10.1016/j.cose.2015.02.007
https://doi.org/10.1016/j.cose.2015.02.007
https://doi.org/10.1109/SANER50967.2021.00044
https://doi.org/10.1145/3448609
https://doi.org/10.1016/j.cose.2018.02.019
https://doi.org/10.1016/j.pmcj.2021.101443
https://doi.org/10.1016/j.cose.2021.102181
https://doi.org/10.1016/j.cose.2021.102181
https://doi.org/10.1109/GCWCN.2014.7030873
https://doi.org/10.1016/j.future.2018.07.066
https://doi.org/10.1016/j.future.2018.07.066
https://doi.org/10.1007/s10660-006-6955-z

[187] Christopher Negus. Linux Bible. John Wiley & Sons, Incorporated, 2020. isbn:
9781119578888.

[188] Long Nguyen-Vu et al. “Android Rooting: An Arms Race between Evasion and
Detection”. In: Security and Communication Networks 2017 (2017). doi: 10.
1155/2017/4121765.

[189] Godfrey Nolan. Bulletproof Android: Practical Advice for Building Secure Apps.
1st ed. Addison-Wesley Professional, 2014. isbn: 9780133995084.

[190] Godfrey Nolan. Decompiling Android. Apress, 2012. isbn: 9781430242482.
[191] Marten Oltrogge et al. “Why Eve and Mallory Still Love Android: Revisiting

TLS (In)Security in Android Applications”. In: Proceedings of the 30th USENIX
Security Symposium. 2021. isbn: 9781939133243.

[192] Lucky Onwuzurike and Emiliano De Cristofaro. “Danger is My Middle Name:
Experimenting with SSL Vulnerabilities in Android Apps”. In: Proceedings of the
8th ACM Conference on Security & Privacy in Wireless and Mobile Networks.
WiSec ’15. Association for Computing Machinery, 2015. doi: 10.1145/2766498.
2766522.

[202] Thanasis Petsas et al. “Rage Against the Virtual Machine: Hindering Dynamic
Analysis of Android Malware”. In: Proceedings of the 7th European Workshop on
System Security. EuroSec ’14. Association for Computing Machinery, 2014. doi:
10.1145/2592791.2592796.

[212] Sagar Rahalkar. A Complete Guide to Burp Suite. 1st ed. Apress, 2021. isbn:
1484264029.

[213] Nick Rahimi, John Nolen, and Bidyut Gupta. “Android Security and Its Rooting —
A Possible Improvement of Its Security Architecture”. In: Journal of Information
Security 10.02 (2019). doi: 10.4236/jis.2019.102005.

[214] Vinodha Ramasamy and Robert Hundt. “Dynamic Binary Instrumentation on
IA-64”. In: Proceedings of the First EPIC Workshop. 2001.

[215] Francisco José Ramírez-López et al. “A Framework to Secure the Development and
Auditing of SSL Pinning in Mobile Applications: The Case of Android Devices”.
In: Entropy 21.12 (2019). doi: 10.3390/e21121136.

[216] Vaibhav Rastogi, Yan Chen, and Xuxian Jiang. “Catch Me If You Can: Evaluating
Android Anti-Malware Against Transformation Attacks”. In: IEEE Transactions
on Information Forensics and Security 9.1 (2014). doi: 10.1109/TIFS.2013.
2290431.

[218] Chuangang Ren, Kai Chen, and Peng Liu. “Droidmarking: Resilient Software
Watermarking for Impeding Android Application Repackaging”. In: ASE 2014
- Proceedings of the 29th ACM/IEEE International Conference on Automated
Software Engineering. 2014. doi: 10.1145/2642937.2642977.

[219] Eric Rescorla. HTTP Over TLS. RFC 2818. 2000. doi: 10.17487/RFC2818.

116

https://doi.org/10.1155/2017/4121765
https://doi.org/10.1155/2017/4121765
https://doi.org/10.1145/2766498.2766522
https://doi.org/10.1145/2766498.2766522
https://doi.org/10.1145/2592791.2592796
https://doi.org/10.4236/jis.2019.102005
https://doi.org/10.3390/e21121136
https://doi.org/10.1109/TIFS.2013.2290431
https://doi.org/10.1109/TIFS.2013.2290431
https://doi.org/10.1145/2642937.2642977
https://doi.org/10.17487/RFC2818

[220] Roman Rohleder. “Hands-On Ghidra - A Tutorial about the Software Reverse
Engineering Framework”. In: SPRO 2019 - Proceedings of the 3rd ACM Workshop
on Software Protection. 2019. doi: 10.1145/3338503.3357725.

[222] Sebastian Schrittwieser et al. “Protecting Software through Obfuscation: Can it
Keep Pace with Progress in Code Analysis?” In: ACM Computing Surveys 49.1
(2016). doi: 10.1145/2886012.

[225] Asaf Shabtai et al. “Google Android: A Comprehensive Security Assessment”. In:
IEEE Security and Privacy 8.2 (2010). doi: 10.1109/MSP.2010.2.

[226] Felipe Sierra and Anthony Ramirez. “Defending Your Android App”. In: RIIT
2015 - Proceedings of the 4th Annual ACM Conference on Research in Information
Technology. 2015. doi: 10.1145/2808062.2808067.

[227] Vikas Sihag, Manu Vardhan, and Pradeep Singh. “A Survey of Android Application
and Malware Hardening”. In: Computer Science Review 39 (2021). doi: 10.1016/
j.cosrev.2021.100365.

[228] Jeff Six. Application Security for the Android Platform. 1. release. O’Reilly, 2012.
isbn: 9781449315078.

[230] Stephen Smalley and Robert Craig. “Security Enhanced (SE) Android: Bringing
Flexible MAC to Android”. In: Ndss 310 (2013).

[231] Benfano Soewito and Agung Suwandaru. “Android Sensitive Data Leakage Pre-
vention with Rooting Detection using Java Function Hooking”. In: Journal of King
Saud University - Computer and Information Sciences (2020). doi: 10.1016/j.
jksuci.2020.07.006.

