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Abstract
Weshow that perturbing ill-posed differential equationswith (potentially very) smooth
random processes can restore well-posedness—even if the perturbation is (potentially
much) more regular than the drift component of the solution. The noise considered is
of fractional Brownian type, and the familiar regularity condition α > 1− 1/(2H) is
recovered for all non-integer H > 1.

Keywords Regularisation by noise · Fractional Brownian motion · Stochastic
differential equations · Stochastic sewing

1 Introduction

Consider the stochastic differential equation

Xt =
∫ t

0
b(Xr ) dr + BH

t . (1.1)

For Hurst parameter H ∈ (0, 1), fractional Brownian motions BH can be defined via
the Mandelbrot–van Ness representation [13]

BH
t =

∫ 0

−∞
(|t − s|H−1/2 − |s|H−1/2) dWs +

∫ t

0
|t − s|H−1/2 dWs, (1.2)

whereW is a two-sided d-dimensional standard Brownianmotion on some probability
space (�,F ,P). The complete filtration generated by the increments ofW is denoted
by F = (Ft )t∈R, with respect to which the notion of adaptedness is understood in the
sequel, unless otherwise specified. Since (1.2) is a fractional integration, it is natural
to extend this scale of random processes to parameters H ∈ (1,∞) \ Z by
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BH
t =

∫
0≤r1≤···≤r�H�≤t

BH−�H�
r1 dr1 · · · dr�H�. (1.3)

It is a well-studied phenomenon that adding a noise term to an ill-posed differential
equation can provide regularisation effects. That is, while for α < 1 and b ∈ Cα

the equation X ′
t = b(Xt ) is in general not well-posed, upon perturbing it with some

random process (Brownian, fractional Brownian, or Lévy-tpye), due to the oscillations
of the noise one obtains awell-posed equation. It might seem counterintuitive to expect
similar effects from the processes BH for large H . Indeed, in the regime1 H > 2
this would mean that the noise component of (1.1) would be more regular (or, less
oscillatory) than the drift component. Therefore it may be surprising that nontrivial
regularisation effects happen for all H ∈ (1,∞) \ Z.

Before stating the main result, let us clarify the solution concept: given a stopping
time τ , a strong solution of (1.1) up to time τ is an adapted process X such that the
equality (1.1) holds almost surely for all t ∈ [0, τ ]. Two solutions are understood
to be equivalent if they are equal almost surely for all t ∈ [0, τ ]. We then have the
following.

Theorem 1.1 Let H ∈ [1/2,∞) \ Z and b ∈ Cα , where

α > 1 − 1

2H
. (1.4)

Then (1.1) has a unique strong solution up to time 1.

The well-posedness of (1.1) for H ∈ (0, 1) under the condition (1.4) is well-known
in the literature. This condition first appeared in [14] in the scalar, H ∈ (1/2, 1) case
and later in [4] the the multidimensional, H ∈ (0, 1) case2. In the multidimensional,
H ∈ (1/2, 1) case a simpler proof was given in [1], relying on various sewing lemmas.
The present approach is simpler still (for example Girsanov transformation is fully
avoided3), and uses only the stochastic sewing lemma introduced in [12]. In the regime
H ∈ (0, 1/2), the condition (1.4) allows for negative α, that is, distributional drift,
which makes the interpretation of the integral in (1.1) nontrivial. While this is also
possible with stochastic sewing (see e.g. [1, Cor 4.5] for a step towards this), since the
novelty of Theorem 1.1 is in the other direction (H > 1), we do not pursue this here.

Instead of thinking of (1.1) as an equation being driven by “regular” noise, one can
equivalently view it as a “degenerate” SDE

1 Under the condition (1.4) of the main theorem, this phenomenon may already happen for H > 1+1/
√
2.

2 Unlike the classical notion of uniqueness considered here, [4] proves uniqueness in the so-called path-
by-path sense, which is a stronger notion and does not easily follow from stochastic sewing.
3 This is not mere convenience but a necessity. One simply cannot expect the Girsanov transformation to
work: the law of the solution is singular with respect to the law of BH as soon as H > 1 + α.
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dU 1
t = dBH−�H�

t ;
dU 2

t = U 1 dt ;
...

dXt =
(
b(Xt ) +U �H�

t

)
dt . (1.5)

For H = k+1/2, k ∈ N, the driving noise in (1.5) is standard Brownian, and therefore
techniques based on the Zvonkin–Veretennikov transformation [15, 16] apply. This
approach was explored recently in [5, 7], where the authors prove well-posedness
under the condition (1.4) with an elaborate PDE-based proof.

Let us conclude the introduction by spelling out some trivial equivalences. First,
(1.4) can be rewritten as

1 + Hα − H > 1/2. (1.6)

Second, a solution of (1.1) can be written as X = ϕ + BH , where ϕ is a fixed point
of the map

ϕ 	→ T (ϕ), (T (ϕ))t =
∫ t

0
b(ϕr + BH

r ) dr . (1.7)

In Sect. 3, Theorem 1.1 is proved by showing that (a stopped version of) T is a
contraction on some space. The main tools for the proof are set up in Sect. 2, more
precisely in Lemmas 2.2 and 2.4.

