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Abstract

Testing is a promising way to gain trust in learned action poli-
cies π. Prior work on action-policy testing in AI planning for-
malized bugs as states t where π is sub-optimal with respect
to a given testing objective. Deciding whether or not t is a bug
is as hard as (optimal) planning itself. How can we design test
oracles able to recognize some states t to be bugs efficiently?
Recent work introduced metamorphic oracles which compare
policy behavior on state pairs (s, t) where t is easier to solve;
if π performs worse on t than on s, we know that t is a
bug. Here, we show how to automatically design such oracles
in classical planning, based on simulation relations between
states. We introduce two oracle families of this kind: first,
morphing query states t to obtain suitable s; second, main-
taining and comparing upper bounds on h∗ across the states
encountered during testing. Our experiments on ASNet poli-
cies show that these oracles can find bugs much more quickly
than the existing alternatives, which are search-based; and
that the combination of our oracles with search-based ones
almost consistently dominates all other oracles.

1 Introduction
Learned action policies π represented by neural networks
are gaining traction in AI planning (Issakkimuthu, Fern,
and Tadepalli 2018; Groshev et al. 2018; Garg, Bajpai, and
Mausam 2019; Toyer et al. 2020; Karia and Srivastava 2021;
Stahlberg, Bonet, and Geffner 2022). Once learned, action
policies can be used to make real-time decisions in dynamic
environments. Yet, this raises obvious concerns regarding
potential policy “bugs”, that is, undesirable or even fatal
policy behavior in particular situations. Testing – searching
for bugs – is a natural paradigm to address these concerns.
Specifically, testing can serve to assess the quality of π, and
when used extensively, to certify that π can be trusted.

There has been substantial work on policy testing in se-
quential decision making. Most of it focuses on so-called
stress testing, which tries to find environment behavior un-
der which a policy fails (e.g., Dreossi et al. 2015; Akazaki
et al. 2018; Koren et al. 2018; Ernst et al. 2019; Lee et al.
2020). But if the failure is unavoidable, then π is not actu-
ally doing anything wrong, and the situation hardly qualifies
as a “bug”. Recent work (Steinmetz et al. 2022) addressed
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this issue in the context of AI planning, defining bugs as
states where π is sub-optimal with respect to a given testing
objective. Here, we address classical planning with the test-
ing objective of additive-cost minimization. In this context,
a state t is a bug in π if the cost of π’s plan, which we denote
by cπ(t), is greater than that of an optimal plan h∗(t).

Deciding whether t is a bug subsumes cost-optimal plan-
ning. How can we design test oracles able to recognize some
t to be bugs efficiently? Steinmetz et al. (2022) experiment
with plan-improvement oracles as well as simple oracles
leveraging invertible actions. Here, we address a new class
of oracles based on recent ideas from metamorphic testing.

Metamorphic testing is a well established method for de-
signing oracles in software testing (Chen, Cheung, and Yiu
1998). The idea is to test program behavior on inputs cho-
sen such that it is known how the respective outputs should
relate. Eniser et al. (2022) transfer this idea to action-policy
testing by using a notion of relaxations. The intuition is sim-
ple: if t relaxes s, i.e., t is easier to solve than s, yet π per-
forms worse on t than on s, then we know that t is a bug in π.
Eniser et al. apply this approach on three Atari-like games,
with manually designed relaxation relations that are based
on making obstacles easier to avoid. Here, we instead show
how to automatically design such oracles, in the planning
context, based on simulation relations between states.

A simulation (Milner 1971; Gentilini, Piazza, and Poli-
criti 2003) is a relation ⪯ on states where, whenever s ⪯ t,
for every transition s

a−→ s′ there exists a transition t
a−→ t′

such that s′ ⪯ t′. In words, t simulates s if anything we
can do in s, we can also do in t, leading to a simulating
state. Obviously (and as Eniser et al. point out), this kind
of relation qualifies for their oracles. Our contribution is the
practical realization and evaluation of this idea. We leverage
prior work (Torralba and Hoffmann 2015; Torralba 2017,
2018) on automatically extracting simulations in planning.
Precisely, we leverage the more general notion of dominance
functions (Torralba 2017), which are quantitative: they say
by how much (plan cost) t is easier than s. This allows us
to generalize Eniser et al.’s approach. If t is not easier but
harder than s, yet only by cost ≤ 2, then we can still con-
clude that t is a bug if π performs worse on t by cost > 2.

We introduce two families of oracles based on these ideas.
Our state-morphing oracles follow the design by Eniser
et al. (2022), taking an input state t, generating morphed
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states s, and reporting t to be a bug if the comparison of
π’s behavior on any s allows to do so. The main technical
issue we address here is how to generate the morphed states.

Our second oracle family, bound-maintenance oracles, in-
stead maintains upper bounds u(t) on plan cost across the
states t encountered during testing, explicitly leveraging the
ability of quantitative simulation relations to propagate such
bounds. The initial source of upper bounds are policy runs.
Whenever a new or better bound u(t) is found, all neighbors
of t in the simulation relation can be updated too. Moreover,
search methods – limited lookahead search or search-based
external test oracles (running either a plan-improvement al-
gorithm or an actual planner) – can be naturally plugged in
as another initial source of upper bounds. This results in syn-
ergy between information provided by search vs. simulation,
going beyond pure metamorphic testing.