[232] Richard Stallman, Roland Pesch, and Stan Shebs. Debugging with GDB. 10th ed.
Free Software Foundation, 2022. isbn: 9780983159230.

[234] San-Tsai Sun, Andrea Cuadros, and Konstantin Beznosov. “Android Rooting:
Methods, Detection, and Evasion”. In: Proceedings of the 5th Annual ACM CCS
Workshop on Security and Privacy in Smartphones and Mobile Devices. 2015. doi:
10.1145/2808117.2808126.

[236] Martin Sysel and Ondřej Doležal. “An Educational HTTP Proxy Server”. In:
Procedia Engineering 69 (2014). doi: 10.1016/j.proeng.2014.02.212.

[237] Michał Szczepanik, Michał Kȩdziora, and Ireneusz Jóźwiak. “Android Methods
Hooking Detection Using Dalvik Code and Dynamic Reverse Engineering by Stack
Trace Analysis”. In: Advances in Intelligent Systems and Computing. Vol. 1173.
2020. doi: 10.1007/978-3-030-48256-5_62.

[242] Nikolaos Totosis and Constantinos Patsakis. “Android Hooking Revisited”. In:
IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th
Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data
Intelligence and Computing and Cyber Science and Technology Congress. 2018.
doi: 10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00104.

117

https://doi.org/10.1145/3338503.3357725
https://doi.org/10.1145/2886012
https://doi.org/10.1109/MSP.2010.2
https://doi.org/10.1145/2808062.2808067
https://doi.org/10.1016/j.cosrev.2021.100365
https://doi.org/10.1016/j.cosrev.2021.100365
https://doi.org/10.1016/j.jksuci.2020.07.006
https://doi.org/10.1016/j.jksuci.2020.07.006
https://doi.org/10.1145/2808117.2808126
https://doi.org/10.1016/j.proeng.2014.02.212
https://doi.org/10.1007/978-3-030-48256-5_62
https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00104

[244] Jason Tyler. XDA Developers’ Android Hacker’s Toolkit: The Complete Guide to
Rooting, ROMs and Theming. 2nd ed. John Wiley & Sons, 2012. isbn: 1119961556.

[246] Sharath K. Udupa, Saumya K. Debray, and Matias Madou. “Deobfuscation
Reverse Engineering Obfuscated Code”. In: 12th Working Conference on Reverse
Engineering (WCRE’05). Vol. 2005. IEEE, 2005. isbn: 0769524745. doi: 10.
1109/WCRE.2005.13.

[247] Timothy Vidas and Nicolas Christin. “Evading Android Runtime Analysis via
Sandbox Detection”. In: ASIA CCS 2014 - Proceedings of the 9th ACM Symposium
on Information, Computer and Communications Security (2014). doi: 10.1145/
2590296.2590325.

[248] Timothy Vidas, Daniel Votipka, and Nicolas Christin. “All Your Droid Are Belong
To Us: A Survey of Current Android Attacks”. In: 5th USENIX Workshop on
Offensive Technologies, WOOT. 2011. doi: 10.5555/2028052.2028062.

[249] Timothy Vidas, Chengye Zhang, and Nicolas Christin. “Toward a General Col-
lection Methodology for Android Devices”. In: Digital Investigation 8.SUPPL.
(2011). doi: 10.1016/j.diin.2011.05.003.

[250] Lori Vinciguerra et al. “An Experimentation Framework for Evaluating Disas-
sembly and Decompilation Tools for C++ and Java”. In: Proceedings - Working
Conference on Reverse Engineering, WCRE. 2003. doi: 10.1109/WCRE.2003.
1287233.

[253] Jia Wan, Mohammad Zulkernine, and Clifford Liem. “A Dynamic App Anti-
Debugging Approach on Android ART Runtime”. In: IEEE 16th Intl Conf on
Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive
Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing
and Cyber Science and Technology Congress. 2018. doi: 10.1109/DASC/PiCom/
DataCom/CyberSciTec.2018.00105.

[254] Haoyu Wang et al. “Characterizing Android App Signing Issues”. In: Proceed-
ings - 2019 34th IEEE/ACM International Conference on Automated Software
Engineering, ASE. 2019. doi: 10.1109/ASE.2019.00035.

[255] Le Wang and Alexander M. Wyglinski. “Detection of Man-in-the-Middle Attacks
Using Physical Layer Wireless Security Techniques”. In: Wireless Communications
and Mobile Computing 16.4 (2016). doi: 10.1002/wcm.2527.

[256] Xuetao Wei and Michael Wolf. “A Survey on HTTPS Implementation by Android
Apps: Issues and Countermeasures”. In: Applied Computing and Informatics 13.2
(2017). doi: 10.1016/j.aci.2016.10.001.

[257] Dominik Wermke et al. “A Large Scale Investigation of Obfuscation Use in
Google Play”. In: Proceedings of the 34th Annual Computer Security Applications
Conference. 2018. doi: 10.1145/3274694.3274726.

118

https://doi.org/10.1109/WCRE.2005.13
https://doi.org/10.1109/WCRE.2005.13
https://doi.org/10.1145/2590296.2590325
https://doi.org/10.1145/2590296.2590325
https://doi.org/10.5555/2028052.2028062
https://doi.org/10.1016/j.diin.2011.05.003
https://doi.org/10.1109/WCRE.2003.1287233
https://doi.org/10.1109/WCRE.2003.1287233
https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00105
https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00105
https://doi.org/10.1109/ASE.2019.00035
https://doi.org/10.1002/wcm.2527
https://doi.org/10.1016/j.aci.2016.10.001
https://doi.org/10.1145/3274694.3274726

[259] Dongpeng Xu, Jiang Ming, and Dinghao Wu. “Generalized Dynamic Opaque
Predicates: A New Control Flow Obfuscation Method”. In: Information Security.
Springer International Publishing, 2016. isbn: 978-3-319-45871-7.

