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Abstract—Set visualization facilitates the exploration and analysis of set-type
data. However, how sets should be visualized when the data is uncertain is
still an open research challenge. To address the problem of depicting uncertainty
in set visualization, we ask (i) which aspects of set type data can be affected by
uncertainty and (ii) which characteristics of uncertainty influence the visualization
design. We answer these research questions by first describing a conceptual
framework that brings together (i) the information that is primarily relevant
in sets (i.e., set membership, set attributes, and element attributes) and (ii)
different plausible categories of (un)certainty (i.e., certainty, undefined uncertainty
as a binary fact, and defined uncertainty as quantifiable measure). Following the
structure of our framework, we systematically discuss basic visualization examples
of integrating uncertainty in set visualizations. We draw on existing knowledge
about general uncertainty visualization and previous evidence of its effectiveness.

A nalysing set data encompasses consideration
of the sets themselves, the elements within
the sets, and attributes of both the sets and

the elements. Take for example academic courses
at a university (e.g., Biology, Mathematics) as sets,
and the students enrolling in those courses as the
set elements. Set visualizations aim to express such
set-type data visually to support analysis and better
understanding. Relevant set analytical questions in-
volve set memberships (i.e., who is enrolled in which
course), set cardinality (i.e., how many students are
in a course), or set intersections (i.e., which course
combinations are favored by students). Such kinds of
set analytical questions can be answered, for example,
with the help of Euler diagrams, Venn diagrams, and
bipartite node-link representations. While set visualiza-
tions themselves are an active research frontier [1],
there are far fewer research activities focusing on the
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implications of uncertainty for set visualization [2]. For
our courses-and-students example, we might not know
exactly how many students are enrolled in a course or
how old they are.

In fact, it is challenging to design visual representa-
tions of sets where uncertainty is involved (see Table 1
A.). This is because both the set data themselves
and also the information about their uncertainty need
to be communicated to a reader. The interpretation
of this uncertainty has a major impact on decisions
that are made based on the data, not only for simple
applications such as course planning, but also for
more complex scenarios like comparison of ensemble
forecasting models or gene-to-phenotype mapping.

So far, the literature offers little insight into the
implications of uncertainty for set visualization [2]. In
particular, a distinction of classes of uncertainty in
the context of set-type data is missing. Only if we
know, however, what types of uncertainty are relevant
for set-type data can we design expressive visual
representations. Therefore, the main objective of this
paper is to systematize uncertainty considerations for
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set visualization. To this end, we devise a framework
that brings together (a) different facets of set data that
might be affected by uncertainty, and (b) different types
of uncertainty that might influence the visualization
design. As the primarily relevant data facets in sets,
our framework lists: set membership, set attributes,
and element attributes. In terms of different types
of (un)certainty, we distinguish: certainty, undefined
uncertainty as a binary fact, and defined uncertainty
as quantifiable measure.

From our framework, we derive interesting com-
binations of data facets and types of uncertainty
that would benefit from future dedicated visualiza-
tion strategies. For each combination, we sketch ini-
tial thoughts on possibly useful visualization designs.
While some cases are rather straightforward, others
seem to be more intricate to deal with. In any case,
we make use of previous empirical evidence on un-
certainty visualization (see Table 1 B.) to inform our
example designs.

Before developing our framework, we will next in-
troduce basic set and uncertainty terminology.

Sets & Uncertainty
Set theory has been investigated in mathematical logic
in the nineteenth century by Cantor [3] to describe
collections of objects, called sets, and their elements.
Sets do not impose any ordering on their elements.
Sets may overlap, making well-defined relations be-
tween sets possible, including containment, exclusion,
and intersection. Moreover, both sets and elements
may have various attributes associated with them.
Accordingly, the primarily relevant data characteris-
tics (D) for set-type data are: (i) set membership, (ii)
set attributes, and (iii) element attributes.

Uncertainty (U) relates to information that is un-
known, vague, or of varying accuracy. So, a good
starting point is to think about what is known and what
is unknown. In a perfect world, we know the data and
assume they are accurate. There is no uncertainty,
which we denote as U = 0. For set-type data this
means that we know for certain the sets and the
elements, their memberships, and their attributes.

However, in the real world, uncertainty is commonly
encountered in everyday life [4]. It is inherent to any
piece of information and thus also present in any
dataset, data model, or visualization and has been
studied in many scientific disciplines and academic
fields [5]. Given the universal relevance of uncertainty,
it is not surprising to find various notations and cat-
egorizations in different fields. Terms like aleatoric
uncertainty or stochastic uncertainty are used in me-

chanical engineering. But also more common terms
such as incertitude, probability, or ignorance appear in
the context of uncertainty (see Table 1 A.).

