
Improving REST API Robustness
Through Continuous Fuzzing: A

Case Study

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering and Internet Computing

eingereicht von

Daniel Haider
Matrikelnummer 01429078

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Thomas Grechenig
Mitwirkung: Florian Fankhauser

der Technischen Universität Darmstadt

Betreuung: Matthias Hollick
Mitwirkung: David Noel Breuer

Wien, 10. Juni 2023
Unterschrift Verfasser Unterschrift Betreuung

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Improving REST API Robustness
Through Continuous Fuzzing: A

Case Study

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Daniel Haider
Registration Number 01429078

to the Faculty of Informatics

at the TU Wien

Advisor: Thomas Grechenig
Assistance: Florian Fankhauser

at the TU Darmstadt

Advisor: Matthias Hollick
Assistance: David Noel Breuer

Vienna, 10th June, 2023
Signature Author Signature Advisor

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Improving REST API Robustness
Through Continuous Fuzzing: A

Case Study

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering and Internet Computing

eingereicht von

Daniel Haider
Matrikelnummer 01429078

ausgeführt am
Institut für Information Systems Engineering
Forschungsbereich Business Informatics
Forschungsgruppe Industrielle Software
der Fakultät für Informatik der Technischen Universität Wien

Betreuung: Thomas Grechenig

Wien, 10. Juni 2023

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Daniel Haider

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 10. Juni 2023
Daniel Haider

vii

Kurzfassung

Fuzzing oder Fuzz Testing wurde in den letzten Jahren immer beliebter, da es eine
leistungsfähige Ergänzung im Software Development Lifecycle (SDLC) bietet, um Ro-
bustheitsprobleme in Software-Artefakten frühzeitig ausfindig zu machen. Zusätzlich ist
Continuous Integration (CI) mittlerweile der De-facto-Standard in modernen Software-
Entwicklungsprozessen. Continuous Fuzzing, also die Integration von Fuzzing in die CI
Pipeline, ist somit eine vielversprechende Ergänzung zur kontinuierlichen Lieferung von
robusten Software-Artefakten.
Diese Arbeit untersucht anhand einer Fallstudie an einem Projekt im Bereich von Web-
Application Programming Interfaces (APIs), wie frei verfügbare Fuzzing-Tools in eine
kontinuierliche Entwicklungs-Umgebung integriert werden können. Durch eine Litera-
turrecherche wurde ein Design für eine Continuous Fuzzing Lösung ermittelt, welche
anschließend anhand des Beispiel-Projektes implementiert wurde. Die implementierte
Lösung führt eine kurze, 10-minütige Fuzzing-Kampagne bei jedem Commit unter Ver-
wendung von zwei parallel laufenden Fuzzern durch, um Entwicklern rasches Feedback zu
geben. Darüber hinaus wird bei jedem Merge-Request eine 50-minütige Fuzzing-Kampagne
unter Verwendung eines White-Box-Fuzzers durchgeführt. Die Fuzzing-Ergebnisse wer-
den zu einem Bericht zusammengefasst, der klare Anweisungen zur Reproduktion aller
gefundenen Probleme enthält.
Die Evaluierung der implementierten Lösung simuliert die Verwendung von Continuous
Fuzzing in einem Entwicklungsprozess, der sich über einen Zeitraum von über zwei Jahren
erstreckt und 22 Commits enthält. Dabei wurden 51 Robustheitsprobleme im Projekt ent-
deckt, 13 davon einzigartig für alle Commits. 2 Fehler wurden in der neuesten verfügbaren
Version der Software gefunden, wobei einer der Fehler nicht nur ein Robustheitsproblem,
sondern auch ein Sicherheitsproblem darstellt, was die Relevanz der implementierten
Lösung unterstreicht.
Diese Arbeit stellt den grundlegenden technischen Baustein bereit, der zeigt, dass Conti-
nuous Fuzzing ein vielversprechendes Werkzeug zur Steigerung der Software-Robustheit
ist. Dies bildet die Basis für weitere Untersuchungen, um festzustellen, wie Continuous
Fuzzing in verschiedenen Softwareprojekten in realen Entwicklungsworkflows erfolgreich
angewendet werden kann.
Keywords: Continuous Fuzzing, Fuzzing, Continuous Integration, Software Testing,
Software Security

ix

Abstract

Fuzzing or fuzz testing has gained a lot of popularity in recent years as powerful addition
to the Software Development Lifecycle (SDLC) to find robustness issues in software
artifacts. In addition, Continuous Integration (CI) is now the de-facto standard in modern
software development processes. Hence, bringing fuzzing into the CI pipeline is the next
step towards delivering more robust software on a continuous basis.

In this thesis, a case study is conducted using a real-world inspired software project in
the domain of web Application Programming Interfaces (APIs). The study investigates
the feasibility of integrating readily available fuzzing tools into a continuous development
environment. Through a thorough literature research a design for a continuous fuzzing
solution was determined. The implemented solution fuzzes the test target in a quick, 10
minute long fuzzing campaign on every commit using two different fuzzers running in
parallel to give developers rapid feedback. In addition, when issuing a merge request
to merge the changes from a branch back into the main branch, a 50 minute long
fuzzing campaign employing a white-box fuzzer was implemented. The fuzzing results
are combined in a single report that provides clear instructions on how to reproduce any
found issues.

An evaluation of the proposed solution which simulates the use of continuous fuzzing in a
development process containing 22 commits stretching over the course of over two years
detected 51 different robustness issues in the project, 13 of them being unique across all
commits. 2 of the faults were discovered in the latest available version of the software,
with one of the faults being not only an issue of robustness, but one which impacts the
project’s security, thus, demonstrating the usefulness of the implemented solution.

This study establishes the technical basis that demonstrates that continuous fuzzing can
serve as a promising tool for enhancing the robustness of software. Building upon this,
further investigations can be carried out to explore how this approach can be applied to
various software projects in actual development workflows.

Keywords: Continuous Fuzzing, Fuzzing, Continuous Integration, Software Testing,
Software Security

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Problem Statement . 1
1.2 Motivation . 2
1.3 Expected Results . 2
1.4 Structure . 3

2 Theoretical Foundations 5
2.1 Modern Development Process . 5
2.2 Web Application Interfaces . 18
2.3 Software Security . 20
2.4 Fuzz Testing . 26
2.5 Classification of Fuzzing Techniques 30
2.6 Bug Oracles and Sanitizers . 33

3 From Fuzzing to Continuous Fuzzing 37
3.1 The Idea of Continuous Fuzzing . 37
3.2 Requirements and Trade-Offs . 38
3.3 Readily Available Fuzzing Tools . 40
3.4 Existing Continuous Fuzzing Solutions 60

4 Case Study: Proof of Concept Solution for Continuous Fuzzing 63
4.1 Description of the Program Under Test 63
4.2 Choosing Suitable Fuzzers . 64

5 Integration into GitLab CI/CD Pipeline 75
5.1 GitLab CI/CD Concepts . 75
5.2 Continuous Fuzzing Design . 76
5.3 Results . 77

xiii

5.4 Evaluation . 80

6 Discussion and Limitations 89
6.1 Discussion . 89
6.2 Limitations . 92

7 Conclusion and Further Work 93
7.1 Conclusion . 93
7.2 Further Work . 94

List of Figures 97

List of Tables 99

List of Algorithms 101

List of Listings 101

Acronyms 103

Bibliography 105

Web Resources 113

Appendix 117

CHAPTER 1
Introduction

In this introductory chapter, the problem statement and the motivation of the thesis
are laid out. Based on this information, the expected outcomes are outlined and four
research questions are formulated. Lastly, the structure of the further chapters in this
work is described.

1.1 Problem Statement
Software development processes have undergone major transformations since their begin-
nings. From classical waterfall models to the rise of agile methodologies, testing became
more and more important and developers are now getting more feedback on their code
artifacts than ever, especially with the rise of Continuous Integration (CI) and rigorous
unit and integration testing, as shown by Fitzgerald and Stol [1].

One testing methodology that received more attention recently is fuzzing or fuzz testing.
Miller et al. [2] describe it as a process which automatically tests software artifacts
with randomly generated input data to reveal unexpected behaviour, software faults
or vulnerabilities. While the idea of fuzzing is rather old in computer science terms (it
was first proposed in the 1990s), the core concept has not changed much since then,
according to Li et al. [3]. The way fuzzing is performed, however, has made drastic
improvements [3].

Continuous fuzzing combines fuzz testing and CI, where CI is the practice of collecting
code changes from multiple sources and integrating them into a single software project
on a continuous basis, from which then automated builds and software tests can run [1].
By combining these two techniques, fuzz tests are run automatically during or after
software integration, thereby providing valuable feedback to developers early on in the
development cycle. Since Tassey [4] shows that finding faults early in the development
process saves time and money, it is beneficial to fuzz-test software artifacts as soon and as

1

1. Introduction

often as possible, making continuous fuzzing a valuable tool in modern software projects
to ensure better software robustness and security.

1.2 Motivation
Programs like Google’s OSS-Fuzz have been successful in identifying over 8900 software
vulnerabilities [W1], and NIST’s Recommended Minimum Standard for Vendor or De-
veloper Verification of Code now mandates running a fuzzer [W2], underscoring the
importance of fuzz testing. However, existing solutions focus on long-running fuzzing
campaigns instead of providing rapid feedback to developers, and Rindell et al. [5] show
that fuzzing solutions have a high perceived impact on the security of the software to be
developed but are limited in adoption due to the high effort needed to build and maintain
a fuzzing environment. Furthermore, as modular applications that communicate with
each other via web Application Programming Interfaces (APIs) tend to replace large,
monolithic applications (Kim et al. [6]), it becomes imperative to consider how fuzzers
can be applied to such projects. The most common architectural style in this field is
Representational State Transfer (REST), which leverages HTTP requests to access and
manipulate resources [6]. Several fuzzing tools have been introduced by researchers and
practitioners that exploit the implicit semantics introduced by the REST standard [6].
Nonetheless, to the best of our knowledge no existing continuous fuzzing solution provides
an option to include such specialized fuzzers.

Moreover, according to Wang et al. [7], there exists a gap between academic evaluation
of fuzzing tools/techniques and their real-world bug finding ability. Many papers in
recent literature proposed new fuzzing tools and techniques, as shown by studies from
Zhang and Arcuri [8] and Liang et al. [9]. However, as stated by Klooster et al. [10], not
many studies deal with the real-world application of fuzzers and even less so with the
continuous integration of them. This work tries to mitigate this gap between research and
practice by creating a Proof of Concept (PoC) solution that integrates fuzzing tools into
the Continuous Integration/Continuous Deployment (CI/CD) pipeline of a real-world
application in a way that does not introduce too much configuration overhead.

The motivation behind this work is to increase assistance to developers during the
software development process, resulting in safer and more robust code artifacts, without
introducing too much configuration overhead. With modern fuzzing techniques utilizing
evolutionary algorithms, feedback-driven fuzzing and by incorporating domain-specific
knowledge, it is now possible to achieve high code coverage with fuzzing tests in reasonable
time frames. This work shall evaluate how applying the concept of fuzz testing in a
periodic manner through continuous fuzzing can benefit modern development processes.

1.3 Expected Results
The aim of this work is to explore the state of the art of fuzzing techniques, to find
out which readily available fuzzers exist and how they can be integrated into a modern

2

1.4. Structure

development process, resulting in continuous fuzzing. It shall explore how different fuzzers
can be integrated into a CI/CD pipeline and determine their advantages, drawbacks
and limitations. A special focus lies on how the fuzzer’s findings can be evaluated and
incorporated into the development process in such a way that even developers without
specific security or testing background can benefit from it.

The core hypothesis this work studies is that integrating continuous fuzzing solutions into
a modern development process helps with detecting faults in code, therefore, improving
software security and robustness in an early stage of the development cycle. To support
this hypothesis the following Research Questions (RQs) shall be answered:

RQ1: How can state of the art fuzzers be integrated into a development process in a way
that does not introduce too much configuration overhead?

RQ2: What benefits can short fuzzing campaigns in an early stage of the development
life cycle provide?

RQ3: How can this process be automated in a CI/CD pipeline?

RQ4: How can the fuzzing tool results be evaluated and incorporated into the development
process?

1.4 Structure
Chapter 2 establishes the fundamental principles and definitions that will serve as the
basis for the subsequent chapters.

In Chapter 3, the idea of continuous fuzzing is introduced and the requirements and
trade-offs of a continuous fuzzing solution are mapped out. Several readily available
fuzzing tools are examined from a theoretical perspective and existing continuous fuzzing
solutions are presented.

After these theoretical chapters, Chapter 4 introduces an example project on which a case
study that explores the integration of fuzzers into the development process is conducted.
Several experiments using readily available fuzzing tools are carried out to select the best
suitable fuzzers for a continuous fuzzing integration.

Chapter 5 continues the case study by proposing a final design for a continuous fuzzing
solution and implementing it using the GitLab CI/CD pipeline. Furthermore, the
developed PoC is evaluated on the test target by simulating the development workflow
using the project’s history.

In Chapter 6, the results and the research questions are discussed. Furthermore, the
limitations of the implemented PoC and the conducted case study are addressed.

Finally, Chapter 7 summarizes the key findings and offers some prospects for further
research as well as possible extensions to the implemented PoC.

3

CHAPTER 2
Theoretical Foundations

This chapter provides the theoretical background needed for the remainder of this work.
To understand the context in which the case study is conducted in Chapter 4, a modern
development process with its agile methodologies, software testing approaches, and
CI is described. The basics of software security, attacks on software, and a means to
defend against them via software security engineering are introduced. Lastly, fuzz testing
including its different techniques and classifications is explained.

2.1 Modern Development Process
As highlighted by Leau et al. [11], software development processes have undergone major
transformations since their beginning. From classical waterfall models to the rise of
agile methodologies, testing became more and more important, and developers are now
getting more feedback on their code artifacts than ever, especially with the rise of CI
and rigorous unit and integration testing.

The Software Development Lifecycle (SDLC) is a crucial aspect of software development
as it outlines the essential stages involved in creating software systems [11]. Traditional
software development methodologies like the waterfall method or V-model follow a se-
quential process of requirements gathering, solution building, testing and deployment [11].
These methodologies require defining and documenting a stable set of requirements at
the start of a project [11].

Leau et al. [11] and Stoica et al. [12] further describe the steps taking place in each of
the characteristic phases in the traditional software development process [11]:

• Requirements: The requirements and a schedule for the implementation of the
various phases of development are established. Potential risks that might arise
during the later phases are assessed.

5

2. Theoretical Foundations

• Design: The design and architecture of the product is developed. Technical models
or diagrams are created that serve as a road map for developers.

• Implementation: In this phase, code is produced for the first time as developers
start implementing the previously established design.

• Testing: The testing phase often overlaps with the implementation phase to catch
issues early on. After the project nears completion, the project is tested and
reviewed by the customer before delivery.

• Deployment and maintenance: Once the product is fully tested, it is launched and
maintenance is performed [12].

According to Stoica et al. [12], the requirements, design, implementation and testing
phases are still present in incremental processes. However, instead of going through these
steps only once, they are applied in each development cycle.

As laid out by Moniruzzaman and Hossain [13], the value, visibility, and adaptability of
the project can be further increased by including the deployment phase in the incremental
process to deliver a working and tested software on a continuous basis. The details of
such agile methodologies are laid out in the following section.

2.1.1 Agile Methodology
„We are uncovering better ways of developing software by doing it and helping others
do it“ [W3]. With this sentence, a group of seventeen people introduced the Manifesto
for Agile Software Development which had a lasting effect on how software was – and
still is – developed. In it, they introduced four central values they favour over traditional
ones: (i) Individuals and interactions over processes and tools, (ii) working software over
comprehensive documentation, (iii) customer collaboration over contract negotiation and
(iv) responding to change over following a plan.

In an analysis of agile software development methodologies and trends, Al-Saqqa et
al. [14] describe these four values as follows:

First, focusing on abstract and formal processes as well as their technical surrounding
environment is wrong. Instead, the quality of the human software developers and their
relationships, interactions and communication is more important [14].

Second, while software documentation is a vital and valuable component in the agile
software development process, it should not be exaggerated. If tested, working software
is a more meaningful measure of progress than extensive documentation, since it answers
immediately and is less ambiguous. This is especially important if requirements are
changing frequently because writing up-to-date documentation is a time-consuming
process [14].

Third, agile software development was invented to cope with changes in the requirements
even late in the development cycle, hence, customer feedback and collaboration with the

6

2.1. Modern Development Process

development team are essential. This is in contrast to traditional methodologies where a
formal agreement and contracts dictated the stiff development process [14].

Lastly, since both the developers and customers will gain more knowledge of the system
as the software development process progresses, it might be necessary to change the
requirements. If this is the case, instead of following a strictly defined plan, it is
encouraged to respond positively to the change to increase customer satisfaction [14].

Al-Saqqa et al. also emphasize that there are use cases where it is better to apply
traditional software development methods instead of agile methods. For example, large
projects with high budgets and multiple medium-sized teams working together should be
thoroughly planned in advance, which contradicts agile principles. This is especially the
case if formal processes or compliance standards have to be followed [14].

Hoda et al. [15] showed that 97% of organizations responding to a survey from the
Annual State Of Agile Report 2018 practiced agile methodologies somewhere within their
organization. In the latest Annual State Of Agile Report from 2021, 86% of software
development teams now include agile practices in their development process, with Scrum
being the most closely followed one at the team level with 66% [W4]. The rapid growth
of agile practices also led to a new sub-discipline of software engineering in the last two
decades and continuing today, named agile research [15].

The lasting transformation in how software is being developed also necessitated a change
in how software is being tested.

2.1.2 Software Testing
Software testing is a crucial part of every software development process which aims to
deliver high-quality software. The IEEE Standard Glossary of Software Engineering
Terminology [16] defines software testing as „the process of analyzing a software item to
detect the differences between existing and required conditions (that is, bugs) and to
evaluate the features of the software items“ [16]. Therefore, the goal of software testing is
to find bugs, where a bug is a difference between an existing and the required condition.
Since it is not always trivial to distinguish between a desired and an incorrect software
behaviour, an additional mechanism is needed to make this decision. This is called the
test oracle problem, as described by Barr et al. [17] (see Section 2.6).

At this point, it is also important to note the difference between errors, faults and failures.
Although Rosenberg et al. [18] argue that these terms are often used interchangeably,
they do have different meanings. According to the IEEE standard 610.12-1990 [16], an
error is a „difference between a computed, observed, or measured value or condition and
the true, specified, or theoretically correct value or condition“. A fault is an incorrect
step, process or data definition, e.g., an incorrect instruction in a computer program [16].
Failure is defined as an incorrect result, e.g., a computed result of 12 when the correct
result is 10 [16]. Thus, a software failure results due to the execution of a fault in the code
which a developer placed there by mistake. However, not every fault must necessarily

7

2. Theoretical Foundations

lead to failure. For example, if a faulty instruction is unreachable and, therefore, never
gets executed, it cannot lead to a failure. Bourque et al. [19] use the word bug as a
more informal synonym of fault and if the distinction between fault and failure is not
important, the more generic term defect can be used.

While software testing is a very broad subject, Graham et al. [20] argue that there are
general guidelines applicable to all types of testing that have been proposed over the last
four decades. They summarize 7 principles of testing introduced by the International
Software Testing Qualifications Board (ISTQB) as follows [20]:

• Testing shows presence of defects: While testing can uncover defects in software, it
cannot prove the absence of defects. Testing does, however, lower the likelihood of
undiscovered defects persisting in the software.

• Exhaustive testing is impossible: Testing every possible input and precondition
combination is not possible, except for simple cases. Therefore, testing efforts are
prioritized and focused based on risks and priorities.

• Early testing: Testing should start as early as possible in the software or system
development life cycle, with a clear focus on defined objectives.

• Defect clustering: A majority of defects discovered during pre-release testing or
operational failures are found in a small number of modules.

• Pesticide paradox: Repeatedly running the same tests can lead to the pesticide
paradox where no new bugs are discovered. To avoid this, test cases should be
regularly reviewed, revised, and new tests should be developed to target different
areas of the software or system to potentially uncover more defects.

• Testing is context dependent: Testing methods vary depending on the context. For
instance, safety-critical software undergoes different testing than an e-commerce
website.

• Absence of errors fallacy: Fixing defects is meaningless if the resulting system is
unusable and fails to meet user requirements and expectations.

While the seven testing principles provide a solid foundation for software testing, there
are many other aspects to consider. In the context of this work, the most relevant ones
are detailed on the following pages.

Test Levels

It has been shown many times that the sooner a fault in software is found and corrected,
the less costly it is [4]. The importance of the timing of finding bugs is also described
by Takanen [21]. As the cost of bugs includes repair costs for developers and costs from
damages to end-users, testing early in the product lifecycle reduces the cost per bug

8

2.1. Modern Development Process

compared to finding a flaw after release [21]. This is because the costs from damages are
reduced or even eliminated if a fault never makes it in a build that gets released.

As a result, numerous software testing methods and tools have emerged which can be
applied at different test levels. Test levels are typically distinguished based on the object
of testing or test target, which can be single modules, a group of models or an entire
system [19]. Accordingly, three common stages of testing are possible [19]:

• Unit tests are tests of isolated software elements that are separately testable [19],
for example, functions or classes. They are mostly conducted by the developers
that wrote the code.

• Integration or service tests aim to verify the interaction or interfaces between
software components. This can either happen iteratively or at once („Big Bang“).

• Lastly, the goal of system or User Interface (UI) tests is to verify the behaviour of the
whole integrated system and assure that the entire system meets its requirements.

While Bourque et al. do not deem any of these stages to be more important than another
one, Cohn [22] defines a test pyramid where such a distinction is indeed made. Figure 2.1
shows an illustration of the test pyramid.

Figure 2.1: Cohn’s Test Pyramid Illustrated by Mukhin et al. [23]

Since unit tests are relatively cheap to write, execute fast and must not be re-written
that often if requirements change, they are a solid foundation at the bottom of the
pyramid [24]. On top of that, selectively chosen component and integration tests should
be placed and only a few end-to-end system tests should be on the top of the pyramid [24].
Because they are expensive to write, execute slowly and must be adapted even if only a
small change in the UI is made, they should be carefully selected and used scarcely [24].

Note that there also exists a fourth test level called acceptance tests, however, this
is fundamentally different than the previous ones, as it is usually undertaken by the
customer and developers may or may not be involved in this testing activity [19]. It is
conducted to ensure that a system meets its acceptance criteria, which involves comparing
desired system behaviors against customer requirements [19].

9

2. Theoretical Foundations

Invalid Partition Valid (3% interest) Valid (5% interest) Valid (7% interest)
-$0.01 $0.00 $100.00 $100.01 $999.99 $1000.00

Table 2.1: Examplary Equivalence Partitions by Graham et al. [20]

Equivalence Partitioning

As pointed out previously, exhaustive testing is impossible. Thus, it is essential to limit
the test cases while still comprehensively testing the software. One intuitive approach to
achieve this is by dividing or partitioning a set of test conditions into groups or partitions
that can be considered equivalent [20]. The technique can be applied at any test level
and assumes that if one condition in a partition works, all the conditions in that partition
will work, and vice versa. By testing only one condition from each partition, a wide range
of scenarios can be covered effectively [20].

To illustrate the technique, Graham et al. [20] describe a scenario in which a software is
tested that calculates interest rates for a savings account based on the account balance.
The various interest rates are determined based on the balance ranges. From $0 to $100,
the interest rate is 3%. For balances over $100 up to $1000, the interest rate is 5% and
for balances of $1000 and above, the interest rate is 7%. In this case, there are three valid
equivalence partitions, as shown in Table 2.1. Note that there is also one invalid partition,
i.e., if the balance is less than zero. By selecting test cases from these partitions, such as
-$10.00, $50.00, $260.00, and $1348.00, comprehensive coverage is ensured [20].

This particular testing approach, known as a black-box or specification-based technique,
does not rely on any knowledge of the software’s implementation [20]. In contrast, there
are white-box testing techniques that utilize the internal structure of the software to
generate test cases [20].

Test and Code Coverage

One important white-box technique in software testing is test coverage analysis as
explained by Spinellis [24]. The test coverage indicates which parts of the code got
executed during tests and, therefore, can give valuable information on which parts of the
code need to be tested more thoroughly [24]. This is best explained with the Control Flow
Graph (CFG) of a program. Oh et al. [25] define a program graph or CFG as a graph
consisting of a set of vertices representing basic blocks and a set of edges representing
possible control flows between basic blocks. A basic block is „a maximal set of ordered
instructions in which its execution begins from the first instruction and terminates at the
last instruction“ [25]. An example for a simple CFG with its corresponding program’s
source code is given in Figure 2.2. The first basic block in the program consists of line
numbers 1–3, the second one is line number 4 and the last basic block is line number 6.
These basic blocks are mapped to the nodes A, B and C in the CFG respectively and the
edges in the graph correspond to the control flows, i.e., the first basic block (A) ends
with a branch that either goes through B to C (if x equals 42), or directly to C.

10

2.1. Modern Development Process

1 x <- INPUT()
2 y <- 0
3 if (x == 42) {
4 y <- y + 1
5 }
6 z <- x / y

(a) Example Program (b) Resulting CFG

Figure 2.2: Example Program and Corresponding CFG

Based on the CFG, Weiser et al. [26] define three different coverage metrics:

• Basic Block Coverage: Also known as statement or line coverage, this simply divides
the number of blocks (or statements) that got executed at least once, by the total
number of blocks (or statements).

• Branch Coverage: Measures which branches of the program, i.e., which edges in
the CFG were executed at least once.

• Path Coverage: Measures the execution of edges too, but additionally takes into
account the number of times an edge got executed. As programs containing loops
have potentially infinite possible paths, it is hardly possible to test all of them.

The program in Figure 2.2 initially assigns 0 to y and if a user-supplied value equals 42,
y is increased by 1. At the end, x is divided by y and the result is assigned to z. 100%
basic block coverage can be achieved with one single test where x is set to 42. However,
if any other value is chosen for x, the program crashes due to a division by zero. This
demonstrates that achieving 100% basic block coverage is not a guarantee for bug-free
programs.

Code Instrumentation

A way to obtain information on code coverage about a test target commonly used
by fuzzing tools (see Section 3.3) is code instrumentation, as described by Tikir and
Hollingsworth [27]. In static code instrumentation, code is added during program
compilation or linking, thus, adding it to the binary executable file. Most tools simply
add code (e.g., a counter) at the beginning of each basic block to measure if a block got
executed or not [27].

Another approach shown by Ramasamy and Hundt [28] is to dynamically instrument a
binary during runtime. This eliminates the need for recompilation of the test target and
is especially useful if its source code is not available. With dynamic instrumentation, it
is also possible to remove instrumented code during runtime [28]. For example, when

11

2. Theoretical Foundations

measuring basic block coverage, the instrumented code that marks the block as executed
can be removed after its first execution. Thus, for blocks that are executed many times
during a program run, computational overhead is reduced.

Symbolic Execution

To further decrease the test cases needed while still covering the whole program, King [29]
introduced a mechanism called symbolic execution. Like the previously described equiv-
alence partitioning technique, it involves dividing the input space into representative
classes. However, with symbolic execution, this is done by analyzing the code in a
white-box approach, whereas equivalence partitioning is a pure black-box technique [20].
In symbolic execution, a program is not called using normal inputs (e.g., numbers) but
with symbolic formulas over the input symbols. At each node in the CFG that has
multiple output edges, a distinction is made. For example, the statement if x > 10

leads to two possible branches: In the first, x is greater than 10, in the second one, x is
less than or equal to 10. This results in two classes of inputs where in each one, x must
satisfy different constraints. During symbolic execution, the program explores different
execution paths and collects the constraints for each path, which then form a logical
formula that represents the conditions required to reach a specific program state or line
of code. The symbolic execution engine can then attempt to solve these constraints to
generate concrete test inputs that exercise different program paths. Therefore, instead
of executing a program with a set of sample inputs, it is tested with a set of classes of
inputs, where each class represents a different branch in the program’s CFG [29]. While
this set of input classes can still be practically infinite, it „provides better results more
easily than normal testing for most programs“ [29].

Test Processes

Kettunen et al. [30] showed that agile development methodologies like Scrum and
Extreme Programming (XP) require different testing strategies than traditional, plan-
driven approaches. Since with agile methods the software is built and delivered piece by
piece in smaller iterations, developers are encouraged to test their components parallel
to development so that after each iteration a tested product can be delivered. With a
plan-based approach, it is often the case that there is one large final testing phase which
might be scaled down at the end of the project if there is not enough time to reach the
deadline [30].

One paradigm that has emerged parallel to agile methodologies is the test-driven devel-
opment process, which promised increased developer productivity and improved code
quality. The core principle of Test-Driven Development (TDD) is the test-first approach,
whereby unit tests are written before the code. The test should then fail, i.e., be red.
After that, the functionality is implemented in such a way that only a minimal amount
of code is added for the previously implemented test to succeed. Then, the code is
refactored and the unit tests ensure that functionality is preserved, and no new bugs are
introduced.

12

2.1. Modern Development Process

Despite its many promises, Karac and Turhan [31] have shown that after 15 years of
studies on TDD there is no clear evidence of improved quality and productivity. They
claim that the test-first approach is not the most important aspect of TDD. Instead,
working on well-defined, small tasks in short and steady development cycles brings more
benefits than obsessing over the test order [31].

Spinellis [24] summarized the state of the art in software testing and named several
best practices that are applied in industrial practice. Besides the already described unit
testing, test-driven development, establishing a test pyramid and test coverage analysis,
successful test strategies should also include test automation and CI. The importance of
test automation and CI in agile testing is also highlighted by Stolberg’s [32] paper on
enabling agile testing through CI. These concepts are described in detail in the following
pages.

Test Automation

Given the fact that „testing consumes 30 to 60 percent of all life-cycle cost, depending
on product criticality and complexity“ (Polo et al. [33]), it is essential to manage and
minimize expenses related to testing. Since testing cannot be eliminated altogether due to
its importance, utilizing test automation is crucial. As opposed to manually testing that
a software meets its requirements, tests should be automated according to the previously
described test pyramid.

A more advanced degree of automation can be reached by automatically generating the
test cases themselves, as outlined by Takanen [21]. Since test case generation can be
modelled as an optimization problem in which a minimal set of small tests that covers
the maximum amount of objectives is searched, different kinds of search algorithms can
be applied to solve it, as described by Arcuri [34]. The set of tests is called the test suite
and objectives to optimize for can be, e.g., line or branch coverage.

One such search algorithm is the Whole Test Suite (WTS) algorithm invented by Fraser
and Arcuri [35]. Previous algorithms generated a test case for each coverage objective
(such as branches in branch coverage) and then merged them into a single test suite.
However, estimating the size of the resulting test suite can be challenging because a test
case designed for one specific goal may implicitly satisfy a multitude of other coverage
goals [35]. Moreover, the presence of infeasible coverage goals can pose a challenge, as
targeting them would result in wasted effort. With the WTS algorithm Faser and Arcuri
proposed, they improved on this approach by evolving all the test cases in a test suite
at the same time while the fitness function takes into account all the testing goals at
once [35].

However, according to Arcuri, the WTS algorithm does not scale well if the search budget
is limited and if there is a large number of objectives, which is often the case for system
level tests. Thus, he created the Many Independent Objective (MIO) algorithm which
improves on these kinds of problems by exploiting characteristics that are specific to
test suite generation [34]. Its core improvement lies in the dynamic tradeoff between

13

2. Theoretical Foundations

exploration and exploitation of the search landscape. At the beginning of the MIO
algorithm, randomly generated test cases are preferred over mutated ones to cover a
larger part of the search space. Then, as the search progresses, exploitation is preferred
over exploration to increase the likelihood of covering single targets. This is because a
test suite that actually covers one target is preferred over a test suite that heuristically
almost covers 100 targets [34].

