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Kurzfassung

In den letzten Jahren hat Cognitive Load im Bereich der Mensch-Computer-Interaktion,
insbesondere im Bereich Ubiquitous-Computing (UbiComp), als ein wichtiger Faktor für
die menschliche Leistung und das Lernen an Bedeutung gewonnen. Vor allem, da im
UbiComp-Bereich viele die genaue Bestimmung von Cognitive Load zu einem wichtigen
Meilenstein für adaptive Automatisierung erklärt haben. Bis zur Erstellung dieser Arbeit
wurden zahlreiche Methoden entwickelt, um die Klassifizierungsgenauigkeit zu erhöhen,
wobei sich die jüngste Forschung auf objektive Daten konzentriert, die in Echtzeit für die
Verwendung in der adaptiven Automatisierung für UbiComp-Systeme analysiert werden
können.

Die meisten Methoden schaffen es jedoch kaum, die Klassifizierungsgenauigkeit einer
einfachen Likert-Skala zur Selbsteinschätzung zu übertreffen. Außerdem wiesen die
verwendeten Methoden erhebliche methodische Mängel auf, die die Interpretierbarkeit
ihrer Ergebnisse einschränken. Cognitive Load ist definiert als die Menge an Working
Memory, die von bestimmten Lernenden mit ihrem spezifischen Vorwissen während einer
bestimmten Lernaktivität verwendet wird. Die in dieser Arbeit untersuchten Methoden
bezogen Cognitive Load Theory jedoch weder in ihre Interpretation der Ergebnisse ein
noch gaben sie genau an, dass sie tatsächlich versuchten, die aktuelle Nutzung des Working
Memory zu messen. Außerdem kontrollierten sie nicht das Vorwissen ihrer Proband*innen.
Darüber hinaus ist nicht gewährleistet, dass die von ihnen verwendeten Methoden zur
Induzierung mentaler Arbeitsbelastung bei jeder Person ein ähnliches Niveau der Nutzung
des Working Memory hervorrufen, insbesondere da das Vorwissen nicht kontrolliert wurde.
Nichtsdestotrotz wurden die Ergebnisse als Cognitive Load bezeichnet. Während die
gegenwärtigen Mängel die Methoden für eine zuversichtliche Verwendung für die adaptive
Automatisierung fragwürdig machen, bietet die Verwendung von Messungen von Cognitive
Load zur Bewertung der Technology Adoption eine Alternative. Da es sich bei Technology
Adoption im Wesentlichen um das Erlernen des Umgangs mit einer neuen Technologie
handelt, könnten Messungen von Cognitive Load hier wertvolle Dienste leisten.

Mit diesem Ziel vor Augen teste ich einen gemischten Methodenansatz zur Schätzung von
Cognitive Load und analysiere die Ergebnisse durch die Brille der Cognitive Load Theory.
Die Methoden wurden in einer Nutzer*innen-Studie zur Evaluierung der Nutzbarkeit
eines Spatial-Augmented-Reality-Systems mit fünfzehn repräsentativen Zielnutzer*innen
getestet. Die getesteten Methoden waren der NASA-TLX, eine Sekundäraufgabe, die
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Verwendung von Verhaltensmaßen, Learnability-Daten und ein angepasster Cognitive
Walkthrough.

Beim Vergleich der möglichen Aussagen jeder einzelnen Methode wird deutlich, dass eine
Methode allein keine ganzheitliche Sichtweise erlaubt, um das Geschehen in der Interaktion
überzeugend zu erfassen, und zu viele Annahmen für eine detaillierte Interpretation
erfordert. Erst durch die Einbeziehung mehrerer Methoden können Ursachen für Befunde
durch Daten gestützt und relativiert werden, um ein schlüssiges und überzeugendes Bild
des Cognitive Load der Nutzer*innen beim Erlernen der Interaktion zu zeichnen. Dennoch
lieferten einige Methoden nicht die erwartete Qualität an Daten, während andere zu viel
Aufwand erforderten, um angesichts ihrer Erklärungskraft eine künftige Verwendung zu
rechtfertigen.

Auf der Grundlage meiner Ergebnisse vertrete ich die Auffassung, dass die Methodik der
nahen Zukunft ein Toolkit mit gemischten Methoden zur Schätzung von Cognitive Load
umfassen sollte. Dieses Toolkit kann ohne weiteres Methoden enthalten, die ich in dieser
Arbeit aufgrund ihrer nicht belegten Behauptungen kritisiert habe, sofern ihre Grenzen in
Aussagen miteinbezogen werden. Cognitive Load Theory ist keineswegs unumstritten und
bedarf noch weiterer empirischer Validierung und Verfeinerung. Daher sollte die Methodik
zur Bewertung des Phänomens so ganzheitlich wie möglich sein, um ihre Verfeinerung
zu unterstützen und Schwächen oder Widersprüche aufzudecken. In dem Maße, wie
Methodik und Theorie verfeinert werden, wird eine post-positivistische Sichtweise des
Phänomens immer nützlicher. Solange es jedoch keine gefestigten Anhaltspunkte gibt,
von der aus quantitative Ergebnisse interpretiert werden können, halte ich einen kon-
struktivistischen Ansatz mit gemischten Methoden, wie er in dieser Arbeit vorgeschlagen
wird, für sinnvoller.



Abstract

In recent years, cognitive load has risen in importance in the field of human-computer
interaction, particularly in the ubiquitous computing community, as an important factor
for human performance and learning. Especially, since many in the field have proclaimed
its accurate detection a necessity for adaptive automation. Until the time of writing, many
method have been developed to estimate it chasing ever higher classification accuracy
with recent research focusing on objective data which can be analysed in real-time for
use in adaptive automation for ubiquitous and pervasive computer systems.

For most methods, however, the classification accuracy is barely comparable to a simple
self-reporting Likert Scale. Additionally, the used methods had major methodological
flaws limiting their interpretation of results. Cognitive load is defined as the amount of
working memory used by a specific learner with their specific prior knowledge during a
given learning activity. With little reference to the name giving Cognitive Load Theory,
the methods analysed in this work neither included the theory in their interpretation
of findings nor accurately attributed that they were actually trying to measure current
working memory use. Additionally, they did not control for prior knowledge in their
samples. Furthermore, their methods used to induce mental workload are not guaranteed
to induce similar levels of working memory use for each individual, especially since prior
knowledge was not controlled for. Nonetheless, the methods called their results cognitive
load. While the current flaws of methodology make the methods questionable for confident
use for adaptive automation, the use of cognitive load measures to evaluate technology
adoption provides an alternative. As technology adoption is in essence learning how to
use new technology, cognitive load measures could be of value here.

With this goal in mind, I explore a mixed method approach of estimating cognitive load
and analyse the findings through a lens of Cognitive Load Theory. The methods are
tested in a user study evaluating the usability of a Spatial Augmented Reality system
with fifteen representative target users. The tested methods are the NASA-TLX, a
secondary task, the use of behavioural measures, learnability measures and an adapted
cognitive walkthrough.

When comparing the claims possible with each individual method, it quickly becomes
clear that one method alone did not allow a holistic enough view to confidently capture
what transpired in the interaction and requiring to many assumptions for accurate
interpretation. Only when including multiple methods, causes for findings could be
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supported by data and put into perspective to paint a conclusive and convincing picture
of the cognitive load of users learning the interaction. Nonetheless, some methods did
not provide the expected quality of data while others required too much effort to warrant
future use given their explanatory power.

Based on my findings, I argue that near-future methodology should encompass a toolkit
of mixed methods to estimate cognitive load. This toolkit can include methods earlier
criticised for their unsupported claims if their limitations are acknowledged and counter-
balanced by other methods. Cognitive Load Theory is by no means undisputed and still
requires additional validation as well as refinement. Therefore, methodology to evaluate
the phenomenon should aim to be as holistic as possible to aid in its refinement and
identify weaknesses or contradictions. As methodology and theory get refined in turn,
a post-positivist view on the phenomenon increasingly becomes useful. Until there is a
proven baseline to interpret post-positivist findings from, however, I deem a constructivist
mixed-method approach as suggested by this work more sensible.
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CHAPTER 1
Introduction

In Human-Computer Interaction (HCI), there are a plethora of methods to research
and analyse interactions between humans and computers, most of which were developed
at a time where computers were mainly personal computers and interactions could
mostly be done via mouse and keyboard. Of key interest was and still is usability:
How efficiently, correctly and pleasantly a technology is to work with. Meanwhile,
the technologies we use and how we interact with them changed leading to the issue
that the tried and tested methods of evaluating usability no longer fully capture what
happens in human-computer interactions [Rocha et al., 2017, Carvalho et al., 2018]. This
problem is exacerbated for ubiquitous and pervasive computer (UbiComp) systems
which leads researchers to expand on the traditional concept of what makes UbiComp
systems usable [Rocha et al., 2017, Carvalho et al., 2018, Crabtree and Rodden, 2009].
UbiComp systems aim to make interactions less explicit and demanding by fading
into the environment and embedding into the desired activities and workflows. This
leads to an increasing importance of the environment and the established workflow
on interaction outcomes as well as where the human attention and focus lie during
the interaction; all of which are not adequately reflected by the traditional means to
evaluate interactions requiring a rethinking and amending of methods [Rocha et al., 2017,
Carvalho et al., 2018, Crabtree and Rodden, 2009].

Many researchers try to bridge this gap by developing and using novel methods to de-
termine cognitive load to evaluate UbiComp system interactions [Haapalainen et al., 2010,
Chen et al., 2011, Saha et al., 2018, Pillai et al., 2022, Fridman et al., 2018, Arshad et al., 2013,
Yin et al., 2007, Gavas et al., 2017, Fujiwara and Suzuki, 2020, Li and De Cock, 2020].
This is most often accompanied by the goal of its automated evaluation for use in adap-
tive automation which favors quantitative analysis with objective measures. However,
many different understandings and definitions of cognitive load serve as the conceptual
underpinnings of these evaluation studies. Furthermore, there is little consensus on
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1. Introduction

methodological accuracy, which leads to hardly comparable results.1.

Therefore, I explore the use of cognitive load for evaluation and assessment of UbiComp
systems in this work. To this end, I framed the following research question2:

• How is cognitive load typically measured in HCI? How can it be determined?

• How is and can it be used for the evaluation (and development) of UbiComp
systems?

• Which additional challenges arise for its estimation introducing the ubiquitous and
pervasive characteristics of UbiComp systems?

In the related work chapter 2, I explore the current means of cognitive load estimation for
use in human-computer interaction and why it is deemed important and useful. There,
the current means of estimation are explored and its limitations discussed, answering
most of the first research question. Additionally, challenges related to the evaluation of
UbiComp systems are also explored answering the third research question.

Based on the findings of the literature review, I test alternative methods of cognitive
load estimation in a case study with representative target users using a UbiComp system
prototype developed by project partners at Profactor, covered in chapter 3. The prototype
used is a Spatial Augmented Reality system providing users with task and policy related
information via projections in a factory lab setting. The methods chosen for the user
study are

• NASA-TLX [Hart and Staveland, 1988],

• secondary task completion,

• behavioural analysis

• thinking-aloud protocol [Rooden, 1998] and

• cognitive walkthrough.

The specific methods were chosen since similar methods have yielded promising results
with non-pervasive technology [Chen et al., 2011] and they are not covered by works in
the corpus of the related work chapter 2. Additionally, interviews were conducted to
elicit if participants recognised and correctly identified the used in-situ projections or if
they fulfilled the given task without using them (which is possible since the pervasive

1Both topics are covered in detail in chapter 2
2Before starting my research, I expected the first question to be the most trivial with the third

question yielding the most interesting results, as I had trouble limiting potential causes for findings in
previous work with UbiComp systems. As it turned out in my literature review (covered in the related
work chapter 2), it was exactly the opposite.
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technology only provides aid relevant to the task and is not required for completing
it). The cognitive walkthrough was based on videos derived from the user study and
conducted by HCI experts. Chapter 3 finally explores how the different alternative
individual methods compare in terms of their performance.

In the discussion 4, I combine the findings from the individually tested methods combined
with the literature review to answer and discuss all research questions with a focus on
the first and second question, since these turned out the be the more pressing matter
considering the current state of the use of cognitive load.
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CHAPTER 2
Related Work

2.1 Why measure cognitive load?
In many studies, cognitive load has been identified and verified to be an important
factor for human performance, especially during learning. Since then, it has become
a widely used measure for ease of interaction of computer interfaces and has become
an integral part for adaptive automation [Chen et al., 2011]. Considering these aspects,
cognitive load could be of great interest in HCI research. The goal of measuring cognitive
load for adaptive automation is to determine adequate times to interrupt users or
to provide additional information without increasing the mental workload or breaking
concentration [Chen et al., 2011, Fridman et al., 2018]. With this knowledge, interactions
could be designed to be increasingly seamless providing functionality and information
only when they are needed. This would keep interactions simple while maintaining a high
level of functionality which is otherwise a common trade-off in user experience design
[Chen et al., 2011, Fridman et al., 2018]. To achieve this however, the load would need
to be determined real-time during the interaction without inhibiting it. How well current
methods achieve this goal will be looked at later in this chapter (2.2).

Additionally, cognitive load is already used to help informing on the effectiveness of learn-
ing material [Duran et al., 2022, Kelleher and Hnin, 2019] and the ease of interaction
[Hart and Staveland, 1988, Hart, 2006] as a usability measure. Beyond that, cognitive
load could be used to evaluate technology adoption as I would argue that adoption is
little else than learning how to operate new technology. The benefits of good usability
and easy adoption are very intertwined and allow for earlier effective and satisfactory
use of the technology in question. The dream of adaptive automation, its evaluation
potential for learning and its use as a usability measure make clear why cognitive load
has become of increasing interest to human-computer interaction research. Therefore, I
would argue that incorporating accurate estimations of cognitive load into user studies
when evaluating technology is of great benefit to user research.
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2. Related Work

To this end, I reviewed a corpus of works developing or testing methods to estimate
cognitive load. The corpus was built using the following criteria:

• All works in the corpus had to be research publications and be written in English.

• The papers were collected solely from ACM and IEEE digital library to especially
focus on the current strands of research within HCI due to my perceived focus
on cognitive load by the UbiComp research community after some papers using
cognitive load.

• The search terms were cognitive load, cognitive load measure, cognitive load estimate
and cognitive load estimation.

• Then, I selected the works that did not want to use cognitive load within a study
but instead developed, compared or tested methods to estimate cognitive load.

• In the end, I only selected works that introduced new sensors or entirely different
ways of interpreting already covered sensors. Not much selection using this method
was necessary, as not many works used already similar methods.

The resulting corpus will be analysed item by item in the following section.

2.2 Cognitive Load Estimation Right Now
In this section, the we answer the question of: how can cognitive load be measured or
determined? There is a lot of work currently being done in this field with greatly varying
measures that are used to try and gleam into the inner workings of working memory. In
general, they can be summarized into two groups: self reporting and objective measures.

2.2.1 Self reporting
Self reporting measures rely on participants evaluating their condition after being con-
fronted with the technology in question. Likert-Scales [Chen et al., 2011] or standardised
questionnaires like the NASA-TLX [Hart and Staveland, 1988, Hart, 2006] are the most
commonly used self-reporting methods to estimate cognitive load [Duran et al., 2022].
Self-reporting methods are often under scrutiny for being inherently subjective measures
since they rely heavily on self-reflection and have to work with the fallibility of human
self-perception. Since human perceptual and, more importantly, cognitive biases are well
documented and researched, this critique is understandable. However, when trying to
detect and replicate induced cognitive load, self-reporting methods are among the most
accurate measures present in this corpus of methods [Chen et al., 2011]. Even in the
early work of [Chen et al., 2011] in 2011 which compared the accuracy of three different
objective measures prevalent at the time with self-reporting, self-reporting clearly came
out on top in all classification tasks. The classification tasks varied in the number of
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load levels that were induced and attempted to be replicated by classification of collected
data. For all levels of load measured self-reporting performed best of all methods tested
in the experiment (see ’SR’ in figure 2.1).

2.2.2 Objective Measures
Even in this corpus alone, the use of objective measures used for the estimation of
cognitive load has become vast and diverse furthered by the critique of self-reporting
measures. With the availability of an increasing variety of sensors measuring bodily
functions, they are used to try and estimate induced cognitive load by classifying their
sensor values in different conditions using varying computational models. In this chapter,
the different objective measures of the corpus will be reported and compared.
Starting again with [Chen et al., 2011], the authors used pupil diameter, blink number
(’PD + BN’, both measured with an eye-tracker), response time (’RT’) and performance
accuracy (’PA’) in addition to a self-reporting scale (’SR’) for the same tasks and trained
computational models using each. The authors then compared their accuracy in classifying
the induced levels of cognitive load. The load was induced using increasingly difficult
addition tasks. The tasks were classified into five difficulty categories with increasing
difficulties having more digits and carries. These five difficulties of tasks were then also
grouped to form two-, three- and four-class classifications based on performance accuracy
to test the classifiers for different amounts of classes. The authors used Gaussian Mixture
Models (GMM) as classifiers to build their classification model. While pupil diameter
combined with blink number as well as response time had comparably high accuracy
across all levels, they came nowhere near to a simple single Likert scale (see figure 2.1).