[260] Meng Xu et al. “Toward Engineering a Secure Android Ecosystem: A Survey of
Existing Techniques”. In: ACM Computing Surveys 49.2 (2016). doi: 10.1145/
2963145.

[261] Woojong Yoo et al. “String Deobfuscation Scheme based on Dynamic Code
Extraction for Mobile Malwares”. In: IT Convergence Practice 4.2 (2016).

[262] Xian Zhan, Tao Zhang, and Yutian Tang. “A Comparative Study of Android
Repackaged Apps Detection Techniques”. In: SANER 2019 - Proceedings of the
2019 IEEE 26th International Conference on Software Analysis, Evolution, and
Reengineering. 2019. doi: 10.1109/SANER.2019.8667975.

[263] Hang Zhang, Dongdong She, and Zhiyun Qian. “Android Root and Its Providers:
A Double-Edged Sword”. In: Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security. CCS ’15. New York, NY, USA:
Association for Computing Machinery, 2015. doi: 10.1145/2810103.2813714.

[264] Mu Zhang and Heng Yin. Android Application Security. SpringerBriefs in Computer
Science. Springer International Publishing, 2016. isbn: 978-3-319-47811-1.

[265] Xiaolu Zhang et al. “Android application forensics: A survey of obfuscation,
obfuscation detection and deobfuscation techniques and their impact on investiga-
tions”. In: Forensic Science International: Digital Investigation 39 (2021). doi:
10.1016/j.fsidi.2021.301285.

[266] Yueqian Zhang, Xiapu Luo, and Haoyang Yin. “DexHunter: Toward Extracting
Hidden Code from Packed Android Applications”. In: Lecture Notes in Computer
Science. Vol. 9327. Springer International Publishing, 2015. doi: 10.1007/978-
3-319-24177-7_15.

[267] Yongxin Zhou et al. “Information Hiding in Software with Mixed Boolean-
Arithmetic Transforms”. In: Information Security Applications. Springer Berlin
Heidelberg, 2007. isbn: 978-3-540-77535-5.

[268] Lukas Zobernig, Steven D Galbraith, and Giovanni Russello. “When are Opaque
Predicates Useful?” In: Proceedings - 2019 18th IEEE International Conference on
Trust, Security and Privacy in Computing and Communications/13th IEEE Inter-
national Conference on Big Data Science and Engineering, TrustCom/BigDataSE.
2019. doi: 10.1109/TrustCom/BigDataSE.2019.00031.

119

https://doi.org/10.1145/2963145
https://doi.org/10.1145/2963145
https://doi.org/10.1109/SANER.2019.8667975
https://doi.org/10.1145/2810103.2813714
https://doi.org/10.1016/j.fsidi.2021.301285
https://doi.org/10.1007/978-3-319-24177-7_15
https://doi.org/10.1007/978-3-319-24177-7_15
https://doi.org/10.1109/TrustCom/BigDataSE.2019.00031

Online References

[1] Aldeid. PEiD. 2020. url: https://www.aldeid.com/wiki/PEiD (visited
on 08/19/2023).

[2] Android. 2023. url: https://www.android.com/ (visited on 08/19/2023).
[3] Android Code Search. ClassLinker. 2023. url: https://cs.android.com/

android/platform/superproject/+/master:art/runtime/class_
linker.cc;l=3228;drc=master (visited on 08/19/2023).

[4] Android Code Search. DexFileLoader. 2023. url: https://cs.android.com/
android/platform/superproject/+/master:art/libdexfile/dex/
dex_file_loader.cc;l=341 (visited on 08/19/2023).

[5] Android Developers. About Android App Bundles. 2023. url: https://developer.
android.com/guide/app-bundle (visited on 08/19/2023).

[6] Android Developers. ActivityManager. 2023. url: https://developer.android.
com/reference/android/app/ActivityManager (visited on 08/19/2023).

[7] Android Developers. Android Debug Bridge (adb). 2023. url: https://developer.
android.com/studio/command-line/adb (visited on 08/19/2023).

[8] Android Developers. Android NDK. 2023. url: https://developer.android.
com/ndk (visited on 08/19/2023).

[9] Android Developers. Android Studio. 2023. url: https://developer.android.
com/studio (visited on 08/19/2023).

[10] Android Developers. App Manifest Overview. 2023. url: https://developer.
android.com/guide/topics/manifest/manifest-intro (visited on
08/19/2023).

[11] Android Developers. AppComponentFactory. 2023. url: https://developer.
android.com/reference/android/app/AppComponentFactory (vis-
ited on 08/19/2023).

[12] Android Developers. Application. 2023. url: https://developer.android.
com/reference/android/app/Application (visited on 08/19/2023).

[13] Android Developers. Application Fundamentals. 2023. url: https://developer.
android.com/guide/components/fundamentals (visited on 08/19/2023).

121

https://www.aldeid.com/wiki/PEiD
https://www.android.com/
https://cs.android.com/android/platform/superproject/+/master:art/runtime/class_linker.cc;l=3228;drc=master
https://cs.android.com/android/platform/superproject/+/master:art/runtime/class_linker.cc;l=3228;drc=master
https://cs.android.com/android/platform/superproject/+/master:art/runtime/class_linker.cc;l=3228;drc=master
https://cs.android.com/android/platform/superproject/+/master:art/libdexfile/dex/dex_file_loader.cc;l=341
https://cs.android.com/android/platform/superproject/+/master:art/libdexfile/dex/dex_file_loader.cc;l=341
https://cs.android.com/android/platform/superproject/+/master:art/libdexfile/dex/dex_file_loader.cc;l=341
https://developer.android.com/guide/app-bundle
https://developer.android.com/guide/app-bundle
https://developer.android.com/reference/android/app/ActivityManager
https://developer.android.com/reference/android/app/ActivityManager
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.android.com/ndk
https://developer.android.com/ndk
https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/reference/android/app/AppComponentFactory
https://developer.android.com/reference/android/app/AppComponentFactory
https://developer.android.com/reference/android/app/Application
https://developer.android.com/reference/android/app/Application
https://developer.android.com/guide/components/fundamentals
https://developer.android.com/guide/components/fundamentals

[14] Android Developers. Bound services overview. 2023. url: https://developer.
android.com/guide/components/bound-services (visited on 08/19/2023).

