
Computational Optimization
Approaches for Distributing

Battery Exchange Stations for
Electric Scooters

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Bernhard Kreutzer, BSc
Matrikelnummer 0927086

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Günther Raidl
Mitwirkung: Projektass. Dipl.-Ing. Dr.techn. Thomas Jatschka, BSc

Wien, 31. August 2023
Bernhard Kreutzer Günther Raidl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Computational Optimization
Approaches for Distributing

Battery Exchange Stations for
Electric Scooters

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Bernhard Kreutzer, BSc
Registration Number 0927086

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Günther Raidl
Assistance: Projektass. Dipl.-Ing. Dr.techn. Thomas Jatschka, BSc

Vienna, 31st August, 2023
Bernhard Kreutzer Günther Raidl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Bernhard Kreutzer, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 31. August 2023
Bernhard Kreutzer

v

Danksagung

Zuerst würde ich mich gerne bei Prof. Günther Raidl bedanken der es mir ermöglicht
hat an diesem fantastischen Projekt zu arbeiten. Zusätzlich gebührt ein spezieller Dank
Thomas Jatschka bei dem ich mich besonders für seine ausgezeichnete Unterstützung
bedanken möchte. Die ausführlichen Diskussionen kombiniert mit euren Ratschlägen
haben die Arbeit zu einem erfolgreichen Projekt gemacht.

Des Weiteren möchte mich bei Honda R&D, für die Kooperation und Finanzierung
dieses Projekt bedanken. Im speziellen gebührt Dank Yusuke Okamoto, Hiroaki Kataoka,
Tadashi Hayashida von der Honda Motor Company und Tobias Rodemann vom Honda
Research Institute Europe welche mit Ideen und Daten wertvollen Einfluss auf das Projekt
genommen haben.

Weiters möchte ich mich bei Matthias Rauscher bedanken, welcher im Rahmen seiner
Masterarbeit ebenfalls am Projekt beteiligt war.

Abschließend möchte ich mich noch bei meiner Familie und meinen Freunden bedanken
für die Unterstützung, die sie mir haben zukommen lassen.

vii

Acknowledgements

First, I would like to thank Prof. Günther Raidl, who allowed me to work on this fantastic
project. In addition, a special thank goes to Thomas Jatschka, whom I would like to
thank in particular for his excellent support. The hours of discussions combined with
your advice made the work a successful project.

I would also like to thank Honda R&D for the cooperation and financing of this project.
Special thanks go to Yusuke Okamoto, Hiroaki Kataoka, Tadashi Hayashida from the
Honda Motor Company and Tobias Rodemann from the Honda Research Institute Europe,
who have had a beneficial influence on the project with ideas and data.

Additionally, I thank Matthias Rauscher, who was also involved in the project as part of
his master’s thesis.

Finally, I would like to thank my family and friends for the continued support they have
given me.