Figure 2.1: Table of Methods Accuracy as Reported by [Chen et al., 2011].

[Saha et al., 2018] measured electroencephalography (EEG) signals taken from partic-
ipants while performing second language English reading comprehension tasks. The
levels of task difficulty (and the resulting expected cognitive load) were defined using
Kincaid readability tests. They used a deep learning pipeline of stacked denoising au-
toencoder followed by a multilayer perceptron followed by a long short term memory
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and another multilayer perceptron to classify their EEG data. This results in a good
accuracy of 86.33% for their three classes of cognitive load which would be on-par with
the self-reporting of [Chen et al., 2011]. As they only used EEG-data from a total of four
participants, their results can be considered as debatable.
[Fridman et al., 2018] use a camera to film participants driving cars. The camera is used
to extract eye-tracking features unobtrusively and in a real-world setting. The features
(similar to features extracted by eye-trackers) were then classified by a hidden Markov
model approach and a 3D-CNN separately. The HMM achieved an average accuracy of
77.7% and the 3D-CNN an average accuracy of 86.1%. The cognitive load was induced
using the standardised n-back task. The n-back task requires participants to recite
numbers given to them via audio. In 0-back, participants are asked to recite the latest
number given to them. In 1-back, the number before that and in 2-back one further back
et cetera. To induce three levels of load, the 0-back, 1-back and 2-back variants were
used.
[Arshad et al., 2013] tried to use mouse activity during the interaction as an indication to
classify for cognitive load. The authors attributed different lengths of pauses to different
behavioural patterns. The two levels of load were discerned between simply completing a
primary task compared to completing the same task while being interrupted by a similar
sub-task. Both tasks could be achieved using a mouse and a screen. T-tests showed
that these behavioural patterns differed significantly in frequency between their two load
classes low and high load. But since their distributions have a lot of overlap they did not
try to classify load using their features themselves. The large overlap would make mouse
behaviour a bad sole classifier since classes would not be consistently correctly decidable
without a distinguishing feature in the overlap region.
[Murata and Suzuki, 2015] try to predict cognitive load levels by measuring cerebral
blood flow. There was no classification in levels as with previous studies. Instead, the
authors measured the flow of participants while resting and during calculation tasks.
Afterwards, they combined spectrum analysis and correlation of the blood flow and their
load specification resulting in a correlation coefficient over time which was computed using
piece-wise fast Fourier transforms. The authors report significant differences between
rest and calculation blood flows. However, they only included subtractions in the study,
since they were the only tasks showing any difference in blood flow in previous tests.
Additionally, the required equipment was very intrusive needing to be strapped to the
head tightly with skin contact.
[Haapalainen et al., 2010] compared the classification accuracy of many different measures.
Heat flux, electrocardiograms median absolute deviation, galvanic skin response, heart
rate, pupil diameter and electroencephalogram data captured during cognitive load
inducing tasks were used for classification. The load was induced with six different types
of tasks which each had high and low difficulty variants. The authors expected that
cognitive load might physically manifest differently depending on task difficulty and
the cognitive capabilities used in the task. This was their reason for including various
ways to induce load in addition to a plethora of measures. According to their findings,
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2.2. Cognitive Load Estimation Right Now

participants had different features that performed best for classification of their cognitive
load levels. Heat flux and electrocardiograms median absolute deviation, however, were
the best classifiers for a clear majority of participants. Their average classification
accuracy among all participants were 76.1% (heat flux) and 71.4% (electrocardiograms)
respectively. Combined, they reached an accuracy of 81.1%. This is especially impressive
considering that their data on cognitive load levels are more noisy and transferable than
other works of this corpus since the authors used many different tasks to establish them.

[Gavas et al., 2017] wanted to classify load using frequency domain analysis of pupil
size variation. They used a mental addition task to induce load. Low load tasks were
additions with numbers from 0-5 and high load tasks used numbers from 6-19, but not
10, 11 and 15. In total, ten numbers had to be added in sequence with three seconds
time between each number being displayed. To ensure consistent data, participants were
forced to keep their eyes open during calculation. To estimate cognitive load, they used
multiple metrics gathered from the eye-tracker. Their proposed measure of cognitive
load is a function of pupil size pulses of varying frequencies. A frequency analysis of
pulses with varying magnitude is used to form bins for a given measurement period. The
proposed measure of cognitive load is then calculated by multiplying the mean frequency
by its corresponding power for each trial.

In their analysis, they compared previously used measures derived from eye-trackers to
their new definition of load. The other measures are percentage change in pupil diameter
and two measures from a visual field analysis perimeter-area ratio and form factor. For
their trials, their new definition of cognitive load performed best and was able to identify
between their induced low and high loads for all trials. However, their data shows very
minuscule differences between low and high load induction for many trials. This either
means that the loads did not differ much for most participants or that their measure
is very prone to noise and relies on great measurement accuracy. The cognitive loads
measure proposed by the authors also varied greatly for individual participants between
trials leading to inaccuracies when deferring a load classification from their measure.
While load for their high load tasks was on average higher than for their low load tasks,
the difference per participants was often very minuscule making classification inaccurate.
While outperforming the other measures used to compare their proposed cognitive load,
the resulting accuracy of 71.3% is not great compared to the best performing methods of
this corpus [Fridman et al., 2018, Chen et al., 2011, Yin et al., 2007].

[Li and De Cock, 2020] use measures derived from a wristband monitor to infer cognitive
load levels of participants using different machine learning methods. The data used
from the wristband monitor are galvanic skin response, heart rate, rr intervals and skin
temperature. The data was provided as part of the challenge in the UbiTtention2020
dataset and was collected from 23 users (18 for training and 5 for testing). The authors
had no control over how the data was collected but also did not report the means
used to induce cognitive load on participants. Without going too much into detail,
their approaches while sophisticated yielded sobering results with their highest accuracy
resulting in 63% accuracy for classifying between no load and load. This was done using
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a logistic regression model of all four measures and performed not much better than
random guessing. The results are especially meager when compared to best performing
methods of this corpus [Fridman et al., 2018, Chen et al., 2011, Yin et al., 2007], with
[Chen et al., 2011] and [Yin et al., 2007] using less sophisticated and energy intensive
methods.
[Yin et al., 2007] use different speech features to discern cognitive load levels. Self
reporting techniques were used to verify their three levels of induced load. There is
one major asterisk for their data: they expected adults over 18 to have similar levels
of reading comprehension without confirming this in any way. However, this does
not seem to have impacted their results much, but maybe they also sampled from a
homogeneous group. It is not clear from the paper. Their used measures are utterances
in the frequency domain, the Mel-Frequency Cepstral Coefficients, the prosodic features
of pitch representing tone and intensity to indicate emphasis. These were modelled using
a Gaussian Mixture Model and Cepstral Mean Subtraction as well as Feature Warping
were used to reduce channel mismatch. Their resulting best model was able to reach
71% accuracy in classifying between three different levels of load which is one of the
best results reported in this section and is only beaten by the camera information while
driving of [Fridman et al., 2018] and the self-reporting of [Chen et al., 2011].
[Kelleher and Hnin, 2019] tried to adaptively predict the cognitive load of code puzzles
based on puzzles previously completed by the same participant. To achieve this, they
collect biometric, behavioural and self-reported features to build Random Forest Classifiers.
However, since one single classifier for all types of puzzles had unacceptable performance,
they instead created a classifier for each type of code puzzle. Afterwards, they reported
the weight of each measure for each classifier and separated them into germane, intrinsic
and extraneous load to explain their findings based on Cognitive Load Theory. They aim
to use this predicted load to provide appropriate learning material to induce the optimal
cognitive load to facilitate learning. This study was mainly done with middle school aged
girls since most of the learning camps in which the study was conducted were hosted for
girls only. The established ground truth for load was self-reported from participants by a
9-point likert scale which was complemented by an additional level of load for unfinished
puzzles. From this base, other features were evaluated. Their resulting predictive pairing
comparison accuracy (so which of two compared puzzles will induce higher load) ranged
between 71% and 79% for the different types of code puzzles.
In this section, we have seen many different methods of using objective measures
to estimate a previously induced cognitive load. And then, in most cases, a classi-
fication accuracy of the induced load based on these measures is reported. Among
all methods, the self-reporting of [Chen et al., 2011] (2011), the CNN of videos of
pupils of [Fridman et al., 2018] (2018) and the manual speech feature extraction of
[Yin et al., 2007] (2007) performed best. [Chen et al., 2011] is the only work in the
corpus to test multiple numbers of load level classes within one work.
However, the authors in this corpus use widely different means to induce cognitive load
with widely differing participant populations and means to estimate load. So, what is it
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that was measured and compared here? What are these increasing heights of accuracy
the authors are chasing?

2.2.3 Accuracy and what is measured

To measure the success of their methods, the researchers had participants complete
tasks aimed to induce a specific amount of cognitive load and recorded them using
different measures. Afterwards, they tried to reconstruct these induced levels of load
using their collected data. Finally, they compare how accurate their reconstructions of
load levels were by reporting a percentage accuracy and sometimes a confusion matrix.
This approach, however, assumes that the load that is aimed to be induced by the
employed tasks was actually induced in participants. The aimed levels of load of the
tasks are taken as an absolute ground truth for further analysis.

Apart from [Fridman et al., 2018, Pillai et al., 2022], no study used standardised tasks
which are confirmed to induce comparable levels of load per participant. And even
the standardised tasks acknowledge that the total level of load varies highly between
individuals and only relative load for each individual can be standardised (so, lower load
inducing tasks for one individual can induce higher total load than high load tasks on a
different individual but do very rarely for the same individual). The difference in levels
are also highly individualistic. One cannot assume that the high load tasks induce a
significantly higher load to the low load tasks simply because a standardised task is
used. Both could be considered high or low total levels of load when considering the
capabilities and state of the individual tested. So, even using standardised methods to
induce load, we can only assume that load will be higher if we use a task inducing higher
load but we cannot make confident claims on total load or when comparing load between
individuals. Therefore, errors in classification might simply occur due to noisy data or
minuscule differences in total load.

Considering that in the best case a standardised method of induction is used as a ground
truth for quantitative analysis and model training, there can never be a single measure
indicating load levels but only individual calibration. When not using standardised tests,
it cannot even be ensured that the used tasks induce the desired comparability of load
levels. Nonetheless, they are used as ground truths for most model training of the works
in this corpus. For classification, one therefore does not know if the error happened
in the estimation of the induced load or while inducing the load, especially, when not
using standardised means to induce load. Therefore, comparing reported accuracies of
classification is not as meaningful as one might assume.

As indicated earlier and also discussed in detail in the following section, cognitive load is
highly individualistic. This means that the choice of participant sample heavily influences
findings. However, this is done with greatly varying levels of detail throughout this
corpus. [Saha et al., 2018] had only four participants proclaimed as “healthy males and
females". [Yin et al., 2007] simply assumed that reading comprehension levels of adults
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over 18 in a native language are the same or at least similar. This is a very strict claim
to make and depends for instance heavily on levels of education.

Even though, prior knowledge and skill levels in the tested task are hard to control for, it
makes no sense to simply hope levels are similar enough and be done with it. The result
is that errors might arise due to high differences in the prior knowledge of participants
and not having a way to account for these differences in the models and instead simply
hoping that they are not impactful enough in skewing results. Since there is currently no
exact way to determine how cognitive load manifests physically [Duran et al., 2022], it
makes no sense to assume that it does so in the same way for every sample. Therefore,
without carefully managing the participant sample, research measuring cognitive load
might never yield the results necessary to understand the phenomenon.

To further put the findings into perspective, only one paper did their study outside of
a lab setting. Cognitive load depends heavily on the current state of the individual
in question as well as the state of their environment [Duran et al., 2022]. Additionally,
much of the measurement equipment used in the above studies [Gavas et al., 2017,
Fujiwara and Suzuki, 2020, Saha et al., 2018] cannot be used to evaluate outside a tightly
controlled setting. This means that lab findings might highly differ from real world
environments with many additional mentally taxing factors.

Still, not every work in the corpus using objective measures introduced the above
mentioned sources of bias. [Fridman et al., 2018] is a positive example succeeding where
many other papers mentioned fail. They use a standardised definition of both their tasks
used to induce load and reference Cognitive Load Theory before applying their models.
Their tests are done on driving participants which is one of the best studied fields for
mental workload in general according to their sources and has the most standardised
methods tested in similar environments making their data the most comparable within
the corpus. Additionally, they use a controlled sample and practice the task ahead of
time to reduce additional load it might otherwise induce while still learning it. They do
not rely on tightly controlled environments and clean data for their analysis since it was
already conducted with noisy data from a real world driving environment. Despite (or
maybe because of) this lack of control and while using standardised comparable methods
of load induction, they reach similar accuracy levels of the aforementioned self-reporting
metrics accomplished in [Chen et al., 2011] which is impressive comparing them to all
other objective measures from the corpus.

However, it is still unclear what we are comparing when we compare the reported accuracy.
Is it how well models classify using their tested methods? Or is it how well they managed
to induce the desired levels of load? Or is it instead how well they selected their sample?
The works within this corpus seldom used the same tasks with n-back being the only one
to be used by several. The authors worked with widely differing populations and used a
plethora of measures and analysis methods, some more realistic for real world use than
others. Even standardized tasks cannot guarantee the induction of similar load levels. So
what are the comparable results? And why can present researchers using state-of-the-art
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computational models barely compete with self-reporting methodology’s accuracy which
has been around forever?

These findings made me skeptical about self-proclaimed “objective" measures for cognitive
load. I would not argue, that this means that our skepticism of self reporting methods
should cease but instead that we should question the infallibility of “objective" measures.
Even though their use of mathematics in their computational models might be flawless
and the source of their data objective, many factors influence the findings before the
models try to capture reality, leading us back to the cognitive biases mentioned above.
Most results in the corpus are only published as accuracy and not put into perspective
of what is actually tested using the methods at hand and not put into relation of what
might additionally influence findings. For the mathematical methods to yield accurate
answers, the underlying models need to be correct and represent reality as accurately as
possible with current knowledge. Based on the above discussion, this is a hard claim to
make. And after talking about all these questionable findings, let us discuss the elephant
in the room: what are we measuring? Why are the methods used to establish the ground
truth so different between works? What even is this cognitive load?

2.3 What is Cognitive Load?
Looking more closely at what the authors of the works in this corpus are doing when
working with cognitive load, I realised that there is a glaring issue: there is no single
accepted definition of cognitive load. Even worse, most papers referred to in the previous
section do not acknowledge this fact. They simply cite an early work from the field
before Cognitive Load Theory [Duran et al., 2022] was formulated and researched and
define what cognitive load could be from their interpretation and continue working
from there. Sometimes, their definition of load is simply an alias for mental work-
load or cognitive activity [Saha et al., 2018, Pillai et al., 2022, Haapalainen et al., 2010,
Li and De Cock, 2020]. To avoid this mistake, I will reiterate on the current standings
of Cognitive Load Theory. I will discuss what cognitive load is and what it is not and
afterwards highlight its inappropriate use in the aforementioned works.