[15] Android Developers. Build. 2023. url: https://developer.android.com/
reference/android/os/Build (visited on 08/19/2023).

[16] Android Developers. CertificateException. 2023. url: https://developer.
android.com/reference/java/security/cert/CertificateException
(visited on 08/19/2023).

[17] Android Developers. ClassLoader. 2023. url: https://developer.android.
com/reference/java/lang/ClassLoader (visited on 08/19/2023).

[18] Android Developers. Content Providers. 2023. url: https://developer.
android.com/guide/topics/providers/content-providers (visited
on 08/19/2023).

[19] Android Developers. Create an Android library. 2023. url: https://developer.
android.com/studio/projects/android-library.html (visited on
08/19/2023).

[20] Android Developers. Debug. 2023. url: https://developer.android.com/
reference/android/os/Debug (visited on 08/19/2023).

[21] Android Developers. Debug your app. 2023. url: https://developer.android.
com/studio/debug/ (visited on 08/19/2023).

[22] Android Developers. DexClassLoader. 2023. url: https://developer.android.
com/reference/dalvik/system/DexClassLoader (visited on 08/19/2023).

[23] Android Developers. DexFile. 2023. url: https://developer.android.
com/reference/dalvik/system/DexFile (visited on 08/19/2023).

[24] Android Developers. Enable multidex for apps with over 64K methods. 2023.
url: https://developer.android.com/build/multidex (visited on
08/19/2023).

[25] Android Developers. File. 2023. url: https://developer.android.com/
reference/java/io/File (visited on 08/19/2023).

[26] Android Developers. Fragments. 2023. url: https://developer.android.
com/guide/fragments (visited on 08/19/2023).

[27] Android Developers. InMemoryDexClassLoader. 2023. url: https://developer.
android.com/reference/dalvik/system/InMemoryDexClassLoader
(visited on 08/19/2023).

[28] Android Developers. Intents and Intent Filters. 2023. url: https://developer.
android.com/guide/components/intents-filters (visited on 08/19/2023).

[29] Android Developers. JNI tips. 2023. url: https://developer.android.
com/training/articles/perf-jni (visited on 08/19/2023).

122

https://developer.android.com/guide/components/bound-services
https://developer.android.com/guide/components/bound-services
https://developer.android.com/reference/android/os/Build
https://developer.android.com/reference/android/os/Build
https://developer.android.com/reference/java/security/cert/CertificateException
https://developer.android.com/reference/java/security/cert/CertificateException
https://developer.android.com/reference/java/lang/ClassLoader
https://developer.android.com/reference/java/lang/ClassLoader
https://developer.android.com/guide/topics/providers/content-providers
https://developer.android.com/guide/topics/providers/content-providers
https://developer.android.com/studio/projects/android-library.html
https://developer.android.com/studio/projects/android-library.html
https://developer.android.com/reference/android/os/Debug
https://developer.android.com/reference/android/os/Debug
https://developer.android.com/studio/debug/
https://developer.android.com/studio/debug/
https://developer.android.com/reference/dalvik/system/DexClassLoader
https://developer.android.com/reference/dalvik/system/DexClassLoader
https://developer.android.com/reference/dalvik/system/DexFile
https://developer.android.com/reference/dalvik/system/DexFile
https://developer.android.com/build/multidex
https://developer.android.com/reference/java/io/File
https://developer.android.com/reference/java/io/File
https://developer.android.com/guide/fragments
https://developer.android.com/guide/fragments
https://developer.android.com/reference/dalvik/system/InMemoryDexClassLoader
https://developer.android.com/reference/dalvik/system/InMemoryDexClassLoader
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/training/articles/perf-jni
https://developer.android.com/training/articles/perf-jni

[30] Android Developers. Network security configuration. 2022. url: https : / /
developer.android.com/training/articles/security- config.
html (visited on 08/19/2023).

[31] Android Developers. PackageManager. 2023. url: https://developer.android.
com/reference/android/content/pm/PackageManager (visited on
08/19/2023).

[32] Android Developers. Permissions on Android. 2023. url: https://developer.
android.com/guide/topics/permissions/overview (visited on 08/19/2023).

[33] Android Developers. Platform Architecture. 2023. url: https://developer.
android.com/guide/platform (visited on 08/19/2023).

[34] Android Developers. Play Integrity API. 2023. url: https://developer.
android.com/google/play/integrity/overview (visited on 08/19/2023).

[35] Android Developers. SafetyNet Attestation API. 2023. url: https://developer.
android.com/training/safetynet/attestation (visited on 08/19/2023).

[36] Android Developers. Shrink, obfuscate, and optimize your app. 2023. url: https:
//developer.android.com/studio/build/shrink-code (visited on
08/19/2023).

[37] Android Developers. Sign your app. 2023. url: https://developer.android.
com/studio/publish/app-signing (visited on 08/19/2023).

[38] Android Developers. System. 2023. url: https://developer.android.com/
reference/java/lang/System (visited on 08/19/2023).

[39] Android Developers. The Android Profiler. 2023. url: https://developer.
android.com/studio/profile/android-profiler (visited on 08/19/2023).

[40] Android Developers. TrustManager. 2019. url: https://developer.android.
com/reference/javax/net/ssl/TrustManager (visited on 08/19/2023).

[41] Android Developers. URL. 2023. url: https://developer.android.com/
reference/java/net/URL (visited on 08/19/2023).

[42] Android Open Source Project. Add System Properties. 2023. url: https://
source.android.com/docs/core/architecture/configuration/
add-system-properties (visited on 08/19/2023).

[43] Android Open Source Project. Adding a New Device. 2023. url: https://
source.android.com/docs/setup/create/new-device (visited on
08/19/2023).