ix

Kurzfassung

Diese Arbeit betrachtet das Battery Exchange Station Location Problem 2 (BEXSLP2),
welches zum Ziel hat, die optimale Platzierung von Batterietauschstationen für elektrische
Scooter in einem dicht besiedelten Gebiet zu finden. Dazu wird eine Funktion verwendet,
die mehrere Zielsetzungen gegeneinander abwägt, um so die Errichtungskosten der Batte-
rietauschstationen, die Ladekosten und die Wegstrecken der Kunden und Kundinnen um
die Batterie zu wechseln zu minimieren und gleichzeitig alle Kunden und Kundinnen mit
Batterien zu versorgen. Benutzer können bei solchen Batterietauschstationen entladene
Batterien gegen vollgeladene tauschen. Diese Batterien werden daraufhin wieder geladen
und, sobald sie vollständig aufgeladen sind, wieder zum Tausch angeboten. Die Anzahl
der Batterien, die gleichzeitig geladen werden können, hängt von der Anzahl der Module
ab, die in der Batterieladestation verbaut sind. Jedoch ist die Zahl der Module, die
in Batterieladestationen verbaut werden können, limitiert. Der betrachtete zyklische
Planungshorizont wird in gleich große, aufeinanderfolgende Intervalle unterteilt. Des
Weiteren wird der Weg, den Benutzer sich dabei bewegen müssen, durch einen Start-
und Endpunkt definiert und es wird angenommen, dass sie den schnellstmöglichen Pfad
wählen, wenn sie den Umweg zu einer Batterietauschstation fahren. Um die gewählten
Umwege zu minimieren, ist es möglich, sowohl existierende Stationen mit zusätzlichen
Modulen zu erweitern als auch neue Stationen an vordefinierten Orten zu errichten. Zur
Lösung des Problems wird eine mixed integer linear programming (MILP) Formulierung
entwickelt. Diese wird zusätzlich auch mit einem iterated greedy Algorithmus in einer
matheuristic verschmolzen. Eine matheuristic kombiniert exakte Techniken der mathema-
tischen Programmierung mit heuristischen Methoden. Der iterated greedy Algorithmus
wird zum iterativen Zerstören und Rekonstruieren von Teilen der Lösung verwendet. Da-
bei wird eine Teillösung systematisch erweitert, um den Bedarf an Batterieladestationen
zu erfüllen. Zum Testen der entwickelten Algorithmen werden zum einen Instanzen, die
von Honda R&D zur Verfügung gestellt wurden, als auch künstlich generierte Instanzen
verwendet. Das MILP-Programm ist dabei nicht in der Lage, zufriedenstellende Ergeb-
nisse für die größten Instanzen zu liefern. Die iterated greedy Heuristik kann allerdings
weiterhin bedenkenlos angewandt werden und liefert für eben jene Instanzen um 40%
bessere Resultate. Beachtenswert ist hierbei weiters, dass selbst die initial gefundene
Lösung der iterated greedy Heuristik für die größten Instanzen schon bessere Ergebnisse
liefert als das MILP Programm.

xi

Abstract

This thesis considers the Battery Exchange Station Location Problem 2 (BEXSLP2),
which aims to find the optimal configuration for battery-swapping stations for electric
scooters over an urban region. In order to do so, a multi-objective target function is used
to minimize the setup cost, charging cost, and the distances customers must ride to swap
the battery while providing all customers with batteries. When a battery is exchanged
at a battery-swapping station, it will be charged and, once charging is complete, again
provided to customers. The number of batteries that can be charged simultaneously
depends on the number of battery modules built into the respective station. Furthermore,
the number of modules that can be built into each station is limited. We consider a
cyclical time horizon of one day discretized into equal consecutive time intervals. The
starting and end locations define the trips that customers must travel. Users are always
assumed to take the quickest (shortest) path when traveling to a battery-swapping station.
When determining the optimal placement of stations, it is feasible to construct new
stations (in predefined locations) and/or extend existing stations. A mixed integer linear
programming (MILP) formulation is developed to solve this problem. Moreover, we also
developed an iterated greedy matheuristic that combines the exact approach of the MILP
with a heuristic. This algorithm uses greedy procedures to destroy and (re)construct a
solution iteratively. In each iteration, a partial solution is extended to fulfill the current
demand. A slight variation of the original MILP is used for extending solutions. Both
algorithms are tested on two different sets of instances, one derived from data provided
by Honda R&D and the other generated artificially. The results show that the largest
tested instances are too difficult to solve with our MILP approach. However, in those
cases, the iterated greedy metaheuristic is still applicable and outperforms the MILP by
reducing the gap up to 40%. Additionally, even the construction heuristic outperforms
the MILP in those instance sets.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Problem Statement . 1
1.2 Aim of the Work . 3
1.3 Key Results . 4