Remark 1.2 A heuristic power counting argument for (1.4) can be given as follows.
For strong uniqueness one would like the map ϕ 	→ T (ϕ) to be Lipschitz with a small
constant. A more modest goal would be try to show that t, x 	→ (

T (x)
)
t is Lipschitz

in x ∈ R
d . For starters, it is trivial that t, x 	→ (

T (x)
)
t is Lipschitz in t , Cα in x .

Thanks to the presence of BH one can use stochastic sewing to trade time and space
regularity at the exchange rate t H ∼ x . However, we can only trade as long as we
remain with more than 1/2 regularity in t (this is the “1/2 condition of the stochastic
sewing lemma”), which means that the available gain in x regularity is 1/(2H).

2 Preparations

2.1 Notation and basics

The conditional expectation given Fs is denoted by Es . We often use the conditional
Jensen’s inequality (CJI) ‖Es X‖L p(�) ≤ ‖X‖L p(�) for p ∈ [1,∞] and the following
elementary inequality for any p ∈ [1,∞], X ∈ L p(�), and Fs-measurable Y :

‖X − Es X‖L p(�) ≤ 2‖X − Y‖L p(�). (2.1)
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For 0 ≤ s < t ≤ 1 and R
d -valued functions f on [s, t] we introduce the

(semi-)norms

‖ f ‖C0[s,t] = sup
u∈[s,t]

| fu | ;

[ f ]Cγ [s,t] = sup
u,v∈[s,t]
u<v

|∂γ̂ fu − ∂γ̂ fv|
|u − v|γ̄ , γ > 0, γ = γ̂ + γ̄ , γ̂ ∈ N, γ̄ ∈ (0, 1];

‖ f ‖Cγ [s,t] = ‖ f ‖C0[s,t] + [ f ]Cγ [s,t], γ > 0.

When the domain is Rd instead of [s, t], we simply write Cγ . When considering
functions with values in L p(�) instead ofRd , p ∈ [1,∞], we denote the correspond-
ing spaces and (semi-)norms byC γ

p . If f is an adapted process, γ > 0, 0 ≤ s ≤ t ≤ 1,
one may choose Y in (2.1) to be the value at t of the Taylor expansion of f at s up to
order �γ �, yielding the bound

‖ ft − Es ft‖L p(�) ≤ 2|t − s|γ [ f ]C γ
p [s,t]. (2.2)

CombiningwithCJI (orwith triangle inequality) one also gets, for 0 ≤ s < u < t ≤ 1,

‖Eu ft − Es ft‖L p(�) ≤ 2|t − s|γ [ f ]C γ
p [s,t]. (2.3)

We will also use the following simple property. Let f be some random process and
f̂ a stopped version of it, that is, for some stopping time τ , f̂t = ft∧τ . Then, for any
γ ∈ (0, 1), ε ∈ (0, 1− γ ), and p ∈ (d/ε,∞), there exists a constant N depending on
ε, p, and d, such that for all 0 < t ≤ 1 one has

[ f̂ ]C γ
p [0,t] ≤ [ f̂ ]L p(�,Cγ [0,t]) ≤ [ f ]L p(�,Cγ [0,t]) ≤ N [ f ]C γ+ε

p [0,t]. (2.4)

Indeed, the first two inequalities are trivial, and the third follows from Kolmogorov’s
continuity theorem.

The “local intedeterminancy” property of the processes BH for H ∈ (0, 1) is a key
feature for their regularisation properties, and it also holds in the extended scale.

Proposition 2.1 For any H ∈ (0,∞) \ Z there exists a constant c(H) such that for
all 0 ≤ s ≤ t ≤ 1 one has

E|BH
t − Es BH

t |2 = dc(H)|t − s|2H . (2.5)

Proof Since the coordinates of BH are independent, we may and will assume d = 1.
For H ∈ (0, 1) this is well known, so we assume �H� ≥ 1. From (1.3) and (1.2) we
have

BH
t − Es BH

t = ∫
s≤r0≤r1≤···≤r�H�≤t |r1 − r0|H−�H�−1/2 dWr0 dr1 · · · dr�H�

= ∫
s≤r0≤r1≤···≤r�H�≤t |r1 − r0|H−�H�−1/2 dr1 · · · dr�H� dWr0 .
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Therefore, by Itô’s isometry,

E|BH
t − Es BH

t |2 =
∫ t

s

(∫
r0≤r1≤···≤r�H�≤t

|r1 − r0|H−�H�−1/2 dr1 · · · dr�H�

)2

dr0

=
∫ t

s

(
1

	
�H�
i=1 (H − i + 1/2)

|t − r0|H−1/2

)2

dr0

= 1

2H

(
1

	
�H�
i=1 (H − i + 1/2)

)2

|t − s|2H ,

as claimed. ��
For any ε > 0, ‖BH‖CH−ε[0,1] is finite almost surely. Indeed, this is well-known for
H ∈ (0, 1) and immediately follows for H > 1 from the definition (1.3). Fix ε > 0
such that

2(1 + Hα − H) − εα > 1, (2.6)

which is possible thanks to (1.6). For any K > 0, define the stopping times

τK = inf{t : ‖BH‖CH−ε[0,t] > K } ∧ 1.