[44] Android Open Source Project. Android Runtime (ART) and Dalvik. 2022. url:
https://source.android.com/devices/tech/dalvik?hl=en (visited
on 08/19/2023).

[45] Android Open Source Project. Configuring ART. 2023. url: https://source.
android.com/devices/tech/dalvik/configure (visited on 08/19/2023).

123

https://developer.android.com/training/articles/security-config.html
https://developer.android.com/training/articles/security-config.html
https://developer.android.com/training/articles/security-config.html
https://developer.android.com/reference/android/content/pm/PackageManager
https://developer.android.com/reference/android/content/pm/PackageManager
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/platform
https://developer.android.com/guide/platform
https://developer.android.com/google/play/integrity/overview
https://developer.android.com/google/play/integrity/overview
https://developer.android.com/training/safetynet/attestation
https://developer.android.com/training/safetynet/attestation
https://developer.android.com/studio/build/shrink-code
https://developer.android.com/studio/build/shrink-code
https://developer.android.com/studio/publish/app-signing
https://developer.android.com/studio/publish/app-signing
https://developer.android.com/reference/java/lang/System
https://developer.android.com/reference/java/lang/System
https://developer.android.com/studio/profile/android-profiler
https://developer.android.com/studio/profile/android-profiler
https://developer.android.com/reference/javax/net/ssl/TrustManager
https://developer.android.com/reference/javax/net/ssl/TrustManager
https://developer.android.com/reference/java/net/URL
https://developer.android.com/reference/java/net/URL
https://source.android.com/docs/core/architecture/configuration/add-system-properties
https://source.android.com/docs/core/architecture/configuration/add-system-properties
https://source.android.com/docs/core/architecture/configuration/add-system-properties
https://source.android.com/docs/setup/create/new-device
https://source.android.com/docs/setup/create/new-device
https://source.android.com/devices/tech/dalvik?hl=en
https://source.android.com/devices/tech/dalvik/configure
https://source.android.com/devices/tech/dalvik/configure

[46] Android Open Source Project. Dalvik bytecode. 2022. url: https://source.
android.com/docs/core/runtime/dalvik-bytecode (visited on 08/19/2023).

[47] Android Open Source Project. Dalvik executable format. 2022. url: https:
//source.android.com/docs/core/runtime/dex-format (visited on
08/19/2023).

[48] Android Open Source Project. Signing Builds for Release. 2023. url: https:
//source.android.com/docs/core/ota/sign_builds (visited on
08/19/2023).

[49] Android Open Source Project. Writing SELinux Policy. 2022. url: https://
source.android.com/docs/security/features/selinux/device-
policy#overuse_of_negation (visited on 08/19/2023).

[50] Apache. Apache Harmony - Open Source Java Platform. 2010. url: https:
//harmony.apache.org/ (visited on 08/19/2023).

[79] Aldo Cortesi, Maximilian Hils, and Thomas Kriechbaumer. mitmproxy: A free and
open source interactive HTTPS proxy. 2023. url: https://mitmproxy.org/
(visited on 08/19/2023).

[80] Darvin’s Blog. Detecting Magisk Hide. 2019. url: https://darvincitech.
wordpress.com/2019/11/04/detecting-magisk-hide/ (visited on
08/19/2023).

[81] Darvin’s Blog. Security hardening of Android native code. 2020. url: https:
//darvincitech.wordpress.com/2020/01/07/security-hardening-
of-android-native-code/ (visited on 08/19/2023).

[92] Parvez Faruki et al. Android Code Protection via Obfuscation Techniques: Past,
Present and Future Directions. 2016. url: https://arxiv.org/abs/1611.
10231 (visited on 08/19/2023).

[94] Free Software Foundation Inc. GDB: The GNU Project Debugger. 2023. url:
https://www.sourceware.org/gdb/ (visited on 08/19/2023).

[95] Frida. 2023. url: https://frida.re/ (visited on 08/19/2023).
[96] Frida. JavaScript API. 2023. url: https://frida.re/docs/javascript-

api/ (visited on 08/19/2023).
[97] Frida. Stalker. 2023. url: https://frida.re/docs/stalker/ (visited on

08/19/2023).
[98] Frida: C API. 2023. url: https://frida.re/docs/c-api/ (visited on

08/19/2023).
[101] GitHub: CalebFenton. dex-oracle. 2018. url: https://github.com/CalebFenton/

dex-oracle (visited on 08/19/2023).
[102] GitHub: Google. conscrypt – TrustManagerImpl.java. 2022. url: https://

github.com/google/conscrypt/blob/master/common/src/main/
java/org/conscrypt/TrustManagerImpl.java (visited on 08/19/2023).

124

https://source.android.com/docs/core/runtime/dalvik-bytecode
https://source.android.com/docs/core/runtime/dalvik-bytecode
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/ota/sign_builds
https://source.android.com/docs/core/ota/sign_builds
https://source.android.com/docs/security/features/selinux/device-policy#overuse_of_negation
https://source.android.com/docs/security/features/selinux/device-policy#overuse_of_negation
https://source.android.com/docs/security/features/selinux/device-policy#overuse_of_negation
https://harmony.apache.org/
https://harmony.apache.org/
https://mitmproxy.org/
https://darvincitech.wordpress.com/2019/11/04/detecting-magisk-hide/
https://darvincitech.wordpress.com/2019/11/04/detecting-magisk-hide/
https://darvincitech.wordpress.com/2020/01/07/security-hardening-of-android-native-code/
https://darvincitech.wordpress.com/2020/01/07/security-hardening-of-android-native-code/
https://darvincitech.wordpress.com/2020/01/07/security-hardening-of-android-native-code/
https://arxiv.org/abs/1611.10231
https://arxiv.org/abs/1611.10231
https://www.sourceware.org/gdb/
https://frida.re/
https://frida.re/docs/javascript-api/
https://frida.re/docs/javascript-api/
https://frida.re/docs/stalker/
https://frida.re/docs/c-api/
https://github.com/CalebFenton/dex-oracle
https://github.com/CalebFenton/dex-oracle
https://github.com/google/conscrypt/blob/master/common/src/main/java/org/conscrypt/TrustManagerImpl.java
https://github.com/google/conscrypt/blob/master/common/src/main/java/org/conscrypt/TrustManagerImpl.java
https://github.com/google/conscrypt/blob/master/common/src/main/java/org/conscrypt/TrustManagerImpl.java

[103] GitHub: JesusFreke. smali. 2022. url: https://github.com/JesusFreke/
smali (visited on 08/19/2023).