Another improvement Arcuri implemented to increase the time spent on targets that
have a higher chance to be covered is a technique called feedback-directed sampling. It
involves assigning counters to each non-covered/non-empty target and increasing the
counter each time a test is sampled from the target’s population. When a new better
individual is added to the population, the counter is reset to 0 and the target with the
lowest counter is chosen instead of choosing randomly. Thus, this technique concentrates
on easier targets that are not covered yet [34].

Further Testing Techniques

Over the years, several different techniques for testing software artifacts more efficiently
have emerged. Those relevant for this thesis are explained briefly:

• Combinatorial Testing (CT) leverages the fact that most software bugs or failures
are triggered either by a single parameter, or the interaction between a pair of
parameters, as shown by Kuhn et al. [36]. Interactions between three or more
parameters gradually cause fewer bugs, while being exponentially harder to find.
Thus, by focusing on covering all combinations of two or three parameters, most
bugs can still be reliably found, using only a fraction of the resources compared to
testing all combinations of all parameters (i.e., the whole input space) [36]. Wu
et al. describe this technique more formally [37]. Given a set of n parameters
P = {p1, p2, p3, . . . , pn}, a test case is constructed by assigning each parameter
pi a value from a finite set V . Then, a combination of t parameter values is a
t-way combination and a t-way covering array is a set of test cases, where every
t-way combination is covered at least once. The parameter t is also called coverage
strength [37].

• Property-based testing: As explained by Padhye et al. [38], in property-based
testing the method to test is not called with absolute values defined by the tester,
but with random values generated by the test framework. It must then be checked
that if certain preconditions are met, the properties hold. Properties for a method
concatenating two strings a, b could be that the length of the concatenated string
must be len(a)+len(b), but also that a and b must be a substring of the concatenated
string.

• Constraint-based testing is described by Malburg and Fraser [39] as a method
of generating test data by solving constraints produced by symbolic execution.
Constraints introduced along a path in a program (e.g., by if-clauses) are collected,

14

2.1. Modern Development Process

after which a constraint solver can derive inputs that satisfy the constraints to
follow the path [39].

• Adaptive random testing: As described by Huang et al. [40], the random testing
technique generates test cases by randomly selecting values from the input domain,
i.e., the set of all possible program inputs [40]. They show that this technique
can be improved by exploiting the fact that failure-causing inputs tend to cluster
into contiguous regions [40]. This means that if an input causes a failure, then its
neighbors are also highly likely to cause a failure. Moreover, the same holds for
non-failure-causing inputs: If an input does not cause a failure, then its neighbors
are also highly likely to not cause a failure [40]. Adaptive random testing takes this
into account when generating test cases to improve its failure-detection capability
compared to random testing [40].

2.1.3 Continuous Integration/Continuous Deployment
The concept of CI is one of the key elements in a modern development process [24],
especially if agile methodologies are applied [32]. It was first introduced by Booch [41]
and then adopted by Beck [42] when he proposed XP as a new style of developing software
that is more flexible to changes in requirements. He suggests integrating newly written
code with the current system after no more than a few hours. During this process, the
system must be built from scratch and all tests must succeed, otherwise, the integration
fails and the changes are discarded [42].

In the following years, this concept was refined and widely adopted, as shown by Zhao et
al. [43], with Martin Fowler’s practices of CI [W5] being now widely considered as the
de-facto standard for an effective CI. These 11 best practices are described briefly [W5]:

i) Maintain a Single Source Repository: Source Code Management Tools like Git
allow many developers to work on the same code base. Everything needed to build
the software has to be put into a single repository and one should not overuse the
branch feature. Most importantly, there should be one branch called mainline (in
Git this branch is commonly called main or master) from which every developer
should work off.

ii) Automate the Build: It should be possible to bring in a freshly set up machine,
check out the repository and build and run the system with a single command. No
manual tasks (like copying files or loading database schemas) should be necessary.
Build time should be kept to a minimum, e.g., by selectively choosing which targets
are built based on changed files.

iii) Make Your Build Self-Testing: In addition to building and running the system, it
should also be tested automatically. This is done via an extensive test suite that
checks a large portion of the code for faults. If any test fails, the build should be
aborted.

15

2. Theoretical Foundations

iv) Everyone Commits To the Mainline Every Day: The typical commit process starts
by updating the local working copy with the changes from the mainline. Thereby,
updates from other developers are merged and locally built. If this passes, it can be
pushed to the mainline. By going through this process frequently, conflicts between
two developers are found early and can be fixed promptly.

v) Every Commit Should Build the Mainline on an Integration Machine: To keep the
mainline healthy and take environmental differences from developer’s machines
out of the equation, the mainline should be built on a neutral machine after every
commit. Only after this build passes, the commit should be considered done. This
can either be done manually or automatically via a CI server. A CI server monitors
the repository for new commits and on detection, it checks out the sources, builds
it on an integration machine and notifies the developer about the result.

vi) Fix Broken Builds Immediately: If the mainline build breaks, it should be addressed
immediately to get it running again. Most often, this is done by reverting to the
latest running build and then debugging the problem on a development workstation.

vii) Keep the Build Fast: Rapid feedback is one of the key aspects of CI, therefore,
builds should finish within a reasonable timeframe, e.g., 10 minutes. Since the
usual bottleneck here is testing, Fowler proposes a deployment pipeline or staged
build. Here, multiple builds are done in sequence, where the first one is called the
commit build which should be done quickly. This can be achieved by omitting
certain longer-running tasks, for example, system tests. After the commit build
(including the quick unit tests) passes, other developers can work from the updated
mainline with certain confidence since most bugs should be caught in the first stage.
If it happens that a bug is found only in a later stage, it should also be addressed
with high priority, although not as promptly if it occurs in the first stage. After
the bug is fixed, a test should be added to the first stage so that it will not slip
through in future builds.

viii) Test in a Clone of the Production Environment: Since the point of testing is to find
problems that might occur in the system in a production environment, the testing
environment should resemble the production environment as closely as possible.
Otherwise, with every gap, a risk is added that the system behaves differently
during testing and in production.

ix) Make it Easy for Anyone to Get the Latest Executable: Every stakeholder in a
software project should be easily able to get the latest executable of the system.
This helps especially in agile environments where requirements can change often,
because any stakeholder can see the latest changes and intervene if something seems
not quite right.

x) Everyone can see what’s happening: The team should always be aware of the
current build state, for example, via a continuous display that everyone can see.

16

2.1. Modern Development Process

If an automatic CI process is used, a CI server’s web page can display additional
information like changes that were made.

xi) Automate Deployment: Since the project probably needs multiple environments
to do different stages of testing, the process of deploying the system to a new
environment should be automated. Therefore, it makes sense to reuse these scripts
to also automate deployment to production to speed up the process and reduce
errors.

Figure 2.3: GitLab CI/CD Workflow [W6]

The core workflow of CI/CD following the described best practices is illustrated in
Figure 2.3 [W6]. First, a new branch based on the mainline is created. Upon pushing
code changes to this new branch, a set of scripts that build and test the application is
executed. If the build or the test suite fails, the process is aborted and commits fixing
the code must be pushed. When all errors are fixed and the build and tests succeed, the
application can optionally be deployed to a staging environment. Before merging the
branch back into the mainline, it must be reviewed and approved. Furthermore, there
also exists an optional continuous deployment step, in which the application is built and
tested again (on a neutral machine) and then deployed to production.
In contrast to TDD, there is clear empirical evidence supporting the claimed benefits of
CI, as Hilton et al. [44] have shown. The benefits they found include helping detect faults
early and making developers less worried about breaking the build [44]. In addition,
projects using CI release more than twice as often and integrate pull-requests faster than
projects without CI [44]. Because of these positive outcomes, CI should be treated as
best practice and be widely adopted [44].

17

2. Theoretical Foundations

Note that, while this covers the basic theoretical concepts of CI, a more practical view
on CI and especially GitLab’s CI/CD pipeline is given in Section 5.1.

2.1.4 Pull-Based Development Model
With the trend of distributed software development, a new strategy for merging code
changes from different developers was needed. The so-called pull-based development or
fork and pull model is now widely used in such situations, especially in the open source
community, as shown by Yu et al. [45].

Its core concept is that changes are not pushed to a central repository. Instead, a
developer clones (i.e., forks) a public project to their local machine and implements
their changes. This can be done by anyone without the need for any access rights or
permissions to the source repository (as long as the source repository is public). After
finishing their work, they issue a pull-request (also called merge-request) to the source
repository in order for their changes to be merged back. The maintainers of the project
can thus selectively choose the changes they want to implement by accepting or rejecting
pull-requests. As keeping up with the volume of pull-requests can be difficult, CI is
widely adopted to build and automatically test all incoming pull-requests [45].

2.2 Web Application Interfaces
Kim et al. [6] show that the trend in software development to move away from large,
monolithic applications in favour of smaller services that communicate with each other,
as well as the rise of cloud computing, has led to APIs such as REST and GraphQL
becoming quite popular. In addition, clients often can access modern web services via an
API they provide [6].

2.2.1 REST
The REST architectural style was described by Fielding in his PhD thesis [46]. Rodríguez
et al. [47] summarize its core principles, which are „aimed at fostering scalability and
robustness of networked, resource-oriented systems based on HTTP“:

• Resource addressability: APIs manage resources, where a resource can be „any
information that can be named“ [46], e.g., a person, a pet or a collection of other
resources. Each resource is uniquely identifiable, e.g., via a Uniform Resource
Identifier (URI) or Uniform Resource Locator (URL).

• Resource representations: Clients work with representations of resources and do
not need to know the internal format. Content-type headers in the HTTP messages
enable the client and server to negotiate representations to use (e.g., JSON or
XML).

18

2.2. Web Application Interfaces

• Uniform interface: The HTTP protocol with its standard methods (GET, POST,
DELETE, etc.) dictates the behaviour of access and manipulation of resources.
For example, a GET request should be used to retrieve a resource, while a POST
request should be used to create a new one.

• Statelessness: The server does not store any state information. Every request must
contain every information needed by the API to process it.

• Hypermedia as the engine of state: Resources can be linked to other resources,
allowing the client to navigate relationships.

While there exist many different specification formats to describe REST APIs, the
OpenAPI specification is by far the most widely used one (see Hatfield-Dodds and
Gygalo [48]). Its details are described in the next section.

2.2.2 OpenAPI
An OpenAPI (formerly known as Swagger) specification describes a REST service in
a machine-readable format, e.g., YAML or JSON. It defines the requests available to
retrieve or modify resources and which responses to expect from the server. An example
for a pet store API from the official OpenAPI documentation [W7] is given in Figure 2.4.

Figure 2.4a describes the representation of a pet. It is of type object with the properties
id, name, tags and status. The id is of type integer with the format int64. Name and
status are strings, whereby status is an enum that can be assigned the values available,
pending or sold. The tags property is of type array which contains several Tag items,
denoted by the $ref key. Thus, a Tag is another defined schema just as the described Pet
schema.

Figure 2.4b defines a resource available in the API, more specifically, the endpoint for
retrieving the representation of a single pet object. Line 3 describes the HTTP method
to use, lines 5–10 define that a path parameter with the name petId of type integer and
format int64 is required. The endpoint has three expected responses: Code 200 with
the representation of the retrieved pet in JSON format, code 400 if an invalid id (e.g., a
string) was supplied, and code 404 if no pet could be found for the given id.

In addition to schemas and paths, an OpenAPI document has an OpenAPI object as
its root node, defining important meta data like the version number of the OpenAPI
specification the document uses, a summary and description of the purpose of the API
and servers it is reachable at [W8]. To specify security mechanisms (e.g., authorization
via a token in the HTTP header) used by the API, a security requirement object can be
declared [W8].

There are many tools that build upon the OpenAPI specification to automatically generate
clients that consume the API, auto-generate documentation from source code, or provide
a UI to interact with the API in the browser [W9].

19

2. Theoretical Foundations

1 Pet:
2 required:
3 - name
4 type: object
5 properties:
6 id:
7 type: integer
8 format: int64
9 example: 10

10 name:
11 type: string
12 example: doggie
13 tags:
14 type: array
15 items:
16 $ref: ’#/components/

schemas/Tag’
17 status:
18 type: string
19 enum:
20 - available
21 - pending
22 - sold

(a) OpenAPI Schema Definition

1 paths:
2 /pet/{petId}:
3 get:
4 parameters:
5 - name: petId
6 in: path
7 required: true
8 schema:
9 type: integer

10 format: int64
11 responses:
12 "200":
13 content:
14 application/json:
15 schema:
16 $ref: ’#/components/schemas/Pet’
17 "400":
18 description: Invalid ID supplied
19 "404":
20 description: Pet not found

(b) OpenAPI Path Definition

Figure 2.4: OpenAPI Specification Document [W7]

2.3 Software Security

McGraw defined software security in 2004 as „the idea of engineering software so that it
continues to function correctly under malicious attack“ [49]. With the increasing use of
software components in basically every field of modern society, it is now more clear than
ever that software security should be an integral part of modern software development,
as shown by Khan et al. [50].

A related concept is that of software robustness which is defined by the IEEE standard
610.12-1990 as „the degree to which a system or component can function correctly in the
presence of invalid inputs or stressful environmental conditions“ [16]. There are more
formal and exact definitions of software security and robustness, however, for the scope
of this work these informal definitions are adequate. Although both definitions deal with
software functioning correctly under malicious attack or in presence of invalid inputs or
stressful conditions, there is still a slight semantic difference. As shown by Laranjeiro et
al. [51] and Miller et al. [2], issues in the robustness of a software component can lead to
security issues. However, not every security issue can be found by testing the underlying
software’s robustness.

20

2.3. Software Security

According to Samonas and Coss [52], the main goals of software security from a practi-
tioner’s point of view are to protect the confidentiality, integrity and availability (also
known as CIA triad) of the system. Confidentiality ensures that only authorized parties
can access information, whereas integrity guarantees that no unauthorized party can
modify information. A system functioning correctly is subsumed into the term availability,
meaning that an intruder cannot prevent authorized users from accessing information [52].
As this is a rather limited and technical view, over the years socio-technical extensions,
for example, authenticity and non-repudiation, have been introduced [52]. The inclusion
of additional tenets (e.g., privacy or trust) is an ongoing debate. As such additions
are often directly related to one of the original security goals or the intersection of two
of them, Samonas and Coss [52] plead to re-define the semantics of the original three
security goals to incorporate these enhancements [52].

2.3.1 Attacks on Software
AlBreiki and Mahmoud [53] argue that software is the main cause of computer security
issues and that hackers exploit security vulnerabilities rather than creating them. These
vulnerabilities in software applications stem from poor design and implementation of
software systems [53]. Therefore, it is crucial to understand which types of vulnerabilities
can be present in a software.

Since the case study presented in Chapter 4 deals with vulnerabilities in web applications,
the most important threats present on the web are briefly explained. One project which
classifies the most critical security risks in web applications and is also widely accepted
in academic literature according to Fredj [54], is the Open Web Application Security
Project (OWASP) [W10]. As laid out by Böhme et al. [55], many of the present works on
fuzzing use simple bug oracles (see Section 2.6) to, e.g., detect program crashes. Thus,
from the top ten web application security risks according to OWASP, the following are
highly relevant for this work because they can be detected via such simple strategies.

Broken Access Control

This refers to a situation where a resource is inadequately safeguarded, resulting in
users being able to access, modify or even destroy it, despite not having the appropriate
authorization. A classic example is a resource that should only be accessible by user A,
but can also be directly accessed by user B via its unique identifier [W10].

Consider, for example, a user with an internal integer ID with the value 42 in an
application. They can update their profile via a POST request to /users/42. Now
a curious adversary might try what happens if they send the same POST request to
/users/41. If the application does not correctly control the access, a user might be able
to update another user’s profile this way. This can even lead to an adversary taking over
other users’ accounts if they can update the victim’s e-mail address to one they control.

Another exploit of broken access controls is the path traversal attack as described by
Doupé et al. [56]. In their example, a user can upload a photo which a vulnerable web

21

2. Theoretical Foundations

application saves to a subdirectory inside an upload folder. The user can specify a tag
for the photo which the application will use as name for the subdirectory. If the user
supplies a tag starting with “../../”, they can escape the subdirectory and potentially
overwrite files outside the upload directory [56].

Another type of attack is the exploitation of the redirection to untrusted sites, i.e.,
open redirects [W11]. Websites can redirect to other websites by setting the Location
header in the response, upon which the browser receiving this header will follow the
redirect. If a redirect URL can be manipulated by an attacker and is not validated
properly, they can redirect to arbitrary websites. For example, an open redirect in
https://trusted.example?redirect_url=attacker.example could be sent
to phishing victims of trusted.example. Due to the initial link coming from a trusted
website, „phishing attempts have a more trustworthy appearance“ [W11].

Injection

If user-supplied input is not properly validated, filtered, or sanitized and then used in
dynamic queries, system calls or similar, this might lead to injections. The OWASP project
recommends including static, dynamic and interactive application security testing tools
in the CI/CD pipeline to prevent injection vulnerabilities from entering production [W10].
Two common examples of this category are Structured Query Language (SQL) injections
and Cross-Site-Scripting (XSS).

An application is vulnerable to SQL Injection (SQLi) if it directly uses unsanitized
user input in an SQL statement, such that an attacker can „manipulate, create or
execute arbitrary SQL queries“ [56]. For example, if a query is created with simple
string concatenations, e.g., “SELECT * from users where id = ” + user_input it is
vulnerable if no measures are taken to limit the user input to not contain characters
that are interpreted as SQL. If no sanitizing is happening, a malicious user can directly
manipulate the SQL statement by changing the contents of the user_input variable. To
show all users, they can make use of the fact that “1=1” is always true and combine
this with an OR clause. The payload would, therefore, be “1 OR 1=1” which executes
the statement “SELECT * from users where id = 1 OR 1=1”, thus, retrieving all users
from the database. By using payloads with the UNION operator they could even retrieve
records from different tables. An SQLi can be mitigated by filtering or sanitizing user
input before the query is executed. This eliminates or escapes dangerous characters that
would otherwise be interpreted by the database.

XSS attacks exploit unsanitized user input that is rendered in the Document Object
Model (DOM) of a web browser, thus, allowing an attacker to execute code on a vic-
tim’s machine in the context of the application [56]. A simple example is a website
including a script tag as follows: <script>document.write(“<h1>Hello, “+getQuery-
Param(“name”)+”</h1>”);</script>, where the method getQueryParam retrieves the
value of the “name” query parameter from the URL. If a malicious user calls the website
with the query parameter “name=</script><script>document.alert(document.domain);”,

22

2.3. Software Security

it will be rendered inside the browser and the newly created script will be executed.
An attacker can send a link containing such a malicious query parameter and execute
arbitrary JavaScript in the context of the user who opens the link. Payloads include send-
ing cookies to an attacker-controlled webserver to steal the user’s session or interacting
directly with the application in the user’s context to perform malicious actions. Whereas
in the illustrated example (called reflected XSS) a user must open a link, in a stored XSS
the source of the untrusted input comes directly from the application itself instead of
from the query parameters. This makes every user that visits a site of an application
where the stored XSS payload gets rendered vulnerable. Again, this can be mitigated by
escaping dangerous characters like “<” and “>” by using their HTML entity codes “<”
and “>”.

Memory Management Errors

Although not included among the top ten most significant risks, OWASP still considers
memory management issues „well worth the effort to identify and remediate“ [W10].
While web applications are usually written in memory-safe languages, these languages
are written in languages that are not memory-safe and might contain memory issues
that can be exploited [W10]. In addition, web applications using libraries that execute
a binary application (e.g., an image manipulation tool that scales images uploaded by
users) may expose themselves to potential buffer overflow attacks [W12]. Furthermore,
Butt et al. [57] show that despite buffer overflow attacks existing for more than three
decades, they are still a major threat and were the most frequently reported vulnerability
to the Common Vulnerabilities and Exposures (CVE) program in 2019 [57]. Hence, the
most common memory management errors are explained briefly:

• Buffer Overflow: The simplest form of a buffer overflow is the stack overflow [57].
When programs call a function, the address to be returned to is saved on the
function stack frame. Local buffers are created on the same stack and if the bounds
are not checked properly when writing to these buffers, an attacker can overwrite
the current function stack frame [57]. By using a well-crafted payload, an attacker
can write malicious code (e.g., a shellcode which opens a remote shell on the victim
machine) into the stack frame and set the return address to the beginning of this
payload [57]. Thus, when the function returns, the overwritten return address
is read from the stack and the program continues with executing the malicious
code [57].

• Use-after-free: Akritidis [58] describes use-after-free vulnerabilities as just as danger-
ous as buffer overflows, because they might allow an attacker to execute arbitrary
code. Whereas in a buffer overflow attack the memory is accessed outside its
prescribed bounds (i.e., spatial memory safety violation), in a use-after-free attack
the memory is accessed after it is no longer valid (i.e., temporal memory safety
violation) [58]. If a pointer is left pointing to freed memory and an attacker can
control the memory area the pointer is referencing, they can manipulate the data

23

2. Theoretical Foundations

being read after the pointer is de-referenced again by the program [58]. While this
was long dismissed as mere denial-of-service threats, Akritidis shows that this type
of vulnerability has been used in the wild to execute arbitrary code on vulnerable
targets [58].

• Integer Overflow: An integer overflow occurs when trying to store values in integer
variables that are greater than the maximum value the variable can hold. For
example, a signed integer with 32 bits has a maximum value of 2,147,483,647. If this
value is exceeded, it will wrap around and start at the minimum value. As described
by Dietz et al. [59], this is not a problem if the behaviour is well-defined, as is the
case with most integer representations. However, with unsigned integers in C and
C++, the behaviour is undefined which can result in serious vulnerabilities and
even arbitrary code execution [59]. For example, an integer overflow vulnerability in
OpenSSH which led to a buffer overflow allowed unauthenticated remote attackers
to execute arbitrary code [W13].

2.3.2 Software Security Engineering
In the beginnings of software engineering, security has not been a concern for a long
time. The academic discourse on how to build software securely started only in 2001 [49].
Over 20 years later, the field has come a long way and various methods, techniques
and models have been proposed. Jafari and Rasoolzadegan [60] argue that „software
security patterns are now a well-established means to encapsulate and communicate
proven security solutions and introduce security into the development process“.

Nevertheless, Khan et al. [50] have shown in a systematic mapping study that despite this
variety of security approaches exists, they are often not explicitly included in most software
development processes. They make a strong argument for security being integrated into
every step of the SDLC [50]. Traditionally, this is done by following one of the many
available models and frameworks, e.g., McGraw’s Secure Systems Development Life Cycle
or the Systems Security Engineering Capability Maturity Model [50].

However, according to Rindell et al. [5], these security practices are often in conflict with
agile software development methods. More specifically, the use of different agile tools had
a measurable effect on the choice of security engineering practices. Security frameworks
often come with the need for extensive security reviews, audits and documentation,
thereby violating the Agile Manifesto’s core values. The key results of their study are
that most respondents use agile and security activities together, whereby agile activities
mostly focus on requirements engineering, implementation and extensive testing, and
security activities concentrate on the verification phase [5]. They found that the perceived
security impact of security engineering activities is bigger the earlier it is applied and
that automated testing tools in combination with specific security testing methods and
release-time security audits are regarded as most effective [5].

Fitzgerald and Stol [1] even coined the term „Continuous Security“ which „transforms
security from being treated as just another non-functional requirement to a key concern

24

2.3. Software Security

throughout all phases of the development lifecycle and even post-deployment, supported
by a smart and lightweight approach to identifying security vulnerabilities“.

2.3.3 Software Security Testing

Testing software for security is an incredibly difficult task, particularly due to two of the
testing principles outlined in Section 2.1.2. These principles state that testing can only
reveal the presence of bugs, not their absence, and that exhaustive testing is impractical.
This means that it cannot be completely ruled out that there are bugs in the software,
even after thorough testing, since most of the time, the input space is just too large
so that one cannot test all possible input combinations in their various sequences in a
reasonable timeframe.

Thompson [61] further describes why security testing is hard and also highlights the
differences between traditional software testing and security testing. In Figure 2.5, the
intended functionality of an application is depicted as a circle and the actual behaviour is
illustrated by an amorphous shape superimposed on it. As a project progresses throughout

Figure 2.5: Intended Versus Implemented Software Behavior in Applications by Thomp-
son [61]

its development stages, bugs are inevitably introduced [61]. This is represented by the
blue section where the actual behaviour does not meet that of the specification. These
type of deviations are fairly easy to detect via traditional testing in which the intended
functionality is verified [61]. However, there is another type of bugs that are not as easy
to detect because they introduce unanticipated functionality, i.e., side-effects, which are
illustrated by the red area in Figure 2.5. Because they actually do cover the intended
functionality as per the specification, traditional testing often misses such cases. Even as

25

2. Theoretical Foundations

early as 2003, Thompson advocated for the development of new tools that concentrate
on this particular area [61].

Over the next two decades, several testing tools and techniques specializing on finding
security issues have emerged. More specifically, security testing methods in the verification
and release phase of the SDLC are now perceived as the most effective means to secure
software components by software developers [5]. In the verification phase, common testing
practices include automated testing tools, security-specific test cases, penetration testing,
dynamic analysis and fuzz testing (see Section 2.4). However, while the use of automated
testing tools has the highest usage rate and the highest perceived impact, there is a large
discrepancy between the use and perceived impact of fuzz testing, i.e., it is deemed highly
effective but is never used by most respondents [5]. Rindell et al. [5] explain this with the
high effort needed to build and configure a fuzzing environment. As laid out in Chapter 1,
one of the core objectives of this work is how to overcome this discrepancy and provide a
way to apply fuzzing continuously without introducing too much configuration overhead.

Similar to Rindell et al. [5], Takanen [21] describes fuzzing as a very effective, proactive
method to discover software vulnerabilities. He explains how the fuzzing process fits
into the SDLC as described in Section 2.1, which also fits the problem described by
Thompson. In the requirements gathering phase, it is defined how the software should
function, resulting in positive requirements. Negative requirements, on the other hand,
define how the software should not behave. This is similar to Thompson’s illustration,
whereas positive requirements can be seen as the circle, and negative requirements are
everything outside of it, i.e., unintended side-effects. The goal of fuzzing is not to test
the program’s correct behaviour [21], which should be covered by manually written unit,
integration or system tests (see Section 2.1.2). Instead, the challenging area of negative
requirements is the main focus of fuzzing [21], which is described in detail in the next
section.

2.4 Fuzz Testing
The term fuzz testing or fuzzing was first introduced by Miller et al. [2] during a class
project at the University of Wisconsin in 1988. They describe it as a process which
automatically tests software artifacts with randomly generated input data (called the
fuzz) to reveal unexpected behaviour, i.e., crashes or the program becoming unresponsive.

As shown by Kelly et al. [62], random testing dates as far back as the 1950s when
computers were as big as a room and punched cards were the main source of their
programs and data inputs. Back then, it was standard practice to test early computer
programs with random number punch cards or cards taken from the trash [62]. While
this random testing methodology was not always seen as effective, Duran and Ntafos [63]
showed in 1984 that random testing can indeed be a cost-effective and useful validation
tool.

Despite these earlier publications on random testing, Miller et al. are now widely consid-

26

2.4. Fuzz Testing

ered the inventors of fuzz testing. According to them, the idea stems from the early days
of the internet when one of the authors was logged on to his work computer via a dial-up
line on „a dark and stormy night“ [2]. Due to the rain affecting the phone line and
the resulting noise scrambling the commands the author was typing, several programs
crashed or hung, including basic Unix utilities. This was because they could not handle
these unusual characters introduced by the noise. Motivated by this scenario, Miller et al.
conducted an experiment in which they were able to crash more than 24% of 90 different
utility programs on seven different versions of Unix by testing them with random input
strings. They also noted that one of the bugs the Morris worm exploited could have been
found via fuzz testing, thus, highlighting the relationship between software robustness
and software security.

In 1995, Miller et al. [64] published a follow-up paper in which they revisited fuzz testing.
They found that the software reliability of Unix utility programs improved compared
to their previous versions. However, with „only“ 18–23% crashing or hanging in 1995,
compared to 25–33% in 1990, the failure rate still was severe. In addition to commercial
systems, they tested the freeware GNU and Linux and were surprised that the freely
available ones with a failure rate of 7–9% were much more reliable. They attributed this
to the fact that commercial software must run on many platforms, configurations and
operating system versions. Another explanation they pointed out was that long delays in
corporate software (from an initial bug report to testing to releasing a repair one year can
go by) discouraged programmers from fixing bugs. Hence, by the time a fix was released
to the public, the programmer has long forgotten the bug and got no gratification from
solving a particular person’s problem.

Over the years, the term fuzzing has evolved slightly and there are now multiple definitions
and methods for it. For example, in the beginning, only random data was used to test
programs [2], whereas modern fuzzers apply more enhanced test case generation strategies,
as demonstrated by Beaman et al. [65]. Bekrar et al. [66] summarized different definitions
into a single one: „Fuzzing is a security testing approach based on injecting invalid or
random inputs into a program in order to obtain an unexpected behaviour and identify
errors and potential vulnerabilities.“

Since this definition is still rather ambiguous, the terminology of fuzzing as described by
Manès et al. [67] which will be used in the remaining of this work is explained briefly.

Definition 1 (Fuzzing) Execution of the Program Under Test (PUT) using input(s)
sampled from the fuzz input space that protrudes the expected input space of the
PUT [67].

Definition 2 (Fuzz Testing) Fuzz testing is the use of fuzzing to test if a PUT violates
a correctness policy [67].

Definition 3 (Fuzzer) A fuzzer is a program that performs fuzz testing on a
PUT [67].

27

2. Theoretical Foundations

Definition 4 (Fuzz Campaign) A fuzz campaign is a specific execution of a fuzzer on
a PUT with a specific correctness policy [67].

Definition 5 (Bug Oracle) A bug oracle is a program, perhaps as part of a fuzzer,
that determines whether a given execution of the PUT violates a specific correctness
policy [67].

Definition 6 (Fuzz Configuration) A fuzz configuration of a fuzz algorithm comprises
the parameter value(s) that control(s) the fuzz algorithm (see Algorithm 2.1) [67].

Furthermore, Klooster et al. provide two definitions regarding the compilation and
execution of fuzzers:

Definition 7 (Fuzzing Harness) A fuzzing harness acts as the main entry point for
the fuzzer to reach the functionality intended to test [10].

Definition 8 (Fuzz Target) A fuzz target is a compiled fuzzing harness, i.e., the exe-
cutable file resulting from the compilation of the harness [10].

For each functionality in a software component that should be fuzzed, a harness needs to
be written which provides access to this functionality [10]. Hence, many fuzzing harnesses
and, therefore, fuzzing targets can exist for a single software library [10].

In addition to a clear definition of fuzzing terms, Manès et al. also developed a general
algorithm of fuzz testing that accommodates existing fuzzing techniques [67].

Algorithm 2.1: Fuzz Testing Algorithm by Manès et al. [67]
Input: C, tlimit

Output: B // a finite set of bugs
1 B ← ∅;
2 C ← Preprocess(C);
3 while telapsed < tlimit ∧ Continue(C) do
4 conf ← Schedule(C,telapsed,tlimit);
5 tcs ← InputGen(conf);
6 // Obug is embedded in a fuzzer
7 B′,execinfos ← InputEval(conf,tcs,Obug);
8 C ← ConfUpdate(C,conf,execinfos);
9 B ← B ∪ B′;

10 end
11 return B

28

2.4. Fuzz Testing

The Algorithm 2.1 takes as input a set of fuzz configurations C and a time limit tlimit

after which the fuzzing campaign is stopped. The output is a finite set of bugs B.

Preprocess is called on the set of fuzz configurations which may or may not update the
fuzz configurations, depending on the fuzzer implementation. Code instrumentation (see
Section 2.1.2) can be added to the PUT or the execution of seed files can be measured in
this step [67].