We evaluate our test oracles on action policies learned
with ASNets (Toyer et al. 2018, 2020). Specifically, we use
the collection of benchmarks and policies introduced by
Steinmetz et al. (2022). We compare against Steinmetz et
al.’s test oracles as well as other search-based oracles. Our
key findings are that our new metamorphic oracles find bugs
much more quickly than search-based ones; and that our
combination of metamorphic and search-based oracles al-
most consistently dominates all other oracles.

2 Background
We next briefly give the necessary background encompass-
ing the planning framework, simulation relations in plan-
ning, and the relevant prior work on test oracles (Steinmetz
et al. 2022; Eniser et al. 2022).

2.1 Finite-Domain Representation Planning
An FDR task is a tuple Π = ⟨V ,A, c, I,G⟩. V is a finite set
of variables; each v ∈ V is associated with a finite domain
dom(v). A state s is a complete variable assignment; we de-
note the set of all states by S .A is a finite set of actions; each
a ∈ A is a pair (pre(a), eff(a)) of precondition and effect,
both partial assignments. c is a cost function c : A → R0+.
I ∈ S is the initial state. The goal G is a partial assignment.

Action a is applicable in state s if pre(a) ⊆ s; we denote
the set of actions applicable to s by A[s]. Applying a ∈ A[s]
to s changes the value of the variables affected by eff(a) to
eff(a)[v] and leaves s unchanged elsewhere. sJaK denotes
the resulting state after applying a, and similarly, sJ⃗aK after
applying an action sequence. a⃗ is a plan for s if G ⊆ sJ⃗aK.
We denote the summed-up cost of a⃗ by c(⃗a). A plan a⃗ is
optimal for s if its cost c(⃗a) is minimal among all plans for
s. We denote by h∗(s) the exact cost-to-goal, i.e., the cost
of an optimal plan for s if one exists and∞ otherwise.

2.2 Dominance Functions in FDR
Simulation relations (Milner 1971) aim to identify whether
a system can mimic all behaviors of another. In the context
of planning, this means that whenever s ⪯ t any plan for
s is also a plan for t. When only cost-to-goal is of interest,
this can be specialized into dominance relations (Torralba
and Hoffmann 2015), which only require t to have a plan of

lower or equal cost, possibly using fewer and/or completely
different actions. Formally, a relation ⪯⊆ S × S is a dom-
inance relation if s ⪯ t implies h∗(t) ≤ h∗(s). Here, we
build on dominance functions (Torralba 2017):
Definition 1. A dominance function is a function D : S ×
S → R ∪ {−∞} such that D(s, t) ≤ h∗(s) − h∗(t) for all
s ∈ S with h∗(s) <∞ and t ∈ S .

Dominance functions directly generalize dominance re-
lations, providing information about their relative cost-to-
goal. Whenever D(s, t) ≥ 0, t dominates/relaxes s; the
value indicates how much easier t is than s. If −∞ <
D(s, t) < 0, s can be harder than t but at most by cost
|D(s, t)|. Finally, if D(s, t) = −∞, it means the function
does not give a bound here.

Dominance functions can be automatically derived in a
compositional manner. First, the task Π is divided into a set
of factors through partitioning the set of variables V into k
disjoint subsets V1, . . . , Vk. For any state s, we denote by si
the projection of s onto Vi. We construct a factor Θ1, . . . ,Θk

as the projection of Π onto each Vi. Then, a separate dom-
inance function Di is computed for each factor, such that
for any pair of states s, t,

∑k
i=1Di(si, ti) ≤ h∗(s)− h∗(t).

As detailed by Torralba (2017), this can be done by a fix-
point computation akin to that of simulation relations, in
time polynomial in the size of the factors. This procedure
is run once for Π, as a pre-process. Later, given two states s
and t, we simply compute D(s, t) =

∑k
i=1Di(si, ti).

2.3 Policy Testing
We consider deterministic memoryless policies for FDR
tasks. Hence, a policy is a function π : S → A that maps
states to applicable actions π(s) ∈ A[s]. We denote the
unique run of π on s – the action sequence resulting from
iteratively applying π starting from s – by σπ(s). Note that
learning a policy for FDR tasks is useful if (like ASNets) the
policy generalizes over all instances of a domain.

Given a state s, we denote the cost of π’s plan as follows:

cπ(s) :=

{
c(σπ(s)) σπ(s) is a plan
∞ otherwise

Focusing on additive-cost minimization as our testing objec-
tive – i.e., inserting this standard objective into Steinmetz et
al.’s (2022) general definition – we say that a state t is a bug
if cπ(t) > h∗(t). Note that this is the case if either π does not
find a plan although t is solvable (and hence h∗(t) <∞); or
π does find a plan but its cost is not optimal.1

Policy testing consists of two separate activities: (a) gen-
erating test states t; and (b) running test oracles on these t to
find bugs. Here, we are exclusively concerned with (b). For
(a), we adopt Steinmetz et al.’s techniques, which use simple
random-walk methods to iteratively build up a pool P of test
states t ∈ P .2 Steps (a) and (b) can be interleaved, i.e., the
oracles do not assume that P has already been completed.