The common theme behind the heterogeneous
landscape of terminology is that uncertainty is present
in all parts of the data-driven scientific research pro-
cess [6], starting with measurement and data capture,
data transformations and processing, data modeling
and visualization, and finally human inference and
decision making with visual data displays [7]. Uncer-
tainty in data sources can be of locational, tempo-
ral, and/or semantic nature [6]. Uncertainty issues in
data capturing can stem from, e.g., data provenance,
acquisition methods, and measurement inaccuracies.
Uncertainty also arises and gets further propagated
in data transformations and processing, including data
modeling. Uncertainty can also occur in data por-
trayal methods, and lead to perceptual issues of the
viewer of uncertainty-depicting visualizations. Finally,
uncertainty might arise in human interpretations and
decision making. Hence, we argue that uncertainty
should always be also considered in sets and their
visualization.

An important question to ask is how much do we
actually know about the uncertainty in our data? Here,
we distinguish two scenarios. One scenario is that we
know that there is uncertainty, but we cannot tell accu-
rately where it is, what it is, or how much of it exists.
In other words, we know for a fact that uncertainty
is present, but no further details. We denote this as
U > 0. In the second scenario, we also know that
uncertainty exists, and we know with certainty where,
what, and how much of it is in our data. For the sake
of simplicity, we denote this as U = p. The letter p is a
strong simplification of what could be known about the
uncertainty and p can take different forms. When set
membership is certain, one can say either a ∈ X or
a /∈ X . Under uncertainty, p might denote a probability
of a being a member of X , P(a, X ) = p, which is a
notation known from fuzzy sets. We could also say
that p denotes a more complex probability distribution,
e.g., p = N (µ, σ2), based on which set membership is
decided. In relation to the data attributes of elements or
sets, we may understand p as the probability value or
probability distribution of an attribute taking a particular
data value. Additionally, it is common for uncertain
attribute values to specify them via a range of possible
values, in which case p = [l , u] is some interval with a
lower and upper bound of l and u.

Overall, the characteristics of set data D and the
types of uncertainty U form the basis for a conceptual
framework of uncertainty in set visualization, which will
be described next.
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TABLE 1. Uncertainty visualization literature overview.

A. General Uncertainty Visualization

N. Gershon, “Visualization of an imperfect world,” IEEE Computer Graphics and Applications, vol. 18, no. 4, 1998.
DOI: 10.1109/38.689662
H. Griethe and H. Schumann, “The visualization of uncertain data: Methods and problems,” in Proceedings of
Simulation and Visualization (SimVis), SCS Publishing House, 2006
K. Brodlie et al., “A review of uncertainty in data visualization,” in Expanding the Frontiers of Visual Analytics and
Visualization, Springer, 2012. DOI: 10.1007/978-1-4471-2804-5_6
G. Bonneau et al., “Overview and state-of-the-art of uncertainty visualization,” in Scientific Visualization, Springer,
2014. DOI: 10.1007/978-1-4471-6497-5_1
D. Sacha et al., “The role of uncertainty, awareness, and trust in visual analytics,” IEEE Trans. Vis. Comput. Graph.,
vol. 22, no. 1, 2016. DOI: 10.1109/TVCG.2015.2467591
J. S. Mason et al., “Special issue introduction: Approaching spatial uncertainty visualization to support reasoning
and decision making,” Spatial Cognition & Computation, vol. 16, no. 2, 2016. DOI: 10.1080/13875868.2016.1138117
S. Dübel et al., “Visualizing 3D Terrain, Geo-Spatial Data, and Uncertainty,” Informatics, vol. 4, no. 1, 2017. DOI:
10.3390/informatics4010006
A. Jena et al., “Uncertainty visualisation: An interactive visual survey,” in Pacific Visualization Symposium, IEEE,
2020. DOI: 10.1109/PacificVis48177.2020.1014

B. Empirical Studies on Uncertainty Visualization

A. M. MacEachren et al., “Visualizing geospatial information uncertainty: What we know and what we need to know,”
Cartography and Geographic Information Science, vol. 32, no. 3, 2005. DOI: 10.1559/1523040054738936
A. M. MacEachren et al., “Visual semiotics & uncertainty visualization: An empirical study,” IEEE Trans. Vis. Comput.
Graph., vol. 18, no. 12, 2012. DOI: 10.1109/TVCG.2012.279
C. Kinkeldey et al., “How to assess visual communication of uncertainty? A systematic review of geospatial
uncertainty visualisation user studies,” Carto. J., vol. 51, no. 4, 2014. DOI: 10.1179/1743277414Y.0000000099
H. Guo et al., “Representing uncertainty in graph edges: An evaluation of paired visual variables,” IEEE Trans. Vis.
Comput. Graph., vol. 21, no. 10, 2015. DOI: 10.1109/TVCG.2015.2424872
J. Hullman et al., “Hypothetical outcome plots outperform error bars and violin plots for inferences about reliability
of variable ordering,” PloS one, vol. 10, no. 11, 2015. DOI: 10.1371/journal.pone.0142444
G. McKenzie et al., “Assessing the effectiveness of different visualizations for judgments of positional uncertainty,”
Intl. J. Geograph. Inform. Sci., vol. 30, no. 2, 2016. DOI: 10.1080/13658816.2015.1082566
T. Gschwandtner et al., “Visual encodings of temporal uncertainty: A comparative user study,” IEEE Trans. Vis.
Comput. Graph., vol. 22, no. 1, 2016. DOI: 10.1109/TVCG.2015.2467752
M. Kay et al., “When(Ish) is My Bus?: User-centered Visualizations of Uncertainty in Everyday, Mobile Predictive
Systems,” in Proceedings of the CHI, ACM, 2016. DOI: 10.1145/2858036.2858558
M. Korporaal et al., “Effects of uncertainty visualization on map-based decision making under time pressure,”
Frontiers in Computer Science, vol. 2, 2020. DOI: 10.3389/fcomp.2020.00032
A. C. Robinson, “Representing the presence of absence in cartography,” Annals of the American Association of
Geographers, vol. 109, no. 1, 2019. DOI: 10.1080/24694452.2018.1473754
C. Bors et al., “Exploring Time Series Segmentations Using Uncertainty and Focus+Context Techniques,” in EuroVis
Short Paper Proceedings, Eurographics Association, 2020. DOI: 10.2312/evs.20201040
I. Kübler et al., “Against all odds: Multicriteria decision making with hazard prediction maps depicting uncertainty,”
Annals of the American Association of Geographers, vol. 110, no. 3, 2020. DOI: 10.1080/24694452.2019.1644992

