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Kurzfassung

Jiingste Fortschritte in den Bereichen Medienproduktion und Mixed/Virtual-Reality
erzeugen zunehmenden Bedarf nach qualitativ hochwertigen 3D Modellen realer Szenen.
Mehrere 3D Rekonstruktionsmethoden inklusive Stereo Vision kénnen zur Berechnung
von Bildtiefe angewendet werden. Generell kann die Genauigkeit von Stereo Matching
Algorithmen mit etablierten Benchmarks und 6ffentlich zugénglichen Referenzlésungen
ermittelt werden. Im Gegensatz zu iiblichen Bildsensorkonfigurationen, bedarf die Eva-
luierung von Daten aus 3D Rekonstruktionssystemen mit einem speziellen Aufbau der
Entwicklung neuer oder adaptierter, auf das jeweilige System zugeschnittener, Bewertungs-
strategien. Diese Arbeit befasst sich mit der Bewertung von Qualitdt und Genauigkeit von
3D Modellen, die mit einem 3D Rekonstruktionssystem bestehend aus drei Stereokameras
erzeugt wurden. Dazu werden drei verschiedene Evaluierungsmethoden vorgeschlagen
und umgesetzt. Zunichst wird die Genauigkeit von 3D Modellen mittels geometrisch
einfacher, speziell zu diesem Zweck erstellter, Korper (Kugel, Quader) ermittelt. Entspre-
chende ideale 3D Objekte werden in rekonstruierte Punktwolken eingepasst und mit den
echten Maflen verglichen. Weiters bestimmt eine bildbasierte Novel View Evaluierung
die Genauigkeit verschiedener Rekonstruktionsmethoden bei Punktwolken und finalen
3D Netzmodellen. Zuletzt ermittelt eine paarvergleichsbasierende Studie die subjektive
Qualitédt verschiedener Rekonstruktionsverfahren anhand selbst erstellter texturierter 3D
Netzmodelle. Wir demonstrieren die drei Evaluierungsverfahren anhand selbst erstellter
Daten. In diesem Kontext beobachten wir, dass sich die Genauigkeit der betrachteten Me-
thoden in der Novel-View Evaluierung nur leicht voneinander unterscheidet, die Resultate
der Benutzerstudie jedoch eindeutige Préferenzen zeigen. Dies bestétigt die Notwendigkeit
quantitative mit qualitativen Evaluierungsmethoden zu verbinden.
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Abstract

Recent advances in the fields of media production and mixed/virtual reality have generated
an increasing demand for high-quality 3D models obtained from real scenes. A variety
of 3D reconstruction methods including stereo vision techniques can be employed to
compute the scene depth. Generally, the accuracy of stereo matching algorithms can
be evaluated using well-established benchmarks with publicly available test data and
reference solutions. As opposed to standard imaging configurations, the quality assessment
of data delivered by customized 3D reconstruction systems may require the development
of novel or adapted evaluation strategies tailored to the specific set-up. This work is
concerned with evaluating the quality and accuracy of 3D models acquired with a 3D
reconstruction system consisting of three stereo cameras. To this end, three different
evaluation strategies are proposed and implemented. First, the 3D model accuracy
is determined by acquiring reconstructions of geometrically simple validation objects
(sphere, cuboid) that were specifically created for this purpose. Corresponding ideal 3D
objects are fitted into the reconstructed point clouds and are compared to their real
measurements. Second, an image-based novel view evaluation determines the accuracy
of multiple reconstruction approaches on intermediate point clouds and final 3D mesh
models. Finally, a pair comparison-based user study determines the subjective quality of
different depth reconstruction approaches on acquired textured 3D mesh models. We
demonstrate the three evaluation approaches on a set of self-recorded data. In this
context, we also observe that the performance of the examined approaches varies only
slightly in the novel view evaluation, while the user study results show clear preferences,
which confirms the necessity to combine both quantitative and qualitative evaluation.

X1
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CHAPTER

Introduction

Reconstruction of 3D object models has been a long tackled problem in computer
vision research. Applications requiring such models include quality control of manu-
factured items [BKH10], cultural heritage preservation [VCB15], and urban reconstruc-
tion [KHSM17]. Another area demanding high quality 3D models is media content
generation, such as mixing real world objects with synthetic content.

The generation of dynamic 3D model content can be divided into five principal process-
ing steps: acquisition and preprocessing, 3D point generation, meshing and texturing,
temporal mesh processing and mesh post-processing (see Figure 1.1). A common method
is to capture the scene from multiple view-points with calibrated and registered stereo
cameras. The resulting image pairs are then used to recover scene depth by means of
stereo matching (e.g. [SNG115, WFR116]). The results of matching process are disparity
maps, images whose pixel values encode the scene depth in terms of the horizontal
displacement between a scene point’s location the input image pairs. Using known
geometric camera properties, disparity maps can then be turned into 3D point clouds.
Surface reconstruction algorithms (e.g. [DTK'16, GGO07]) then transfer point clouds into
surface meshes [GGO7] or volumetric grids [DTK™16]. In the case of dynamic scenes, the
task of temporary tracking merging models is often performed by non-rigid registration
(e.g. [DTK'16]).
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Figure 1.1: 3D model reconstruction processing pipeline. Figure taken from [CCS*15].

3D model reconstruction is a challenging process. Errors diminishing the result’s accuracy
may be introduced at every stage. Inexact stereo camera rig calibration introduces
geometric errors [BR15] affecting shape and reconstructed depth of the computed point
clouds. Specific scene properties of captured scene objects such as untextured, reflective
or translucent regions, often cause stereo matching algorithms to recover incorrect or
invalid depth values. Depth value quantisation in stereo matching can further limit the
accuracy of the reconstructed point clouds. Said issues lead to “noisy” point clouds,
i.e. they contain erroneous points which pose a problem for subsequent point cloud
registration and surface reconstruction algorithms, thus making error detection and
removal necessary [WKZ116] in order to achieve accurate results.

1.1 Objectives and Contributions

This master thesis is concerned with evaluating a multi stereo camera based 3D recon-
struction system consisting of three stereo cameras. The goal is to determine the system’s
accuracy, and model quality. To this end three types of evaluation will be conducted
on models acquired for this purpose. First, we seek to determine the accuracy of the
geometric reproduction by comparing models of primitive validation objects (sphere,
cuboid) against their true known properties by means of shape fitting. Second, the
model reconstruction quality of several model generation methods will be analysed using
image-based similarity, by comparing novel views of intermediate and final products
against the original image input (see Figure 1.2). Third, the subjective model quality
will be assessed by conducting a pair-based subjective user study showing coloured
mesh-models.
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Novel View

2 a8
View 2

Figure 1.2: Illustration of the employed novel view evaluation method. Point clouds
and coloured meshes fused from views 1 and 3 are transformed into the view point of
view 2 by application of rigid-body transformations [R;|t;] and [Rs|t3]. View 2 serves as
independent source of validation.

Several depth-image based fusion 3D reconstruction systems employ real-time capable
stereo matching algorithms, e.g. [WFRT16, EFRT17, OEDT"16|, for acquiring 3D
points. A thorough comparison of the impact of a particular chosen algorithm on model
quality in the mentioned systems, however, has not been undertaken to the author’s
knowledge. A primary research question is to ask for the influence of different stereo
matching algorithms on the model quality. Three methods that deliver disparity maps of
substantially different characteristics will be examined. In particular, (1) integer valued
disparity maps computed with a cost volume filtering algorithm [SNG*15] will be used
as a base line algorithm. Point clouds computed from such maps exhibit low depth
resolution, their points are positioned along discrete planes in space. (2) Floating point
valued disparity maps computed with the same cost volume filtering algorithm [SNG'15]
using different parameter settings result in point clouds of high depth resolution. Points
are located near object surfaces, however they are locally noisy. (3) Disparity maps
computed with a PatchMatch based algorithm [LZYZ18] result in point clouds exhibiting
very smooth object surfaces.

A second question we address is how fusion of individual view point clouds at different
processing steps alters the model quality. Specifically, view fusion of point clouds before
and after model generation will be compared.

1.2 Organisation of this Work

The chapters of this work are structured in the following way:
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Chapter 2 introduces selected fundamental concepts of 3D vision used throughout this
work. First, basic concepts of 3D projective space and 3D transformations will be
described. Second, the pinhole camera model will be introduced and extended to
the stereo camera case. Third, the camera calibration procedure is shortly outlined.
The chapter focuses on the most important concepts that are used throughout this
work.

Chapter 3 presents the state-of-the-art in 3D reconstruction of dynamic scenes. First,
different methods of depth acquisition hardware and their characteristics sum-
marised. Then, fundamental concepts of the employed stereo matching algorithms
will be presented. This includes a summary of popular image similarity measures,
stereo matching algorithms, as well different kinds of scene representation. Lastly,
model generation algorithms commonly used for reconstruction will be shown.

Chapter 4 presents the state-of-the-art of evaluation methods relevant in this work. It
starts with an overview of applicable quantitative and qualitative methods. Next,
a summary of image-based novel view evaluation follows. Lastly, subjective quality
assessment is explained.

Chapter 5 describes the system under examination and the methods applied for its
evaluation. This chapter comprises two parts. In the first part, the examined
system and its processing pipeline are described in detail. Specifically, hardware
and data acquisition, camera calibration and registration, and depth reconstruction
will be discussed. The chapter also contains discussions of failure cases that can
arise for each of the described pipeline stages. The chapter’s second part is outlines
the concrete application of evaluation methods laid out in Chapter 4.

Chapter 6 presents the results of our evaluation. First, the used data set will be
presented, and the approaches we compare will be explained in detail. Second, the
results of the evaluation on validation objects will be shown. Third, the results of
the novel view evaluation will be presented. Fourth, the results of the user study
carried out within this work will be discussed.

Chapter 7 summarises the covered topics and discusses conclusions that can be drawn.
Further, it shows possible future work.



CHAPTER

Fundamentals of 3D
Reconstruction

This chapter recapitulates selected fundamental topics of 3D vision that are employed
within this work. First, transformations in three-dimensional space are presented. Next,
we introduce the pinhole camera, and the stereo camera model, and show how points in
3D space are projected onto 2D coordinates of a camera image.

2.1 Transformations in 3D

Intuitively, we can imagine that each object in 3D space has its own coordinate sys-
tem attached to it. Transformations formalise the notion of how we can arrive from
the coordinate frame of one object to that of another. The content in this section
summarises selected topics presented in Hartley and Zisserman’s book Multiple View
Geometry [HZ04].

Translation. Translation of an object is presented by shifting it from its attached
coordinate frame into another coordinate frame that is displaced by the translation vector.
Translation can be seen as shifting the origin of object coordinate frame into another
one given by T' = C, — C., where T is a three-dimensional vector, C, is the origin of the
object’s original coordinate frame, and C, is the origin of the object’s new coordinate
frame after translation.

A point P = (XY, Z) is translated by a vector t = (¢, t,,t,) in homogeneous coordinates

5
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with a translation matriz T} given as
1 0 0 ¢\ [X X+t
101 0 ty | |Y| _|Y+it,|
T=loo1 ||z |z4e| """ (2.1)
000 1 1

The direction of the translation can be reversed, Tt_1 = T_;. The product of two
translation matrices is given by addition of the translation vectors: 1,15 = T}.1s, where
T, and T, are translation matrices of the 3D vectors r and s.

Rotation. Any rotation can be expressed as a sequence of rotations around different
coordinate axes, as shown in the Euler theorem. In the case of three dimensions it can be
expressed as a sequence of 2D rotations around each of the three coordinate axes where
the pivot axis remains constant. Rotating counter-clockwise around the coordinates z, y
and x by angles «;, 5 and ~, respectively, results in a combined rotation matrix R that is
the product of the three single axis rotations R;(7v), Ry(8) and R.(«):

cosy —siny 0 cosp 0 sinB 1 0 0
R,=|siny cosy O|Ry= 0 1 0 R, =10 cosa —sina
0 0 1 —sinf 0 cosf 0 sina cosa

The combined matrix is then R = R.(«)Ry(5)R.(y). Since matrix multiplication is not
commutative, the order of rotation is important. Rotation is first performed around the
z-axis, then around the new position of the y-axis and finally around the new position of
the z-axis. The rotation matrix R has the property that its inverse is its transposition,
that is R'R = RR" = I, where I is the identity matrix.

Euclidean Transformation. FEuclidean transformations, also known as isometries,
are the composition of a translation and rotation. It models the motion of a rigid object
and is thus often referred to as rigid body transformation. It is given by

X' = (0}5 f) (2.2)

where R is a 3 x 3 rotation matrix and ¢ is a 3D translation vector and 0 is a three-
dimensional null vector. The inverse of a Euclidean transformation is given by

RT —RT¢
_17
T _<0T ) ) (2.3)

The Euclidean transformation preserves the geometric properties of length, angles and
area.
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(a) Camera obscura [Zah85] (b) Pinhole camera model

Figure 2.1: The pinhole camera model.

2.2 Camera Models and Calibration

2.2.1 Pinhole Camera Model

A common way to represent a camera is the pinhole camera model. Its operating principle
is that of the camera obscura (see Figure 2.1a). It consists of a light enclosed compartment
with a small hole, the “pinhole”, or aperture, in its front. Rays of light may only enter
the camera by passing the hole. The backside of the compartment, the image plane,
contains a photosensitive surface, which detects incoming light. Analogue cameras use a
sheet of photosensitive paper for this purpose, while with digital cameras, an electronic
chip is used.

Figure 2.1b shows a ray originating from the world point P located at the coordinates
(X,Y, Z) entering the camera at the point C' and hitting the image plane at coordinates
(z,y,—f). The point C is the optical centre. Any ray has to pass it. The distance
between aperture and image plane is called the focal length. The imaged point p lies
on the opposite side of the optical axis as the originating point P, which makes images
appear upside down.

To avoid the flipped images, the equivalent central projection model can be used [Bra00].
Here, the image plane is located in front of the optical center (see Figure 2.2). A 3D world
point P = (X,Y, Z) is mapped in the central projection model onto a pixel coordinate
p = (24, yu) in the image with the equation

@) = (127 (24

The camera’s principal point (cz,cy) lies at the intersection between optical axis and
image plane. It denotes the origin of the camera’s coordinate system. In any practical
camera, however, the principal point may not lie exactly at this position and needs to be
determined by camera calibration (see Section 2.2.4). Deviations of the principal point
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Figure 2.2: Frontal projection model. Taken from [Bra00].

from the camera center change the location of mapped image points and needs to be
compensated:

(z,y) = (@ +en,ytey) = (f7X+cx,f7Y+cy) (2.5)

The camera is positioned within the 3D space. To relate the camera’s coordinate system
with the world coordinate system the following perspective projection is used.

gm' = K[R[t)]M " (2.6)
X
u Je 8 x| [T T2 T3t v
glof =10 fy ¢ |ra 122 123 L2 |, (2.7)
1 0 0 1 3y T32 T33 t3 1
where m " is an image point and M | is a world point. ¢ denotes a scaling factor, fs, fy

are vertical and horizontal focal lengths, c., ¢, are the image coordinates of the principal
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=
e
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(a) No Distortion (b) Barrel (c) Pincushion (d) Tangentlal

Figure 2.3: Typical types of lens distortion. A checkerboard pattern (a) when imaged
by a camera, exhibits different types of distortion. Barrel distortion (b) and pincushion
distortion (c) are caused by lens manufacturing inaccuracies, whereas tangential dis-
tortion (d) is caused by misalignment of the image sensor relative to the image plane.
Source: [Bra00]

point and s is the camera’s skew. r;; for 4, j € {1,2,3} is a rotation matrix and t1, t2, t3
is a translation vector.

The matrix K denotes the intrinsic parameters of the camera. It determines the camera’s
internal projection completely and is independent of its position in the world coordinate
system. The focal length is given both horizontally and vertically and are often assumed
to be the same for both directions, f, = f,. This amounts to stating that pixels are
squares. Another common restriction is that the camera does not exhibit skew, that is
s =0.

The joint rotation-translation matrix [R|t] are called extrinsic parameters or its pose. It
relates the world coordinate system to the camera coordinate system.

2.2.2 Lens Distortion

A physical pinhole camera has significant drawbacks. The small aperture of the pinhole
limits the amount of light that can pass onto the image plane in a given time. Further,
the focal length is determined by the camera’s physical size. For this reason, practical
cameras use lenses. They allow the adaptation of focal length and correspondingly the
field of view. Moreover, they feature apertures of varying size, which allows controlling
the amount of light that can reach the image plane.

A drawback of using lenses is that they introduce distortion to the images by changing
pixel locations of imaged world points. A common way for modelling lens distortion
is the Brown-Conrady [Bro66] model. It allows compensating for radial and tangential
distortion.

Radial Distortion Due to manufacturing inaccuracies, lenses distort the location of
imaged pixels of light rays entering near the lens’ outer rim. Straight lines, for example
those of a rectangular pattern imaged facing parallel to the image plane (see Figure 2.3a),
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become increasingly curved near the image border. This effect is often called barrel or
fish-eye distortion (see Figure 2.3b). It is especially noticeable in wide-angle lenses, more
so in those of low quality. The opposite effect, pincushion distortion, bends straight lines
into inwards direction (Figure 2.3c).

The amount of radial distortion is small near the image centre and increases with the
distance from it. It can be modelled in terms of a Taylor series expansion around the
camera’s principle point. Let r be the radius of a circle with the center in the principle
point, then

Traq = (1 + kyr? + kor® + k1)
Yrad = y(l + k1T2 + ]CQT4 + k37”6)

where (2,44, Yraq) is the image coordinate of the radially distorted pixel and (x,y) is the
location of the pixel corrected for radial distortion. ki, ko, k3 are the radial distortion
coefficients.

Tangential Distortion Tangential distortion occurs due to the camera’s sensor not
being aligned parallel with the image plane (Figure 2.3d). It can be characterised as
follows:

Ttang = T + [2ply +p2(7'2 + 2-1'2)]
Ytang = Y + {pl (72 + 2y2) + 2}721‘]

where (Ztang, Ytang) is the image coordinate of the radially distorted pixel and (z,y) is
the location of the pixel corrected for tangential distortion. pi, ps are the tangential
distortion coefficients.

The tuple of coefficients dist = (ki1, k2, p1, p2, k3) determines the combined radial and
tangential distortion an imaged pixel. Distortion is independent from image resolution
and only depends on the distance of a pixel from the distortion center, that is assumed
to be equal to the camera’s principal point.

2.2.3 Stereo Cameras

Two pinhole cameras placed closely next to each other pointing in the same direction
constitute a stereo camera. The coordinates of a 3D point P seen by both cameras
can be reconstructed, when it is observed by the two cameras if intrinsic and extrinsic
parameters are known. As shown in Figure 2.4a, principal points of both cameras, C;
and C, are connected with a line, called the stereo baseline B. A 3D point P together
with C; and C, form the epipolar plane, which intersects the cameras’ image planes at
the epipolar lines ¢; and e,. When P is known to be projected to the image coordinate
x; on the left camera, the corresponding image coordinate x, in the right camera has to
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lie on the epipolar line e,.. If x, it unknown, it is sufficient to restrict the search for it to
image coordinates of e,.

The search for an unknown image point x, can be further simplified by virtually moving
the image planes of both cameras in a way that aligns the epipolar lines e; and e, with
horizontal coordinates of the cameras’ image planes, as shown in Figure 2.4b. The
epipolar lines become parallel to the baseline B. This configuration is said to meet the
epipolar constraint. Rectification of a stereo camera involves modifying both cameras’
relative pose (R,t) so that the epipolar constraint is met. Determining suitable relative
poses of both views of a stereo camera is a task of stereo camera calibration. If the
epipolar constraint is met, the search for an unknown corresponding image point z,. for
a known image point z; reduces to a one dimensional scan for x coordinate at the y
coordinate of x; in the right camera’s image plane. The difference between x; and x,
is called the disparity d of point P. With known point correspondences x; and x,, the
distance of P to the stereo camera can be determined by the method of similar triangles
(see Figure 2.4c), resulting in the following formula for the distance Z of point P

_ fxB _fxB

Z
T — Ty d

(2.8)

where f is the camera’s focal length in pixels. B is the base line in meters. x; and z,
denote horizontal pixel coordinates in the left and right camera image, respectively. Their
difference is the disparity denoted by d.

2.2.4 Stereo Camera Calibration

Camera calibration refers to determining the intrinsic and extrinsic camera parameters.
When these are known, 3D world points can be projected to 2D image coordinates and
vice versa. Calibration involves acquiring images of objects with well-known dimensions.
Camera parameters are then determined by relating object properties with their imaged
counterparts.

Several calibration methods have been proposed. Objects used for calibration include
spheres [SBMM15], wands with multiple collinear points [Zha04] and point-like [SMPO05]
objects.