The core of the algorithm is the while loop in line 3. Each iteration of it is called a fuzz
iteration. The execution of InputEval, which runs the PUT on a test case, is called a
fuzz run. A fuzzing campaign is stopped if the elapsed time reaches the specified time
limit or if Continue (C) returns false, which might be the case in white-box fuzzers
that reached every possible path.

The Schedule function takes as input the set of fuzz configurations as well as the
elapsed time and the time limit. It returns the single fuzz configuration that will be used
in the current fuzz iteration.

InputGen takes the current fuzz configuration conf as input and returns a set of specific
test cases tcs to be used for the evaluation of the PUT. There exist several different
strategies for how to derive tcs from conf, e.g., grammar- or mutation-based. They are
described in more detail in Section 2.5.3.

The actual execution of the PUT happens in InputEval. It takes as input the current
fuzz configuration, the concrete test cases tcs and a bug oracle (see Section 2.6). It
executes the PUT using tcs as input and the bug oracle evaluates if any of the executions
violate the given correctness policy. The set of discovered bugs B′ and some additional
information on each of the fuzz runs collected in execinfos are returned.

In ConfUpdate, the fuzzing configurations can be updated based on the information on
the fuzz runs in execinfos. For example, many grey-box fuzzers remove unnecessary fuzz
configurations in this step [67].

A flowchart visualizing the described algorithm is given in Figure 2.6. The Preprocess
step in the algorithm translates to the first step after start in the visualization. In the
next step, the main fuzzing loop starts. A fuzz configuration is selected with which the
test inputs are generated by using a seed, model or grammar (InputGen). Then, the
test cases are applied on the test program and the bug oracle decides for each execution
if an issue was found. This step corresponds to the InputEval step in the algorithm
and the last step of the main fuzzing loop translates to the ConfUpdate step in the
algorithm. The main fuzzing loop is executed until a predefined time limit is reached or
until the fuzz configurations are exhausted.

As exhaustive testing is rather impractical (see Section 2.1.2), for most programs the
time limit is the decisive factor on when a fuzzing campaign is terminated. Within
academic circles, it is generally recommended to allocate a minimum of 24 hours for a
comprehensive fuzzing campaign [10]. Section 3.2 offers insights on how to reduce the

29

2. Theoretical Foundations

duration of this resource and time-intensive process when fuzzing continuously, although
it involves making certain trade-offs.

Figure 2.6: Fuzzing Algorithm Visualization [65]

2.5 Classification of Fuzzing Techniques

In the past years, several attempts were made to classify fuzzing techniques. The most
recent classification by Beaman et al. [65] refines and combines the previous ones from Li
et al. [3] and Manès et al. [67]. As shown in Figure 2.7, Beaman et al. classify fuzzers
based on four aspects: (i) Test Case Feedback, (ii) Knowledge of Application Structure,
(iii) Test Case Generation Method and (iv) Program Exploration Approach.

The following sections describe each of them in detail.

30

2.5. Classification of Fuzzing Techniques

Figure 2.7: Classification of Fuzzers by Beaman et al. [65]

2.5.1 Test Case Feedback

Beaman et al. [65] differentiate between fuzzers based on their ability to adjust their test
input depending on the PUT’s execution. Thus, fuzzers can be classified either as smart
or dumb.

Dumb fuzzers use exactly one strategy to sample inputs from the fuzz input space and
do not change it, no matter how the PUT reacts to it [65]. They usually have one big
advantage: Since they do not use any information from the PUT (except to detect when
it failed), dumb fuzzing campaigns can easily be automated and applied to many different
programs.

Smart fuzzers, on the other hand, do change their sampling strategy based on the PUT’s
behaviour, leading to test cases more often finding a bug and, therefore, decreased testing
time [65]. For example, a smart fuzzer might detect that a test case containing the string
„ABC“ reaches deeper into the program and, therefore, achieves greater code coverage.
It will then use this information and adjust its input sampling strategy to incorporate
this string with greater probability.

Early fuzzers (e.g., Miller et al.’s fuzz tool [2]) tend to fall into the dumb category, whereas
newer tools are mostly smart [65]. However, it is interesting to note that even in 2020,
Miller et al. were still able to get failure rates from 12–19% (compared to 18–23% in
1995) with their original dumb fuzzing strategy applied to 80 utility programs on Linux,
MacOS and FreeBSD [68].

31

2. Theoretical Foundations

2.5.2 Knowledge of Application Structure

Another commonly used classification is the fuzzer’s knowledge of the PUT’s internal
structure [65]. Based on the amount of source code or execution state information a
fuzzer utilizes, it is classified as black-box, white-box or grey-box [65].

Black-box fuzzers do not have any information about the PUT besides the input with
which it is executed and the corresponding output. They are the most simple ones and
many early types of fuzzers fall into this category.

White-box fuzzers, on the other hand, utilize a mechanism called symbolic execution [65]
as explained in Section 2.1.2. Using basic block or branch coverage information, a
white-box fuzzer can systematically explore the state space of the PUT [67], thus, guiding
it to increase code coverage.

In fuzz testing there also exists a grey-box approach which is somewhere in between white-
and black-box [67]. Thus, grey-box fuzzers utilize some information about the PUT’s
internals, but in a more simplistic or approximated way than white-box fuzzers [67].
They can perform lightweight static analysis of the PUT or gather information on code
coverage via instrumentation (see Section 2.1.2) to generate input that reaches deeper
into the code faster than their black-box counterpart [67].

2.5.3 Test Case Generation Method

Fuzzers can also be classified by their test case generation method, which can either be
random, mutation-based or generation-based [65].

A random generation method simply generates input at random [65]. Miller et al.’s fuzz
tool [2] is a prime example of this since all it does is generate a stream of random characters.
While a fuzzer with a random input generation approach is simple to implement, it has
one big disadvantage. When testing a program that expects an input of a certain type,
for example, a JPEG image, it most probably validates at least the magic bytes of the
given input file to ensure the correct file type. With the naive, random approach it would
take many iterations just to pass this initial sanity check, and then it would most likely
fail the next one.

Another approach is the mutation-based one where an initial set of valid inputs called
seeds is created [65]. In the example above, a seed could be a valid JPEG image accepted
by the PUT. Starting with these seeds, the fuzzer then mutates them in various ways,
e.g., by randomly flipping or shifting bits around [65].

Generation-based fuzzers also do not start from scratch. However, unlike the mutation-
based fuzzers, they do not use an initial set of valid inputs but utilize an underlying
model to generate these valid inputs [65]. For example, they could have a grammar for a
valid JPEG image with which they can generate input accepted by the PUT [65].

32

2.6. Bug Oracles and Sanitizers

2.5.4 Program Exploration Approach
The last distinction Beaman et al. [65] make is the way a fuzzer explores a program, which
can either be directed or coverage-based. They are similar in that they use code-coverage
information, however, how they use this information is different.

The goal of coverage-based fuzzers is to test as much of the code base as possible, whereas
directed fuzzers are driven to test specific parts of the code [65]. While directed ones are
usually faster to reach a certain area of the code, coverage-guided fuzzers can potentially
find more bugs [65].

There exist several strategies for coverage-guided fuzzers to keep track of their progress.
They are often used in white- or grey-box fuzzers via code instrumentation [65] (see
Section 2.1.2). Simple approaches such as line or basic block coverage track the discovery
of new lines or basic blocks the fuzzer reached, where basic blocks are small amounts of
code defined by the fuzzer [65]. More complex strategies are branch-based. Like basic
block coverage, basic branch coverage also keeps track of discovered blocks. However,
it also adds the previously discovered block, thus, creating tuples which are used to
measure progress [65]. N-gram branch coverage takes this process one step further by
tracking not only the last two blocks but the last N blocks [65]. With a large enough N,
the whole path of visited blocks is considered, which is why this approach is often called
path coverage metric [65].

If the fuzzer also analyzes the data present in the call to a branch, Beaman et al. speak of
context-sensitive branch coverage [65]. Similarly, memory-access-aware branch coverage
utilizes memory access or state information to improve coverage and identify additional
vulnerabilities, such as memory corruption [65].

2.6 Bug Oracles and Sanitizers
In software testing, the test oracle problem describes the challenge of distinguishing a
normal, desired software behaviour from an incorrect behaviour [17]. Similarly, in fuzz
testing, the bug oracle is responsible for determining whether a given execution of the
PUT violates a specific correctness policy [67].

Since the canonical security policy used in fuzzing is whether a program terminates
unexpectedly [67], most fuzzers simply detect if a program crashes or not, as shown by
Böhme et al. [55]. Naturally, this detects many memory errors, since overriding a data
or code pointer with an invalid address causes a segmentation fault or abort when the
pointer is de-referenced [67]. While this approach is simple to implement since no code
instrumentation is needed, it also has the drawback that many possible faults which do
not lead to program termination are not detected.

This is why researchers have proposed sanitizers, a way to further improve the detection
of specific classes of bugs, such as buffer overflows, use-after-free errors or signed integer
overflows by adding code during compilation that crashes the program when a failure is

33

2. Theoretical Foundations

detected [67]. Therefore, by combining fuzzers with sanitizers, fuzzers can not only detect
program crashes but also undesired program behaviour which might lead to security
vulnerabilities.

Manès et al. [67] have found four separate categories that well-used sanitizers or bug
oracles fall into: (i) Memory and Type Safety, (ii) Undefined Behaviours, (iii) Input
Validation and (iv) Semantic Difference.

2.6.1 Memory and Type Safety

Memory and type safety sanitizers are used to detect addressability issues such as use-
after-free errors or buffer overflow errors as described in Section 2.3.1. Furthermore,
they can detect initialization order bugs or memory leaks [67]. A classical sanitizer
which detects both, spatial and temporal memory errors is AdressSanitizer or ASan [67].
It instruments the code to create a shadow memory region that is linked to the main
application memory, thus, manipulating a byte in the main memory also writes a value to
the corresponding shadow memory [W14]. This allows it to quickly check each memory
access for validity [67]. Compared to the non-instrumented code, ASan slows down
program execution by 73% [67].

2.6.2 Undefined Behaviour

Undefined behaviour sanitizers are used to detect behaviours that are ambiguous in their
language specification. This might lead to different compilers (or even different versions
of the same compiler) behaving differently, which is prone to bugs if a compiler does
not match the developer’s expectation [67]. The classical sanitizers in this category are
Memory Sanitizer (MSan), Undefined Behaviour Sanitizer (UBSan) and Thread Sanitizer
(TSan). MSan detects uses of uninitialized memory in C and C++, UBSan can detect
undefined behaviour such as division by zero or integer overflows and TSan is able to
detect data races and deadlocks [67].

2.6.3 Input Validation

The third category of sanitizers is input validation. Detecting injection vulnerabilities
such as XSS and SQL injections (see Section 2.3.1) is not a trivial task since the bug
oracle has to understand the behaviour of complex parsers used in browsers or database
engines [67]. One approach to detect XSS attacks was introduced by Duchene et al. [69]
with KameleonFuzz. They extract the DOM using a real browser and then compare
the tree to manually specified patterns to decide whether a test input triggered an XSS
vulnerability. A more modern approach is used by Rooij et al. [70] in their tool webFuzz.
Their payloads are designed to execute the JavaScript alert function with a distinct
identifier, e.g., alert(’distinct_id_1’) [70]. They retrieve HTML responses and then apply
a lightweight JavaScript code analysis tool named esprisma to infer if a function call to
alert is present in the response [70]. If it is, an XSS vulnerability was found and via the

34

2.6. Bug Oracles and Sanitizers

distinct identifier, they can match the response to the initial request that triggered the
XSS [70].

To detect SQL injection attacks, similar tricks can be applied [67]. Since it is not reliably
possible to detect SQL injections from the response of a web application, µ4SQLi utilizes
a database proxy that acts as oracle [67]. This oracle needs to be trained on normal SQL
queries, for example, those resulting from an existing test suite. It will then raise alerts
if it identifies SQL statements it has not learned before. As this can lead to many false
positives, the results must be manually reviewed.

2.6.4 Semantic Difference
The last category of bug oracles described by Manès et al. is semantic difference, also
known as differential testing. This technique leverages the fact that if two similar but
not identical programs produce different output on the same input, it might indicate a
bug [67]. For example, one could use differential fuzz testing on two versions of a program
implemented in different programming languages. Both programs are executed on the
same fuzz input and if the output does not match, this may point to a fault in one of the
programs [67].

Although Manès et al. have not considered REST-based fuzzers (see Section 3.3.2) in their
study, tools comparing the PUT’s response against a previously defined specification (e.g.,
an OpenAPI specification) also fall under this category. Utilizing this information, it is
possible to detect complex vulnerabilities such as broken access controls (see Section 2.3.1).
For example, if the specification defines that a valid access token must be sent along
the request to receive a successful response but a fuzzer receives a successful response
despite not sending an access token, the fuzzer can detect this discrepancy. Note that,
while the semantic difference bug oracle is the most powerful one, a correct reference
program or specification representing the ground truth must already exist, which is often
impracticable, or not feasible at all. Table 2.2 shows the bug oracles explained above
and the vulnerabilities presented in Section 2.3.1 which each oracle is able to detect.

Vulnerability Mem+Type Safety Undef. Beh. Input Val. Sem. Diff.

Broken Access Control
SQLi
XSS

Buffer Overflow
Use After Free

Integer Overflow

Table 2.2: Detectable Vulnerabilities per Bug Oracle

35

CHAPTER 3
From Fuzzing to Continuous

Fuzzing

In this chapter, the term Continuous Fuzzing and the benefits it brings are discussed.
Several studies on fuzzing solutions used in real-world settings or in CI environments
are presented to identify the requirements and challenges of continuous fuzzing. Then,
several fuzzing tools are introduced and their theoretical functioning will be explained
to understand how they work. Lastly, existing continuous fuzzing solutions and their
architectures are explored.

3.1 The Idea of Continuous Fuzzing
There is clear evidence that short feedback cycles lead to greater software quality and
developer productivity [31] and Miller et al. [68] conclude that „it is now well understood by
the software community that reliability is the foundation of security and that fuzz testing
is a powerful first means of exploration on the path to finding software vulnerabilities“.
In 2018, Li et al. [3] even called fuzzing „the most effective and efficient vulnerability
discovery solution currently“.

The idea behind continuous fuzzing is to combine the benefits of tight feedback cycles
of CI and the vulnerability finding ability of fuzz testing by integrating a fuzzer into
the CI/CD pipeline. The feedback loop is then ideally near real-time: If a programmer
tries to push changes containing a bug to the repository, the CI/CD pipeline starts the
build, test and fuzzing process, which in turn notifies the developer of the bug and breaks
the build. Thus, due to the reduced scope, the bug can be found and triaged before it
becomes problematic.

In recent academia, many papers have been published introducing new fuzzing techniques
and tools (e.g., RESTler by Atlidakis et al. [71], EvoMaster by Arcuri et al. [72], RestCT

37

3. From Fuzzing to Continuous Fuzzing

by Wu et al. [37]), promising better and faster results. However, not many studies have
been done on using fuzzers in practice and even less so on continuous fuzzing. There
are even different interpretations of the term Continuous Fuzzing in academic literature.
Klooster et al. [10] understand it as a very quick fuzzing campaign integrated into a
CI/CD pipeline, which is also the definition further used in this work. Others, for example,
Rindell et al. [5], used the term to describe a fuzzing process which runs continuously,
i.e., permanently or all the time. As shown below, both interpretations are valid and not
necessarily mutually exclusive.

3.2 Requirements and Trade-Offs
Requirements for continuous fuzzing are manifold. An ideal fuzzer to be integrated into
a CI/CD pipeline should be easy to set up and configure. In addition, it should be able
to find all bugs present in the software, including complex vulnerabilities like SQLi, XSS
and broken access controls (see Section 2.3.1) deeply inside the code and it should report
the test cases that led to these faults clearly and concisely. And all of that should happen
in under 10 minutes to keep the build process fast and give developers rapid feedback.

However, due to the nature of real fuzzers, some trade-offs must be made, especially with
regard to fuzzing campaign duration and initiation.

3.2.1 Fuzzing Campaign Duration
One of the main issues when incorporating a fuzzer into a CI/CD pipeline is fuzzing
campaign duration. While a fuzzing campaign should be long enough to enable the fuzzer
to find bugs deep in the program, it should also be quick enough to have short feedback
cycles which enable developers to fix a bug before it becomes problematic.

A recent study by Klooster et al. [10] examined the effectiveness and scalability of fuzzing
techniques in CI/CD pipelines. They point out that the recommended fuzzing campaign
duration in academia is at least 24 hours, while a reasonable build time of a program
(including testing) is just 10 minutes [10]. Böhme et al. [73] show that the bug finding
ability of fuzzers decreases exponentially with time, therefore, finding a reasonable number
of bugs in a reasonable timeframe should be possible [10]. To verify this, Klooster et al.
conducted a benchmark test and showed that a fuzzing campaign duration of 15 minutes
is a solid balance between the fuzzer’s bug finding ability and the developer’s needs for
short build times. Additionally, they also recommend running a longer (e.g., 8 hour)
fuzzing campaign every once in a while. This approach is also consistent with Fowler’s
best practices for CI where a staged build pipeline is suggested.

However, Klooster et al. only studied this for three common fuzzers, namely American
Fuzzy Lop (AFL)++, libFuzzer and Honggfuzz. As the PUT used for the case study in
this thesis (see Chapter 4) is in the domain of web applications for which specialized
fuzzers exist, these results might not be directly comparable to the use case in this
work. Fortunately, Kim et al. [6] compared 10 different fuzzers specializing in REST

38

3.2. Requirements and Trade-Offs

API testing. Across all fuzzers, code coverage and the number of response 500 errors
do not change drastically between 10 minutes, 1 hour and 24 hour fuzzing campaigns.
This suggests that REST-based fuzzers also have benefits when only applied for 10 or 15
minutes. Though, Kim et al. also note that the overall coverage achieved was not great,
with EvoMasterWB’s ~53% line and method coverage and only ~37% branch coverage
leading the benchmark.

3.2.2 Fuzzing Campaign Initiation
Related to the fuzzing campaign duration problem is that of the fuzzing process initiation.
When and how often the fuzzing campaign is executed during development is a key
question for continuous fuzzing. It can be executed on a single commit, upon a pull-
request, or it can be not linked to the git development workflow at all, for example, when
only fuzzing certain releases.

Because starting a fuzzing campaign after every single commit (of which there can be
more than 20 per day) might not scale, Klooster et al. [10] looked at strategies to minimize
the use of resources. Since Zhu and Böhme [74] conducted an empirical study of fuzzer-
generated bug reports and found that „four in every five bugs have been introduced by
recent code changes“, Klooster et al. [10] focused on optimising bugs that are regressions,
i.e., bugs that are related to a feature which worked before but broke after recent code
changes. They found that by calculating checksums on the fuzz targets and only starting
the fuzzing campaign for those with a different checksum than in the previous commit,
over 50% of fuzzing campaigns could be skipped [10]. This directly translates into saved
computational resources for fuzzing [10]. However, this optimization is only possible if
there is no versioning information like compilation timestamp or git revision present in
the fuzz targets, as otherwise the checksum of the targets changes with each commit,
leading to zero skippable fuzz targets.

Klooster et al. [10] also apply two additional optimization strategies regarding the fuzzer’s
corpus which lets fuzzing campaigns build on the progress of earlier fuzzing campaigns.
The corpus is a set of interesting inputs, where interesting means that it led to newly
discovered code. With corpus sharing, this set is shared between fuzzing campaigns by
adding all interesting inputs to the corpus during fuzzing [10]. The next fuzzing session
then uses this corpus as a seed. As this set grows exponentially, it must be minimized to
stay effective [10]. This is done by filtering out inputs that do not reach unique parts of
a fuzz target [10].

A further strategy to maximize code coverage is ensemble fuzzing. As a fuzzing session
can not only exist of a single process that fuzzes a single target but also of multiple
processes fuzzing the same target using a shared corpus, it is possible to reduce the
time it takes to reach certain parts of the code [10]. An interesting idea here is to not
use the same fuzzer for each process, but different ones. Thereby, each fuzzer with its
specialized behaviour can contribute to the fuzzing campaign by sharing their newly
found interesting inputs with the other fuzzers [10].

39

3. From Fuzzing to Continuous Fuzzing

3.3 Readily Available Fuzzing Tools
In recent years, fuzz testing has become increasingly popular, not only in academia but
also in practice. To shed light on the plethora of different fuzzing techniques and tools
that emerged from this, Li et al. [3] and Beaman et al. [65] conducted large surveys on
existing fuzzing solutions. They identified smart, domain-specific fuzzing algorithms as a
great potential for improving code coverage and, thus, bug finding capabilities of fuzzers.

One such domain where smart fuzzing tools can be applied is in web APIs, more
specifically, REST APIs. In the following, tools that do not specialize in any specific
domain are called traditional fuzzers, whereas fuzzers specifically developed for testing
REST endpoints will be called REST-based fuzzers. For each category, tools featured in
surveys and empirical comparisons are collected and those relevant for the case study
conducted in Chapter 4 are described in detail. To further limit the scope of the tools,
the focus for traditional fuzzers lies on tools that are able to fuzz programs running in
the Java Virtual Machine (JVM) since the PUT presented in Chapter 4 is implemented
in Java.

3.3.1 Traditional Fuzzers
Hazimeh et al. [75] tackled the problem of lacking metrics and benchmarks for a fair
evaluation of fuzzing tools. Since fuzzers directly using program crashes as performance
metric leads to an unfair comparison due to different fuzzers employing different dedupli-
cation strategies, Hazimeh et al. created Magma, a ground-truth fuzzing benchmark that
„introduces real bugs into real software“ [75]. However, the set of targets only consists
of C programs and, therefore, fuzzers for programs written in languages for the JVM
cannot be applied on them. Similar benchmarks focusing on traditional fuzzing tools
(e.g., FuzzBench by Asprone et al. [76], FixReverter by Zhang et al. [77]) also suffer from
this limitation and no empirical studies comparing JVM-based fuzzing tools could be
found at the time of this writing.

Nonetheless, a thorough literature research revealed several fuzzing tools available for
JVM-based languages, namely Jazzer [W15], Kelinci by Kersten et al. [78], Javafuzz [W16]
and JQF by Padhye et al. [38]. As Jazzer is based on libFuzzer and Javafuzz and Kelinci
are heavily based on AFL and AFL++, these tools are also briefly explained, although
they can only be used on C programs. This results in 6 different fuzzing tools shown in
Table 3.1 which are described on the following pages.

libFuzzer

libFuzzer [W17] is a fuzzing engine for the C programming language using a mutation-
based test case generation method. It provides in-process, coverage-guided fuzzing and
is, therefore, considered a grey-box fuzzer.

The coverage information is gathered by code instrumentation (see Section 2.1.2), hence,
it must be linked and compiled with the C program to be fuzzed. When building the fuzz

40

3.3. Readily Available Fuzzing Tools

Fuzzer Name Type Paper/Doc. Repo.
libFuzzer Mutation-based grey-box [W17] [W18]

Jazzer Interface to use libFuzzer with JVM [W15] [W19]
AFL/AFL++ Mutation-based grey-box [W20][W21] [W22]

Kelinci Interface to use AFL with JVM [78] [W23]
Javafuzz Heavily focused on AFL, grey-box [W16] [W24]

JQF Property-based testing approach, grey-box [38] [W25]

Table 3.1: Comparison of Traditional Fuzzers

target, the sanitizers AdressSanitizer and UndefinedBehaviorSanitizer can be specified.
MemorySanitizer can also be used, although its support is only experimental [W17].

To save coverage progress, libFuzzer relies on a corpus of sample inputs. When an input
leads to the discovery of a new path, it is added back to the corpus. The project page
recommends initially adding seeds to this corpus to utilize its full potential. However,
libFuzzer can also be used without initial seeds. The tool provides a simple option to
minimize the corpus if it gets too large while still preserving the full code coverage. This
can be achieved by running the tool with the merge option [W17].

libFuzzer can also be used in ensemble fuzzing by running multiple processes of it in
parallel. To further benefit from this, the corpus should be shared between the processes
because then they all can benefit from the discovery of a new input leading to greater
code coverage [W17].

Jazzer

Jazzer [W15] is heavily based on libFuzzer. It is also an in-process, coverage-guided
fuzzer but for JVM-based languages instead of the C programming language. In fact,
Jazzer uses libFuzzer under the hood via its Jazzer driver, a native library running the
fuzz target with libFuzzer linked in [W15].

A Jazzer agent runs in the same JVM as the fuzz target and instruments its bytecode
at runtime. The coverage information obtained by the Jazzer agent is then fed back
to libFuzzer which in essence looks to libFuzzer as if it were directly fuzzing a native
binary [W15].

The core of its coverage information gathering strategy are control flow edges between
basic blocks (see Section 2.1.2). This works by adding a unique ID (along with other
bytecode instructions needed) to the beginning of every basic block. Then, upon reaching
a block, the shifted block ID from the previous block is XORed with the current one’s
ID to create a new ID for the control flow edge between the two basic blocks. Shifting
the previous block ID is necessary because otherwise, a program containing a simple
loop composed of only a single basic block would lead to XORing the block’s ID with
itself [W21]. Thus, if a program contained more than one such tight loop, their edges

41

3. From Fuzzing to Continuous Fuzzing

would have the same ID. The second reason is that it would not be possible to differentiate
between an edge from A to B and an edge from B to A as the result of the XOR operation
would be the same [W21].

In addition to edges, bytecode-level and higher-level method-based (like String.equal)
compares, switch statements, integer divisions and constant array indices are also instru-
mented in order to forward interesting values to libFuzzer. libFuzzer stores those values
in a table of recent compares and uses these for further mutations, allowing it to pass
these checks and reach further into the target’s code branches [W15].

Jazzer instrumenting methods such as String.equal or String.startsWith to gather in-
formation about the data passed to these methods also opens up another possibility.
In particular, Jazzer makes these hooks available to the fuzz target, enabling it to add
custom sanitizers or stub-out methods where the fuzzer can get stuck easily (such as
checksum verifications) [W15]. The feature can be used by using the @MethodHook
annotation. The instrumented code can be placed before, after, or instead of the original
method [W15].

Jazzer provides several example fuzz targets, one of them implementing a custom sanitizer
that checks for path traversal attacks (see Section 2.3.1). A truncated version of this
is given in Listing 3.1. Checking for this with Jazzer works by creating a method
fileConstructorHook that hooks into Java’s internal java.io.File class, more specifically
its constructor. The HookType is set to BEFORE, meaning that the added code is executed
before the original code. Inside the fileConstructorHook method, the path which
comes from user input (or in this case from the fuzzer) is normalized and checked if it
starts with a previously defined path. If it does not start with the previously defined path,
Jazzer.reportFindingFromHook is called which makes Jazzer report the finding [W15].

1 static final String publicFilesRootPath = "/app/upload/";
2 @MethodHook(type=HookType.BEFORE, targetClassName="java.io.File",

targetMethod ="<init>", [...])
3 static void fileConstructorHook([...], Object[] args, int hookId) {
4 String path = (String) args[0];
5 Path normalizedPath;
6 normalizedPath = Paths.get(path).normalize();
7 if (!normalizedPath.startsWith(publicFilesRootPath)) {
8 Jazzer.reportFindingFromHook(new FuzzerSecurityIssueHigh([...]);
9 }

10 }

Listing 3.1: Jazzer Fuzz Target [W26]

Fuzz targets that do not hook into existing methods are created by simply implementing
a method “fuzzerTestOneInput(byte[] input)” from which the PUT should be called
with arguments derived from the input byte array. If the PUT requires two or more
independent inputs or if it must be converted to other valid classes, the input byte array
can be further processed using the FuzzedDataProvider. This class provides methods

42

3.3. Readily Available Fuzzing Tools

to consume booleans, integers, strings, etc. from the fuzzer input which can then be used
to call the PUT [W15].

Another convenient feature of Jazzer is the autofuzz functionality. By setting the
command line argument to a method (including its classpath) it will automatically infer
suitable inputs. This eliminates the need to manually write fuzz harnesses/targets [W15].

AFL and AFL++

AFL is a fuzzer created by Michal Zalewski [W20] that aims to be practical. The
coverage-guided fuzzer can fuzz programs written in C, C++, or Objective C efficiently
by utilizing compile-time instrumentation and genetic algorithms. It has found many
bugs in popular browsers such as Mozilla Firefox, Internet Explorer and Apple Safari
as well as widely-used packages like curl, libpng, nginx and many more [W20]. Fioraldi
et al. [79] named it „one of the most widely used and most successful coverage-guided
fuzzers of all time“.

Zalewski published a simple text file explaining the internal mechanisms of AFL in
detail [W21]. Coverage information is obtained very similar to that in libFuzzer, i.e.,
control flow edges between basic blocks are used which are obtained by XORing the
shifted previous’ block ID with the ID of the current block.

In terms of corpus minimization, AFL uses a fast algorithm that periodically re-evaluates
the current input queue [W21]. It selects smaller subsets of test cases that still contain
every edge discovered so far, whereby it favours test cases that cover the same or more
edges with less latency and smaller size by applying a score to each test case. Test cases
that are not favoured are still kept in the queue and are used with very low probability.
With this method, AFL is able to work on a subset of the corpus that is 5–10x smaller
than the starting data set [W21]. In addition, they provide the tool “afl-cmin” which
minimizes the corpus in a more sophisticated but much slower way. Using this tool, the
corpus is actually minimized, i.e., redundant inputs are permanently discarded.

Another performance improvement (usually between 1.5x–2x) is achieved by AFL via its
fork server [W21]. This ensures that execve, linking and libc initialization only happen
once and subsequent executions are cloned from this stopped process image. The fork
server also comes with a deferred mode, in which users can manually specify initialization
code areas in the target that the fuzzer should skip. Lastly, persistent mode enables a
single forked process to execute multiple inputs, thereby greatly reducing the overhead
needed for forking [W21].

Development of AFL was discontinued in 2017 but there exists a fork named AFL++
that promises more speed and better mutations and instrumentation [79]. A core feature
of AFL++ is its Custom Mutator API with which the fuzzer can be extended at different
stages, creating the possibility for researchers to evaluate their proposed improvements
without much implementation effort.

43

3. From Fuzzing to Continuous Fuzzing

Kelinci

Kersten et al. [78] created an interface named Kelinci which enables running AFL on
Java programs. It instruments a target Java application in much the same way AFL does
with C programs and additionally adds a TCP server that is used to communicate with
the C interface.

AFL expects the instrumented program to run a fork server and connect to the shared
memory provided. Thus, Kersten et al. wrote an interface.c binary implementing a fork
server identical to the one in AFL’s instrumented programs. Upon AFL initiating the
creation of a fork, the interface.c process forks itself and sends the input to the Java
server which starts the instrumented target application in a new thread and monitors it.
The result (OK, Error, or Timeout) is sent back to the interface.c process along with
the shared memory bitmap. The interface.c process then writes the received memory
bitmap to its shared memory provided by AFL and, depending on the received status
code, exits normally, crashes itself, or keeps looping until AFL’s timeout is reached [78].
Consequently, to AFL this looks just like it is fuzzing a regular fuzz target instrumented
by its compiler [78]

They evaluated their tool by running it on a JPEG parser from the well-known Apache
Commons Imaging library. Although Kelinci is approximately 500x slower than AFL,
running on the native DJPEG utility due to the overhead resulting from the TCP
communication as well as Java being generally slower than C, they were able to find a
bug after approximately 20 minutes [78].

Javafuzz

Javafuzz [W16] was first developed by Fuzzit which was acquired by GitLab in 2020 [W27].
It is a coverage-guided fuzzer for Java that tries to mimic the options and output style of
libFuzzer [W16].

Seed inputs are supported via a corpus directory. Unlike Jazzer, it does not feature a
possibility to autofuzz methods, hence, fuzz harnesses must be written for each method
to be fuzzed. It also provides no convenience wrapper for transforming the raw fuzzer
input bytes into Java primitive types, so the byte array must be cast manually if needed.
An example fuzz harness is shown in Listing 3.2 [W16].