1Steinmetz et al. (2022) distinguish these two kinds of bugs.
Here, this is not necessary as both are special cases of additive-cost
minimization and are handled using the same techniques.

2Steinmetz et al. consider the design of biases towards states
where π performs badly. As these biases have side effects on oracle
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Steinmetz et al. run two simple kinds of oracles. First,
plan-improvement oracles that report t to be a bug if they
succeed in improving the plan generated by π. Specifically,
Steinmetz et al. run Aras (Nakhost and Müller 2010) as
well as a simple look+policy method consisting of depth-
first search (up to depth 2) and running π on every leaf state
of that search. Second, Steinmetz et al. consider the special
case of invertible actions (e.g. (Daum et al. 2016)). There, all
states are solvable so, if π does not find a plan for t, then t is
a bug; and we can find a plan for cost comparison by going
back to the initial state and using π from there. This yields
invertibility oracles that apply only to the special case.

The oracles we introduce here are based on ideas from
metamorphic testing (Chen, Cheung, and Yiu 1998). In soft-
ware engineering, metamorphic testing essentially works by
transforming a program input s.t. the new program output
has an a-priori known relationship to the original output. In
the context of action policies, Eniser et al. (2022) used a
concept of state relaxations ⪯ to obtain metamorphic ora-
cles, as follows: if s ⪯ t, meaning that t is easier than s, and
π performs worse on t than on s, then t is a bug in π. In our
context: if s ⪯ t and cπ(s) < cπ(t) then t is a bug in π.
Eniser et al. perform case studies on three 2D-world single
agent games, with manually designed relaxations modifying
(fixed or moving) obstacles. They design oracles based on
unrelaxing a test state t ∈ P into a morphed state s, report-
ing t to be a bug if π performs better on s.

Here, we automate the design of such oracles in the plan-
ning context. We introduce two families of oracles based on
dominance functions.

3 State-Morphing Oracles
State-morphing oracles are based on comparing each pool
state t against a number of morphed states s, obtained by
modifying t in a manner guided by the dominance function.

3.1 The Principle
First, we introduce a bug criterion based on dominance func-
tions. Assume that t dominates s by value D(s, t). If π per-
forms optimally on t, then cπ(t) should be at least D(s, t)
lower than cπ(s). Otherwise, t must be a bug.

Proposition 2 (Bug Criterion). LetD be a dominance func-
tion and s, t ∈ S such that cπ(s) < ∞ and D(s, t) > −∞.
If cπ(s)− cπ(t) < D(s, t), then t is a bug in π.

Proof. Because of cπ(s) < ∞, and thus h∗(s) < ∞,
we have that D(s, t) ≤ h∗(s) − h∗(t). As −∞ <
D(s, t), this implies that −∞ < h∗(s) − h∗(t), and hence,
due to h∗(s) < ∞, that h∗(t) < ∞. Since therefore
cπ(s), h∗(s), h∗(t) < ∞, cπ(s) − cπ(t) < D(s, t) ≤
h∗(s) − h∗(t) implies that 0 ≤ cπ(s) − h∗(s) < cπ(t) −
h∗(t), so that cπ(t) > h∗(t).

This generalizes the bug criterion used by Eniser
et al. (2022). A relaxation relation ⪯ can be expressed as
a dominance function where D(s, t) = 0 if s ⪯ t, and

performance, we do not employ them here, using instead Steinmetz
et al.’s baseline with uniform-random action selection.

D(s, t) = −∞ otherwise. Then, whenever D(s, t) = 0, s
unrelaxes t in the sense that h∗(t) ≤ h∗(s), so the policy
should perform at least as well on t as it does on s. How-
ever, dominance functions have two additional capabilities
that allow us to identify more bugs.

First, if D(s, t) > 0, we know that t is strictly easier,
h∗(t) < h∗(s). We can then strengthen our comparison, re-
quiring that π performs better on t by at least D(s, t), de-
tecting bugs in particular even where cπ(t) = cπ(s).

Second, we no longer even require that s unrelaxes t. If
−∞ < D(s, t) < 0, then s may be closer to the goal than t,
but not by more than |D(s, t)|. Consider for example that s is
morphed from t by removing an obstacle (rather than adding
one); but the obstacle could be avoided anyway by spending
C units of cost, soD(s, t) = −C. Then, if π performs worse
on t than on s by a margin > C, we can report t to be a bug
because avoiding the obstacle would result in a better plan.

Both capabilities may significantly increase the number
of morphed states s we can compare to our pool state t ∈ P .

Algorithm 1: State-morphing oracle
1 Procedure SMO(t)
2 for s ∈ morphState(t) do
3 if cπ(t) <∞ then ccutoff ← cπ(t) +D(s, t);
4 else ccutoff ←∞;
5 cs ← run(π, s, ccutoff); // cπ(s) ≤ cs
6 if cs <∞∧ cs − cπ(t) < D(s, t) then
7 flagAsBug(t);
8 break;

Algorithm 1 shows the pseudo-code of our state-
morphing oracle. The selection of morphed states to which
we compare t is encapsulated in the morphState function
and discussed in the next subsection. To compare the pool
state t to each morphed state s in the SMO procedure, we
need to run π on both states. Here, and everywhere below,
we cache cπ(s) for all states s on which π was already run.
This is important for policies, like the ASNets (Toyer et al.
2020) we experiment with, that are slow to evaluate, making
policy runs a major bottleneck in testing.