C. Uncertainty in Set Visualization

C. Vehlow et al., “Visualizing fuzzy overlapping communities in networks,” IEEE Trans. Vis. Comput. Graph., vol. 19,
no. 12, 2013. DOI: 10.1109/TVCG.2013.232
L. Zhu et al., “Visualizing fuzzy sets using opacity-varying freeform diagrams,” Inf. Vis., vol. 17, no. 2, 2018. DOI:
10.1177/1473871617698517
J. Görtler et al., “Bubble treemaps for uncertainty visualization,” IEEE Transactions on Visualization and Computer
Graphics, vol. 24, no. 1, 2018. DOI: 10.1109/TVCG.2017.2743959
M. Sondag et al., “Uncertainty treemaps,” in Pacific Visualization Symposium, IEEE, 2020. DOI: 10 . 1109 /
PacificVis48177.2020.7614
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TABLE 2. Framework of uncertainty in set visualization with relevant set characteristics and categories of (un)certainty. cb

Data characteristics (D)

Ty
p

e
s

 o
f 

u
n

c
e

rt
a

in
ty

 (
U

)

Set membership Set attributes Element attributes

Certainty
No uncertainty in the data

U = 0

Undefined uncertainty
Uncertainty in the data,

but it is undefined
U > 0

Defined uncertainty
Uncertainty in the data,

and it is well-defined
U = p

II. Set visualization

III. Uncertainty 
visualization

I. Multivariate 
visualization

Focus of this work:
Uncertainty in set 

visualization

A Framework for Uncertainty in Set
Visualization

In terms of data characteristics D, the framework
distinguishes: set membership, set attributes, and
element attributes. Related to uncertainty U, we use
the different plausible types of (un)certainty: certainty
(U = 0), undefined uncertainty as a binary fact (U >

0), and defined uncertainty as a quantifiable measure
(U = p). The framework is depicted in Table 2, whose
columns and rows respectively represent D and U. The
cells of the table correspond to different combinations
of data characteristic and type of uncertainty for which
adequate visualization methods are needed.

The most interesting cells in Table 2 are marked in
orange, and will be described later. For the green cells
in the table, established visualization methods already
exist. Our framework identifies three relevant areas (I.-
III.) in this context. First, when the data are certain
(U = 0), multivariate visualization methods can be used
to depict element attributes. Second, for certain set
memberships and set attributes, one can use existing
set visualization methods. Third, when the attributes
of individual data elements are uncertain (U > 0 or
U = p), uncertainty visualization gets involved.

For multivariate visualization (I.), we refer to the ex-
isting visualization literature [8], [9]. For the green cells
set visualization (II.) and uncertainty visualization (III.),
we provide further details below because they directly
inform the design of uncertain set visualizations.

Set Visualization
Alsallakh et al. [1] provide a comprehensive overview
of set visualization methods. They identified six cat-
egories of techniques: Euler-based diagrams, over-
lays, node-link diagrams, matrix-based techniques,

aggregation-based techniques, and scatter plots (see
Figure 1 for examples). Specific techniques in these
categories such as, for example, BubbleSets, KelpFu-
sion, OnSet, and Parallel Sets have different strengths
and weaknesses and are suited for different set-
analytic tasks (e.g., find, count, or filter elements; de-
termine set cardinality, intersections, or unions; under-
stand value distribution in the intersection of groups of
sets). For a detailed discussion of individual techniques
and their effectiveness for certain tasks, we refer to the
original survey article [1].
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FIGURE 1. Examples of common set visualizations: (a) Eu-
ler/Venn diagrams, (b) bipartite node-link diagrams, and (c)
matrices, all representing the same data. cb

Uncertainty Visualization
Designing visual representations of uncertain data is
challenging, mainly due to the fact that not only the
data D themselves need to be encoded visually, but
also the information about their uncertainty U needs to
be communicated. Above all, visualization users must
be able to extract all the encoded information (both the
data and their uncertainty) from the visualization, which
can be formulated abstractly as a pipeline, inspired by
algebraic visualization design [10]:

(D, U) m−−−−→ V i−−−→ (D′, U ′).
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The visualization designer defines a mapping m of
data D and uncertainty U to create a visual repre-
sentation V . Through an interpretation i of the visual
representation V , human observers extract their own
versions of data D′ and uncertainty information U ′.
The scientific challenge is to understand the cognitive
process of i and to devise mappings m so that ideally
D = D′ and U = U ′ for all human observers. The
congruence of D and D′, as well as U and U ′, can
serve as a guiding principle for the visualization of
uncertain data.