A particularly popular approach is that of Zhang [Zha00], which uses planar checkerboard
patterns. The first step is to acquire images of a checkerboard pattern with the stereo
camera from several poses (see Figure 2.6). Next, the interior checkerboard corner
coordinates are extracted from the captured images. They are then used to estimate the
four cameras’ intrinsic parameters (fz, fy, ¢z, ¢y) and the orientation of each checkerboard
view. Next, the five lens distortion parameters, three radial parameters k1, k2, k3 and
two tangential parameters pi, p2, are estimated by minimizing the reprojection error
between the estimated parameters and the observed checkerboard corners. Once the
intrinsic parameters of both cameras are known, their rectifying transformation, which
makes the epipolar lines of both cameras parallel, can be determined with the method of
Hartley [HZ04].

11
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Figure 2.4: Epipolar geometry of a stereo camera. (a) Unrectified stereo camera. Image
planes of both cameras do not lie on a common plane. (b) Rectified stereo camera seen
from the backside. Epipolar lines are parallel and lie on the same image y coordinate

(c) Rectified stereo camera shown from above. Depth of P can be triangulated. Figure
adapted from [NBG13].

(a) [Zha00] (b) [DKKO09] (c) [LHRP13]

Figure 2.5: Tllustration of various calibration objects. (a)-(c) Examples of planar patterns;
(d) Example of a one-dimensional calibration object.
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Figure 2.6: Camera calibration with planar patterns. Figure taken from [BKBOS].
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CHAPTER

3D Reconstruction Using
Multiple Depth Sensors

In this chapter, we present the state-of-the-art related to our approach to 3D reconstruc-
tion that is suited for acquiring dynamic scenes in a controlled environment. Here, depth
sensors are positioned statically around an acquisition area. Each sensor acquires 3D
information from its own viewpoint. Individual views of the scene are then fused to
combined 3D models.

This chapter is structured as follows. In Section 3.1, we give an overview of employed data
acquisition techniques. Next, we discuss how depth information can be reconstructed
from image pairs in Section 3.2. Lastly, the fusion of views into combined models are
explained in Section 3.3.

3.1 Data Acquisition

3D reconstruction data is commonly captured by photogrammetric-, laser-scan- or range-
image-based acquisition devices. Each method has its own characteristic advantages and
drawbacks determining their suitability for specific reconstruction applications. Figure 3.1
gives an overview of the mentioned methods and their resulting output data.

Photogrammetry Photogrammetry refers to the reconstruction of three-dimensional
information from images (see Figure 3.1a). Ubiquitous and cheap availability of digital
cameras has led to photometry being a highly popular approach to depth acquisition.
Images do not convey three-dimensional information directly. The 3D information needs
to be inferred from image data by subsequent processing steps. Usually multiple images
of a scene are used to perform this task. They are acquired by either a moving single
camera and capturing multiple images subsequently, or by simultaneous acquisition
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(a) (b) (c)

Figure 3.1: Data acquisition methods and their results. (a) Photogrammetric acquisition
yields RGB images. Source: [Nyml7]; (b) Laser scanning devices produce uncoloured
point clouds, illustrated as colour-mapped. Source: [Mon07]; (c¢) Time-of-flight cameras
may produce RGB-D images. Source: [EA14].

with multiple cameras at different positions. Depth information can then be recovered
by identifying corresponding image points and triangulating them between multiple
images (see Section 2.2.3). Although this way of depth acquisition is prone to errors
and requires a significant amount of computation, it is also the most flexible depth
reconstruction method. Applications of photogrammetry range from highly precise depth
measurements of small objects [BKH10, SCD"06], over large-scale reconstruction of
terrain [ZTDVAL14] and urban areas [LNSW16] to the acquisition of highly dynamic
scenes [DTK'16, EFR*17, CCST15].

Range Images Range imaging is an active method of depth acquisition. A signal
created by the depth sensor interacts with the scene and is then measured by the sensor.
Two predominant technologies delivering range images are structured-light [HLCH12,
SLK15] and time-of-flight (TOF) [HLCH12, SAB*07]. Figure 3.1c illustrates the popular
Kinect One sensor and an acquired point cloud that exhibits depth as well as RGB colour
information (i.e. RGB-D). In structured light techniques, a pattern is projected onto a
scene, usually in the near infra-red spectrum invisible to the human eye. The pattern is
distorted by the scene and is again captured by a monochrome charge-coupled-device
(CCD) image sensor. Examples of recent high performance real-time 3D acquisition
systems employing structured light are e.g. [DTK'16, OEDT*16]. There, additional
RGB cameras are used to acquire colour information for model texturing. TOF cameras,
on the other hand, achieve similar results by measuring runtime differences of light sent
by the sensor and reflected by scene objects. Range image cameras are able to provide
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depth maps and colour images simultaneously. The spatial resolution of depth maps is
usually limited, as is the maximal achievable measurement distance. The popular Kinect
One sensor has a depth image resolution of 512 x 424 pixels and can measure distances
of up to 4.5 meters with a frame rate of up to 30 Hz [SLK15].

3.2 Depth Reconstruction

We will now discuss how 3D models can be recovered from images of a scene. We start by
presenting image-based measures that can be used to find corresponding regions among
multiple images. Next, depth reconstruction from stereo image pairs is elaborated. Lastly,
common ways of scene representation are explained.

3.2.1 Image Similarity

A key task for any reconstruction algorithm is to identify corresponding points or features
within two or more images. Image similarity, also called photo-consistency, captures this
concept. An object’s illumination and colour can change significantly when viewed from
different positions due to directional light sources, or object material. It is desirable for
similarity measures to be invariant to such changes.

We can distinguish sparse and dense approaches. In the first category, we have feature
descriptors (e.g. SIFT [Low04] or SURF [BTVO06]) that identify prominent image regions.
They are considered sparse, as they only track prominent image regions, such as edges
or contours. The second are dense similarity functions that assign a numerical value to
every pixel of an image. Given a set of N images and a 3D point p seen in every , we can
define photo-consistency [FH15] between pairs of images I; and I;, ¢,j € (1,...,N) as

Cij(p) = pLi(Q(mi(p))), I (:(m; (p)))), (3.1)

where p is a similarity function, 7;(p) is the projection that maps the 3D point p into
image 7, Q(x) defines a support region, also called domain, around point p and I;(x)
denotes the intensity or colour values of pixels within the domain. The choice of p and
Q describes a particular similarity measure. Note that image coordinates are integral,
whereas 7;(p) is real valued. To accommodate 3D points that are projected onto real-
valued coordinates some interpolation scheme is needed. Further, the described similarity
measures operate on single channel images only. RGB images require preprocessing in
order to determine similarity. One way is to perform computation on grey-scale versions.
Another way is to compute similarity on each of the three colour channels separately,
and then combine the results by pixel-wise averaging [FH15].

We give details on three commonly used similarity measures.

e Sum of Absolute Differences (SAD) is defined as the L' norm between two
vectors of pixel intensity values in support regions f and ¢ around the image
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coordinates to which a 3D point p is projected. More formally,

psap(f,g) = [If —glh (3.2)

SAD is sensitive to brightness and contrast changes. It is useful mainly for images
of similar illumination characteristics. On the other hand, SAD is computationally
cheap, which makes it useful for real-time applications that can guarantee similar
image illumination.

Normalised Cross Correlation (NCC). The normalised cross coefficient is an
established tool for determining image similarity in presence of illumination and
exposure changes. It is a statistical measure defined as

_U-D-9)

Of0g

pnce(f,9) [—1,1] (3.3)

where f, g denote the mean values and oy and o4 the standard deviations of pixel
intensity values within the domains around the pixels projected into I; and I;,
respectively.

Its invariance to illumination changes makes NCC one of the most commonly used
similarity measures in two-view and multi-view stereo. NCC, however, fails to
detect pixels in untextured regions.

Census [ZW94] Census is one of the best performing similarity measures for stereo
correspondences [HS07]. In contrast to other presented measures, it does not use
intensity values themselves, but first computes a bit string describing whether
pixels within the support domain of a pixel p are lighter or darker than p and then
computes the Hamming distance between the two resulting bit strings.

Formally, a comparison operator is defined that determines whether a pixel a is
brighter than a pixel b

&(a,b) =11if a <b,0 otherwise, (3.4)
A bit string describing brighter and darker pixels in §2 is computed as

census(f) = Baeé(f(p), f(q)), (3.5)

where @ is the concatenation operator and p and ¢ are image pixels. The Census
score is then the Hamming distance of the two bit strings.

PCensus(fyg) = |census(f) — census(g)|1 € [0, N] (3.6)

where NN is the size of the support region 2. Census is especially robust against
image brightness and contrast changes, as well as around depth boundaries.
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3.2.2 Stereo Matching

Stereo matching is the problem of recovering depth from image pairs that are slightly
displaced akin to human eyes (see Figure 3.2a). After appropriate rectification, the
imaged objects exhibit a horizontal displacement, called disparity, depending on their
distance to the camera. It is measured in terms of the number of displaced pixels. Near
objects have high disparity, whereas objects that are more distant have low disparity.
For example, the chimney edge shown in Figure 3.2 appears in the left view at point
P, and in the right view as P.. The disparity between these points is denoted as dp.
The Teddy’s ear, on the other hand, is marked as @); and @, respectively, and is located
further in the backside of the scene. The chimney is nearer than the ear, and we have
dp > dg. A stereo matching algorithm computes depth in form of a disparity map, which
is a single channel image whose pixel intensity values correspond to the scene disparity
at pixels in the corresponding (left) input image.

Assumptions. Stereo matching algorithms commonly make some assumptions to
compute disparity maps. The first one is the photo consistency assumption. It demands
that corresponding pixels in the left and right view have the same colour values. Next,
there is the epipolar assumption, requiring that corresponding pixels in left and right view
always appear on a horizontal line. This is ensured by image rectification explained in
Section 2.2.3. The smoothness assumption states that spatially close pixels have similar
disparity values. The smoothness assumption holds in most image regions, except for
object borders.

Types of Stereo Matching Algorithms. Stereo Matching algorithms can be broadly
categorised by the way they determine point correspondences. Local methods find
disparity values by searching for each pixel in the left view a corresponding pixel in the
right view by sliding local windows along horizontal image lines. A typical example for
local stereo matching is the cost volume filtering technique [HRB*13, SNG*15]. Global
methods minimise an explicit energy function over all image pixels. A typical energy
function [BB13] has the form

E(p) = Edata(p) + )\Esmooth (P)

where E(p) is the total energy value of an image pixel p. The data term Fg,;, accounts for
colour similarity. Egmnooth, the smoothness term, captures local object smoothness. The
parameter A € R balances is the relative influence of the terms Eg., and Fgpoorn. Com-
mon examples for global stereo matching algorithms are dynamic programming [BT99]
and belief propagation [FH06]. An elaborate discussion on global stereo methods can be
found in [BB13].

Learning based methods rely on machine learning methods for depth estimation. There,
first a model is trained with ground truth data, and then the trained model can be
used to estimate depth. An example for a learning based algorithm is the Global Patch
Collider [WFR'16]. It uses random forests to represent the model.
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(a) Left and Right View (b) Disparities (c) Disparity Map

Figure 3.2: Stereo matching. (a) Left input view (top), right input view (bottom). (b)
Disparity dp of a nearer object, marked as P, and P, in left and right input is large,
while objects father away, e.g. @Q;, and @Q,, exhibit a lower displacement dg. (c) Disparity
map: intensities encode the disparity value.

Stereo Matching Pipeline. Stereo matching algorithms generally have to perform the
same processing steps [SS02], regardless whether they are local or global algorithms. In
the following, the conceptual processing steps involved are summarised. Specific methods
may skip or aggregate some steps. As the 3D reconstruction system addressed in this
work employs primarily a local stereo matching algorithm, the focus lies on local methods.
Local algorithms compute disparity by searching for each pixel potentially matching
candidates in the other image in a pre-defined search range (Figure 3.3b). The complete
search space is often called Disparity Space Image [SS02], or cost volume [BRR11].
Candidate search can be limited to pixels on the same horizontal line when relying on
rectified input images (Figure 3.3a).

Cost Computation (CC). Pixels are compared using some dissimilarity- or cost-
measure that takes into account a small support region around pixels. Measures that
are typically employed include SAD, NCC or Census. They have been discussed in
Section 3.2.1.

Cost Aggregation (CA). Local methods usually enforce spatial consistency im-
plicitly in the Cost Aggregation stage (Figure 3.3c). This process can be viewed as
filtering of the cost volume [HRB*13]. Cost aggregation has a significant impact



3.2. Depth Reconstruction

| Cost | Cost . Disparity | Disparity
Inputimages Computation Aggregation Selection Refinement

Left View

Right View

(a) (b) (c) (d) (e)

Figure 3.3: Outline of the basic steps of a typical local stereo matching processing pipeline.
(a) Rectified input images. (b) Cost Computation (CC) determines the dissimilarity
between two pixels for specific disparity levels, and gives rise to a cost volume. (c) In the
Cost Aggregation (CA) stage, matching costs are filtered, enforcing a local consistency
assumption. (d) In the Disparity Selection (DS) step, disparities are selected from the cost
volume. (e) In the depth refinement (DR) stage, disparity inconsistencies are detected,
and resulting holes are filled. Figure inspired by [BRR11].

on the quality of local stereo matching algorithms as noted by several authors (e.g.
[BRR11, HRB™13, HBG13, LZYZ18, ZFM"17]).

Disparity Selection (DS). Next, disparity values are determined as illustrated
in Figure 3.3d. Local stereo methods usually achieve this by selecting the disparity value
with minimum costs within the cost volume for each pixel. This procedure is often called
the winner-takes-it-all (WTA) strategy.

Disparity Refinement (DR). Disparity selection already yields a rough disparity
map that will usually contain wrongly computed disparity values (e.g. Figure 3.3d). The
goal of disparity refinement is twofold. The first is to eliminate pixels with wrong disparity
values by means of a consistency metric. Typically, two disparity maps are computed,
one from left to right, and one from right to left. Subsequently, pixel disparity values
that do not agree up to a threshold ¢ in both maps are rejected. Common values of ¢ are
between 0.5 and 4 pixels [Midb]. Note that consistent disparity values do not necessarily
imply correctly estimated depth values. The second task of disparity refinement is to fill
in holes caused by occlusions and eliminated disparity map inconsistencies. Smaller holes
are often closed by filtering techniques, such as median filtering [SS03].
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(Depthmap reconstruction

Figure 3.4: Common scene representations in 3D reconstruction. Figure taken
from [FH15].

3.2.3 Scene Representations

3D objects can be represented in several ways, each of which has its own advantages
and drawbacks. A specific 3D reconstruction system may use multiple representations at
different processing stages. Figure 3.4 shows four popular representations, namely depth
maps, point clouds, meshes, and volumetric representations.

Depth Map Depth maps are single-channel images whose intensity values correspond
to scene depth in terms of distance to the camera. They are closely related to
disparity maps, which have been discussed in Section 3.2.2. Depth maps can be
obtained from disparity maps, when the camera focal length and stereo baseline are
known, by employing equation 2.8. Depth maps are a compact way for representing
3D scenes. As they are essentially images, they are well suited for employing 2D
filtering techniques.

Point Cloud A point cloud is a collection of points in space. Points are represented
as 3D coordinates and may have additional attributes attached. Point colour or
surface normal vectors are common attributes present in point clouds. Point clouds
can be obtained from disparity maps or depth maps when the camera focal length,
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principal point and stereo baseline are known, as shown in Section 2.2.1. Depth
maps, in result, are often treated as geometric proxy for point clouds.

Polygon Mesh Meshes, specifically polygonal, 3D meshes, are collections of vertices,
edges and faces. Vertices correspond to points of a 3D point cloud. Edges define
(typically triangular) faces attached to mesh vertices, and approximate an object’s
surface. Algorithms commonly used to reconstruct meshes from point clouds

are the Screened Poisson surface reconstruction [KH13], and Algebraic Point Set
Surfaces [GGOT].

Volumetric Representations Volumetric representations were originally proposed
in [CL96] for range images. Here, the scene space is divided into a three-dimensional
regular grid of cells, also called voxels (e.g. volumetric pixels). Each voxel stores
the value of a signed distance function (SDF) that describes the distance of a
voxel’s center to an object’s surface. Voxels also have a weight that accounts for
the measurement reliability. Positive SDF values denote voxels in front of a surface
point p. Voxels behind p have negative values. Often, the SDF is truncated (TSDF)
to some threshold =+t to allow a compact representation of small distances. An
object’s surface is implicitly represented within the volume by the TSDF’s zero
crossings. The potential accuracy of regular voxel grids is determined by volume
size and grid resolution. A high memory demand of ©(n?) complexity in the grid
size n, makes them impractical for precise real-time applications. Hierarchical
volumetric grids lower the memory consumption by storing voxels in an octree-like
data structure that provides high spatial resolution only for regions containing close
points (e.g. [DTK"16]). Volumetric representations are popular in 3D reconstruction
systems for dynamic scenes (e.g [DTK 16, OEDT*16, YGX 17, CCS™15]) because
they are well suited for spatial fusion of multiple views, as well as temporal fusion
of subsequent sensor readings.

3.3 View Fusion

Once a scene has been acquired and reconstructed as seen by each depth sensor, their
individual views are fused into a combined model. A common approach is to employ
non-rigid registration [DTK™'16] for fusion, as illustrated in Figure 3.5. There, a reference
model is stored within a volumetric grid, the key volume. View data of a new frame is
fused in a separate data volume. The key volume is then deformed non-rigidly. First, an
embedded deformation (ED) graph [SSP07] is extracted from the implicit object surface
in the key volume by uniform sampling. The ED graph is then deformed to align with
the data volume, yielding local affine transformations for each ED node. Voxels in the
key volume are then blended to the data volume according to transformations of ED
nodes in their vicinity. A 3D mesh of the deformed frame can then be extracted using
the Marching Cubes algorithm [LC87].
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Figure 3.5: View fusion with non-rigid alignment. Figure taken from [DTK™16].

3.4 Summary

In this chapter, we have presented the principles and state of the art of 3D reconstruction
using multiple sensors. The processing pipeline acquires dynamic 3D models from
statically positioned stereo cameras, and computes point clouds with stereo matching.
Point clouds of individual viewpoints are fused into a combined object model from which
polygonal meshes are extracted. We have presented the two main methods of acquiring
scene data, namely photogrammetry and range imaging. Further, we have discussed how
scene depth is computed from stereo camera images by means of stereo matching. Lastly,
we have outlined how 3D models from single views are combined into 3D mesh models
with non-rigid registration.



CHAPTER

Evaluation Methods

This chapter introduces the state-of-the-art methods for evaluation 3D reconstruction
system.

The following chapter is structured as follows. Section 4.1 provides an overview of
available evaluation methods. Next, Section 4.2 focuses on image-based novel view
evaluation. Finally, Section 4.3 discusses subjective evaluation in more detail.

4.1 Overview of Evaluation Methods

3D reconstruction systems can be evaluated in several ways. Figure 4.1 provides an
overview. In particular, we can distinguish between quantitative and qualitative evalua-
tion. Quantitative evaluation analyses properties of observations numerically. Qualitative
evaluation, on the other hand, is concerned with comparing the subjective impression of
an observation or product. Here, we focus on quantitative methods, while Section 4.3 is
concerned with qualitative subjective evaluation.

Quantitative evaluation can further be categorised into methods that are ground truth
based and those without ground truth. An overview of 3D visual content datasets in the
context of 3D video quality evaluation can be found in [FBC*18].

Ground Truth-based Methods. In the context of 3D reconstruction, ground truth is
data set containing highly accurate reference solutions, such as disparity maps [Midb] or
point cloud [SSGT17]. Creation of ground truth data sets (e.g. [Mida, Midb, KIT]) for 3D
reconstruction is often performed with structured light [SS02, SS03, SHK 14, SCD*06]
or laser scanners [GLU12, SSGT17]. Given a ground truth data set, the deviation of
the result of a compared method can be determined using an error measure. A typical
measure often employed in the field of stereo matching is the Bad Matched Pixel (BMP)
error (e.g. [CTF12]). It is defined as the ratio of disparity map pixels, whose values
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Figure 4.1: Taxonomy of evaluation methods. Figure adapted from [VCB15]

deviate from a ground truth disparity map more than a threshold value. BMP is defined
over every valid pixel and is said to be dense. In contrast, non-dense methods, such as
histogram- or Receiver Operator Characteristic (ROC), measure ground truth deviations
only for certain regions of the ground truth. Further, shape-fitting relies on the measuring
features of reconstructed models and comparing them with real-world counter parts, such
as edge lengths of a complex manufactured product [BKH10].