Furthermore, while Algorithm 1 determines cπ(t) exactly,
we only run π on the morphed states s as long as cπ(s) is
low enough to confirm t as a bug under our bug criterion.
If cπ(t) < ∞, then cπ(s) − cπ(t) < D(s, t) is equivalent
to cπ(s) < D(s, t) + cπ(t) so that the criterion cannot be
met if cπ(s) ≥ ccutoff = D(s, t) + cπ(t). This means that if
D(s, t)+cπ(t) is not positive, running π on s can be skipped
altogether. In the case that cπ(t) =∞, there cannot be such
a cutoff bound since every plan found for s, no matter how
long, is sufficient to prove that t is a bug.

We handle the partial evaluation of π on s in the
run(π, s, ccutoff) call, which returns an upper bound cs on
cπ(s). In particular, it returns ∞ if the accumulated cost
of the actions selected by π reach ccutoff, or π visits a state
recognized to be a dead end by hmax. When checking the
bug criterion, we replace cπ(s) with cs. Since cs − cπ(t) <
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D(s, t) is implied by cπ(s) − cπ(t) < D(s, t), any state re-
ported as a bug is indeed a bug by Proposition 2.

3.2 Morphing States
The performance of state-morphing oracles is highly influ-
enced by how we morph t in order to derive states s for
comparison. This can be done in many possible ways, and
in particular, we do not necessitate that the morphed states
are reachable from the initial state. A good morphing proce-
dure should provide states s that are likely to show t to be a
bug. In particular, they should always satisfyD(s, t) > −∞.

Naı̈vely, one could repeatedly guess a state s (e.g. at ran-
dom) until one is found where D(s, t) > −∞. However,
it is of course an advantage to do this more systematically
by taking into account the dominance function D. Hence
our Algorithm 2 considers all states s that differ from t in
exactly one state variable, and returns a random selection
among those that fulfill D(s, t) > −∞.

Algorithm 2: The morphState function
1 Function morphState(t)
2 S ← ∅ ; // set of states s ̸= t with D(s, t) > −∞
3 for v ∈ V do
4 for d ∈ dom(v) do
5 if d = t[v] then continue;
6 s← t;
7 s[v]← d;
8 if D(s, t) > −∞ then S ← S ∪ {s};

9 return select(S,maxsize);

This simple procedure is obviously fast. Regarding its
power to identify suitable morphed states, observe that states
close to t are more likely to satisfy D(s, t) > −∞. To
understand why, consider again how dominance functions
are computed. The dominance function is given as a sum
over factors D(s, t) =

∑
iDi(si, ti). So we must have

Di(si, ti) > −∞ for all factors. Modifying only a single
variable maximizes the chances for this to be satisfied.

Observe that, if the factors are individual variables, then
Algorithm 2 will return at least one morphed state so long as
any state s with D(s, t) > −∞ exists, since D(s, t) > −∞
then arises from a single variable already. For general fac-
tors, the same would hold when changing Algorithm 2 to op-
erate on the factor level. Yet, that would greatly increase run-
time (iterating over variable-value tuples rather than single
values). Moreover, with slow policies like ASNets, check-
ing a larger number of morphed states is infeasible anyway,
which is also the reason for the maxsize parameter.

4 Bound-Maintenance Oracles
We now introduce a new class of oracles, which propagates
bounding information across the states encountered during
testing and works much better in practice. We start with the
motivation and basic idea, then describe the specific design
of our oracle, and show how to integrate information pro-
vided by search.

4.1 Motivation and Principle
Each invocation of a state-morphing oracle compares the
pool state t ∈ P with new morphed states s. Most of these
s will not yet be cached, necessitating a run of π. However,
that may be expensive. Our bound-maintenance oracles in-
stead aim at making maximal use of the information – upper
bounds on optimal plan cost – obtained by running π. We
move away from oracles treating each invocation as a sep-
arate task, to oracles that make use of the information ac-
quired across all invocations. This means that, when given
t ∈ P , our objective is not just to confirm t as a bug, but
also to check whether we can retrospectively classify previ-
ous t′ ∈ P as bugs and to leverage as much information as
possible to help find further bugs in subsequent invocations.

Accordingly, state comparisons s vs. t in this new ora-
cle family are not done only to show that t is a bug, but
can go in both directions. We use D(s, t) in order to attempt
to prove t to be a bug and D(t, s) attempting to show s to
be a bug. We operationalize this by sharing upper bounds
u(t) ≥ h∗(t) across oracle invocations. Obviously, for each
state t on which π is run, cπ(t) is such an upper bound, and
whenever we can decrease it further, we have confirmed t to
be a bug. The formal basis for this is straightforward:
Proposition 3 (Decreasing Upper Bounds). Let D be a
dominance function, s, t ∈ S with D(s, t) > −∞, and
us ∈ R0+ such that h∗(s) ≤ us. Then h∗(t) ≤ us−D(s, t).