[104] GitHub: LSPosed. LSPosed. 2023. url: https://github.com/LSPosed/
LSPosed (visited on 08/19/2023).

[105] GitHub: Nightbringer21. fridump. 2019. url: https://github.com/Nightbringer21/
fridump (visited on 08/19/2023).

[108] Sihan Goi. Diving down the Magisk rabbit hole. 2020. url: https://medium.
com/csg-govtech/diving-down-the-magisk-rabbit-hole-aaf88a8c2de0
(visited on 08/19/2023).

[109] Google Git. bionic. 2023. url: https://android.googlesource.com/
platform/bionic/ (visited on 08/19/2023).

[110] Google Git. Rules for Isolated Apps. 2023. url: https://android.googlesource.
com/platform/system/sepolicy/+/refs/heads/master/private/
isolated_app.te (visited on 08/19/2023).

[111] Google Git. System properties. 2023. url: https://android.googlesource.
com/platform/frameworks/base/+/refs/heads/master/core/
java/android/os/Build.java (visited on 08/19/2023).

[112] Google Play Store. 2023. url: https://play.google.com/store (visited
on 08/19/2023).

[113] Gradle Inc. Gradle Build Tool. 2023. url: https://gradle.org/ (visited on
08/19/2023).

[117] Guardsquare. ProGuard. 2023. url: https://www.guardsquare.com/
proguard (visited on 08/19/2023).

[126] Hex-Rays. IDA Pro. 2023. url: https://hex-rays.com/ida-pro/ (visited
on 08/19/2023).

[127] GitHub: hluwa. frida-dexdump. 2022. url: https://github.com/hluwa/
FRIDA-DEXDump (visited on 08/19/2023).

[131] Java-Decompiler. 2023. url: http://java-decompiler.github.io/ (vis-
ited on 08/19/2023).

[134] JTrace – An Android Aware strace(1). 2023. url: http://newandroidbook.
com/tools/jtrace.html (visited on 08/19/2023).

[137] GitHub: kittinunf. fuel. 2023. url: https://github.com/kittinunf/fuel
(visited on 08/19/2023).

[144] Licel. Configuring DexProtector. 2023. url: https://licelus.com/products/
dexprotector/docs/android/configuring-dexprotector (visited on
08/19/2023).

[145] Licel. DexProtector. 2023. url: https://licelus.com/products/dexprotector
(visited on 08/19/2023).

125

https://github.com/JesusFreke/smali
https://github.com/JesusFreke/smali
https://github.com/LSPosed/LSPosed
https://github.com/LSPosed/LSPosed
https://github.com/Nightbringer21/fridump
https://github.com/Nightbringer21/fridump
https://medium.com/csg-govtech/diving-down-the-magisk-rabbit-hole-aaf88a8c2de0
https://medium.com/csg-govtech/diving-down-the-magisk-rabbit-hole-aaf88a8c2de0
https://android.googlesource.com/platform/bionic/
https://android.googlesource.com/platform/bionic/
https://android.googlesource.com/platform/system/sepolicy/+/refs/heads/master/private/isolated_app.te
https://android.googlesource.com/platform/system/sepolicy/+/refs/heads/master/private/isolated_app.te
https://android.googlesource.com/platform/system/sepolicy/+/refs/heads/master/private/isolated_app.te
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/core/java/android/os/Build.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/core/java/android/os/Build.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/core/java/android/os/Build.java
https://play.google.com/store
https://gradle.org/
https://www.guardsquare.com/proguard
https://www.guardsquare.com/proguard
https://hex-rays.com/ida-pro/
https://github.com/hluwa/FRIDA-DEXDump
https://github.com/hluwa/FRIDA-DEXDump
http://java-decompiler.github.io/
http://newandroidbook.com/tools/jtrace.html
http://newandroidbook.com/tools/jtrace.html
https://github.com/kittinunf/fuel
https://licelus.com/products/dexprotector/docs/android/configuring-dexprotector
https://licelus.com/products/dexprotector/docs/android/configuring-dexprotector
https://licelus.com/products/dexprotector

[146] Licel. DexProtector Documentation. 2023. url: https://licelus.com/
products/dexprotector/docs (visited on 08/19/2023).

[147] Licel. DexProtector Feature Matrix. 2023. url: https://licelus.com/
downloads/DexProtector_Feature_Matrix.pdf (visited on 08/19/2023).

[148] Licel. DexProtector User Manual. 2023. url: https://dexprotector.com/
docs (visited on 08/19/2023).

[149] Licel. 2023. url: https://licelus.com/ (visited on 08/19/2023).
[152] Linux Programmer’s Manual. access(2). 2023. url: https://man7.org/

linux/man-pages/man2/access.2.html (visited on 08/19/2023).
[153] Linux Programmer’s Manual. intro(2). 2023. url: https://man7.org/linux/

man-pages/man2/intro.2.html (visited on 08/19/2023).
[154] Linux Programmer’s Manual. ioctl(2). 2023. url: https://man7.org/linux/

man-pages/man2/ioctl.2.html (visited on 08/19/2023).
[155] Linux Programmer’s Manual. libc(7). 2023. url: https://man7.org/linux/

man-pages/man7/libc.7.html (visited on 08/19/2023).
[156] Linux Programmer’s Manual. open(2). 2023. url: https://man7.org/linux/

man-pages/man2/open.2.html (visited on 08/19/2023).
[157] Linux Programmer’s Manual. proc(5). 2023. url: https://man7.org/linux/