Methods without Ground Truth. In cases where no direct comparison to ground
truth data is available or viable, sources of validation can be obtained directly from the
input data. This approach can be distinguished into two categories, confidence based
and prediction error based methods. Confidence-measures can be computed from the
reconstruction input alone. High confidence values correlate with high reconstruction
quality. An example for a confidence measure in stereo vision is the Left-Right consistency
check that is computed from two corresponding disparity maps. Numerous other measures
have been proposed (e.g. [HM12]). Prediction error-based evaluation methods are image-
based methods that employ image warping to align input data to the reconstruction output.
One way, often seen in stereo vision, is to acquire data with a third camera and to use the
additional sensor data as source of validation [Sze99, CGK14, MK09, SCSK13, SCK15].
Another way, which is often used in image-based rendering, is to directly employ input
images for validation [WBFT17, VV14]. Both methods will be discussed in the following
Section 4.2.
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4.2 Image-based Novel View Evaluation

Image-based novel view methods allow evaluating a 3D reconstruction system in absence
of ground truth data provided by a ready-made data set, or a high-precision depth
sensor, such as a measurement laser. They validate against an image that is acquired or
computed in the course of the acquisition process. We can distinguish methods that rely
on an additional sensor, and those that do not.

4.2.1 Third-Eye Technique

A stereo setup is extended and registered with another camera. The additional view then

acts as independent source of validation. Figure 4.2 shows an example of such a setup.
This method was originally proposed by Szeliski [Sze99] and was termed prediction error.

Today it is often called third eye Technique for its use of a third camera. The procedure
works as follows:

1. Acquire image sequences with a stereo camera pair (c1, c2) and an additional third
camera Cs.

2. Compute a disparity maps from (ci, c2).

3. Map the recorded images of the (e.g. left) camera into the image plane of ¢z, thus
creating a virtual novel view image.

4. Compare the novel view image with that recorded by the third camera.

If both the images of cameras basically coincide, then the disparity maps are of good
quality. Root Mean Squared Error (RMS) (in [Sze99, MKO09] and Normalized Cross
Coefficient (NCC) (in [SCK15, MK09, SCSK13] often serve as similarity measure.

4.2.2 Two-View Evaluation

Another approach to novel view evaluation is to use camera input images as validation
source. Here, the necessity of an additional sensors is lifted. Only two views are needed,
the input image, and a reconstruction product warped into the view point of the input
image. This type of evaluation is often performed in the field of depth-image based
rendering (e.g. [VV14]) but has been recently also proposed for general 3D reconstruction
systems [WBF*17].

Figure 4.3 shows an example of the method. Evaluation is performed by using a set of
input images (a), corresponding reconstruction results (disparity map, point cloud, mesh
model), exact intrinsic, and extrinsic camera parameters, and an optional image mask
(c) that defines the area of comparison. The results are rendered into the viewpoint of
the input images (b) using the reconstruction methods native rendering system. Both
input image and reconstruction result are then compared in the valid mask region by a
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Figure 4.2: Tllustration of the third eye technique. A stereo camera pair (middle, right) is
extended with a third camera (left). The top shows involved camera coordinate systems.
Figure taken from [Klel4].

{1} Photo (b} Virtual rephoto () Completeness mask (d) Error image (1-NCC) (e} Error projection

Figure 4.3: Virtual rephotography evaluation. (a) Input Image; (b) Reconstruction result
rendered in the same view port as the input image. (c) A completeness mask defines the
area of comparison. (d) Error Image; (e) Visualisation of error image using the jet colour
map. Figure taken from [WBF*17].

luminance invariant image metric such as (1-NCC) or Census (d). The comparison can
be visualised as an error image (e) shown colour mapped.

Evaluation yields three results, namely accuracy, completeness and an error map. Ac-
curacy of a reconstruction result is measured with respect to the used image metric.
Completeness measures the amount of image pixels that contribute to the evaluation.
Both results give a single value per evaluated view. The error map aids in error localisa-
tion reconstruction area locations. A rendered 3D model will usually diverge from the
input image. The choice of the used rendering technique influences accuracy. Results
obtained by the same technique are still comparable, though. The completeness ratio
depends on the examined system. It is important, however, that the completeness value
is included in interpretation of the results, as it can give valuable insights, especially for
temporal comparisons.
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4.3 Subjective Quality Assessment

The quality of 3D point clouds and meshes can be determined by means of subjective

quality assessment. Here, the observer’s perception constitutes a ground truth value.

The International Telecommunication Union (ITU) has published recommendations on
how to conduct subjective quality assessment in the context of television system. The
aim is to arrive at meaningful, unbiased and reproducible evaluation results. A thorough
review of different methods for measuring the quality of experience related to 3D video
content can be found in [BABB*1§]

This section is structured as follows. We start by introducing state-of-the-art in subjective

assessment of 3D meshes and specific considerations when doing so in Section 4.3.1.

Then, we continue by elaborating on study design and procedures to conduct subjective
assessments in Section 4.3.2. Finally, commonly applied testing methodologies are
discussed in Section 4.3.2.

4.3.1 Subjective Assessment of 3D Models

Subjective assessment of mesh models is often performed to determine the influence of

algorithms modifying them, such as compression [GVC'16] and watermarking [CGEBOT].
Another area is performance testing of quality measures [VSKL17, AUE17, TWC15].
Traditionally these studies use high quality benchmark data sets such as [SCD™06].

Subjective evaluation of dynamically captured 3D models, on the other hand, is an
area of active research. Only few publications are concerned with quality assessment of
dynamic [TWC15], or captured mesh models [DZC*18].

For subjective assessment of 3D models, no specific recommendation has been proposed
by ITU, so authors usually adopt one of the test procedures of ITU BT-500.13 [ITU12]
or ITU P.910 [ITUO8]. These recommendations target evaluation of images, and videos
in the context of television systems. Contrary to images and videos, point clouds and
mesh models allow an observer to regard them from multiple viewpoints. Fixed view
interaction just shows one preselected view [TWC15]. Free view interaction allows the
observer to view the test material by his choice. This includes free rotation, translation
and zooming. [TWC15] This procedure has two shortcomings. The first is cognitive
overload of the observer. The other issue is, that each observer will have a different
impression of the test material, which can bias assessment results. Another approach to
user interaction is adopted in [GVCT16], where animated renderings of the material is
shown. This hybrid technique allows observers to regard the material from multiple view
points, while guaranteeing reproducible impressions. Torkhani et. al [TWC15] observe a
significant difference between mean objective scores given by viewers of free view and
fixed view setting.

Additional factors to consider when assessing quality of 3D models are the type of shading
method and scene illumination. Guo et.al [GVCT16] notes that choice of position and

type of illumination has as strong impact on the observer’s perception of mesh models.

29



4.

EVALUATION METHODS

30

Characteristic Condition

Maximum observation angle 30deg
Ratio of luminance background behind picture monitor to peak picture = 0.15
luminance

Background Chromacity D65
Room illumination low

Table 4.1: Viewing conditions for subjective assessment as defined in ITU Recommenda-
tion ITU-R BT.500 [ITU12]

Corsini et. al suggest the use of a non-uniform background [CGEBO07] and extensively
comment on rendering conditions.

4.3.2 Study Design and Environmental Conditions

Extensive recommendations exist concerning the testing environment and the study
design.

Environment. To ensure meaningful results, I'TU recommends a controlled environ-
ment in which study participants perform their task. Table 4.1 summarises the most
important aspects of a suitable environment. Observers should be seated in a distraction-
free room of neutral colour and low light conditions. They should sit orthogonally to the
evaluation screen.

Study Design. At least fifteen observers are recommended [ITUO08]. For preliminary
studies, 4 to 8 persons are sufficient. It is important to report supplemental information
on the observers in order to be able to put observations into context. Particulars to
report are, for example, whether the observers are naive (non-experts) or experts, their
level of expertise, occupation category (student, professor), as well as gender and age
range. It is advised to include as much detail as possible in the assessment. A trial starts
with observers being introduced to the task. Next, they need to be screened for visual
acuity to ensure they are able to make sensible judgements. A training phase makes
sure participants have understood the task at hand. Then, a testing phase starts, to
allow observers to familiarise themselves with the task. Test sessions are expected to
last up to 30 minutes, to avoid subject exhaustion. The exact mode and sequence of
shown material depends on the goals of the study. A number of testing methodologies
often used for 3D mesh model evaluation is discussed in Section 4.3.3. For image content,
the recommended show time of a single stimulus is approximately 4 seconds. Dynamic
content, such as video needs to be presented for a longer time, approximately 10 seconds,
these times can be adapted in a particular study.
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4.3.3 Testing Methodologies

In order to meet the needs of varying assessment purposes and contexts a number
of testing protocols have been proposed. Two broad categories can be distinguished,
impairment and quality. Impairment protocols assume comparison of a degraded, or
somehow altered test signal against a references signal of known characteristics. Quality
protocols, on the other hand, assess quality of either a single or multiple stimuli.

e Absolute categorical rating (ACR) [ITUO0S] is also called single stimulus method.

It is especially useful, to assess quality in absence of a reference signal. One stimulus
is presented at a time, after that observers judge on a five grade scale.

e Double-Stimulus continuous quality-scale (DSQS) [ITU12] is appropriate if
a new system tested, or impairment parameters cannot be varied. Observers
are shown a series of picture pairs, one item shown at a time, and can freely
switch among the two. Each of the pairs, shown in randomised order, consists of
an unmodified, and an impaired stimulus, both of which are themselves shown
randomly ordered. Each pair is typically shown two to three times. Voting happens
at the last time on a five grade scale for both images.

e Pair comparison (PC) [ITUO8] This method is advised if the difference of original
and modified stimulus is small in terms of perceived quality. In PC all possible
combinations of original and changed stimuli are presented. Given n different

stimuli (g) = @ impressions are shown. Elements of pairs should be displayed

in both the possible order. That is, for two stimuli A,B, both (A,B) and (B,A) are

shown. Test subjects vote by expressing their preference of one stimulus over the

other. Possible judgements can be “A is better than B” or “B is better than A”.

Depending on the study design, observers also may vote for a tie between A and B

when the presented stimuli are only slightly different in terms of perceived quality.

A major drawback of the PC methodology is the high number of pairs that need to
be shown. It limits the number of comparable stimuli in a trial session.
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CHAPTER

System and Evaluation
Framework

This chapter contains a detailed exposition of the examined reconstruction system,
and then lays down the framework of methods used for its evaluation. First, the
system is introduced and discussed in some detail. In particular, this includes hardware
components and physical setup, as well as an overview of the processing pipeline. Next, the
individual stages, data acquisition, calibration and registration, and depth reconstruction
are described. Further, failure cases and challenges that can occur at the respective
processing steps are discussed. In the second part of this chapter, methods that are used
to evaluate the system are introduced and discussed.

The chapter is structured as follows. In Section 5.1, the evaluated 3D reconstruction
system is presented. Section 5.2 describes the framework of evaluation methods used in
the course this work. Finally, Section 5.3 provides a summary.

5.1 System Description

This section gives a detailed exposition of the reconstruction system under examination.
In particular, we start with an overview of the system’s processing pipeline in Section 5.1.1.
Next, a description of the processing pipeline follows. Then, we give details of each step
and challenges that can arise in the course of processing. Hardware and data acquisition
are discussed in Section 5.1.2. Next, calibration and registration of the capturing units
are detailed in Section 5.1.3. Finally, the process of depth reconstruction and model
generation follows in Section 5.1.4.
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5.1.1 System Overview

The system presented in this work acquires 3D models in the fashion described in
Section 3.2, that is, 3D information is computed for each depth sensor first, subsequently
the individual views are fused to acquire combined models. The system consists of three
depth sensor units, each of them is a stereo camera. To facilitate the distinction of a
single camera that is part of a unit and the depth sensor unit itself, the latter is referred
to as 3D measurement unit (3DMU), “depth sensor” or “view” in the following. The
term “camera” denotes a single camera that is part of a 3DMU.

An overview of the system’s processing pipeline is illustrated in Figure 5.1. The first
step is calibration of the individual 3DMUs. It yields intra-3DMU intrinsics, that is, all
parameters necessary to faithfully compute individual viewpoint clouds. Next, the units’
relative poses are determined in the inter-3DMU registration step. Once the whole rig
has been calibrated and registrated, image sequences of dynamic scenes are acquired.
As a preparatory step for the following depth reconstruction, resulting image sequences
are rectified using the intra-3DMU calibration parameters. Next, stereo matching based
depth reconstruction yields individual viewpoint clouds. They are then segmented and
refined in a semi-automatic post-correction step. To achieve optimal model quality,
point clouds are again registered before the 3D mesh generation step merges individual
views and computes 3D models in the form of combined point clouds and corresponding
untextured 3D meshes.

5.1.2 Hardware and Data Acquisition

The system consists of three stereo sensors (3DMU s) of identical physical properties.
This setup is insufficient to perform full 360-degree reconstructions. Generation of
complete 3D models is not an intended goal of this architecture. Rather, it has been
chosen to facilitate the system’s evaluation that follows in Section 5.2.

Camera Hardware. Each 3DMU, illustrated in Figure 5.2, is assembled from two
industrial-grade RGB cameras. The unit’s characteristics are summarised in Table 5.1.
Ximea MC050CG-SY [XIM] acts as cameras for each view. They can acquire images in a
resolution of 2464 x 2056 pixels, respectively 5 Mega-pixels. The camera’s RGB sensor
has a size of 8.5 x 7.1 mm, and an image diagonal of 2/3 inch !. A PC connected to the
camera with USB3.1 interface triggers frame acquisition at a frame rate of 25 Hz, while
the camera’s maximum frame rate is 100 Hz. Attached to each camera is a C mount lens
with a nominal focal length f of 6 mm. Left and right camera comprising a 3DMU are
mounted 70 mm horizontally apart forming the stereo baseline.

Physical System Setup. For data acquisition, the three 3DMUs were placed in
a studio environment, depicted in Figure 5.4. They faced a central spot in front of

1Sensor size is customarily defined in metric units, while sensor diagonal is given in imperial inch
units.
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Figure 5.1: Overview of the processing pipeline and created intermediate products. We
can broadly distinguish four stages, namely calibration and registration, data acquisition,
depth reconstruction and 3D model generation.
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Figure 5.2: Image of a 3D Measurement Unit (3DMU). It is a stereo camera comprising
two Ximea MCO050CG-SY [XIM] industrial-grade cameras.

Camera properties Unit Value
Camera model Ximea MC050CG-SY [XIM]
Lens mount C
Interface USB 3.1
Sensor dynamic range (used/max) bits per pixel 8/12
Sensor size/diagonal mm 8.5 x7.1/11.1
Sensor size inch 2/3
Camera resolution pix / Mpix 2464 x 2056 / 5.0
Frame rate (used/max) Hz 25/100
Lens focal length f mm 6
Stereo baseline B mm 70

Table 5.1: System hardware characteristics.

the background that was at roughly 4 meter distance away. The main unit, 3DMU,,
was placed approximately orthogonally to the planar scene background. 3DMU; was
situated 2.2 m rightwards, and 3DMUs 2.4 m leftwards to the main unit. Ground truth
measurements of the relative unit placement where taken with a measurement tape (see
Appendix A). In addition to ambient light from three windows, additional studio lights
illuminated the scene. Camera lenses were adjusted with the help of a preview and image
histogram. Lens apertures were set such that the image intensity values covered the
whole histogram, while simultaneously avoiding overexposed image regions. Next, the
lens focal points were jointly adjusted to have the scene’s center spot in focus. Finally,
the camera’s white balance was carefully set to have the same chromatic properties in all
views.

Data Acquisition. Once the system is calibrated and rectified (see Section 5.1.3),
image sequences of dynamic scenes can be acquired. A single controlling PC is connected
via Ethernet to three capturing PCs, each of which is handling acquisition for a single
3DMU. The system time of all PCs is synchronised via the Network Time Protocol (NTP).
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Figure 5.3: Illustration of the physical camera setup and scene distance. The
green circles denote the physical positions of the depth sensor units. 3DMU;
is positioned at (2214.64,—61.71,—481.90), 3DMU, at (0,0,0) and 3DMUs at
(—2471.13,85.6284, —1228.66) in millimeter units. The reconstructed scene is depicted as
point cloud coloured by distance to the origin of the coordinate system in 3DMUs.

Figure 5.4: Physical system setup. The three 3DMUs were placed approximately 2
meters apart facing the scene in roughly 4 meters camera distance. Controlling and
capturing PCs are shown in the back. Additional to the light provided by the windows,
three studio lights with diffuser boxes were used to illuminate the captured scenes.
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The controlling PC starts and stops image acquisition by sending respective messages via
the User Datagram Protocol (UDP) to the capturing PCs. Upon simultaneous reception
of the start message, capturing PCs start a local timer and periodically trigger frame
acquisition of the attached cameras at a frequency of 25 frames per second. Images that
arrive at the PCs in raw sensor format are first converted into the RGB colour space, and
are then saved to hard disk as uncompressed bitmap files. This format was chosen for
lossless storage, and to keep processing time low. At the end of acquisition, the controller
sends a stop signal causing the capturing PCs to end capturing. Data acquisition of a
scene yields sequences of RGB image pairs for each of the three units.

Failure Cases. Two major failure cases with respect to data acquisition can be identi-
fied, namely image synchronisation and motion blur.

Image Synchronisation. One challenge in acquiring image sequences for depth
reconstruction is image synchronisation. Stereo matching algorithms that recover depth
information from dynamic scenes assume that images are acquired at the same time.
This assumption does not always hold for the acquired data used in this work. An error
in the camera control software caused image sequences captured by individual views
to be of diverging lengths. For the same scene, one camera would output a different
number of frames than others. An attempt to recover synchronous image sequences has
been made according to the following procedure. First, one camera, namely the left, of
each 3DMU was chosen as the main image source. Then for each frame of the main
camera, a corresponding frame in the right view with minimum time difference to the
main camera’s frame is chosen. This yields a “repaired” image sequence for a single
3DMU. The same procedure was repeated to temporally align image sequences among
several 3DMUs. Looking at subsequent frames of each camera, we can observe relative
motion. Due to the fact that one camera captured the scene at a different point in time
than its corresponding camera, we can see different amounts of motion in one view of a
camera pair than the other (see Figure 5.5 top left and mid). The restoration procedure
introduced another case of temporal misalignment. There, motion is present in one view,
but none occurs in the other (Figure 5.5 top right). Disparity maps computed from
insufficiently synchronised image pairs exhibit temporal flickering, depth discontinuities
within objects, as well as missing disparity values (see Figure 5.5 bottom). Point clouds
computed from such disparity maps show distortions in moving regions (see Figure 5.5
bottom). Subsequently, the system evaluation in this work is restricted to the first frame
of each acquired scene only. There, strict camera synchronisation has been found to be
present, whereas it is usually lost in later scene sections. Consequently, the evaluation of
dynamic motion is not part of this work.

Motion Blur. Another factor determining the quality of acquired models is motion
blur. A video camera captures a certain number of frames per fixed units of time. It
is measured in frames per second (FPS). Images are acquired by integrating photons
hitting the image sensor for a certain amount of time, the exposure time. The camera
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Frame 46

Frame 47

Frame 46

Frame 47

Figure 5.5: Effects of slightly unsynchronised image acquisition for two frames captured
approximately 5 ms apart. The top row shows movement of different magnitude in
corresponding stereo image pairs. The length of the horizontal line shows the amount
of relative motion of the marked hand and elbow between subsequent frames. In a
synchronized sequence, the lines are of the same length. The bottom row shows disparity
maps computed from unsynchronised image pairs exhibit temporal flickering among
subsequent frames. The corresponding point clouds are distorted in 3D space. Note that
the temporal difference is hardly visible in the stereo image pairs.
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(a) Input image (b) Disparity map (c) Point cloud

Figure 5.6: Illustration of motion blur in a scene containing fast movement. (a) Left
input image; (b) Computed disparity map; (c¢) Point cloud.

FPS setting determines the maximum exposure time. For example, a camera capturing
at 30 FPS frame rate has a maximum shutter speed of 33.3 ms. Any motion happening
seen by the camera in this time period is averaged in the same image. Borders of moving
objects appear blurred (i.e. motion blur). An example of this effect is illustrated in
Figure 5.6. Borders of feet moving are almost completely blurred (Figure 5.6a). In the
computed disparity map blurred areas are often assigned to the foreground, causing object
fattening, (Figure 5.6b). Corresponding point clouds (Figure 5.6¢) contain erroneous
points not belonging to the person’s foot, but rather to the background. At 25 fps,
the feet of a slowly walking person appear blurred. It has been shown that moving
persons can be captured at 60 fps by state-of-the-art systems [DTK™*16], whereas other
sources [YGX117] report failures already at 40 fps. Increasing the capture frame rate
is one measure to cope with motion blur. Another approach is to keep the frame rate
fixed, while decreasing the camera’s exposure time. A “staccato” effect can be observed
in videos captured in this way. 3D reconstruction systems, however, use captured images
not as final output, but rather as an intermediate product for model generation. This
effect is not expected to play an important role in this application.