Proof. Because of h∗(s) ≤ us <∞, we have thatD(s, t) ≤
h∗(s) − h∗(t), and hence −∞ < h∗(s) − h∗(t), so that
h∗(t) < ∞. Furthermore, D(s, t) ≤ h∗(s) − h∗(t) implies
h∗(t) ≤ h∗(s)−D(s, t), and thus h∗(t) ≤ us−D(s, t).

4.2 Oracle Design
Algorithm 3 shows pseudo-code. For each state t, we denote
our stored upper bound on h∗(t) by u(t); u(t) is initialized
with∞ for all states. In the BMO procedure, we first run π
on the current pool state t, and then compare t to a number
of states s already known to the oracle. For simplicity, we
abstract from how the states are selected and from the order
in which they are considered. Function getCompStates re-
turns all states on which the BMO procedure has previously
been invoked; note that cπ(s) has already been determined
for all these states, incurring no policy-execution overhead.

In the comparison between s and t, we attempt to decrease
both u(s) and u(t) by applying Proposition 3. If we are able
to decrease u(s) or u(t) below cπ(s) or cπ(t), we flag the
respective state as a bug. Procedures updateAncestors and
lookaheadSearch are enhancements discussed below. Setting
them aside for the moment, BMO is obviously sound. The
key is that u(s) and u(t) are always upper bounds for h∗(s)
and h∗(t), respectively. It is easy to see that this invariant is
preserved whenever we change u(s) and u(t).

The updateAncestors procedure is simple, so we do not
include pseudo-code for it. It does precisely what its name
suggests: it traverses the ancestors of its input state (s or t in
Algorithm 3) under π, updates their upper bounds, and flags
them as bugs whenever that is possible. The only question
here is what are “the” ancestors under π. One could, in prin-
ciple, find all such ancestors by backward search following
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Algorithm 3: Bound-maintenance oracle
1 Procedure BMO(t)
2 u(t)← min(u(t), cπ(t));
3 for s ∈ getCompStates(t) do
4 if s = t then continue;
5 if u(s) <∞∧D(s, t) > −∞ then
6 u(t)← min(u(t), u(s)−D(s, t));
7 if u(t) <∞∧D(t, s) > −∞ then
8 u(s)← min(u(s), u(t)−D(t, s));
9 if u(s) < cπ(s) then

10 flagAsBug(s);
11 updateAncestors(s);

12 if u(t) < cπ(t) then
13 flagAsBug(t);
14 updateAncestors(t);
15 lookaheadSearch(t); // optional, see Section 4.3

only transitions taken by π. Yet, that would be expensive,
especially with a costly policy representation like ASNets.
Hence, we instead merely remember the parent/child pairs

(s, s′) from the transitions s
π(s)−−−→ s′ previously encountered

during the testing process. The updateAncestors procedure
follows these transitions from child to parent.

Beyond calling Algorithm 3 on the pool states t ∈ P ,
we also call it on every state r traversed by a policy run
when determining cπ(t). The reason for this is that, if we
succeed in showing r to be a bug, then updateAncestors(r)
will flag the pool state t to be a bug as well. Furthermore, the
additional bound updates done during these algorithm calls
may help to detect additional bugs. The calls on r are done in
reverse order, backwards along the policy path, to maximize
information propagation. To keep the runtime overhead at
bay, we do not run lookaheadSearch in these BMO calls.

Observe that, given these enhancements, states r flagged
as bugs by BMO may not be pool states, r /∈ P , at the time
they are being flagged. The flag is set to remember r as a
bug in case it is added to P later on.3

4.3 Integrating Lookahead Search
The oracle as introduced so far relies exclusively on state-
comparison information provided by the simulation relation
and policy runs. However, as the oracle is based on maintain-
ing upper bounds on h∗, other sources of such upper bound-
ing information can be readily integrated. An obvious such
information source is search. We next show how to enhance
bound-maintenance oracles with a simple lookahead search
procedure; apart from finding actual plans, this also expands

3One could of course report r as a bug anyway, regardless
whether or not r ∈ P eventually. However, this would lead to many
closely correlated bug states, in particular ones traversed by the
same policy run. The pool alleviates this problem as its member
states are generated randomly. In our experiments, oracle perfor-
mance is compared on pool states exclusively.

the state set considered, and hence the information propa-
gated by state comparisons. In Section 4.4, we will discuss
the integration of external search-based oracles.

Algorithm 4: Lookahead search for BMO
1 Procedure lookaheadSearch(t)

// Conduct GBFS for n steps
2 foreach state s visited with s ̸= t do
3 if G ⊆ s then u(t)← min(u(t), g(s));
4 for v ∈ getCompStates(s) do
5 if v = s then continue;
6 if u(v) <∞∧D(v, s) > −∞ then
7 u(s)← min(u(s), u(v)−D(v, s));
8 updateAncestors(s);

// next line only if cπ(s) is cached already
9 if u(s) < cπ(s) then flagAsBug(s);

10 u(t)← min(u(t), g(s) + u(s));
11 if u(t) < cπ(t) then flagAsBug(t);
12 updateAncestors(t);

As specified by the pseudo-code in Algorithm 4,
the lookaheadSearch procedure conducts greedy best-first
search (GBFS) for a fixed number n of search steps. For
every state in the search, we update bounds, perform state
comparisons, update ancestors, and flag bugs. Specifically,
this procedure is able to infer upper bounds on h∗(t) (other
than ∞) if it reaches a goal state; if it reaches a state r for
which we already know that u(r) < ∞; or if it reaches a
state r for which we can infer an upper bound u(r) <∞ by
comparing it to other states.