2 Methodology 7
2.1 Exact Methods . 7
2.2 Iterated Greedy Heuristic . 10
2.3 Hybrid Methods . 13

3 Related Work 15
3.1 Previous Work . 17

4 The Battery Exchange Station Location Problem 2 19

5 Iterated Greedy Heuristic 25
5.1 Repair & Construction Heuristic . 25
5.2 Destroy Strategies . 28

6 Instances 31
6.1 Honda Instances . 31
6.2 Artificial Instance Set (AIS) . 33

7 Results and Discussion 35
7.1 MILP Results . 36
7.2 Iterated Greedy Results . 46

8 Conclusion and Future Work 61
8.1 Future Work . 62

xv

List of Figures 65

List of Tables 67

List of Algorithms 69

Bibliography 71

CHAPTER 1
Introduction

Electric vehicles and their vast potential as environmentally friendly traffic alternatives
have recently been increasingly acknowledged in all parts of the world. Nevertheless,
their limited range and long charging times still prevent large-scale adoption. However,
swapping batteries is a valid option for electric scooters, contrary to electric cars, since
the batteries are sufficiently compact and light to be directly replaced by a customer in a
few simple steps. Such an implementation would eliminate the need for charging times
and would not take longer than refueling one’s car. In such a scenario, supermarkets or
conventional petrol stations could offer a battery-swapping service in which the customer
would be able to exchange their nearly empty battery for a fully loaded one. Returned
batteries are then recharged on site and, once fully charged, provided for exchange again.
For companies offering such a service, an essential factor of consideration is the placement
of such stations. On the one hand, the costs of constructing battery-swapping stations
must be taken into account. On the other hand, if there are not enough stations, the
adaptation of electric scooters will stagnate or even decrease. Therefore, finding the best
locations for battery-swapping stations is crucial. In Figure 1.1 a depiction of such a
battery swapping station can be seen.

1.1 Problem Statement
The main challenge of the issue addressed in this thesis is to determine the optimal
placement for battery-swapping stations that satisfies a certain amount of customer
demand while at the same time minimizing the costs of building the stations and charging
the batteries and, eventually, minimize the induced delay for traveling to a station during
a trip. In this work, we assume a time horizon of one day that is discretized into equal
consecutive time intervals, for example, hours. Moreover, we consider a cyclical planning
horizon, i.e., the predecessor of the first interval is the last one, and the successor of
the last one is the first interval again. Customer trips are specified as origin-destination

1

1. Introduction

Figure 1.1: A typical battery-swapping station developed by Honda1

(O/D) pairs, and it is assumed that customers always travel on the corresponding shortest
path. Moreover, the number of customers that require new batteries during a trip for
each O/D pair and time interval is known. Batteries can only be exchanged at certain
time intervals (opening hours), which may differ from station to station. The number of
batteries a station can handle, i.e., load simultaneously, is contingent on the number of
battery modules built at the respective station. Each battery module can hold and charge
a certain number of batteries. We specifically distinguish between the initial module
and subsequent modules at a station, as the initial module generally tends to have a
different capacity as well as higher setup costs than the subsequent modules. Due to
production limitations, only a certain number of battery modules can be allocated among
all the stations to extend them. In the production of modules, there is no difference
between the initial and subsequent modules. Stations can only be built at designated
locations. Moreover, existing stations can be further expanded unless the respective
station is already at full capacity.

The problem is inspired by a similar research project - the Battery Exchange Station
1https://global.honda/newsroom/news/2022/p221025eng.html

2

https://global.honda/newsroom/news/2022/p221025eng.html

1.2. Aim of the Work

Location Problem (BEXSLP) of a partner in the industry, Honda R&D, Japan. In contrast,
their problem formulation considers individual users in a more detailed manner, which
makes it hard to find solutions to larger instances of the problem within an adequate time
frame. Therefore, in this work, the formulation mentioned above is adapted by considering
users in an aggregated manner inspired by [JORR20]. Consequently, the formulation
is expected to scale substantially better to problem instances with more customers and
more potential locations for stations than the originally proposed formulation.