5.1.3 Calibration, Registration and Image Rectification

In order to perform depth reconstruction, first, individual camera parameters and depth
sensor relative poses need to be determined. In our project, the method of Zhang [Zha00]
is used to determine these parameters. Calibration and registration are performed before
the actual image acquisition. The workflow is illustrated in Figure 5.7. It starts with
estimating individual camera parameters. Next, relative poses of camera pairs within
individual 3DMUs are determined, yielding the intra-3DMU calibration. It contains all
parameters necessary to reconstruct models for each unit. Then camera poses of 3DMU's
relative to the main unit 3DMU> are obtained, denoted as inter-3DMU registration.
They facilitate later view fusion. Lastly, captured image sequences are rectified to allow
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depth reconstruction by a stereo matching algorithm.

Intra-3DMU Calibration. We start by determining intra-3DMU calibration, and
acquire all parameters necessary to reconstruct depth for a single view. For calibration,
we use the camera model of the OpenCV [Bra00] library. Its camera model assumes that
no camera skew is present and uses the lens distortion model of Brown [Bro66].

Single Camera Calibration. Calibration images of a circle-grid pattern (see Figure 2.5b)
are acquired while it is held in multiple poses. The asymmetric pattern grid has 4 rows
and 11 columns of circles. Circle center points are spread 50 mm apart between rows
and 25 mm between columns. Image coordinates of the circle centers are detected from
the captured calibration images. Together with the known planar 3D coordinates of the
circle grid, a system of equations is formulated, whose solution yields the camera focal
lengths f;v, f;v and principle points C;U, c;v for each camera v € {l,r} of 3DMU;. They
can be represented as camera matrix:

N L
Ki=1|0 fi ¢ (5.1)
0 0 1

The skew parameter of K is assumed to be 0. Lens distortion coefficients are given as
dist! = ( iv, kév, kév,pﬁv,pév) as defined in Section 2.2.2 for each camera. In the project,
the calibration process is initialised with a known nominal lens focal length of 6 mm
(see Table 5.1) for both x and y dimensions to assist the calibration procedure in the
determination of focal lengths, principal points and lens distortion. Said parameters are
then computed by invoking the function cv::calibrateCamera ().

Stereo Camera Calibration. Next, relative poses of cameras within individual 3DMUs
are obtained. Here, in the project OpenCV’s cv: :stereoRectify () function is used.
It yields rotation- and translation-vectors R’ and 1%, respectively. They describe the
rectifying transformation aligning image planes of the left view cam! and right view cam?
belonging to 3DMU;, and put corresponding epipolar lines onto the same horizontal
image lines. Figure 5.8 illustrates the involved transformations. Note that the translation
vectors point from cam] to camé. After image rectification, a 3D world point at distance
infinity will have a value of 0 in the computed disparity maps. To keep the same image
size along the whole processing pipeline, and to avoid aggressive image interpolation,
applying the rectifying transformation warps captured image content into a sub-region of
the original image. Stereo camera calibration describes these regions as bounding boxes
for the left, ROI; and the right, ROI? views of 3DMU;.

Finally, we have fully parameterised the individual camera geometry. For each 3DMU;,
i€ {1,2,3}, the set Intr® = (K} Udist!) U (K!Udistl) U R"UT? U ROI} U ROI! is then
called the intra-3DMU calibration of the depth sensor 3D MU;.

Camera Registration. Once we know the intra-3DMU calibration, we can determine
relative poses between individual 3DMUs. We choose the middle depth sensor, 3D MU,
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Figure 5.7: Illustration of camera calibration, registration and image rectification process.
First, individual cameras are calibrated, then stereo camera calibration is determined.
Camera registration yields relative camera poses. Lastly, captured images are rectified.
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Figure 5.8: Illustration of transformations involved in intra-3DMU calibration and inter-
3DMU registration. (3DMUs are viewed from the front). Transformations Reg'? and
Reg?? point from the left cameras of 3DMU; and 3D M Us respectively to the left camera
of 3DMUs, the origin of the 3D world coordinate system.

42



5.1. System Description

as the main unit. The origin of the 3D world coordinate system is rooted in its left camera.
For two 3DMUs ¢ and j, the relative pose is determined from a subset of calibration
images in which the pattern is visible in both 3DMU; and 3DMU,. The poses are given
as rigid-body transformations denoted as Reg® = [R¥|t*]. The transformation comprises
a rotational part RY and a translation part ¢”/. In the project, we determine the poses by
invoking OpenCV’s cv: : stereoRectify function while keeping the intrinsic camera
parameters fixed.

As a result, inter-8DMU registration parameters are then the set Extr = Reg'? U Reg3?.
For 3DMUs no transformation is necessary, as it is the coordinate system’s origin.

Image Rectification. Image rectification removes distortions from captured image
pairs, and warps them, so that corresponding epipolar lines align with horizontal image
lines. We apply image rectification on image pairs captured by 3DMU; using the intra-
3DMU calibration parameters Intr? obtained in the previous step. To achieve this, we
first determine rectifying transformations for the left and right images of a depth sensor
with OpenCV’s cv::initUndistortRectifyMap () function, and subsequently warp
images with cv::remap() with bicubic interpolation.

Failure Cases. We can identify two major issues arising from insufficient calibration
and registration.

Inaccurate Camera Calibration. Camera calibration influences depth recon-
struction on two levels. First, images rectified with inaccurate calibration parameters can
cause corresponding images to not lie exactly on the same horizontal lines. That is, the
epipolar constraint is not met. Depth reconstruction with a stereo matching algorithm
applied on such images can result in disparity maps where objects have incorrect depth
values. Further, disparity maps may exhibit a distorted geometry. Planes, such as walls,
can appear curved in 3D space. The second case is that images are correctly rectified,
but the camera’s focal length and principal point are determined insufficiently. Here,
computed disparity maps may be accurate, but a projection of points from disparity
maps into 3D space can cause the corresponding 3D points to be placed onto wrong
spatial coordinates. We observed that the point clouds may then be either distorted, or
of incorrect size.

Inaccurate Depth Sensor Registration. Insufficient depth sensor registration
can cause reconstructed point clouds to be placed at the wrong position in 3D space. In
that case point clouds of individual views may not form a coherent combined view, but
rather the point clouds can diverge or appear rotated relative to each other.

5.1.4 Depth Reconstruction and 3D Model Generation

Depth reconstruction and model generation involves first recovering depth information
from rectified image pairs. Depth is represented in the form of disparity maps. Next,
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Figure 5.9: Illustration of the depth reconstruction process. Disparity maps are computed
from rectified image pairs. From disparity maps, first, point clouds are projected into 3D
space, and are then transformed into a shared coordinate system.

disparity maps are turned into a 3D point cloud representation whose points contain
colour information obtained from the corresponding input images. The point clouds are
then segmented, refined, and again registered to prepare them for the model generation.
Our processing pipeline first turns point clouds into 3D meshes of individual views and
then fuses views into combined 3D meshes.

Point Cloud Generation

Point cloud generation is performed in two stages. First, we compute disparity maps from
rectified image pairs for each single 3DMU. Then, in the second stage, we convert the
disparity maps into 3D point clouds, and then transform them into in a shared coordinate
system. The process is illustrated in Figure 5.9.

Disparity Map Computation. We compute disparity maps from image pairs of each
3DMU by stereo matching. An algorithm based on cost volume filtering [SNGT15] is
employed for this purpose. Specific parameters and algorithm stages are summarised
in Table 5.2, and are described in the course of the following paragraphs. To increase
performance, and to a lesser degree to avoid disparity errors, we restrict stereo matching
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Algorithm Stage Method Parameter Value
Cost computation Census [ZW94] W=5 x5

Cost aggregation Permeability Filter [CiglaAA13] o =12

Disparity post-processing Left-right consistency check Threshold: 0
Hierarchical Matching [SNGT15] Levels: 0-2
Temporal filtering Permeability Filter [C1glaAA13] o =12,0' =1

Table 5.2: Stereo matching parameters used for disparity map computation.

to image areas containing active valid pixels. They are given as part of the intra-3DMU
calibration (see Section 5.1.3) and are denoted by ROI;} and ROI}.

Cost Computation. Matching costs are computed with the Census [ZW94] simi-
larity measure (see Section 3.2.1). Here, it measures the dissimilarity or costs between
two potentially corresponding pixels in left and right images of a pair. A local rectangular
window of 5 X 5 size centered around pixels is taking into account for matching cost
computation.

Cost Volume. The per-pixel matching costs are stored in a three-dimensional
matrix, the cost volume, of dimensions W x H x D in pixel units. W and H denote
image width and height, and D = |dnae — dimin| is the size of the disparity search range
(dmin, dmaz). The disparity search range is given to the algorithm as input parameter,
and has to be chosen the corresponding to minimum and maximum disparity values
occurring in the rectified image pairs. Note that disparity map values computed by the
system are negative numbers, and consequently d,,.. denotes the disparity value of the
farthest point considered, while d,;, denotes the value of the nearest point.

Cost Aggregation and Disparity Selection. The cost volume is then filtered
in the cost aggregation step with the edge preserving permeability filter [CiglaAA13].
The disparity value for a pixel p is selected with the common Winner-takes-it-all (WTA)
strategy. Out of all D possible disparity values in the cost volume at position of pixel p,
the one with minimum matching costs C(p,d) is chosen:

d(p) = argmingepC(p,d) (5.2)

Hierarchical Matching Scheme. Disparity estimation is embedded in a hierar-
chical matching scheme to improve run-time and quality of the result. For each image
pair, a Gaussian image pyramid with k& = 3 layers is built. Stereo matching is first
performed on the coarsest layer lo. Images in this layer have a resolution of 2% X 252 pixels.
Based on this initial disparity map, an offset map is computed that guides disparity
estimation on the next finer layer [; on images with 2@ X 251 pixels resolution. The process
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is then repeated for the finest layer [y of the Gaussian pyramid with images of native
resolution.

Consistency Checking. Next, inconsistent disparity map values are removed with
a left-right consistency check. To do so, in addition to the original disparity map D;r, a
second disparity map D,! is computed with the right view as the reference image. Any
pixels whose corresponding disparity values differ between Dy, and D,; by more than a
threshold value 7 are marked as invalid. Here, 7 is set to 0, to minimise the number of
erroneously computed pixels.

Sub-pixel Refinement. In the cost volume approach possible disparity values are
represented as slices of the cost volume. WTA disparity selection chooses as disparity
the index of the slice with minimum costs, yielding integral values. This leads to points
being arranged along discrete planes in the corresponding point clouds. An enhancement
step recovers sub-pixel accuracy for each pixel p with disparity d by fitting a parabolic
curve through neighbouring cost values at p’s position in the cost volume [YYDNO7].

Clp,d+1) - C(p,d—1)

dsp(p) = d — 2x (C(p,d—1)+C(p,d+1) —2 x C(p,d))

(5.3)
where dg, denotes the interpolated disparity value of pixel p at sub-pixel precision.

Temporal Filtering. Slightest changes in capturing conditions can lead to tempo-
ral noise between subsequent frames of a video sequence. In order to reduce it, temporal
filtering with the permeability filter is applied. The cost penalties approach of [CiglaA A12]
is used. Specifically, the cost volume is updated with a temporal consistency term. First,
the temporal change of each pixel in terms of its RGB value is determined by computing
its permeability weight p':

AR _AG _AB

pt=min(e™ " e o e o) (5.4)

where AR, AG, AB denote the absolute difference between R, G and B channel values
of a pixel in two subsequent image frames, and ¢ is the permeability filter smoothing
factor. A pixel’s permeability weight u! determines the ratio of pixels to be transferred
from the previous to the next frame. p! is high for pixels with similar RGB values, those
in non-moving areas, and low for pixels in fast moving areas, as they have diverging RGB
values. Next, the cost volume is updated. For each pixel p = (z,y) at disparity value d
and costs C(p, d), updated costs C*(p,d) are computed as:

C'p,d) + ' x |d —d'~*(p)| x o' (5.5)

where d*~! is the disparity value of p at the previous frame. o is a temporal smoothing

factor. For pixels in fast moving regions, those with high permeability weight, the new
disparity value is favoured, while for pixels in non-moving areas disparity values change
smoothly from one frame to the next. The temporal smoothing factor o is set to 1.
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Disparity Map Format. Computed disparity maps are single channel images
stored in EXR [EXR] formatted files. The format has been chosen for its capability to
store the disparity map values as floating-point numbers. Note that the representation
differs from other implementations that often store disparity values scaled as positive
integer numbers (e.g. [SS03]).

Individual Point Cloud Projection. Next, disparity maps are projected into 3D
space using the known intra-3DMU calibration, and are put into the coordinate system
of the main unit, 3DMUs. This step is illustrated in Figure 5.9. Its input constitute
disparity maps D’ and rectified RGB images I’,. of each individual 3DMU;, with
i € {1,2,3}. The intra-3DMU calibration parameters Intr are used to project point
clouds of individual views. Specifically, first the disparity map D? is projected into 3D

using the following reprojection matrix ) [Bra00] in homogeneous coordinates:

1 0 0 —Cy
10 1 0 —cy
Q= 0 0 0 ! (5.6)
0 0 —1/T, (cx—C,)/Ty

where ¢ = (¢, ¢y) is the left camera’s principle point, f is the focal length. T is the
stereo baseline between left and right camera, and ¢/, is the x coordinate of the principle
point of the right camera. Points of the disparity map of p = (x,%y) € D? of 3DMU; with
disparity value d are then projected to 3D point clouds P’ = (X,Y, Z) as follows:

T X
yl _|Y
1 w

3D point coordinates are then given as P = (X/W,Y/W, Z/W), where W is the fourth

dimension of the homogeneous coordinate presentation, and can be chosen as W = 1.

To allow convenient viewing in off-the-shelf 3D viewing software, the point clouds P,
undergo an additional transformation that flips both the Y and Z axis of points in P;
and yields point clouds Py;e,. This transformation causes Z coordinates to be negative

values. Smaller Z coordinates then denote points that are farther away from the camera.

Shared Coordinate System. Finally, point clouds are mapped into a shared world
coordinate system rooted in the left camera of the middle depth sensor, 3DMUs, using
inter-3DMU registration Extr’.

Pi = [Rz|tz]P5'Lew (58)

raw

where P!, denotes the point cloud computed in the previous step, and [R!|t!] € Extr’
denotes a 4 x 4 rigid transformation matrix that maps points of 3D M U; into the coordinate

system of the left camera of 3DMUs.
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The output of the point cloud projection constitute point clouds P¢, = (X,Y, Z, R,G, B)
where XY, and Z are coordinates in the shared coordinate system, and R,G,B are red,
green and blue colour channel values obtained from the corresponding input images It
The point clouds P,,, are stored in the PLY [PLY] format.

ect*

aw

Rigid Point Cloud Registration

The relative pose between individual views (see Section 5.1.3) is refined in the 3D domain
on a per scene basis to achieve optimal view overlap. An example of the updated
registration and its effect on the scene is shown in Figure 5.10. The refined registration
shifts points of 3DMUs to the right, and removes duplication of the right person’s
front. As input for rigid point cloud registration, a segmented point cloud containing
only the object P!, reconstructed from 3DMU; and 3DMUs is aligned to the static
3DMU,. The point clouds are registered by our project partners using a variant of the
SuperdPCS [MAM14] algorithm that takes point coordinates, as well as points’ RGB
colour information, into account. This process results in two rigid body transformations
T12 and T32. . Applying these transformations to 3DMU; and 3DMU3 brings them

corr corr:

into optimal alignment with 3DMUs.

Semi-automatic Post-Correction

A custom interactive software application, developed outside of the scope of this work,
is used to process and examine point clouds based on previously computed disparity
maps (see Section 5.1.4). The application serves multiple purposes. First, it enables the
creation of segmentation masks that identify scene regions that serve as input for model
generation. Next, it creates registered and corrected individual viewpoint clouds. Lastly,
it contains several tools for point cloud refinement, such as cleaning point clouds from
outliers.

Image Segmentation Although models for the whole captured scene can be generated,
usually, only parts of the scene are of interest. Identification of these areas is done by
creating segmentation masks. The user draws coarse annotations (i.e. “scribbles”) over
target objects (Figure 5.11a). Two kinds of scribbles can be drawn, namely foreground-
and background-scribbles. They identify object- and background-regions, respectively.
Scribbles are interactively expanded using a model [Brol6] that incorporates colour-
information from the view’s input image, as well as depth-cues from disparity maps. To
assist the user, scribbles can be propagated onto the views of other 3DMUs, employing
inter-3DMU registration. The same model [Brol6] allows the propagation of drawn
scribbles temporally over several image frames, and facilitates video segmentation. Once
the user is satisfied with the annotation, scribbles are then converted into object masks
(see Figure 5.11b). In another step, the computed object masks are then propagated
temporally to subsequent frames of a temporal sequence. The application contains several
tools, to facilitate accurate mask generations. Among them are morphological operations,
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(a) Original (b) Registered

(c) Original coloured (d) Registered coloured

Figure 5.10: Example of point cloud registration. (a) Original point clouds; (b) Point
clouds registered; (c) Original points of 3DMUs 1,2, and 3 coloured in red, green, blue,
respectively; (d) Coloured registered point clouds. Notice that the transformation shifts
3D MU3’s points into the direction of 3DMUs.

such as image dilation and erosion, and 2D filters, like a Guided Filter [HBG13] and
Weighted Median Filter [MHW™13] to further refine segmentation masks.

Point Cloud Enhancement and Projection Either a full (Figure 5.11c), or a
segmented scene (Figure 5.11d) can be projected into 3D space, to create registered point
clouds. These contain spurious point errors, called outliers. An outlier filter [WKZ"16]
is used to remove them.

Mesh Model Generation

After generation and refinement of the individual viewpoint clouds, they are processed into
reconstructed models in both point clouds, as well as an untextured mesh representation
(see Section 3.2.3). The algorithm is based on Algebraic Point Set Surface reconstruction

(APSS)[GGOT7]), and has been developed by the project partner company Rechenraum.

The model generation process is illustrated in Figure 5.12.
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()Mask |

(¢) Projected point cloud (d) Segmented persons

Figure 5.11: Illustration of the semi-automatic post-correction application. (a) Creation
of a segmentation mask with foreground- and background-scribbles; (b) Segmentation
mask obtained from scribbles in (a); (c¢) Full scene point cloud; (d) Segmented point
cloud after applying the segmentation mask.
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Single Mesh
Generation

3DMU,

3DMU,

3DMU,

Segmented Smoothed Single View

Point Clouds Point Clouds Meshes QOverlaid Meshes

Figure 5.12: Illustration of mesh generation. First, point clouds of individual views
are processed into smoothed point clouds, and mesh models. Then, they are fused into
combined meshes. A resulting merged mesh is shown on top right. For comparison,
meshes from individual views are shown overlaid on the bottom right.

Single-view Mesh Generation. Point clouds of single views serve as input for 3D
model generation. The generation process delivers as output smoothed coloured point
clouds, as well as untextured meshes. Further, model generation performs per-scene rigid
registration (see 5.1.4) among different views in the course of its computation.

View Fusion. Smoothed point clouds are fused in a volumetric grid (see Section 3.2.3).

Model fusion is performed both spatially to integrate individual views, and temporally
to fuse models of subsequent points in time. The volumetric grid representation divides
3D space into grid cells covering 3D space. Points that are put into the grid are stored
as signed distance to the actual model surface. A combined surface model is extracted
from the grid, by iterating through cells, and extracting from the cells points that lie at
a zero distance to the actual surface. Mesh extraction is performed with the marching
cubes [LC87] algorithm.
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Failure Cases

Depth reconstruction is an ill-posed problem, and is consequently prone to errors. We
can broadly identify two major areas that can cause inaccurate results. The first has to
do with artefacts introduced in disparity map computation. The second area lies in mesh
model generation and subsequent fusion of the single views.

Depth Reconstruction Artefacts. Stereo matching recovers scene depth by identify-
ing pixels belonging to the same imaged objects in image pairs. In addition to occlusions,
that is pixels, which are only visible in one of the two images, untextured regions, such as
evenly white walls, and specular or transparent image regions often cause stereo matching
algorithms produce erroneous matches. When disparity maps are projected into 3D space
as point clouds, inaccuracies become more prominent. Disparity map noise within an
object is translated to ill-defined surfaces in point clouds. This makes reconstruction
of fine object features challenging. In the example of the dancer’s head depicted in
Figure 5.13, facial features like nose and cheeks are hard to distinguish in the point
cloud. Subsequent 3D model generation also applies outlier detection and smoothing to
fit smooth surfaces onto the remaining points. In our example, this causes the nose to
appear flattened in the computed mesh model. The reverse effect can be observed on the
chin. It appears more pronounced than it is in reality. For larger objects, the amount
of point cloud noise poses a lesser problem, as can be seen on the torso in Figure 5.14.
The high amount of smoothing necessary to recover other, more delicate areas, however,
leads to spurious bumps, as can be seen at the arms.