2.3.1 Cognitive Load Theory

Originating in the educational sciences, Cognitive Load Theory is a theoretical framework
that describes the influence of the human cognitive architecture on the learning process
[Duran et al., 2022]. Cognitive load is described as the amount of working memory used
by an activity. Based on cognitive load research, a plethora of effects on learning have
been found resulting in pedagogical recommendations. In Cognitive Load Theory, learning
is seen as the forming of knowledge in long-term memory which is seen as an unlimited
capacity. For the knowledge to be formed, however, it needs to be worked through
and constructed in working memory. Working memory is known to be very limited in
capacity and duration (even though it can be improved by training) [Duran et al., 2022].
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How to overcome this limitation of the working memory effectively by using adequate
instructional design is at the core of Cognitive Load Theory.
To describe the interaction of learning material and working memory, two concepts are
used in Cognitive Load Theory: element interactivity and schemata. Element interactivity
refers to how many elements and connections between elements need to be considered at
the same time in working memory to process a situation. Interactions between elements
arise when they need to be “compared, contrasted, integrated or otherwise consciously
processed together" [Duran et al., 2022](p.40:3). So when the amount of interactions
required increases, the used working memory increases resulting in a higher load for the
time of learning. When the load becomes too much, the learning is not successful. When
the learning is successful, the knowledge is packed into a schema for long-term memory
storage. Schemata are domain-specific bundles of knowledge which can be retrieved
from long-term memory and processed as a single bigger element in working memory.
This reduces interactivity which decreases the required cognitive load to work with the
knowledge while increasing the total cognitive capacity. Therefore, previous knowledge of
a learner not only heavily influences the effectiveness of learning material for that learner
but also the cognitive load for a given activity [Duran et al., 2022].
In Cognitive Load Theory, there are two types of cognitive load which are undisputed
namely intrinsic load and extraneous load. They are both cognitive load which are only
differentiated for the purpose of analysis. Intrinsic load is the load which is minimally
required to allow a specific learning to happen based on specific prior knowledge. Extrinsic
load is load which is not necessary for learning and stems from e.g., instructional activities
and learning materials. It can therefore be reduced safely and when reduced can lead
to easier learning, since more working memory is available to tackle the intrinsic load
[Duran et al., 2022].
These two different terms can be used to explain various effects identified by cognitive load
research. For example, the worked-example effect compares learners solving a problem
to learners studying an already solved example. Learners solving the problem have a
harder time because additionally to studying the example, they need to consider how
they can maneuver within the problem space to get to the desired solution. Therefore,
the extrinsic load while solving the problem is higher than while studying the example
[Duran et al., 2022]. Even when considering that a learner might have increased intrinsic
load when learning an example and maneuvering the problem space at the same time,
the compound effect of element interactivity would add extraneous load. Either way, the
extraneous load is higher. Extraneous load is not always bad. In cases, where cognitive
overload is not a concern extraneous load does not need to be minimised and can be
increased to further some other goal (e.g., increasing motivation). When the intrinsic
load is high due to a combination of low prior knowledge and high complexity of the
content, reducing extraneous load is good [Duran et al., 2022].
These are the concepts consistent through Cognitive Load Theory. However, given its
history, big influence and lack of definitive evidence, there is no single or unchanging
Cognitive Load Theory. Currently, there are two main strands of theory existing in
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parallel. One is a reworked version backed by the original authors of Cognitive Load
Theory which reduced the theory to its simplest form yet and is proclaimed as the current
version. The other, older theory, promoted in the time between 1998 and 2010, is still
currently widely used, yet no longer supported by its original authors [Duran et al., 2022].

Figure 2.2: Cognitive Load Theory Model of the Working Memory While Learning
including Germane Load interpreted by [Duran et al., 2022].

In the older strands of the theory a third type of cognitive load was differentiated called
germane load. Germane load was understood as good cognitive load that should be
maximised to facilitate learning. It goes beyond managing intrinsic load and is explicitly
needed to make learning happen (see figure 2.2). The theory claimed in the case that
intrinsic and/or extraneous load were too high, no capacity was left for germane load
and therefore no learning could happen. Additionally, it was also used to explain the
effect of motivation on learning: if a learner showed no motivation, the germane load
induced by the learning activity was not high enough for motivation to arise. It was also
claimed by some scholars that germane load was a result of additional learning aspects
like self-explanation and reflection of learning material [Duran et al., 2022].

These claims stand in contrast to empirical findings. Load increases were never measured
to yield increased learning success. On the contrary, many studies showed an increase in
learning results when load was reduced [Duran et al., 2022]. This directly contradicts
a typical claim of the original Cognitive Load Theory that decreases in extraneous
load should lead to equal increases in germane load which would facilitate learning.
Furthermore, unfalsifyable post-hoc claims would be made using germane load. If load
would be reduced and it lead to an increase in learning success, one could claim that
germane load was decreased. However, if the learning success increased extraneous load
was decreased. The opposite argument can be made vice versa for load increases. This
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can in no way be proven or contradicted making these arguments nearly meaningless.
However the effect on learning and however the measured cognitive load, germane and
extraneous load could be used to explain the results with no way of detecting which
type of load was present. Additionally, many authors found germane load unnecessary to
explain results and it could not be used to explain many detected effects. Therefore, the
theory was revised in 2010 [Duran et al., 2022].

Figure 2.3: Cognitive Load Theory Model of the Working Memory While Learning
including Germane Resources interpreted by [Duran et al., 2022].

The revised theory cuts down on the differentiation of different forms of cognitive load.
Intrinsic and extraneous load are defined strictly by using element interactivity and all
cognitive load is composed of the two. Any load that is not extraneous for a learning
activity is intrinsic. Self-explanation and reflection are simply defined as additional
learning goals and therefore increase intrinsic load. Working memory is separated into
resources dealing with intrinsic load (germane resources) and other resources either
unused or used to handle extraneous load (see figure 2.3). Motivation is also extracted
from the model. A motivated learner is simply assumed, since its effects could not be
explained by any version of the model [Duran et al., 2022].

So, there are two main types of Cognitive Load Theory currently alive and in discussion
with the newer trying to solve or bypass many critiques of the old which could not be
empirically confirmed. The newer strand is also backed by the original author of Cognitive
Load Theory, John Sweller. But "as things stand, it is contentious which constructs
compose cognitive load, how best to interpret cognitive load measurements, and how to
phrase hypotheses that involve relationships between load components, overall load, and
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learning outcomes" [Duran et al., 2022](p. 40:6).

To summarize, Cognitive Load Theory tries to model the inner workings of working
memory of a learner during a learning activity. The proclaimed current version assumes
motivated learners. Cognitive load is used as a term to describe the working memory
resources a learning activity requires. These depend heavily on previous knowledge
of the learner for a given activity. If a learning activity requires more resources than
are currently available, cognitive overload occurs and no learning can happen. It also
separates the cognitive load into two categories: load that is necessary for the learning
process (intrinsic) and everything else (extraneous).

2.3.2 Cognitive Load Estimation without Cognitive Load Theory?
From my reviewing perspective, it is unclear if the works in this corpus imagine cogni-
tive load according to theory. [Li and De Cock, 2020] cite no work of Cognitive Load
Theory. They instead cite a source which claims that cognitive load is a confirmed
physiological phenomenon and should therefore be aimed to be measured without fur-
ther elaboration on what it is they are measuring. [Saha et al., 2018, Pillai et al., 2022,
Haapalainen et al., 2010] cite papers that predate any Cognitive Load Theory. They use
works discussing mental workload to define their own concept of cognitive load which in
turn they proceed to “measure". And whatever findings might arise from the research
just have to be cognitive load which they previously defined without any foundation in
Cognitive Load Theory.

[Arshad et al., 2013, Kelleher and Hnin, 2019, Chen et al., 2011, Fridman et al., 2018, Gavas et al., 2017,
Yin et al., 2007, Fujiwara and Suzuki, 2020] all cite a source of the original version of
cognitive load. They refer to the three way split of load into intrinsic, extraneous and
germane load. However, the only work in the corpus to analyse their findings using
the before cited Cognitive Load Theory is [Kelleher and Hnin, 2019]. They categorise
their measures into the three categories of load and also report the individual impact
of measures on their cognitive load predictions. The rest simply reports an accuracy
of their reproduction of their methods to induce load and simply claims that this must
be cognitive load since their methods to induce cognitive load were mentally taxing
on varying levels (some to greater success than others). For context, the works of
[Chen et al., 2011, Yin et al., 2007] are too old to have used the new strand of Cognitive
Load Theory.

Referring back to Cognitive Load Theory, however, it is very unclear what they are trying
to measure. Most of the tasks used to “induce load" are not really learning experiences.
The only learning experience measured is in [Kelleher and Hnin, 2019] of mostly teenage
girls working with programming puzzles. All other measure studies in the corpus use
a method to tax the resources of working memory which they are in turn trying to
measure. They identify one method which best reproduces their presupposed definition
of a hard(er) task without acknowledging possible influences on their measures and then
report an accuracy without interpreting where the errors might have occurred. And then,
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they call it cognitive load because cognitive load seems like a self-explanatory term (it
is the load on cognitive resources, after all) and sometimes even find a theory with the
same name to cite which is discarded as soon as the experiment starts. And even if the
theory is cited, it is not the less disputed reworked version but instead the older theory
which could not explain many effects found in research of learning material.
As previously stated, only few works in the corpus use standardised methods to tax
the working memory which is used to define the ground truth to define the cognitive
resources required for the task of their participants. Some methods to tax the working
memory used are confirmed to be taxing at appropriate levels, but they do not indicate
anything regarding cognitive load. Cognitive load is a term used to describe the resources
of the working memory necessary for successful learning given a specific individual and
learning activity. In turn, this means without proper assessment or control of the previous
knowledge and motivation of the individuals tested and the investigation of a learning
activity, it makes little sense to call the resulting metric cognitive load and to refer to
Cognitive Load Theory.
To summarize, the ground truth for analysis is defined without a means to control if it
is actually accurate, then a model to reproduce this ground truth is created by various
methods. Afterwards, how accurately the ground truth could be reproduced is reported
without acknowledging that it is not clear if the errors arose in reproduction or at the
definition of ground truth. In the end, a theory not fit to describe the phenomenon is
used to name the results without an effort to interpret them through the lens of the name
giving theory.
However well the use of computational models, I do not think that the results of the
work in this corpus (apart from [Kelleher and Hnin, 2019]) can be used to confirm or
refine Cognitive Load Theory even though they claim to be measuring the cognitive load
the theory describes. In their work, they try to infer some state of the working memory
without having any proven point of reference to interpret the findings from. There is
only the knowledge that changes of the working memory’s state should be detectable
by observing bodily functions. Therefore, the works in the corpus intensively observe
and analyse various measures of bodily functions. And changes in bodily functions they
detect, when subjecting participants to mentally taxing tasks. Then, they try to form a
computational model that is able to reproduce their predefined truth about the state
of working memory of their participants. But they use methods that are not accurate
enough to evoke the state of working memory that is used as ground truth for building
the model.
In no work in the corpus, an effort was made to establish a level of minimal working
memory resource use and cognitive overload (over-attribution of working memory) as
points of reference to interpret their findings. In the best case, when standardised
methods (e.g., n-back) are used, the only points of reference available are multiple levels
of resource use of the working memory including the knowledge that in nearly all cases
they can be accurately ordered by how taxing they are. But with no reference to a
minimum or maximum, there is only ever an order that can be used to infer further. That
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means, there is currently no way to confidently gauge a level of working memory use by
using objective measures. Therefore, we cannot use objective measures to meaningfully
analyse the states of working memory. Since cognitive load describes the use of working
memory required by learning material for a motivated learner with a specific level of
previous knowledge, cognitive load can therefore not be meaningfully analysed as well
using objective measures.

Cognitive Load Theory itself also claims additional limitations which make the use of
objective measures for analysis even more questionable if they are used in isolation. A
fundamental assumption of the revised Cognitive Load Theory is that it only applies
on a motivated learner, since the model including motivation could not explain many
results. Controlling for motivation to correctly incorporate it into quantitative analysis
seems near impossible. To correctly apply Cognitive Load Theory to isolated quantitative
analysis, would therefore require being able to control for motivation in addition to the
currently impossible accurate induction of working memory resource use.

However, this does not mean that researchers wanting to study cognitive load are out
of options. Instead of relying solely on unproven post-positivist measures with little
point of reference, one could instead turn to a mixed-methods approach by incorporating
constructivist methods not relying on a measurable ground truth to complement the
analysis. By interpreting potential findings through the lens of Cognitive Load Theory,
it might be possible to still gather valuable insights. However, a live-assessment of
the current state of working memory is not possible through constructivist methods.
Therefore, the dream of interfaces adapting to the current state of working memory
proclaimed by most works of this corpus is currently not achievable without previously
being able to assess a ground truth of individual working memory limits, which are
required to establish ground truths for objective measure analysis.

2.3.3 How to Instead Use Cognitive Load Theory in HCI
Since Cognitive Load Theory is a theory about learning, specifically how taxing the
learning is on working memory, it can be used for one of the core interests of HCI:
technology adoption. A big part of technology adoption is people learning how to
interact with a given technology. The analysis of interactions with new technology
in user studies is common practice and learnability is already of great interest there
[Lewis and Sauro, 2009]. Currently, learnability is mostly evaluated based on performance
of early use over time. The most common measures of performance are efficiency (how
fast tasks are completed with the technology) and effectiveness (if the tasks are completed
successfully with the technology). The development of efficiency and effectiveness from
start of use to their plateauing is then often called learnability. An interaction with good
learnability reaches fast plateauing. Good learnability alone, however, does not suffice to
indicate its usability e.g., an interaction with fast plateauing but a remaining error rate
of 30% is not desirable.

The current methods to evaluate learnability are easy to implement requiring only
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behavioural data in time on task and successful completions, often complemented by the
System Usability Scale [Brooke, 1995] using its factor structure [Lewis and Sauro, 2009]
which allows to not only gather data on satisfaction (how well users liked to interact
with the system and felt confident in their ability) but additionally on learnability itself.
However, they do not yield much insight into why issues for learnability and interaction
complexity arise. Analysing interactions through the lens of Cognitive Load Theory could
therefore be of great interest to complement the findings of current measures of usability
with an interpretation based on element interactivity and working memory usage.

For long-term adoption and usage impact estimation, the perspective of Cognitive Load
Theory can be additionally helpful. Because the completion of a task with and without
using the technology often differs widely, a clear definition of the required learning
for both situations is helpful. With this exact specification of learning, the changes
of required knowledge for the differently learned skill can be analysed in contrast to
cognitive load while learning, especially intrinsic load. This different learning required for
technology adoption, while possibly easier due to lower required intrinsic load, might not
be desirable. An example for such an undesirable learning: learners might be unable to
complete the task in a case of technology malfunction due to no longer understanding the
requirements of the task without the technological assistance. For successful long-term
adoption, users might additionally have to learn how to repair the technology increasing
the overall learning required to complete the task [Bainbridge, 1983]. Even though a
reduction of cognitive load might occur while learning the new, easier interaction, it
might not be a prudent goal to blindly chase cognitive load reduction as the resulting
learning might not be the intended learning and too much intrinsic load was reduced.
Vice versa, a technology could be deemed unsuitable to a task in its current form, if
the newly learned interaction, while providing great long-term benefits, requires too
much cognitive load in its learning for the population who currently completes the task
without the technological assistance. Keeping Cognitive Load Theory in mind, possible
interventions could be to simplify the interaction by reducing element interactivity or by
supplying the possible users with more schemata relevant to the interaction which both
reduce cognitive load.

To further complement typical user research analysis with Cognitive Load Theory, one
can try to separate extraneous load by identifying sources of distraction and unnecessary
elements or redundant information. This can be done e.g., by analysing behavioural data,
thinking-aloud [Rooden, 1998] data and interview data. These can in turn be removed and
the interaction tested again, to confirm if in fact there was extraneous load inhibiting the
learning of the interaction. Using e.g., A/B testing [Tullis and Albert, 2008], confirming
Cognitive Load Theory based findings on interaction problems can be easily and cheaply
included into modern technology development cycles.

In my opinion, speaking about cognitive load beyond technology adoption in HCI makes
little sense. For continued use, it becomes increasingly harder to separate learning from
doing and cognitive load is proven hardly enough to transfer its claims about learning to
acquiring mastery with ever harder to define previous knowledge. When talking about

20



2.4. How and why we measure “cognitive load"

adaptive interfaces I would therefore not use the term cognitive load to describe their
used data, especially after adoption. They would want to adapt their interactions based
on working memory usage and other state of mind indications like states of deep work or
flow. However, as argued in this section, this does not mean that there is no place for
Cognitive Load Theory in HCI. Just not in the way many of the works in Ubiquitous
Computing of the corpus claim.

2.4 How and why we measure “cognitive load"
As explored in the previous chapter, cognitive load is currently being used as an umbrella
term for both the use of working memory resources and the cognitive load term of
Cognitive Load Theory, which describes the working memory resources required to have
successful learning of a specific learning activity and learner accordingly. This makes
publications using the term at least confusing, if not misusing the name giving theory.
In this work, there is a separation of the two to talk about their differences and why
many of the works in the corpus were written with a questionable understanding of
cognitive load and working memory resource use while claiming to measure the prior. I
would encourage other authors to differentiate as well in accordance with Cognitive Load
Theory, but there is little prospect of this changing in the near future. Therefore, one
needs to be careful when reading about cognitive load since the theoretical background
of the work has a high chance to be dubious.

Currently, there is no confident way of measuring cognitive load. As discussed in the
section on Cognitive Load Theory (2.3.1), there are very hard to control factors required
for cognitive load to be measurable. Additionally, in the work of this corpus, researchers
are currently not really measuring cognitive load but instead are trying to measure
the current state of working memory resource use. Due to their limited incorporation
of Cognitive Load Theory into the study design and working with its limitations, the
necessary precautions for accurate, reproducible findings to further the development of
Cognitive Load Theory are not taken. Instead, claims of a (more or less) successful
reproduction of a questionable ground truth are chased.