There are many ways to depict data uncertainty
(see Table 1 A.). Much empirically-grounded research
on the representation of uncertainty exists, primarily in
geospatial visualization, but also for graph visualiza-
tion, statistical visualization, and temporal visualization
(see Table 1 B.).

The empirically validated uncertainty visualiza-
tion framework proposed by MacEachren and col-
leagues [11] is an attractive candidate to directly trans-
fer more broadly to the depiction of uncertainty in
general and in sets specifically. MacEachren et al.
first empirically assessed the intuitiveness of a visual
variable (e.g., location of symbol, size, color value,
color hue, color saturation, texture, orientation) to judge
the suitability of abstract or iconic point symbols for de-
picting data variation in a given category of uncertainty.
Second, they also measured the relative performance
of the most intuitive point symbol depiction of uncer-
tainty with a focus on symbol effectiveness for a typical
use case: assessing and comparing the aggregate
uncertainty in two regions of a graphic display. Their
stimuli are generic enough so that findings can be
transferred to many data visualization types and use
cases, including the visualization of sets.

Based on their studies, MacEachren et al. derived
generalizable design guidelines. For example, the vi-
sual variables fuzziness and relative location and dis-
tance (from a known location in the center of a cross-
hairs) work particularly well for the depiction of uncer-
tainty in point symbols. Color value and arrangement
are also rated highly. Both size and transparency are
potentially usable. On the other hand, color saturation
of a point symbol, often cited as intuitively related
to uncertainty, was ranked quite low. Later we apply
the knowledge and guidelines from MacEachren et
al.’s studies to inform the design of set visualizations
including uncertainty.

Now that we have dealt with the ’easier’ green
boxes from Table 2, we will move on to discuss the
’tougher’ orange box, the visualization of uncertain set
characteristics.

Uncertainty in Set Visualization
In comparison to general uncertainty visualization, the
representation of uncertain set data has received less
attention (see Table 1 C.). A few attempts exist for the
visualization of fuzzy sets by Vehlow et al. and Zhu et
al., where set membership has a defined uncertainty.
For set attributes, we are aware of only two prior
works, a treemap representation for set size in set
hierarchies with defined uncertainty by Sondag et al.
and a circle packing visualization by Görtler et al.
Visual representations of undefined uncertainty within
sets have not been developed until now.

Given the scarcity of visualization methods for un-
certain information in sets, we next present examples
of visualization designs for each relevant orange cell
from our framework from Table 2.

Design Examples for Uncertainty in
Set Visualization

It is sensible to begin the process of depicting uncer-
tainty by constructing a visualization of the data that
is ’certain’, and then subsequently adapting or aug-
menting it as necessary to depict the uncertainty. Ger-
shon [12] calls this intrinsic representation of uncer-
tainty as opposed to extrinsic representations where
uncertainty information is shown in separate auxiliary
displays, like a supplementary diagram or text. The
decision on whether to use intrinsic or extrinsic repre-
sentations may depend on the complexity of both the
data and the uncertainty.

Uncertain Set Membership
Communicating set membership is essential for set
visualization [1]. In the following, we use the dataset
with students and courses from Figure 2 for illustration.
Following Cantor’s [3] notation, elements are denoted
by small letters, whereas sets are denoted with capital
letters. For elements a (Alex), b (Ben), c (Chris), and d
(Dana) membership is certain, and we also know that
set B (Biology) is empty. We are uncertain, however,
about the membership of elements e (Eva) and f
(Frank) as well as of set M (Math).

Visualizing certain set membership In general, cer-
tain set membership (U = 0) can be represented in
two different ways: implicitly or explicitly. Implicit rep-
resentations do not use a dedicated graphical mark to
visualize set membership, but rather some relation be-
tween existing marks. A common implicit example was
already shown in Figure 1 (a) where sets are visualized
as ellipses and elements of sets are visualized as
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Elements Sets Membership
ID Name ID Course Element Set Uncertainty
a Alex B Biology null B U=0
b Ben F French a F U=0
c Chris H History b F U=0
d Dana M Math b H U=0
e Eva c H U=0
f Frank d null U=0

e undef U>0 / U=p
f undef U>0 / U=p
undef M U>0 / U=p

FIGURE 2. Example dataset with certain and uncertain set
memberships. cb

dots within the ellipses. In this case, set membership
is implicitly encoded through inclusion of the dots in
ellipses. In addition to inclusion, also adjacency and
overlap are possible implicit representations [13].