In our implementation, we use hFF (Hoffmann and Nebel
2001) as the heuristic function. We set n to relatively small
values, up to 1000; for larger values of n, we empirically
found that the overhead typically outweighs the additional
information. Intuitively, this is because of all the additional
work our lookahead procedure does, beyond just search. But
we can also integrate information from purer standard search
methods, as described next.

4.4 Combination with External Oracles
We can integrate information provided by any external or-
acle (or any procedure really), so long as that computes an
upper bound on h∗ for the input state. As we shall see, for
search-based external oracles, this combination yields excel-
lent performance in practice. Intuitively, this is because our
oracles employing simulations are designed to be fast, while
search-based oracles invest more resources and accordingly
identify deeper information. These two complement each
other, and the deeper information identified can feed back
into, and boost, our bound maintenance.

Algorithm 5 sketches our realization of this idea. We run
the bound-maintenance oracle first. If it is not successful,
we run the external oracle. For our pseudo-code here, we
assume that the external oracle returns the upper bound it
computed (even if determining t to be a bug, as in that case
the bound may help our oracle to determine yet more bugs).
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Algorithm 5: Combined oracle
1 Procedure combinedOracle(t)
2 BMO(t);
3 if u(t) < cπ(t) then return;
4 ut ← u(t);
5 u(t)← min(u(t), externalOracle(t));
6 if u(t) = ut then return;
7 for s ∈ getCompStates(t) do
8 if s = t then continue;
9 if u(t) <∞∧D(t, s) > −∞ then

10 u(s)← min(u(s), u(t)−D(t, s));
11 if u(s) < cπ(s) then flagAsBug(s);

12 updateAncestors(t);

Crucially, if the external oracle returns a better bound than
we had known so far, we can store that information and
propagate it into our bound-maintenance oracle, making this
combination much more than merely a portfolio of both ora-
cles. We conduct comparisons to classify old states as bugs,
update the cost bounds of ancestor states, and use the im-
proved bounds for state comparisons in subsequent invoca-
tions of the oracle. The improved bound for the single state
(t) on which the external oracle is run can thus propagate
into improved bounds for many other states by means of the
quantitative simulation relation.

Indeed, this adds an essential new ability to our oracles: if
upper bounds come exclusively from policy runs, then, like
the metamorphic oracles of Eniser et al. (2022), we can only
detect bugs based on comparing policy runs across states.
If, however, upper-bound information is added from search,
our approach goes strictly beyond metamorphic testing.

5 Experiments
We ran experiments to assess the performance of our ora-
cles – their ability to detect bugs, and the runtime needed
for that – compared to other oracles. We next describe the
experiment setup, then summarize our results.4

5.1 Setup
Our experimental evaluation is firmly based on the work
of Steinmetz et al. (2022), i.e., our implementation, bench-
marks, and learned policies are based on their framework,
which builds on NeuralFD (Ferber, Hoffmann, and Helmert
2020), which in turn builds on FD (Helmert 2006).

We consider ASNet (Toyer et al. 2018, 2020) policies.
ASNets are neural networks specifically designed for learn-
ing action policies in AI planning. ASNets are trained for
a domain, learning a policy that can be instantiated for dif-
ferent instances. Hence, when testing an ASNet policy on
multiple tasks of the same domain, we test instantiations of
the same policy rather than different policies.

We use the same set of benchmarks and ASNet policies
as Steinmetz et al. (2022). On all of these benchmark tasks,

4Our code, the benchmarks, and the policies are available at
https://gitlab.com/Jan.Eisenhut/metamorphic-test-oracles.

the policy solves the initial state (to ensure a certain level
of policy quality, as testing very bad policies is not mean-
ingful). We omit the Spanner domain as, there, the ASNet
policy performs so well that Steinmetz et al. did not find any
bug, and the same was true in our preliminary experiments.
Due to technical difficulties (related to our CPU cluster) we
also omit the two largest instances of VisitAll.

Regarding the oracles compared, from our own ora-
cles, we run one configuration of the state-morphing oracle
(SMO) and several variants of the bound-maintenance ora-
cles (BMO). SMO compares each test state t ∈ P to a max-
imum of 10 morphed states (maxsize = 10 in Algorithm 2).
Larger values of maxsize incur too much overhead from run-
ning ASNet policies on the morphed states. For BMO, we
experiment with multiple limits on the number of expanded
states in the lookahead search, n ∈ {0, 10, 100, 1000}.
We also experiment with a combined oracle, according to
Algorithm 5, using BMO together with the search-based
Aras/EHC external oracle, which we will describe shortly.