The AbstractFuzzTarget is an interface containing the abstract method void fuzz

(byte[] data) that is called by the fuzzer. In the example, the provided data byte
array is then used to create a ByteArrayInputStream from which a BufferedImage is
created via ImageIO.read. As the ImageIO.read throws an IOException on invalid
input, the exception is caught and ignored. If another, unexpected exception occurs, the
fuzzer will catch it and add the test case to the list of bugs.

44

3.3. Readily Available Fuzzing Tools

1 public class FuzzExample extends AbstractFuzzTarget {
2 public void fuzz(byte[] data) {
3 try {
4 BufferedImage image = ImageIO.read(new ByteArrayInputStream(

data));
5 } catch (IOException e) {
6 // ignore as we expect this exception
7 }
8 }
9 }

Listing 3.2: Javafuzz Fuzz Target [W16]

The documentation does not give any details about its coverage guidance other than
using the JaCoCo Java Code Coverage library. Its main fuzzing loop generates an input,
calls the PUT and retrieves the new line coverage from the JaCoCo agent. If the new
coverage is greater than the previous total coverage, the input that led to this newly
covered line is added to the corpus. Although the repository states that „Javafuzz tries
to mimic some of the arguments and output style from libFuzzer“, no option is given in
the documentation to minimize the corpus and an inspection of the code also did not
reveal any method for this feature.

JQF

Padhye, Lemieux and Sen [38] created a platform for performing coverage-guided fuzz
testing in Java, called JQF. It is designed for practitioners as well as researchers. That
means that in addition to an easy-to-use fuzzing approach based on property-based
testing, they provide a Guidance interface with which researchers can implement custom
fuzzing algorithms.

The fuzzer is built on top of junit-quickcheck, thus, fuzz harnesses are written similarly
to property-based unit tests (see Section 2.1.2). An example fuzz harness is shown in
Listing 3.3. With the @Fuzz annotation, JQF automatically generates arguments for the
method to test, guided by its Guidance interface. The precondition is given in line 5 via
JUnit’s Assume API which states that the map must contain the key key. After that,
the actual method to test is called (here, the constructor of the PatriciaTrie class)
and the properties that must hold are asserted. In this case, it is asserted that the new
resulting instance of PatriciaTrie also contains the key key.

The Guidance interface defines four methods that can be implemented to create a custom
fuzzing behaviour. The method getInput(), which returns the input for the next test
case, builds the core of this interface. In junit-quickcheck, inputs of type T are randomly
sampled via a Generator<T> to create many different test cases depending on a source of
randomness. In its default case, this is backed by a pseudo-random stream of bytes. JQF
overrides this behaviour to use getInput() of the Guidance interface instead, creating
deterministic generators. It has five Guidance implementations built-in [38]:

45

3. From Fuzzing to Continuous Fuzzing

1 @RunWith(JQF.class)
2 class TrieTest {
3 @Fuzz /* Arguments are generated randomly by JQF */
4 public void testMap2Trie(String key, Map<String, Integer> map){
5 assumeTrue(map.containsKey(key));
6 Trie trie = new PatriciaTrie(map); // Map2Trie
7 assertTrue(trie.containsKey(key));
8 }
9 }

Listing 3.3: JQF Fuzz Target [38]

• No Guidance: This simply does not use coverage information and returns random
inputs similar to using vanilla junit-quickcheck.

• Zest Guidance: The Zest algorithm was specifically designed for coverage-guided
property testing by the authors of JQF. It maintains a set of parameter sequences
of dynamic size which are randomly generated in its first iteration. Then, in
further iterations the parameter sequences are randomly mutated, leading to the
Generator to create new structures. For example, a random mutation in the
parameter sequence might lead to a Generator of type Map to generate a map with
an additional entry [38]. The code coverage for both, valid and invalid test cases is
tracked. If a mutated parameter sequence reaches new code (valid or invalid) or if
a valid test case reaches code that has not been reached by another valid test case
previously, the sequence is saved.

• AFL Guidance: This mode uses the AFL binary and implements the AFL communi-
cation protocol using a proxy program, similar to Kelinci (see Page 44). Test cases
generated by AFL are read by the Guidance interface and returned in getInput()

to be used in the next test case. The instrumented test target collects code coverage
which is written back to AFL’s shared memory region using the proxy. As AFL
does not differentiate between test cases that failed because of the precondition
not being met and cases that failed due to an assertion violation or exception, it is
most effective with test methods that do not have assume statements.

• PerfFuzz Guidance: This algorithm is designed to find hot spots or performance
bottlenecks in a program. It is based on the AFL code coverage algorithm but
in addition to branch coverage, it also saves how often a branch is called with a
specific input. An input is saved if it leads to new code coverage or if already
discovered code is executed more often with the new input. Another configuration
enables the detection of memory consumption issues by tracking the number of
bytes allocated at allocation sites.

• Repro Guidance: Here, getInput() returns the contents of a file and exits the
fuzzing loop after one iteration. This enables easy debugging or reproduction of
saved test cases.

46

3.3. Readily Available Fuzzing Tools

3.3.2 REST-Based Fuzzers

Web APIs – as all other software components – need to be tested for logical bugs and
security issues to ensure their quality. Since creating these test cases by hand can be
very time-consuming and error-prone [6], the need for automatic test case generation
arose. Similar to traditional fuzzers, there also exist many different fuzzers specializing
in REST API testing, each with its unique approach, resulting in different strengths and
weaknesses.

The main difference to traditional fuzzers is that their starting point is not a binary
application or a method of it, but an endpoint of an API. Therefore, those tools need
some information about the target. Instead of having the user write fuzz harnesses for
each API endpoint or running the fuzzer against the whole web application without
any information about its endpoints, REST-based fuzzers leverage the fact that most
often machine-readable documentation of the API already exists or can be created
quickly and automatically for different frameworks. One such documentation format is
OpenAPI [W28], previously known as Swagger. Its details are explained in Section 2.2.2.
Another common web API schema supported by modern REST-based fuzzers is GraphQL.

The traditional fuzzers presented in Section 3.3.1 are all grey- or white-box tools and,
therefore, can only be applied to the programming language they were written for. Thus,
comparing the performance of fuzzers for different programming languages is not possible
since they cannot be tested on the same PUT. For REST-based fuzzers, in contrast, there
exist some papers that empirically compare their performance and bug finding abilities.
These are briefly summarized and a set of tools to be further analyzed in this work is
derived.

An empirical study by Corradini et al. [80] compares different black-box test case
generation tools for RESTful APIs to help developers decide which tool best fits their
needs. They tested the tools RestTestGen, RESTler, black BOX tool for Robustness
Testing (bBOXRT) and RESTest on 14 real-world REST services and analyzed the
results in terms of success rate and test coverage. Since most REST-based fuzzing
tools are black-box, code coverage metrics are not obtained by the tools. Therefore,
different metrics to compare fuzzers must be used. As fuzzing tools do not have a
common fault model, use different oracles to detect bugs and do not apply the same
deduplication strategies, directly comparing claimed detected bugs by the tools might be
unfair [80]. Hence, Corradini et al. developed a measurement framework that „measures
the testing coverage with respect to the specification of the REST API rather than to
its actual code“ [80]. It is based on Martin-Lopez et al.’s [81] test coverage framework
which uses the API interface description within the OpenAPI specification to create ten
coverage metrics. As some of the metrics from Martin-Lopez et al. are too abstract for an
empirical comparison, Corradini et al. adapted them to make them usable in practice [80].
Additionally, they skipped two metrics because they were either not operative or too
complicated to implement [80]. This left them with five input coverage metrics (e.g., the
ratio of API paths tested to total amount documented in the OpenAPI specification) and

47

3. From Fuzzing to Continuous Fuzzing

three output coverage metrics (e.g., the ratio of correct/incorrect status codes received
from the application per operation) [80]. To automatically extract these metrics for
different tools, Corradini et al. created a Python tool that computes the metrics from
request-response pairs of an HTTP traffic log [80]. In addition to the comparison of
coverage, they analyzed the fuzzers in terms of robustness, i.e., how many of the 14
case studies the tool was able to successfully test. The most robust tool is RESTler
(14 successfully tested case studies), followed by RestTestGen (11) and bBOXRT (8).
RESTest was only able to successfully test 2 out of 14 case studies and failed on all others.
This is caused by the tool’s inability to create body parameters when no examples are
given in the OpenAPI specification [80]. For test coverage comparison, Corradini et al.
removed RESTest from the test due to its low robustness. They also limited the case
studies to eight which all of the remaining tools could test successfully. In terms of test
coverage, RestTestGen is the tool with the best results, as it produced the best coverage
for five of the coverage metrics, while RESTler and bBOXRT each outperformed the
other tools for only one metric.

Hatfield-Dodds and Dygalo [48] created the tool Schemathesis and evaluated it by
comparing it to seven other web API fuzzers: RESTler, Cats, TnT-Fuzzer, Got-Swag,
APIFuzzer, Fuzz-lightyear, Swagger-conform, Fuzzy Swagger and Swagger fuzzer. They
ran tests on 16 real-world open source web services to analyze defect detection, runtime
and consistency of reporting [48]. In terms of robustness, Schemathesis is a clear winner,
as it was able to test all 16 targets without crashing, followed by RESTler and APIFuzzer
which were able to test 11 targets. As they deem „the schema no less important than the
implementation of the service“, they also count mismatches between specified and actual
behaviour, such as unexpected status codes, as defects [48]. This results in Schemathesis
finding 40% to 350% more bugs per target than the respectively second-best fuzzer [48].
However, because other fuzzers are not as restrictive in regard to checking semantic
properties of the specification, this comparison is not of much value. Therefore, they
also compared the total unique HTTP 500 server errors reported by the tools for each
target. In this case, Schemathesis was still the tool finding the most defects for each
target, followed by APIFuzzer and RESTler. Since not all tools were able to test all
targets successfully and four of the seven tools (excluding Schemathesis) even failed on
more than half of the test targets, it is hard to compare their performance and draw a
conclusion [48].

Kim et al. [6] analyzed the strengths, weaknesses and limitations of 10 different REST
fuzzers. They ran EvoMaster, RESTler, RestTestGen, RESTest, Schemathesis, Dredd,
Tcases, bBOXRT and APIFuzzer against 20 real-world open source RESTful web services
to compare their code coverage achieved as well as unique error responses triggered. Web
services were limited to those implemented in Java/Kotlin to be able to collect their line,
branch and method coverage with the JaCoCo code-coverage library [6]. EvoMaster is
the only tool that offers a white-box testing feature. To utilize this, Kim et al. created
driver programs for code instrumentation and database communication analysis. They
ran each tool on each target ten times for one hour and calculated the average over these

48

3.3. Readily Available Fuzzing Tools

results to account for the tool’s in-deterministic behaviour. Figure 3.1 depicts the results
of the study.

EvoMasterWB

EvoMasterBB

Schemathesis

bBOXRT

RestTestGen

Tcases

53

47

44

42

42

41

36

28

25

22

21

16

53

45

43

40

41

37
Line Coverage (%)

Branch Coverage (%)
Method Coverage (%)

Figure 3.1: Code Coverage of REST-based Fuzzers in Empirical Study by Kim et al. [6]

EvoMaster in white-box mode (EvoMasterWB) achieved the best line, branch and method
coverage with ~53%, ~36% and ~53% respectively. In black-box mode (EvoMasterBB), the
tool still reached ~45%, ~28% and ~47% for line, branch and method coverage, followed
by Schemathesis (~43%, ~25%, ~44%), bBOXRT (~40%, ~22%, ~42%), RestTestGen
(~41%, ~21%, ~42%) and Tcases (~37%, ~16%, ~41%). Errors were measured as unique
500 errors (grouped by their stack traces), unique failure points (grouped by the top-most
entries of the stack trace) and unique library failure points (same as unique failure points,
but the failure point was a method from a third-party library used by the service). Again,
EvoMaster in white-box mode performed best, finding 33.3 unique errors, 6.4 unique
failure points and 3.2 unique library failure points. Tcases (18.5, 3.5, 2.1) ranked second,
followed by Schemathesis (14.2, 2.8, 2), EvoMaster in black-box mode (16.4, 3.3, 1.8),
RESTler (15.1, 2.1, 1.3) and bBOXRT (9.5, 2.1, 1.3) [6].

To gain insights into current limitations and actual effectiveness of state-of-the-art black-
box REST fuzzers, Zhang and Arcuri [8] compared 7 fuzzing tools and analyzed the
source code of 18 open source and one industrial RESTful API they were applied to. The
tools included in their research are bBOXRT, EvoMaster, RESTest, RestCT, RESTler,
RestTestGen and Schemathesis. Similar to Kim et al., they ran each tool on each API
target 10 times and averaged the results to account for randomness in the tools [8]. As
some of the tools exited before their one-hour time budget, they started each fuzzing
campaign in a new thread, restarting the fuzzer if it exited earlier and terminating the

49

3. From Fuzzing to Continuous Fuzzing

fuzzing campaign after one hour. They obtained line coverage information via code
instrumentation, using JaCoCo for their 13 targets running in the JVM and c8 for the
6 targets running on NodeJS. After an initial test run, only three of the seven tools
were able to successfully test all 19 test targets. Since this was only due to wrong or
unexpected schemas (e.g., OpenAPI v2 or v3, YAML or JSON, wrong host or server
info in the schema), they developed a utility tool to automatically fix the schemas of
their test targets [8]. The code coverages achieved in their black-box tool comparison are
summed up in Figure 3.2.

EvoMasterBB

Schemathesis

RestTestGen

bBOXRT

RestCT

RESTler

RESTest

56.8

54.5

45.4

41.9

35.4

34.6

33.6 Line Coverage (%)

Figure 3.2: Line Coverage of REST-based Fuzzers in Comparison by Zhang and Arcuri [8]

EvoMaster achieved an average code coverage of 56.8%, being the best in 11 out of 19
PUTs), followed by Schemathesis (54.5%, best in 7), RestTestGen (45.4%) and bBOXRT
(41.9%). The remaining tools (RestCT, RESTler and RESTest) only achieved between
33.6% and 35.4% [8]. Additionally, they compared black-box to white-box fuzzing tools,
however, as EvoMaster is currently the only REST-based fuzzer that supports white-box
fuzzing, they only compared EvoMaster’s black-box mode to its white-box mode. On
average, line coverage improved by 7.5% and faults detected by 9.3% in white-box mode [8].
However, Zhang and Arcuri also emphasized that in one case the tool performed worse
than in black-box mode (line coverage from 35.3% down to 24.8%). They attributed this
behaviour to the quality of the fitness function, as it got stuck in local optima, but also
said they will address this problem in a future version of EvoMaster [8].

Table 3.2 shows a short overview of the different fuzzing tools included in the studies
introduced above. Out of these 18 tools, 11 were discarded from further analysis in this
work due to the following reasons:

1. foREST: Although Lin et al. [84] claimed in their paper from March 2022 that they
„released it as open source on GitHub“ [84] and „the link will be released soon“ [84],
they have not done so yet.

50

3.3. Readily Available Fuzzing Tools

Fuzzer Name Category Test Generation Method Latest Paper
EvoMaster WB White-box Evolutionary algorithm [72]
EvoMaster BB Black-box Random Testing [72]
Schemathesis Black-box Property-based [48]
RESTler Black-box Dependency-based [71]
RestTestGen Black-box Dependency-based [82]
bBOXRT Black-box Robustness Testing [51]
RESTest Black-box Model- & Constraint-based [83]
RestCT Black-box Combinatorial Testing [37]
foREST Black-box Dependency-based [84]
Cats Black-box Random, Constraint-based n/a
Got-Swag Black-box Random n/a
APIFuzzer Black-box Random, Mutation-based n/a
Tcases Black-box Model-based n/a
Dredd Black-box Sample-value-based n/a
Fuzz-lightyear Black-box Property-based n/a
Swagger-conformance Black-box Property-based n/a
Fuzzy Swagger Black-box Random n/a
Swagger Fuzzer Black-box Property-based n/a
TnT-Fuzzer Black-box Random n/a

Table 3.2: Comparison of REST-based Fuzzers Based on Kim et al. [6]

2. Cats: No academic paper available, significantly outperformed by Schemathesis [6].

3. Got-Swag: No academic paper available, last updated in February 2018.

4. APIFuzzer: No academic paper available, significantly outperformed by other
tools [8].

5. Tcases: No academic paper available, significantly outperformed by other tools [8].

6. Dredd: No academic paper available, significantly outperformed by other tools [8],
last updated in December 2021.

7. Fuzz-lightyear: No academic paper available, last updated in October 2020.

8. Swagger-conformance: No academic paper available, last updated in June 2018.

9. Fuzzy Swagger: No academic paper available, last updated in December 2021.

10. Swagger Fuzzer: No academic paper available, fails on 15 out of 16 APIs in [48],
last updated in October 2016.

11. TnT-Fuzzer: No academic paper available, fails on 15 out of 16 APIs in [48].

51

3. From Fuzzing to Continuous Fuzzing

The remaining 7 tools are described in detail on the following pages.

EvoMaster

EvoMaster was initially created by Arcuri [34] to help researchers integrate a novel
approach for automatic test suite generation called MIO algorithm (see Section 2.1.2)
which he developed. Later it was introduced by Arcuri [85] as an automatic, white-box
test case generation tool using evolutionary algorithms for JVM-based REST APIs, the
architecture of which is discussed below. Note that this concerns only the white-box
mode of EvoMaster, as its black-box mode was only added at a later time, though the
main aspects of the following description still hold for the current version of EvoMaster.
Furthermore, as EvoMaster does not utilize symbolic execution, in the classification
presented in Section 2.5.2 it should actually be classified as a grey-box fuzzer. However,
to avoid any confusion and as it is also called a white-box fuzzer by other studies [6],
[8], the term white-box as suggested by the authors of EvoMaster will be used in the
following.

The tool consists of two main components. The core process is responsible for functional-
ities like command-line and OpenAPI parsing, generation of test files and also includes
the search algorithm, as explained by Arcuri [34]. The driver process starts, stops and
resets the PUT and instruments its source code [34]. EvoMaster generates test suites
optimized for code coverage and fault detection via HTTP 500 error responses and the
generated tests use the libraries JUnit and RestAssured.

Core and driver processes communicate via JSON over HTTP, hence, adding support for
a new target language only requires changes in the driver and not the core component [34].
To use EvoMaster in white-box mode, the EvoMaster client library must be imported and
a driver class (specifying, e.g., where the OpenAPI schema can be found, how the PUT
should be started and on what port it listens or which packages will be instrumented)
must be implemented [34]. Because some PUTs can have side-effects that are persisted,
e.g., in a database, there is also a method to reset the state of the PUT in which, for
example, the database can be emptied and some previously defined test data can be
inserted [34]. In addition, many RESTful APIs require some form of authentication.
If this is the case, a method in the driver class must be implemented which returns
valid credentials that are used in authentication headers or cookies. Since some PUTs
cannot be started from a class, EvoMaster also provides the possibility to start it in a
separate, external process from the driver process, in which case the driver class handles
the technical details regarding starting and stopping of the process as well as collecting
statistics from the spawned processes [34].

As it is very common for web applications to interact with databases, Arcuri and
Galeotti [86] explored an approach to take the state of such databases into account,
which they implemented in the form of an EvoMaster extension. With this extension,
EvoMaster intercepts every single SELECT query and guides its search algorithm such
that these SQL queries return non-empty responses [86]. Moreover, it automatically can

52

3.3. Readily Available Fuzzing Tools

inject data directly into the database by utilizing observed SQL queries. For example, if
a generated test case causes an SQL query with a WHERE clause that returns an empty
set, the tool can inject data such that the same test case will return data, thus, possibly
executing a different path in the test target. They tested their new approach on 5 different
REST APIs, however, they were not able to achieve statistically significant improvements
on 3 out of the 5 targets.

Schemathesis

Schemathesis was built by Hatfield-Dodds and Dygalo [48] and is, similar to JQF, based
on property-based testing. It uses the Hypothesis library to create sophisticated test
inputs using hybrid random generation and feedback-guided structured mutation [48].
The test functions and oracles it creates (both, for individual endpoints as well as
sequences of requests to different endpoints) can be easily customized. In addition to
its command-line interface, Schemathesis also provides a Python API. Hence, for PUTs
that are also written in Python, communication can occur in-process instead of over the
network, resulting in faster fuzzing and the option for coverage-guided fuzzing.
One of its core features is its differentiation between single-request tests and tests that
make a sequence of requests to multiple endpoints. By using a state machine that tests
the whole system instead of only single endpoints, it tends to report fewer bugs per
run but is considerably faster. Hatfield-Dodds and Dygalo argue that this design makes
Schemathesis better for „interactive use in a run-fix-rerun cycle, rather than long-running
testing campaigns“ [48].
As the tool uses Hypothesis’ data generation strategies, it must read the OpenAPI or
GraphQL schemas and generate valid Hypothesis strategies from them. This is done via
the hypothesis-jsonschema and hypothesis-graphql libraries. Since some schemas cannot
easily be converted to Hypothesis strategies, especially when they contain intersecting
constraints, Schemathesis applies some semantics-preserving transformations to the raw
schema and canonicalizes the results before converting it to a Hypothesis strategy [48].
Non-recursive references to other schemas are inlined and overlapping subschemas are
merged to create a schema of minimal form [48].
The tool was designed to be easily customizable, as such it features four main ways to
alter the way it behaves [48]:

1. Hooks allow customization at different steps of the testing process. This allows
the user to, e.g., change the API schema for certain endpoints to work around
incompatibilities, adjust generated test data or filter undesired test cases.

2. Checks can be used to verify additional properties of responses received from the
PUT. They can be used to implement custom test oracles.

3. Serializers transform the data before they are sent to the PUT. Default ones
include application/json, multipart/form-data and text/plain but others can be
implemented if needed.

53

3. From Fuzzing to Continuous Fuzzing

4. Format Strategies: Many OpenAPI specifications use custom formats to better
describe string values (e.g., a value of type string with the format phone_number
must be a valid phone number). As the OpenAPI specifications allow for arbitrary
formats, Schemathesis allows the user to specify how data for a specific format
should be generated.

RESTler

RESTler was written by Atlidakis, Godefroid and Polishchuk [71] at Microsoft Research.
They introduced it in 2019 as the first automatic stateful REST API fuzzer. With stateful,
Atlidakis et al. mean that the tool performs a lightweight static analysis of the OpenAPI
schema and then tests sequences of requests to multiple endpoints rather than single
endpoints [71]. Thus, it can explore states of the PUT that are only reachable by certain
sequences. This is done by inferring dependencies declared in the OpenAPI schema as
well as by analyzing dynamic feedback from observed responses of the PUT [71].

From the OpenAPI specification, RESTler generates a test-generation grammar encoded
in executable Python code that will generate the HTTP request and process the expected
response [71]. While doing this, it also infers dependencies. For example, if an ID
parameter is necessary for retrieving a resource (via a GET request) and an ID is
returned after creating a resource (via a POST request), RESTler takes note of this
producer-consumer dependency and uses this information for test generation [71].

The main test generation algorithm computes a set of request sequences seqSet which is
initially empty. A main loop, starting with n = 1 computes all valid request sequences
of length n, where a valid request sequence is one in which every single response to
a request returns a valid response code (i.e., in the 200 range) [71]. This is repeated
until n reaches a user-defined maxLength, which denotes the maximum sequence length
the tool should compute. Extending the seqSet in each iteration is done in two steps.
First, the set of valid request sequences from the previous step (with length n − 1) is
extended by appending to each sequence each request whose dependencies are satisfied.
The dependencies of a request R are satisfied if all dynamic objects required in the request
are produced by one of the responses from the requests preceding request R. Then, each
newly-extended request sequence is rendered, meaning that the list of fuzzable types is
computed and the values are substituted with a value taken from a user-configurable
dictionary. This generates all possible combinations of values, e.g., if the request contains
one fuzzable primitive of type integer and the defined values for integer types in the
dictionary are 0, 1, -1 and 42, the algorithm will generate 4 requests corresponding to
the values. These new request sequences are then executed, and if they receive a valid
response code they are retained, otherwise, they are discarded and the error code is
logged for analysis and debugging purposes [71].

As this described algorithm generates all request sequences of length n + 1 whose
dependencies are satisfied and n is incremented by one in each loop, this can be seen

54

3.3. Readily Available Fuzzing Tools

as a Breadth-First Search (BFS) algorithm (see Kozen [87]) [71]. In addition to that,
RESTler features two further search algorithms [71]:

1. BFS-Fast: Here, instead of appending each request to every sequence in which its
dependencies are met, it is only appended to at most one sequence. Thus, the
resulting sequence set is smaller but every executable request type is still exercised
at each iteration of the main loop, allowing it to go deeper faster.

2. RandomWalk: This algorithm extends a sequence set by randomly selecting a new
request such that its dependencies are met. If it can no longer extend the current
sequence, it starts from scratch.

Atlidakis et al. compared the three search strategies by running RESTler against the Git-
Lab API. While the BFS algorithm achieved slightly better code coverage, RandomWalk
was able to find the most bugs with 21, compared to 16 and 13 for BFS and BFS-Fast
respectively.

RestTestGen

In 2020, Viglianisi, Dallago and Ceccato [82] presented RestTestGen, a tool to auto-
matically generate test cases for RESTful APIs based on their OpenAPI definition.
RestTestGen consists of three main components: The Operation Dependency Graph
(ODG) generator, the Nominal Tester and the Error Tester [82].

The ODG generator is very similar to the first step of RESTler’s algorithm where
producer-consumer dependencies between endpoints are gathered from the OpenAPI
specification. ODG is a directed graph G = (N, V) where N is the set of operations
according to the REST API specification and edges in V are dependencies between
operations [82]. Two nodes have an edge v = n2 → n1 when there is a data dependency
between the two nodes, i.e., if there exists a common field in the response of n1 and
the input of n2. Two fields are common if they are either of atomic type (i.e., string or
numeric) and have the same name or if they are of a non-atomic type and are associated
with the same schema. As developers are free to choose the names of their fields, some
data dependencies might be missed using this matching approach if two common fields
are not named exactly the same. For example, if an endpoint GET /users returns a list
of users containing their IDs in a field named id and another endpoint is described as
GET /user/{userID}, the dependency between the field id and the field userID cannot
be inferred. To mitigate this problem, they implemented a matching algorithm that is
case-insensitive and prefixes fields named only id based on the name of the object they
are a part of or based on the name of the operation. In addition, they apply a stemming
algorithm so that some difference is tolerated, which makes the algorithm able to match
common fields even if there is a small typo in of the fields [82].

The Nominal Testing module generates test cases adhering to the OpenAPI specification.
It addresses three sub-problems:

55

3. From Fuzzing to Continuous Fuzzing

• Operation Testing Order: The order of operations is decided based on the generated
ODG as well as the semantics of the REST standard. Because the standard defines
that the POST operation should be used to create a resource while PATCH/PUT
should be used to update it and DELETE to destroy it, RestTestGen always orders
the operations adhering to these dependencies, i.e., POST before GET before
PUT/PATCH before DELETE. Furthermore, the ODG is used to order operations
such that those with the least input dependencies are executed first [82].

• Input Value Generation: This follows a probabilistic approach, reusing observed
response data with high probability (80%). A response dictionary is used to
save mappings between fields and their observed values. Similar to the matching
algorithm in the ODG generation, a lookup in this dictionary allows for some
tolerance. For the remaining 20%, a new value is generated based on its schema [82].

• Oracle: RestTestGen implements two oracles to assess generated test cases. The
status code oracle simply uses the HTTP status code returned, where codes in the
200 range are treated as successful and codes in the 400 range as not successful. If
the PUT returns a response code in the 500 range, this means the server encountered
an error which RestTestGen will document. The second oracle performs response
validation, meaning that it compares the observed response to that of the expected
response stated in the API specification [82].

Error Testing is used to check if the PUT handles invalid input correctly. RestTestGen
uses the test cases generated by the Nominal Tester and mutates them in order to create
malformed and inconsistent input data. The three performed mutations are the removal
of required fields, using wrong input types (i.e., a string where a numeric is expected)
and violations of constraints (e.g., a numeric above its maximum allowed value as per
the specification).

bBOXRT and EvoReFuzz

Laranjeiro, Agnelo and Bernardino [51] identified a lack of robustness testing tools
in the domain of REST services compared to other domains such as communication
software, embedded systems or SOAP services. Thus, they created bBOXRT, a black
BOX tool for Robustness Testing that uses a service description document (like an
OpenAPI specification) to generate a set of invalid inputs that are used to detect errors
in either the specification or the implementation of the PUT. In contrast to existing tools,
bBOXRT tries to be simpler, e.g., by following a simple rule-based approach instead
of more complex white-box, state-based or model-based approaches [51]. The authors
also emphasize their focus on testing the robustness of a PUT, although, they were still
able to find some security vulnerabilities in the evaluation of their tool, highlighting the
interconnectedness of robustness and security [51]. bBOXRT is implemented in Java and
primarily consists of easily extensible components that work in 4 steps [51].

56

3.3. Readily Available Fuzzing Tools

First, it gathers basic information about the REST service from its interface description
document. Currently it only supports the widely-used OpenAPI specification [51].
The PUT’s endpoints, operations, input parameters, as well as expected responses are
collected.

The second step deals with workload generation and execution. Here, valid requests
according to the specification are generated by the workload generator and then sent to
the PUT by the executor. If no pre-existing workload is found (e.g., by reading a set
of stored requests), the tool will generate random requests to fill the workload. Valid
requests (i.e., those that receive a response in the 200 range) are saved in a queue and
will be used in the next step. As bBOXRT is not stateful, some requests might fail
due to an unresolved data dependency, for example, when trying to delete a resource
before creating it. In this case, the user can set a boolean configuration value to keep
unsuccessful requests in memory and retry them after all the workload requests are
finished. This step is executed until the workload is empty or if a user-specified time-out
is reached [51].

In the third step, bBOXRT generates faulty requests by injecting a single error into
the valid request data. A fault mapper stores the possible injection points gathered
from the previous step as well as injected faults in order to avoid a fault being injected
twice. The tool comes with different mutation rules for each of the datatype (All, Array,
Boolean, Number, String) and format (e.g., Password or Date for strings, 32-bit integer
for Numbers) combination that can be used in the OpenAPI specification. For example,
for the Number datatype there are rules to add or subtract 1 unit, replace the value
with -1, 0 or 1, or replace the value with the data type’s maximum value + 1, i.e., try
to trigger an overflow error in the service. The datatype String in conjunction with the
format Binary has two rules to duplicate and swap random bits or bytes which can be
used to test, e.g., image file uploads defined in the interface description document [51].
bBOXRT also comes with a set of over 800 malicious payloads for the datatype String
that essentially try to cause SQL injections (see Section 2.3.1). This list could easily be
extended with XSS payloads, however, as these most likely do not crash the application
or cause other unexpected responses, a specialized bug oracle would be needed as well.
For each request, each parameter is injected with the set of applicable faults for that
data type, which is repeated a configurable amount of times. Hence, the user can analyze
if the service responds to a specific fault consistently. In addition, for faults of stochastic
nature, e.g., the removal of a random element in an array, this leads to a greater diversity
of invalid requests. This step terminates after a user-specified time limit is reached, or if
all applicable faults are injected and all the requests are executed [51].

Finally, the results (composed of service responses and test metadata) are stored for
further analysis. The authors point out that this step requires some manual analysis as
the responses received from REST services are too diverse to automatically distinguish
between robust and non-robust behaviour [51]. This is, however, the case with all fuzzers
relying on the OpenAPI specification, „with exception of cases where a perfect service
specification exists“ [51].

57

3. From Fuzzing to Continuous Fuzzing

In July 2022, bBOXRT received an update which implements a genetic algorithm. It was
thereby rebranded to EvoReFuzz and „takes advantage of the components that compose
a genetic algorithm while using the best of the bBOXRT tool to generate and send valid
and invalid requests in an informed way to the system under testing“.