View Fusion Artefacts. View fusion is performed to achieve complete models. The
fusion method has to cope with overlapping, and slightly misaligned regions. The
person’s feet in the overlaid mesh shown in Figure 5.12 give an example of such a
misalignment occurring despite careful unit pose registration, and per-scene re-registration.
Misalignment can lead to degraded models that exhibit duplication of misaligned features.
This issue can be mitigated by iteratively updating pose registration on a frame-by-frame
basis from reconstructed model data [ZSGT18]. Another type of artefact occurring
while fusing models are chromatic misalignments. Model colours diverge slightly in
the individual views due to differing illumination conditions at respective depth sensor
positions. Careful chromatic alignment of the capturing cameras is not sufficient to
eliminate this effect. Some state-of-the-art systems, such as [DCC*18], additionally
perform chromatic alignment by creating linear colour mapping among the views offline,
and applying them to the captured images. The generated meshes are untextured. They
are textured by simple colour interpolation from the corresponding smoothed point
cloud. In order to acquire high resolution texture and to eliminate ridges in fused
model textures, more sophisticated texture stitching approaches need to be applied,
e.g. [EFRT17, DCCT18]. Accurate texture reproduction, however, was outside of the
scope of the examined system.
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Input Colored | Coloréd Output Colored
Input Output Mesh

Figure 5.13: Detailed views of the dancers1 data set. Input point clouds, shown in
colour and colour-coded by capturing 3DMU, are noisy in small local regions, like the
head. Output point clouds are aggressively smoothed (middle). The mesh output is
initially untextured. Texture information is added by colour interpolation from the
output point cloud.

(a) 3DMU;3 (b) 3DMU, (c) .3DMU1 (d) Merged Points
Figure 5.14: Tllustration of model artefacts introduced by views. 3DU M3 (a) introduces
bumps on the back. While 3DMU; (b) captures the persons nose accurately, 3DMU;

captures no distinct nose. Chromatic artefacts in the final mesh (d) are introduced by
simple colour interpolation.

53



5.

SYSTEM AND EVALUATION FRAMEWORK

54

5.1.5 Summary

In this section, the examined system has been described in detail along the processing
pipeline’s major building blocks. First a high-level overview of the processing pipeline
and processing steps has been given. Then, the individual stages depth acquisition,
calibration and registration, and depth reconstruction have been discussed. Further,
challenges and failure cases that can arise at the respective steps have been discussed.

5.2 Evaluation Strategies

This section describes the evaluation methods used to evaluate the system described in
Section 5.1. It is structured as follows. Section 5.2.1 lays out the evaluation on validation
objects. Next, in Section 5.2.2 the novel view evaluation method is described. Lastly,
Section 5.2.3 covers the design of the user study conducted in this work.

5.2.1 Evaluation on Validation Objects

Ideally, 3D reconstruction recovers metric properties of the captured scene. Lengths and
angles measured on real objects are the same as on their reconstructed counterparts.
Any given real system inevitably exhibits deviations from the ideal situation. Goal of the
ground truth evaluation is to quantify these deviations, and to characterise the system’s
ability to recover metric properties of captured objects. We consider two different types
of objects.

The first type are spherical objects. From a geometric perspective, spheres are simple
bodies that can be defined only by their position in 3D space and their radius. Recon-
struction of spheres, however, can be challenging, since, apart from their outline, they do
not exhibit any distinct geometric features. An important measure is the distribution of
deviation of sampled points compared to their ideal position. Depth- as well as surface
reconstruction algorithms often perform filtering that can lead to sphere models not
being round but rather “bumpy”.

The second type of object examined are cuboid bodies, that is boxes. Adjacent faces of a
box join in a 90 deg angle. Deviations from this angle allow us to identify spatial skew in
the reconstruction.

The evaluation on validation objects will be carried out in the following manner:

1. Creation of validation objects Spherical and cuboid objects will be created.
Special care will be put into the quality of their surfaces, as they need do be
properly acquired by the system. Another consideration is their size. They will be
made large enough, so they that their reconstructions comprise sufficiently many
sample points. For spheres, the measured diameter will be used as ground truth
value.
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2. Validation object acquisition The objects will then be acquired with the system.
Samples from various object positions will be taken, in order to get diverse data
set.

3. Object segmentation A semi-automatic post-correction application (see Sec-
tion 5.1.4) will then be used to segment out only points constituting the validation
objects. For spheres, the whole visible sphere area is considered. For boxes, faces
will be segmented separately to allow plane fitting on each face. After segmentation,
point clouds only consisting of the object areas will be generated.

4. Shape Fitting Validation object point cloud samples will undergo a shape fitting
process. For spherical objects, an ideal sphere with measured true sphere radius
will be fitted into the point cloud samples, determining the position in space that
best fits the sample. For cuboid objects, plane fitting will determine the plane
optimally describing the orientation of each face. Shape fitting is performed for
sphere and planes by means of the non-linear least squares optimisation [Sha98].
The sphere fitting procedure is performed by our project partner.

5. Analysis of shape fitting results Once the ground truth data set is available,
deviations from ground truth measurements will be determined. The signed error
between the distance of a reconstructed point to the fitted sphere center and the
sphere’s true radius is determined. Another area of interest is the relation between
the signed distance error and the distance of the object to the camera.

5.2.2 Novel View Evaluation

For novel view evaluation, we adopt the image-based virtual rephotography method
proposed in [WBF*17] that has been described in Section 4.2. The goal of this evaluation
is to determine the quality of intermediate and final reconstruction products in terms of
similarity to the input images of the reconstruction process. Selected input images serve
as ground truth against which the reconstruction products are compared.

1. Data set acquisition Representative scenes of persons are acquired and processed
into 3D models. Several variants are created to examine their performance on
different variants of model generation. A full description of the considered variants
is given in Section 6.1.2. For each variant and model, original point clouds, smoothed
point clouds, and textured meshes are prepared for examination. The use of these
products allows to track the results of individual processing steps over the course
of the reconstruction process.

2. Novel view generation Next, novel view images of the created products are
rendered into the viewpoint of each depth sensor, such that the novel view images
ideally show the exact same content as the respective rectified input image. View
generation takes into account intra-3DMU calibration parameters to determine
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the corresponding field-of-view, as well as inter-3DMU registration to replicate the
pose of the capturing depth sensor camera.

3. Accuracy computation Then, the accuracy of all products and variants is de-
termined. Accuracy is defined as the similarity between the (rectified) image of
the depth sensor’s left camera and the novel-view image of the corresponding prod-
uct. For similarity computation, the normalised cross coefficient (NCC) measure
is chosen due to its robustness to illumination and exposure changes. Further,
the NCC measure has been shown to correlate to user opinions in subjective
evaluations [WBF117] on 3D reconstructed models.

Similarity is computed in the masked region used for segmentation of the foreground
models from the scene background. NCC values are linearly transformed into the
[0, 1] value range, so that a value of 0 indicates total dissimilarity, and 1 identity of
compared images. A window size of 30 pixels is used for similarity computation.

Model completeness is determined for all comparisons. It is defined as the ratio of
valid mask pixels with respect to the total numbers of image pixels. Waechter et
al. [WBF*17] deem reporting of completeness ratios as necessary in conjunction
with accuracy, for fair comparison.

4. Analysis of similarity results Model completeness is reported for each model.
For accuracy, two specific cases are considered, reconstruction at the original camera
position and reconstruction at a novel view. In the first case, the accuracy of each
depth sensor is determined with views corresponding the original sensor’s position.
In the second case, models that have been fused from the two outermost views
3DMU; and 3DMUs are compared against the reference view 3DMUs. Since data
of the reference view is not part of the compared models, it can be used as an
independent source of validation.

5.2.3 Subjective User Study

This section describes the experimental setup and design of the user study conducted
for this work. It serves two aims. The first is to assess how the participants rate the
design of the proposed study. Its results will be used as feedback for the design of a
subsequent larger study with more participants, which is outside the scope of this diploma
thesis. The second goal is to compare different 3D model reconstruction methods in
terms of perceived model quality (see Section 6.1). The participants’ judgement is taken
as measure for the quality of the selected reconstruction methods.

Testing Environment. A room was prepared to allow users to regard the testing
material without visual distraction. While the trial was in progress, the room was kept
darkened, so to achieve uniform and controlled illumination conditions. We set up a
testing environment, shown in Figure 5.15, according to the requirements of ITU12]. A
laptop was running a software developed for this purpose. The material was presented
on an uncalibrated monitor (Asus VG278) with a diagonal of 27 inch and a display
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Figure 5.15: Illustration of the lab environment for subjective evaluation.

resolution of 1920 x 1080 pixels. The monitor’s white balance was set to 5000 Kelvin, its
brightness was adjusted to a minimum. Participants were seated at approximately 0.9
meter distance to the screen.

Testing Material. We rendered videos of textured 3D meshes in front of a non-uniform
(violet to black) background. Each video was shown for a fixed time of 20 seconds. To allow
viewers to concentrate on the models, the scene background was removed as described in
Section 5.1.4 with the same segmentation masks as for the novel-view evaluation (see
Section 5.2.2). In the course of the video the camera’s viewpoint moves slowly on a
path, and stops at certain positions for one second. The positions are those of the depth
sensors capturing the models (see Section 5.1.2). A fourth, additional, viewpoint above

3DMU, is introduced as a novel viewpoint. This procedure is adopted for two reasons.

First, it allows viewers to regard the material from different perspectives. Second, it
avoids mental overload. Participants can concentrate on regarding the presented material
without having to navigate themselves within the scene. This aspect is especially helpful
for naive participants not familiar with navigation in 3D scenes.

Study Design. The Pair Comparison (PC) methodology described in Section 4.3 is
adopted for this assessment. The study design is similar to that of [Nez14, NBSG14]. In

PC, pairs of stimuli (e.g 3D models, videos, images, etc.) are displayed to the participants.

They express their preference for one item of a pair with an “A is better than B” or “B is
better than A” choice. Participants are also allowed to vote for “no preference” [LGE13],
as the compared approaches can be similar. The trial sessions lasted for approximately
40 minutes. One participant at a time was admitted to the trial.

A session comprises five stages, with the steps being (1) introduction, (2) screening, (3)
practice, (4) experimental trial and (5) interview. Participants where briefly introduced
orally, and where given written instructions in either English (see Figure B.1) or German
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language (see Figure B.2) explaining their task (1). In the following user screening (2),
participants performed a visual acuity and a colour vision test. Visual acuity was tested
with a Snellen chart (see Figure B.5) printed on an A4 format sheet of paper. Persons
with glasses or contact lenses were allowed to wear these visual aids. They were positioned
at 2.8 meters distance to the chart, and where instructed to read letters starting those in
the first line. Participants able to read letters of the 8th line of the Snellen chart passed
the visual acuity test. Colour vision was tested with pseudoisochromatic plates (see
Figure B.6) printed on an A4 format sheet of paper. The tested persons were instructed
to identify the numbers depicted on the plates. They could come as close to the sheet as
they liked. Persons that could read all numbers from the plates passed the colour vision
test. Next followed a short practice session (3) that introduced the participants to the
task at hand. They were shown three video pairs selected by an expert to exemplify all
three possible judgements, “A is better than B”, “B is better than A” and “No preference”.
Practice videos were not counted as part of the evaluation. The actual evaluation process
(4) followed. As mentioned above, an application developed for this purpose showed a
single video of a pair (A,B) in full-screen. The users could freely switch between video A
and video B by pressing the mouse button. After 20 seconds, a voting screen appeared,
and the user was asked to make a judgement. After finishing the evaluation procedure,
participants filled out a questionnaire (see Figure B.3, and B.4).

The evaluation procedure is illustrated in Figure 5.16). A welcome screen states the
participant’s task in a short statement, and calls the user to proceed. After confirmation,
the first comparison set consisting of stimulus A and B is shown, with A initially displayed
in full-screen. The user can freely switch between stimuli A and B by pressing the left
mouse button. To assist the users in remembering which stimulus they prefer, the name
of the currently shown stimulus is shown at the top of the screen. The name of stimulus A
is shown on the left, and that of stimulus B is shown on the right side for easy distinction.
After 20 seconds the screen turns dark, and the user is asked to vote for one of the three
options: “A better than B”, “B better than A”, and “no preference”. After voting, the
next comparison set is shown.

The PC method calls for presenting both stimuli in both orders, that is AB and BA
for a pair of stimuli (A,B) [ITUO08]. We modify this approach in showing one model at
a time in full-screen, while allowing the participants to switch between stimuli A and
B as they choose. This is done for two reasons. First, evaluation of videos takes time.
Showing each comparison set first in AB, and then in BA order further limits the number
of content that can be shown in a single session. Second, and more importantly, in this
way participants are able to compare the two models without visual effort.

Processing of the Study Results. After the trial, we first detect and remove outliers,
and then compute an opinion score that allows us to compare the evaluated approaches.

When multiple stimuli only slightly diverge in their perceived quality, inconsistent ratings
are likely to be made by the participants. Depending on the study design and shown
material, small inconsistencies in ratings may be not avoidable. Ratings containing many
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Figure 5.16: Illustration of the pair-based comparison scheme. The user is briefly
introduced to the task on a welcome screen. Next, the first comparison set is shown,
with one stimulus of a pair in full-screen. Users can freely switch between two stimuli by
pressing the left mouse button. After 20 seconds, a gray screen appears calling to vote.
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contradicting, or even random, judgements, however, are considered as outliers, and need
to be excluded from consideration, so not to bias the evaluation results. We apply the
algorithm of [LGE13] to detect and reject outliers. It detects inconsistent judgements by
counting circular triads, that is inconsistent triples of stimuli preference. An example for
a circular triad are three stimuli A, B and C together with the preferences A > B, B > C
and C' > A, where the relation symbols < and > denote preference. A few inconsistent
judgements per participant are allowed. If the number of circular triads rises beyond a
threshold, however, the judgement is to be excluded from statistical processing. The
ratio of inconsistent judgements to the total number of judgements is referred to as the
transitivity satisfaction rate [LGE13].

For statistical processing, we first extract separate comparison sets for depth reconstruc-
tion and view-fusion approaches from the combined comparison sets obtained from the
trials. To this end, we group judgements according to the respective type of compared
approach. Following the approach of [NBSG14], we then transform the comparison
sets into continuous quality scores using the Bradley-Terry model [BT52], by maximum
likelihood estimation of a log-likelihood function. The converted quality scores and their
standard deviation are then reported.

5.3 Summary

This chapter presented a description of the examined system and the applied evaluation
methods. The system consists of three RGB stereo-camera based depth sensors termed
3DMU (3D measurement unit). Prior to model acquisition, the depth sensors are
calibrated and their poses relative to the middle (reference) view are determined. Stereo-
image pairs are acquired in a synchronised and distributed fashion on multiple computers.
A stereo matching algorithm recovers point clouds from image pairs of individual depth
sensors. In a semi-automatic approach, point clouds of individual views are segmented
and cleaned from outliers. An APSS based surface reconstruction algorithm first creates
refined point clouds for each view and finally fuses them into combined mesh models.

The plan for evaluating the regarded multi-view 3D reconstruction system in terms of
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accuracy and model quality comprises two quantitative and one qualitative evaluation.
The first approach uses acquisitions of specially crafted validation objects (sphere, box),
to determine the geometric reproduction capabilities. Second, a novel view evaluation
determines model accuracy by measuring image-based similarity on intermediate and final
system products. Lastly, a pair-based user study conducted in the course of this work

determines the quality of several model reconstruction methods in terms of subjective
user opinions.



CHAPTER

Evaluation Results

This chapter discusses the evaluation results in detail. First, Section 6.1.1 presents the
data set used for novel view evaluation and the user study. Next, Section 6.3 contains
the results of the novel view evaluation. Finally, Section 6.4 details the results of the
user study conducted for this work.

6.1 Data Set and Evaluated Approaches

6.1.1 Data Set

We have chosen five acquired models for evaluation (see Figure 6.1). Due to some
acquisition limitations described in Section 5.1.2, only static models are considered in
the current evaluation. Several intermediate and final products, summarised in Table 6.1,
are examined. From the three available views, we generate combined models consisting
of views 3DMU; and 3DMUs, while ignoring for now the view generated from 3DMUs.
Combined versions are created for smoothed points and coloured meshes and are denoted
in the following as view 3DMU143.

Product Description

Original points Input point cloud for model generation
Smoothed points Intermediate point cloud created in model generation
Coloured meshes Created from final mesh output of model generation

Table 6.1: Products used for novel-view evaluation and user study. For a more detailed
description see Section 5.1.4.
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dancers headstand kneeling

punchkick twinsphere

Figure 6.1: Models used for novel view evaluation and user study.

6.1.2 Evaluated Approaches

We divide the evaluation into two steps, point cloud generation, and view fusion. For
the former we use three algorithms to generate point clouds, for the latter we define two
strategies of view fusion. All evaluated approaches are summarised in Table 6.2. We ask
two questions:

e How do different point cloud generation techniques influence the model quality?

e How does the model generation algorithm cope with different modes of view fusion?

Point Cloud Generation Approaches. We compare point cloud generation results
obtained with three different stereo matching algorithms. In particular, the approaches
are cost volume filtering (CVF) with “integer disparities* (ID), cost volume filtering with
depth refinement (DR), and patch match (PM).

CVF with integer disparities (ID) [SNG'15] Disparity maps are computed with
a cost volume filtering algorithm. It is set up to output integer valued disparity
maps. Other algorithm parameters are listed in Table 5.2. The generation of a
single disparity map at 2564x2056 pixel resolution takes 25.6 seconds to compute
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a disparity map !, and is the fastest of all considered methods. Integer valued
disparity maps exhibit discrete spatial resolution. In the derived point clouds, the
3D points are grouped along few planes in Z axis direction. The model generation
algorithm has to cope with relatively few cues with respect to available depth
information.

CVF with depth refinement (DR) [SNG'15] Disparity maps are computed with
the same algorithm as for the ID variant. Here, the disparity map is additionally
refined using sub-pixel enhancement [YYDNO7], and filtered with a weighted median
filter [MHW™13]. Other algorithm parameters are listed in Table 5.2. Generation
of a disparity map takes 71.37 seconds on average. DR disparity maps and derived
point clouds are dense, and locally noisy. The model generation algorithm has to
correctly derive smooth surfaces from many points.

PatchMatch (PM) [LZYZ18] In contrast to CVF, PatchMatch derives disparity values
by estimating slanted planes per pixel and then minimising a global energy function.
Models are generated with the parameters set for the Middlebury 2006 benchmark
as described in [LZYZ18]|. A notable difference to the paper is that we let the
algorithm run for 30 iterations, instead of the originally suggested 5. Disparity
map computation takes on average 25.8 minutes per view. PM disparity maps
and corresponding point clouds are already very smooth. The model generation
algorithm input data is optimal in terms of input noise.

View Fusion Approaches. We assess the quality of the model generation algorithm
described in Section 5.1.4) by comparing two different methods of view fusion:

Fuse views after model generation (FA). Here, we first generate single view mod-
els, and afterwards fuse them. This method effectively performs a union operation
on the regarded single views.

Fuse views before model generation (FB). In contrast to the previous approach,
we fuse point clouds before model generation. Fused point clouds are treated as a
single view by the model generation algorithm.

6.2 Results of Evaluation on Validation Objects

In this evaluation, we want to determine the accuracy of reconstructed objects. Geometri-
cally simple-shaped validation objects created for this purpose are acquired by the system.
Then, ideal 3D models of same geometric properties are fitted into the reconstructed
object point clouds. We then obtain deviations of the acquired point clouds to the fitted

LA desktop PC with a 12 thread Intel i7-3930K CPU clocked at 3.2 GHz with 32 GB of RAM was
used for determining the computation times. The active area of the input images had a resolution of
approximately 2200 x 1800 pixels. All methods were using multi-threaded CPU implementations.
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Abbr. Description

ID CVF [SNGT15] integer disparities. No subpixel refinement, no depth refine-
ment

DR CVF [SNGT15] floating point disparity. Subpixel refinement [YYDNO7] and
depth refinement [MHW13]

PM Patch Match [LZYZ18] floating point disparities

FB View point clouds are fused before model generation
FA View point clouds are fused after model generation

Table 6.2: Evaluated approaches for novel view evaluation and user study.

models that serve as ground truth measurements. The method has been described in
Section 5.2.1.