1.2 Aim of the Work
This work aims to formulate and solve the Battery Exchange Station Location Prob-
lem 2 (BEXSLP2), which uses features from both the BEXSLP and the Multi-Period
battery-swapping Station Location Problem (MBSSLP) [JORR20]. All three apply dif-
ferent approaches to find the best placement for stations. Compared to the BEXSLP2,
the BEXSLP uses a more detailed model of customer behavior. The MBSSLP is an
approach that generalizes the BEXSLP by aggregating customers and the routes they
ride. However, the MBSSLP needs to account for the same level of detail, i.e., modules or
opening hours. Compared to the MBSSLP, the BEXSLP2 uses a multi-objective objective
function. The objective function weighs in construction cost, charging cost, and induced
delay for customers. The main challenge is to combine the in-depth customer modeling
of the BEXSLP with the performance-enhancing approach to aggregate customers.

Initially, we will present a mixed integer linear programming (MILP) formulation for
the BEXSLP2 and show that the problem is N P-hard. Subsequently, a matheuris-
tic [BMRBR09] combining an iterated greedy approach and mathematical programming
techniques is developed to generate solutions to larger instances. Iterated greedy heuristic
is a concept that was first introduced by Ruiz and Stützle [RS07], in which greedy proce-
dures are used to destroy and (re)construct a solution iteratively. Our iterative greedy
procedure constructs/extends a solution period-wise, i.e., in each iteration, a partial
solution is extended to fulfill not only the current demand but also demand that had so
far been unconsidered at a chosen time interval. A MILP is used for extending solutions.
Afterward, various strategies for destroying a solution will be investigated. A solution is
generally destroyed by selecting a subset of the demand variables and setting it to zero,
generating an infeasible/incomplete solution. Additionally, if a station is destroyed, all
associated demand variables must first be set to zero, and then the station can be set to
zero. According to the iterated greedy scheme, these ’construct-and-destroy’ procedures
will be applied iteratively to improve the solution systematically. Different strategies will
be applied for the destruction and the repairing of the solutions and compared to each
other.

We evaluate our MILP formulation and the iterated greedy scheme on two sets of instances.
One set is derived from data provided by Honda R&D, while the other is generated

3

1. Introduction

artificially. Additionally, a comparison to solutions obtained by solving the BEXSLP is
presented.

1.3 Key Results
The BEXSLP2 can achieve better solutions than the original BEXSLP in less time. We
limited the program’s execution time to four hours and compared the results afterward.
Most instances generated from the data provided by Honda R&D were easily solvable in
the given time frame. The most difficult part is to prove the optimality of a solution.
In the Honda instances, the optimal solutions were found within minutes, while it takes
hours to prove the optimality of the given solution. This, however, was not always
possible in the given time frame. Only the two smallest benchmark sets could be solved
optimally for the artificially generated instance set.

The different weightings of the objective function substantially influence the program’s
performance. In one Honda instance, the problem went from unsolvable within the
four-hour time frame to being solved within seconds by using different weightings for
the objective function. When increasing the delay weight by 200 times, the program
finished after 38 seconds. Increasing it even further, we were able to solve the problem
even faster. The problem is hardest to solve when the cost of delay and construction
are balanced. In the artificially generated instances, we can see that higher weighting of
delay leads to longer solving times and increased optimality gaps.

However, the largest instance set of the artificially generated set proved too hard to solve
for the exact approach, resulting in average gaps up to 82.7%. The implemented iterated
greedy heuristic achieved better results than the MILP program for these benchmark
sets and configurations by a considerable margin. All construction heuristics proved very
effective in providing a better starting point. Even the worst construction heuristics
provided an average gap of only 65.6%. Additionally, we noticed that only destroying sta-
tions and their associated demand does not lead to good quality solutions. We improved
our destroy operators by destroying additional demand from the remaining stations
weighted by the objective function. Using the worst construction heuristic combined with
two hours of repair and destroy, the destroy operators that destroy additional demand
could significantly outperform those without this feature. The average gap for the most
challenging benchmark set improved from around 60% to 50%.