RESTest

In 2021, Martin-Lopez, Segura and Ruiz-Cortés [88] presented RESTest, an open source,
black-box testing framework for RESTful web APIs. Unlike other test case generation
tools, it does not only rely on fuzzing, but also incorporates a constraint-based testing
technique, as well as adaptive random testing (see Section 2.1.2). Test case generation
and execution can be separately executed (offline testing) or they can be interleaved
(online testing) in order to guide the test case generators with the gathered feedback.
RESTest follows the following workflow [88]:

1. Test Model Generation: In this step, the OpenAPI specification is parsed into a
system model. A second model, the so-called test model contains all test-related
configuration settings for the PUT. This can also be manually extended to include,
e.g., details about authentication, further data dictionaries to be used, or custom
data generators that can be used for special formats like email addresses or phone
numbers in string datatypes.

2. Abstract Test Case Generation: Based on the system and test models, abstract test
cases are generated using one or more testing techniques. Abstract in this sense
means that they are platform-independent and, thus, can later be transformed into
executable test cases for different programming languages and testing frameworks.

3. Test Case Generation: The abstract test cases from the previous step are translated
into specific test cases for a given testing framework. By default, RESTest supports
the testing frameworks REST Assured and Postman.

4. Test Case Execution: In this optional step, the generated test cases are executed,
i.e., the requests are sent to the PUT and the test results are saved in a machine-
readable format. Those are then reported back to the user in a dashboard, using
the test reporting framework Allure by default.

5. Feedback Collection: The test case generators can use feedback from previously
executed tests to improve their code coverage using search-based techniques.

RestCT

Wu et al. [37] created RestCT, another tool for finding bugs in REST APIs. It employs
a CT approach (see Section 2.1.2) to systematically and fully automatically test „not
only the interactions of a certain number of operations in RESTful APIs, but also the
interactions of particular input parameters in every single operation“ [37].

58

3.3. Readily Available Fuzzing Tools

In contrast to existing approaches like RESTler and RestTestGen, which focus only on
creating valid operation sequences, RestCT also creates test cases where the order of
operations in a sequence, as well as certain combinations of parameters are taken into
account [37]. This means that if there are three operations A, B and C, and C must come
after A, RestCT not only tests the operation sequence A → C, but also A → B → C
or B → A → C. Additionally, the tool tries to automatically infer constraints between
input parameters of a single operation using natural language processing, which existing
tools lack [37].
RestCT employs a CT approach as described in Section 2.1.2, however, as REST API
testing not only has parameters but also operations that can be executed in different
orders, the concept of covering arrays is extended. Given a set of n events (or operations)
E = {o1, o2, o3, . . . , on}, a test case is a sequence of k ≤ n distinct events and a t-way
sequence covering array is a set of event sequences, in which every t-way sequence is
covered at least once [37]. Wu et al. introduced constraints into this concept, where a
constraint is either a dependency between input parameters or between events. Then,
given a set of constraints C, the test cases in the t-way (sequence) covering arrays must
also satisfy all constraints in C. With this approach, it is possible to model constraints
between operations (e.g., o1 must come before o2) as well as between input parameters
(e.g., if p1 is a specific value, then p2 must not be empty).
The overall workflow of RestCT includes two steps. First, during operation sequence
generation, the OpenAPI specification is parsed, which results in a set of available
operations and, by applying its hierarchical relations with its implied semantics, a set of
constraints. The tool then applies a greedy algorithm to generate a constrained sequence
covering array with coverage strength ts, where ts is a user-defined setting (or 2 by
default) [37].
In the second step (called input parameter value rendering), RestCT generates the
HTTP requests for the previously created operation sequences. It uses an adaptive
strategy to generate constrained coverage arrays representing the concrete inputs for an
operation, using the specification and test execution responses to infer proper values for
the parameters [37]. For setting a specific value of a parameter, four strategies that are
applied in decreasing priority exist:

1. Dynamic: Tries to match previously received response data for use in a new request.

2. Specification: Uses values described in the OpenAPI specification.

3. Success: Similar to dynamic, but only response data of successful requests are
considered.

4. Random: If none of the strategies above can be applied, three random values are
generated.

Just like operations, input parameters can also have dependencies between each other.
However, OpenAPI does not offer any possibility other than using natural language

59

3. From Fuzzing to Continuous Fuzzing

in a field’s description to model these dependencies. Hence, Wu et al. use the natural
language processing library spaCy to apply a pattern-based approach to automatically
infer these constraints [37].

3.4 Existing Continuous Fuzzing Solutions
In the past years, and especially since the success of Google’s OSS-Fuzz project in finding
thousands of bugs in popular open source projects, other major organizations followed
by creating their own continuous fuzzing solutions. Table 3.3 shows a quick overview of
existing frameworks which are described on the following pages.

Organization Name Availability Fuzzer Types
Google OSS-Fuzz Selected projects Traditional
Google ClusterFuzz Open source Traditional
Google ClusterFuzzLite Open source Traditional

Microsoft OneFuzz Open source Traditional
GitLab Coverage-guided fuzz testing Commercial Traditional
GitLab Web API Fuzz Testing Commercial REST-based

Table 3.3: Comparison of Existing Continuous Fuzzing Solutions

3.4.1 Google OSS-Fuzz / ClusterFuzz / ClusterFuzzLite
In 2016, Google has launched a service called OSS-Fuzz: Continuous Fuzzing for Open
Source Software [W1] with the goal of making large-scale continuous fuzzing available
to important OSS projects for free. It has since found more than 35.000 bugs in more
than 550 open source projects, as shown by Klooster et al. [10]. Available fuzzing engines
are libFuzzer, AFL++, Honggfuzz and Jazzer and supported programming languages
are C/C++, Rust, Go, Python and Java/JVM code. The main focus of OSS-Fuzz is on
long-running fuzzing campaigns with scalable, distributed execution [W1] that are run 1
to 4 times a day [W29]. It does provide an option to integrate it into a CI environment,
however, these are rather limited as the only platform supported is GitHub.

Moreover, as described by Serebryany [89], this continuous fuzzing as a service is only
available to open source projects Google deems important by having „a large user base
and/or being critical to Global IT infrastructure“. The scalable fuzzing infrastructure
behind OSS-Fuzz, named ClusterFuzz, is also open source, therefore, enabling projects
ineligible for OSS-Fuzz (e.g., closed source projects) to help setup their own infrastructure
and integrate fuzzing into their project’s development process [W30]. However, with
libFuzzer, AFL++ and Honggfuzz being the only fuzzers supported, it neither provides
an option to fuzz JVM code, nor to run REST-based fuzzers.

For smaller code bases where high scalability is not a priority, Google has also released a
lightweight version of ClusterFuzz, named ClusterFuzzLite [W31], which can be integrated

60

3.4. Existing Continuous Fuzzing Solutions

in CI/CD pipelines. It supports the major languages C, C++, Java, Go, Python, Rust,
Swift and can be integrated in the CI/CD systems GitHub Actions, GitLab, Google
Cloud Build and Prow. Features include quick code change fuzzing on pull-requests as
well as longer-running fuzz tests to find deeper bugs, modular functionality and coverage
reports showing which code parts the fuzzers reached. However, it does not support any
REST-based fuzzers.

3.4.2 Microsoft OneFuzz
OneFuzz is a self-hosted Fuzzing-As-A-Service platform created by Microsoft [W32]. At
the core of the tool, tasks are used to perform single units of work. An example task
might be running the fuzzer AFL on a specific target. Jobs are used to describe a set of
tasks and a template is a pre-configured job that includes common configurations for a
fuzz job [W32].
OneFuzz is heavily dependent on Microsoft’s Azure Cloud environment, i.e., targets for
fuzzing (and supporting tasks) are deployed into an Azure Virtual Machine Scale Set.
The scale set is connected to different nodes (i.e., Virtual Machines (VMs)) on which
the tasks are run. For storage, a set of Azure Blob Storage Containers is used to which
fuzzing tasks can connect using different contexts [W32].
While the solution is „multi-platform by design“ [W32], supporting the Linux and
Windows operating systems for VMs, the nodes still have tun run an Azure VM agent
and are required to connect to the Azure cloud. Similar to OSS-Fuzz and ClusterFuzz, it
is built for larger-scale fuzzing campaigns, using multiple VMs for fuzzing and storage
purposes. This, of course, comes with a lot of configuration overhead. Moreover, it only
supports GitHub Actions to integrate it into a CI/CD workflow and does not support
REST-based fuzzers.

3.4.3 GitLab Fuzz Testing
GitLab features two different continuous fuzzing solutions, Coverage-guided fuzz test-
ing [W33] and Web API Fuzz Testing [W34]. Both are designed to be implemented in
GitLab’s CI/CD workflow. However, the fuzz tests are only available commercially to
GitLab Ultimate users and their code is closed source, which makes its analysis rather
difficult. Still, their core features and characteristics are outlined below.

Coverage-guided Fuzz Testing

Coverage-guided fuzz testing in GitLab Ultimate’s CI/CD workflow supports 8 different
fuzzers, including the two JVM-based fuzzers JQF and Javafuzz, where the latter is
the recommended one [W33]. It has two of the main features needed for an efficient
continuous fuzzing solution as presented in Section 5.2:

1. Two stages: It is possible to create two jobs to run synchronous regression fuzzing
campaigns that block the build process and provide rapid feedback, as well as a

61

3. From Fuzzing to Continuous Fuzzing

long-running, asynchronous fuzzing campaign that is able to find bugs deeper in
the code [W33].

2. Corpus sharing: By using a project-wide corpus registry, it is possible to reuse
the corpus in different jobs. This enables, e.g., two stages to share their corpora,
making the process more efficient [W33].

The found vulnerabilities are integrated into the GitLab UI and can be viewed directly
in the respective commit or merge request. A security dashboard features additional
information about vulnerabilities found in all projects and pipelines [W33]. The possibility
to perform ensemble fuzzing is not documented, however, it might be possible by defining
two jobs that access the same corpus registry.

Web API Fuzz Testing

The Web API fuzz testing solution from GitLab Ultimate currently is the only continuous
fuzzing solution that supports REST-based fuzzers. It utilizes one of four ways to infer
the URLs it automatically tests: OpenAPI Specification, GraphQL Schema, HTTP
Archive, or a Postman Collection. There are several ways to specify authentication
tokens, including the possibility to periodically call a user-defined script that creates a
new token and writes it to a file, which in turn gets picked up by the fuzzer to replace
tokens with a short expiration time. Although the documentation does not explicitly
describe a two-staged fuzzing environment like in coverage-guided fuzz testing, it should
be possible to manually create these. The solution uses checks (e.g., for form body, JSON
or XML fuzzing) which in turn use assertions to detect faults. The assertions utilize the
PUT’s response data and status codes, as well as its log data to detect unusual behaviour.
Unfortunately, the documentation does not say if it uses any of the previously introduced
fuzzers or if they created their own.

62

CHAPTER 4
Case Study: Proof of Concept

Solution for Continuous Fuzzing

This chapter introduces an exemplary project and experiments with various fuzzers
presented in the previous chapter to compare their suitability to be integrated in a
continuous fuzzing process. To that end, two approaches are explored to generate the
OpenAPI specification document required to fuzz the target.

4.1 Description of the Program Under Test
The selected PUT is a reference implementation of an Identity Provider (IDP) server
created by gematik, which is freely available on GitHub [W35]. It is based on OpenID
Connect [W36], a protocol built on top of OAuth 2.0 that allows clients to verify the
identity of end-users and obtain basic profile information. The IDP server project
extends this protocol and provides the following attributes that render it compelling and
representative for the case study:

• Easily deployable: The project is built with Maven [W37] and the Docker Maven
plugin [W38], which makes it trivial to build the project and create a Docker
container.

• Relatively isolated: The project does not have too many dependencies that would
result in external services to be flooded with requests during fuzzing campaigns.

• No previous CI: One of the core requirements to be able to continuously fuzz
a program is its integration into a CI process. Given the absence of a publicly
accessible CI for the project, an exploration into the methods by which such an
integration can be established can also be studied.

63

4. Case Study: Proof of Concept Solution for Continuous Fuzzing

• Scale and complexity: Although the API is relatively small with only 19 exposed
endpoints (see Table 4.1), its operations and their parameters are diverse and
complex enough to show the limitations of current fuzzers.

• By following the REST protocol and using Spring Boot [W39] it implements state
of the art architectures and frameworks.

The project is composed of multiple Maven submodules, however, three of them (idp-
sektoral, idp-fedmaster, idp-fachdienst) are not included in the published GitHub project.
Since the module of the project exposing the endpoints is the idp-server, this is not of
significant concern. However, due to the idp-testsuite depending on those submodules,
the integration tests would have to be untangled from them in order to execute the whole
testsuite. Although the execution of the whole testsuite would have given an interesting
indication of achievable test coverage, this inquiry was not pursued.

The existing unit tests for the idp-server module (version 21.0.22) runs 208 tests without
errors or failures and uses the JaCoCo Maven plugin to create a coverage report in binary
format. This binary coverage report can be turned into an HTML format using the
JaCoCo Command Line Interface (CLI). Figure 4.1 shows the resulting test coverage of
the unit tests for the idp-server module.

Figure 4.1: Code Coverage of idp-server Module Achieved by Unit Tests

With 80% line coverage and 70% branch coverage, the unit tests cover the majority of
the project. The subsequent section delves into a comparison between these manually
composed test cases and those that are automatically generated by fuzzing tools.

4.2 Choosing Suitable Fuzzers
In Chapter 3, various fuzzing tools and approaches were introduced. The first and most
important decision in terms of fuzzing tools selection is whether to use a traditional or

64

4.2. Choosing Suitable Fuzzers

REST-based fuzzer.

As Rindell et al. [5] pointed out, fuzzing solutions have a high perceived impact on the
security of the software to be developed but are not adopted broadly due to the high
effort needed to build and maintain a fuzzing environment. Moreover, Böhme et al. [55]
found that usability stood out as the primary concern for industry participants surveyed.
Hence, the solution to be implemented should be as trivial to set up, configure and
maintain as possible. This tendentially favours black-box fuzzers. Simultaneously, the
fuzzer applied should achieve high code coverage in a short time frame, which suggests
that a white- or grey-box fuzzer should be used.

Traditional fuzzers need complex fuzz harnesses and even Jazzer’s autofuzz feature
would need to be called on each method to be fuzzed, e.g., on each endpoint, which
contradicts the requirement of a trivial setup. Given that EvoMaster utilizes domain-
specific knowledge by testing the PUT’s REST interface, it supports white-box mode and
has been recognized as the best-performing fuzzing tool in two empirical studies [6], [8], it
is deemed to be an excellent match. Though, none of the studies comparing REST-based
fuzzing tools presented in Section 3.3.2 considers factors like false-positive rate, ease of
use or how the fuzzer’s results can be displayed and further utilized. Only Hatfield-Dodds
and Dygalo [48] study the tool’s ability to de-duplicate reports that cover the same
fault. Another downside of the existing studies is that they only included REST APIs
with already existing OpenAPI specifications, whereas for this case study automatically
created specifications are used. Hence, the other fuzzing tools presented in Section 3.3.2
were analyzed briefly as well, taking these factors into account.

To run the REST-based fuzzing tools on the PUT, an OpenAPI specification document
is needed.

4.2.1 OpenAPI Specification Document Creation
As the fuzzers should be integrated into the development process efficiently and usable,
manual creation is not an option. For the automated creation of an OpenAPI specification
document, there are generally two approaches available. First, the specification can be
created by statically or dynamically analyzing the source code. The second approach
utilizes the existing test suite and captures the traffic to infer the endpoints that got
hit during test execution. While the first method is typically simpler and includes
parameter constraints, the second approach has the advantage of incorporating preexisting
information from the tests, e.g., as example values in the OpenAPI specification. In
addition, the traffic capture approach can be employed even if there is no tool available
for a project’s framework that automatically creates the specification document via source
code analysis. To get a comparison of these approaches, both methods were employed,
resulting in the generation of two OpenAPI specification documents to be further used
in experiments with fuzzers.

As the given PUT uses the widely-used Spring Boot framework for which the springdoc-
openapi Java library [W40] exists, the creation via the first approach is as easy as adding

65

4. Case Study: Proof of Concept Solution for Continuous Fuzzing

a new Maven dependency and rebuilding the project. This library „works by examining
an application at runtime to infer API semantics based on spring configurations, class
structure and various annotations“ [W40] and exposes a new endpoint /v3/api-docs
where the specification can be accessed in JSON and YAML format. To generate the
OpenAPI specification document, a Maven profile was created. If activated, it adds the
springdoc-openapi-starter-webmvc-api dependency (version 2.0.2) and generates
the OpenAPI specification document via the springdoc-openapi-maven-plugin. If
the profile is not activated, a property is set, which skips the generation of the OpenAPI
specification document. This ensures that the endpoint returning the specification is
only exposed when necessary and not in the final application. The library created an
OpenAPI specification document for the PUT containing 15 paths and 19 operations.
In addition, 8 schemas specifying the different properties used in each operation were
created.

To generate an OpenAPI specification document using the second approach, a traffic
dump was created using the linux tool tcpdump while the unit tests were executed and
the resulting pcap file was filtered so that it only contained HTTP packets. As there
is no direct way to create an OpenAPI specification document from a pcap file, it was
first converted to a HAR file using the pcap2har-go [W41] tool. Then, an OpenAPI
specification in JSON and YAML format was created using har2openapi [W42]. Because
the unit tests spawn several server instances listening on different ports, the resulting
specification also contains different server and port combinations, resulting in many paths
being duplicated. To combat this, the tool provides a search and replace functionality
that can be added via its config file. The regex localhost:[0-9]* was used to replace
the host and port combinations with an empty string, so that only the path after the
base URL remained in the specification (the base URL can be set in most fuzzing tools
via an option parameter). This resulted in an OpenAPI specification document with
18 operations on 13 paths. Contrary to the first approach, the resulting specification
defines examples. However, it is not able to create schemas defining the exact formats
and datatypes of parameters the server expects.

Table 4.1 shows an overview of the paths and operations that are defined in the resulting
OpenAPI specification documents. The traffic capture approach did not pick up the path
/auth/realms/idp/.well-known/openid-configuration because it is not tested in
the unit tests. Furthermore, without additional configuration, the tool does not recognize
ID parameters. Thus, an erroneous path /pairings/654321 was created instead of
correctly specifying the query parameter. The unit tests define one negative test on
the endpoint /.well-known/openid-configuration with the method POST which
returns a 405 (Method Not Allowed) error. Having such non-existent endpoints included
in the specification is another disadvantage of the second approach.

4.2.2 Fuzzer Experiments
With the creation of the OpenAPI specification documents for the PUT, the REST-based
fuzzing tools can now be run against the test target. To that end, the PUT was started

66

4.2. Choosing Suitable Fuzzers

Path Method Code Analysis Traffic Capt.
/token POST

/sso_response POST
/sign_response GET

POST
/pairings GET

POST
DEL.

/extauth GET
POST

/alt_response POST
/jwks GET

/idpSig/jwk.json GET
/idpEnc/jwk.json GET

/directory/kk_apps GET
/discoveryDocument GET

/.well-known/openid-configuration GET
POST

/a/r/i/.well-known/openid-configuration* GET
/pairings/ DEL.

/pairings/{key_identifier} DEL.
/pairings/654321 DEL.

* /auth/realms/idp/ shortened to /a/r/i

Table 4.1: Comparison of Code Analysis vs. Traffic Capture Approach for OpenAPI
Specification Document Generation

using the JaCoCo library to retrieve code coverage and the log level of the log4j2 library
was set to debug. This enables the retrieval of the number of requests each tool issued to
the API. Then, each tool was run in black-box mode two times, once with the OpenAPI
specification created by code analysis, and once with the specification created through
the traffic capture method. Since the goal of this comparison is to show the potential of
quick fuzzing campaigns directly integrated into the CI/CD pipeline, as well as comparing
the tools’ practical application and their output on the different OpenAPI specification
creation approaches, a time budget of 10 minutes was chosen for each fuzzing run. After
each test run, the code coverage as well as the number of requests were retrieved and the
PUT was restarted.

As the goal of the fuzzing campaigns is to find bugs in a short amount of time, the
number of faults found by each tool is used as primary metric to determine the tools’
bug finding capability. Moreover, similar to Kim et al.’s approach [6], code coverage is
used as further indication of the tool’s performance. This brings the additional benefit of
being able to compare the value to the previous studies on EvoMaster’s performance (see

67

4. Case Study: Proof of Concept Solution for Continuous Fuzzing

Section 3.3.2), as well as the manually created unit tests of the project. Furthermore,
as an additional metric, the total number of requests issued by each tool is taken into
account.

EvoMaster Black-Box

The two test runs with EvoMaster v1.6.0 [W43] in black-box mode achieved nearly
identical results. Figure 4.2 shows the code coverage report after running EvoMaster on
the PUT with the OpenAPI specification created by springdoc. With 37% line coverage
and 15% branch coverage in 208516 requests it performed significantly worse than the
unit tests.

Figure 4.2: Code Coverage of idp-server Module Achieved by EvoMaster with OpenAPI
Specification Created by springdoc

The test run with the specification derived from traffic capture covered 36% of instructions
and 16% of branches in 282778 requests. One of the differences is in the ExceptionHandler
class, where the traffic capture approach covered 80% of lines and 75% of branches,
compared to 70% and 50% in the code analysis approach. This is, e.g., due to the method
handleMethodNotSupported that gets called when tested with the specification file
derived from the unit tests, because the tests contain such a request.

In both test runs, EvoMaster was able to detect a bug in the POST /extauth endpoint
where the server returns an HTTP 500 error. A snippet of the generated JUnit test
is given in Listing 4.1 and a detailed analysis of the underlying fault is presented in
Section 5.4.1.

68

4.2. Choosing Suitable Fuzzers

1 ValidatableResponse res_0 = given().accept("*/*")
2 .post(baseUrlOfSut + "/extauth?" +
3 "code=IvCour5gAcCptS&" +
4 "state=prefix_Csf_postfix&" +
5 "kk_app_redirect_uri=n4efjquU2iYTu9z3")
6 .then()
7 .statusCode(500)
8 .assertThat()
9 .contentType("application/json")

10 .body("’error’", containsString("server_error"))
11 .body("’gematik_code’", containsString("-1"))
12 .body("’gematik_error_text’", containsString("Invalid Request"));

Listing 4.1: JUnit Test Generated by EvoMaster

EvoMaster White-Box

To test EvoMaster’s white-box mode, a driver that extends the EmbeddedSutController
and implements the required functionality (see Section 3.3.2) was created. The complete
EvoMasterController.java file is listed in Appendix 1. The tool was run in its default
configuration with a maximum time limit of 10 minutes. For the run with the springdoc
documentation it covered 37% of lines and 17% of branches in 178084 requests, nearly
identical to the test runs in black-box mode. This led to the finding of one new fault in
the GET /extauth endpoint where an internal server error is returned (see Section 5.4.1).
Again, with the specification generated from traffic analysis it achieved similar results
(36% line, 17% branch coverage) in 232132 requests and found the same bug as in
black-box mode but missed the second fault discovered in the first test run.

The documentation suggests running the tool between 1 and 24 hours in white-box
mode to get better results. Thus, the test run using the springdoc OpenAPI document
was repeated with a maximum time limit of 1 hour. However, with 38% line and 19%
branch coverage, the longer fuzzing campaign did not bring any significant coverage
improvements and did not find any new faults.

In Kim et al.’s and Zhang and Arcuri’s empirical comparisons on multiple test targets,
EvoMaster was able to reach between ~53% and ~57% on average (see Section 3.3.2). The
discrepancy can be explained by the complexity of the PUT’s parameters. Many endpoints
in the idp-server project require JSON Web Tokens (JWTs) that carry encrypted content.
Without giving the fuzzer additional information on the semantics and encryption schemes,
it is not able to create meaningful inputs that are able to pass the first layer of parameter
validation (e.g., the decryption of an input value) in the PUT, not even in white-box
mode.

69

4. Case Study: Proof of Concept Solution for Continuous Fuzzing

Response status: 500
Response payload: ‘{"timestamp":"2023-02-28T11:17:19.834+00:00","

status":500,"error":"Internal Server Error","path":"/extauth"}‘

Run this cURL command to reproduce this failure:
curl -X GET -H ’X-Schemathesis-TestCaseId: 591

e7fcf07a9447fa4c6666dc4a6897b’ ’http://localhost:8080/extauth?
client_id=0&code_challenge
=00&
code_challenge_method=S256&kk_app_id=0&redirect_uri=%3A&
response_type=code0&scope=0&state=0’

Figure 4.3: Schemathesis Report for Found Defects

Schemathesis

Schemathesis [W44] in version 3.18.5 does not provide an option to set a time limit,
instead one can specify the --hypothesis-max-examples which sets the maximum
number of generated values per method/path combination. To make the test runs
comparable to the EvoMaster tests, the value was adjusted a few times until the tool
exited after about 10 minutes.

The first test was run with the hypothesis max examples set to 2000 and exited after
583 seconds with 20709 requests, achieving 38% line coverage and 17% branch coverage.
It caught the same two defects as EvoMaster in white-box mode and provides a clear
and concise output specifying the request, response status and body, as well as a cURL
command to reproduce the error. A snippet of this report is given in Figure 4.3.

In the second test run, the hypothesis max examples needed to be set to 29000 for
the tool to exit after 596 seconds with 58094 requests, covering 39% of lines and 19%
of branches. The tool throws an InvalidSchema error for the GET /sign_response

endpoint, indicating that the OpenAPI specification derived from traffic capture has
some errors in it. It did not find the two faults as with the first run, however, it reported
a response timeout error in the GET /extauth endpoint. This is because it uses a valid
URI for the redirect_uri parameter after which the server responds with a redirect to
a URI defined in the server. Due to the first test run not having any examples in the
specification, no valid URI is generated for the parameter, thus, the fault is not found.

RESTler

As described in Section 3.3.2, RESTler [W45] first compiles an OpenAPI specifica-
tion to a grammar and then generates requests from this. However, RESTler version
9.1.1 was not able to compile the OpenAPI specification generated by springdoc due
to a NotImplementedException that states that objects in query parameters are not
supported yet. For the specification derived by traffic capture the compile step suc-
ceeded, however, the test task failed with a NullReferenceException in /restler-fuzzer-

70

4.2. Choosing Suitable Fuzzers

9.1.1/src/driver/SpecCoverage.fs:line 321. This was fixed in a commit only a few days
after the release of version 9.1.1 [W46]. Thus, the experiment was repeated, using the
latest commit (50944ac) of the main branch.

With this version, the test with the OpenAPI specification succeeded (the springdoc-
generated with objects in query parameters still is not supported and failed at the compile
task), although it only was able to generate successful requests for 4 out of 18 endpoints.
A fuzzing campaign running for 10 minutes resulted in 33016 requests with a line coverage
of 36% and a branch coverage of 23%. However, RESTler’s results analyzer failed with the
message „Unexpected response without prior request [...]“ which apparently is a known
issue since May 2021 [W47]. According to the authors, this does not affect the bugs
reported by the tool, which in this case are 0. Manual inspection of the logs generated
by RESTler revealed no responses with a 500 status code, thus, confirming this result.

RestTestGen

RestTestGen v23.02 [W48] does not provide any option to limit the time budget of its
testing campaign and terminating the process early will not generate a report correctly.
Thus, to get more comparable results, the tool was run until it finished for the first test
and for the second test the tool was run several times successively on the same test
target.

In the first test run using the springdoc-generated OpenAPI specification, RestTestGen
finished after 9 minutes and 36 seconds with 32% line coverage and 16% branch coverage in
3176 requests. The low coverage and the low amount of requests can be explained by the
tool following the redirects returned from the GET /sign_response and GET /extauth

endpoints, which result in a timeout. These requests are re-tried 10 times, blocking the
progress of other endpoints and without editing the source code, this behaviour cannot
be changed.

Although RestTestGen did find one fault returning an error 500, interpreting this result is
not trivial. It lists the status codes covered by each endpoint, which reveals a 500 response
in the POST /extauth endpoint, but the corresponding request is not included. Instead,
the generated reports in JSON files containing all requests and their corresponding
responses must be manually searched or parsed to find the request responsible for the
server error.

For the second test run, the server URL had to be added in the specification as the tool
provides no option to set it on execution. After 11 fuzzing campaigns (taking 9 minutes
and 41 seconds in total) the tool issued 33573 requests, covering 29% of lines and 14% of
branches. However, no faults were encountered.

EvoReFuzz

EvoReFuzz (version 1.0) [W49], the advancement of bBOXRT, needs a manually created
java file which transforms the OpenAPI specification into its internal RestApiSpecification

71

4. Case Study: Proof of Concept Solution for Continuous Fuzzing

class. After implementing this file for both OpenAPI specifications, the tool was able
to fuzz the target program. However, it consistently crashed after a few seconds at re-
quest 3468 with a NullPointerException at pt.uc.dei.rest_api_robustness_tester.
media.NoOpFormatter.Serialize(NoOpFormatter.java:83). An inspection of the
file revealed a comment in the stated method: „FIXME: this should definitely be imple-
mented in better way - VERY BAD PRACTICE“. Therefore, EvoReFuzz was deemed as
unfinished and further experiments were abandoned.

RESTest

To install RESTest, the project (commit ca054a5) was cloned and the guide on its project
page to run RESTest as a JAR was followed [W50]. As this resulted in a build error in
the javadoc creation step, the flag -Dmaven.javadoc.skip=true had to be set. Two
.properties files were created that contain the necessary configuration parameters, e.g.,
the location of the OpenAPI specification document and the output directory. The test
case generator was set to FT, i.e., fuzz testing as per the tool’s documentation [W50].

Similar to RESTler, an exception was thrown when using the OpenAPI specification
created by springdoc because „The parameter type object is not allowed in query or
path“. With the second specification document the test case generation step succeeded,
however, the test execution step failed with the message: 0 tests run in 0 seconds.

Successful: -1, Failures: 1, Ignored: 0. Manual inspection of the generated
test files revealed no obvious error and RESTest also does not provide any option
parameters for more verbose error logging. Consequently, the current instability of the
tool renders it unsuitable for practical application.

RestCT

The last tool that was analyzed is RestCT (commit 4dbd785) [W51]. As it only supports
OpenAPI in version 2, the two documents were converted using the api-spec-converter
tool [W52]. Then, it was run using its default configuration and a time budget of 600s.
Using the first specification document created by springdoc, RestCT crashed with the
message AttributeError: ’NoneType’object has no attribute ’items’ in the
file RestCT/src/restct.py.

The second specification was accepted, however, the tool exited after only 3 minutes of
testing. Hence, the coverage strength of sequence covering arrays for operation sequences
and the coverage strength of covering arrays for all input parameters were increased from
2 to 3 and the coverage strength of covering arrays for essential input-parameters from
3 to 4 using the SStrength, AStrength and EStrength command line options. This
resulted in a more comparable test run of 10 minutes, achieving 30% line coverage and
9% branch coverage in 5023 requests. It was not able to find any bugs.

The results of the fuzzer experiments are summarized in Table 4.2. For both OpenAPI
specification document creation approaches, line and branch coverage are shown, as well
as the number of faults found and the number of requests issued by each tool.

72

4.2. Choosing Suitable Fuzzers

Springdoc Traffic Capture
Fuzzer LC BC Faults Rqs LC BC Faults Rqs

EvoMaster BB 37% 15% 1 208516 36% 16% 1 282778
EvoMaster WB 37% 17% 2 178084 36% 17% 1 232132

Schemathesis 38% 17% 2 20709 39% 19% 1 58094
Restler - - - 36% 23% 0 33016

RestTestGen 32% 16% 1 3176 29% 14% 0 33573
EvoReFuzz - - - - - -

RESTest - - - - - -
RestCT - - - 30% 9% 0 5023

BC = Branch Coverage, LC = Line Coverage, Rqs = Total Requests

Table 4.2: Fuzzer Results After 10 Minutes with Different OpenAPI Specification Gener-
ation Approaches

Although the traffic capture approach led to slightly better code coverage, the springdoc-
generated OpenAPI specification led to the finding of more faults. In addition, the traffic
capture and subsequent transformation into two different formats is rather cumbersome
and not as easy to automate as the springdoc approach. Furthermore, in springdoc one
can enhance the generated specification with example values by defining them via Java
annotations in the endpoint definition.