From now onwe consider the parameter K to be fixed and prove the well-posedness
of (1.1) up to τK . Correspondingly, we take the following modification of the map T
from (1.7):

ϕ 	→ TK (ϕ),
(
TK (ϕ)

)
t =

∫ t

0
b(ϕr∧τK + BH

r ) dr . (2.7)

Denote by S0
K the set of Lipschitz continuous and adapted processes and for k ∈ N

introduce the set of Picard iterates by Sk
K = T k

K (S0
K ).

We denote by Pt the convolution with Gaussian density whose covariance matrix
is t times the identity. In light of (2.5), it is natural to use the reparametrisation
PH
t := Pc(H)t2H . One then has the identity E

s f (BH
t ) = PH

t−s f (E
s BH

t ). Let us recall
two well-known heat kernel estimates: for α ∈ [0, 1], ‖ f ‖Cα ≤ 1, t ∈ (0, 1], one has
the bounds, with some constant N depending only on H , α, d,

|PH
t f (x) − PH

t f (y)| ≤ NtH(α−1)|x − y| ;
|PH

t f (x1) − PH
t f (x2) − PH

t f (x3) + PH
t f (x4)| ≤ N

(
t H(α−2)|x1 − x2||x1 − x3|

+ t H(α−1)|x1 − x2 − x3 + x4|
)

.

(2.8)

In the sequel we use A � B to denote that there exists a constant N such
that A ≤ N B, with N depending only on (a subset of) the following parameters:
H , α, ε, ‖b‖Cα , d, p, K .
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2.2 Stochastic sewing Lemma

A main tool in the proof is the stochastic sewing lemma introduced in [12], which
however needs to be suitably tweaked to avoid some singular integrals in the applica-
tion. Let us first briefly recall the strategy of [12]. Given a filtration G = (Gi )i≥0 and
a G- adapted sequence of random variables, (Zi )i≥1, one can write the estimate for
p ∈ [2,∞):

∥∥∥∥∥
n∑

i=1

Zi

∥∥∥∥∥
L p(�)

≤
∥∥∥∥∥

n∑
i=1

EGi−1 Zi

∥∥∥∥∥
L p(�)

+
∥∥∥∥∥

n∑
i=1

Zi − EGi−1 Zi

∥∥∥∥∥
L p(�)

�
n∑

i=1

‖EGi−1 Zi‖L p(�) +
(

n∑
i=1

‖Zi − EGi−1 Zi‖2L p(�)

)1/2

, (2.9)

where the second sum was estimated via the Burkholder-Davis-Gundy and the
Minkowski inequalities. The former can be applied, since the sequence (Zi −
EGi−1 Zi )i≥1 is one of martingale differences.

Now assume that (As,t )0≤s<t≤1 is a family of random variables such that As,t is
Ft -measurable. If one is interested in the convergence of the Riemann sums Rn =∑2n

i=1 A(i−1)2−n ,i2−n in L p(�), then the classical sewing ideas suggest to consider

Rn − Rn+1 =
2n∑
i=1

δA(i−1)2−n ,(i−1/2)2−n ,i2−n ,

where δAs,u,t = As,t − As,u − Au,t . This sum fits into the context of (2.9), with the
filtration Gi = Fi2−n . This leads to the requirement in the stochastic sewing lemma
on bounding EsδAs,u,t , see [12, Eq (2.6)].

It can be very useful to shift the conditioning backwards in time. In many appli-
cations As,t is actually Fs-measurable, which by the above considerations leads to
bound Es−(t−s)/2δAs,u,t . Even if this is not the case, one can achieve such a shift by
bounding the “even” and “odd” part of the sum in (2.9) separately, noting that both
(Z2i −EG2i−2 Z2i )i≥1 and (Z2i+1 −EG2i−1 Z2i+1)i≥1 are sequences of martingale dif-
ferences. To make the formulation cleaner, we assume an extended filtration (Gi )i≥−1,
with which one has the following variant of (2.9):

∥∥∥∥∥
n∑

i=1

Zi

∥∥∥∥∥
L p(�)

�
n∑

i=1

‖EGi−2 Zi‖L p(�)+
(

n∑
i=1

‖Zi − EGi−2 Zi‖2L p(�)

)1/2

. (2.10)

Since separating the sum of Zi -s into 2 was of course arbitrary, one can get the same
bound with Gi−� in place of Gi−2 above for any �, as long as the filtration G extends
to negative indices up to −� + 1. Another technical modification that we will need
is to restrict the triples (s, u, t) on which δAs,u,t is considered, to triples where the
distances between each pair is comparable. To this end define, for 0 ≤ S < T ≤ 1
and M ≥ 0,
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[S, T ]2M = {(s, t) : S ≤ s < t ≤ T , s − M(t − s) ≥ S} ;
[S, T ]3M = {(s, u, t) : (s, t) ∈ [S, T ]2M , u ∈ (S, T ) } ;
[S, T ]3M = {(s, u, t) ∈ [S, T ]3M : (u − s), (t − u) ≥ (t − s)/3} .