man-pages/man5/proc.5.html (visited on 08/19/2023).
[158] Linux Programmer’s Manual. ptrace(2). 2023. url: https://man7.org/

linux/man-pages/man2/ptrace.2.html (visited on 08/19/2023).
[159] Linux Programmer’s Manual. stat(2). 2023. url: https://man7.org/linux/

man-pages/man2/lstat.2.html (visited on 08/19/2023).
[160] Linux Programmer’s Manual. strace(1). 2023. url: https://man7.org/

linux/man-pages/man1/strace.1.html (visited on 08/19/2023).
[161] Linux Programmer’s Manual. unlink(2). 2023. url: https://man7.org/

linux/man-pages/man2/unlink.2.html (visited on 08/19/2023).
[162] Linux Programmer’s Manual. write(2). 2023. url: https://man7.org/linux/

man-pages/man2/write.2.html (visited on 08/19/2023).
[165] Lockin Company. LIAPP. 2023. url: https://liapp.lockincomp.com/

(visited on 08/19/2023).
[166] Lockin Company. LIAPP Guide. 2023. url: https://guide.lockincomp.

com/ (visited on 08/19/2023).
[167] Lockin Company. 2023. url: https://liapp.lockincomp.com/contact

(visited on 08/19/2023).
[181] Microsoft. PE Format. 2023. url: https://docs.microsoft.com/en-

us/windows/win32/debug/pe-format (visited on 08/19/2023).

126

https://licelus.com/products/dexprotector/docs
https://licelus.com/products/dexprotector/docs
https://licelus.com/downloads/DexProtector_Feature_Matrix.pdf
https://licelus.com/downloads/DexProtector_Feature_Matrix.pdf
https://dexprotector.com/docs
https://dexprotector.com/docs
https://licelus.com/
https://man7.org/linux/man-pages/man2/access.2.html
https://man7.org/linux/man-pages/man2/access.2.html
https://man7.org/linux/man-pages/man2/intro.2.html
https://man7.org/linux/man-pages/man2/intro.2.html
https://man7.org/linux/man-pages/man2/ioctl.2.html
https://man7.org/linux/man-pages/man2/ioctl.2.html
https://man7.org/linux/man-pages/man7/libc.7.html
https://man7.org/linux/man-pages/man7/libc.7.html
https://man7.org/linux/man-pages/man2/open.2.html
https://man7.org/linux/man-pages/man2/open.2.html
https://man7.org/linux/man-pages/man5/proc.5.html
https://man7.org/linux/man-pages/man5/proc.5.html
https://man7.org/linux/man-pages/man2/ptrace.2.html
https://man7.org/linux/man-pages/man2/ptrace.2.html
https://man7.org/linux/man-pages/man2/lstat.2.html
https://man7.org/linux/man-pages/man2/lstat.2.html
https://man7.org/linux/man-pages/man1/strace.1.html
https://man7.org/linux/man-pages/man1/strace.1.html
https://man7.org/linux/man-pages/man2/unlink.2.html
https://man7.org/linux/man-pages/man2/unlink.2.html
https://man7.org/linux/man-pages/man2/write.2.html
https://man7.org/linux/man-pages/man2/write.2.html
https://liapp.lockincomp.com/
https://guide.lockincomp.com/
https://guide.lockincomp.com/
https://liapp.lockincomp.com/contact
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format

[184] musl libc. 2022. url: https://musl.libc.org/ (visited on 08/19/2023).
[186] National Security Agency. Ghidra. 2023. url: https://ghidra-sre.org/

(visited on 08/19/2023).
[193] Oracle. Java Debug Wire Protocol. 2023. url: https://docs.oracle.com/

javase/8/docs/technotes/guides/jpda/jdwp-spec.html (visited on
08/19/2023).

[194] Oracle. JNI APIs and Developer Guides. 2023. url: https://docs.oracle.
com/javase/8/docs/technotes/guides/jni/ (visited on 08/19/2023).

[195] Oracle. JNI Functions. 2023. url: https://docs.oracle.com/javase/
8/docs/technotes/guides/jni/spec/functions.html (visited on
08/19/2023).

[196] Oracle. The Reflection API. 2022. url: https://docs.oracle.com/javase/
tutorial/reflect/index.html (visited on 08/19/2023).

[197] OWASP. Mobile Application Security Verification Standard. 2023. url: https:
//mobile-security.gitbook.io/masvs/ (visited on 08/19/2023).

[198] OWASP. Mobile Security Testing Guide. 2023. url: https://mobile-security.
gitbook.io/mobile-security-testing-guide/ (visited on 08/19/2023).

[199] OWASP. OWASP Mobile Top 10. 2023. url: https://owasp.org/www-
project-mobile-top-10/ (visited on 08/19/2023).

[200] OWASP Foundation. 2023. url: https://owasp.org/ (visited on 08/19/2023).
[201] PalmSource Inc. OpenBinder. 2005. url: http://www.angryredplanet.

com/~hackbod/openbinder/docs/html/ (visited on 08/19/2023).
[203] PortSwigger. Burp Suite – Application Security Testing Software. 2023. url:

https://portswigger.net/burp (visited on 08/19/2023).
[204] PortSwigger. 2023. url: https://portswigger.net/ (visited on 08/19/2023).
[205] PreEmptive. DashO. 2023. url: https://www.preemptive.com/products/

dasho/ (visited on 08/19/2023).
[206] PreEmptive. DashO Features. 2023. url: https://www.preemptive.com/

products/dasho/features/ (visited on 08/19/2023).
[207] PreEmptive. DashO User Guide. 2023. url: https://www.preemptive.com/

dasho/pro/userguide/en/ (visited on 08/19/2023).
[208] PreEmptive. 2023. url: https://www.preemptive.com/ (visited on 08/19/2023).
[209] Promon. 2023. url: https://promon.co/ (visited on 08/19/2023).
[210] GitHub: pxb1988. dex2jar. 2021. url: https://github.com/pxb1988/

dex2jar (visited on 08/19/2023).
[211] Python Software Foundation. Python. 2023. url: https://www.python.org/

(visited on 08/19/2023).