In terms of tools it is noticeable that half of them were not able to parse the OpenAPI
specification document created by springdoc or otherwise crashed consistently. Despite
the specification derived from traffic capture being converted two times using different
open source tools, more fuzzing tools were able to parse it. This is due to them only
supporting primitive types as query and path parameters, whereas springdoc generates
an OpenAPI specification document that contains query parameters of type object.
From those that are able to parse the springdoc-generated document, EvoMaster and
Schemathesis achieved the highest coverage and found the most faults. This is in accord
with the results in [6] and [8].

73

CHAPTER 5
Integration into GitLab CI/CD

Pipeline

This chapter explores how a fuzzing process considering the previously defined require-
ments and trade-offs (see Section 3.2), as well as the insights gained from the experiments
with fuzzers in the previous chapter can be integrated into the GitLab CI/CD pipeline. A
final design for the continuous fuzzing solution is established, implemented and evaluated.

5.1 GitLab CI/CD Concepts
The general workflow of GitLab’s CI was already described in Section 2.1.3. To get
an overview of possible solutions, its technical details and core concepts are explained
further.

The top-level component in GitLab CI/CD are pipelines, which are comprised of jobs
and stages [W6]. Jobs specify what to do, whereas stages define when the jobs are run.
For example, a job that builds the PUT can be run in the stage build and a stage test
runs multiple jobs that run a linter, unit and integration tests. By default, if a stage
has more than one job, they are run in parallel and if any of them fails, the pipeline
halts and the next stage will not be executed [W6]. Jobs whose output is needed in later
jobs can output an archive of files and directories, called artifacts. These can also be
downloaded through the GitLab web interface. A typical pipeline as described in the
GitLab documentation might consist of the stages build, test, and deploy [W6].

Besides the basic pipeline type, which runs all stages concurrently, there also exist more
sophisticated ones [W6]. More specifically, there exist two pipeline types that run only
on merge requests, one of them acting as if the changes to be merged have already been
integrated into the target branch [W6].

75

5. Integration into GitLab CI/CD Pipeline

To execute jobs, GitLab uses a runner, an open source binary application written in
Go [W53] that automatically picks up jobs as they appear. In the Software as a Service
(SaaS) version of GitLab, runners inside a Linux VM are available. However, in the free
tier of GitLab, only 400 CI/CD minutes (i.e., minutes of execution time by a single job)
per month are included [W54]. For a runner, different executors are available which
determine the environment each job runs in.

To implement the PoC, a local self-managed GitLab instance was set up, using the
docker-compose installation method [W55]. In addition, two runner instances using the
Docker executor were configured so that they pick up the jobs created by the test project.

5.2 Continuous Fuzzing Design
As illustrated in Section 3.2, an efficient continuous fuzzing solution should have two
stages. The first one is a quick fuzzing campaign that gives developers rapid feedback on
every commit. The second one executes a longer, asynchronous fuzzing campaign, which
should be run every so often. For this, GitLab’s merge request pipeline can be utilized.

In each stage, an up-to-date OpenAPI specification document must be provided before the
fuzzing campaigns start. Since many development processes do not follow a specification-
first approach, this document must be generated automatically. This step can be included
in one of the stages preceding the fuzzing stage, i.e., in the build or test stage.

Figure 5.1: Continuous Fuzzing Design Based on Klooster et al. [10]

Figure 5.1 shows an illustration of the design based on a continuous fuzzing solution by
Klooster et al. [10]. In Klooster et al.’s design, corpus sharing and minimization steps
are applied that manage the seed corpus. As the presented REST-based fuzzers do not
have seed corpora, these steps are swapped with a build and test step which outputs an
up-to-date OpenAPI specification which will then be used by the fuzzers. The illustrated
design works for both fuzz stages, the only difference is the time limit of the fuzzing
campaigns and the fuzzers applied.

Since the OpenAPI documentation generation approach using springdoc found more
faults in the comparison in the previous chapter and its integration is as simple as adding

76

5.3. Results

a dependency, this method is preferred over the generation via traffic capture. As RestCT
and Restler are not able to parse the OpenAPI specification document generated by
springdoc, only the tools RestTestGen, Schemathesis and EvoMaster remain. Although
RestTestGen was the best-performing tool in [80] and achieved not much less coverage than
EvoMaster and Schemathesis in the comparison in the previous chapter, its applicability
in context of a continuous fuzzing solution is limited due to it not having an option to
set a time budget or otherwise limit its runtime. Furthermore, it only achieves a fraction
of the requests compared to Schemathesis and EvoMaster. Thus, for the integration into
a CI environment, EvoMaster and Schemathesis are deemed as best fit.

Note that, with stateful fuzzers, ensemble fuzzing only makes sense if they are run on a
different target instance, because, otherwise, they would not work together, but against
each other. For example, if fuzzer A tests a sequence where a resource is created, retrieved
and then deleted, a parallel fuzzing process could interfere with this operation sequence
and, e.g., delete the resource before fuzzer A can retrieve it. In addition, results might
be irreproducible if a fault occurred due to unexpected interactions with the test target
by other fuzzers.

Nonetheless, it is reasonable to utilize multiple fuzzers employing different test generation
strategies concurrently, especially if a new instance of the test target can be easily started.
Since this is the case with the given PUT, of which a new instance can be trivially started
with a Docker command, two fuzzing jobs running in parallel were implemented. Note
that this requires enough available runners for the project, otherwise the jobs are run
consecutively.

5.3 Results
The proposed design for a continuous fuzzing solution as shown in Figure 5.1 was
translated into two GitLab CI/CD pipelines, one that runs on every commit (basic
pipeline) and one that runs on merge requests. The complete gitlab-ci.yml file is given in
Appendix 2.

To avoid executing common installation steps (e.g., Python and Schemathesis) everytime
a fuzzing job is run, a Docker image was created, which runs these steps once and provides
simple utilities to run the fuzzers. This image comes with EvoMaster, Schemathesis,
Maven and Java pre-installed and was pushed into the project’s container registry to
make it available to the Docker executors running the fuzz jobs.

5.3.1 Basic Pipeline
For the basic pipeline, the fuzzers EvoMaster and Schemathesis are run in parallel.
Although EvoMaster generally performs better in white-box mode [6], [8] and a driver
was already implemented in the previous Chapter, it is set to run in black-box mode for
the basic pipeline and in white-box mode for the merge request pipeline (see Section 5.3.2).
This has the reason that, as described by Zhang and Arcuri [8], the search algorithm

77

5. Integration into GitLab CI/CD Pipeline

of EvoMaster’s white-box mode can sometimes get stuck in local optima and in such
cases its black-box mode performs better. Thus, to add more diversity to the continuous
fuzzing solution, EvoMaster’s black-box mode is utilized in the basic pipeline.

An overview of the stages and their dependencies is shown in Figure 5.2. The build stage
takes roughly 2 minutes, the test stage 2 minutes and 36 seconds, and the report stage
22 seconds. Thus, to keep the total time of the pipeline to ~15 minutes, for EvoMaster a
time budget of 600s was set and Schemathesis’ max examples were set to 1500. As these
values vary from project to project and depend on the hardware the runners run on, they
can be easily changed by setting variables inside the pipeline definition (see Appendix 2).

Figure 5.2: Continuous Fuzzing Basic Pipeline Jobs and Their Dependencies

Build

In the build stage, the PUT is compiled using Maven. This builds a Docker image which
is used in the later stages. To speed up the process, the unit and integration tests are
skipped in this job, since they are executed in the next stage.

Test

The test stage executes Maven verify to run the unit and integration tests of the project.
It sets two Maven system properties to skip the Docker build process and to generate
the OpenAPI specification document. An artifact containing this document is created
to make it available for the subsequent fuzzing jobs. The pipeline also defines a cache
to make Maven dependencies available throughout the pipeline, thus, avoiding the test
stage having to re-download dependencies that were already met in the build stage.

Fuzz

The fuzz stage consists of two jobs that each spawn an instance of the PUT and run
a fuzzer on it. One runs Schemathesis and the other one runs EvoMaster in black-box
mode. Both follow four simple steps:

• Start the PUT using Docker, joining it to the Docker network the Docker executor
is running in.

• Wait for the PUT to be up and running.

• Run the fuzzing tool on the PUT.

78

5.3. Results

• Explicitly stop the PUT in an after_script section to ensure the Docker container
is stopped, even if the fuzzer returns an error or crashes.

An artifact of the fuzzer’s outputs assures that their results can be downloaded and
viewed. Furthermore, the dependency on the previous’ stage output (i.e., the OpenAPI
specification) is configured using GitLab’s needs keyword, assuring that the job waits for
it. Since Schemathesis returns with a non-zero exit code if a fault is found, the command
is extended with a || true statement. This guarantees that the pipeline always proceeds
to the next stage in which the results are interpreted.

Report Findings

A last stage that depends on the fuzzing jobs aggregates the fuzzer’s results and decides
whether the pipeline fails or succeeds. To keep false positives to a minimum, only responses
with a status code in the 500 range are considered as faults. Schemathesis already handles
it this way in its default configuration. As EvoMaster also treats mismatches from the
OpenAPI specification as bugs [W43], a script was created which parses EvoMaster’s
results. Thus, the stage only fails if one of the tools found a fault where the PUT
encountered an internal server error.

To deactivate the pipeline failing if faults were detected, the allow_failure keyword
can be set in the job to guarantee later stages to run despite found faults in the fuzzing
stage. This can be helpful when initially integrating fuzzers into the pipeline to monitor
their behaviour without affecting later (e.g., deploy) stages.

The report stage also writes an artifact with its output to a file to make it downloadable
for further investigations.

5.3.2 Merge Request Pipeline

The merge request pipeline follows the same design as the basic pipeline but uses
EvoMaster in white-box mode instead of two parallel fuzz jobs. Due to the workflow in
pull-based development methods (see Section 2.1), the basic pipeline that runs EvoMaster
and Schemathesis in a short fuzzing campaign is run on every commit in a branch. Then,
upon issuing a merge request, EvoMaster is run in white-box mode for a 50 minutes long
fuzzing campaign. This leaves enough time to the other jobs for the whole pipeline to
finish in under one hour. Its jobs and stages are shown in Figure 5.3. The build and test
jobs are the same as in the basic pipeline.

Figure 5.3: Continuous Fuzzing Merge Request Pipeline Jobs and Their Dependencies

79

5. Integration into GitLab CI/CD Pipeline

Fuzz

To run EvoMaster in white-box mode, a different approach than in the basic pipeline must
be applied since the PUT must be started using the implemented EvoMaster controller
instead of via Docker:

• First, the project is compiled using mvn test-compile to compile the project,
including the implemented EvoMaster driver.

• Then, the classpath necessary to run the EvoMaster controller is built using mvn

dependency:build-classpath -Dmdep.outputFile=mvn_cp.txt. This does
not include the classes from the previously built target, thus, they are added to the
classpath file in a separate command.

• The controller is started in the background using the previously built classpath and
the job waits for it to start.

• Finally, EvoMaster is run in white-box mode to start the fuzzing process.

Just as in the basic pipeline, the EvoMaster output files are uploaded as an artifact to
make it available to the report stage.

Report Findings

The report stage in merge request pipelines executes the same script as in the basic
pipeline to generate the fuzzing report. In addition, it exposes this report on merge
requests for the project maintainers approving the merge request to easily view the found
faults, if there exist any. An image showing this feature where the fuzzing integration
found a fault and failed the pipeline is given in Figure 5.4.

Figure 5.4: Exposed Artifact on Merge Request Approval Screen

5.4 Evaluation
To evaluate that the implemented solution works as intended, the workflow of a real
development environment was simulated. To achieve this, the original ref-idp-server

80

5.4. Evaluation

project was cloned and reverted to version 4.0.0 as this is the first available version in the
GitHub repository [W35]. Further goals of this evaluation are to find out which types of
vulnerabilities the solution is able to detect and to measure its false positive rate.

The continuous fuzzing solution was re-added to the project in version 4.0.0 by copying
the .gitlab-ci.yml file implemented in the previous section to the project’s root directory
and by copying the implemented EvoMaster controller. After this initial setup, a new
branch was created and the changes from the next version (5.0.0) in the original project
were applied by deleting all files and copying over the files of the new version. To not
overwrite the changes in the idp-server/pom.xml needed for the OpenAPI generation,
this file was manually merged. The changes were then committed in the new branch
and a merge request was issued to merge the changes back into the main branch. These
steps were repeated for each of the 37 available commits up to the latest available version
(21.0.30).

For each commit and merge request the results of the CI/CD pipeline were examined.
Every fault indicated by the fuzzers was analyzed in detail to be able to decide whether
it is a false positive or not.

During the course of the evaluation, several issues with the historical state of the project
were encountered:

• For the versions up until 21.0.0, a Java version 11 is needed to build the project,
thus, the image used in the pipeline was set to maven:3.6-openjdk-11. For the
remaining versions the image maven:3.8.7-openjdk-18 was used. In addition, the
fuzz image in the project’s container registry was also changed to use Java 11
instead of Java 17.

• Between versions 8.0.0 and 11.0.0 the project depended on an external GemLibPki
library in versions that are not available on maven central. Thus, the 5 commits
were skipped in the evaluation.

• Versions 11.1.0 to 13.0.1 have conflicting springfox dependencies which prevented the
continuous fuzzing solution from generating the OpenAPI specification document.
Therefore, the 4 commits were also skipped.

• Some versions contained tests that send an expired certificate to the server, which
failed the pipeline in the test stage. These failing tests were removed from the
project.

• As the versions up to 21.0.22 use springboot v2 instead of v3, the springdoc de-
pendency which generates the OpenAPI specification had to be changed from
springdoc-openapi-starter-webmvc-ui version 2.0.4 to springdoc-openapi

-webmvc-core version 1.6.15. In addition, the database specification in the imple-
mented EvoMasterController did not work with springboot v2 due to the major
version change. Thus, it was removed for the evaluation in the versions up to
21.0.22.

81

5. Integration into GitLab CI/CD Pipeline

• 3 commits between versions 17.0.0 and 18.1.0 and one commit for version 19.3.0
are missing the Dockerfile to build the image and were skipped.

• Versions 19.1.0 and 19.2.0 were skipped due to unsatisfiable dependencies.

• Schemathesis sometimes encountered errors, mostly in the POST /token and POST
/sso_response in versions 20.0.9 up to 21.0.14. This is due to the server returning
a redirect URL which Schemathesis cannot connect to because the URL is not
reachable anymore. This has no effect on the other endpoints, however. For the
evaluation, only the faults listed in Schemathesis’ output in the failures section are
considered as faults.

Following this approach, it was possible to successfully evaluate the continuous fuzzing
solution on 22 out of 37 historical commits stretching over a development period of over
2 years.

5.4.1 Detected Faults
In the following, for each version in which faults were discovered, the faults are described
briefly to determine whether a fault detected by the fuzzers is a false positive. Furthermore,
each fault is evaluated whether it is a duplicate of an earlier detected fault.

V5.0.0

In version 5.0.0, the continuous fuzzing solution detected 3 faults.

The first fault (F1) is in the DELETE /pairing/{kvnr}/{id} endpoint and concerns
the id parameter. Since the endpoint definition does not limit this parameter to a specific
format and then uses it in Long.valueOf(id), an error is thrown if the provided value
cannot be cast to the Long datatype.

F2 is in PUT /pairing/1 and occurs when no request body is sent. The server then
sends an internal server error response indicating the missing request body but does not
correctly return an error in the 400 range.

F3 is in GET /authorization and occurs if the client sends an unsupported
code_challenge_method, i.e., one that is not equal to S256. The server then fails
to convert the given parameter to a de.gematik.idp.field.CodeChallengeMethod

type because it is an enum with the values S256 and PLAIN.

F4 occurred with a request to PUT /pairing/3AekuGdSel0u and returned
the following error message: could not execute statement; SQL [n/a];

constraint [null]; nested exception is org.hibernate.exception.

ConstraintViolationException: could not execute statement. The request
body is mapped to a PairingDto which is then inserted into the database. However, only
the kvnr value is checked for presence, thus, columns that have a NOT NULL constraint

82

5.4. Evaluation

on the database level will lead to the server throwing an org.hibernate.exception.

ConstraintViolationException and returning a 500 error.

F5 concerns the de-serialization of a date string in the timestampPairing parameter of
the PUT /pairing endpoint. The value is mapped to a ZonedDateTime which throws
an exception if the provided date string does not contain a zone identifier.

V5.1.0

Version 5.1.0 had only one error which is a duplicate of F3.

V6.0.0

V6.0.0 introduced a new fault F6 in the GET /sign_response endpoint. It is similar to
F3 in that it occurs upon sending an invalid code_challenge_method but a different
error message is returned and it also occurs in a different endpoint. Hence, this is not
counted as duplicate. Although the server correctly returns the error message „Invalid
Request“, it fails to send an error code in the 400 range.

In addition, Schemathesis detected two response timeouts in the POST /sign_response

(F7) and POST /sso_response (F8) endpoints. In these cases, the server returns with
a redirect to a URL defined in the application settings upon encountering issues with
the provided parameters. However, this URL is not reachable anymore. The server
responding with a redirect to a non-existing location can indeed be interpreted as an
issue, as such it is assessed as a true positive.

V7.0.0

In version 7.0.0, 5 faults were detected, two of them being the same response timeouts as
F7 and F8, and one of them being the same as F6.

A new fault F9 is in the DELETE /device_validation endpoint. The server expects a
device_validation parameter as query string upon which it tries to delete the given
value by calling deviceValidationRepository.deleteById(id) without further in-
put sanitization. Hence, if a string or a non-existing id is given, it throws an exception
which is not processed further. Instead, the server responds with an error 500.

F10 is in the PUT /device_validation endpoint, which expects a deviceValidationDTO
parameter as query parameter. Besides the parameter being required in the query string
instead of as request body, if an arbitrary string is given, the server throws an error
with the message „Failed to convert value of type ’java.lang.String’ to required type
’de.gematik.idp.server.data.DeviceValidationDto’“. Thus, it fails to properly validate the
input.

83

5. Integration into GitLab CI/CD Pipeline

V14.0.0 - V16.0.0

The three commits from V14.0.0 to V16.0.0 all encountered the same fault, which is a
response timeout very similar to F7 but in the GET /extauth endpoint instead of the
POST /extauth endpoint. Thus, it is a new unique fault F11.

V20.0.9

V20.0.9 introduced a fault that is still present in the latest version of the project. F12
was found in the POST /extauth endpoint, which is shown in Listing 5.1.

1 public void postAuthorizationRequestIncludingAuthorizationCode(
2 @RequestParam("code") @NotNull(message = "3005") final String

authorizationCode,
3 @RequestParam(name = "state")
4 @NotEmpty(message = "2002")
5 @Pattern(regexp = ".+", message = "2006")
6 final String idpState,
7 @RequestParam(name = "kk_app_redirect_uri") @NotNull(message = "1004"

) final String kkAppUri,
8 final HttpServletResponse response) {
9 final FasttrackSession ftSession = fasttrackSessions.get(idpState);

10 log.info(
11 "idp-sektoral address: "
12 + getSekIdpLocation(ftSession.getUserAgentSekIdp())
13 + IdpConstants.TOKEN_ENDPOINT);

Listing 5.1: NullPointerException in POST /extauth endpoint in ref-idp-server

Because fasttrackSessions.get(idpState) in line 9 returns null for a state 0,
ftSession.getUserAgentSekIdp() produces a NullPointerException for which no
specialized ExceptionHandler is defined. Thus, the server returns an internal server error
with the response code 500. As this fault has no other side effects, it is an issue of
robustness and does not cause any implications to the project’s security.

V21.0.0 - V21.0.14

The 7 fuzzing campaigns from version V21.0.0 to V21.0.14 all encountered the same
three issues. One of them is a duplicate of F12 and the other two are the same response
timeouts as F6 and F11.

V21.0.16 - V21.0.30

The project from version 21.0.16 onwards has two faults that were uncovered by the
continuous fuzzing solution. One of them is a duplicate of F12.

The other one, F13, is in the GET /extauth endpoint and is triggered if the requested
redirect_uri is set to “:” and if one of the constrained parameters (using @Pattern)

84

5.4. Evaluation

does not follow the specified regular expression. Listing 5.2 shows the relevant parts of
the endpoint in IdpController.java.

1 @RequestParam(name = "redirect_uri") @NotNull(message = "1004") final
String redirectUri,

2 @RequestParam(name = "nonce", required = false)
3 @Pattern(regexp = "^[_\\-a-zA-Z0-9]{1,32}$", message = "2007")
4 final String nonce,
5 @RequestParam(name = "response_type")
6 @NotEmpty(message = "2004")
7 @Pattern(regexp = "code", message = "2005")
8 final String responseType,
9 @RequestParam(name = "code_challenge")

10 @NotEmpty(message = "2009")
11 @Pattern(regexp = SHA256_AS_BASE64_REGEX, message = "2010")
12 final String codeChallenge,
13 @RequestParam(name = "code_challenge_method") @Pattern(regexp = "S256

", message = "2008")
14 final String codeChallengeMethod,
15 @RequestParam(name = "scope") @CheckScope final String scope,
16 final HttpServletResponse response) {
17 idpAuthenticator.validateRedirectUri(clientId, redirectUri);

Listing 5.2: Request Parameters for GET /extauth endpoint in ref-idp-server

The underlying problem is that in line 1, the request parameter redirect_uri is not
validated but is used in the method buildForwardingError which is called if one of
the other parameters throws a ConstraintViolationException. If all the parameters
are valid, validateRedirectUri is called and the redirect_uri is validated. Thus,
this fault is only triggered in negative test cases.
Listing 5.3 shows the problematic use of the redirect_uri. In line 1, the parameter
is extracted from the request parameters and in line 2 it is checked if the value is
present. However, no other validation is performed and the value will then be used
in line 9 to build a URI from it. If set to “:”, the method call in line 10 will throw a
UriBuilderException which results in the server returning an internal server error.

1 final String redirectUri = request.getParameter("redirect_uri");
2 if (redirectUri == null) {
3 final IdpErrorResponse body = getBody(exc);
4 if (!StringUtils.isEmpty(exc.getMessage())) {
5 body.setDetailMessage(exc.getMessage());
6 }
7 return new ResponseEntity<>(body, getHeader(), HttpStatus.BAD_REQUEST

);
8 } else {
9 final UriBuilder uriBuilder = UriBuilder.fromPath(redirectUri)

10 [...]
11 final URI location = uriBuilder.build();

Listing 5.3: Unsafe Use of redirect_uri Parameter in ref-idp-server

85

5. Integration into GitLab CI/CD Pipeline

Further investigation of this fault led to the finding of an open redirect vulnerability
(see Section 2.3.1). As the input parameter is not validated, an attacker can specify an
arbitrary website to which the application will redirect to. A minimal working example
using the cURL command is given in Listing 5.4. This vulnerability was responsibly
disclosed to the developers of gematik who confirmed the issue.

1 curl "http://localhost:8080/extauth?client_id=0&redirect_uri=http://
attacker.example"

Listing 5.4: Open Redirect Exploit for GET /extauth endpoint in ref-idp-server

5.4.2 Summary
In the 22 commits, the fuzzing integration detected 51 faults in total, 13 of which were
unique across all commits. Note that for each fuzz report, faults detected by both,
EvoMaster and Schemathesis, were counted as one. In addition, faults in the merge
request pipeline that were already caught in the basic pipeline also do not increase the
fault count per commit.

v4
.0

.0
v5

.0
.0

v5
.1

.0
v6

.0
.0

v7
.0

.0
v1

4.
0.

0
v1

5.
0.

0
v1

6.
0.

0
v2

0.
0.

9
v2

1.
0.

0
v2

1.
0.

1
v2

1.
0.

3
v2

1.
0.

7
v2

1.
0.

8
v2

1.
0.

12
v2

1.
0.

14
v2

1.
0.

16
v2

1.
0.

20
v2

1.
0.

22
v2

1.
0.

23
v2

1.
0.

25
v2

1.
0.

30

0

2

4

Commit Version

D
et

ec
te

d
Fa

ul
ts

Figure 5.5: Total Detected Faults for Each Commit

Figure 5.5 shows the total number of faults found in each commit. The first 6 commits
ranging from version 4.0.0 to 7.0.0 show a lot more variance in the detected faults than
later commits.

The cumulative unique faults are shown in Figure 5.6. Out of the 13 unique faults, 11
were detected in the first 6 commits and 12 in the first 9 commits. In the versions from
20.0.9 to 21.0.30, only one new unique fault was uncovered.

Table 5.1 summarizes the results by showing the detected faults by the fuzzers for each
commit. In the basic pipeline, EvoMaster discovered a total of 22 faults, 8 of which are
unique faults across all commits. Schemathesis identified 37 issues, out of which 9 are
unique across all 22 commits. There is an overlap of 9 faults (4 of them unique), which
were detected by both fuzzers in the basic pipeline.

86

5.4. Evaluation

v4
.0

.0
v5

.0
.0

v5
.1

.0
v6

.0
.0

v7
.0

.0
v1

4.
0.

0
v1

5.
0.

0
v1

6.
0.

0
v2

0.
0.

9
v2

1.
0.

0
v2

1.
0.

1
v2

1.
0.

3
v2

1.
0.

7
v2

1.
0.

8
v2

1.
0.

12
v2

1.
0.

14
v2

1.
0.

16
v2

1.
0.

20
v2

1.
0.

22
v2

1.
0.

23
v2

1.
0.

25
v2

1.
0.

30

0

5

10

15

Commit Version

C
um

ul
at

iv
e

U
ni

qu
e

D
et

ec
te

d
Fa

ul
ts

Figure 5.6: Cumulative Unique Detected Faults for Each Commit

The merge request pipeline employing EvoMaster’s white-box mode uncovered a total of
28 faults, 10 of which are unique. Despite utilizing EvoMaster’s white-box functionality
and running 5 times longer, the faults found are identical to the results achieved by
EvoMaster in the shorter basic pipeline in 16 commits. Only one of the faults detected
in the merge request pipeline is an issue that was not already discovered in the shorter
basic pipeline.

Lastly, the 13 unique faults the whole continuous fuzzing solution was able to detect are
briefly summarized:

• In the 7 faults F1, F2, F3, F5, F6, F9 and F10, the server does not properly validate
the input, which results in it failing to cast the input string to a more specific
datatype or class (e.g., Long). These are simple robustness issues where the actual
behaviour does not lead to any unintended side-effects. However, the server still
should properly validate the user input and return the correct status code (e.g.,
400) if a user-supplied value does not meet the requirements.

• In fault F4, the server does not properly validate the user input before using it to
execute an SQL query. Albeit the returned error message leaks some information
about the underlying technology stack, an SQLi is not possible because the correct
methods of the framework are used which sanitize the user input. Again, such an
error should be caught earlier and the correct status code (e.g., 404 not found)
should be returned.

• The 3 faults F7, F8 and F11 are response timeouts where Schemathesis was not
able to follow a redirect URL the server responded with1.

1These URLs might be reachable from an internal test network only. In that case, the detected faults
could be a false-positive.

87

5. Integration into GitLab CI/CD Pipeline

Basic Pipeline (10min) Merge Request Pipeline (50min)
Version EvoMasterBB Schemathesis EvoMasterWB

4.0.0 - - -
5.0.0 F1,F2,F3,F4 F1 F1,F2,F3,F4,F5
5.1.0 F3 - F3
6.0.0 F6 F7,F8 F6
7.0.0 F6,F9,F10 F7,F8,F9,F10 F6,F9,F10
14.0.0 - F11 -
15.0.0 - F11 -
16.0.0 - F11 -
20.0.9 F12 F12 F12
21.0.0 - F6,F11 F12
21.0.1 F12 F6,F11 F12
21.0.3 F12 F6,F11 F12
21.0.7 F12 F6,F11 F12
21.0.8 F12 F6,F11 F12
21.0.12 F12 F6,F11 F12
21.0.14 F12 F6,F11 F12
21.0.16 F12 F12,F13 F12,F13
21.0.20 F12 F12,F13 F12,F13
21.0.22 F12 F12,F13 F12
21.0.23 F12 F12,F13 F12,F13
21.0.25 F12 F12,F13 F12
21.0.30 F12 F12,F13 F12,F13

Total 22 37 28

Table 5.1: Detected Faults by the Fuzzers for Each Commit

• Fault F12 produces a NullPointerException because the server fails to check if
a resource depending on user input exists. As this does not have any side-effects, it
is an issue of robustness.

• Finally, F13 is caused by the server trying to build a URL based on a parameter
given by the user, which fails if the user-provided value specifies an invalid protocol,
e.g., by starting with “:”. This led to the finding of an open redirect vulnerability
(see Section 2.3.1).

88

CHAPTER 6
Discussion and Limitations

This chapter provides a critical reflection on the implemented solution and discusses the
research questions presented in Chapter 1, wherein the insights gained from the case
study and its evaluation serve as a basis.

6.1 Discussion
Overall, the implemented PoC solution confirmed the core hypothesis that the integration
of continuous fuzzing solutions into modern development processes helps with detecting
faults in code, therefore, improving software security and robustness in an early stage
of the development cycle. This is supported by the following answers to the research
questions defined in Chapter 1.

RQ1: How can state of the art fuzzers be integrated into a development process in a
way that does not introduce too much configuration overhead?

To answer this question, first, a literature research was conducted to define the require-
ments of a possible solution. It was found that a usable integration means that for each
commit, the pipeline should not run longer than 15 minutes in order to give developers
rapid feedback. A second, asynchronous stage that should be run every so often can
run longer fuzzing campaigns. For the integration into CI/CD pipelines, merge request
pipelines were identified as a suitable initiation point for longer-running fuzz tests.

One of the main issues for existing fuzzing solutions not being adopted more widely is
the large configuration overhead needed to set up the solution. Therefore, REST-based
fuzzers were preferred over traditional ones because this eliminates the need for writing
complex fuzz harnesses. Several experiments using readily available REST-based fuzzers
were conducted. Similar to the results of Zhang and Arcuri [8], many tools proposed by

89

6. Discussion and Limitations

researchers lack robustness, as they are unable to parse OpenAPI specification documents
or may crash during the fuzzing campaign. Nonetheless, two state of the art fuzzers were
identified which are suitable to be integrated into a CI/CD pipeline.

The resulting PoC implementation utilizes the two fuzzing tools EvoMaster (in black-box
mode) and Schemathesis to fuzz the target in quick, 10 minute fuzzing campaigns on
every commit. Moreover, a driver was implemented to be able to perform white-box
fuzzing using EvoMaster, which is employed in merge request pipelines to fuzz the target
for 50 minutes on each merge request.

As the evaluation showed, the ensemble fuzzing approach proposed by Klooster et al. [10]
proved to be useful. This is indicated by the fact that EvoMaster detected 8 unique
faults and Schemathesis found 9 unique faults, whereas only 4 of the 12 total unique
faults detected in the basic pipeline were discovered by both tools.

The results of the longer-running fuzzing campaign in the merge request pipeline, however,
are rather discouraging as the second stage only uncovered one additional unique fault
compared to the basic pipeline, despite utilizing a white-box fuzzing approach und running
5 times longer. Moreover, the code coverage experiments conducted in Section 4.2.2 only
showed a minor increase in coverage for the longer-running fuzzing session. Thus, it is
questionable whether this minimal advantage justifies the extra computational resources
and the increased effort needed to set up this second stage. However, as the selected
test target has relatively few endpoints and some rather complex parameters that, e.g.,
require encrypted JWTs, these results might vary greatly when applied to other test
targets.