The version of the stochastic sewing lemma suitable for our purposes then reads as
follows.

Lemma 2.2 Let 0 ≤ S < T ≤ 1, p ∈ [2,∞), M ≥ 0, and let (As,t )(s,t)∈[S,T ]2M be a

family of random variables in L p(�,Rd) such that As,t is Ft -measurable. Suppose
that for some ε1, ε2 > 0 and C1,C2 the bounds

‖As,t‖L p(�) ≤ C1|t − s|1/2+ε1 , (2.11)

‖Es−M(t−s)δAs,u,t‖L p(�) ≤ C2|t − s|1+ε2 (2.12)

hold for all (s, t) ∈ [S, T ]2M and (s, u, t) ∈ [S, T ]3M . Then there exists a unique (up
to modification) adapted process A : [S, T ] → L p(�,Rd) such that AS = 0 and
such that for some constants K1, K2 < ∞, depending only on ε1, ε2, p, d, and M,
the bounds

‖At − As − As,t‖L p(�) ≤ K1C1|t − s|1/2+ε1 + K2C2|t − s|1+ε2 ,

(2.13)

‖Es−M(t−s) (
At − As − As,t

) ‖L p(�) ≤ K2C2|t − s|1+ε2 (2.14)

hold for (s, t) ∈ [S, T ]2M and the bound

‖At − As‖L p(�) ≤ K1C1|t − s|1/2+ε1 + K2C2|t − s|1+ε2 . (2.15)

holds for all (s, t) ∈ [S, T ]20. Moreover, if there exists any continuous process Ã :
[S, T ] → L p(�,Rd), ε3 > 0, and K3 < ∞, such that ÃS = 0 and

‖Ãt − Ãs − As,t‖L p(�) ≤ K3|t − s|1+ε3 (2.16)

holds for all (s, t) ∈ [S, T ]2M, then Ãt = At for all S ≤ t ≤ T .

Proof The proof essentially follows [12], keeping in mind the preceding remarks, and
making sure that one only ever uses suitably regular partitions. For the present proof
we understand the proportionality constant in � to depend on ε1, ε2, p, d, M .

Take (s, t) ∈ [S, T ]2M and notice that [s, t]20 ⊂ [S, T ]2M . For a partition π = {s =
t0 < t1 < · · · < tn = t} denote [π ] = t−s

n , |π | = max{ti − ti−1}, and π =
min{ti − ti−1}. Introduce the “regular” partitions 	 = 	[s,t] = {π : π ≥ |π |/2}.
Let us then define

Aπ
s,t =

∑
Ati−1,ti .
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We claim the following.

(i) If π ∈ 	 is a refinement of π ′ ∈ 	, then one has the bounds

‖Aπ
s,t − Aπ ′

s,t‖L p(�) � C1|t − s|1/2[π ′]ε1 + C2|t − s|[π ′]ε2 ,

(2.17)

‖Es−M(t−s)
(
Aπ
s,t − Aπ ′

s,t

)
‖L p(�) � C2|t − s|[π ′]ε2; (2.18)

(ii) The limit Âs,t := limπ∈	,|π |→0 Aπ
s,t in L p(�) exists;

(iii) The family (Âs,t )(s,t)∈[S,T ]2M is additive, i.e. δÂs,u,t = 0;

(iv) The bounds (2.13)–(2.14) hold with Âs,t in place of At − As .

Since for any two π, π ′ ∈ 	 one can easily find a common refinement π ′′ ∈ 	, (ii)
follows from (i). Note that for s ≤ u ≤ t one can find a sequence (πn)n ∈ 	[s,t] such
that |πn| → 0, πn = π ′

n ∪ π ′′
n , (π

′
n)n∈N ⊂ 	[s,u], and (π ′′

n )n∈N ⊂ 	[u,t]. Therefore
(iii) is immediate from (ii). Finally, (iv) follows from (i) by setting π ′ = {s, t} and
letting |π | → 0.