127

https://musl.libc.org/
https://ghidra-sre.org/
https://docs.oracle.com/javase/8/docs/technotes/guides/jpda/jdwp-spec.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jpda/jdwp-spec.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/functions.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/functions.html
https://docs.oracle.com/javase/tutorial/reflect/index.html
https://docs.oracle.com/javase/tutorial/reflect/index.html
https://mobile-security.gitbook.io/masvs/
https://mobile-security.gitbook.io/masvs/
https://mobile-security.gitbook.io/mobile-security-testing-guide/
https://mobile-security.gitbook.io/mobile-security-testing-guide/
https://owasp.org/www-project-mobile-top-10/
https://owasp.org/www-project-mobile-top-10/
https://owasp.org/
http://www.angryredplanet.com/~hackbod/openbinder/docs/html/
http://www.angryredplanet.com/~hackbod/openbinder/docs/html/
https://portswigger.net/burp
https://portswigger.net/
https://www.preemptive.com/products/dasho/
https://www.preemptive.com/products/dasho/
https://www.preemptive.com/products/dasho/features/
https://www.preemptive.com/products/dasho/features/
https://www.preemptive.com/dasho/pro/userguide/en/
https://www.preemptive.com/dasho/pro/userguide/en/
https://www.preemptive.com/
https://promon.co/
https://github.com/pxb1988/dex2jar
https://github.com/pxb1988/dex2jar
https://www.python.org/

[217] GitHub: rednaga. APKiD. 2023. url: https://github.com/rednaga/APKiD
(visited on 08/19/2023).

[221] Saurik. Cydia Substrate. 2014. url: http://www.cydiasubstrate.com/
(visited on 08/19/2023).

[223] GitHub: scottyab. rootbeer. 2021. url: https://github.com/scottyab/
rootbeer (visited on 08/19/2023).

[224] GitHub: sensepost. objection. 2023. url: https://github.com/sensepost/
objection (visited on 08/19/2023).

[229] GitHub: skylot. jadx. 2023. url: https://github.com/skylot/jadx (visited
on 08/19/2023).

[233] StatCounter Global Stats. Mobile Operating System Market Share Worldwide.
2023. url: https://gs.statcounter.com/os-market-share/mobile/
worldwide (visited on 08/19/2023).

[235] SuperSU. SuperSU Root. 2020. url: https://supersuroot.org/ (visited on
08/19/2023).

[238] Thales. 2023. url: https://www.thalesgroup.com/ (visited on 08/19/2023).
[239] The LLDB Team. The LLDB Debugger. 2023. url: https://lldb.llvm.org/

(visited on 08/19/2023).
[240] The LLVM Compiler Infrastructure Project. 2023. url: https://llvm.org/

(visited on 08/19/2023).
[241] Topjohnwu. Magisk Manager. 2023. url: https://magiskmanager.com/

(visited on 08/19/2023).
[243] Connor Tumbleson. apktool. 2023. url: https://ibotpeaches.github.io/

Apktool/ (visited on 08/19/2023).
[245] Typicode. JSONPlaceholder – Free Fake REST API. 2022. url: https://

jsonplaceholder.typicode.com/ (visited on 08/19/2023).
[251] VirusTotal. YARA - The pattern matching swiss knife for malware researchers.

2023. url: https://virustotal.github.io/yara/ (visited on 08/19/2023).
[252] Jeffery Walton et al. Certificate and Public Key Pinning Control – OWASP

Foundation. 2023. url: https://owasp.org/www-community/controls/
Certificate_and_Public_Key_Pinning (visited on 08/19/2023).

[258] XDA. Xposed Framework. 2012. url: https://forum.xda-developers.
com/t/xposed-general-info-versions-changelog.2714053/ (vis-
ited on 08/19/2023).

128

https://github.com/rednaga/APKiD
http://www.cydiasubstrate.com/
https://github.com/scottyab/rootbeer
https://github.com/scottyab/rootbeer
https://github.com/sensepost/objection
https://github.com/sensepost/objection
https://github.com/skylot/jadx
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://supersuroot.org/
https://www.thalesgroup.com/
https://lldb.llvm.org/
https://llvm.org/
https://magiskmanager.com/
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://jsonplaceholder.typicode.com/
https://jsonplaceholder.typicode.com/
https://virustotal.github.io/yara/
https://owasp.org/www-community/controls/Certificate_and_Public_Key_Pinning
https://owasp.org/www-community/controls/Certificate_and_Public_Key_Pinning
https://forum.xda-developers.com/t/xposed-general-info-versions-changelog.2714053/
https://forum.xda-developers.com/t/xposed-general-info-versions-changelog.2714053/

	Kurzfassung
	Abstract
	Contents
	Introduction
	Problem Description
	Goals
	Methodological Approach
	Structure

	Related Work
	Android Application Security
	Anti-Reverse Engineering Tools
	Code Obfuscation
	Code Encryption
	String Encryption
	TLS Certificate Pinning
	Root Detection
	Hooking and Debugging Detection
	Emulation Detection

	Background
	Android Fundamentals
	Android Application Reverse Engineering Techniques
	Android Application Anti-Reverse Engineering Mechanisms
	Reverse Engineering Tools

	Mobile Anti-Reverse Engineering Tools
	DexProtector
	LIAPP
	DashO

	Analysis of Mobile Anti-Reverse Engineering Mechanisms
	Analysis Approach and Setup
	Analysis Procedure and Results
	Main Differences Between Analysed Tools and Mechanisms

	Bypass of Anti-Reverse Engineering Mechanisms
	DexProtector
	LIAPP
	DashO
	Automatic Identification of Applied Anti-Reversing Tool

	Possible Improvements of Anti-Reverse Engineering Mechanisms
	Possible Improvements
	Expert Evaluation

	Conclusion and Future Work
	Appendix
	Expert Interview Guide

	List of Figures
	List of Tables
	List of Listings
	Acronyms
	Bibliography
	Online References