RQ2: What benefits can short fuzzing campaigns in an early stage of the development
life cycle provide?

As laid out in Section 2.4, finding bugs earlier in the development cycle saves time
and money [4], [21] and one of the central test principles of the ISTQB [20] states that
testing should start as early as possible in the SDLC. Moreover, fuzzing tools are largely
successful in finding bugs [9], [10], therefore, one should strive for the earliest integration
of fuzzers into the development process as possible. Similar to TDD, continuous fuzzing
helps to bring software testing into the implementation phase instead of testing only in
later testing and verification phases.

The prerequisites for a project using the developed continuous fuzzing solution are the
ability to easily deploy the PUT, either locally or in a test environment. However,
as outlined in Section 2.1.3, this is best practice and should be standard in modern
development processes in any case. The second requirement for the fuzzers to be
applicable is that an OpenAPI specification either exists beforehand, e.g., in specification-
first development approaches, or that one can be easily generated automatically. For
many frameworks, including Spring Boot, which is used by the project in the presented
case study, tools and libraries for the automatic generation exist. In addition, a second

90

6.1. Discussion

approach that captures the traffic of unit tests and transforms these requests into an
OpenAPI specification was demonstrated.

Once these requirements are met, the steps to set up a continuous fuzzing solution using
REST-based fuzzers are manageable. In the presented case study, this led to the finding
of 51 total faults, 13 of them being unique across 22 commits. As shown in Section 5.4.2,
nearly all the unique faults were uncovered in the first half of all commits and earlier
versions of the project suffered from more issues than later ones. This also suggests that
an integration of an efficient fuzzing process should occur as soon in the development life
cycle as possible to uncover issues early on.

Moreover, as described in the previous answer, the second stage using a white-box
approach and a 50 minute long fuzzing campaign did not lead to significantly better
results than the quick basic pipeline. This highlights the value of short fuzzing campaigns
during the implementation phase, emphasizing that software quality can benefit not
only from the industry standard of 24-hour fuzzing campaigns (see Section 3.2.1) in the
verification phase.

Although most of the faults detected were simple robustness issues that had no implications
to the project’s security, one of the issues led to the finding of an open redirect vulnerability,
thus, further demonstrating the benefits a continuous fuzzing solution can provide.

RQ3: How can this process be automated in a CI/CD pipeline?

Provided that the PUT can be deployed effortlessly, an OpenAPI specification exists or
can be automatically generated, and a driver exists (if white-box fuzzing is employed),
integrating these components into a CI/CD pipeline is not too challenging.

To implement this, the test stage was configured to generate an up-to-date OpenAPI
specification which is made available to the fuzz stage via GitLab’s artifact feature.
Furthermore, two additional pipeline stages were introduced: fuzz and report. If multiple
runners are available, parallel execution of multiple fuzzing jobs using different fuzzers
can further improve the fuzzing solution, as the relatively small overlap of detected faults
between EvoMaster and Schemathesis for each commit (see Table 5.1) shows. The results
of the fuzz jobs are again stored as artifacts, which the subsequent report stage utilizes
to generate a fuzz report and to decide whether to fail the pipeline or not.

Additionally, several optimization strategies can be employed to further speed up the
pipeline to spend more time fuzzing. In the case study, a caching strategy that avoids the
re-download of dependencies that have been already met in previous jobs was employed.
Furthermore, a Docker image that installs common packages needed in multiple jobs
was created and pushed to the project’s container registry, which further sped up the
pipeline.

91

6. Discussion and Limitations

RQ4: How can the fuzzing tool results be evaluated and incorporated into the devel-
opment process?

To evaluate the fuzzing tool reports, a script was created that combines the fuzzer’s
outputs and fails the pipeline if a fault was found. Job artifacts are utilized to make the
reports available through GitLab’s UI. Furthermore, in merge requests the fuzzing report
is exposed in the approval screen, thus, project maintainers can easily view the results of
the fuzzing integration before approving a merge request.

Since the solution has been configured in a relatively conservative manner, limited to
detecting errors solely within the 500 range, false positive rate is kept to a minimum.
This is evidenced by the fact that not a single false positive was encountered during the
course of the evaluation.

6.2 Limitations
The implemented solution has several limitations. First, the fuzzing results heavily
depend on the quality of the OpenAPI specification document, as well as on projects
abiding to HTTP and REST semantics. Especially the correct use of response codes is
required, otherwise many faults could be missed. For example, if a project catches all
internal server errors and then returns them as errors in the 400 range, this will not be
detected by the PoC in its current configuration.

An additional problem is posed by outdated OpenAPI specifications. If the specification
is not automatically created, missing or wrong endpoints and parameters are not known
to the fuzzers and, thus, cannot be tested.

In terms of code coverage, fuzzing can hardly achieve the same level as carefully written
unit and integration tests and fuzzers are not able to automatically pick up the semantics
of certain parameters. In the provided case study, fuzzers were not able to reach deep
into the code, instead, most requests did not make it past the input parameter validation.
It is, therefore, not an alternative for sophisticated unit tests. Nevertheless, it proved to
be an additional measure to improve software robustness and security.

Towards generalizing the statements made in this thesis it must be emphasized that the
conducted case study has intrinsic limitations, as it only covers one concrete example
project. Although the provided solution was developed with the goal to make it easily
integrable with other projects, especially the steps in the build and test stage, as well
as the white-box fuzzing approach, may not be representative for other projects using
different programming languages or frameworks.

92

CHAPTER 7
Conclusion and Further Work

This final chapter concludes the main points of the thesis and offers prospects on further
improvements of the implemented continuous fuzzing solution, as well as on additional
research opportunities.

7.1 Conclusion
In this thesis, a case study was conducted to explore the integration of fuzzing into a
continuous development environment using an example project in the domain of REST
APIs. Through a thorough literature research, the requirements for a continuous fuzzing
solution were identified, and a final design was developed.

Readily available fuzzing tools were assessed based on their code coverage and bug finding
capabilities on the selected test target. Given that the usability of a continuous fuzzing
solution was determined as a key requirement, particular emphasis was placed on ensuring
that the tools remained user-friendly when integrated into a CI/CD pipeline. After
selecting suitable fuzzers, a PoC implementing the proposed design was created.

The implemented solution utilizes the two black-box fuzzing tools EvoMaster and
Schemathesis to fuzz each commit for 10 minutes to provide rapid feedback to de-
velopers. A longer fuzzing campaign of 50 minutes that employs EvoMaster’s white-box
mode runs on every merge request to fuzz the target before faults are merged back
into the main branch. By making the resulting fuzzing report available in GitLab’s
merge request screen, any uncovered faults are brought to the attention of the project
maintainers.

Several optimizations to speed up the stages in the pipeline were identified. To that
end, a cache was set up that prevents the download of common dependencies across the
pipeline stages. In addition, to minimize time spent setting up a job for the fuzzing

93

7. Conclusion and Further Work

process to start, a Docker image was created that encapsulates these common installation
steps.

By uncovering 51 faults (13 of which were unique) in 22 historical commits during a
simulated development workflow in an example project, the implemented PoC continuous
fuzzing solution proved that bringing fuzzing in early into the development cycle has
major benefits. Through a conservative configuration that only detects server errors that
have a status code in the 500 range, it was possible to achieve a false positive rate of
0%, thus, the implemented solution is minimally invasive to the development process.
However, the white-box fuzzer applied in the merge request pipeline was only able to
detect an additional fault in one out of the 22 commits. The question arises whether the
implementation effort of the driver required for white-box fuzzing, and the additional
computing resources used by the longer-running fuzzing campaigns, are justified.

Although most of the detected faults are relatively simple issues where, e.g., input values
could not be mapped to a more specific datatype, one of the uncovered faults is not only
an issue of robustness but even led to the uncovering of an open redirect vulnerability,
which was responsibly disclosed to the developers of gematik who confirmed the issue.
This demonstrates the link between software robustness and security once more.

7.2 Further Work
With the groundwork being laid by the implementation of a technical PoC which was
evaluated in a simulated development environment, the integration of the solution in a
real software project’s development workflow should now be studied.

In this further research, the human factor should be taken into account by evaluating
the developer’s experiences and satisfaction with setting up the solution into their CI
environment. In addition, it should be evaluated how developers are able to reproduce
the issues given the fuzzing reports and whether raised issues are false positives or not.
Since the white-box fuzzing approach did only lead to slight improvements compared to
the results of the shorter fuzzing campaigns in the selected project, this stage should also
be evaluated in other projects to assess whether the extra computational resources and
the increased effort needed to set up this second stage are justified.

In terms of possible improvements to the continuous fuzzing solution, several directions
are possible. One could, for example, add an extra stage that utilizes traditional fuzzers
that target single, specific methods that are detrimental to a project’s business value.
Furthermore, the implementation currently does not make use of the fuzzer’s abilities to
add authentication headers to the requests as this would require some manual test data
generation before starting the fuzzing process, resulting in three endpoints not being
fuzzed past the authentication steps. In a real-world integration of the provided solution,
such optimizations tailored to a single project could also be considered to further improve
the fuzzer’s code coverage, although, with the drawback of increasing the configuration
overhead needed.

94

7.2. Further Work

The de-duplication of faults is another issue one could solve. Currently, the fuzzing
report in the basic pipeline can contain the same fault twice if both, EvoMaster and
Schemathesis detect the same fault. Although the different output of the two tools could
provide further information to reproduce a fault, the manual de-duplication of faults is
valuable time one could save by automating this process.

Moreover, the fuzzing reports currently only provide the found issues via a simple text file.
Other approaches to feed the found issues back into the development process could be
explored, for example, by automatically creating GitLab issues of faults that are detected.
Given the fact that no false positive was encountered during the course of the evaluation,
such an integration into the development process would further improve the visibility of
detected faults. To not flood developers with faults detected in various branches by the
basic pipeline, this approach could also be limited to the merge request pipeline.

95

List of Figures

2.1 Cohn’s Test Pyramid Illustrated by Mukhin et al. [23] 9
2.2 Example Program and Corresponding CFG 11
2.3 GitLab CI/CD Workflow [W6] . 17
2.4 OpenAPI Specification Document [W7] 20
2.5 Intended Versus Implemented Software Behavior in Applications by Thomp-

son [61] . 25
2.6 Fuzzing Algorithm Visualization [65] . 30
2.7 Classification of Fuzzers by Beaman et al. [65] 31

3.1 Code Coverage of REST-based Fuzzers in Empirical Study by Kim et al. [6] 49
3.2 Line Coverage of REST-based Fuzzers in Comparison by Zhang and Arcuri [8] 50

4.1 Code Coverage of idp-server Module Achieved by Unit Tests 64
4.2 Code Coverage of idp-server Module Achieved by EvoMaster with OpenAPI

Specification Created by springdoc . 68
4.3 Schemathesis Report for Found Defects 70

5.1 Continuous Fuzzing Design Based on Klooster et al. [10] 76
5.2 Continuous Fuzzing Basic Pipeline Jobs and Their Dependencies 78
5.3 Continuous Fuzzing Merge Request Pipeline Jobs and Their Dependencies 79
5.4 Exposed Artifact on Merge Request Approval Screen 80
5.5 Total Detected Faults for Each Commit 86
5.6 Cumulative Unique Detected Faults for Each Commit 87

97

List of Tables

2.1 Examplary Equivalence Partitions by Graham et al. [20] 10
2.2 Detectable Vulnerabilities per Bug Oracle 35

3.1 Comparison of Traditional Fuzzers . 41
3.2 Comparison of REST-based Fuzzers Based on Kim et al. [6] 51
3.3 Comparison of Existing Continuous Fuzzing Solutions 60

4.1 Comparison of Code Analysis vs. Traffic Capture Approach for OpenAPI
Specification Document Generation . 67

4.2 Fuzzer Results After 10 Minutes with Different OpenAPI Specification Gener-
ation Approaches . 73

5.1 Detected Faults by the Fuzzers for Each Commit 88

99

List of Algorithms

2.1 Fuzz Testing Algorithm by Manès et al. [67] 28

List of Listings

3.1 Jazzer Fuzz Target [W26] . 42
3.2 Javafuzz Fuzz Target [W16] . 45
3.3 JQF Fuzz Target [38] . 46
4.1 JUnit Test Generated by EvoMaster 69
5.1 NullPointerException in POST /extauth endpoint in ref-idp-server . . 84
5.2 Request Parameters for GET /extauth endpoint in ref-idp-server . . . 85
5.3 Unsafe Use of redirect_uri Parameter in ref-idp-server 85
5.4 Open Redirect Exploit for GET /extauth endpoint in ref-idp-server . . 86

101

Acronyms

AFL American Fuzzy Lop. 38, 40, 41, 43, 44, 46, 60, 61

API Application Programming Interface. ix, xi, 2, 18, 19, 39, 40, 43, 45, 47–49, 51–56,
58–62, 64–67, 93

bBOXRT black BOX tool for Robustness Testing. 47–51, 56, 57

BFS Breadth-First Search. 55

CFG Control Flow Graph. 10–12, 97

CI Continuous Integration. ix, xi, 1, 5, 13, 15–18, 37, 38, 60, 63, 75, 77, 94

CI/CD Continuous Integration/Continuous Deployment. 2, 3, 17, 18, 22, 37, 38, 61, 67,
75–77, 81, 89–91, 93, 97

CLI Command Line Interface. 64

CT Combinatorial Testing. 14, 58, 59

CVE Common Vulnerabilities and Exposures. 23

DOM Document Object Model. 22, 34

IDP Identity Provider. 63

ISTQB International Software Testing Qualifications Board. 8

JVM Java Virtual Machine. 40, 41, 50, 52, 60, 61

JWT JSON Web Token. 69, 90

MIO Many Independent Objective. 13, 14, 52

ODG Operation Dependency Graph. 55, 56

103

OWASP Open Web Application Security Project. 21–23

PoC Proof of Concept. 2, 3, 76, 89, 90, 92–94

PUT Program Under Test. 27–29, 31–33, 35, 38, 40, 42, 43, 45, 47, 50, 52–54, 56–58,
62, 63, 65–69, 75, 77–80, 90, 91

REST Representational State Transfer. 2, 18, 19, 35, 38–40, 47–50, 52–62, 64–66, 76,
89, 91–93

RQ Research Question. 3, 89–92

SaaS Software as a Service. 76

SDLC Software Development Lifecycle. ix, xi, 5, 24, 26, 90

SQL Structured Query Language. 22, 34, 35, 52, 53, 57, 87

SQLi SQL Injection. 22, 35, 38, 87

TDD Test-Driven Development. 12, 13, 17, 90

UI User Interface. 9, 19, 62, 92

URI Uniform Resource Identifier. 18, 70, 85

URL Uniform Resource Locator. 18, 22, 62, 66, 71, 82, 83, 87, 88

VM Virtual Machine. 61, 76

WTS Whole Test Suite. 13

XP Extreme Programming. 12, 15

XSS Cross-Site-Scripting. 22, 23, 34, 35, 38, 57

104

Bibliography

[1] B. Fitzgerald and K.-J. Stol, „Continuous software engineering and beyond:
Trends and challenges“, in Proceedings of the 1st International Workshop on
Rapid Continuous Software Engineering, 2014, pp. 1–9. doi: 10.1145/259381
2.2593813.

[2] B. P. Miller, L. Fredriksen, and B. So, „An empirical study of the reliability of
unix utilities“, Communications of the ACM, vol. 33, no. 12, pp. 32–44, 1990.
doi: 10.1145/96267.96279.

[3] J. Li, B. Zhao, and C. Zhang, „Fuzzing: A survey“, Cybersecurity, vol. 1, no. 1,
pp. 1–13, 2018. doi: 10.1186/s42400-018-0002-y.

[4] G. Tassey, „The economic impacts of inadequate infrastructure for software
testing“, National Institute of Standards and Technology, vol. RTI Project Number
7007.011, 2002.

[5] K. Rindell, J. Ruohonen, J. Holvitie, S. Hyrynsalmi, and V. Leppänen, „Security
in agile software development: A practitioner survey“, Information and Software
Technology, vol. 131, p. 106 488, 2021. doi: 10.1016/j.infsof.2020.1064
88.

[6] M. Kim, Q. Xin, S. Sinha, and A. Orso, „Automated test generation for rest apis:
No time to rest yet“, in Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis, Virtual, South Korea: Association
for Computing Machinery, 2022, pp. 289–301. doi: 10.1145/3533767.3534
401.

[7] M. Wang, J. Liang, C. Zhou, Y. Chen, Z. Wu, and Y. Jiang, „Industrial oriented
evaluation of fuzzing techniques“, in 14th IEEE Conference on Software Testing,
Verification and Validation (ICST), 2021, pp. 306–317. doi: 10.1109/ICST49
551.2021.00043.

[8] M. Zhang and A. Arcuri, „Open problems in fuzzing restful apis: A comparison
of tools“, 2022. doi: 10.48550/ARXIV.2205.05325.

[9] H. Liang, X. Pei, X. Jia, W. Shen, and J. Zhang, „Fuzzing: State of the art“,
IEEE Transactions on Reliability, vol. 67, no. 3, pp. 1199–1218, 2018. doi:
10.1109/TR.2018.2834476.

105

https://doi.org/10.1145/2593812.2593813
https://doi.org/10.1145/2593812.2593813
https://doi.org/10.1145/96267.96279
https://doi.org/10.1186/s42400-018-0002-y
https://doi.org/10.1016/j.infsof.2020.106488
https://doi.org/10.1016/j.infsof.2020.106488
https://doi.org/10.1145/3533767.3534401
https://doi.org/10.1145/3533767.3534401
https://doi.org/10.1109/ICST49551.2021.00043
https://doi.org/10.1109/ICST49551.2021.00043
https://doi.org/10.48550/ARXIV.2205.05325
https://doi.org/10.1109/TR.2018.2834476

[10] T. Klooster, F. Turkmen, G. Broenink, R. T. Hove, and M. Böhme, „Effectiveness
and scalability of fuzzing techniques in CI/CD pipelines“, 2022. doi: 10.48550
/ARXIV.2205.14964.

[11] Y. B. Leau, W. K. Loo, W. Y. Tham, and S. F. Tan, „Software development life
cycle agile vs traditional approaches“, in International Conference on Information
and Network Technology, vol. 37, 2012, pp. 162–167.

[12] M. Stoica, M. Mircea, and B. Ghilic-Micu, „Software development: Agile vs.
traditional.“, Informatica Economica, vol. 17, no. 4, 2013. doi: 10.12948/iss
n14531305/17.4.2013.06.

[13] A. Moniruzzaman and D. S. A. Hossain, „Comparative study on agile software
development methodologies“, 2013. doi: 10.48550/arXiv.1307.3356.

[14] S. Al-Saqqa, S. Sawalha, and H. Abdelnabi, „Agile software development: Method-
ologies and trends“, International Journal of Interactive Mobile Technologies,
vol. 14, no. 11, 2020. doi: 10.3991/ijim.v14i11.13269.

[15] R. Hoda, N. Salleh, and J. Grundy, „The rise and evolution of agile software
development“, IEEE Software, vol. 35, no. 5, pp. 58–63, 2018. doi: 10.1109
/MS.2018.290111318.

[16] IEEE, „Standard glossary of software engineering terminology“, IEEE Standard
610.12-1990, pp. 1–84, 1990. doi: 10.1109/IEEESTD.1990.101064.

[17] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, „The oracle problem
in software testing: A survey“, IEEE Transactions on Software Engineering,
vol. 41, no. 5, pp. 507–525, 2015. doi: 10.1109/TSE.2014.2372785.

[18] L. Rosenberg, T. Hammer, and J. Shaw, „Software metrics and reliability“, in
9th International Symposium on Software Reliability Engineering, 1998.

[19] P. Bourque, R. Dupuis, A. Abran, J. Moore, and L. Tripp, „The guide to the
software engineering body of knowledge“, IEEE Software, vol. 16, no. 6, pp. 35–44,
1999. doi: 10.1109/52.805471.

[20] D. Graham, E. V. Veenendaal, I. Evans, and R. Black, Foundations of Software
Testing: ISTQB Certification. Cengage Learning Business Press, 2006, isbn:
1844803554.

[21] A. Takanen, J. D. Demott, C. Miller, and A. Kettunen, Fuzzing for Software
Security Testing and Quality Assurance. Artech House, 2018.

[22] M. Cohn, Succeeding with Agile: Software Development Using Scrum, 1st. Addison-
Wesley Professional, 2009, isbn: 0321579364.

[23] V. Mukhin, Y. Kornaga, Y. Bazaka, et al., „The testing mechanism for software
and services based on mike cohn’s testing pyramid modification“, in 11th IEEE
International Conference on Intelligent Data Acquisition and Advanced Comput-
ing Systems: Technology and Applications (IDAACS), vol. 1, 2021, pp. 589–595.
doi: 10.1109/IDAACS53288.2021.9660999.

106

https://doi.org/10.48550/ARXIV.2205.14964
https://doi.org/10.48550/ARXIV.2205.14964
https://doi.org/10.12948/issn14531305/17.4.2013.06
https://doi.org/10.12948/issn14531305/17.4.2013.06
https://doi.org/10.48550/arXiv.1307.3356
https://doi.org/10.3991/ijim.v14i11.13269
https://doi.org/10.1109/MS.2018.290111318
https://doi.org/10.1109/MS.2018.290111318
https://doi.org/10.1109/IEEESTD.1990.101064
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1109/52.805471
https://doi.org/10.1109/IDAACS53288.2021.9660999

[24] D. Spinellis, „State-of-the-art software testing“, IEEE Software, vol. 34, no. 5,
pp. 4–6, 2017. doi: 10.1109/MS.2017.3571564.

[25] N. Oh, P. Shirvani, and E. J. McCluskey, „Control-flow checking by software
signatures“, IEEE Transactions on Reliability, vol. 51, no. 1, pp. 111–122, 2002.
doi: 10.1109/24.994926.

[26] M. D. Weiser, J. D. Gannon, and P. R. McMullin, „Comparison of structural
test coverage metrics“, IEEE Software, vol. 2, no. 2, pp. 80–85, 1985. doi:
10.1109/MS.1985.230356.

[27] M. M. Tikir and J. K. Hollingsworth, „Efficient instrumentation for code coverage
testing“, ACM SIGSOFT Software Engineering Notes, vol. 27, no. 4, pp. 86–96,
2002. doi: 10.1145/566171.566186.

[28] V. Ramasamy and R. Hundt, „Dynamic binary instrumentation on ia-64“, in
Proceedings of the First EPIC Workshop, 2001.

[29] J. C. King, „Symbolic execution and program testing“, Communications of the
ACM, vol. 19, no. 7, pp. 385–394, 1976. doi: 10.1145/360248.360252.

[30] V. Kettunen, J. Kasurinen, O. Taipale, and K. Smolander, „A study on agility
and testing processes in software organizations“, in Proceedings of the 19th
International Symposium on Software Testing and Analysis, 2010, pp. 231–240.
doi: 10.1145/1831708.1831737.

[31] I. Karac and B. Turhan, „What do we (really) know about test-driven develop-
ment?“, IEEE Software, vol. 35, pp. 81–85, 2018. doi: 10.1109/MS.2018.28
01554.

[32] S. Stolberg, „Enabling agile testing through continuous integration“, in Agile
Conference, IEEE, 2009, pp. 369–374. doi: 10.1109/AGILE.2009.16.

[33] M. Polo, P. Reales, M. Piattini, and C. Ebert, „Test automation“, IEEE Software,
vol. 30, no. 1, pp. 84–89, 2013. doi: 10.1109/MS.2013.15.

[34] A. Arcuri, „Many independent objective (MIO) algorithm for test suite genera-
tion“, in Search Based Software Engineering, Springer International Publishing,
2017, pp. 3–17. doi: 10.1007/978-3-319-66299-2_1.

[35] G. Fraser and A. Arcuri, „Whole test suite generation“, IEEE Transactions on
Software Engineering, vol. 39, no. 2, pp. 276–291, 2012. doi: 10.1109/TSE.20
12.14.

[36] R. Kuhn, D. Wallace, and A. M. Gallo, „Software fault interactions and implica-
tions for software testing“, IEEE Transactions on Software Engineering, vol. 30,
pp. 418–421, 2004. doi: 10.1109/TSE.2004.24.

[37] H. Wu, L. Xu, X. Niu, and C. Nie, „Combinatorial testing of restful apis“, 2022
IEEE/ACM 44th International Conference on Software Engineering (ICSE),
pp. 426–437, 2022. doi: 10.1145/3510003.3510151.

107

https://doi.org/10.1109/MS.2017.3571564
https://doi.org/10.1109/24.994926
https://doi.org/10.1109/MS.1985.230356
https://doi.org/10.1145/566171.566186
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/1831708.1831737
https://doi.org/10.1109/MS.2018.2801554
https://doi.org/10.1109/MS.2018.2801554
https://doi.org/10.1109/AGILE.2009.16
https://doi.org/10.1109/MS.2013.15
https://doi.org/10.1007/978-3-319-66299-2_1
https://doi.org/10.1109/TSE.2012.14
https://doi.org/10.1109/TSE.2012.14
https://doi.org/10.1109/TSE.2004.24
https://doi.org/10.1145/3510003.3510151

[38] R. Padhye, C. Lemieux, and K. Sen, „Jqf: Coverage-guided property-based testing
in java“, in Proceedings of the 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2019, pp. 398–401. doi: 10.1145/3293882.33
39002.

[39] J. Malburg and G. Fraser, „Combining search-based and constraint-based testing“,
in 26th IEEE/ACM International Conference on Automated Software Engineering
(ASE 2011), 2011, pp. 436–439. doi: 10.1109/ASE.2011.6100092.

[40] R. Huang, W. Sun, Y. Xu, H. Chen, D. Towey, and X. Xia, „A survey on adaptive
random testing“, IEEE Transactions on Software Engineering, vol. 47, no. 10,
pp. 2052–2083, 2021. doi: 10.1109/TSE.2019.2942921.

[41] G. Booch, Object Oriented Design with Applications. Benjamin-Cummings Pub-
lishing Co., Inc., 1990.

[42] K. Beck, „Embracing change with extreme programming“, Computer, vol. 32,
no. 10, pp. 70–77, 1999. doi: 10.1109/2.796139.

[43] Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, and B. Vasilescu, „The impact of
continuous integration on other software development practices: A large-scale
empirical study“, in 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE), IEEE, 2017, pp. 60–71. doi: 10.1109/ASE.2017
.8115619.

[44] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, „Usage, costs, and
benefits of continuous integration in open-source projects“, in 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE), IEEE, 2016,
pp. 426–437. doi: 10.1145/2970276.2970358.

[45] Y. Yu, G. Yin, T. Wang, C. Yang, and H. Wang, „Determinants of pull-based
development in the context of continuous integration“, Science China Information
Sciences, vol. 59, 2016. doi: 10.1007/s11432-016-5595-8.

[46] R. T. Fielding and R. N. Taylor, „Architectural styles and the design of network-
based software architectures“, AAI9980887, Ph.D. dissertation, 2000, isbn:
0599871180.

[47] C. Rodríguez, M. Baez, F. Daniel, et al., „Rest apis: A large-scale analysis
of compliance with principles and best practices“, in Web Engineering: 16th
International Conference, ICWE 2016, Lugano, Switzerland, June 6-9, 2016.
Proceedings 16, Springer, 2016, pp. 21–39. doi: 10.1007/978-3-319-38791-
8_2.

[48] Z. Hatfield-Dodds and D. Dygalo, „Deriving semantics-aware fuzzers from web api
schemas“, in IEEE/ACM 44th International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion), 2022, pp. 345–346. doi: 10.1145
/3510454.3528637.

[49] G. McGraw, „Software security“, IEEE Security & Privacy, vol. 2, no. 2, pp. 80–
83, 2004. doi: 10.1109/MSECP.2004.1281254.

108

https://doi.org/10.1145/3293882.3339002
https://doi.org/10.1145/3293882.3339002
https://doi.org/10.1109/ASE.2011.6100092
https://doi.org/10.1109/TSE.2019.2942921
https://doi.org/10.1109/2.796139
https://doi.org/10.1109/ASE.2017.8115619
https://doi.org/10.1109/ASE.2017.8115619
https://doi.org/10.1145/2970276.2970358
https://doi.org/10.1007/s11432-016-5595-8
https://doi.org/10.1007/978-3-319-38791-8_2
https://doi.org/10.1007/978-3-319-38791-8_2
https://doi.org/10.1145/3510454.3528637
https://doi.org/10.1145/3510454.3528637
https://doi.org/10.1109/MSECP.2004.1281254

[50] R. A. Khan, S. U. Khan, H. U. Khan, and M. Ilyas, „Systematic mapping study
on security approaches in secure software engineering“, IEEE Access, vol. 9,
pp. 19 139–19 160, 2021. doi: 10.1109/ACCESS.2021.3052311.

[51] N. Laranjeiro, J. Agnelo, and J. Bernardino, „A black box tool for robustness
testing of rest services“, IEEE Access, vol. 9, pp. 24 738–24 754, 2021. doi:
10.1109/ACCESS.2021.3056505.

[52] S. Samonas and D. Coss, „The cia strikes back: Redefining confidentiality, integrity
and availability in security“, Journal of Information System Security, vol. 10,
no. 3, 2014.

[53] H. H. AlBreiki and Q. H. Mahmoud, „Evaluation of static analysis tools for
software security“, in 2014 10th International Conference on Innovations in
Information Technology (IIT), 2014, pp. 93–98. doi: 10.1109/INNOVATIONS.2
014.6987569.

[54] O. B. Fredj, O. Cheikhrouhou, M. Krichen, H. Hamam, and A. Derhab, „An owasp
top ten driven survey on web application protection methods“, in International
Conference on Risks and Security of Internet and Systems, Springer, 2020, pp. 235–
252. doi: 10.1007/978-3-030-68887-5_14.

[55] M. Böhme, C. Cadar, and A. Roychoudhury, „Fuzzing: Challenges and reflec-
tions“, IEEE Software, vol. 38, no. 3, pp. 79–86, 2021. doi: 10.1109/MS.2020
.3016773.

[56] A. Doupé, M. Cova, and G. Vigna, „Why johnny can’t pentest: An analysis of
black-box web vulnerability scanners“, in Detection of Intrusions and Malware,
and Vulnerability Assessment, C. Kreibich and M. Jahnke, Eds., Springer Berlin
Heidelberg, 2010, pp. 111–131. doi: 10.1007/978-3-642-14215-4_7.

[57] M. A. Butt, Z. Ajmal, Z. I. Khan, M. Idrees, and Y. Javed, „An in-depth survey
of bypassing buffer overflow mitigation techniques“, Applied Sciences, vol. 12,
p. 6702, Jul. 2022. doi: 10.3390/app12136702.

[58] P. Akritidis, „Cling: A memory allocator to mitigate dangling pointers.“, in
USENIX security symposium, Washington DC, 2010, pp. 177–192.

[59] W. Dietz, P. Li, J. Regehr, and V. Adve, „Understanding integer overflow in
c/c++“, in 34th International Conference on Software Engineering (ICSE), 2012,
pp. 760–770. doi: 10.1109/ICSE.2012.6227142.

[60] A. J. Jafari and A. Rasoolzadegan, „Security patterns: A systematic mapping
study“, Journal of Computer Languages, vol. 56, p. 100 938, 2020. doi: 10.101
6/j.cola.2019.100938.

[61] H. Thompson, „Why security testing is hard“, IEEE Security & Privacy, vol. 1,
no. 4, pp. 83–86, 2003. doi: 10.1109/MSECP.2003.1219078.