When repairing a solution, we noticed that selecting not a single time period but instead
selecting an interval containing multiple consecutive time periods performs best. It strikes
a good balance between the quality of the solution and the time consumed to construct
the solution. This also holds true for the construction heuristic.

4

1.3. Key Results

Generally speaking, one of the most complex parts of the problem is the combination of
minimizing the delay while at the same time being restricted by the number of modules
that can be built. Not limiting the number of modules leads to smaller gaps and solving
times.

5

CHAPTER 2
Methodology

This chapter provides the terminology and the foundations of the algorithmic concepts
used throughout this work. We review exact techniques, namely linear programming
(LP) and mixed integer linear programming (MILP) models. Afterward, we examine
heuristic methods, which scale better than exact methods.

2.1 Exact Methods
In this section, we give a brief introduction to LP and MILP. It is mostly based
on the works of Bertsimas and Tsitsiklis [BT97], Bertsimas and Weismantel [BW05],
Dantzig [DT03], Nemhauser and Wolsey [WN99], and Schrijver [Sch98].

2.1.1 Linear Programming
Initially, we start by defining an LP. Suppose that we have a vector of n continuous decision
variables x = (x1, . . . , xn) with x ∈ Rn and an associated cost vector c = (c1, . . . , cn)
with c ∈ Rn. An LP problem looks, as defined by Bertsimas and Tsitsiklis [BT97], as
follows:

min c′x (2.1)
subject to a′

ix ≥ bi ∀i ∈ M1 (2.2)
a′

ix ≤ bi ∀i ∈ M2 (2.3)
a′

ix = bi ∀i ∈ M3 (2.4)
xj ≥ 0 ∀j ∈ N1 (2.5)
xj ≤ 0 ∀j ∈ N2 (2.6)

7

2. Methodology

The objective of any linear program is to find a variable assignment x that minimizes
the objective function given in Equation (2.1). Note that any minimization problem can
be transformed into an equivalent maximization problem and vice versa by using the
following equality:

min c′x = max −c′x (2.7)

This corresponds to multiplication with −1. Nevertheless, the problem dealt with in this
thesis is a minimization problem; therefore, this section only focuses on the minimization
variant. The remaining Equations (2.2) - (2.6) are called the constraints of the program,
which x needs to satisfy. If x satisfies all constraints, then x is a feasible solution. The set
of all feasible solutions is called the feasible set and forms the feasible region. A feasible
solution x that also minimizes the objective function is called an optimal solution. It
follows that the value of the solution is c′x. It is possible that multiple optimal solutions
exist or that no solution exists (if the feasible set is empty). Moreover, equalities may
be converted into inequalities and vice versa. To transform an equality a′

ix = bi one
must add the inequalities a′

ix ≥ bi and a′
ix ≤ bi. In the opposite direction inequalities

of the form a′
ix ≥ bi can be reformulated using a slack variable si ∈ R as a′

ix + si = bi.
Consequently, we can formulate LP problems using terms of the form a′

ix ≥ bi exclusively.
Therefore, the given form can be written in a more compact way using matrix notation:

min c′x (2.8)
subject to Ax ≥ b (2.9)

Duality

An important concept that is especially relevant to solve MILPs are bounds. There are
two types of bounds: primal and dual bounds. Primal bounds satisfy all constraints;
therefore, a primal bound is an upper bound for a minimization problem. A dual bound
refers to the theoretically best possible value, typically achieved with relaxation of the
problem, and is consequently a lower bound for a minimization problem. (On the other
hand, in the case of a maximization problem, the primal bound is the lower bound while
the dual bound is the upper bound.) Additionally, every feasible solution to the dual
problem also provides a valid dual bound for the primal problem, which is stated in the
following theorems:

Theorem 2.1.1. Weak duality. Let c and p be feasible solutions to the primal and the
dual problem, respectively, then

p′b ≤ c′x (2.10)

Moreover,

Theorem 2.1.2. Strong duality. If a linear programming problem has an optimal solution,
so does its dual, and the respective solution values are equal.