Therefore, it only remains to show (i). We define a map ρ on 	 as follows. If
π = {t0, t1, . . . , tn} and n is odd, first set n′ = n+ 1 and t ′i = (ti + ti−1)/2, where i is
the first index such that |π | = ti − ti−1. Then set t ′j = t j for 0 ≤ j < i and t ′j = t j−1

for i < j ≤ n′. If n is even, simply set n′ = n and t ′j = t j for all 0 ≤ j ≤ n. Then
set ρ(π) = {t ′0, t ′2, t ′4, . . . t ′n′/2}. It is clear that ρ(π) ∈ 	 and that [ρ(π)] ≥ (3/2)[π ]
(unless π is the trivial partition). One has

Aπ
s,t − Aρ(π)

s,t = δAti−1,t ′i ,ti −
(n′−2)/2∑

j=0

δAt ′2 j ,t ′2 j+1,t
′
2 j+2

. (2.19)

Note that each triple appearing belongs to [S, T ]3M . Thefirst term is simply bounded via
(2.11). For the sumwe use (2.10) and the succeeding remark. Note that δAt ′2 j ,t ′2 j+1,t

′
2 j+2

is Ft ′2 j+2
-measurable, and that for large enough � = �(M) (uniform in π ∈ 	, n, and

j) one has t ′2( j−�)+2 ≤ t ′2 j − M(t ′2 j+2 − t ′2 j ). Indeed, this is a consequence of the
regularity of the partitions in 	. Therefore, the sum

(n′−2)/2∑
j=0

δAt ′2 j ,t ′2 j+1,t
′
2 j+2

− Et ′2 j−M(t ′2 j+2−t ′2 j )δAt ′2 j ,t ′2 j+1,t
′
2 j+2

can be decomposed as the sum of � different sums of martingale differences, each of
which can be bounded as in (2.9). From the bounds (2.13)–(2.14) one can conclude
that (2.17)–(2.18) holds for π ′ = ρ(π). Now suppose that π ′ is the trivial partition
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{s, t} and define m as the smallest integer such that ρm(π) = π ′. One can write

‖Aπ
s,t − Aπ ′

s,t‖L p(�) ≤
m−1∑
i=0

‖Aρi (π)
s,t − Aρi+1(π)

s,t ‖L p(�)

�
m−1∑
i=0

C1|t − s|1/2[ρi+1(π)]ε1 + C2|t − s|[ρi+1(π)]ε2 .

Recalling [ρi (π)] ≤ (2/3)m−i [ρm(π)] = (2/3)m−i [π ′], this yields (2.17) (and one
gets similarly (2.18)) for π ′ = {s, t}. Finally, if π ′ = {t0, . . . , tn} ∈ 	 is arbitrary and
π ∈ 	 is a refinement of it, define πi to be the restriction of π to [ti , ti+1]. It is clear
that πi ∈ 	[ti ,ti+1]. Therefore writing

Aπ
s,t − Aπ ′

s,t =
n−1∑
i=0

Aπi
ti ,ti+1

− Ati ,ti+1 ,

each term in the sum is of the form that fits in the previous case, and so admits bounds
of the form (2.17)–(2.18). Using these bounds, the sum is treated just like the one in
(2.19), using (2.10). Hence, (i) is proved.

From (iv) it is then immediate that (2.15) is also satisfied with Âs,t in place of

At − As , but only for (s, t) ∈ [S, T ]M . Let us define ti = S + (S − T )
(

M
M+1

)i
and

set, for t ∈ [S, T ],

At =
∞∑
i=1

Âti∧t, ti−1∧t .

First notice that for all i ≥ 1 and t ∈ [ti , ti−1], one has (ti , t) ∈ [S, T ]M , so each term
in the sum is well-defined. The convergence of the sum in L p(�) immediately follows
from the bounds on Âs,t and the geometric decay of |ti − ti−1|. It is also clear that
A is adapted and that At → 0 in L p(�) as t → S. Since At − As = Âs,t for pairs
(s, t) ∈ [S, T ]M , the bounds (2.13)–(2.14)–(2.15) hold for such pairs. Extending
(2.15) to all (s, t) ∈ [S, T ]0 is standard, see e.g. [2, Lem 2.3] for a very similar
statement. The characterisation (2.16) is also standard, see e.g. [10, Lem 4.2]. ��

Remark 2.3 The usefulness of these small shifts can be illustrated with the following

analogy. To have
∫ 2−n

0 xγ dx ≈ 2−(γ+1)n , one requires γ > −1. However, upon

shifting the integral,
∫ 2−n+1

2−n xγ dx ≈ 2−(γ+1)n is true for all γ ∈ R. This example
is actually more than an analogy: in (3.1) below we encounter such integrals and the
above formulation allows one to bypass the condition H(α − 2) > −1.
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2.3 Higher order expansion of solutions

As the final ingredient, let us discuss how well a solution ϕ (and more generally, an
element of Sk

K ) can be approximated at time t by an Fs-measurable random variable,
for s < t . From the differentiability of ϕ, one immediately sees that taking ϕs gives an
approximation of order |t − s|, or, slightly more cleverly, taking ϕs + (t − s)ϕ′

s gives
an approximation of order |t − s|1+α . Since ϕ is certainly not twice differentiable,
it might be surprising that one can push this expansion much further and obtain an
approximation of order almost |t − s|1+αH .

Lemma 2.4 Assume the setting and notations of Theorem 1.1 and Sect. 2.1, and in
addition assume α < 1. Then there exists a k0 = k0(H , α, ε) ∈ N such that for all
ϕ ∈ Sk0

K and for all 0 ≤ s ≤ 1 one has almost surely for all t ∈ [s, τK ]

|ϕt − Esϕt | � |t − s|1+α(H−ε). (2.20)

Proof Let

B
H
s,t =

�H�∑
i=0

(t − s)i

i ! ∂ i BH
s .