There are many valuable reasons for wanting real-time data on the state of the working
memory in many fields. As claimed by most works of the corpus, adaptable interfaces are
their main driver, which should adequately respond to the state of working memory and
issue interruptions when appropriate in addition to providing the right information at the
right time. These measures are currently questionable at best, due to the aforementioned
classification based on an uncontrollable ground truth which is backed by a misunderstood
Cognitive Load Theory (as discussed in 2.3.1). Instead of acknowledging this, the works
in this corpus aim for ever greater accuracy of reproduction using ever more complex
computational models without addressing the underlying issue of their arguments being
baseless.

As the analysis in this work deems the use of real-time objective measures with the
current means of establishing specific working memory resource use futile, I suggest an
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alternative for the use of Cognitive Load Theory in HCI (see 2.3.3). As a theory of
learning it is fit for the analysis of phenomena arising in technology adoption, since a
major part of technology adoption is the learning of possible interactions. It should
therefore be possible to use Cognitive Load Theory to complement current methods of
evaluating the learnability (and in turn the usability) of technology to provide the theory
to identify possible hindrances in the adoption process.

Learning is a complicated and broad subject and Cognitive Load Theory only a small
part of it. Using it to hide limitations and incertitude while claiming to have found an
accurate, objective measure of the current state of working memory, and therefore, the
human mind can be described as hubris or, depending on the motivation, something else
entirely [Frankfurt, 2005].

2.5 Measuring Usability of Ubiquitous or Pervasive
Technology

As already pointed out by many authors before me, there are fundamental differences in
how people interact with UbiComp systems compared to traditional computer technology.
The main one being that in addition to interactions between users and the technology,
interactions between users and the environment and the environment and the technology
take place during the time of interaction [Carvalho et al., 2018]. Furthermore, the goal of
UbiComp systems usually entails seamless integration into everyday tasks and activities
and preferably becoming imperceptible to the user [Bezerra et al., 2014].

Based on this, [Carvalho et al., 2018, Rocha et al., 2017, Bezerra et al., 2014] formulated
additional characteristics of UbiComp systems which should be incorporated into a
usability analysis to gain a more holistic evaluation of interactions taking place during
the use of the UbiComp system. While the proposed heuristics are likely not the be-
all-and-end-all of evaluation of UbiComp systems but rather the beginning of further
research of its refinement, it still provides a good starting point for UbiComp system
usability evaluation. [de Souza Filho et al., 2020] demonstrated this by incorporating
the heuristics proposed by [Rocha et al., 2017](see figure 2.4) into two different usability
evaluations for a UbiComp system.

With this greater importance of interactions with the environment (both from the
user and the system) and the goal of seamlessly embedding the technology into the
environment, traditional user studies in lab setups cannot capture everything that occurs
in an interaction [Crabtree and Rodden, 2009, Rocha et al., 2017]. In my literature
search, I have found no work which diagnoses what exactly is lost and which was never
captured in the first place when applying traditional user studies to UbiComp systems.
From the works I have found that aim to improve usability evaluation for UbiComp
systems [de Souza Filho et al., 2020, Rocha et al., 2017, Carvalho et al., 2018], there is
no consensus on what is necessary or highly helpful to include as additional factors

22



2.5. Measuring Usability of Ubiquitous or Pervasive Technology

Figure 2.4: A table of usability heuristics for UbiComp systems proposed by
[Rocha et al., 2017] as interpreted and used by [de Souza Filho et al., 2020].

and how they are to be considered. The only consensus is that the previous ways of
determining usability are not suited to capture the increasing complexity of interactions.

[Zilz, 2011] aim to capture some of this complexity in an easily applicable way using a
virtual environment. By simulating a virtual UbiComp environment including its users,
the authors want to avoid the cost and difficulty of real-life tests with real participants
in real environments. Instead, they try to identify usability problems using expert
evaluations of their virtual UbiComp system. While acknowledging that it is not a
substitute for a real interaction in the environment of use with target users, the authors
are confident that in using their method many usability issues can still be identified,
especially issues that would not be as easily detected in typical usability evaluations in
lab settings, while keeping costs at low.1

1The user study in this work was also not conducted in the environment the technology aims to be
embedded in, but instead in the factory lab of Profactor. Since the tested UbiComp system was built as a
prove of concept in its development stage, it seemed a sensible choice to keep costs low for our partners at
Profactor. While still not a real environment and an artificial setup, a factory lab has similar looks and
policies to factories even though no live production is taking place. More details are covered in chapter 3.
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Thinking about cognitive load in UbiComp systems similar issues arise. A naive measure
simply aiming to extract the level of mental resources used during the interaction cannot
determine which part of the interaction is responsible for the increase measured. Therefore,
an interpretation through the lens of Cognitive Load Theory is essentially required to
identify its sources. Since there are multiple interactions taking place at the same time
during a simple UbiComp interaction, element interactivity is of even greater concern.
With the goals of seamless integration and high levels of interaction, it makes sense to
aim for low cognitive load for the overall interaction. Otherwise, we run the risk of
cognitive load being too high for the interaction to be easily learned and in turn not
adopted quickly into the workflows the UbiComp system aims to be embedded in.

In summary, currently, there is no means to confidently interpret cognitive load measures
which requires the development and/or testing of methods for its interpretation. Therefore
it is complicated enough to interpret cognitive load for heavily controlled study setups.
However, cognitive load is of especially great interest in setups which cannot easily be
controlled e.g., real-world settings with simultaneous interactions or UbiComp system
environments. This leads to the additional problems outlined above. Nonetheless, this
work aims to provide some form of progress in this difficult environment with a case
study by testing different methods to estimate cognitive load interpreted through the lens
of Cognitive Load Theory in a semi-controlled, semi-realistic setting with representative
target users of a UbiComp system.
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CHAPTER 3
Case Study: Cognitive Load of

UbiComp System in an Industrial
Setting

The case study was conducted as part of a usability evaluation of a spatial augmented
reality (SAR) system developed by our project partners at Profactor which also provided
the location and setup for the user study. The tested technology was solely developed by
Profactor. The usability study was planned by Rafael Vrecar, Astrid Weiss and myself
and conducted by Rafael Vrecar and myself. The data evaluation was mainly done by
myself. The technology combined with its evaluation are a separately published work
from which figures and data were reused [Wedral et al., 2023]1.

Instead of relying on a sole objective measure during task completion, I opted to use a
plethora of methods, some of which only tangentially have to do with cognitive load (and
aid with other usability metrics evaluated in the study) to have more starting points for
analysis for the cognitive load. How well they aided in determining cognitive load for the
study and how I interpret their usage now with a deeper knowledge on Cognitive Load
Theory is covered in this chapter.

3.1 Design and Description of Evaluated Artefacts
To start this chapter, however, a description of the evaluated artefacts is required.

1Even though at the time I did not yet engage myself as deeply into Cognitive Load Theory and did
not grasp the implications of the current state of cognitive load estimation practice on my used methods,
the methods used within the case study comply surprisingly well with Cognitive Load Theory compared
to many methods discussed in earlier chapters (see 2.3.2).
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(a) Ergonomic Notification
(b) Collaborative Robot
Safety Zone Awareness

(c) Manual Assembly Assis-
tance

Figure 3.1: 3D sketches of the study use cases for the SAR system developed by Profactor
[Wedral et al., 2023].

The aim of the SAR system was to provide users with live feedback on their actions in
their working environment without requiring a media breach to screens to access the
feedback information. Our partners at Profactor developed three different SAR systems
supporting three different use cases all prevalent in an industrial production setting. The
Manual Assembly Assistance (figure 3.1c) avoids the media breach by directly projecting
the location of parts’ placement onto the work piece. For this lab setup, a simpler proof
of concept setup was chosen, where workers had to peg in clamps on a board. The SAR
system highlights where the part is to be placed and if the parts are placed correctly.
Locations where clamps should be placed were indicated by blue circles. Locations of
correctly placed clamps were indicated with green squares and locations of incorrectly
placed clamps (or other occlusions of holes) were marked with red Xs.

The second system, called Collaborative Robot Safety Zone Awareness, was developed
as a means to dynamically and responsively communicate the safety zone around a
collaborative robot (Cobot). Cobots are robots especially designed to collaborate in a
workspace together with human workers. To pose less of a danger, they have to operate on
lower speeds during this interactions. ISO/TS 150662 defines spaces around robots with
according different robot speeds and resulting dangers for humans. To communicate this
safety zone, the SAR system projects an area around the cobot as depicted in figure 3.1b.
This area turns red when a human enters its space. In a real factory application it could
for instance also stop or slow the robots movement. The technology was developed with
the idea of alerting workers of overhead dangers such as cranes and autonomously moving
robots entering their spaces (or vice-versa). Compared to standard safety measures,
SAR safety measures would only need to encompass currently active dangers and not all
possible dangers for safety zone depiction.

The third system, Ergonomic Notification, aims to mitigate the risk factors to occupational
safety and health of ergonomic issues in the workplace. The SAR system was developed to
communicate detected risks to workers the moment the ergonomic issues arise. However,
since the detection of ergonomic issues was not fully implemented by Profactor, the SAR
system was controlled wizard-of-oz style based on skeleton extraction of the worker. As
depicted in figure 3.1a, the projection turns green when a user lifts ergonomically in its
space and pulsates red when a user has ergonomic issues during lifting. Otherwise, it
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simply communicates its presence as a white circle. The triangle and rectangle were
applied using tape and are only present to mark different locations for the test setup.

3.2 Study Design and Structure
In addition to evaluating classic usability metrics such as effectiveness, efficiency and
satisfaction, the plan for the study was to use a mixed methods approach to pin-point
metrics that are harder to meaningfully interpret using single measures like learnability
and the aforementioned cognitive load.

The research questions for this study were:

1. How does the use of the defined projector assistance systems affect efficiency,
effectiveness, and satisfaction?

2. How is the usage affecting cognitive load for task completion?

3. How effective is the learnability of the projector technology?

The lab study setup was designed in a way to incorporate the usage of all three SAR
systems into a single task scenario. To gather comparable quantitative data, we comprised
the task of multiple iterations of the same interaction. To make the interaction meaningful
to the participants, we presented it as one overarching assignment. The most important
reason for the repeated trials of single participants was to gather a naive measure of
learnability using the changes in task completion time over the trials. As cognitive
load stems from a theory on learning, learnability should be usable as a pillar to gauge
cognitive load, since the load of interaction should decrease after the initial learning
phase. During conceptualisation of the study, the focus was put on cognitive load and
how the technology usage affected it for accomplishing the task which was especially
important to the project partners at Profactor. 2

Additionally, the SAR systems where not active in every step of the procedure. The
tasks were setup in a way that the participants could complete them without interacting
with the technology, as would be possible in their real work environment. This was done
with the aim to gauge how useful the representative target participants perceive the SAR
systems, even in early interaction. Instead of having one phase of the experiment with
the SAR system active and one with the system deactivated, the projections switched
between active and inactive at fixed repetitions to allow the observation of behavioural
changes. The goal was to detect changes in policy compliance and task performance not
only between on and off states but especially in off states after having interacted with
the technology. If seen it could indicate that the positive behaviour might persist even
after deactivation or disuse of the SAR system. The time with the technology active,

2This was before my deep dive into the topic and therefore my learnings were not incorporated into
the study design.
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Figure 3.2: Shows the flow of the experiment procedure. It details which methods were
used and data was gathered in which step. The green region marks the research focus
during the repeated trials with the technology. The lavender region marks where the
participant focus was expected during the repeated trials.

however, was not long enough for participants to become accustomed to its aid and it
was therefore only perceived as a nuisance that the system was not always active.

Figure 3.2 shows how the resulting experiment was structured and in which step which data
was captured. The study was conducted with fifteen representative target users mainly
from the automotive industry with varying degrees of previous experience in working
with automation. They were recruited by Profactor from the local area surrounding
Steyr, Upper Austria.

Data and Measures

In the next paragraphs, I will cover the decisions on how the experiment was setup and
a brief overview which data was chosen why. A more detailed analysis and explanation
of method choice is covered in their individual sections.

As mentioned before (and backed by my findings in the related work chapter 2), the goal
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Figure 3.3: Policy and exemplary step description. The policy is translated from German

was not to rely on a single measure to determine cognitive load. Therefore, we used a
mixed methods approach which incorporated various quantitative and qualitative data
with the goal of gaining a comprehensive understanding of the matter. Most usability
measures had one single source of quantitative data to evaluate it and the complex
measures were complemented by insights from further qualitative techniques. The main
measure of interest was cognitive load which has been extensively covered in the related
work chapters. To evaluate cognitive load but also as an additional metric for usability,
learnability was evaluated. The usability metrics covered by the ISO standard were also
included [ISO 9241-11:2018, 2018]. The metrics of the standard entail:

• effectiveness - accuracy and completeness with which users achieve specified goals

• efficiency - resources used in relation to the results achieved

• satisfaction - extent to which the user’s physical, cognitive and emotional responses
that result from the use of a system, product or service meet the user’s needs and
expectations

The following data and collection methods were therefore selected for the study. In
[square brackets] the type of data is depicted, followed by a description on point of
collection. For which criteria it was used is displayed in (parentheses).

• [Behavioural] Time required for each step at the work bench (Efficiency)
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• [Behavioural] Successful policy compliance and completion of tasks (Effectiveness)

• [Self-reporting] NASA-TLX Survey [Hart and Staveland, 1988] (Cognitive Load)

• [Self-reporting] SUS-Survey [Lewis and Sauro, 2009] (Usability and Learnability)

• [Self-reporting] Semi-structured interviews (Satisfaction, Learnability, and control
whether the system is actually considered during the experiment, since it is not
required for completion or compliance)

• [Self-reporting] Think-aloud-protocol [Rooden, 1998] [Tomitsch et al., 2018, p. 158]
(Cognitive Load, a control for Learnability and control whether the system is actually
considered during the experiment)

• [Behavioural] A count of how many times the SAR system was active including the
current run (Cognitive Load)

Notes and observations made during the study and during the analysis of the video footage
were used to complement or contradict findings of other measures when appropriate.
However, they were not coded or analysed in-depth since it would break the scope of the
work.

To have quantifiable and comparable data for analysis, the behavioural data extracted
from the videos needed to be defined and coded. As completion time requires a frame of
time with task focus and little distractions to be a meaningful between subject comparison,
it could only be compared for the manual assembly assistance. The beginning of the
measure was defined the moment the first part of three placed by the participant was no
longer touched by the participant. The end of the measure was defined as the last part
placed or repositioned by the participant before proclaiming the current run as finished
was released. With this definition, participants had implicit control over the recorded
starting and end time with little room for distractions and noise to arise from other
interactions with the system or the environment. There was no walking, no searching
for parts and little else than the interaction with the SAR system. Thinking-aloud
explanations, however, are noise that could not be excluded from the data.

Success also had to be defined individually for each SAR system. For the manual assembly
assistance it was defined as the number of correctly placed parts (out of three) at the
end time defined for completion time. Even though parts may be moved or corrected
later, participants were instructed that they take responsibility for the correctness of
their placements when they proclaim a current run as completed. Additionally, it would
complicate the measure when re-attributing correct placement to a specific run if earlier
mistakes are corrected since the measure would then have to incorporate when the mistake
was made and if the SAR system was activated for this run. To simplify the measure and
its analysis, the above definition was chosen. For the collaborative safety zone awareness
success was defined as “participant did not collide with the robot” and errors would
therefore be counted when collisions occurred. Even though trespassing of the marked
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area was also extracted and analysed, it was not chosen as the success criteria. Since
the policy participants were instructed in did not specify the restricted area as such but
only stated that the robot should be avoided, avoidance is the only sensible measure.
For the ergonomic monitoring a lifting was successful when participants did not bend
their lower back and instead lifted from their knees. Errors were therefore counted each
time participants did not lift correctly for each run. The minimum required lifting for
a given run was one time, but sometimes participants lifted more often depending on
remembering which parts to pick up or other instructional misconceptions.

The last behavioural measure extracted from the recordings was the count of how many
runs the SAR system was active including the current one. This secondary task of
counting was chosen in favor of counting the runs themselves because the instructions
numbered the runs as continuous steps of a single assignment and the current run could
therefore simply be read in the instructions. Participants were asked to recount from the
forth run onward having seen two runs with and without SAR system assistance, so they
were able to separate between these conditions.

The other measures did not have to be extracted from the video recordings. For the
non-cognitive-load measures, there is a well defined method for their use for usability
evaluation which was used in the study. As previously discussed in the section on current
use of cognitive load theory 2.3.2, it is unclear what exactly is measured by e.g., the
NASA-TLX and other cognitive load measures. Therefore, in my opinion it makes little
sense to name one of these measures cognitive load. However, trying to understand
cognitive load using multiple methods makes a lot of sense. Especially, since they are
used in the context of learning interactions with new technology. This is what I speak of
when referring to cognitive load from here on out in the further analysis if not specified
otherwise. Nonetheless, there is still no proven methodology to interpret their findings
especially in mixed method approaches. In this work, they were used to complement or
contradict each other as appropriate and discussed in the further specific analysis of the
single methods and cross-references will be made. This will also clarify, how the methods
were used in conjunction within the user study.