In contrast to implicit representations, explicit rep-
resentations have dedicated graphical marks to rep-
resent set memberships (in addition to marks rep-
resenting sets and elements). Examples include bi-
partite node-link diagrams and matrices as shown in
Figures 1 (b) and (c). In node-link diagrams, sets and
their elements are both depicted as dots, and their
set membership is visualized by explicitly drawing links
between set dots and their element dots. For matrices,
sets and their elements are assigned to matrix columns
and matrix rows, respectively. Set membership is ex-
plicitly represented by the matrix cells, whose content
indicates which and where elements are members of
a set, for example, by a certain fill color or symbol.

Visualizing uncertain set membership When uncer-
tainty needs to be considered, it is necessary to vary
the representation of set membership in order to com-
municate either the fact that undefined uncertainty is
present (U > 0) or the exact information we may have
about the defined uncertainty (U = p). Varying an im-
plicit representation of set membership (i.e., inclusion,
adjacency, or overlap of graphical elements) is difficult.
Where in Figure 1 (a) should we place the dots for
the uncertain elements e and f of our data and how
should we draw the ellipse for set M? The problem
is that graphical marks may or may not include, be
adjacent, or overlap other marks, but there are no other
states that could be used to indicate uncertainty. So,
for implicit representations, we would first need to add
further graphical marks before uncertainty could be
encoded. In contrast, explicit representations already
have dedicated marks for set membership, which offer
several options for perceivable variation to visualize the

uncertainty of set memberships following the guide-
lines offered by MacEachren et al. [11].

Next, we sketch two example designs for the case
of explicit representations: (i) bipartite node-link dia-
grams and (ii) matrices. The uncertain set member-
ships (elements e and f and set M) of the data from
Figure 2 will be used for illustration.

i. Bipartite node-link diagrams In bipartite node-
link diagrams, we may vary the visual properties of
links to communicate uncertainty. Figure 3 (a-c) shows
certain set memberships as bold dark links. The figure
further shows three different variants of encoding un-
certainty. The fact that uncertainty is present (U > 0)
can be visualized by varying line width and color value
for uncertain memberships as in Figure 3(a). This
makes certain memberships (bold dark lines) easily
distinguishable from uncertain memberships (thin gray
lines). Note, however, that elements with uncertain
membership must be linked to all possible sets, and
vice versa for uncertain sets. This may lead to visual
clutter when many membership links are uncertain.

A design goal could thus be to reduce link clutter.
Therefore, the variant in Figure 3 (b) replaces the full-
length links for uncertain memberships with small link
fans, which are graphically less demanding. This way,
clutter can be reduced, but readers need to mentally
connect the elements to all possible sets.

Finally, for the variant in Figure 3 (c), we assume
that we know exact probability values for possible set
memberships (U = p). This allows us to maintain the
explicit connection of elements and sets, and also to
encode the different probability values per membership
by varying lightness and width of lines. Thinner and
lighter lines indicate lower probability values.

ii. Matrices For matrices (see Figures 3 (d-f)), one
can follow a similar strategy of varying the explicit
representation of set membership. While we changed
the graphical properties of 1D lines in the case of
bipartite node-link diagrams, we now adapt the 2D
cells of a matrix. If only the presence of uncertainty
is known (U > 0), then we can differentiate certain
and uncertain set memberships by varying the fill
color of matrix cells as in Figure 3 (d). However, this
solution might again draw too much attention to the
uncertain information, simply because many cells need
to be marked. To better balance certain and uncertain
information, one can reduce the size of the cell marks
as indicated in Figure 3 (e).

Continuing on this line of thought, exact quantitative
information about the uncertainty (U = p) can be
encoded by varying size and color of matrix cells
together as indicated in Figure 3 (f). These and similar
encodings in matrix cells have already proven effec-
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FIGURE 3. Variants of visualizing uncertain set membership in bipartite node-link diagrams and matrix representations. cb

tive for visualizing multivariate graphs, in particular for
showing the weight of edges [14].

Overall, our examples show that explicit represen-
tations of set membership can be successfully adapted
to communicate different types of (un)certainty. How-
ever, the visual saliency of the uncertain information
and the certain information need to be cleverly bal-
anced depending on the communicative goal of the
visualization. While set membership is just a single
piece of information that may be uncertain, the de-
sign of visualizations becomes more complicated when
multiple uncertain set attributes are involved.

Uncertain Set Attributes
We now assume that the relationship between the sets
and the elements is given, and we are interested in
visualizing an overall aggregated property of the sets.
We are not interested in representing the elements
themselves (indeed, there may be too many to rep-
resent explicitly).

While set attributes are a separate column in our
framework in Table 2, they are related to the other two
columns of set membership and element attributes.
Set membership directly determines the set attribute
of set size, and the values of element attributes may
be the basis for derived set attributes. For the case
that set size is certain (U = 0), there are known
visualizations [1], and uncertain set size (U > 0, U = p)
relates to uncertainty in set membership, for which
designs were discussed in the previous section. This
section, therefore, focuses on the more general case
of visualizing set attributes derived from elements.