In particular we pose the following questions:

1. How accurate is the reconstruction of spherical objects in terms of outliers?
2. Does accuracy depend on the camera to object distance?

3. How accurate is the plane reconstruction of a cuboid?

6.2.1 Data Set and Validation Objects

Validation Objects Two spheres and one box were created for this evaluation. Their
surfaces were designed to allow a robust reconstruction. Specifically, a primarily blue
sphere of 150 mm radius and a green sphere of 185 mm radius serve as validation object
(see the twinsphere model in Figure 6.1). A cardboard box serves as cuboid object
(e.g. Figure 6.5).

Data Set We use raw point clouds that are produced by the depth-reconstruction
stage of the system (see Section 5.1.4). The point clouds were generated with the DR
approach described in Section 6.1.2.

The sphere data set comprises 29 reconstructions of blue and green spheres. Out of
these, 26 samples are used. 3 samples had to be dropped from the data set due to the
sphere fitting algorithm not converging. Sphere point cloud samples ranged from 47500
to 217872 points, with an average point count of 108189. The distance of the spheres to
the respective depth sensor ranged from 2.3 to 2.9 meters.

The data set for the evaluation of cuboid objects comprises in total 40 point clouds from
5 frames acquired by all 3 depth sensors. In each frame the box is turned slightly. The
visible sides are first segmented individually from the point cloud. The number of points
per side ranges from 931 to 22836 points with an average of 7646 points. Planes are fitted
into each side by least squares plane fitting. We determine the angle between adjacent
box sides using plane normal vectors.
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Front

Side

Original and
Sphere

Original Outliers

Figure 6.2: Qualitative sphere fitting results. Left: Point cloud of the blue sphere (frame
5, 3DMU,); Middle: An ideal sphere is fitted into the point data; Right: Outliers at an
outlier threshold of 25mm. Outliers outside the sphere are coloured red, Outliers inside
the sphere are coloured yellow; Inliers are marked green.

3bMU; 3DMU,; 3DMU;

Inliers (%) 93.76 97.41 96.09
Outliers (%) 6.24 2.59 3.91

Table 6.3: Outliers by camera.

6.2.2 Results for Spherical Objects

We measure the distance of each reconstructed point to the fitted sphere center, and
measure the signed error to the known radius. Points that deviate from the sphere radius
by more than a threshold value 7 in millimeter units are considered outliers. An example
of a sphere fitted into the point cloud of the blue sphere in frame 5 acquired by depth
sensor 2 is shown in Figure 6.2. The ideal sphere is shown overlaid with reconstructed
points. Red points indicate outliers outside the sphere, yellow points are outliers inside
of the sphere.

Accuracy with Respect to Outliers. The outlier ratio for 7 in the range from 5 to
100 mm is shown in Figure 6.3a. At a threshold of 5 mm only 31.3 percent of the points
are counted as inliers. The inlier ratio reaches almost 90 percent at a 25 mm outlier
threshold, and reaches 99 percent at a 55 mm threshold. The depth sensor accuracy at
an outlier threshold of 7 = 25 is shown in Figure 6.3b and Table 6.3. Here, 3DMU, is
the most accurate sensor with 97.41 percent, the least accurate is 3DMU; with 93.76
percent and 3DMUs has an inlier ratio of 96.06.
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Figure 6.3: Outlier statistics for spherical objects.

Accuracy and Object Distance. Figure 6.4 illustrates the error distribution of
sampled point clouds in the upper part, and shows the sphere distance in the lower part.
The Pearson correlation coefficient between camera to sphere distance and outlier ratio
is 0.009, indicating that no correlation between sphere distance and outlier ratio can be
observed in the present data.

6.2.3 Results for Cuboid Objects

Figure 6.5 shows an example of planes fitted onto the sides of the box. From two to three
sides, denoted as front (f), top (t), left (I) or right (r), can be seen by a single depth
sensor. Front and top sides are visible in all frames. The middle depth sensor 3D MU,
sees the left and right box sides in some samples, while the outer depth sensors 3DMU;
and 3DMU; can only see either the left or the right side.

The median deviation from 90deg between two adjacent box sides is reported. The
results are shown in Table 6.4. Deviation values range from —3.44 to 9.47, with a median
value of —0.06, and an average value of 0.80. Deviations lower than 1 deg are present
for 3DMU;. The highest deviation of 9.47 between front ant top side of 3DMUj3 is
an outlier that results from an unfavourable point distribution due to this side being
partially occluded by another object.

6.2.4 Discussion

Our first question is concerned with system accuracy. Outliers are a major obstacle for
faithful model reconstruction. Even a small number can cause unnatural deformations
in reconstructed models. The outlier ratio at a specific threshold can give insights on
how small an object can be, in order to be reconstructed in a meaningful quality. From
the results in Figure 6.3a we see that reconstructions reach a 99 percent inlier ratio at
a threshold of 50 mm. This result is acceptable for large objects without fine surface



6.2. Results of Evaluation on Validation Objects

150 -

100 -

50 -

Signed Error [mm]
o

=50 -

—100 -

—150 -

—2300 -

—2400 -

—2500 -

—2600 -

—2700 -

Distance to Camera [mm]

—2800 -

—2900 -

blue - f4 cam0
blue - f4 cam1l -
blue - f4 cam2 -
blue - f3 camO -
blue - f3 cam2
blue - f3 cam1 -
green - f5 cam?2 -
green - f5 camO -
blue - f0 cam2
green - f5 cam1 -
blue - f2 cam1l -
blue - f2 camO -
blue - f2 cam2 -
blue - f1 cam1
blue - f1 camO -
blue - f1 cam2 -
green - f6 cam1 -
green - f6 camO -
green - f6 cam2
blue - f5 camO -
blue - f5 cam1 -
blue - f5 cam2

Figure 6.4: Sphere point distribution and distance. Top: Point distribution of sphere
samples. A white dot at the bar center of each coloured area denotes the respective
median signed error value, the thick black bar within the coloured area denotes upper
and lower quartile. The coloured areas indicate the error distribution. Bottom: Distance
of the sphere centre to the camera.

Depth Sensor Ag Ag Ay Axp Ay

3DMU; 2.44 - - 296 -3.44
3DMUy 218 -0.06 -0.14 -0.72 -2.72
3DMU; 947 -295 1.83 - -

Table 6.4: Box reconstruction accuracy. Box sides are denoted as front (f), top (t),
left (1) and right (r). Rows denote values per depth sensor. Columns 2-6 contain median
deviations from 90 deg between two adjacent box sides.
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Point cloud and

Input image Point cloud planes

Top view
Figure 6.5: Illustration of plane fitting for a cuboid object. From left to right: The input
image shows the box as placed in the scene; Reconstructed point cloud; Point cloud with
overlaid fitted planes and plane normal vectors; Point cloud of the box shown from a
different viewing angle.

details. To reconstruct smaller objects like a human face, a higher accuracy is needed.
In Figure 5.13 in Section 5.1, an example of a person’s face has been presented, where
a chin was enlarged, whereas the nose was flattened. A possible solution to improve
the reconstruction would be to increase the disparity range of the acquired disparity
maps, which can be achieved by either increasing the depth sensor’s stereo baseline or
to decrease the object to camera distance. Regarding the accuracy of the depth sensors
results of the sphere, our evaluation indicates that 3DMU; is the worst performing.

The second question of this evaluation is on the influence of the object-to-camera distance
on the reconstruction accuracy. In the present data, spheres where placed at distances
from approximately 2.3 to 2.9 meters. No correlation at this distance range could be
shown.

The evaluation on a cuboid validation object has shown that orthogonal angles of a box
can be reconstructed to a high accuracy of up to 0.06 deg deviation from orthogonality.
Other measurements, on the other hand, show significantly lower accuracy, for which
two reasons can be pointed out. First, outliers affect the plane fitting process based on
least squares regression. The second reason has to do with the acquired data set. In
some samples only a low number of plane points represent a side, as they were frequently
obstructed by other objects.

6.3 Results of Novel View Evaluation

In this section, novel view evaluation results are presented and discussed. The general
procedure has been laid out in Section 5.2.2. We first discuss the creation and preparation
of the data set in Section 6.3.1. Next, results in terms of accuracy for the individual
depth sensors are presented in Section 6.3.2. Then, we look into the results for novel view
accuracy in Section 6.3.3. Finally, the results are discussed in more depth in Section 6.3.4.
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6.3.1 Data Set

For novel view evaluation, we use the 3D models and approaches variations described in
Section 5.2.2. Five different 3D models, and in total six approaches of model generation
are examined, which are divided into three point cloud generation, and two view fusion
methods. Point cloud generation methods are denoted as ID for point clouds computed
from CVF integer-valued disparity maps, DR for point clouds generated from CVF
disparity maps with sub-pixel values and disparity filtering, and PM for point clouds
computed from a PatchMatch algorithm. The examined fusion methods are view fusion
before model generation (FB) and view fusion after model generation (FA). In the

following, we examine various system products resulting from different processing stages.

In particular, pnts—raw denotes original per view point clouds that serve as input to
model generation. pnts-fa/pnts—fb are smoothed point clouds, created by model

generation, and mesh-fa/mesh-fb are coloured meshes created by model generation.

Variants with the fb suffix are only available for the novel view 3DMUj.3, as they are
generated from the two outward views.

6.3.2 Results of Depth Sensors

Completeness Results. Completeness describes the ratio of image pixels subject
to similarity computation to the total number of image pixels. Figure 6.6 shows our

model completeness. The average is 5.7 percent in terms of the total input image size.

Three factors contribute to this rather low value. First, only a fraction of the original
input image size is actually used. Image rectification reduces the active image region
for 3BDMU;, 3DMUs and 3DMUj3 to 80.6, 74.1, and 68.8 percent of the original image
area. Second, during acquisition the sensors were positioned such that a large person
was able to jump, while still staying within the field of view of each camera. Third, as
we examine segmented models, only regions belonging to the persons are counted. Each
selected model can be fit into a bounding box of 1300 x 1300 pixels size.

Depth Sensor Accuracy. We analyse the individual depth sensor accuracies by
comparing single view products against the original, rectified, image as seen by the left
camera of the respective sensor. The graphs in Figure 6.7 show the mean model accuracy
of examined reconstruction products for each of the three depth sensors. Mean accuracy
values for each view can be seen in Table 6.5. Figure 6.8 shows qualitative accuracy
results.

The accuracy of the middle sensor 3DMUs is the rated highest with an average score of
0.985. Accuracy ratings among models are largely consistent, as the low deviations from
the mean value show. The second best sensor 3DMU; has a slightly lower average of
0.97 and exhibits higher accuracy deviations. Lastly, 3DMUj3 shows the lowest accuracy
with a mean score of 0.92. A reason for the lower performance of 3DMUj can be seen in
the third column of Figure 6.8. Dark regions at the left edge of the persons indicate a
global offset of the view of 3DMUs, caused by the rigid registration step.
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Figure 6.6: Data set completeness results with respect to the total image area grouped
by model. Bars denoted by 3DMUy, 3DMU,, and 3DMUs correspond to model com-
pleteness as seen by the respective depth sensor. 3DMU; 3 denotes the novel view. The
horizontal line indicates the average model completeness.
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Figure 6.7: Accuracy results for units 3DMU;, 3D MU, and 3DMUs on original point
clouds (pnts-raw), smoothed point clouds fused before model generation (pnts-fa) and
smoothed points fused after model generation (pnts-fb).

6.3.3 Results for Evaluated Approaches

Next, we compare the performance of the different model generation approaches in terms
of accuracy. Here, models fused from views 3DMU; and 3DMUs3 and the rectified
original image captured by 3DMU; are compared. The fused models are denoted by
3DMU,43. Figure 6.9 shows the accuracy results. Mean accuracies of the novel view
3DMUj 43 are shown in Table 6.5. Figure 6.10 shows qualitative accuracy results for the
dancers model.

Point Cloud Generation Approaches. Out of the three compared point cloud
generation approaches ID shows the smallest accuracy values. While PM achieves the
highest rating, it is comparable with DR. ID models are computed from integer-valued
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Figure 6.8: Qualitative accuracy results for the dancers model. Image regions are
cropped to fit the model. Rows from top to bottom: Original image; Mask of evaluated
image area; Novel view image generated from point clouds as captured from the sensor’s
viewpoint; The accuracy map visualises dissimilar regions in false colour. Dark colours
denote non-similar model regions. Columns show views corresponding to the respective
depth sensor.
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Appr. Product View
3DMUy 3DMUy 3DMUs 3DMUyy3
ID mesh-fa 0.962 0.982 0.924 0.934
mesh-fb — — — 0.918
pnts-fa 0.958 0.978 0.920 0.928
pnts-fb — — — 0.917
DR mesh-fa 0.972 0.989 0.934 0.945
mesh-fb — — — 0.936
pnts-fa 0.974 0.990 0.935 0.945
pnts-fb — — — 0.937
PM mesh-fa 0.974 0.986 0.917 0.947
mesh-fb — — — 0.936
pnts-fa 0.974 0.986 0.912 0.944
pnts-fb — — — 0.932

Table 6.5: Mean accuracy scores of compared approaches by product and view.

disparity maps, however, they perform still reasonably well against models that were
generated from far more elaborate stereo matching algorithms. A shortcoming of the
ID method are holes in the models. Examples of such holes can be seen in Figure 6.10
at the legs of the person on the right. There, holes are indicated by dark circle shaped
spots. PM models are similar to DR models despite the PatchMatch-based algorithm
producing very smooth input for model generation. However, there are artefacts present
in these models as a result of the PatchMatch algorithm not being able to further the
optimise respective regions. DR models suffer less from holes or artefacts compared to
the other two methods. Thus, they provide better results than ID and are comparable
with PM in terms of quality while taking approximately 71 seconds for disparity map
computation of a single view. Compared to PM’s 25.6 minutes per disparity map, DR is
approximately 25 times faster.

View Fusion Approaches. FA can produce models of higher accuracy than FB, as
seen in Figure 6.9. This result holds for both smoothed point clouds and for coloured
meshes. The results are consistent with those of the conducted user study, where FA was
found to be the better method in terms of perceived quality (see Figure 6.11).

6.3.4 Discussion

As can be seen in Figure 6.7, single view comparison identified that 3D M Us has compara-
tively lower accuracy than the other depth sensors. Its impact on accuracy is higher that
of any examined model generation approach. This result is in line with our qualitative
results (e.g. Figure 5.14) that suggest 3D M U3 supplies the data with the most noticeable
reconstruction artefacts.
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Figure 6.9: Similarity results for novel view 3DMU 3.

The investigated point cloud generation methods can be ranked with respect to the novel
view evaluation from worst to best as ID, DR and PM. The accuracy differences between
the examined methods, however, were found to be of lesser impact than the degradation
in terms of accuracy of 3DMUs.

It has to be noted that for this evaluation input image masks are used. Another option,
not included here, would be to use as mask valid pixels of the created novel view images.

The data presented herein exhibits large error margins. For this work, only five models
have been available. Examination of a larger data set of models could give a more stable
basis for accuracy analysis.

6.4 User Study Results

This section discusses the results of our user study that is conducted as preliminary work
to an up-following main study outside the scope of this diploma thesis. The outcome of
this study will be used as input to the design of the main study as part of an ongoing
research project. It aims to answer the following questions:

1. How do the test subjects rate the study design?

2. How do the depth reconstruction methods perform in terms of model shape and
colour quality?

3. How does the model generation perform in terms of shape and colour quality for
different view fusion approaches?
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Figure 6.10: Qualitative accuracy results for compared approaches. Image regions have
been cropped to fit the model. Rows from top to bottom: Comparison of input image
and point clouds computed from integer disparity maps (ID), refined disparity maps
(DR), and PatchMatch disparity maps (PM). Columns from left to right: Accuracy
maps for smoothed point clouds, coloured meshes for fusion after mesh generation (FA)

method, smoothed point clouds and coloured meshes for fusion before mesh generation
(FB) method.

This section is structured as follows. Section 6.4.1 describes characteristics of the partici-
pants and testing material. Section 6.4.2 presents results for the compared approaches.
Section 6.4.3 closes with a discussion.

6.4.1 Study Design

Participants. In total ten persons (six male, four female) participated in the subjective
evaluation. Table B.1 contains supplementary information on the participants. Five
persons were considered experts in evaluating image material or 3D model generation, five
others were counted as naive viewers. The participants’ age ranged from 26 to 58 years
with an average of 39 years. While the number of participants is low for a full-fledged
user study, it is appropriate for the purpose as preliminary study according to [ITUO0S|.
A major goal of this subjective evaluation is to assess the testing procedure adequacy. All
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persons passed the screening procedure comprising a visual acuity and colour vision test,
and could perform the subjective evaluation. Additionally, the participants’ opinions were
screened by subsequent statistical processing for biased or incoherent judgements with
the algorithm for determining the transitivity satisfaction rate described in Section 5.2.3.
No circular triads were detected, consequently all judgements could be used for statistical
analysis.

Testing Material. In total six different model generation approaches divided into
three methods of point cloud generation and two view fusion methods where compared.
Five acquired 3D models were selected for evaluation. The evaluated approaches and used
models have been discussed in Section 6.1. For each model and approach we rendered 20
second long videos showing the model as seen from along a camera path that passed four
predefined positions. Three of positions corresponded to those of 3DMU;, 3DMU, and
3DMUs. An additional novel fourth viewpoint was inserted slightly above the middle
3DMU. In pair comparison any approach is compared against all others. Thus, a single
comparison set consists of % = 15 comparisons. Each comparison set is shown for all 5
models, resulting in 5 x 15 = 75 comparisons. The total show time was 75 x 20 = 1500
seconds or 25 minutes per person. Participants deemed the evaluation time as challenging,
but appropriate.

6.4.2 Compared Approaches

Mean opinion scores were obtained as described in Section 5.2.3 and are shown in
Figure 6.11, grouped by model.

Point Cloud Generation Approaches. The subjective evaluation results in a clear
preference for DR, with ID second, and PM last (see Figure 6.11a). Ratings are consistent
among the majority of models, namely “dancers”, “headstand” and “kneeling”. Models
generated with DR exhibit comparatively round surface features, especially in faces.
Participants’ comments indicate this fact as the major factor for their preference. 1D
models have more holes than the other methods. Further, faces tend to be rather flat,
due to low spatial resolution of the point clouds that serve as input for model generation.
While PM models have fewer holes and rounder surface features compared to the other
methods, their quality was perceived as inferior to the others. A reason for this is the
large artefacts that appear in them. Although observers were instructed to dismiss them
when performing their judgement, feedback comments indicate that they still had a
significant impact on the given opinions.

View Fusion Approaches. Results of the view fusion evaluation can be seen in
Figure 6.11b. Overall, the fusion of single views after model generation (FA) was clearly
preferred by observers over view fusion before model generation (FB). In FA view fusion,
no colour interpolation among individual views is performed resulting in visible ridges
where views meet, as can be seen in Figure 6.12. On the other hand, colour interpolation
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Figure 6.11: Subjective evaluation results. (a) Results for depth generation methods; (b)
Results for view fusion methods.

FB Ridges vs Spots Contractions

Figure 6.12: Comparison of view fusion results.

in FB leads to spotty areas on view borders. One participant noted that the model colour
representation appears “very smoothed”, referring to the low model texture resolution.
Further, FB models appear contracted compared to FA and contain fewer geometric ridges
(see Figure 6.12), as all individual partial views are smoothed in the model generation
phase.

Perceived Quality of Different Viewpoints. In addition to the comparison task,
study participants were asked to rate the general model appearance from one of four
predefined view points. The results are shown in Figure 6.13. Models were only composed
of views of 3DMU; and 3DMUs, and these positions where rated best. The viewpoint
of 3DMUs, that was not part of the model, was rated third, but not conclusively with
respect to 3DMU, and 3DMU;3. The newly introduced novel viewpoint “top” was
decisively ranked last. It has to be noted that three out of ten participants were not able
to answer the question regarding view positions. Further, the high error margin contained
in the voting data suggests that participants were overwhelmed with this rating task.
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3DMU1 3DMU2 Top 3DMU3

Figure 6.13: Subjective ratings of view point positions.

6.4.3 Discussion

Regarding the questions asked in this study, the following conclusions can be drawn.
Overall, the study design was perceived as suitable by the observers. 25 minutes of model
show time was adequate, but should not be increased further. Voting was performed
on a separate dark screen showing only buttons for the judgement according to the
recommendation of [ITUO08]. Multiple participants reported difficulty of identifying
videos A and B, as they could not see the models on the voting screen any more. The
situation could be improved by showing both models while the viewer votes. Showing
models from different perspectives was appreciated. The position rating task, however,
was too much to ask. Three observers noted that the last position was the most dominant
in their memory. This suggests, that the viewpoint order of the camera path can bias
the position-rating task.