All our SMO and BMO oracles use the same domi-
nance functions. We use the configuration suggested by Tor-
ralba (2017), which decomposes the planning task into fac-
tors using merge-and-shrink (Helmert et al. 2014) with the
DFP strategy (Dräger, Finkbeiner, and Podelski 2009; Siev-
ers, Wehrle, and Helmert 2014) and a size limit of 10 000
transitions per factor. This results in a good trade-off be-
tween runtime and informativeness: non-atomic factors im-
prove the latter; larger size limits deteriorate runtime without
gaining much or any informativeness.

As competing oracles for comparison, we run:

• Planner oracles attempt to find a plan a⃗ for t ∈ P , flag
t as a bug if c(⃗a) < cπ(t). Steinmetz et al. (2022) did
not run this type of oracle, but we include it here as it
constitutes an obvious option. We run A∗ with LM-Cut
(Helmert and Domshlak 2009); Enforced Hill Climbing
(EHC) with hFF (Hoffmann and Nebel 2001); as well as
GBFS using hFF with a limit of 1000 search steps, to con-
firm that the performance of BMOs is not simply due to
running this form of GBFS in lookahead search.

• Steinmetz et al.’s (2022) aforementioned Aras ora-
cle uses the plan-improvement tool Aras (Nakhost and
Müller 2010). As this oracle is only applicable if π finds
a plan, we combine it with the EHC oracle: if π solves t
then we invoke Aras, else we invoke EHC.

• Steinmetz et al.’s (2022) aforementioned look+policy or-
acle runs depth-first search up to depth 2, and runs π on
every leaf state. For fairer comparison to SMO, we apply
the same optimization, cutting off the execution of π on
leaf state s as soon as g(s) + cπ(s) ≥ cπ(t).

Steinmetz et al. (2022) also run the aforementioned in-
vertibility oracles applicable to the special case of invertible
or undoable actions: detecting solvable states not solved by
π (“qualitative bugs” in Steinmetz et al.’s terminology) is
trivial there, as all states are solvable; states where π’s plan
is sub-optimal (“quantitative bugs”) can be found by going
back to a preceding state and using π from there. The latter
finds hardly any bugs in Steinmetz et al.’s experiments; the
former is trivial and could be used as a pre-process to any
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Domain #Π |J | Oracle recall: Percentage of states in joint test set J flagged as bugs

A∗ EHC Aras/
EHC

look
+ π

GBFS-
1000

SMO BMO-
0

BMO-
10

BMO-
100

BMO-
1000

BMO-100
+ Aras/EHC

Best
Of

Blocks 24 481 28.5 59.7 0.0 0.0 0.0 6.9 10.2 10.2 34.7 69.2
Floortile 14 555 3.2 0.0 4.9 4.1 0.0 1.1 0.5 0.7 0.7 0.7 5.0 5.2
Gripper 35 1966 83.8 64.0 84.1 45.6 64.0 11.0 32.9 63.5 84.0 84.0 84.1 84.1
MBlocks 6 696 9.6 0.9 8.8 5.6 2.9 0.7 0.0 2.0 2.9 4.6 9.6 11.6
Satellite 16 740 53.0 29.1 54.5 48.9 43.9 42.7 52.7 53.0 53.1 53.1 58.1 58.4
Scanalyzer 50 1801 15.0 2.9 18.6 4.1 6.4 1.6 5.1 6.7 6.7 19.3 21.0
Storage 7 1170 32.6 26.6 32.6 28.9 25.0 10.8 3.8 11.1 23.2 25.5 32.6 32.6
Transport 24 2797 34.4 17.4 35.3 29.5 20.1 25.0 27.5 28.5 29.3 29.3 35.4 35.6
VisitAll 19 400 76.5 38.0 69.5 52.0 43.2 62.3 63.7 63.7 63.7 82.0 85.0

Table 1: Oracle recall (see text). #Π: number of tasks in each domain. J : joint pool, processed by all compared oracles, across
all tasks. We exclude an oracle from this comparison if its average number of processed states per task is < 25. In the “BestOf”
column, we flag all bugs identified by any oracle. Numbers given in oracle names are state expansion limits.

oracle. As our focus is on generally applicable oracles that
combine both qualitative and quantitative bug detection, we
do not consider invertibility oracles here. For the same rea-
son, we do not consider the perfect qualitative-bug oracles
that Steinmetz et al. design for their non-invertible domains.

We execute the two phases of the testing procedure, i.e.,
the generation of pool states and the invocation of the oracle
on these, separately. In the first phase, we collect the pool
P , run the policy on each t ∈ P , and store the results. We
attempt to generate 200 pool states, with a time limit of 8
hours on each planning task. To evaluate an oracle, we load
the list of pool states t ∈ P as well as all action choices the
policy took when being run on these pool states. We invoke
the oracle on each t, with a time limit of 4 hours for the
overall experiment. For all search-based oracles, we use a
time limit of 30 minutes per t. For our oracles, the runtime
taken for computing the dominance function is counted as
part of the oracle evaluation process. All experiments were
conducted on a cluster of Intel E5-2660 processors running
at 2.20 GHz with a memory limit (per run) of 16 GiB.

5.2 Results
The relevant performance aspects for test oracles are their
ability to detect bugs and the required runtime. We consider
the former first. We refer to the fraction of pool states iden-
tified to be bugs as oracle recall. Table 1 shows the data.