We use the following scenario for illustration: There
are students (elements) who can enroll in various
courses (sets), and among other information we know
the students’ residential status (domestic or interna-
tional) and their age. The two derived set attributes
that we are interested in are (i) the proportion of
international students in a course, the ’international
residential ratio’, called IRR, and (ii) the average age
of the students, called AA. The IRR and AA can be de-

rived for each course individually and also for possible
subsets (i.e., unions, intersections, differences). In the
following, we present example visualizations for IRR
and AA for the three types of (un)certainty identified in
our framework. For each type, we first indicate the raw
data with attribute values for individual elements, and
then the actual visual representation of the derived set
attribute values. Again, our examples are informed by
published guidelines for uncertainty visualization [11].

Visualizing certain set attributes We start with the
case U = 0. The residential status and the ages
of the students are the element attributes, and their
enrollment in different courses is set membership. In
Figure 4 (top, left), the first three circles indicate the
raw data as filled (domestic) and empty (international)
dots. The three circles below are colored in shades
of blue to represent the aggregated IRR values for
the sets and their intersections. Following the same
pattern, the individual ages of students are given in
Figure 4 (top, right) and the corresponding aggregated
AA values are visualized using shades of green.

It is important to note that even representing set
attributes without uncertainty (U = 0) using a simple
visual variable like color value has its challenges, since
we cannot easily represent the aggregated value of the
whole sets as well as that of the subsets created by
the relationships between them. Hence, our examples
represent aggregated information for the subsets; addi-
tional visual variables or supplementary visualizations
would be required if the aggregates of the entire sets
need to be communicated as well.

Visualizing set attributes with undefined uncertainty
In the case of undefined uncertainty (U > 0), although
we have a residential status and an age associated
with each student, we know that some of this informa-
tion is incorrect. Because we do not know for which
students this might be the case, we have to assume
there is uncertainty throughout. Figure 4 (middle row)
shows how such general uncertainty can be added to

February 2023 7

This article has been accepted for publication in IEEE Computer Graphics and Applications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MCG.2023.3300441

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on September 10,2023 at 18:34:51 UTC from IEEE Xplore.  Restrictions apply. 



DEPARTMENT HEAD

21
18

42
30

20
19

20

22

24

20

38

30
40

19
20

19

< 20

20–24

25–29

30–34

>34

domestic

intl.

  0–24%

25–49%

50–74%

75–100%

33
age
known

IRR U=0 AA U=020%
50%

33%
0%

50% 26.2
19.5

22
34

24.5

21
18

42
30

20
19

20

22

24

20

38

30
40

19
20

19

< 20

20–24

25–29

30–34

>34

uncertain

uncert. dom.

uncert. intl.

  0–24%

25–49%

50–74%

75–100%

uncertain

33
age
uncertain

IRR U>0 AA U>020%
50%

33%
0%

50% 26.2
19.5

22
34

24.5

domestic

intl.
uncert. dom.

uncert. intl.
missing

  0–24%

25–49%

50–74%

75–100%

medium
certainty
0.66–0.34

high
certainty
1–0.67

low
certainty
0.33–0

medium
certainty
0.66–0.34

high
certainty
1–0.67

low
certainty
0.33–0

18
42

30

19

20

22

24

38

30
40

20

< 20

20–24

25–29

30–34

>34

33
age
known

33
age
uncertain

missing

25%
50%

0%
0%

25% 30
19.5

23
34

30

0.4
0.5

0.33
1

0.5 0.4
1

0.33
0.5

0.25

IRR U=p AA U=p

FIGURE 4. Visualizing set attributes IRR (left) and AA (right) when U = 0 (top), U > 0 (middle), and U = p (bottom). cb

8 February 2023

This article has been accepted for publication in IEEE Computer Graphics and Applications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MCG.2023.3300441

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on September 10,2023 at 18:34:51 UTC from IEEE Xplore.  Restrictions apply. 



DEPARTMENT HEAD

the visualization using texture, more precisely, a hash
pattern overlaid on the colored set representations.
However, a global overlay like this may interfere with
the perception of colors. As an alternative, such an
overall uncertainty could be noted as a general dis-
claimer statement in the caption or the text (rather than
being explicitly added to the visualization by the use of
additional visual variables).

Visualizing set attributes with defined uncertainty In
the case of defined uncertainty (U = p), we know which
courses each student is enrolled in, and we know the
residential status of some students. The uncertainty
lies in the fact that there are some students for whom
we do not know their residential status or age (missing
values), and/or there are some students for which
we know that the information given may be incorrect
(uncertain values).

In this case, the visualization designer has to make
choices relating to how both the aggregated value and
its (un)certainty are calculated. The calculation of the
aggregated value can:

1) ignore the elements with missing values as well
as those with uncertain value, or

2) ignore the elements with missing values, and use
the given values for the uncertain elements.