All participants noted geometric issues on models, especially the faces were of concern.
Fusion of the models from two far apart views leads to faces being duplicated or outright
missing. Single view meshes of ID models are to “flat” to achieve an accurate reconstruc-
tion of features, further they have too many holes due to locally too sparse point data
for the model generation. Both the DR and PM methods can reproduce round features,
like heads, to a better degree, but ultimately also struggle in accurate reconstruction.
PM generated models exhibited large free-floating artefacts that are especially visible
when showing models from view points other than the capturing sensor.

In the FB method, persons faces tend to disappear in the meshes due to smoothing
applied in the model generation phase and the relatively low overlap between the fused
views. With the available data, no model was convincingly reproduced. Geometric
bodies had noticeable shape distortions that can be traced to outlier points present in
the original point clouds, and aggressive smoothing applied for model generation. Simple
colour interpolation can reproduce texture from RGB images only with limited quality.
Other available methods, such as [EFR*17, DCC™18], need be to used to recover model
texture more accurately.
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CHAPTER

Conclusion

In this thesis, we have presented an evaluation framework for assessing the quality
of point clouds and textured meshes acquired by a 3D reconstruction system that
comprises multiple stereo sensors. Our evaluation determines two important properties
of reconstructed 3D models: (i) the geometric fidelity of reconstructed objects, and (ii)
the subjective model quality perceived by the user.

After providing some background information and a literature review on 3D recon-
struction and related evaluation methodologies, we presented our proposed evaluation
framework along with selected aspects of its implementation. An important part of
our study demonstrates the application of our implemented evaluation modules on a
3D reconstruction system that obtains textured mesh models of dynamic scenes with
three stereo cameras. One of the goals of our evaluation was to compare the quality
achieved by different stereo matching and 3D model merging algorithms included in
the examined multi-view stereo system. To this end, a set of intermediate and final
system products were examined using three complementary quantitative and qualitative
evaluation strategies. First, an evaluation with geometrically simple validation objects
(sphere, cuboid) of known dimensions determined the geometric reconstruction quality
by comparing object reconstructions against ideal models by means of shape fitting.
The results of this evaluation were used to determine the geometric accuracy of point
clouds obtained with the system in terms of reconstructed shape, size and angles between
planar surfaces. The results show that the examined 3D imaging system is capable of
reconstructing spherical point clouds with 90 percent accuracy at an outlier threshold
of 25 mm and angles between adjacent faces of cuboid objects with a deviation of as
low as 0.06 degree. Second, a quantitative image-based novel view evaluation assessed
the quality of the acquired point clouds and textured mesh models in terms of image
similarity. More precisely, we found that the examined CVF and PatchMatch stereo
correspondence algorithms delivered comparable results in terms of textured mesh model
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accuracy, when their output was used to generate mesh models, while CVF was faster
than PatchMatch by a factor of 25.

Third, a subjective user study determined the perceived quality of textured mesh models
of several depth reconstruction approaches. We also observed that the subjective rankings
were inconsistent with those determined by our novel view evaluation, which confirms the
need for a combined approach of quantitative and qualitative evaluation. In this context
we noticed some model imperfections localized in small areas close to object boundaries
that influenced the image-based similarity results only by a small amount, while the
same imperfections dominated the subjective appearance, when shown in a 3D view of
the scene.

The present evaluation methodology assumed reasonably accurate stereo sensor calibra-
tion. A possible topic for future work would be to include the effects of non-perfect
sensor calibration into the analysis of our 3D reconstruction system. Furthermore, the
incorporation of quality aspects that are specific to dynamic scenes (for example, to
measure flickering artefacts) would be a valuable future extension.



1.1
1.2

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3

5.1
5.2
5.3
5.4
9.5
5.6
5.7
5.8

5.9

List of Figures

3D model reconstruction processing pipeline. . . . .. .. .. .. ...
Illustration of the employed novel view evaluation method . . . . . . . ..

The pinhole camera model . . . . . . . . . . ... L Lo
Frontal projection model . . . . . . .. .. .. ... ... ... ...
Typical types of lens distortion . . . . . ... ... ... ... ... ...
Epipolar geometry of a stereo camera . . . . . ... ... ... ... ...
Ilustration of various calibration objects . . . . . . . . ... ... ... ..
Camera calibration with planar patterns . . . . . . . ... ... ... ...

Data acquisition methods and their results . . . . ... ... ... ....
Stereo matching . . . . . . ...
Outline of the basic steps of a typical local stereo matching processing pipeline
Common scene representations in 3D reconstruction . . . .. .. ... ..
View fusion with non-rigid alignment . . . . . . . .. .. .. .. ... ...

Taxonomy of evaluation methods . . . . . . ... .. ... ... ......
Iustration of the third eye technique . . . .. ... ... ... .. ....
Virtual rephotography evaluation . . . . . .. .. ... ... ... ...

Overview of the processing pipeline . . . . . .. ... ... ... ... ...
Image of a 3D Measurement Unit (3DMU) . . . ... ... ... .....
Illustration of the physical setup and scene distance . . ... ... .. ..
Physical system setup . . . . . . . ... Lo
Effects of slightly unsynchronised image acquisition . . . . . . . ... ...
Ilustration of motion blur in a scene containing fast movement . . . . . .
Illustration of camera calibration, registration and image rectification process
Tllustration of transformations involved in intra-3DMU calibration and inter-
3DMU registration . . . . . . . . ... e
Illustration of the depth reconstruction process . . . . . .. .. .. .. ..

5.10 Example of point cloud registration. . . . . . . .. .. ..o
5.11 Illustration of the semi-automatic post-correction application . . . . . . .
5.12 Ilustration of mesh generation . . . . .. . .. ... ... ... ...,
5.13 Detailed views of the dancersl dataset . . ... .. ... ... .....

w

N © 00

13

16
20
21
22
24

26
28
28

35
36
37
37
39
40
42

42
44
49
50
o1
53

81



5.14 Tlustration of model artefacts introduced by views . . . . .. .. .. ...
5.15 Tllustration of the lab environment for subjective evaluation . . . . . . ..
5.16 Illustration of the pair-based comparison scheme . . . . .. ... ... ..

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

B.1
B.2
B.3
B4
B.5
B.6

82

Models used for novel view evaluation and user study . .. ... ... ..
Qualitative sphere fitting results . . . . . . ... ... ... ... ... ..
Outlier statistics for spherical objects . . . . . . .. ... ... ... ...
Sphere point distribution and distance . . . . . ... ..o 0L
Ilustration of plane fitting for a cuboid object . . . . .. . ... ... ..
Data set completeness results . . . . . . . .. ... ... ... ...
Accuracy results for units 3DMUy, 3DMU,, and 3DMUs . . . . . .. ..
Qualitative accuracy results for the dancers model . . . . . . .. ... ..
Similarity results for novel view 3DMUj43 . . . . . . . ... ... ..
Qualitative accuracy results for compared approaches . . . . .. ... ..
Subjective evaluation results . . . . . . . ... ... L.
Comparison of view fusion results . . . . . . . . ... ... ... ......
Subjective ratings of view point positions . . . . .. ... ...

User study instructions in English language . . . . . . ... ... ... ..
User study instructions in German language . . . . . . . .. . .. ... ...

Questionnaire page 1 . . .
Questionnaire page 2 . . .
Snellen chart . . .. ...
Pseudoisochromatic plates

93
57
99

62
65
66
67
68
70
70
71
73
74
76
76
7

100
101
102
103
104
105



4.1

5.1
5.2

6.1
6.2
6.3
6.4
6.5

Al

B.1

List of Tables

Viewing conditions for subjective assessment . . . . .. .. ... ... .. 30
System hardware characteristics . . . . . .. ... ... ... ....... 36
Stereo matching parameters . . . . . . . ... Lo L 45
Products used for novel-view evaluation and the user study . ... ... .. 61
Evaluated approaches for novel view evaluation and user study . . . . . . 64
Outliers by camera . . . . . . . . . .. ... 65
Box reconstruction accuracy . . . . . ... ..o o 67
Mean accuracy scores of compared approaches by product and view . . . 72
Ground truth measurements taken of cameras, objects and scene features 98
Detailed information on participants of the user study. . . . . . . ... .. 106

83






2D Two-dimensional 6
3D Three-dimensional 1

3DMU 3D Measurement Unit 34, 36

ACR Absolute Category Rating 31

APSS Algebraic Point Set Surfaces 49

CVEF Cost Volume Filtering 62, 79

DSQS Double Stimulus Continuous Quality-Scale 31
FPS Frames Per Second 38

ITU International Telecommunication Union 29
NCC Normalized Cross Correlation 18, 56

PC Pair-based Comparison 31

RGB Red, Green, Blue 16
RGB-D Red, Green, Blue plus Depth 16

SAD Sum of Absolute Differences 17
TOF Time-Of-Flight 16

WTA Winner-Takes-All 21, 45

Acronyms

85






[AUE17]

[BABB*18]

[BB13]
[BKBOS]

[BKH10]

[BR15]

[Bra00]
[Bro66]

[Brol6]

Bibliography

Evangelos Alexiou, Evgeniy Upenik, and Touradj Ebrahimi. Towards
subjective quality assessment of point cloud imaging in augmented reality.
In IEEFE International Workshop on Multimedia Signal Processing, pages
1-6, 2017.

Miguel Barreda-Angeles, Federica Battisti, Giulia Boato, Marco Carli, Emil
Dumic, Margrit Gelautz, Chaminda Hewage, Dragan Kukolj, Patrick Le-
Callet, Antonio Liotta, Cecilia Pasquini, Alexandre Pereda-Banos, Christos
Politis, Dragana Sandic, Murat Tekalp, Maria Torres-Vega, and Vladimir
Zlokolica. Quality of experience and quality of service metrics for 3D
content. In P. Assuncdo and A. Gotchev, editors, 3D Visual Content
Creation, Coding and Delivery, pages 267-297. Springer, Cham, 2018.

Michael Bleyer and Christian Breiteneder. Stereo Matching - State-of-the-
Art and Research Challenges, pages 143-179. Springer London, 2013.

Gary Bradski, Adrian Kaehler, and Gary Bradski. Learning OpenCV -
Computer Vision with the OpenCV Library. O’Reilly Media, 2008.

Abdelkrim Belhaoua, Sophie Kohler, and Ernest Hirsch. Error evaluation
in a stereovision-based 3D reconstruction system. EURASIP Journal on
Image and Video Processing, 2010(1):Article ID 539836, 12 pages, 2010.

Libor Bolecek and Vaclav Ricny. Influence of stereoscopic camera system
alignment error on the accuracy of 3D reconstruction. Radioengineering,
24(2):610-620, 2015.

G. Bradski. The OpenCV library. Dr. Dobb’s Journal of Software Tools,
2000.

Duane C. Brown. Decentering distortion of lenses. Photometric Engineering,
32(3):444-462, 1966.

Nicole Brosch. Spatio-temporal Video Analysis for Semi-automatic 2D-to-
3D Conversion by. PhD thesis, Vienna University of Technology, 2016.

87



[BRR11]

[BT52]

[BT99]

[BTV06]

[CCS+15]

[CGEBO07]

[CGK14]

[CiglaAA12]

[CiglaAA13]

[CL96]

[CTF12]

88

Michael Bleyer, Christoph Rhemann, and Carsten Rother. PatchMatch
stereo - stereo matching with slanted support windows. In Proceedings of
the British Machine Vision Conference, pages 14.1-14.11, 2011.

Ralph Allan Bradley and Milton E. Terry. Rank analysis of incomplete block
designs: I. The method of paired comparisons. Biometrika, 39(3/4):324,
1952.

Stan Birchfield and Carlo Tomasi. Depth discontinuities by pixel-to-pixel
stereo. International Journal of Computer Vision, 35(3):269-293, 1999.

Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. SURF: Speeded up
robust features. In Furopean Conference on Computer Vision, pages 404—
417, 2006.

Alvaro Collet, Ming Chuang, Pat Sweeney, Don Gillett, Dennis Evseev,
David Calabrese, Hugues Hoppe, Adam Kirk, and Steve Sullivan. High-
quality streamable free-viewpoint video. ACM Transactions on Graphics,
34(4):69:1-69:13, 2015.

Massimiliano Corsini, Elisa D. Gelasca, Touradj Ebrahimi, and Mauro
Barni. Watermarked 3-D mesh quality assessment. IEEE Transactions on
Multimedia, 9(2):247-255, 2007.

Hsiang-Jen Chien, Haokun Geng, and Reinhard Klette. Improved visual
odometry based on transitivity error in disparity space: A third-eye ap-
proach. In International Conference on Image and Vision Computing New
Zealand, pages 7277, 2014.

Cevahir Cigla and A. Aydin Alatan. An improved stereo matching algorithm
with ground plane and temporal smoothness constraints. In European
Conference on Computer Vision. Workshops and Demonstrations, pages
134-147, 2012.

Cevahir Cigla and A. Aydin Alatan. Information permeability for stereo
matching. Signal Processing: Image Communication, 28(9):1072-1088,
2013.

Brian Curless and Marc Levoy. A volumetric method for building complex
models from range images. In ACM Conference on Computer graphics and
interactive techniques, pages 303-312, 1996.

Ivan Cabezas, Maria Trujillo, and Margaret Florian. An evaluation method-
ology for stereo correspondence algorithms. In International Conference
on Computer Vision Theory and Applications, pages 154-163, 2012.



[Dah]

[DCC*18]

[DKKO09)

[DTK™16]

[DZCT18]

[EA14]

[EFR*17]

[EXR]

[FBC+18]

[FHO6]

[FH15]

Jeff Dahl. Typical snellen chart to estimate visual acuity. https://
commons.wikimedia.org/wiki/File:Snellen_chart.svg. Ac-
cessed: 2018-07-31.

Ruofei Du, Ming Chuang, Wayne Chang, Hugues Hoppe, and Amitabh
Varshney. Montaged4D: Interactive seamless fusion of multiview video
textures. In ACM SIGGRAPH Symposium on Interactive 3D Graphics
and Games, pages 1-11, 2018.

Ankur Datta, Jun-Sik Kim, and Takeo Kanade. Accurate camera calibration
using iterative refinement of control points. In International Conference
on Computer Vision Workshops, pages 1201-1208, 2009.

Mingsong Dou, Jonathan Taylor, Pushmeet Kohli, Vladimir Tankovich,
et al. Fusion4D: Real-time performance capture of challenging scenes. ACM
Transactions on Graphics, 35(4):114:1-114:13, 2016.

Alexandros Doumanoglou, Nikolaos Zioulis, Emmanouil Christakis, Dim-
itrios Zarpalas, and Petros Daras. Subjective quality assessment of textured
human full-body 3D-reconstructions. In International Conference on Qual-
ity of Multimedia Experience, pages 1-6, 2018.

Evan-Amos. Xbox One Kinect Sensor. https://en.wikipedia.org/
wiki/File:Microsoft—-Xbox—-One-Console-Set—-wKinect. jpg,
2014. Accessed: 2018-07-31.

Thomas Ebner, Ingo Feldmann, Sylvain Renault, Oliver Schreer, and Peter
Eisert. Multi-view reconstruction of dynamic real-world objects and their
integration in augmented and virtual reality applications. Journal of the
Society for Information Display, 25(3):151-157, 2017.

EXR file format. Retrieved from https://www.openexr.com/. Ac-
cessed: 2018-05-13.

Karel Fliegel, Federica Battisti, Marco Carli, Margrit Gelautz, Lukas
Krasula, Patrick Le Callet, and Vladimir Zlokolica. 3D Visual Content
Datasets. In P. Assuncdo and A. Gotchev, editors, 8D Visual Content
Creation, Coding and Delivery, pages 299-325. Springer, Cham, 2018.

Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient belief propaga-
tion for early vision. International Journal of Computer Vision, 70(1):41-54,
2006.

Yasutaka Furukawa and Carlos Herndndez. Multi-view stereo: A tutorial.
Foundations and Trends in Computer Graphics and Vision, 9(1-2):1-148,
2015.

89


https://commons.wikimedia.org/wiki/File:Snellen_chart.svg
https://commons.wikimedia.org/wiki/File:Snellen_chart.svg
https://en.wikipedia.org/wiki/File:Microsoft-Xbox-One-Console-Set-wKinect.jpg
https://en.wikipedia.org/wiki/File:Microsoft-Xbox-One-Console-Set-wKinect.jpg
https://www.openexr.com/

[GGOT]

[GLU12]

[GVC+16]

[HBG13]

[HLCH12]

[HM12]

[HRBT13]

[HSO07]

[HZ04]

[Ish]

[ITU08]

[ITU12]

[KH13]

90

Gaél Guennebaud and Markus Gross. Algebraic point set surfaces. ACM
Transactions on Graphics, 26(3):23, 2007.

A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving?
The KITTI vision benchmark suite. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 3354-3361, 2012.

Jinjiang Guo, Vincent Vidal, Irene Cheng, Anup Basu, Atilla Baskurt, and
Guillaume Lavoue. Subjective and objective visual quality assessment of
textured 3D meshes. ACM Transactions on Applied Perception, 14(2):1-20,
2016.

Asmaa Hosni, Michael Bleyer, and Margrit Gelautz. Secrets of adaptive
support weight techniques for local stereo matching. Computer Vision and
Image Understanding, 117(6):620-632, 2013.

Miles Hansard, Seungkyu Lee, Ouk Choi, and Radu Horaud. Time-of-Flight
Cameras: Principles, Methods and Applications. Springer, 2012.

Xiaoyan Hu and Philippos Mordohai. A quantitative evaluation of confi-
dence measures for stereo vision. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 34(11):2121-2133, 2012.

Asmaa Hosni, Christoph Rhemann, Michael Bleyer, Carsten Rother, and
Margrit Gelautz. Fast cost-volume filtering for visual correspondence and
beyond. IEEE Transactions on Pattern Analysis and Machine Intelligence,
35(2):504-511, 2013.

Heiko Hirschmiiller and Daniel Scharstein. Evaluation of cost functions for
stereo matching. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 1-8, 2007.

Richard Hartley and Andrew Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, second edition, 2004.

Pseudoisochomatic plate color vision test. http://www.
colorvisiontesting.com/ishihara. Accessed: 2018-07-31.

ITU. Recommendation ITU-R P.910: Subjective video quality assessment
methods for multimedia applications, 2008.

ITU. Recommendation ITU-R BT.500: Methodology for the subjective
assessment of the quality of television pictures, 2012.

Michael Kazhdan and Hugues Hoppe. Screened poisson surface reconstruc-
tion. ACM Transactions on Graphics, 32(3):1-13, 2013.


http://www.colorvisiontesting.com/ishihara
http://www.colorvisiontesting.com/ishihara

[KHSM17]

[KIT]

[Klel4]

[LC87]

[LGE13]

[LHKP13]

[LNSW16]

[Low04]

[LZYZ18]

[MAM14]

[MHW™*13]

[Midal

[Midb]

Andreas Kuhn, Heiko Hirschmiiller, Daniel Scharstein, and Helmut Mayer.
A TV prior for high-quality scalable multi-view stereo reconstruction.
International Journal of Computer Vision, 124(1):2-17, 2017.

The KITTI Vision Benchmark Suite. http://www.cvlibs.net/
datasets/kitti/. Accessed: 2018-04-06.

Reinhard Klette. Concise Computer Vision. Springer London, 2014.

William E. Lorensen and Harvey K. Cline. Marching cubes: A high
resolution 3D surface construction algorithm. In Computer graphics and
interactive techniques, pages 163-169, 1987.

Jong Seok Lee, Lutz Goldmann, and Touradj Ebrahimi. Paired comparison-
based subjective quality assessment of stereoscopic images. Multimedia
Tools and Applications, 67(1):31-48, 2013.

Bo Li, Lionel Heng, Kevin Koser, and Marc Pollefeys. A multiple-camera
system calibration toolbox using a feature descriptor-based calibration
pattern. In IEEE International Conference on Intelligent Robots and
Systems, pages 1301-1307, 2013.

Minglei Li, Liangliang Nan, Neil Smith, and Peter Wonka. Reconstructing
building mass models from UAV images. Computers and Graphics, 54:84-93,
2016.

David G Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2):91-110, 2004.

Lincheng Li, Shunli Zhang, Xin Yu, and Li Zhang. PMSC: PatchMatch-
based superpixel cut for accurate stereo matching. IEEE Transactions on
Circuits and Systems for Video Technology, 28(3):679-692, 2018.

Nicolas Mellado, Dror Aiger, and Niloy J. Mitra. Super 4PCS fast global
pointcloud registration via smart indexing. Computer Graphics Forum,
33(5):205-215, 2014.