Clearly, for 0 ≤ s ≤ t ≤ τK , one has |BH
t −B

H
s,t | � |t − s|H−ε. Define maps A(k) on

Sk
K as follows. For k = 0 and ϕ ∈ S0

K set A(0)
s,t ϕ = ϕs . For k > 0 and ϕ ∈ Sk

K , take
ψ ∈ Sk−1

K such that ϕ = TK (ψ) and define inductively

A
(k)
s,t ϕ = ϕs +

∫ t

s
b

(
A

(k−1)
s,r ψ + B

H
s,r

)
dr .

We aim to get almost sure bounds of the form

|ϕt − A
(k)
s,t ϕ| � |t − s|γk , 0 ≤ s ≤ t ≤ τK (2.21)

with some γk to be determined. We proceed by induction. Clearly (2.21) holds for
k = 0 with γ0 = 1. In the inductive step, from (2.21) one deduces

|ϕt − A
(k)
s,t ϕ| =

∣∣∣∣
∫ t

s
b(ψr + BH

r ) − b
(
A

(k−1)
s,r ψ + B

H
s,r

)
dr

∣∣∣∣
�

∫ t

s
|ψr − A

(k−1)
s,r ψ |α + |BH

r − B
H
s,r |α dr

� |t − s|1+α(γk−1∧(H−ε)),

where in the last inequality we used the induction hypothesis. Therefore, (2.21) holds
for all k ∈ N, with γk defined by the recursion

γ0 = 1, γk = 1 + α (γk−1 ∧ (H − ε)) .
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For k < k0 := inf{� ∈ N : γ� > H − ε} + 1, one has γk−1 ≤ H − ε and therefore

γk = 1 + α + α2 + · · · + αk = 1 − αk+1

1 − α
−→
k→∞

1

1 − α
> H .

Hence, k0 is finite. One then has

γk0 = 1 + α
(
γk0−1 ∧ (H − ε)

) = 1 + α(H − ε).

Rewriting (2.21) in an equivalent form, one has almost surely for all 0 ≤ s ≤ t ≤ 1

|ϕt∧τK − A
(k0)
s∧τK ,t∧τK

ϕ| � |t − s|1+α(H−ε).

For fixed s and t , apply (2.1) with p = ∞, X = ϕt∧τK , and Y = A
(k0)
s∧τK ,t∧τK

ϕ, since
the latter is certainly measurable with respect to Fs . Therefore, one has almost surely

|ϕt∧τK − Esϕt∧τK | � |t − s|1+α(H−ε).

From the continuity of ϕ, this bound holds for all 0 ≤ s ≤ 1 almost surely for all
t ∈ [s, 1], which readily implies the claim. ��
Remark 2.5 One can easily check that as far as (2.20) is concerned, condition (1.4) is
overkill: indeed, the above argument works as long as H > 1 and

α > 1 − 1

H
. (2.22)

Condition (2.22) is also equivalent to the existence of ε > 0 such that 1+α(H −ε) >

H . In other words, (2.22) is precisely the condition that guarantees that the drift
components of sufficiently high order Picard iterates (and in particular, solutions, if
any exist) are “more regular”, in a stochastic sense, than their noise components.While
this is only a heuristic indication of regularisation effects, it is interesting to note that
several works in the literature connect the condition (2.22) to weak well-posedness.

As for necessity, it is shown in [6] that weak uniqueness fails for α < 1 − 1/H .
As for sufficiency, a number of results are available in Markovian settings. In the
standard Brownian (that is, H = 1/2) case [3, 9] constructed martingale solutions
to (1.1) with (so-called “enhanced”) distributional drift of regularity α > −2/3, but
the power counting heuristics work all the way to α > −1 = 1 − 1/H . Similarly,
[11] studied martingale solutions for SDEs driven by λ-stable Lévy noise in the range
α > (2− 2λ)/3, with the power counting suggesting the threshold 1− λ. This is also
consistent with (2.22), using the scaling correspondence λ ↔ 1/H . In the degenerate
Brownian (that is, H = k+1/2, k ∈ N) case weak well-posedness under the condition
(2.22) was proved in [8].

It is therefore natural to conjecture that (2.22) guarantees weak well-posedness also
in the non-Markovian case, but to our best knowledge this question is still well open.
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3 Proof of Theorem 1.1

Take p ∈ [2,∞), to be specified to be large enough later. Recall that it suffices to
prove the well-posedness of (1.1) up to τK . To this end, we will show that TK is a
contraction on Sk0

K in a suitable metric. For any process f , we define the stopped
process f K by f Kt = ft∧τK .

We want to apply Lemma 2.2, with M = 1. Let ϕ,ψ ∈ Sk0
K . Fix 0 ≤ S < T ≤ 1

and for (s, t) ∈ [S, T ]21 define

As,t = Es−(t−s)
∫ t

s
b(BH

r + Es−(t−s)ϕK
r ) − b(BH

r + Es−(t−s)ψK
r ) dr .