The certainty can be calculated as:

3) the proportion of elements for which the value is
certainly known, in relation to the total number of
elements in the (sub)set; or

4) the proportion of elements for which the value is
certainly known, in relation to the total number of
elements for which values have been given (i.e.
ignoring the elements with missing values).

In the examples in Figure 4 (bottom), we visualize
IRR (left) and AA (right) using options 2 and 3. That is,
missing values are ignored when computing the aggre-
gated IRR or AA value, but are taken into account when
computing the certainty of the aggregated value. Note
that the visualization in the bottom row uses the outline
dash pattern to indicate certainty (not uncertainty).

Possible use of other visual variables In the examples
above, we chose to use variations in color value,
line dashes, and texture to represent aggregated data
values and uncertainty. While other visual variables
could be used instead (for example, color hue, line
weight), we argue that using size variation to represent
uncertainty is not helpful, even though it is commonly
used in other data visualizations. Despite evidence that
simple error bars in a bar chart are not as easy to

(a) (b) (c)

FIGURE 5. Representing uncertainty with markers indicating
size variation as in (a) is not recommended for set visual-
izations where the area of the set does not relate to the set
attribute value as in (b) and (c). cb

interpret as they may appear [15], uncertainty is often
depicted with error bars or grayed out areas which
indicate proportional uncertainty corresponding to the
size differences as in Figure 5 (a). It is not recom-
mended though to apply such ‘size-aware’ principles
to common set visualizations as in Figures 5 (b) and
(c), which focus on depicting set membership. The size
of the graphical objects simply has no meaning, and
hence, inappropriate inferences could be made about
the extent of the uncertainty.

Adding supplementary information to depict uncertainty
The examples above extend traditional Venn diagrams
for uncertainty visualization by varying well-established
visual variables and existing graphical elements. An
alternative idea is to add supplementary graphical
elements to the original diagram. For example, in a
bipartite node-link diagram, sets can be represented
as small pie charts indicating the proportion of inter-
national students and uncertainty (see Figure 6, top).
In this way, any set aggregate attribute (and its uncer-
tainty) can be added to the (certain) set representation.
Still, the association between the supplementary infor-
mation and the set (or subset) it refers to must be made
clear, using, for example, visual cues, like proximity
or links. However, this visualization does not explicitly
show (un)certainties of the intersections. Should this
be required, one may use a matrix representation as in
Figure 6 (bottom), which shows the statistics for each
intersection and the overall sets.

Uncertain Element Attributes
Finally, we present exemplary design suggestions for
visualizing uncertain element attributes (third column
in Table 2). Continuing our scenario, we now wish to
depict the age distribution (element attribute) of the
students (elements) enrolled in our courses (sets). For
the defined uncertainty case (U = p), we know the
value of an element attribute, and we also know the
nature and value of the uncertainty. For example, for a
given course with twenty enrollments, fifteen students
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have already enrolled and we have been given their
birth year from the university registrations office. For
five students who are also interested in taking the
course, we only know their age range at this point,
as they ticked the age range box, i.e., 20-30 yrs. in the
course enrollment questionnaire. The uncertainty lies
in the fact that there are some students for whom we
do not know their actual age with certainty, but we do
have information on their age within a given range and
above a certain threshold.

Following MacEachren et al. [11], we again employ
the intuitively understood visual variable of color value
(i.e., varying shades of gray) to denote variation of
uncertainty in set element attributes (see Figure 7).
According to MacEachren et al.’s studies, other visual
variables such as opacity, fuzziness, texture, and ar-
rangement could have been used as well. The same
visual variables to show uncertainty in set elements
may also be used to denote uncertainty of set mem-
bership or set attributes, as discussed before.

In the undefined uncertainty case (U > 0), we know

Chemistry
Biology

Legend
Student age known U=0

Student age {20-30} U=p
Student age >30 U=p
Student age uncertain U>0

Chemistry
Biology

FIGURE 7. Top row (U = 0): Two courses (sets) have twenty
enrolled students (elements) where all individual ages (ele-
ment attribute) are known (i.e., black point symbols). Bottom
row (U > 0 and U = p): Two courses (sets) have twenty
enrolled students where the degree of uncertainty in student
ages varies from (i) completely unknown, that is, point symbol
denoted with the lightest shade of gray, to (ii) mostly unknown,
(i.e., age above 30 yrs.) shown with medium gray point
symbols, and to (iii) somewhat unknown (i.e., within a given
age range 20-30 yrs.), assigned dark gray point symbols. cb

the value of an element attribute, but we do not know
the type and value of the uncertainty. For our example,
we may again say that for a given course with twenty
seats, fifteen students have already enrolled, and we
know their birth year. But for the five students who are
also interested in taking the course, we do not have
any age information. In this case, following the logic in
Figure 7 (bottom), we denote the uncertainty on some
of the students’ age with the lightest shade of gray.

For the easy case of certainty (U = 0), we know
the value of an element attribute with certainty. For our
data example with twenty enrolled students we know
their age with certainty. In this case, we can depict the
age attribute of our elements with any of the commonly
known multivariate visualization methods [8], [9] and
principles that are appropriate for ratio level data, i.e.,
dots, bar charts, box plots with commonly used visual
variables.