109

https://doi.org/10.1109/ACCESS.2021.3052311
https://doi.org/10.1109/ACCESS.2021.3056505
https://doi.org/10.1109/INNOVATIONS.2014.6987569
https://doi.org/10.1109/INNOVATIONS.2014.6987569
https://doi.org/10.1007/978-3-030-68887-5_14
https://doi.org/10.1109/MS.2020.3016773
https://doi.org/10.1109/MS.2020.3016773
https://doi.org/10.1007/978-3-642-14215-4_7
https://doi.org/10.3390/app12136702
https://doi.org/10.1109/ICSE.2012.6227142
https://doi.org/10.1016/j.cola.2019.100938
https://doi.org/10.1016/j.cola.2019.100938
https://doi.org/10.1109/MSECP.2003.1219078

[62] M. Kelly, C. Treude, and A. Murray, „A case study on automated fuzz target
generation for large codebases“, in ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), 2019, pp. 1–6. doi:
10.1109/ESEM.2019.8870150.

[63] J. W. Duran and S. C. Ntafos, „An evaluation of random testing“, IEEE Trans-
actions on Software Engineering, vol. SE-10, no. 4, pp. 438–444, 1984. doi:
10.1109/TSE.1984.5010257.

[64] B. P. Miller, D. Koski, C. P. Lee, et al., „Fuzz revisited: A re-examination of
the reliability of unix utilities and services“, University of Wisconsin-Madison
Department of Computer Sciences, Tech. Rep., 1995.

[65] C. Beaman, M. Redbourne, J. D. Mummery, and S. Hakak, „Fuzzing vulnerability
discovery techniques: Survey, challenges and future directions“, Computers and
Security, vol. 120, no. C, 2022. doi: 10.1016/j.cose.2022.102813.

[66] S. Bekrar, C. Bekrar, R. Groz, and L. Mounier, „Finding software vulnerabilities
by smart fuzzing“, in Fourth IEEE International Conference on Software Testing,
Verification and Validation, 2011, pp. 427–430. doi: 10.1109/ICST.2011.48.

[67] V. J. M. Manes, H. Han, C. Han, et al., „The art, science, and engineering of
fuzzing: A survey“, IEEE Transactions on Software Engineering, vol. 47, no. 11,
pp. 2312–2331, 2021. doi: 10.1109/TSE.2019.2946563.

[68] B. P. Miller, M. Zhang, and E. R. Heymann, „The relevance of classic fuzz testing:
Have we solved this one?“, IEEE Transactions on Software Engineering, vol. 48,
no. 6, pp. 2028–2039, 2022. doi: 10.1109/TSE.2020.3047766.

[69] F. Duchene, S. Rawat, J.-L. Richier, and R. Groz, „Kameleonfuzz: Evolutionary
fuzzing for black-box xss detection“, in Proceedings of the 4th ACM conference
on Data and application security and privacy, 2014, pp. 37–48. doi: 10.1145/2
557547.2557550.

[70] O. v. Rooij, M. A. Charalambous, D. Kaizer, M. Papaevripides, and E. Athana-
sopoulos, „Webfuzz: Grey-box fuzzing for web applications“, in European Sym-
posium on Research in Computer Security, Springer, 2021, pp. 152–172. doi:
10.1007/978-3-030-88418-5_8.

[71] V. Atlidakis, P. Godefroid, and M. Polishchuk, „Restler: Stateful rest api fuzzing“,
in IEEE/ACM 41st International Conference on Software Engineering (ICSE),
2019, pp. 748–758. doi: 10.1109/ICSE.2019.00083.

[72] A. Arcuri, J. P. Galeotti, B. Marculescu, and M. Zhang, „Evomaster: A search-
based system test generation tool“, Journal of Open Source Software, vol. 6,
no. 57, p. 2153, 2021. doi: 10.21105/joss.02153.

110

https://doi.org/10.1109/ESEM.2019.8870150
https://doi.org/10.1109/TSE.1984.5010257
https://doi.org/10.1016/j.cose.2022.102813
https://doi.org/10.1109/ICST.2011.48
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1109/TSE.2020.3047766
https://doi.org/10.1145/2557547.2557550
https://doi.org/10.1145/2557547.2557550
https://doi.org/10.1007/978-3-030-88418-5_8
https://doi.org/10.1109/ICSE.2019.00083
https://doi.org/10.21105/joss.02153

[73] M. Böhme and B. Falk, „Fuzzing: On the exponential cost of vulnerability dis-
covery“, in Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software En-
gineering, Virtual Event, USA: Association for Computing Machinery, 2020,
pp. 713–724. doi: 10.1145/3368089.3409729.

[74] X. Zhu and M. Böhme, „Regression greybox fuzzing“, Virtual Event, Republic
of Korea: Association for Computing Machinery, 2021, pp. 2169–2182. doi:
10.1145/3460120.3484596.

[75] A. Hazimeh, A. Herrera, and M. Payer, „Magma: A ground-truth fuzzing bench-
mark“, Proceedings of the ACM on Measurement and Analysis of Computing
Systems, vol. 4, no. 3, 2021. doi: 10.1145/3428334.

[76] D. Asprone, J. Metzman, A. Arya, G. Guizzo, and F. Sarro, „Comparing fuzzers
on a level playing field with linebreak fuzzbench“, in IEEE Conference on
Software Testing, Verification and Validation (ICST), 2022, pp. 302–311. doi:
10.1109/ICST53961.2022.00039.

[77] Z. Zhang, Z. Patterson, M. Hicks, and S. Wei, „FIXREVERTER: A realistic bug
injection methodology for benchmarking fuzz testing“, in 31st USENIX Security
Symposium (USENIX Security 22), 2022, pp. 3699–3715, isbn: 978-1-939133-31-1.

[78] R. Kersten, K. Luckow, and C. S. Păsăreanu, „Poster: Afl-based fuzzing for java
with kelinci“, in Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, 2017, pp. 2511–2513. doi: 10.1145/3133956
.3138820.

[79] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, „AFL++: Combining in-
cremental steps of fuzzing research“, in 14th USENIX Workshop on Offensive
Technologies, USENIX Association, 2020.

[80] D. Corradini, A. Zampieri, M. Pasqua, and M. Ceccato, „Empirical comparison
of black-box test case generation tools for restful apis“, 2021, pp. 226–236. doi:
10.1109/SCAM52516.2021.00035.

[81] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, „Test coverage criteria for restful
web apis“, in Proceedings of the 10th ACM SIGSOFT International Workshop
on Automating TEST Case Design, Selection, and Evaluation, Tallinn, Estonia:
Association for Computing Machinery, 2019, pp. 15–21. doi: 10.1145/33404
33.3342822.

[82] E. Viglianisi, M. Dallago, and M. Ceccato, „Resttestgen: Automated black-box
testing of restful apis“, in IEEE 13th International Conference on Software
Testing, Validation and Verification (ICST), 2020, pp. 142–152. doi: 10.1109
/ICST46399.2020.00024.

[83] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, „Restest: Black-box constraint-
based testing of restful web apis“, in International Conference on Service-Oriented
Computing, Springer, 2020, pp. 459–475. doi: 10.1007/978-3-030-65310-
1_33.

111

https://doi.org/10.1145/3368089.3409729
https://doi.org/10.1145/3460120.3484596
https://doi.org/10.1145/3428334
https://doi.org/10.1109/ICST53961.2022.00039
https://doi.org/10.1145/3133956.3138820
https://doi.org/10.1145/3133956.3138820
https://doi.org/10.1109/SCAM52516.2021.00035
https://doi.org/10.1145/3340433.3342822
https://doi.org/10.1145/3340433.3342822
https://doi.org/10.1109/ICST46399.2020.00024
https://doi.org/10.1109/ICST46399.2020.00024
https://doi.org/10.1007/978-3-030-65310-1_33
https://doi.org/10.1007/978-3-030-65310-1_33

[84] J. Lin, T. Li, Y. Chen, et al., „Forest: A tree-based approach for fuzzing restful
apis“, 2022. doi: 10.48550/ARXIV.2203.02906.

[85] A. Arcuri, „Evomaster: Evolutionary multi-context automated system test gener-
ation“, in IEEE 11th International Conference on Software Testing, Verification
and Validation (ICST), 2018, pp. 394–397. doi: 10.1109/ICST.2018.00046.

[86] A. Arcuri and J. P. Galeotti, „Handling sql databases in automated system
test generation“, ACM Transactions on Software Engineering and Methodology,
vol. 29, no. 4, 2020. doi: 10.1145/3391533.

[87] D. C. Kozen, „Depth-first and breadth-first search“, in The Design and Analysis
of Algorithms. New York, NY: Springer New York, 1992, pp. 19–24, isbn: 978-1-
4612-4400-4. doi: 10.1007/978-1-4612-4400-4_4.

[88] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, „RESTest: Automated Black-
Box Testing of RESTful Web APIs“, in Proceedings of the 30th ACM SIGSOFT
International Symposium on Software Testing and Analysis, Association for
Computing Machinery, 2021. doi: 10.1145/3460319.3469082.

[89] K. Serebryany, „OSS-Fuzz - google’s continuous fuzzing service for open source
software“, USENIX Association, 2017.

112

https://doi.org/10.48550/ARXIV.2203.02906
https://doi.org/10.1109/ICST.2018.00046
https://doi.org/10.1145/3391533
https://doi.org/10.1007/978-1-4612-4400-4_4
https://doi.org/10.1145/3460319.3469082

Web Resources

[W1] Google, OSS-Fuzz: Continuous Fuzzing for Open Source Software, https://gi
thub.com/google/oss-fuzz, Accessed: 2023-06-29.

[W2] Recommended minimum standard for vendor or developer verification of code,
https://www.nist.gov/itl/executive-order-improving-nation
s-cybersecurity/recommended-minimum-standard-vendor-or-de
veloper, Accessed: 2023-06-29.

[W3] Manifesto for agile software development, http://www.agilemanifesto.o
rg/, Accessed: 2023-06-29.

[W4] Digital.ai, 15th annual State of Agile Report, https://digital.ai/reso
urce-center/analyst-reports/state-of-agile-report, Accessed:
2023-06-29.

[W5] M. Fowler, Continuous Integration, https://martinfowler.com/article
s/continuousIntegration.html, Accessed: 2023-06-29.

[W6] GitLab, CI/CD concepts, https://docs.gitlab.com/ee/ci/introduct
ion/, Accessed: 2023-06-29.

[W7] Swagger petstore, https://petstore3.swagger.io/api/v3/openapi
.yaml, Accessed: 2023-06-29.

[W8] OpenAPI Specification, https://swagger.io/specification/, Accessed:
2023-06-29.

[W9] Swagger tools, https://swagger.io/tools/open-source/, Accessed:
2023-06-29.

[W10] OWASP, OWASP Top 10, https : / / owasp . org / Top10/, Accessed:
2023-06-29.

[W11] Cwe-601: Url redirection to untrusted site (’open redirect’), https://cwe.mit
re.org/data/definitions/601.html, Accessed: 2023-06-29.

[W12] Buffer overflow vulnerability, https://owasp.org/www-community/vuln
erabilities/Buffer_Overflow, Accessed: 2023-06-29.

[W13] Cve-2002-0639, https://cve.mitre.org/cgi-bin/cvename.cgi?name
=CVE-2002-0639, Accessed: 2023-06-29.

113

https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://www.nist.gov/itl/executive-order-improving-nations-cybersecurity/recommended-minimum-standard-vendor-or-developer
https://www.nist.gov/itl/executive-order-improving-nations-cybersecurity/recommended-minimum-standard-vendor-or-developer
https://www.nist.gov/itl/executive-order-improving-nations-cybersecurity/recommended-minimum-standard-vendor-or-developer
http://www.agilemanifesto.org/
http://www.agilemanifesto.org/
https://digital.ai/resource-center/analyst-reports/state-of-agile-report
https://digital.ai/resource-center/analyst-reports/state-of-agile-report
https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/articles/continuousIntegration.html
https://docs.gitlab.com/ee/ci/introduction/
https://docs.gitlab.com/ee/ci/introduction/
https://petstore3.swagger.io/api/v3/openapi.yaml
https://petstore3.swagger.io/api/v3/openapi.yaml
https://swagger.io/specification/
https://swagger.io/tools/open-source/
https://owasp.org/Top10/
https://cwe.mitre.org/data/definitions/601.html
https://cwe.mitre.org/data/definitions/601.html
https://owasp.org/www-community/vulnerabilities/Buffer_Overflow
https://owasp.org/www-community/vulnerabilities/Buffer_Overflow
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0639
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0639

[W14] AddressSanitizerAlgorithm, https://github.com/google/sanitizers
/wiki/AddressSanitizerAlgorithm, Accessed: 2023-06-29.

[W15] F. Meumertzheim, Java Fuzzing With Jazzer, https://www.code-intelli
gence.com/blog/engineering-jazzer, Accessed: 2023-06-29.

[W16] Javafuzz: coverage-guided fuzz testing for Java, https://gitlab.com/gitla
b-org/security-products/analyzers/fuzzers/javafuzz, Accessed:
2023-06-29.

[W17] libFuzzer - a library for coverage-guided fuzz testing, https://llvm.org/doc
s/LibFuzzer.html, Accessed: 2023-06-29.

[W18] libFuzzer - a library for coverage-guided fuzz testing, https://github.co
m/llvm-mirror/llvm/blob/master/docs/LibFuzzer.rst, Accessed:
2023-06-29.

[W19] Jazzer, https://github.com/CodeIntelligenceTesting/jazzer,
Accessed: 2023-06-29.

[W20] M. Zalewski, American Fuzzy Lop, https://lcamtuf.coredump.cx/afl/,
Accessed: 2023-06-29.

[W21] M. Zalewski, Technical "whitepaper" for afl-fuzz, https://lcamtuf.coredu
mp.cx/afl/technical_details.txt, Accessed: 2023-06-29.

[W22] American Fuzzy Lop, https : / / github . com / google / AFL, Accessed:
2023-06-29.

[W23] AFL-based fuzzing for Java, https://github.com/isstac/kelinci,
Accessed: 2023-06-29.

[W24] Javafuzz: coverage-guided fuzz testing for Java, https://github.com/fuzz
itdev/javafuzz, Accessed: 2023-06-29.

[W25] JQF + Zest: Semantic Fuzzing for Java, https://github.com/rohanpadh
ye/JQF, Accessed: 2023-06-29.

[W26] Jazzer path traversal sanitizer example, https://github.com/CodeInt
elligenceTesting/jazzer/blob/main/examples/src/main/java
/com/example/ExamplePathTraversalFuzzerHooks.java, Accessed:
2023-06-29.

[W27] GitLab Acquires Peach Tech and Fuzzit to Expand its DevSecOps Offering, htt
ps://about.gitlab.com/press/releases/2020-06-11-gitlab-ac
quires-peach-tech-and-fuzzit-to-expand-devsecops-offering
.html, Accessed: 2023-06-29.

[W28] Openapi specification, https://oai.github.io/Documentation/intro
duction.html, Accessed: 2023-06-29.

[W29] Oss-fuzz documentation, https://google.github.io/oss-fuzz/, Ac-
cessed: 2023-06-29.

114

https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
https://www.code-intelligence.com/blog/engineering-jazzer
https://www.code-intelligence.com/blog/engineering-jazzer
https://gitlab.com/gitlab-org/security-products/analyzers/fuzzers/javafuzz
https://gitlab.com/gitlab-org/security-products/analyzers/fuzzers/javafuzz
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://github.com/llvm-mirror/llvm/blob/master/docs/LibFuzzer.rst
https://github.com/llvm-mirror/llvm/blob/master/docs/LibFuzzer.rst
https://github.com/CodeIntelligenceTesting/jazzer
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://github.com/google/AFL
https://github.com/isstac/kelinci
https://github.com/fuzzitdev/javafuzz
https://github.com/fuzzitdev/javafuzz
https://github.com/rohanpadhye/JQF
https://github.com/rohanpadhye/JQF
https://github.com/CodeIntelligenceTesting/jazzer/blob/main/examples/src/main/java/com/example/ExamplePathTraversalFuzzerHooks.java
https://github.com/CodeIntelligenceTesting/jazzer/blob/main/examples/src/main/java/com/example/ExamplePathTraversalFuzzerHooks.java
https://github.com/CodeIntelligenceTesting/jazzer/blob/main/examples/src/main/java/com/example/ExamplePathTraversalFuzzerHooks.java
https://about.gitlab.com/press/releases/2020-06-11-gitlab-acquires-peach-tech-and-fuzzit-to-expand-devsecops-offering.html
https://about.gitlab.com/press/releases/2020-06-11-gitlab-acquires-peach-tech-and-fuzzit-to-expand-devsecops-offering.html
https://about.gitlab.com/press/releases/2020-06-11-gitlab-acquires-peach-tech-and-fuzzit-to-expand-devsecops-offering.html
https://about.gitlab.com/press/releases/2020-06-11-gitlab-acquires-peach-tech-and-fuzzit-to-expand-devsecops-offering.html
https://oai.github.io/Documentation/introduction.html
https://oai.github.io/Documentation/introduction.html
https://google.github.io/oss-fuzz/

[W30] Google, ClusterFuzz, https://github.com/google/clusterfuzz, Ac-
cessed: 2023-06-29.

[W31] Google, ClusterFuzzLite, https://github.com/google/clusterfuzzli
te, Accessed: 2023-06-29.

[W32] Microsoft, OneFuzz: A self-hosted Fuzzing-As-A-Service platform, https://gi
thub.com/microsoft/onefuzz, Accessed: 2023-06-29.

[W33] GitLab, Coverage-guided fuzz testing, https://docs.gitlab.com/ee/use
r/application_security/coverage_fuzzing/, Accessed: 2023-06-29.

[W34] GitLab, Api fuzzing, https://docs.gitlab.com/ee/user/applicatio
n_security/api_fuzzing/, Accessed: 2023-06-29.

[W35] gematik, Idp server, https://github.com/gematik/ref-idp-server,
Accessed: 2023-06-29.

[W36] Openid connect, https://openid.net/connect/, Accessed: 2023-06-29.
[W37] Apache, Maven, https://maven.apache.org/, Accessed: 2023-06-29.
[W38] Maven plugin for building docker images, https://github.com/fabric8i

o/docker-maven-plugin, Accessed: 2023-06-29.
[W39] Spring boot reference documentation, https://docs.spring.io/spring-

boot/docs/current/reference/html/, Accessed: 2023-06-29.
[W40] Springdoc-openapi, https://springdoc.org/v2/, Accessed: 2023-06-29.
[W41] Pcap2har-go, https://github.com/colinnewell/pcap2har-go, Ac-

cessed: 2023-06-29.
[W42] Har2openapi, https://github.com/dcarr178/har2openapi, Accessed:

2023-06-29.
[W43] EvoMaster, https://github.com/EMResearch/EvoMaster, Accessed:

2023-06-29.
[W44] Schemathesis, https://github.com/schemathesis/schemathesis,

Accessed: 2023-06-29.
[W45] Microsoft, RESTler, https://github.com/microsoft/restler-fuzze

r, Accessed: 2023-06-29.
[W46] Restler commit fixing nullreferenceexception, https://github.com/micros

oft/restler-fuzzer/commit/cc20a5ae95d89e8b81fde9cad101d6e
b2e6e4077, Accessed: 2023-06-29.

[W47] Restler issue: Unexpected response without prior request, https://github.c
om/microsoft/restler-fuzzer/issues/231, Accessed: 2023-06-29.

[W48] RestTestGen, https://github.com/SeUniVr/RestTestGen, Accessed:
2023-06-29.

[W49] Evorefuzz, https://git.dei.uc.pt/cnl/bBOXRT/tree/master/Evo
ReFuzz, Accessed: 2023-06-29.

115

https://github.com/google/clusterfuzz
https://github.com/google/clusterfuzzlite
https://github.com/google/clusterfuzzlite
https://github.com/microsoft/onefuzz
https://github.com/microsoft/onefuzz
https://docs.gitlab.com/ee/user/application_security/coverage_fuzzing/
https://docs.gitlab.com/ee/user/application_security/coverage_fuzzing/
https://docs.gitlab.com/ee/user/application_security/api_fuzzing/
https://docs.gitlab.com/ee/user/application_security/api_fuzzing/
https://github.com/gematik/ref-idp-server
https://openid.net/connect/
https://maven.apache.org/
https://github.com/fabric8io/docker-maven-plugin
https://github.com/fabric8io/docker-maven-plugin
https://docs.spring.io/spring-boot/docs/current/reference/html/
https://docs.spring.io/spring-boot/docs/current/reference/html/
https://springdoc.org/v2/
https://github.com/colinnewell/pcap2har-go
https://github.com/dcarr178/har2openapi
https://github.com/EMResearch/EvoMaster
https://github.com/schemathesis/schemathesis
https://github.com/microsoft/restler-fuzzer
https://github.com/microsoft/restler-fuzzer
https://github.com/microsoft/restler-fuzzer/commit/cc20a5ae95d89e8b81fde9cad101d6eb2e6e4077
https://github.com/microsoft/restler-fuzzer/commit/cc20a5ae95d89e8b81fde9cad101d6eb2e6e4077
https://github.com/microsoft/restler-fuzzer/commit/cc20a5ae95d89e8b81fde9cad101d6eb2e6e4077
https://github.com/microsoft/restler-fuzzer/issues/231
https://github.com/microsoft/restler-fuzzer/issues/231
https://github.com/SeUniVr/RestTestGen
https://git.dei.uc.pt/cnl/bBOXRT/tree/master/EvoReFuzz
https://git.dei.uc.pt/cnl/bBOXRT/tree/master/EvoReFuzz

[W50] RESTest, https : / / github . com / isa - group / RESTest, Accessed:
2023-06-29.

[W51] RestCT, https://github.com/GIST-NJU/RestCT, Accessed: 2023-06-29.
[W52] Api-spec-converter, https://github.com/LucyBot-Inc/api-spec-con

verter, Accessed: 2023-06-29.
[W53] GitLab, Runner, https : / / docs . gitlab . com / runner/, Accessed:

2023-06-29.
[W54] GitLab, Pricing, https : / / about . gitlab . com / pricing/, Accessed:

2023-06-29.
[W55] GitLab, Installation, https://docs.gitlab.com/ee/install/docker

.html#install-gitlab-using-docker-compose, Accessed: 2023-06-29.

116

https://github.com/isa-group/RESTest
https://github.com/GIST-NJU/RestCT
https://github.com/LucyBot-Inc/api-spec-converter
https://github.com/LucyBot-Inc/api-spec-converter
https://docs.gitlab.com/runner/
https://about.gitlab.com/pricing/
https://docs.gitlab.com/ee/install/docker.html#install-gitlab-using-docker-compose
https://docs.gitlab.com/ee/install/docker.html#install-gitlab-using-docker-compose

Appendix

Listing 1 shows the implemented EvoMasterController which extends EvoMaster’s Em-
beddedSutController and implements the required functionality. It is used for white-box
fuzzing the test target, i.e., the ref-idp-server introduced in Chapter 4.

1 package de.gematik.idp.server;
2
3 import org.evomaster.client.java.controller.EmbeddedSutController;
4 import org.evomaster.client.java.controller.InstrumentedSutStarter;
5 import org.evomaster.client.java.controller.api.dto.AuthenticationDto;
6 import org.evomaster.client.java.controller.api.dto.SutInfoDto;
7 import org.evomaster.client.java.controller.api.dto.database.schema.DatabaseType;
8 import org.evomaster.client.java.controller.internal.SutController;
9 import org.evomaster.client.java.controller.internal.db.DbSpecification;

10 import org.evomaster.client.java.controller.problem.ProblemInfo;
11 import org.evomaster.client.java.controller.problem.RestProblem;
12 import org.springframework.boot.SpringApplication;
13 import org.springframework.context.ConfigurableApplicationContext;
14 import org.springframework.jdbc.CannotGetJdbcConnectionException;
15 import org.springframework.jdbc.core.JdbcTemplate;
16
17 import java.sql.Connection;
18 import java.sql.SQLException;
19 import java.util.Arrays;
20 import java.util.List;
21
22 public class EvoMasterController extends EmbeddedSutController {
23 private ConfigurableApplicationContext ctx;
24 private Connection sqlConnection;
25
26 public static void main(String[] args) {
27 SutController controller = new EvoMasterController();
28 InstrumentedSutStarter starter = new InstrumentedSutStarter(controller);
29 starter.start();
30 }
31
32 @Override
33 public boolean isSutRunning() {
34 return ctx != null && ctx.isRunning();
35 }
36
37 @Override
38 public String getPackagePrefixesToCover() {
39 return "de.gematik.idp.server";
40 }
41
42 @Override
43 public List<AuthenticationDto> getInfoForAuthentication() {
44 return null;
45 }
46
47 @Override
48 public ProblemInfo getProblemInfo() {

117

49 return new RestProblem(System.getenv("CI_PROJECT_DIR") + "/idp-server/target/idp-server.
yaml", null);

50 }
51
52 @Override
53 public SutInfoDto.OutputFormat getPreferredOutputFormat() {
54 return SutInfoDto.OutputFormat.JAVA_JUNIT_5;
55 }
56
57 @Override
58 public String startSut() {
59 ctx = SpringApplication.run(IdpServer.class);
60 JdbcTemplate jdbc = ctx.getBean(JdbcTemplate.class);
61 try {
62 sqlConnection = jdbc.getDataSource().getConnection();
63 } catch (SQLException e) {
64 throw new RuntimeException(e);
65 }
66 return "http://localhost:8080";
67 }
68
69 @Override
70 public void stopSut() {
71 ctx.stop();
72 }
73
74 @Override
75 public void resetStateOfSUT() {
76 }
77
78 @Override
79 public List<DbSpecification> getDbSpecifications() {
80 try {
81 return Arrays.asList(new DbSpecification(DatabaseType.H2, sqlConnection));
82 } catch (CannotGetJdbcConnectionException e) {
83 System.out.println("SQL spec error");
84 System.out.println(e.getMessage());
85 return null;
86 }
87 }
88 }

Listing 1: Implemented EvoMasterController for ref-idp-server

In Listing 2, the implemented continuous fuzzing solution is given. It describes the
jobs and stages used in GitLab’s basic pipeline and merge request pipeline. A detailed
description of all the jobs and their steps is presented in Section 5.3.

1 image: maven:3.8.7-openjdk-18
2
3 variables:
4 TIME_BUDGET: 500s
5 TIME_BUDGET_MERGE: 3000s
6 SCHEMATHESIS_MAX_EXAMPLES: 1500
7 SCHEMATHESIS_OUTPUT_FILE: $CI_COMMIT_SHORT_SHA/schemathesis.log
8 EVOMASTER_OUTPUT_PATH: $CI_COMMIT_SHORT_SHA/evomaster
9 GIT_CLEAN_FLAGS: none

10 MAVEN_OPTS: >-
11 -Dmaven.repo.local=$CI_PROJECT_PATH/m2/repository
12 -Djava.awt.headless=true
13
14 cache:
15 key: "$CI_COMMIT_REF_SLUG"
16 paths:
17 - $CI_PROJECT_PATH/m2/repository
18
19 stages:
20 - build
21 - test

118

22 - fuzz
23 - report
24
25 build:
26 stage: build
27 script:
28 - mvn clean install -pl idp-server -am $MAVEN_CLI_OPTS -Dskip.unittests -Dskip.inttests
29
30 test:
31 stage: test
32 script:
33 - mvn verify -pl idp-server -am $MAVEN_CLI_OPTS -Dgenerate-springdoc -Dskip.dockerbuild
34 artifacts:
35 paths:
36 - idp-server/target/idp-server.yaml
37
38 fuzz-schemathesis:
39 stage: fuzz
40 image: $CI_REGISTRY_IMAGE
41 except:
42 - merge_requests
43 script:
44 - docker run --rm -d --network gitlab_instance_default --name idp-server-schemathesis ref-idp-

server-cifuzz:21.0.22
45 - sleep 10
46 - schemathesis run idp-server/target/idp-server.yaml --base-url http://idp-server-schemathesis

:8080 --max-response-time 1000 --request-timeout 1000 --hypothesis-deadline 1000 --
hypothesis-max-examples $SCHEMATHESIS_MAX_EXAMPLES 2>&1 | tee $SCHEMATHESIS_OUTPUT_FILE ||
true

47 after_script:
48 - docker stop idp-server-schemathesis
49 artifacts:
50 when: always
51 paths:
52 - $SCHEMATHESIS_OUTPUT_FILE
53 needs:
54 - job: test
55 artifacts: true
56
57 fuzz-evomaster:
58 stage: fuzz
59 image: $CI_REGISTRY_IMAGE
60 except:
61 - merge_requests
62 script:
63 - docker run --rm -d --network gitlab_instance_default --name idp-server-evomaster ref-idp-

server-cifuzz:21.0.22
64 - sleep 10
65 - evomaster --blackBox true --bbSwaggerUrl file://$CI_PROJECT_DIR/idp-server/target/idp-server.

yaml --bbTargetUrl http://idp-server-evomaster:8080 --maxTime $TIME_BUDGET --outputFolder
$EVOMASTER_OUTPUT_PATH --outputFormat JAVA_JUNIT_5 --problemType REST

66 after_script:
67 - docker stop idp-server-evomaster
68 artifacts:
69 paths:
70 - $EVOMASTER_OUTPUT_PATH
71 needs:
72 - job: test
73 artifacts: true
74
75 fuzz-whitebox:
76 stage: fuzz
77 image: $CI_REGISTRY_IMAGE
78 only:
79 - merge_requests
80 script:
81 - mvn test-compile -pl idp-server -am $MAVEN_CLI_OPTS
82 - mvn dependency:build-classpath -Dmdep.outputFile=mvn_cp.txt -pl idp-server -am

$MAVEN_CLI_OPTS
83 - cd idp-server
84 - echo -n "-cp $PWD/target/classes/:$PWD/target/test-classes/:" > cp.txt
85 - cat mvn_cp.txt >> cp.txt
86 - java -Djdk.attach.allowAttachSelf=true --add-opens java.base/java.util.regex=ALL-UNNAMED --

119

add-opens java.base/java.net=ALL-UNNAMED --add-opens java.base/java.lang=ALL-UNNAMED -
Dfile.encoding=UTF-8 @cp.txt de.gematik.idp.server.EvoMasterController > server.log &

87 - sleep 5
88 - java -Djdk.attach.allowAttachSelf=true --add-opens java.base/java.net=ALL-UNNAMED --add-opens

java.base/java.util=ALL-UNNAMED -jar /evomaster.jar --maxTime $TIME_BUDGET_MERGE --
outputFolder ../$EVOMASTER_OUTPUT_PATH

89 artifacts:
90 paths:
91 - $EVOMASTER_OUTPUT_PATH
92 needs:
93 - job: test
94 artifacts: true
95
96 fuzz-report:
97 stage: report
98 image: $CI_REGISTRY_IMAGE
99 script:

100 - report
101 artifacts:
102 paths:
103 - report.txt
104 expose_as: ’Fuzzing Report’
105 when: always
106 needs:
107 - job: fuzz-schemathesis
108 artifacts: true
109 optional: true
110 - job: fuzz-evomaster
111 artifacts: true
112 optional: true
113 - job: fuzz-whitebox
114 artifacts: true
115 optional: true

Listing 2: gitlab-ci.yml for Continuous Fuzzing

120

	Kurzfassung
	Abstract
	Contents
	Introduction
	Problem Statement
	Motivation
	Expected Results
	Structure

	Theoretical Foundations
	Modern Development Process
	Web Application Interfaces
	Software Security
	Fuzz Testing
	Classification of Fuzzing Techniques
	Bug Oracles and Sanitizers

	From Fuzzing to Continuous Fuzzing
	The Idea of Continuous Fuzzing
	Requirements and Trade-Offs
	Readily Available Fuzzing Tools
	Existing Continuous Fuzzing Solutions

	Case Study: Proof of Concept Solution for Continuous Fuzzing
	Description of the Program Under Test
	Choosing Suitable Fuzzers

	Integration into GitLab CI/CD Pipeline
	GitLab CI/CD Concepts
	Continuous Fuzzing Design
	Results
	Evaluation

	Discussion and Limitations
	Discussion
	Limitations

	Conclusion and Further Work
	Conclusion
	Further Work

	List of Figures
	List of Tables
	List of Algorithms
	List of Listings
	Acronyms
	Bibliography
	Web Resources
	Appendix