To derive satisfaction, the SUS survey score was combined with experience reports from
the post trial interviews (and thinking-aloud data when appropriate). Learnability was
comprised of a naive measure combined with self-reporting results. The naive measure
was the improvement of completion time over multiple runs. For the self-reporting data,
participants were asked about their learning progress in the post-trial interviews and
the learnability score was extracted from the SUS survey according to the methods of
[Lewis and Sauro, 2009].

For the user study, cognitive load was mainly constructed from the NASA-TLX answers
combined with the thinking-aloud participation and the secondary task in recounting the
number of runs the SAR systems were active.

In this work, the methods and how they were used will be presented in detail. In the
next sections, I will cover why which method was deployed and which findings were used
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for the evluation of cognitive load in the scope of the user study. Furthermore, I will
expand on the possibilities of the methods including possible reinterpretations and reflect
on their effectiveness, both using the theoretical background established in the related
work chapter on cognitive load 2.

3.3 NASA-TLX
The NASA Task Load Index is a potent tool to gain self-reporting data on mental
workload and possible overload for a given activity. The workload is split into six factors
comprising the total workload for a given task. The identified factors are

• mental demand - (how mentally demanding the task was)

• physical demand - (how physically demanding the task was)

• temporal demand - (how urgent or rushed the pace of the task was)

• performance - (how successful the rater was in accomplishing the task)

• effort - (how hard the rater had to work to reach their level of performance)

• frustration - (how unsure, discouraged, annoyed, stressed or angry the rater was
during task completion)

All six factors are rated with a 21-point scale presented with vertical lines, the first bar
being equated with the numeric 0 and the last one with 203.

To reduce between-rater variability, the raters themselves give weights to each of the six
factors in its original version [Hart and Staveland, 1988]. In turn, the weights determine
to which extent the scores of individual items of the survey attribute to the total score.
Later research showed, however, that it is unclear if the weights substantially influence
the accuracy of the resulting rating [Hart, 2006]. While not recommended by the original
author, it is therefore common practice to simply assume equal weight of all six factors
and remove the weighting from the process. This was also done in the user study to reduce
the already long experiment procedure. The scores of the NASA-TLX are transformed
to be between 0 and 100. The total score with equal weights is therefore computed by
averaging the six individual factors which are multiplied by 5. For our specific case,
participants often did not mark the vertical lines but rather made an X between two
vertical lines. Since individual values were not included in analysis, we opted to interpret
the Xs as halfway between vertical lines and used them for calculation accordingly as .5
numerical values. Even though, the minimum and maximum of the scale move .5 toward
the middle and the value exactly in the middle is lost, we still deemed it accurate enough

3For a visual description, the german version of the NASA-TLX survey used in the study is included
in the appendix at the end of the document
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to incorporate it into the user study, since we did not compare their results to other
NASA-TLX results and did not need exact values for the interpretation of the data.

The arguments for choosing the NASA-TLX survey over alternatives like a simple 9
point Likert scale were the following: first, familiarity with the survey and secondly, it
allows for more detailed analysis since it encapsulates more factors which can be analysed
individually when appropriate. For instance, frustration and temporal demand can be
explicitly evaluated and do not have to be assumed in the subsumed Likert scale. While
it was not done so for the study, the more detailed separation of factors also allows for
the easier identification of sources for the cognitive load when combined with Cognitive
Load Theory.

In general, the choice of quantitative self-reporting data on cognitive load should be
determined by usage factors. If the extraction and nuanced identification of possible
sources for cognitive load is a priority, then the NASA-TLX is most likely the right choice.
In contrast, if the study requires the testing of multiple interactions or conditions and
therefore the data collection needs to be carried out multiple times during the trial, then
the Likert scale is most likely the right choice. When other data is collected, the Likert
scale also loses the disadvantage of having little context and classification of the collected
data.

During our study setup, the NASA-TLX survey was to be filled out immediately after
the trial. This was done to gather immediate and unreflecting data on the interaction
with the SAR system. The more time passes between the stimulus and the emotional
state that we want to capture, the more conscious reflection of how one is expected
to feel or wants oneself to feel can impact findings and the more cognitive biases can
distort the data. Especially with data that is already hard to interpret or quantify like
cognitive load, introducing more noise makes meaningful analysis harder. This immediacy
of feedback is one of the main drivers of researchers aiming to find objective real-time
data on cognitive load (see chapter 2.2). Therefore, trying to mitigate this inherent
shortcoming of retrospective data collections for the state of mind is well advised when
using the NASA-TLX or the Likert Scale mentioned above.

As can be seen in table 3.1, mental workload is surprisingly high for the simple interaction.
This was however most likely due to the complex study setup with the constantly changing
conditions, participants issues with reading comprehension while having complicated
instructions and the multiple secondary tasks participants were put up to.

The high variability is hard to interpret using only the results from the survey and require
further points of reference. The most probable answer is differences in our population
even though recruited locally and all having work experience in automotive manufacturing
for which the full version of the Manual Assembly Assistance was developed.

Considering that participants had multiple secondary tasks and policies to keep in mind
during the whole interaction, it is very likely that much of the cognitive load from
the interaction arose from element interactivity of these factors. The main goal of the
presented technology for policy compliance (Cobot Safety Zone Awareness and Ergonomic

33



3. Case Study: Cognitive Load of UbiComp System in an Industrial Setting

Part. Mental D. Physical D. Temporal D. Performance Effort Frustration Total Score
T01 32,5 7,5 7,5 - 7,5 87,5 -
T02 35 15 30 40 25 35 30
T03 77,5 37,5 32,5 32,5 52,5 32,5 44,167
T04 17,5 2,5 12,5 17,5 7,5 67,5 20,833
T05 50 0 25 10 0 0 14,167
T06 7,5 2,5 2,5 17,5 7,5 7,5 7,5
T07 37,5 2,5 2,5 50 50 57,5 33,333
T08 22,5 17,5 22,5 50 17,5 2,5 22,083
T09 22,5 7,5 7,5 17,5 32,5 17,5 17,5
T10 47,5 2,5 7,5 2,5 32,5 7,5 16,667
T11 17,5 12,5 17,5 50 27,5 42,5 27,917
T12 20 0 0 20 50 0 15
T13 10 10 10 75 15 5 20,833
T14 22,5 22,5 50 5 15 15 21,667
T15 2,5 2,5 2,5 27,5 17,5 2,5 9,167

Table 3.1: Table of Individual NASA-TLX Survey Answers. While overall load levels are
not high, results for frustration, effort and especially mental demand vary highly between
participants.

Task Load
N 14

Mean 21.488
Standard Deviation 9.814

Minimum 7.5
1st Quartile 15.417

Median 20.833
3rd Quartile 26.458
Maximum 44.167

Table 3.2: NASA-TLX Descriptive Statistics. Participant T01 did not fill in the perfor-
mance score and could therefore not be used for the total score. Results indicate low to
medium overall load.

Notification) was to alleviate workers from these exact load creating elements of constantly
having to keep policies in mind and abiding by them. Therefore, looking at the high
mental demand results, it is sensible to claim that the proposed SAR systems failed to
deliver the desired load reducing effects for the whole interaction/task. (This claim is
strengthened when combined with data reported later in this work.)

As can be seen in the descriptive statistics (table 3.2) and the individual scores, the
overall task workload is very low. However, further interpretation of possible sources
for the outliers in the data is hard to do without further insight and the NASA-TLX
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is therefore a sub-optimal sole measure for cognitive load. The only real interpretation
without a point of reference and no knowledge about the distribution of NASA-TLX
scores, is a t-test with the median of possible scores (50) as the expected value. For
the sample in the study (M = 21.488, SE = 2.623), the scores are significantly lower
t(13) = −10.871, p < 3.4 ∗ 10−8, r = 0.949. But without any further point of reference,
this can only be seen as a weak indicator that the overall task workload is low.

Another issue that arose within the user study, was the participants’ view on what was
considered when filling out the survey answers. Participants reported filling out the
survey with mainly the Manual Assembly Assistance in mind, since they perceived it as
the main system and therefore wanted to give the most accurate and impactful feedback
for this system. Without this information, the data from the TLX survey would have
been interpreted completely inaccurately as we would have had to assume that all systems
would be included equally in their perception.

Task Load Index through CLT lens

From a perspective of Cognitive Load Theory, the NASA-TLX immediately makes a
positive impression since it does not claim to directly capture cognitive load. Since it is
not clear if cognitive load even exists in the way asserted by the theory, claiming to be a
direct and infallible cognitive load measure in the worst case without acknowledging its
limitations to learning activities does not promise a great understanding of the current
standing of Cognitive Load Theory. The NASA-TLX does not assert to be such a
measure, although it was not developed recently enough to do so in the first place.
The NASA-TLX claims to envelop the factors contributing to the total workload of a
rater’s task [Hart and Staveland, 1988]. This workload encompasses factors which are
not covered in Cognitive Load Theory and go beyond it, but can be used for e.g., a
usability evaluation.

While ‘mental demand’ at surface seems to be the sole cognitive load indicator within the
NASA-TLX survey, most other measures can be used to analyse how efficient the learning
was. As introduced in the chapter on Cognitive Load Theory 2.3.1, cognitive load is the
use of working memory resources required for a given learning activity with given prior
knowledge. While the mental demand adequately captures the use for working memory
resource (and is therefore very similar to the often used nine point Likert scale), it does
not paint a complete picture of the learning. Temporal demands, frustration, effort and
performance are all great indicators for possible sources of cognitive load. If time is of
the essence, it needs to be kept in mind constantly during the task and is therefore an
inherent additional element required for the task which due to element interactivity leads
to increases in cognitive load. Frustration is a good indication of usability errors in the
interaction or task which most likely draws focus and attention away from the task to
the frustrating interaction in turn creating extraneous cognitive load. Effort is a great
measure in addition to mental demand to indicate whether the resulting cognitive load
stays in adequate levels for the testing population. Finally, performance tells us how
confident participants were in their task indicating if the learning was successful or if the
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correct learning took place. Especially, when other behavioural measures to analyse task
success are used to verify raters’ doubts or confidence about their performance.

As can be seen, the NASA-TLX goes beyond identifying mental load levels for raters and
additionally can be used to provide starting points to identify potential sources of cognitive
load. However, without any additional data from the context of collection, the results
of the task load survey can only be used to identify the raters’ perception on the task’s
difficulty and their success. Score levels without the raters’ expectations on difficulty
or levels of skill in the task domain are hard to interpret as both might vary highly
between raters. Therefore, at the very least, observations during the interaction/task
completion or a clear description of the rating population and task procedure need to
accompany the data to interpret the results. Otherwise, there is no point of reference
to interpret score levels. As a consequence, I argue that the NASA-TLX survey is best
used in conjunction with other qualitative methods which allow participants to further
elaborate on their perception of the task and tested technology e.g., Interviews or the
Thinking Aloud Protocol [Rooden, 1998]. That being the case, it is not sensible to use
the NASA-TLX as a sole measure for cognitive load estimation. 4

Nonetheless, the NASA-TLX has its merits for cognitive load estimation. The first major
benefit is its flexibility of use, requiring no extra equipment and only a condition that
wants to be evaluated. While it is hard to pin-point cognitive load levels of specific
intervals of moments of the interaction, its use to cheaply and easily get a quantifyable
overview of multiple factors for task load and learning of an interaction or task makes
it still a valuable tool and gives a starting point for further analysis. Its difficulty
in identifying moments or sources of load, however, make it a less optimal choice for
evaluating UbiComp systems as argued for in the chapter on usability for UbiComp
systems 2.5. Even though it implicitly suggests otherwise being a quantitative measure,
it is therefore ill suited to identify or confirm small effects on cognitive load. Its best
use based on this analysis is a comparison between two different conditions within
participants, since its total values are hard to interpret and the individual perceptional
biases should behave similarly for both interactions. However, if not used as a sole
measure, it can still provide the aforementioned overview or starting point and give
insight into possible factors otherwise overlooked; like the surprisingly high frustration
score for some participants of the conducted user study.

3.4 Secondary Task
In this study, a secondary task was deployed to account for how much cognitive load was
present. The argument is simple: if participants are able to complete the main task in
addition to a secondary task which requires working memory resources, the main task’s
working memory resource use cannot be high enough to lead to mental overload when

4As opposed to the imagined objective measure sought for by researchers as reflected in chapter 2.2
which can be deployed without context to accurately capture real-time working memory resource use
levels for adaptable interfaces.
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Participant #4 #5 #6 #7 #8 #9 #10 Total Runs Correct
T01 1 1 1 1 1 1 1 7
T02 1 1 1 1 1 1 1 7
T03 0 0 0 0 0 0 0 0
T04 1 1 1 0 0 0 0 3
T05 1 1 1 1 1 1 1 7
T06 1 0 1 0 0 0 0 2
T07 1 1 1 0 0 0 0 3
T08 1 1 1 1 1 1 1 7
T09 1 1 1 0 0 0 0 3
T10 1 1 1 1 1 1 1 7
T11 1 1 - 1 0 0 0 -
T12 1 1 1 1 1 1 1 7
T13 1 1 - 1 1 1 1 -
T14 1 1 1 1 1 1 1 7
T15 1 1 1 1 1 1 1 7

Table 3.3: Secondary Task: Recounting how many runs the SAR system was active after
each run starting with the fourth. Most errors arose between step 6 and 7 where the
experiment conditions changed most drastically. Participant T03 did not understand
what the question was supposed to elicit and therefore recounted how many parts were
placed in the manual assembly.

combined. For the user study, participants were asked to recount how many runs the
SAR system was active. The questions started at run 4 to spare participants the first
few trivial answers and to shorten the experiment time.

In Table 3.3, it quickly becomes clear, that most participants did not have an issue with
the secondary task. Nine participants had no wrong answers. Most participants who
failed, started doing so after the sixth step which included a more drastic condition change
and interruption of the second experimenter turning on an additional obstacle in the form
of a projection which was accompanied by a Collaborative Safety Zone Awareness. The
goal of this obstacle was to identify if participants would also act in accordance with the
safety zone, even if there was no physical obstacle present. But since participants ignored
the safety zone despite the robot obstacle, they did so as well for only a projection being
in their way.

While yielding quantifiable results, how to interpret them is less clear. For the participants
who made no mistakes in recounting, the premise that no mental overload was reached
still holds. But that on its own is not a lot of information. It is still impossible to gauge
actual levels of cognitive load for learning the interaction due to having no point of
reference and the additional introduction of working memory resource use skewing the
levels of working memory available.

Its even worse for participants who made mistakes. Because one cannot even assume

37



3. Case Study: Cognitive Load of UbiComp System in an Industrial Setting

Participant Number of Policies Recounted Correctly
T01 -
T02 3
T03 3
T04 3
T05 0
T06 3
T07 1
T08 3
T09 3
T10 2
T11 1
T12 3
T13 3
T14 2
T15 3

Table 3.4: Table of the number of policies recounted correctly by the participants.
Participant T01 was not asked due to an error. Three correctly recounted policies was
the achieved maximum and each policy was forgotten more than once including all
participants.

mental overload, since there are a lot of reasons participants might have forgotten the
current count e.g., simply not caring to keep track. And even if mental overload was
observed, it is unclear if the mental overload would have occurred if the secondary task
did not have to be completed.

Reviewing the metric post-hoc, I probably would not have included it in the study, as even
in the best case it yields surprisingly little new information but in any case introduces a
lot of bias that all other measures are influenced by.

After completing the trial, participants were asked if they remember the policies that
they were told in the beginning without us telling them beforehand that we would be
asking for them. Table 3.4 shows the number of policies that could correctly be recounted
by each participant. No one recounted all four policies correctly while most participants
recounted three. However, every policy was forgotten at least once with no clear tendency
in occurrence.

Recounting all policies is a hard task considering the usual limits of working memory when
untrained [Klingberg, 2010] and the amount of other tasks required of the participants
in the meantime. Especially, since participants were not told beforehand that they would
be asked to recount them after completion of the other tasks. Additionally, they did not
put much emphasis on the policies in the first place.

This measure while hardly being classifiable as a secondary task yielded even less
information than the previous recount. There are a lot of possible influences how and
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why participants might have remembered or forgotten and most of them are incredibly
hard to control for. Additionally, since participants were not told beforehand that they
should remember them, it is hard to argue for any relation to their working memory
states during the experiment.

When not using n-back as the secondary task, the data becomes increasingly hard to
interpret. With the large amount of studies using n-back to put consistent strain on the
working memory, a success rate can be determined and compared. And even using n-back
does not specifically aid in determining the cognitive load of learning the interaction. It
can be used to use control an increase in working memory usage but it does not help
in determining how successful the learning was or when the learning happened. To
determine how much cognitive load the learning required, you would either need many
participants with negligibly similar previous knowledge which is hard to argue for or
have single individuals learn the same interaction multiple times which is impossible. In
any case, it complicates the study procedure and distracts participants from the main
interaction you are interested in in the first place.