For (s, t) ∈ [S, T ]21 denote s1 = s − (t − s), s2 = s, s3 = t . Then by (2.8) and CJI
one has

‖As,t‖L p(�) �
∥∥∥∥
∫ s3

s2
PH
r−s1b(E

s1BH
r + Es1ϕK

r ) − PH
r−s1b(E

s1BH
r + Es1ψK

r ) dr

∥∥∥∥
L p(�)

�
∫ s3

s2
(r − s1)

H(α−1)‖Es1ϕK
r − Es1ψK

r ‖L p(�) dr

� |t − s|1+Hα−H‖ϕK − ψK ‖C 0
p [s2,s3].

From (1.6), the condition (2.11) is satisfied with C1 = ‖ϕK − ψK ‖C 0
p [0,T ].

Concerning the second condition of Lemma 2.2, for (s, u, t) ∈ [S, T ]31 denote
s1 = s − (t − s), s2 = s − (u − s), s3 = u − (t − u), s4 = s, s5 = u, s6 = t .
These points are not necessarily ordered according to their indices, but thanks to the

definition of [S, T ]31 they satisfy (s4 − s2), (s5 − s3) ≥ (t − s)/3. One can write

Es−(t−s)δAs,u,t = Es1Es2

∫ s5

s4
b(BH

r + Es1ϕK
r ) − b(BH

r + Es1ψK
r )

− b(BH
r + Es2ϕK

r ) + b(BH
r + Es2ψK

r ) dr

+ Es1Es3

∫ s6

s5
b(BH

r + Es1ϕK
r ) − b(BH

r + Es1ψK
r )

− b(BH
r + Es3ϕK

r ) + b(BH
r + Es3ψK

r ) dr

=: I1 + I2.

The two terms are treated in exactly the same way, so we only detail I1. By (2.8),

‖I1‖L p(�) �
∥∥∥∥
∫ s5

s4
|r − s2|H(α−2)|Es1ϕK

r − Es1ψK
r ||Es1ϕK

r − Es2ϕK
r |

+ |r − s2|H(α−1)|Es1ϕr − Es1ψr − Es2ϕr + Es2ψr | dr
∥∥∥
L p(�)

. (3.1)
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From CJI, (2.20), and (2.3), we have the bounds

‖Es1ϕK
r − Es1ψK

r ‖L p(�) ≤ ‖ϕK − ψK ‖C 0
p [s4,s5] ;

|Es1ϕK
r − Es2ϕK

r | ≤ |Es1ϕK
r − ϕK

r |
+|Es2ϕK

r − ϕK
r | � |t − s|1+α(H−ε) ;

‖Es1(ϕK − ψK )r − Es2(ϕK − ψK )r‖L p(�) � |t − s|1/2[ϕK − ψK ]
C 1/2

p [s1,s5] .

Substituting this into (3.1), and recalling that
∫ s5
s4

|r − s2|γ dr � |t − s|1+γ for any
γ ∈ R, we get

‖I1‖L p(�)

� |t − s|1+H(α−2)+1+α(H−ε)‖ϕK − ψK ‖C 0
p [s4,s5]

+ |t − s|1+H(α−1)+1/2[ϕK − ψK ]
C 1/2

p [s1,s5]
= |t − s|2(1+Hα−H)−εα‖ϕK − ψK ‖C 0

p [s4,s5]
+|t − s|(1+Hα−H)+1/2[ϕK − ψK ]

C 1/2
p [s1,s5].

From (1.6) and (2.6), we see that both exponents of |t − s| above are strictly bigger
than 1. With the analogous bound on I2, one concludes that (2.12) holds with C2 =
‖ϕK −ψK ‖C 0

p [S,T ]+[ϕK −ψK ]
C 1/2

p [S,T ], and therefore Lemma 2.2 applies.We claim

that the process A is given by

Ãt = (TK (ϕ) − TK (ψ))t =
∫ t

0
b(BH

r + ϕK
r ) − b(BH

r + ψK
r ) dr .

Indeed, first notice that that since both BH , ϕK , and ψK are all trivially Lipschitz-
continuous with their Lipschitz constant having p-th moments, Ã belongs to C 1+α

p .
Therefore, by (2.2) we can write

‖Ãt − Ãs − Es−(t−s)(Ãt − Ãs)‖L p(�) � |t − s|1+α‖Ã‖C 1+α
p

� |t − s|1+α.