Discussion
Our investigations of uncertainty in set visualization
has resulted in a conceptual framework that links types
of uncertainties (i.e., U = 0, U > 0, and U = p)
and data characteristics in sets (i.e., set memberships,
set attributes, and element attributes), as summarized
in Table 2. The framework also names the different
subfields of visualization that can inform successful
visual communication of set uncertainties, and together
with the literature provided in Table 1, can be a useful
starting point for further research. We have addressed
the relevant cells in our framework and outlined several
design alternatives for set visualization drawing upon
existing visualization research.
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A further outcome of our work is the identification of
challenges that warrant further detailed investigations.

Evaluation. Our framework implicitly outlines a
road map to empirically study the appropriateness and
usefulness of the various ways of depicting uncer-
tainty in sets. This must happen considering the target
audience’s background and training (e.g., graphicacy,
domain expertise, disciplinary context), which influ-
ence the interpretation of uncertainty visualizations.
For example, depicting the uncertainty of a set element
attribute in a Venn diagram with a lighter gray value of
the element mark could be interpreted as uncertainty
of set membership of that element. The evaluation
of uncertainty visualizations, as a whole, is still in its
infancy, with a range of important questions to be
tackled.

Perception of uncertainty depictions. In general,
the depiction of uncertainty U needs to be balanced
with respect to the depiction of the actual set data D.
Carelessly adding an uncertainty depiction to a data
visualization can lead to clutter or overemphasis. For
example, in our bipartite node-link diagrams from Fig-
ure 3 (a), uncertain set memberships require links
between all uncertain set elements and all possible
sets, which easily leads to visual clutter and gives
much greater saliency to the uncertain information
rather than to the certain information. In Figure 3 (b),
we employed small link fans to reduce visual clutter,
but other, more general alternatives should be explored
and evaluated for their effectiveness.

Task- and context-specific challenges. The vi-
sualization community is well aware that user tasks
and the application context are essential ingredients
in designing expressive, effective, and efficient visu-
alization solutions [9], [16], [17]. While specific vi-
sualization tasks were considered in previous work
on general set visualization [1], our work exemplified
solutions prototypically. We leave a comprehensive
task- and context-specific exploration of the design
space for future research. Ideally, evaluations with real-
world application scenarios including tasks of varying
complexity beyond our small data example would be
useful. For example, ensemble forecasting models or
gene-to-phenotype mapping would serve as exciting
test scenarios.

Uncertainty propagation and missing data. Un-
certainty is not a static concept and interdependency
might occur due to data processing chains. For ex-
ample, the uncertainty of a set attribute may be di-
rectly dependent on set membership and set element
attribute uncertainties. Consequently, uncertainty prop-
agation should be specifically addressed in a future
version of the framework; the communication of un-

certainty propagation in a set visualization will pose
interesting depiction challenges. For simplicity, we also
treated missing and uncertain data equally in our
framework. Future work should extend our proposal to
disentangle these two concepts further.

Temporal and spatial uncertainty. While we con-
sidered uncertainty in set visualization, we mostly ig-
nored the spatial and temporal context of sets, which
poses additional challenges for their visualization [18].
Similarly to what can be said about the dynamics
of uncertainty propagation, temporal uncertainty itself
also relates to time-varying changes to uncertainty,
including uncertainty states with respect to points in
time, perdurance, and the evolution of uncertainty in
unfolding events [19]. Likewise, uncertainty in a spa-
tial frame of reference requires special consideration.
When several domains with data uncertainty need to
be understood in context, more scalable designs are
needed to balance the visualization according to the
needs of users [20]. When visualizing sets and set
elements that represent spatial and temporal data,
consideration will need to be given to the particular
nature of spatial and temporal uncertainty.

Overall, there is an extensive design space to be
explored. With this contribution, we call to action to fur-
ther extend the outlined framework, to systematically
evaluate the already offered design solutions, and to
revise the framework with empirical evidence where
necessary.

Conclusion
We set out to devise a conceptual framework to de-
scribe how uncertainty in set data could be visualized
by first finding answers to still open research questions:
(i) Which aspects of set type data could be affected
by uncertainty, and (ii) Which characteristics of uncer-
tainty could influence the visualization design. Based
on this framework, we then systematically discussed
set visualization examples with integrated uncertainty
information. We also provided a set of open challenges
in the hope that these may inspire future research on
uncertainty in set visualization.

Recommendations. We emphasize two high-level
recommendations in this call to action that we identified
early on during our work:

• Data first, uncertainty second : It is practical to
start with the visual encoding of the certain
data, followed by the encoding of the uncertain
aspects.

• Be aware of visual misinterpretations by the
users: Test your designs with users, as interpre-
tation and understanding of uncertainty are likely
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challenging for many users; visual solutions
might be misread by the target audience. Ample
labeling and adding legends and explanations
accompanying the uncertainty visualization will
help to guide the users. In some cases, we even
found, it may be more effective to communicate
uncertain information by non-visual means.
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