While n-back is the most consistent way I have found in my research for this work
to induce reproducible levels of working memory use, I would still not include it as a
cognitive load measure in a user study. And since it is the most consistent and easy to
interpret secondary task, I therefore would also not include secondary tasks in future
studies trying to determine cognitive load for learning interactions. The increase in
working memory usage due to the artificially introduced element interactivity yields too
little information in return.

3.5 Behavioural Analysis
One of the lesser used methods to estimate cognitive load, is inference using behavioural
data e.g., effectiveness and efficiency measures. Studies like [Chen et al., 2011] show why
it probably is not sufficient to use it as a sole classifier for cognitive load, since while
it correlates with the cognitive load levels “measured”5 in the study, when used as a
classifier of cognitive load, it does not perform very well. Taking a closer look at what
both measures try to quantify, it becomes clear why effectiveness and efficiency measures
cannot tell the whole story of cognitive load. Behavioural effectiveness and efficiency
measures not in the slightest try to include the difficulty of the task and how demanding
it was for its solver. They only include how fast, resource efficient and correctly the task
was completed. However, it is also clear, that there is a relation between the subjective
difficulty and the mental resources required of a task and how successfully and efficiently
it was completed by that individual. Therefore, when evaluating the learning of a new
task (which is done during user studies evaluating new technologies) it is sensible to use
behavioural effectiveness and efficiency measures to aid in cognitive load estimation. How
well this method worked for our user study is covered in this section. First, I will report

5For my critique on cognitive load measures and why it is very likely that cognitive load was not
actually measured by most of them, refer to chapter 2.3.2
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Figure 3.4: Boxplot of Completion Time per Step (left), Avg. Completion Time per
Participant with Manual Assembly Assistance Active/Inactive with Error Rates (right).
Steps with Manual Assembly Assistance (runs 2, 3, 6, 8, 10) were Considerably Faster.

the findings of the user study and afterwards analyse how meaningfully they can be used
to estimate cognitive load.

The behavioural effectiveness and efficiency measures collected in the user study were
already defined in the chapter on data and measures 3.2. As a reminder, the only
efficiency data gathered in the study was the time required at the Manual Assembly
Assistance. The effectiveness data for the Manual Assembly Assistance was how many
parts were correctly placed. For the Collaborative Safety Zone Awareness, the number of
collisions with the robot was defined as success while transgressions of the zone were also
collected. Success for the Ergonomic Monitoring was defined as healthy lifting from the
knees.

The outlined expteriment procedure as instructed by myself and the second experimenter
was followed most of the time by participants. However, there are some outlier runs
which are not comparable to the others due to heavy changes in behaviour. This makes
the runs no less interesting but skews quantitative analysis of their behavioural data
massively. The first outlier is participant 7 in run 5 who checked the position of every
placed part manually by counting out because they realised that the Manual Assembly
Assistance indicated previous placement errors. Therefore, the run at the work bench
took 00:07:01. This run was consequently not included in further calculations. The last
outlier was participant 8, since they ignored any placement information available at the
Manual Assembly Assistance, be it on screen or via SAR system. Since all parts were
placed incorrectly as a result, it would heavily skew error rates for both conditions: SAR
system active and not active. Therefore, their success data for the Manual Assembly
Assistance were not included in the analysis.

Manual Assembly Assistance The boxplot in figure 3.4 shows all completion times
per run. As can be seen, the completion times were not normally distributed. As
confirmed by a Wilcoxon test, the comppletion time for runs with an inactive projection
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In-situ \ Location Correct Incorrect
Inactive 46 24
Active 68 2

Table 3.5: Contingency Table of Part Placement on the Work Bench. Participants made
significantly fewer mistakes in placement with an active manual assembly assistance.

SAR \ Lifting Ergonomically Yes No
Inactive 43 45
Active 27 33

Table 3.6: Contingency Table of Participants Lifting Ergonomically. We observed no
significant difference with an active Ergonomic Notification.

(Mdn = 23.259s) was significantly higher than for runs with an active projection (Mdn =
7.912s), T = 2.0, p < 0.0002, r = −0.601. This suggests that our participants could use
the SAR system to great advantage having considerably smaller time on task. From all
participants, only two had a low completion time at the workbench task without the
Manual Assembly Assistance (participant 8 and 13). They could achieve this by not
trying to correctly place the parts which is reflected in their error rate, as we will see
later in this chapter.

Looking at the effectiveness measure, as can be seen in the data from table 3.5, in runs
with an active SAR system, less mistakes were made by participants at the workbench.
A Barnard’s exact statistic of the contingency table comparing active vs inactive Manual
Assembly Assistance is −4.781 with a p-value of 2.074 ∗ 10−5. Based on the resulting
odds ratio, a participant was 17.739 times more likely to place a part correctly with an
active Manual Assembly Assistance than without. Therefore, the usage of the Manual
Assembly Assistance not only increased the speed with which the task at the workbench
was completed but also how correctly participants were able to place the parts. This in
turn suggests that the Manual Assembly Assistance made the task significantly easier,
since the comparison was made within participants and can therefore hardly be attributed
to differences in population. Additionally, due to the choice of condition change timings it
is also very unlikely that a higher proficiency in the task was the main source of influence
on these findings.

Ergonomic Notification How successful the Ergonomic Notification was in aiding
participants was similarly analysed to the effectiveness of the Manual Assembly Assistance.
The Barnard’s exact statistic is 0.462 with a p-value of 0.719. The corresponding decrease
in odds ratio of 0.856 is therefore not significant. Considering this data alone, the
Ergonomic Notification apparently has little impact in how successfully participants were
in lifting ergonomically as suggested by the policy during the experiment. The only
condition consistently varied between trials was the activation state of the SAR system,
this is the only condition that can be statistically tested for. Therefore, with no other
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data source, it cannot be determined why the Ergonomic Notification had little impact.

Collaborative Robot Safety Zone Awareness Evaluating effectiveness of the
Collaborative Robot Safety Zone Awareness is as hard as evaluating successful robot
avoidance is easy: there was no collision of participant and robot within the 150 runs of
the study. Therefore, without a larger sample (preferable from live accident data with
and without the system) and without insurance-statistical methods its impact is hard
to determine. What can however be evaluated, is not a measure of success, but how
often participants transgressed the safety zone. But as it was only active during runs
with active SAR systems, it is hard to evaluate its usefulness. The participant with the
least trespasses was T08 with 2 total and 3 participants (T05, T11 and T15) had the
most trespasses with 8. Without further data, it is hard to determine the reason for the
trespasses, be it deeming the robot as unthreatening or not attributing any meaning to
the SAR system. What can however be said, is that trespassing is common. About the
cognitive load of the SAR system, however, not a lot can be argued for by this data.

Behavioural Analysis with Cognitive Load Theory

From the behavioural data alone, it is very hard to make definitive conclusions on the
cognitive load of learning the new technology. This is mainly due to the fact, that the
behavioral data is only influenced by cognitive load but it is unclear to what degree.
While less cognitive load should yield an improvement in all chosen performance measures
[Duran et al., 2022], how strong its effect is depends heavily on other factors as well.
Assuming a similar load due to the similar means of communication of all three SAR
systems, it is very unclear how to explain the drastic differences in success of the three
technologies. The only assumption one can make, is that the differences in cognitive load
have to be drastic or issues for their effective usage arise elsewhere.

Only when including other data like observations from the experiment, interviews or
thinking aloud data, probable sources become apparent. Then, it becomes clear that most
participants did not notice or attribute much meaning to the Ergonomic Notification
and mostly ignored the safety zone after deeming the robot completely harmless. As
with most quantitative measures for cognitive load estimation I analysed or used in
this work, it is not easy to formulate a holistic view on how the interaction went using
only a single one. Only when combining measures, an increasingly complete picture of
how the interaction went and which changes can be suggested can be formulated. Due
to its complexity and frequent interactions with environmental factors (especially in a
UbiComp environment), cognitive load is hard to grasp otherwise having many other
possible and hard to control sources of influence to attribute findings to. Since in this
chapter, we are covering the value of the individual methods used a holistic interpretation
of the combined cognitive load measures will be covered later in the discussion 4.
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3.6 Learnability
Learnability is an interesting measure for evaluating usability. In HCI, it is most often
simply defined and tested as a performance measure on how quickly new users become
proficient in using the tested technology. In literature, [Grossman et al., 2009] identify
two main understandings of learnability: initial learnability, which concerns itself with
the performance of new systems and extended learnability, which considers performance
over time.

Using the repetitive measures taken of the behavioural data, extended learnability (further
referred to simply as learnability) was evaluated in this study. While only looking at the
performance is a simplified view and evaluation of learning but it is nonetheless a valuable
usability measure, since it allows the consideration of when usage will be effective. This
is especially important for highly complex interactions.

High increases in performance alone, however, are not a guarantee for good usability,
since the reached performance could still be drastically lower than the desired levels. A
technology might therefore have a good learnability while not really being of much value,
because the performance increase is negligible or it might even be a detriment compared
to the performance before using it.

There are other measures of learnability but most of them require the acknowledgement
that learning is a complex subject and cannot easily be simplified while retaining mean-
ingful insights. Another, simple learnability measure was included in the user study,
which is the factorisation of the SUS by [Lewis and Sauro, 2009], which separates the
scale into two sub-scales with eight items for usability and two items for learnability.

Since cognitive load tries to estimate the level of working memory resources required for
learning, it should probably be considered a learnability measure itself. Nonetheless, the
chosen learnability measures give insight into how easy and successful the learning was by
giving a plateau and the time required to reach it and how confident participants felt about
their learning with the SUS sub-scale. Therefore, I suggest that both of these measures
should be helpful in arguing the levels cognitive load of learning possible interactions with
the technology. Easy and successful learning imply that no cognitive overload took place.
The levels of confidence in their learning indicate perceived performance and how well
participants could verify their performance. Under the older strands of Cognitive Load
Theory, this would probably fall into the domain of the elusive germane load. Considering
the reworked Cognitive Load Theory, it is probably only a post-hoc indicator of learning
success and can therefore be used to rule out cognitive overload during the learning if
the confidence was high enough.

As can be seen in figure 3.5, there is no real trend to be observed for the time required
at work bench. It rather suggests, that while the individual run tasks were very similar
(always having to place three parts at the work bench) their difficulty varied. Ten runs
per individual is very likely not enough data to observe the first plateauing. Nonetheless,
it is very unusual to see no impact of learning on the task performance time for repetitive
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Figure 3.5: Avg. Completion Times per Step with a 95% Confidence Interval. Blue:
Manual Assembly Assistance Inactive, Orange: Manual Assembly Assistance Active. No
decrease in time required over trials was observed. This suggests, that not much learning
was required or possible for the interaction.

measures. This suggests that, whatever the cause, little learning took place during the
interaction.

Immediately before participants filled out both the NASA-TLX survey and the System
Usability Scale, they reported perceiving the workbench task and the Manual Assembly
Assistance as the main task an main system and therefore filled out both surveys with
this in mind. Therefore, this needs to be considered for the evaluation of the SUS
answers. The System Usability Scale[Brooke, 1995] (for the German version used in the
user study refer to the appendix 5) consists of ten items including two factors identified
by [Lewis and Sauro, 2009]. Eight items are used for the Usability factor and two items
(numbers 4 and 10) for the Learnability factor. The even numbered questions are framed
negatively while the odd numbers are framed positively. Each question is answered by
marking on a 5-point scale ranging from 1-“Strongly disagree” to 5-“Strongly agree”. To
calculate the resulting score, positively marked items contribute their position on the
scale minus 1 and negatively marked items 5 minus their position on the scale. To achieve
the same result with an easier to look at computation, simply add all the positive results
and subtract all the negative results and add 20 again to compensate the adding and
subtracting done in the step before. To have resulting scores range between 0 and 100,
the resulting score is multiplied by 2.5.

Missing values for individual items should simply be replaced by the middle possible
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Score Usability Learnability
N 13 13 14

Mean 81.731 80.769 86.607
Standard Deviation 11.105 13.612 18.647

Minimum 60 50 37.5
1st Quartile 72.5 75 78.125

Median 85 84.375 93.75
3rd Quartile 87.5 90.625 100
Maximum 100 100 100

Table 3.7: Descriptive Statistics of SUS and the Factorisation to Usability and Learnability
Scales According to [Lewis and Sauro, 2009] (with Values Scaled to 0-100 to Match SUS).
The results indicate high usability and learnability.

value of 3. However, it did not seem sensible to do so, since an answer not being
fitting in the eyes of raters is not the same as them not having a strong opinion one
way or the other. Therefore, I simply omitted missing values and excluded their scores
from analysis if the missing value was necessary for the calculation of the individual
scale. While not suggested or done by [Lewis and Sauro, 2009], I also presented the
resulting Usability and Learnability scales as ranging between 0 and 100 by multiplying
with 3.125 and 12.5 respectively. [Lewis and Sauro, 2009] report two slightly different
distributions of answered SUS questionnaires which allow for meaningful comparison
of study’s questionnaire answers to the distribution. Otherwise, it could only be used
to compare between clearly separable conditions which, as discussed, is not trivial for
UbiComp systems 2.5. Therefore, it is not required to have multiple SUS answers within
participants to conduct meaningful SUS analysis.

When comparing the results to the distributions of the SUS presented in [Lewis and Sauro, 2009],
the results collected in the study are higher (see Table 3.7). Considering the median of
the pessimistic distribution presented, only four scores are bellow the first quartile and
seven results are above or at the 3rd quartile. While by no means perfect, this suggests
generally high or at least above average usability. More importantly, the learnability
scores are even better, with seven participants rating the highest possible learnability
score. Interpreting the learnability of the SUS alone, the only claim that can be made, is
that whatever learning happened, it was rather easily done.

Combining both the SUS results and the behavioural learnability measures, it seems very
likely that not much learning was necessary for the interaction at the workbench in the
first place. Therefore not much learning was done and the little that was done, was very
easily manageable. Since there was not much learning happening and the learning was
very simple, the resulting cognitive load is very likely to have been very low.

Participants did not perceive the other SAR systems as useful or important in the
context of their interaction. Therefore, they were filling out the questionnaires with
neither the Collaborative Safety Zone Awareness nor the Ergonomic Notification in mind.
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Furthermore, they did not interact much with them, resulting in questionably useful
behavioural data. As a result, the learnability data is lacking for the other SAR systems.

3.7 Thinking Aloud
The thinking aloud protocol[Rooden, 1998] was developed to gain live impressions of users
about the interaction. This way, ideas, joys and frustrations can be voiced the moment
they come up and therefore more accurately attributed in analysis. To accomplish this,
participants are instructed to voice their thoughts and feelings about how the interaction
with the technology is going the moment when they arise. When designing the study,
I thought that when participants abruptly stopped thinking aloud that cognitive load
spikes must have occured and that they could be pin-pointed in the video recordings.
This plan to gather information on the state of working memory resource use fell short
due to two main reasons:

1. many participants did not think aloud and

2. when they did, they did not do so constantly.

It is a common and known issue with thinking aloud that not all participants participate
in it even when reminded to do so during the study. So even though participants are
reminded that they should proclaim their thoughts and feelings about the interaction,
some simply do not and it is hard to attribute this to any particular reason. Nonetheless,
I thought cognitive load spikes could be detected this way.

While nice in theory, this abrupt stop proved hard to quantify and extract from the
video recordings. Because even for participants who did think aloud, abrupt stops never
occurred. Since this idea fell flat, I wanted to extract periods of time where participants
thought aloud but this would be heavily biased data by talking speed and style alone.
Therefore, it could not be used to determine cognitive load.

While also leading to an increase in element interactivity, the thinking aloud protocol
yielded impressive yet inconclusive data on the SAR system, study setup and usability
problems arising during the interaction. It worked well as a control, especially combined
with interview data, as it helped in forming a clear image of what was important for
participants during the interaction. It aided in identifying their perception of the SAR
systems, as in that they did not care to interact with the policy related SAR systems,
since they could not identify their usefulness. We could use it to identify multiple usability
issues of the whole interaction and wishes for different use cases. However, it aided
nothing in identifying the cognitive load for learning the interaction. Its data could only
be used to identify limitations of other measures and inform us that participants rarely
considered all SAR systems, also when filling out the questionnaires.
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3.8 Cognitive Walkthrough
The decision to include a cognitive walkthrough to gather more data on the cognitive
load of the interaction was done post-hoc after first cutting it from drafts of the study
plan. The original cognitive walkthrough [Lewis and Wharton, 1997] assumes a clear
interaction between user and computer and unambiguous correct steps as well as the
possibility for usability experts to play through this interaction step by step. For the
SAR systems in question, this does not work for multiple reasons. First, there is no
clear one way to achieve the task and it does not require taking actions with a computer
to be accomplished. Instead users can opt to use information available to them to aid
them in their task. Then, ideally, there is also no clear interaction with the SAR system
and the interaction merges into the background of the repeated task providing ambient
assistance. Lastly, the experts could not interact with the prototype since it no longer
existed. Therefore, the methodology needed to be adapted to be usable for the purposes
of this study.