8

2.1. Exact Methods

Solving Linear Programs

Today’s most relevant algorithm to solve linear programs is the simplex algorithm proposed
by Dantzig [Dan90], which is widely used due to its good performance. The algorithm
starts using an initial arbitrary basic feasible solution and moves iteratively to another
adjacent feasible solution using a so-called pivoting step. A pivoting step replaces one
active basic variable with a nonbasic variable. A basic variable is a variable that is part
of the feasible solution. However, only variables that reduce the cost are eligible. Finally,
such a step is no longer possible after a finite number of pivoting steps. In this case, we
know that the current solution is optimal. Although this method has an exponential
run-time in the worst case, it is the fastest solution method in practice. Compared to
the simplex method, Khachiyan proved in 1979 [Kha79] that the ellipsoid method could
solve LP problems in polynomial time. Consequently, it is known that LP problems are
P-hard. Nevertheless, the ellipsoid method is only of theoretical interest due to its poor
performance in practice. Another algorithm that can solve an LP in polynomial time is
the interior point method proposed by Karmarkar [Kar84]. Compared to the ellipsoid
method, the interior point method is still relevant as it is used in combination with
simplex algorithms in state-of-the-art LP solvers. Commercial LP solvers offer several
algorithms and can often decide which algorithm performs best for a given problem.

2.1.2 Mixed Integer Linear Programming
The previous section stated that LP problems are in P , i.e., can be solved in polynomial
time. The idea of MILP is to expand LP by adding discrete variables. Those can be
either binary variables, i.e., only zero and one, or be contained in Z. One benefit of
using binary variables is, for example, that they enable the usage of solution components,
i.e., in our case, this is used to describe whether a station is built or not. Nevertheless,
this comes at the cost that the problem is no longer contained in P. Therefore, MILP
problems are N P-hard, which means that we can no longer expect to solve a MILP in
polynomial time unless P = N P . A MILP problem is defined as follows:

min c′x + d′y (2.11)
subject to Ax + By ≤ b (2.12)

x ≥ 0 (2.13)
y ∈ Zn (2.14)

Solving Mixed Integer Linear Programming

Since MILP problems are N P-hard, they can no longer be solved like the LP problems.
Therefore, a typical approach to those problems is to consistently improve both the
primal and the dual bound, i.e., for a minimization problem, decreasing the primal and
increasing the dual bound. The optimal solution is found if the primal and dual bounds
are equal. Modern computing typically achieves this if the difference between the primal

9

2. Methodology

and dual bound is lower than some small nonnegative value ϵ. A prime example of
this procedure is branch and bound (B&B). Such an algorithm partitions the search
space into subproblems, a procedure called branching, and calculates the bounds for said
subproblems called bounding. The best-found solution is called incumbent, which can
also be used as primal bound. Different strategies are used to determine which subtree
should be explored, e.g., depth-first search, best-node-first search, or breadth-first search.
The advantages of the different strategies and more detailed information can be found in
the book by Wolsey and Nemhauser [WN99]. An essential aspect of B&B is that the
number of subproblems will be consistently reduced. There are three typical ways a
subproblem will be pruned by either

• Prune by infeasibility, i.e., a subproblem does not contain any valid solutions

• Prune by optimality, i.e., primal and dual bound are equal; therefore, the solution
is already known

• Prune by bound, i.e., the best known bound already is better than any solution
possible in the subproblem