Ziyang Ma, Kaiming He, Yichen Wei, Jian Sun, and Enhua Wu. Constant
time weighted median filtering for stereo matching and beyond. In IFEFE
International Conference on Computer Vision, pages 49-56, 2013.

Middlebury Multi-View Stereo - Online Evaluation. http://vision.
middlebury.edu/mview/eval/. Accessed: 2018-04-18.

Middlebury Stereo - Online Evaluation. http://vision.middlebury.
edu/stereo/. Accessed: 2018-04-18.

91


http://www.cvlibs.net/datasets/kitti/
http://www.cvlibs.net/datasets/kitti/
http://vision.middlebury.edu/mview/eval/
http://vision.middlebury.edu/mview/eval/
http://vision.middlebury.edu/stereo/
http://vision.middlebury.edu/stereo/

[MKO9]

[Mon07]

[NBG13]

INBSG14]

[Nez14]

[Nym17]

[OEDT16]

[PLY]

[SAB+07]

[SBMM15]

92

Sandino Morales and Reinhard Klette. A third eye for performance evalua-

tion in stereo sequence analysis. In International Conference on Computer
Analysis of Images and Patterns, pages 1078-1086, 2009.

David Monniaux. Leica terrestrial lidar scanner. https://commons.
wikimedia.org/wiki/File:Lidar_P1270901. jpg, 2007. Ac-
cessed: 2018-07-31.

Matej Nezveda, Nicole Brosch, and Margrit Gelautz. Hyperion 3D -
intelligent workflow design for low-cost 3D film production working package
4. Technical report, Vienna University of Technology, 2013.

Matej Nezveda, Nicole Brosch, Florian Seitner, and Margrit Gelautz. Depth
map post-processing for depth-image-based rendering: a user study. In
SPIE 9011, Stereoscopic Displays and Applications XXV, page 90110K,
2014.

Matej Nezveda. Evaluation of depth map post-processing techniques for
novel view generation. Master’s thesis, Vienna University of Technology,
2014.

Bengt Nyman. Digital single-lens reflex camera - Nikon
D&10. https://commons.wikimedia.org/wiki/File:
Nikon_D810_EMI1B6357-2.jpg, 2017. Accessed: 2018-07-31.

Sergio Orts-Escolano, Mingsong Dou, Vladimir Tankovich, Charles Loop,
Qin Cai, Philip A. Chou, Sarah Mennicken, Julien Valentin, Vivek Pradeep,
Shenlong Wang, Sing Bing Kang, Christoph Rhemann, Pushmeet Kohli,
Yuliya Lutchyn, Cem Keskin, Shahram Izadi, Sean Fanello, Wayne Chang,
Adarsh Kowdle, Yury Degtyarev, David Kim, Philip L. Davidson, and
Sameh Khamis. Holoportation: Vitual 3D teleportation in real-time. In
Symposium on User Interface Software and Technology, pages 741-754,
2016.

PLY-polygon file format. Retrieved from http://paulbourke.net/
dataformats/ply/. Accessed: 2018-05-13.

Elena Stoykova, A. Aydin Alatan, Philip Benzie, Nikos Grammalidis, Souris
Malassiotis, Joern Ostermann, Sergej Piekh, Ventseslav Sainov, Christian
Theobalt, Thangavel Thevar, and Xenophon Zabulis. 3-D time-varying
scene capture technologies - a survey. IEEE Transactions on Clircuits and
Systems for Video Technology, 17(11):1568-1586, 2007.

Aaron N Staranowicz, Garrett R Brown, Fabio Morbidi, and Gian-Luca
Mariottini. Practical and accurate calibration of RGB-D cameras using
spheres. Computer Vision and Image Understanding, 137:102-114, 2015.


https://commons.wikimedia.org/wiki/File:Lidar_P1270901.jpg
https://commons.wikimedia.org/wiki/File:Lidar_P1270901.jpg
https://commons.wikimedia.org/wiki/File:Nikon_D810_EM1B6357-2.jpg
https://commons.wikimedia.org/wiki/File:Nikon_D810_EM1B6357-2.jpg
http://paulbourke.net/dataformats/ply/
http://paulbourke.net/dataformats/ply/

[SCD*06]

[SCK15]

[SCSK13]

[Sha9g]

[SHK*14]

[SLK15]

[SMP05]

[SNG+15]

SS02]

[SS03]

[SSG+17]

S.M. Seitz, Brian Curless, James Diebel, Daniel Scharstein, and Richard
Szeliski. A comparison and evaluation of multi-view stereo reconstruc-
tion algorithms. In IEEE Conference on Computer Vision and Pattern
Recognition, volume 1, pages 519-528, 2006.

Bok Suk Shin, Diego Caudillo, and Reinhard Klette. Evaluation of two
stereo matchers on long real-world video sequences. Pattern Recognition,
48(4):1109-1120, 2015.

Verénica Suaste, Diego Caudillo, Bok-Suk Shin, and Reinhard Klette. Third-
eye stereo analysis evaluation enhanced by data measures. In Mezican
Conference on Pattern Recognition, pages 74-83, 2013.

C.M. Shakarji. Least-squares fitting algorithms of the NIST algorithm
testing system. Journal of Research of the National Institute of Standards
and Technology, 103(6):633, 1998.

Daniel Scharstein, Heiko Hirschmiiller, York Kitajima, Greg Krathwohl,
Nera Nesi¢, Xi Wang, and Porter Westling. High-resolution stereo datasets

with subpixel-accurate ground truth. In Pattern Recognition, volume 8753,
pages 31-42, 2014.

Hamed Sarbolandi, Damien Lefloch, and Andreas Kolb. Kinect range
sensing: Structured-light versus Time-of-Flight Kinect. Computer Vision
and Image Understanding, 139:1-20, 2015.

Tom&s Svoboda, Daniel Martinec, and Tomas Pajdla. A convenient multi-
camera self-calibration for virtual environments. Presence: Teleoperators
and Virtual Environments, 14(4):407-422, 2005.

Florian Seitner, Matej Nezveda, Margrit Gelautz, Georg Braun, Christian
Kapeller, Werner Zellinger, and Bernhard Moser. Trifocal system for high-
quality inter-camera mapping and virtual view synthesis. In International
Conference on 3D Imaging, pages 1-8, 2015.

Daniel Scharstein and Richard Szeliski. A taxonomy and evaluation of
dense two-frame stereo correspondence algorithms. International Journal
of Computer Vision, 47(1-3):7-42, 2002.

Daniel Scharstein and Richard Szeliski. High-accuracy stereo depth maps
using structured light. In IEEE Conference on Computer Vision and
Pattern Recognition, volume 1, pages 195-202, 2003.

Thomas Schops, Johannes L. Schonberger, Silvano Galliani, Torsten Sattler,
Konrad Schindler, Marc Pollefeys, and Andreas Geiger. A multi-view stereo
benchmark with high-resolution images and multi-camera videos. In IFEFE
Conference on Computer Vision and Pattern Recognition, pages 2538-2547,
2017.

93



[SSPO7]

[Sze99]

[TWC15]

[VCB15]

[VSKL17]

[VV14]

[WBF+17]

[WFR*16]

[WKZT16]

[XIM]

[YGX*+17]

94

Robert W Sumner, Johannes Schmid, and Mark Pauly. Embedded defor-
mation for shape manipulation. ACM Transactions on Graphics, 26(3):80,
2007.

Richard Szeliski. Prediction error as a quality metric for motion and stereo.
In IEEE International Conference on Computer Vision, pages 781-788,
1999.

Fakhri Torkhani, Kai Wang, and Jean-Marc Chassery. Perceptual quality
assessment of 3D dynamic meshes: Subjective and objective studies. Signal
Processing: Image Communication, 31:185-204, 2015.

Camilo Vargas, Ivan Cabezas, and John W Branch. Stereo correspondence
evaluation methods: A systematic review. In Advances in Visual Computing,
pages 102-111, 2015.

K. Vanhoey, B. Sauvage, P. Kraemer, and G. Lavoué. Visual quality
assessment of 3D models: On the influence of light-material interaction.
ACM Transactions on Applied Perception, 15(1), 2017.

Patrick Vandewalle and Chris Varekamp. Disparity map quality for image-
based rendering based on multiple metrics. In International Conference on
3D Imaging, pages 1-5, 2014.

Michael Waechter, Mate Beljan, Simon Fuhrmann, Nils Moehrle, Johannes
Kopf, and Michael Goesele. Virtual rephotography. ACM Transactions on
Graphics, 36(1):1-11, 2017.

Shenlong Wang, Sean Ryan Fanello, Christoph Rhemann, Shahram Izadi,
and Pushmeet Kohli. The Global Patch Collider. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 127-135, 2016.

Katja Wolff, Changil Kim, Henning Zimmer, Christopher Schroers, Mario
Botsch, Olga Sorkine-Hornung, and Alexander Sorkine-Hornung. Point
cloud noise and outlier removal for image-based 3D reconstruction. In
International Conference on 8D Vision, pages 118-127, 2016.

XIMEA GmbH. Ximea MC050CG-SY product specification brochure.
https://www.ximea.com/files/brochures/xiC-USB3_1-
Sony—-CMOS-Pregius—-cameras-brochure-HQ.pdf. Accessed:
2018-02-18.

Tao Yu, Kaiwen Guo, Feng Xu, Yuan Dong, Zhaoqi Su, Jianhui Zhao,
Jianguo Li, Qionghai Dai, and Yebin Liu. BodyFusion: Real-time capture
of human motion and surface geometry using a single depth camera. IEEFE
International Conference on Computer Vision, pages 910-919, 2017.


https://www.ximea.com/files/brochures/xiC-USB3_1-Sony-CMOS-Pregius-cameras-brochure-HQ.pdf
https://www.ximea.com/files/brochures/xiC-USB3_1-Sony-CMOS-Pregius-cameras-brochure-HQ.pdf

[YYDNO7]

[Zah85]

[ZEM*17]

[Zha00]

[Zha04]

[ZSG+18]

[ZTDVAL14]

[ZW94]

Qingxiong Yang, Ruigang Yang, James Davis, and David Nister. Spatial-
depth super resolution for range images. In IEEFE Conference on Computer
Vision and Pattern Recognition, pages 1-8, 2007.

Johann Zahn. Oculus artificialis teledioptricus sive Telescopium, ex abditis
rerum naturaliuvm & artificialiuvm principiis protractum nova methodo,
eaque solida explicatum ac comprimis e triplici fundamento physico seu
naturali, mathematico dioptrico et mechanico, seu practico stabilitum. No
publisher, 1685.

Kang Zhang, Yuqgiang Fang, Dongbo Min, Lifeng Sun, Shigiang Yang, and
Shuicheng Yan. Cross-scale cost aggregation for stereo matching. IEFFE
Transactions on Circuits and Systems for Video Technology, 27(5):965-976,
2017.

Zhengyou Zhang. A flexible new technique for camera calibration. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(11):1330—
1334, 2000.

Zhengyou Zhang. Camera calibration with one-dimensional objects. IEFEE
Transactions on Pattern Analysis and Machine Intelligence, 26(7):892-899,
2004.

Michael Zollhofer, Patrick Stotko, Andreas Gorlitz, Christian Theobalt,
Matthias Niefiner, Reinhard Klein, and Andreas Kolb. State of the art
on 3D reconstruction with RGB-D cameras. Computer Graphics Forum,
37(2):625-652, 2018.

P. J. Zarco-Tejada, R. Diaz-Varela, V. Angileri, and P. Loudjani. Tree
height quantification using very high resolution imagery acquired from an
unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction
methods. Furopean Journal of Agronomy, 55:89-99, 2014.

Ramin Zabih and John Woodfill. Non-parametric local transforms for
computing visual correspondence. In Furopean Conference on Computer
Vision, pages 151-158, 1994.

95






Appendix A - System Ground
Truth Measurements

Table A.1 lists ground truth measurements that where taken of cameras, prominent scene
features, and objects.
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Id Measurement Value [mm]|
1 Background height 2500
2 Background width (all 3 segments) 4980
3 Background segment width 1660
4  Black floor mark front 2030
5  Black floor mark left 1640
6  Black floor mark right 1695
7  Silver stripe floor 1715
8  Sphere green diameter 397
9  Sphere blue diameter 300
10 Brown table width 745
11  Brown table height 450
12 Brown table depth 750
13 Box green width 367
14  Box green height 157
15 Box green depth 285
16 3DMU Baseline 700
17 3DMU1 to 3DMU2; left camera to left camera 2308
18  3DMU2 to 3DMUS3; left camera to left camera 2940
19 3DMUI1 (left camera) to background 4050
20 3DMU2 (left camera) to background 4100
21 3DMUS3 (left camera) to background 4200
22 Box brown width 570
23  Box brown height 238
24 Box brown depth 205
25 Plane green width 500
26  Plane green height 700

Table A.1: Ground truth measurements taken of cameras, objects and scene features.
Measurements have been acquired by using a tape measure.
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Appendix B - User Study

User Instructions

All test subjects where given written instructions introducing them to their task. User
instructions where created in English (see Figure B.1) and German (see Figure B.2)
language.

User Questionnaire

All test subjects had to answer a questionnaire after performing the trial. It comprises
two pages. The top section of page 1 (see Figure B.3) contains trial information to be
filled out by the test operator. It identifies the test number, date, start and stop time
of the trial, as well as results of visual acuity and colour vision test. The lower section
contains general information about the test subject. Page 2 (see Figure B.4) contains
questions about subjective impressions and the test procedure.

User Screening

All participants of the user study where screened for visual acuity using a Snellen chart,
and for colour vision using pseudoisochromatic (Ishihara) plates. In the following, the
tests are described in more detail.

Visual acuity was tested using a Snellen chart (see Figure B.5) printed on an A4 format
sheet of paper. Participants with glasses or contact lenses where allowed to wear these
visual aids while undergoing the test. Test subjects where positioned 2.8 meters away
from the chart. Both eyes where tested individually. Subjects would gently cover the
untested eye. They were instructed to read numbers on the chart that were indicated by
the trial operator. Subjects with normal visual acuity are able to read letters up to line 8.

Colour vision was tested with pseudoisochromatic plates depicted in Figure B.6. The
plates where printed on an A4 format sheet of paper. The subjects were instructed to
read the numbers. They could step as close to the sheet as they saw fit. Subjects with
normal colour vision are able to read all numbers on the plate.
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Subjective Evaluation ,Precise3D*

Welcome to the research group ,Interactive Media Systems" at the Vienna University of
Technology. Thank you for participating in this subjective evaluation that is part of my master
thesis. Here, we try to investigate different approaches to 3D model reconstruction. The results are
very important to us, so we are asking you for your full attention during the evaluation.

What do | have to do?

Start by carefully reading these instructions. They explain the whole procedure. We start by
assessing your visual acuity, and your ability to perceive colour vision. Then, you will perform the
evaluation. Afterwards, we will ask you to fill out an anonymized questionnaire about general
information on yourself and the experiences you have made.

How does the evaluation look like?

You will see pairs of videos (video A and video B) showing 3D models on a computer screen. Five
different models are used here. The models where generated with different model generation
methods, and may differ only slightly. You can switch between video A and video B by pressing the
left mouse button. Use it to make an opinion which video looks better to you. After 20 seconds the
video will stop, and you are asked to judge, by selecting one of three options:

Ais better than B No preference B is better than A

Please ignore free floating artefacts and pay special attention to shape and colour of the models
when making your judgement.

Further, take note of how the models generally look from the view points where the camera stops
for a short time. You will be asked rate them after the evaluation.

We start by practising the task with test videos that will not be counted as results. Once you know
your task, the real evaluation will start. After half of the video pairs you will be given the
opportunity to have a short break. Use it as you see fit.

Once you have finished, we ask you to fill out an anonymized questionnaire. It will contain
questions on your person, and the experiences you have made.

Thank you for your participation!

100 Figure B.1: User study instructions in English language.
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Subjektive Studie ,Precise3D"

Willkommen bei der Forschungsgruppe ,,Interactive Media Systems" der Technischen Universitat
Wien. Danke, dass sie an dieser Studie, die ich im Zuge meiner Masterarbeit durchfiihre,
teilnehmen. Wir untersuchen verschiedene Ansatze der 3D Modellerstellung. Die Ergebnisse sind
wichtig flr unsere Arbeit. Deswegen bitten wir sie um ihre volle Aufmerksamkeit wahrend der
Studie.

Was muss ich tun?

Beginnen sie mit dem sorgfaltigen Lesen dieser Anweisungen. Sie erklaren den gesamten Vorgang.
Wir beginnen mit dem Feststellen ihrer Sehscharfe, und ihrem Vermogen Farben wahrzunehmen.
Danach werden sie die Bewertung durchfiihren. Am Ende, bitten wir sie einen anonymisierten
Fragebogen auszufillen, der Fragen zu ihrer Person, und zu den Erfahrungen, die sie hier gemacht
haben, beinhaltet.

Wie lauft die Studie ab?

Sie werden Videopaare (Video A und Video B) mit 3D Modellen auf einem Computerbildschirm
sehen. Wir verwenden fiinf verschiedene Modelle. Diese wurden mit verschiedenen Methoden
erstellt, und kdnnen sich nur ein wenig voneinander unterscheiden. Sie konnen per Mausklick
zwischen Video A und Video B wechseln. Nutzen sie die Maus, um sich ein Urteil zu bilden, welches
ihnen besser gefallt. Nach 20 Sekunden endet die Wiedergabe eines Videopaars, und sie werden
gefragt, dieses zu beurteilen indem sie aus drei Moglichkeiten auswahlen:

Ais besser als B Keine Praferenz Bist besser als A

Bitte ignorieren sie frei stehende Artefakte und achten sie insbesondere auf die Form und Farbe
der Modelle wenn sie ihr Urteil fallen.

Achten sie weiters auf das allgemeine Aussehen der Modelle aus Blickrichtungen, an denen die
Kamera kurz anhalt. Sie werden nach der Evaluierung danach gefragt

Wir beginnen, indem wir ihnen Beispielvideos zeigen, die nicht in das Ergebnis einflieBen. Wenn
sie sich mit der Aufgabe vertraut gemacht haben, startet die Bewertung. Nach der Halfte der
Videopaare erhalten sie die Gelegenheit zu einer Pause. Nutzen sie diese, wie es ihnen beliebt.

Sobald sie fertig sind, bitten wir sie einen anonymisierten Fragebogen auszufillen. Er enthalt
Fragen zu ihrer Person, und den Erfahrungen, die sie gemacht haben.

Vielen Dank fiir ihre Teilnahme!

Figure B.2: User study instructions in German language.
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Trial Number:

Snellen: 20 /___
Colour: _ /8
Date:

Trial Start:

Trial End:

e What is your age:
e What is you sex:
[Imale []female [Jother
¢ Do you wear glasses or contact lenses?
[yes (Jno
e What is your highest educational degree?
[_] mid-school [Jundergraduate [ ]graduate [] doctoral
e  What is your occupational status?
[ ] student (] employed (] unemployed [ ] retired

¢ Do you have experience in photo editing or image processing (Photoshop, Python, ....)?

[Jyes [(Tno

Page 1/2

102 Figure B.3: Page 1 of the questionnaire to be filled out by the test subjects.



* You saw the video stop at four positions. How do you rate your overall impression of the
model quality at the respective position? 1..lowest, 5 ..highest

Position 1 (right) 1 O2 O3 b4 Os
Position 2 (middle) [J1 (12 [3 [J4 [s
Position 3 (top) [1 (12 [3 [J4 [Js
Position 4 (left) [11 (12 [J3 [Ja [s

¢ Did you notice any unpleasent effects, apart from free floating artefacts?
[Jyes [(Jno

If ,yes, which exactly?

e What do you think of the trial setup?

* Do you have any additional comments?

Page 2/2

Figure B.4: Page 2 of the questionnaire to be filled out by the test subjects.
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Figure B.5: Snellen chart. Figure taken from [Dah].
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Figure B.6: Pseudoisochromatic plates used to determine participants’ colour vision.
Figures taken from [Ish].
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Detailed User Information

ID Age Sex Education Occupation Experienced Optical Aids Snellen PiP
P1 36 m Undergraduate Employed yes yes 20/20 8/8
P2 34 f Graduate Employed no no 20/20 8/8
P3 38 m Graduate Student yes yes 20/20 8/8
P4 26 m Undergraduate Employed yes no 20/20 8/8
P5 58 m Graduate Employed no no 10th 8/8
P6 46 m Doctoral Employed yes yes 20/20 8/8
P7 36 f Graduate Employed yes yes 20/20 8/8
P8 32 m Graduate Employed no no 20/20 8/8
P9 30 f Graduate Employed no no 20/20 8/8
P10 58 f Graduate Retired no yes 20/20 8/8

Table B.1: Detailed information on participants of the user study.
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