There would be no interaction of the experts with the SAR systems. Instead, they
were shown anonymised video footage of interactions of the representative target users
recorded during the user study. The footage was 13 minutes and 50 seconds long and
was comprised of various successful and unsuccessful interactions chosen to include a
broad variety of observed interactions with the SAR systems active.

The standard questions aiming to yield easy answers to complex questions were adapted
to the new situation and more nuanced possibilities for accurate evaluation.

1. Will users try to achieve the right result?

2. Will users notice that the correct action is available?

3. Will users associate the correct action with the result they are trying to achieve?

4. After the action is performed, will users see that progress is made toward the goal?

became

1. Did users notice that aiding information for their task is available? Why? (In other
words, is the information visible or easily findable when performing the task?)

2. Did users associate the available signals with the information they are trying to
communicate? Why? (Even when the signal is visible, will users know how to
interpret it correctly?)

3. Did users incorporate the available information when working toward their goals?
Why? (Even if visible and interpreted correctly, could it be usefully incorporated
into the task?)
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4. After an action is performed, did users see if progress is made toward the goal?
Why? (Based on what occurs after an action is taken, will users know that this
action was correct and helped them make progress toward their larger goal?)

each including an explanation to preempt miscommunication.

The procedure started with showing each HCI expert a sample interaction of the second
experimenter showcasing basic interactions with the SAR systems in a dummy run from
an over-the-shoulder, third-person perspective. Then, they were asked what they thought
the interaction and what the SAR systems were doing. After collecting their perception,
they were debriefed on the SAR systems functionality and aims and the purpose of
the user study. Thereafter, they were shown the selected interactions from the video
recordings made during the user study which had multiple perspectives, one showing
the workbench and two showing the back area including the Ergonomic Notification
and Collaborative Safety Zone Awareness. During the whole demonstration, the experts
were asked to immediately voice their thoughts similarly to the thinking-aloud protocol.
Afterwards, they were asked the rephrased questions. In the end, the experts were
debriefed about the purpose of the cognitive walkthrough to test a method to estimate
cognitive load for this thesis followed by open questioning which was used to clarify
previous statements and voice final thoughts.

With these changes, a more accurate name of the method would be “a qualitative video-
guided expert evaluation based on the cognitive walkthrough by [Lewis and Wharton, 1997]
adapted for use with a UbiComp system”. However, it does not make a great section
title.

Expert A has a PhD with a focus in HCI and 15 years experience in user experience design
and research. Expert B is an associate professor with experience in HCI, user experience
research as well as persuasive technologies. Expert C has a PhD in Engineering Sciences
with a focus of HRI research in industrial contexts.

Usability issues were easily found, some better backed by other data than others. Only
one expert, Expert A, could talk intricately about cognitive load since she incorporates it
into her interaction designs. While not explicitly stating a source during the conversation,
she used a cognitive load understanding very similar to the newer strands of Cognitive
Load Theory covered in chapter 2.3. The other experts, Expert B and Expert C, while
providing excellent feedback on the system’s usability, did not have additional in-depth
knowledge on cognitive load.

All three experts immediately criticised how the Ergonomic Notification was implemented.
To present information about lifting by marking a space in the factory with a specific color
was identified as being confusing and resulting in an informational disconnect. With users
not knowing precisely how the information about the policies would be made available to
them, they were irritated when the region from which they retrieved the required parts
turned red upon there picking them up. Luckily, most participants promptly ignored
the information but were nonetheless disturbed in their workflow. Expert A additionally
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criticised this flow disruption as a strain on the mental workload, especially one that is
entirely unnecessary.

The information ambiguity was additionally increased, since marking a space red was
also used for signalling users that they trespassed the safety zone. So, the same type of
information was used to signal two completely different policy transgressions which only
have in common that the user did not comply with it (which might not even mean wrong
or sub-optimal behaviour depending on the case).

All in all, the Ergonomic Notification was identified as badly designed to inform users
on their state of healthy lifting. The information was provided in the wrong place at
the wrong time to be effectively included to facilitate better lifting. In addition to not
providing much information of use, it added elements to be considered to the workflow
and increased the resulting cognitive load of learning the interaction. It was the only
SAR system failing all four criteria of the adapted Cognitive Walkthrough questions.

Continuing with a trend in disturbing the workflow, Expert A identified the red flashing
of the Safety Zone as another disruption, since participants in the videos stopped within
the Safety Zone to turn and see what was flashing red on the edge of their field of view.
Expert A called it especially intrusive as moving and flashing objects at the edge of our
vision pass unfiltered to our brain for identification which always leads to a disruption
and additional mental workload. Instead, she suggested marking it in red permanently
without flashing while still moving it when necessary, to allow users to incorporate the
information into their workflow subconsciously without disturbing them. This idea was
also proposed by Expert B to communicate the Safety Zone more clearly to participants.
Before being debriefed about the purposes of the SAR systems, all participants initially
identified the Collaborative Safety Zone Awareness as a wayfinding system due to its
confusing presentation as an outlined geometric shape being accompanied by a line moving
between the user and the Safety Zone. The Collaborative Safety Zone Awareness got
very mixed reviews for the four criteria of the adapted Cognitive Walkthrough questions.
Expert B identified it as fulfilling the first three criteria at least to an extent since one
participant did also incorporate it into his pathfinding. However, this participant in this
run was the only instance where a change in route was made due to the Safety Zone. In
all other cases, participants waited for the robot to finish moving out of their way or
simply ignored the Safety Zone, when the robot was not in their way. Expert A and
Expert C rated it as fulfilling the first and second criteria in most cases, but not fulfilling
the other two.

The Manual Assembly Assistance was described as being used to great effect by the
participants (even though one of the shown participants ignored the placement information
completely). Expert B identified constant blinking and inaccuracies of the marked
placement errors as incredibly distracting. When comparing it to the previous statements
of Expert A on the Safety Zone it would also classify as disrupting the workflow and
unnecessarily increasing mental load. Apart from that, all three experts identified it as
successfully supporting participants in their goals and even giving them feedback on their
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progress. It was therefore identified as the only SAR system successfully fulfilling the
four modified Cognitive Walkthrough Criteria.

As Expert C pointed out, even though the SAR systems are by no means designed
perfectly, most of the usability errors could simply have arisen from the lack of instruction
with the technology. However, since participants did use the Manual Assembly Assistance
to great success even without any instruction, it also stands to reason that the other
SAR systems simply did not provide their information clearly and usefully enough to the
participants.

As it is the case with the previous methods from this chapter, it is hard to make conclusive
claims with the data from the cognitive walkthrough alone. New issues and sources of
cognitive load could be discovered using this method, but this is not a given. The quality
of results depends heavily on the specialisation or interests of the expert in question.
To accurately gauge usability issues and evaluate the interaction success, the experts
require experience with UbiComp systems. To evaluate cognitive load, the experts
need deeper understanding of human perception and basic knowledge of Cognitive Load
Theory. In my case, I was lucky enough to have an expert working with cognitive load
with an understanding matching the newer strands of theory, but this is not a given.
Additionally, it is hard to recruit experts matching the description, especially when
considering the ambigous work on cognitive load of UbiComp experts covered in the
related work 2. Despite the partial successes I gained by using this method, I would
therefore not consider this adapted version of cognitive walkthrough a reliable method to
gauge cognitive load. To mitigate the mentioned issues, it might be sensible to instruct
the HCI experts with UbiComp system experience in Cognitive Load Theory to work
with a compatible vocabulary for the evaluation and better detect transgressions and
unnecessary interactivity (leading to extraneous load). However, it would heavily increase
the time required to conduct the method.

Additional problems arise due to the basically required post-hoc video reconstruction
of an interaction. It cannot recreate the perception of interacting with the system in
question in a real-life setting. While creating a test setup on the fly is trivial for traditional
human-computer interaction, it is the opposite for UbiComp systems. Having the space
and resources to create even an artificial test setup temporarily requires many resources.
Then, fitting experts willing to come to the location and users into the time frame where
the setup is available is anything, but simple. And it cannot be done remotely which will
drastically decrease the number of experts willing to participate.

3.9 Control Data
The data in this section was used to put all findings into perspective and include factors
otherwise not included in the study. There are multiple variables we wanted to control
for. First, we wanted to know, how participants perceived the individual SAR systems
and which functionality they attributed to them based on their interaction (see table 3.8).
This information was mainly elicited in the post trial interviews by asking participants
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Participant MAA CSZA EN
T01 Full Partial None
T02 Full Full Partial
T03 Full None Partial
T04 Full Full None
T05 Full None None
T06 Full Partial None
T07 Full Full Partial
T08 Partial Full Partial
T09 Full Full None
T10 Full None None
T11 Full Partial None
T12 Full Full Full
T13 Full Partial None
T14 Full Partial Full
T15 Full Partial None

Table 3.8: Recognition of Systems by Participants. Columns from left to right: Manual
Assembly Assistance, Collaborative Safety Zone Awareness and Ergonomic Notification.
There is a clear decline of recognition from left to right.

what the projections were doing and how. It was also supported by the thinking-aloud
data during the trial. As can be clearly seen, participants did not consciously perceive
the Ergonomic Notification. There was some understanding and perception on the
Collaborative Safety Zone Awareness, but only a third of participants recognised it
is a zone they should not enter because the robot was moving there. The Manual
Assembly Assistance was understood by all but one participant. This also explained,
why participants reported filling out the surveys with the Manual Assembly Assistance
in mind, since it was the only SAR they were confident in understanding correctly.

The total experiment time was collected with the aim of correlating it to other measures
if findings were difficult to explain using other data. Since both SAR systems of interest
even failed in being recognised and were not used by participants, correlation with their
success criteria was not deemed very useful. For the Manual Assembly Assistance, time
data with less noise and bias was chosen in evaluation.

Planning the experiment, a random choice of paths by participants was expected, if no
route was planned. But even though there was more reason to choose the right path
based on the location of parts communicated in the instructions, the left path was chosen
204 times, while the right path was chosen only 104 times. Therefore, the location of
the parts and the resulting slightly shorter route cannot have been the deciding factor
in route planning. Why exactly this happened is unclear, but the left path was a little
wider and was used to show participants the experiment area.
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Participant Total Experiment Time
T01 15:48
T02 14:15
T03 14:37
T04 16:14
T05 16:12
T06 19:04
T07 37:59
T08 11:50
T09 17:44
T10 15:10
T11 17:51
T12 14:48
T13 12:47
T14 20:37
T15 16:14

Table 3.9: Total Experiment Time per Participant. Participant T07 recounted all
placements at one point during the experiment and was very meticulous about placing
correctly in general, resulting in this outlier time.
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CHAPTER 4
Discussion

4.1 Cognitive Load - A Holistic View
As can be seen by the data reports and arguments of the previous chapter, it is hard
to make definitive claims on the cognitive load of learning the interaction using a single
method shown. Each method only alludes to parts of the whole interaction and is unable
to capture every strand. Using the behavioural data, it is possible to say, that the
Manual Assembly Assistance had a positive impact on efficiency and effectiveness and
the other SAR systems probably did not. As to how and why cannot be answered using
this method without testing multiple different scenarios and setups. Therefore, it is
impossible to make definitive claims about the cognitive load of learning each system.
But one could assume, that the cognitive load for the Manual Assembly Assistance was
not high enough to result in cognitive overload, since participants were able to use it
successfully.
Considering the control data, that most participants did not recognise the other SAR
systems, possible reasons can be argued for. The SUS data tells us that participants
report little trouble learning the interaction and most felt confident in their ability
with the Manual Assembly Assistance. With the minimal changes in time-per-run over
time (Fig. 3.5), the learning is very likely to have peaked very quickly. Both of this
suggests low cognitive load for learning how to interact with the Manual Assembly
Assistance, since lower cognitive load measures have until now resulted in easier learning
[Duran et al., 2022]. This is additionally supported by the NASA-TLX results being
on the low end of spectrum and also mainly yielding data for the Manual Assembly
Assistance. Looking at the learnability data and the technology in question, it also very
likely that not much learning had to be done in the first place which made cognitive load
effectively a non-factor for successful interaction with the Manual Assembly Assistance.
The secondary task of recounting how many runs the SAR systems were active, was
accomplished very well, which supports the view of overall low mental workload during
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the trial even though the experiment setup included elements artificially increasing the
mental workload. Mainly, these are the secondary task and the experiment structure.
This increase in load is indicated by interview responses of participants prioritising to
suggest improvements of the task structure and laboratory setup for a better workflow
and less opportunity for misunderstanding. Additionally adding to the baseline mental
workload, further sources could be identified in the cognitive walkthrough. Flashing
red lights which were often perceived as random, indirect location information with
geometric shapes, and the double attribution of a red zone used to communicate two
entirely different circumstances all contributed in increasing the overall mental workload
of perceiving in the lab environment.

Therefore, while the cognitive load was low overall, many unnecessary sources of extra-
neous cognitive load of learning the task could be identified. Without combining the
findings from the multiple methods used, neither argument could be made confidently.
Relying on only one of the measures to determine cognitive load for the interaction e.g.,
the NASA-TLX, would not allow any definitive claims at all.

Comparing this to the methods discussed in the related work 2, the same issues are
present. Authors are trying to find a single method to determine absolute cognitive
load in real time with the goal of adaptive automation. However, as argued for in the
related work, there is currently no means to meaningfully interpret their data. As could
be seen in the previous chapter 3, it would be the same, if I were to choose a single
method applied in the case study to determine cognitive load. It would be very difficult
to formulate convincing answers, especially when trying to use the same method for every
UbiComp system expecting similar and comparable results.

Maybe, the goal of adaptive automation is too far a stretch for the current knowledge of
mental workload, the state of the human mind and cognitive load as a measure. Instead,
I suggest the alternative goal of developing a toolkit of mixed methods to convincingly
determine cognitive load for flexible circumstances of technology adoption. This toolkit
of methods would then be used in user studies of new technologies like the one conducted
in the case study. It could however not be used for the goal of adaptive automation. But
in development and testing of this toolkit, a better understanding of Cognitive Load
Theory and its related measures could be gained to further refine the theory and in the
end it might be a necessary step on the way to adaptive automation.

While using something similar in this work, the methods tested do not fit the criteria of
this optimal toolkit I would be looking for. Rather, doing the case study and working
intricately with Cognitive Load Theory showed me that a similar but more refined and
tested approach might be well suited to determine cognitive load, especially for evaluating
usability and adoption of a new technology.

In general, after evaluating the data of the case study, I think that it is actually not as
important which methods one uses to estimate cognitive load, but that it is important to
look at it from many avenues. Otherwise, oversimplified and likely wrong assumptions
will be made which are not contradicted in the data. Especially, quantitative data which
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yields very simple and rather definitive claims can be combined with qualitative data
which includes a broader context at the cost of less definitive claims. Looking at the data
from the methods tested in this study and the methods reviewed in the related work
chapter 2, there is no obvious right path, but there are some wrong choices.
Starting with the ones I conducted, the adapted cognitive walkthrough is presumably
one of these wrong choices. If it were not for Expert A, it would have yielded little data
of value for cognitive load evaluations, since the experts require knowledge of Cognitive
Load Theory and UbiComp systems to conduct accurate analysis. Such experts seem
hard to come by, considering the questionable understanding of Cognitive Load Theory
evident of experts publishing in the field of Ubiquitous Computing covered in the related
work 2.2. In addition, the material need to be adapted and preparing so the method
can be conducted or the experts need to be brought to the study setup. Even then with
the experts recruited, it only yielded data which required further vantage points to be
meaningfully interpreted. Therefore, I would not recommend the use of this method to
estimate cognitive load.
While the thinking-aloud protocol does not add a lot of work to study preparation and
even though it was very valuable to control for the participants experiences and priorities,
I would not rely on its use as a cognitive load measure as proposed in the previous
chapter 3.7. It added nothing of value to determine cognitive load for the case study and
is undependable even as a control, since not every participant participates equally. But
since it does not cost much in terms of resources to conduct, it can still be included in a
study, just not as a reliable cognitive load measure.
Intrusive methods, like [Saha et al., 2018] using EEG, [Murata and Suzuki, 2015] measur-
ing blood flow by taping sensors to the neck, and [Gavas et al., 2017, Pillai et al., 2022]
using wired eye-trackers all have the same issue: they are very distracting or cumbersome
to apply. [Fridman et al., 2018] solved this issue by using a simple camera to extract
eye-features. Apart from possibly being distracting and demanding too much attention
from the participants, I have few objections about including objective measures into
the toolkit. However, relying on one objective measure to estimate cognitive load while
calling its results objective cognitive load will not yield interpretable, comparable and
meaningful findings with current methods.
On the use of secondary tasks, I am torn. They inherently add to the mental workload of
the participant introducing bias to all other measures. On the other hand, when applying
standardised methods like n-back, they can be somewhat controlled to quantify left-over
working memory by triggering and detecting cognitive overload for some but not all
participants and comparing load between participants. However, interpretation of this
data is not as clear cut, as one could ask for, since cognitive load is highly individualistic
requiring many participants to make quantitative evaluation reliable, which again would
increase resource requirements for conducting the study. After having applied my own
(compared to n-back, less demanding) secondary task, I would not use one again with
my current knowledge, if the goal is to estimate cognitive load for technology adoption
as part of a user study evaluating usability. I see their greatest application (especially
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n-back) in accurately determining working memory limits to work on refining Cognitive
Load Theory, as laid out in section 2.3.2.