2.2 Iterated Greedy Heuristic
Typically, N P-hard problems can no longer be proven to optimality if the problem is
complex enough due to limitations of available computational resources. Consequently,
heuristics are often the only solution available if one wants to achieve good results. The
goal of a heuristic is to provide reasonable but only sometimes optimal solutions. In
our case, we decided that the iterated greedy heuristic originally proposed by Ruiz and
Stützle [RS07] suits the problem best. The main idea of the heuristic is as follows. At
first, we create an initial solution with a greedy construction heuristic, i.e., in a traveling
salesperson problem, for example, we could always pick the best available edge until
we have completed the trip. Afterward, the heuristic makes use of destruction and
construction phases iteratively. An algorithmic outline of the iterated greedy algorithm
is given in Algorithm 2.1. The remaining chapter will be primarily based on Stützle and
Ruiz [SR18]

2.2.1 Greedy Construction Heuristic
A greedy construction heuristic aims to build a solution step by step, starting from
nothing or an already partial solution. Iteratively we add a solution component (i.e., the
edge in a traveling salesperson problem) to the current partial solution until we obtain
a complete and valid solution. It is called greedy because each time a component is
added, a function estimates each component’s value and the best component will be
selected. This is further illustrated in Algorithm 2.2. Instead of always choosing the
same best-rated solution, we can also use let randomness influence the chosen component.
A common modification to the simple greedy construction heuristic would add a function

10

2.2. Iterated Greedy Heuristic

Algorithm 2.1: Iterated Greedy
Input: variable(s) v need to create an initial solution
Output: potentially improved solution s

1 s∗ = GenerateInitialSolution(v)
2 while termination criterion not met do
3 sp = Destruction(s∗)
4 s

′ = Repair(sp)
5 s∗ = AcceptanceCriterion(s∗, s

′)
6 end
7 return s∗

that selects components at random; however, better components are preferred. Such a
procedure would be a weighted random greedy construction heuristic. A possible example
of such a function is tournament selection which will be explained later in Chapter 2.2.5

Algorithm 2.2: Greedy Construction Heuristic
Input: -
Output: a solution s with its objective value

1 s = {}
2 obj_value = 0
3 while s is not a complete solution do
4 choose a best-rated solution component c with value v
5 s = s ∪ c
6 obj_value = obj_value + v
7 end
8 return s, obj_value

The advantages of a greedy construction heuristic or a weighted random greedy con-
struction heuristic include that they are relatively fast at generating an initial solution,
which is typically better than completely randomly created solutions. Secondly, greedy
algorithms are often used to seed local search methods such as iterative improvement
algorithms, leading to improved local optima quality, faster identification of local optima,
and a better trade-off between computation times and solution quality. Finally, in some
cases, it is possible to obtain some guarantees of the quality of a solution due to the
greedy construction heuristic. Note that the construction procedures used to generate
the initial solution and the procedure used to repair a solution may differ.

2.2.2 Destruction
Two main aspects must be considered regarding the destruction of a given solution. The
first interesting question is: How much of the solution should be destroyed? Neither
destroying only one solution component nor destroying every solution component is

11

2. Methodology

desirable. The first would result in a randomized local search, while the latter would
result in the constant application of the construction heuristic. Everything in between is
a trade-off between search intensification and diversification. Removing large parts of
the solution components allows for more distant solutions, while smaller parts result in a
more localized search. It is also possible to change or adapt the value between iterations
proposed by Battiti et al. [BBM08]. The second important question is which components
should be removed. Possibilities range from random selection to weighing function, which
removes the perceived worst component of the solution. It is also possible to combine
those ideas by selecting those components which are the worst with a higher probability.

2.2.3 Repair
A repair algorithm is used to restore a partial solution (because some components were
destroyed before). Again, as was already mentioned with the construction heuristic
for the initial solution, a straightforward way is using a deterministic greedy algorithm.
However, it should be noted that every combination or idea that can achieve good results
and repair a partial solution is a viable option for the repair heuristic.