As not all oracles process the entire pool P within the 4-
hour time limit, we evaluate recall only on the joint pool J ,
i.e., the subset of P processed by every oracle. To maximize
|J |, each oracle processes P in the same order, and we omit
an oracle from a domain if it processes < 25 pool states per
task on average.

The results for SMO show that comparing pool states to
morphed states with dominance functions – the most direct
application of Eniser et al.’s (2022) idea to our setting – is
a viable approach for identifying bugs. However, comparing
only against 10 states is often insufficient, so SMO generally
performs poorly compared to other oracles.

BMOs, on the other hand, are competitive in several do-
mains. The baseline, without any search, is already very ef-
fective. Performance strongly increases when using looka-

head search in addition to state comparisons. In particular,
BMO with a limit of 1000 state expansions consistently out-
performs GBFS-1000, which uses the exact same lookahead
search but in isolation; so the performance of BMO-1000 is
really due to the combination of information sources.

The combined oracle (BMO-100 + Aras/EHC) inherits
the strengths of both its components, consistently dominat-
ing them across all domains. In 5 of the 9 domains – Blocks,
MBlocks, Satellite, Scanalyzer, VisitAll – it is strictly better
than both its components, again strongly attesting to the syn-
ergy between dominance relations and search here. Further-
more, also compared to all other oracles, our combined ora-
cle is dominant, being worse only in Blocksworld, and being
strictly better in Satellite, Scanalyzer, and VisitAll. Indeed,
the combined oracle is even on par or almost on par (within
0.3 percentage points) with BestOf in 5 of the 9 domains.
Overall, the combination of BMO with search is by far the
most reliable, and overall most performant, oracle.

Let us now turn to runtime, which is also of crucial im-
portance to users of testing technology, in particular users
waiting for bugs to be reported. Figure 1 shows the number
of bugs identified by each oracle over time.

As the data shows, BMOs are generally faster than search-
based oracles, except for GBFS-1000 with its small search
limit. Thus, together with their strong recall (in difference
to SMO) their curves rise up earlier than those of the other
oracles here. Furthermore, as we are counting all identified
bugs t ∈ P here, not only the jointly tested states t ∈ J
as in Table 1, the superior speed also enables BMO-1000
to dominate all other oracles (except for the combined ora-
cle) in Gripper, Satellite, and VisitAll. In half of the six do-
mains where BMO-1000 ends up finding clearly fewer bugs
than a search-based oracle, that oracle only catches up after a
significant amount of time (>30 min in Blocks, Scanalyzer,
Transport). BMOs are thus particularly useful if the objec-
tive is to find many bugs quickly (which makes sense for
debugging as an interactive process).

The combined oracle starts up more slowly than pure
BMO, but otherwise it typically dominates all other ora-
cles, often by a substantial margin. The most significant ex-
ceptions are look+policy in Blocksworld, and A∗ in Stor-
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Figure 1: Total number of bugs reported per domain, over time. A solid line turning dashed indicates the time point an oracle
has terminated on all domain tasks. We do not include the time required for generating P , which is identical for all oracles.

age. Compared to its components, the combined BMO-100
+Aras/EHC oracle improves both recall and runtime with
respect to Aras/EHC on its own; with respect to BMO, the
main beneficial effect is recall.

It is worth remarking that some of our design choices and
results are influenced by the focus on ASNets, which are
very slow to evaluate. For faster policy representations, the
relative performance of our two types of metamorphic ora-
cles – SMO and BMO – may change, as SMOs would be
able to process more morphed states, increasing their recall.
However, relative to competing oracles, no major changes
are expected as search is still more costly than dominance-
checking, and the synergy between dominance and search
information in our combined oracle would still be the same.
That said, these are merely informed guesses, and confirm-
ing them experimentally remains a topic for future research.

6 Conclusion
Learned action policies are gaining traction for decision
making in dynamic environments, and techniques to gain
trust in such decisions are becoming increasingly important.
Testing is one natural means to do so, but has received lit-
tle attention in the planning community as yet. Adopting the
framework by Steinmetz et al. (2022), and inspired by the

ideas of Eniser et al. (2022), here we introduced fully au-
tomated test oracles for the test objective of additive-cost
minimization in classical planning, leveraging prior work on
dominance functions. Our experiments are highly encourag-
ing, showing that bugs can be found much more quickly this
way, and showing that the combination with (some) search
yields the strongest test oracles for this setting, at this time.

An interesting aspect not yet covered by our work is
the “gravity” of bugs, cπ(t) − h∗(t), termed the “testing-
objective gap” by Steinmetz et al. (2022). Our oracles pro-
vide lower bounds on this gap, and BMO could be tailored to
maximize the gap (rather than finding many bugs quickly).
Beyond this extension of our current focus, interesting future
work directions include the extension to probabilistic plan-
ning (necessitating the same extension of dominance func-
tions); as well as the use of bug states for targeted re-training
making testing a part of a larger RL loop.
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Dräger, K.; Finkbeiner, B.; and Podelski, A. 2009. Directed
model checking with distance-preserving abstractions. Interna-
tional Journal on Software Tools for Technology Transfer, 11(1):
27–37.
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