All other methods used in the study were easy to conduct and did not add any complexity
during the interaction and therefore did not increase the baseline mental workload.
Combined, their results could be used to formulate a convincing interpretation of all
findings explaining the observed phenomena (as can be seen in the beginning of the
chapter). Therefore, I would deem them useful as possible additions of the aforementioned
toolkit.

Looking at the partial and limited insight any used method allows, it quickly becomes
clear why researchers are trying to find a one-size-fits-all solution to determine cognitive
load. But considering their questionable interpretability and the complexity of cognitive
load that can be seen even with the simple interactions of the case study, the methods
covered in chapter 2 do not try to do the complexity justice. It is understandable not
wanting to account for the intricacies of human perception and learning when evaluating
new technologies or learning material. But if the aim is to find holistic and conclusive
findings, chasing easy answers with cheaply available technology to gather bodily measures
without trying to account for influences will not yield the required understanding.

Now, I investigate the negative findings of the holistic view on the interaction. As
participants reported ill-timed flashing lights that they could not attribute meaning to, if
they even noticed them at all, eludes to a major usability issue: that the information is
presumably not presented in the position at the right time. As information positioned
visually in the environment is the only information available for users, this would make
successful and effective interaction functionally impossible. Since participants either did
not notice or attributed little meaning to the Safety Zone and the Ergonomic Notification,
the resulting mental workload was presumably not very high. But as Expert A pointed
out in the cognitive walkthrough, blinking red lights perceived as random or which could
not be attributed with much meaning are disruptive and need to be worked through by
working memory.

In the video recordings chosen for the cognitive walkthrough alone, participants forgot
what they were doing due to being alerted after entering the Safety Zone. But since
there was no real danger present, the participants were simply confused, their workflow
was interrupted, and they had to retrace their steps. The same confusion by unclear
information, while not as frequent (since only 6 participants noticed them at all), was
reported in the interviews about the Ergonomic Notification. Therefore, the other SAR
systems added mental workload while not providing much of value. The higher baseline
mental workload allows less resources to be used for cognitive load of actual learning
increasing the likelihood of cognitive overload, which would prevent the learning and
in turn the successful adoption. Considering element interactivity and the blinking
red lighting, the Collaborative Safety Zone Awareness and the Ergonomic Notification
did therefore not only provide nothing of value to the interaction but were an active
detriment to task completion, albeit only a minor one. While undoubtedly increasing
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task performance at the the workbench, all three SAR systems are neither optimised for
cognitive load nor usability in general.

4.2 Reflection on the study structure for a UbiComp
system

If the technology is useful easily and transparently helps the user in task completion, it
will be adopted even without any explanation, if the task is easy enough. With a task as
simple as the one of the case study, this could be seen with the adoption of the Manual
Assembly Assistance. If, however, the technology does not present useful information
on what users deem important at any given point during the interaction, users will not
use it. This is what happened with the Collaborative Safety Zone Awareness and the
Ergonomic Notification.

While confirming my suspicions about the SAR systems not being visible and placed
correctly, I would always explain the functionality of tested technology to participants for
future studies. While it might still be required to elicit the users perception of systems
and explanation does not need to be done at the beginning of the experiment, I would
measure usage success only after explaining how the technologies worked in the future.
A lot of the data was unusable due to me not explaining all systems before starting the
experiment, resulting in confusion and possibly influencing how valuable the other SAR
systems might have been to the participants. The bad visibility could have easily been
elicited by a blind trial run before starting the other runs.

However, especially when evaluating UbiComp systems, I would give participants the
informed option of not using the system to accomplish the task if possible. For UbiComp
systems aiming to streamline workflows rather than replacing existing workflows with
improved ones, it makes little sense to force participants to use the technology for user
testing. If participants opt not to use the technology in the user study, the technology
brings no apparent improvement to them. It is immediate and clear feedback on low
satisfaction and is a red flag that requires resolution in e.g., post-trial interviews.

As already mentioned when reporting the NASA-TLX data from the user study, when
researching UbiComp systems it easily can become unclear for which part of the system
quantitative data is gathered. In our case, this was only known because participants
told us that they were filling out the surveys with Manual Assembly Assistance in mind.
Because of UbiComp systems’ increasing subtlety and interweaving with the environment
it is hard to determine what gathered quantitative data is measuring. As mentioned in
the chapter on the usability of UbiComp systems 2.5, it is not trivial to which interaction
between environment, UbiComp system and user the gathered data has to be attributed
to. This is especially true without further data clarifying the participants’ perception
and experience of interaction.

While being worse for self-reporting data which is inherently dependant on the par-
ticipants’ experience, this problem also transfers to objective data for cognitive load
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measuring the participant or their behaviour. Cognitive load depends heavily on the
previous knowledge and how the presented information is already available as schemata
which in turn determines how many elements have to be kept in mind at one time to
successfully complete the interaction/task [Duran et al., 2022]. To know which elements
are interacting to demand the levels of working memory resources, it is therefore necessary
to know the participants’ perception and abstraction of the situation. Any data measuring
cognitive load, is therefore depending on the participants’ perception to be correctly
interpretable. Otherwise, it is not possible to know what the gathered data is referring
to due to the necessity of interweaving parts for accurate representation which cannot be
controlled for in an experiment.

That being the case, the only way quantitative data for UbiComp systems evaluation can
be meaningfully interpreted, is when the whole UbiComp system including its environment
is evaluated. And even then, only performance data can be confidently used as otherwise
it cannot be known if the whole system was perceived as such. Shallow quantitative data
on participants’ state of mind alone, while statistically analysable, will not yield the data
required to formulate adequate changes.

This is where qualitative methods for evaluation come into play. While not as easily
generalisable and assessable using mathematical methods, they allow for capturing the
levels of nuance required to identify issues. This again supports my call for developing a
method toolkit to evaluate cognitive load. I would go one step further and would advise
any evaluation of UbiComp systems to alleviate itself from questionable findings by
incorporating qualitative methods into their study design to allow for more nuanced ap-
proaches to interpret the context and findings. Maybe a similar call to build a comparable,
flexible method toolkit to evaluate UbiComp systems is appropriate as well. As already
mentioned in the chapter on usability for UbiComp systems 2.5, there is increasing work
with e.g., [Rocha et al., 2017], [Carvalho et al., 2018] and [Bezerra et al., 2014] trying to
establish new criteria which encompass these arising issues. The adaption of methods, as
done by [de Souza Filho et al., 2020], and development of new methods encompassing
these criteria could be the next step, to improve the evaluation of UbiComp systems. If
attention is put on replicability as well by streamlining the application of the proposed
methods, it might additionally aid in combating the replication crisis.

As argued before, little cognitive load data could be gathered about the Safety Zone and
the Ergonomic Notification, since there was little interaction with the systems. Cognitive
load starts playing a role for evaluation after the used and tested technology can be
used by representative participants to improve current workflows or to create new and
improved workflows. Only then it makes sense to optimise for an improved learning
(low cognitive load/mental workload) or less demanding continued use (low mental
workload). For traditional human-computer interaction, participants are practically
required to use the technology to fulfill their task. So despite being difficult to adopt and
use (high cognitive load/mental workload) and using it being tiresome or unnecessarily
confusing (low satisfaction, high mental workload), the usage of the new system might
still be evidently more performant than the earlier way of accomplishing the task (high
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effectiveness/efficiency).

For UbiComp systems mostly aiming for minimal workflow improvements which add up
over a longer period of time (small increases in effectiveness/efficiency, especially the
proposed policy compliance assisting SAR systems) and their improvement no longer
being immediate or clear, users will no longer abide tiresome usage and difficult adoption.
This in turn means that, when given the opportunity, potential users will opt not to
use it. And since most measures used to evaluate usability and cognitive load require
usage of the technology, it might be more sensible to apply cognitive load measures after
successful usage becomes evident.

For the case study conducted in this work, this means that a lot of cognitive load measures
could be gathered and evaluated for the Manual Assembly Assistance which, while not
evaluated formally, was already previously used successfully used by target users. For
the experimental SAR systems which were neither developed with target users nor their
workflows in mind and were not previously exposed to target users, not much data on
cognitive load could be gathered, especially using the quantitative measures deployed.
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CHAPTER 5
Conclusion

To summarise, in this thesis I give an overview of the current standings of cognitive load
estimation in the field of computer science, especially human-computer interaction. The
thesis starts with an examination of current methods mostly improving on objective
measures to determine cognitive load. They do this with the clearly stated goal of
advancing adaptive automation of interfaces, especially in UbiComp systems. I begin
by comparing them according to their self-reported findings: classification accuracy
of a reproduction of non-standardised and ill-controlled induced working memory use
which is called cognitive load. Within this framework of success, self-reporting measure
like [Chen et al., 2011], [Fridman et al., 2018] and [Yin et al., 2007] performed best by a
heavy margin. However, it is hardly possible to meaningfully compare their reported
percentages of “cognitive load level classification" due to methodological flaws. Afterwards,
I argue at length three major issues of this current way to determine “cognitive load".
According to newer strands of Cognitive Load Theory, cognitive load is the amount of
working memory used by a specific learner with their specific prior knowledge during
a given learning activity [Duran et al., 2022]. In the works determining new means to
measure “cognitive load" included in the corpus,

• there is no learning activity per se (instead there are only means to induce mental
workload),

• the prior knowledge and cognitive ability are hardly controlled for,

• and the means to induce mental workload are not guaranteed to induce similar levels
of working memory use for each individual, especially if neither prior knowledge
nor cognitive ability are determined.

• Finally, the results are called “cognitive load" while not being actively interpreted
based on their limited control for populations and there is no incorporation of
Cognitive Load Theory in placing the results.
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Afterwards, I go into detail about possible uses in HCI of the cognitive load defined
in the theory, which yet requires empirical solidification. I argue that adoption of a
new technology is little but a learning activity, since new interactions of the technology
have to be learned for successful and continued usage. Therefore, I suggest the usage of
Cognitive Load Theory as additions to usability evaluations instead of pursuing adaptive
automation given the current unproven stand of the theory and the methodological flaws
of current measures.
Then, I proceed to apply the knowledge of Cognitive Load Theory to compare different
methods to determine cognitive load to the ones covered in the corpus which I used in
a user study evaluating the usability of three Spatial Augmented Reality systems. The
results were pretty clear: any method alone could not be used to convincingly answer
the cognitive load of learning the interaction with the systems. Only by examining the
interaction with multiple cognitive load data sources and the control variables of post-trial
interviews and thinking-aloud data could convincing arguments be made that relied little
on speculation. The control variables and multiple data sources were especially necessary
due to the increased interaction complexity inherent to UbiComp systems introducing
interactions between human-environment and computer-environment.
Based on the strengths and flaws identified for each individual method, I now give
my recommendation for their future use to determine cognitive load in user studies of
UbiComp systems. The thinking-aloud protocol could not be used to determine cognitive
load in any meaningful way, since abrupt breaks in speaking could not really be quantified
and were very infrequent in the first place due to mixed participation and participants
not talking constantly. However, it was a very valuable and easy to apply control variable.
My adapted version of the cognitive walkthrough is unreliable requiring much preemptive
material adaption or organisation and very specific experts of UbiComp systems with
an accurate understanding of Cognitive Load Theory (which seem rare due to the work
in the field covered in the related work chapter 2). For these two reasons, I would not
recommend its use to determine cognitive load.
While its data was valuable, any secondary task increases the baseline mental workload
resulting in increased working memory use. It skews all other results to higher cognitive
load due to element interactivity while leaving less working memory for the learning to
happen. Therefore, I would no longer use it in the future in usability evaluation since
its data is not valuable enough to warrant the negative consequences in my opinion.
The mental workload data from the NASA-TLX, the learnability data from SUS and
completion time over time, and the behavioural data were all valuable in determining
cognitive load while being easy or necessary to apply in a usability evaluation in the first
place. Therefore, I can recommend their usage.
Reflecting on the method use, I called for the development of a method toolkit which
aims to determine cognitive load convincingly and flexibly depending on circumstances
while being transparent and easily replicable. Since it was not as important which
method specifically was used, but rather that multiple data sources were included in the
analysis, there is a lot of room for experimentation and potential development of new
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methods. Even the methods covered in the related work can easily and successfully be
deployed if they are not used to claim the one and true objective cognitive load without
reflection and active analysis. However, I would refrain from using methods which
require cumbersome and distracting sensors to gather their data and rather use methods
like [Fridman et al., 2018] and [Yin et al., 2007] which do not even require wearables for
participants.

Finally, while not in my field of expertise, enabling the further development and post-
positivist interpretation of the methods covered in the corpus would require determining
base-line levels of minimal and maximal working memory use as well as means to
confidently achieve them. Future work could therefore entail the furthering of either
those goals.
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NASA-TLX

Bitte beantworten Sie die folgenden Fragen indem Sie die passende vertikale Linie auf der

jeweiligen Skala markieren.

Mentale Anforderung Wie geistig anspruchsvoll war die Aufgabe?

Sehr wenig Sehr stark

Körperliche Anforderung Wie körperlich anspruchsvoll war die Aufgabe?

Sehr wenig Sehr stark

Zeitliche Anforderung Wie eilig oder gehetzt war das Tempo der Aufgabe?

Sehr wenig Sehr stark

Leistung Wie erfolgreich waren Sie darin, das zu erfüllen, was von

Ihnen verlangt wurde?

Sehr wenig Sehr stark 

Aufwand Wie hart mussten Sie arbeiten, um Ihr Leistungsniveau

zu erreichen?

Sehr wenig Sehr stark

Frustration Wie unsicher, entmutigt, gereizt, gestresst
und verärgert waren Sie?

Sehr wenig Sehr stark 
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Fragebogen zur System-Gebrauchstauglichkeit 
1. Ich denke, dass ich das System gerne häufig benutzen würde. 

Stimme  
überhaupt nicht zu 

1 

 
 

2 

 
 

3 

 
 

4 

Stimme 
voll zu  

5 

     

2. Ich fand das System unnötig komplex. 
Stimme  

überhaupt nicht zu 
1 

 
 

2 

 
 

3 

 
 

4 

Stimme 
voll zu  

5 

     

3. Ich fand das System einfach zu benutzen. 
Stimme  

überhaupt nicht zu 
1 

 
 

2 

 
 

3 

 
 

4 

Stimme 
voll zu  

5 

     

4. Ich glaube, ich würde die Hilfe einer technisch versierten Person benötigen, um das System benutzen zu 
können. 

Stimme  
überhaupt nicht zu 

1 

 
 

2 

 
 

3 

 
 

4 

Stimme 
voll zu  

5 

     

5. Ich fand, die verschiedenen Funktionen in diesem System waren gut integriert. 
Stimme  

überhaupt nicht zu 
1 

 
 

2 

 
 

3 

 
 

4 

Stimme 
voll zu  

5 

     

6. Ich denke, das System enthielt zu viele Inkonsistenzen. 
Stimme  

überhaupt nicht zu 
1 

 
 

2 

 
 

3 

 
 

4 

Stimme 
voll zu  

5 

     

7. Ich kann mir vorstellen, dass die meisten Menschen den Umgang mit diesem System sehr schnell lernen. 
Stimme  

überhaupt nicht zu 
1 

 
 

2 

 
 

3 

 
 

4 

Stimme 
voll zu  

5 

     

8. Ich fand das System sehr umständlich zu nutzen. 
Stimme  

überhaupt nicht zu 
1 

 
 

2 

 
 

3 

 
 

4 

Stimme 
voll zu  

5 

     

9. Ich fühlte mich bei der Benutzung des Systems sehr sicher. 
Stimme  

überhaupt nicht zu 
1 

 
 

2 

 
 

3 

 
 

4 

Stimme 
voll zu  

5 

     

10. Ich musste eine Menge lernen, bevor ich anfangen konnte das System zu verwenden. 
Stimme  

überhaupt nicht zu 
1 

 
 

2 

 
 

3 

 
 

4 

Stimme 
voll zu  

5 
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