On the other hand, by CJI and (2.2) again, we have

‖Es−(t−s)(Ãt − Ãs) − As,t‖L p(�) �
∫ t

s
‖b(BH

r + Es−(t−s)ϕK
r ) − b(BH

r + ϕK
r )‖L p(�)

+ ‖b(BH
r + Es−(t−s)ψK

r ) − b(BH
r + ψK

r )‖L p(�) dr

� |t − s|1+α.
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Hence (2.16) is satisfied, and Ã = A. The bound (2.15) then yields, with some ε′ > 0,
for all S ≤ s < t ≤ T ,

‖At − As‖L p(�) = ‖ (TK (ϕ) − TK (ψ))t − (Tk(ϕ) − Tk(ψ))s ‖L p(�)

� |t − s|1/2+ε′ ‖ϕK − ψK ‖C 0
p [S,T ] + |t − s|1+ε′ ‖ϕK − ψK ‖C 0

p [S,T ]
+ |t − s|1+ε′ [ϕK − ψK ]

C
1/2
p [S,T ]

� |t − s|1/2+ε′ ‖ϕK − ψK ‖C 0
p [S,T ] + |t − s|1+ε′ [ϕK − ψK ]

C
1/2
p [S,T ].

(3.2)

Let us first choose S = 0, in which case ‖ϕK − ψK ‖C 0
p [0,T ] � [ϕK − ψK ]

C 1/2
p [0,T ].

Therefore, upon dividing by |t−s|1/2+ε′/2 and taking supremum over 0 ≤ s < t ≤ T ,
one gets

[TK (ϕ) − TK (ψ)]
C 1/2+ε′/2

p [0,T ] � T ε′/2[ϕK − ψK ]
C 1/2

p [0,T ].

We can apply (2.4) with f = TK (ϕ) − TK (ψ), τ = τK , γ = 1/2, ε = ε′/2. This is
the only point where the choice of p matters: we need to take p > 2d/ε′. We get

[
(TK (ϕ))K − (TK (ψ))K

]
C 1/2

p [0,T ] � T ε′/2[ϕK − ψK ]
C 1/2

p [0,T ],

and therefore, for sufficiently small T > 0,

[
(TK (ϕ))K − (TK (ψ))K

]
C 1/2

p [0,T ] ≤ 1

2
[ϕK − ψK ]

C 1/2
p [0,T ]. (3.3)

We conclude that TK is a contraction on Sk0
K with respect to [(·)K ]

C 1/2
p [0,T ].

From here the argument is more or less routine, with some tedium due to the
stopping times. Introduce T̂K by setting T̂K (λ) = (TK (λ))K and let Ŝn

K = T̂ n
K (S0

K ).

It is clear from the definition (2.7) that for any n ≥ 1, λ̂ ∈ Ŝn
K if and only if λ̂ = λK

for some λ ∈ Sn
K . In particular, (3.3) can be written as follows: for any ϕ̂, ψ̂ ∈ Ŝk0

K ,

[
T̂K (ϕ̂) − T̂K (ψ̂)

]
C 1/2

p [0,T ] ≤ 1

2
[ϕ̂ − ψ̂]

C 1/2
p [0,T ]. (3.4)

Notice that on the subset Ĉ of C 1/2
p [0, T ] consisting of processes that vanish at time

0, the seminorm [·]
C 1/2

p [0,T ] is actually a norm. Therefore for any fixed ϕ̂ ∈ Ŝk0
K , the

sequence (T̂ n
K (ϕ̂))n∈N converges in Ĉ to some ϕ̂∗. Since T̂K is continuous on Ĉ , one

has ϕ̂∗ = T̂K (ϕ̂∗) on [0, T ], yielding a local solution.
To obtain a solution beyond time T , let S0,∗

K to be the set of adapted Lipschitz

continuous processes agreeing with ϕ̂∗ on [0, T ] and set Sk,∗
K = T k

K (S0
K ), Ŝk,∗

K =
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T̂ k
K (S0

K ). Note that elements of Sk,∗
K agree with ϕ̂∗ on [0, τK ∧ T ], while elements of

Ŝk,∗
K agree with ϕ̂∗ on [0, T ]. Also, trivially, Sk,∗

K ⊂ Sk
K and therefore the bound (3.2)

holds for ϕ,ψ ∈ Sk0,∗
K . Moreover, notice that on Sk,∗

K , one has ‖ϕK −ψK ‖C 0
p [T ,2T ] �

[ϕK − ψK ]
C 1/2

p [T ,2T ]. Therefore similarly to (3.3), we get

[
(TK (ϕ))K − (TK (ψ))K

]
C 1/2

p [T ,2T ] ≤ 1

2
[ϕK − ψK ]

C 1/2
p [T ,2T ].

Following the same argument as above, we obtain a process ϕ̂∗∗ such that ϕ̂∗∗ =
T̂K (ϕ̂∗∗) on [T , 2T ] and that furthermore agrees with ϕ̂∗ on [0, T ]. Therefore, in fact,
one hasϕ∗∗ = T̂K (ϕ̂∗∗) on [0, 2T ]. Repeating this argument finitelymany times yields
a fixed point of ϕ̂� on [0, 1].

The uniqueness is immediate from the above construction: any two fixed points of
T̂K necessarily lie in Ŝk0

K and therefore they agree on [0, T ] by (3.4). One can then
proceed iteratively as above. Therefore, X = ϕ̂� + BH is the unique solution of (1.1)
up to τK , finishing the proof. ��
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