2.2.4 Acceptance Criterion
The acceptance criterion defines which solution is the base of the subsequent destroy
& repair cycle, i.e., either the new solution is accepted, or the old one remains the
base. The most extreme acceptance criteria are that either only improvements will be
accepted or every new solution will be accepted. This, again, is a trade-off between
search intensification and diversification. A typical approach is the Metropolis criterion.
If a solution is an improvement, it is automatically accepted. If the solution is not an
improvement, it is accepted depending on the quality of the solution and the temperature.
The temperature in the algorithm is a series of numbers approaching zero. The higher
the temperature, the more likely it is that a worse solution will be accepted.

Gap

Another aspect we want to highlight is the computation of the optimality of a solution.
Since we already know that solving MILP problems is N P-hard, more complex problems
cannot be solved optimally in feasible time. Consequently, we use gaps to measure the
optimality of a solution. A gap, therefore, measures the quality of a solution. We use the
following definition by Gurobi 1 to measure our MILP gaps.

Let zp correspond to the primal bound, which in that case has the same objective value
as the incumbent solution to our problem, and let zd refer to the best found dual bound
to the same problem. Then the gap of the solution is calculated using zp and zd by

gap = 100% · |zp − zd|
|zp| . (2.15)

1https://www.gurobi.com/

12

https://www.gurobi.com/

2.3. Hybrid Methods

Nevertheless, an iterated greedy heuristic only improves the primal bound. Therefore, to
calculate the solution gap, we use the value of the dual bound found by the corresponding
MILP run. Henceforth, let f∗ be the objective value of the solution generated by the
heuristic and zd the dual bound found using the MILP. Then we calculate the gap of the
heuristic gap∗ as:

gap∗ = 100% · |f∗ − zd|
|̃f∗| . (2.16)

2.2.5 Tournament Selection
Tournament selection is a method of selecting individuals from a population. In this thesis,
we often require a pseudo-random distribution. Therefore, we decided on a tournament
selection. The reason for this is that we need some elements of randomness. However, we
want to avoid complete randomness. We instead prefer to select better elements more
often. In more detail, this results in the following; k elements of the whole population
are selected randomly. Those k elements are then sorted using a function; for example,
this could be the demand associated with the element. Consequently, the element with
the highest weight is the first element on the list. The first element of the list has a
probability of p to be chosen. If the first element is not chosen, the second element has a
chance of p being chosen again. Therefore, the probability that the element at a given
position pos in the list is chosen is defined as p · (1 − p)pos−1.

2.3 Hybrid Methods
So far, only pure versions of exact and metaheuristic solution approaches have been
discussed. However, in practice, hybrid approaches, i.e., approaches combining multiple
techniques, often perform best. In this thesis, we want to focus primarily on matheuristics.
A matheuristic is a technique that combines a metaheuristic with mathematical program-
ming. The goal is to exploit the individual advantages of each approach. Puchinger and
Raidl [PR05] describe that there are typically two possibilities to combine mathematical
programming and a heuristic. Either use mathematical programming embedded in
heuristic algorithms or metaheuristics to improve known mathematical programming
techniques. The rest of the section is also based on Puchinger and Raidl [PR05]. Further
information, as well as more detailed examples, can also be found there.

Regarding the first possibility, there are many applications. One of those is to solve
relaxed problems exactly. Advantages include deriving promising initial solutions as well
as heuristically guiding neighborhood search, recombination, mutation, repair and local
improvement. Another application is to search neighborhoods in metaheuristics utilizing
exact algorithms, also known as (Very) Large Neighborhood Search ((V)LNS). The
benefit of incorporating exact methods is that if the neighborhood is chosen appropriately,
they can search relatively large neighborhoods and still be an effective search method.

13

2. Methodology

The second possibility (not used in this thesis) is to obtain incumbent solutions and
bounds, cutting planes and the pricing of columns.

14

CHAPTER 3
Related Work

In this chapter, we present existing works related to this thesis. At first, we aim to
classify the problem. Afterward, we present interesting projects that either solve similar
problems or use similar aspects used in the thesis. Finally, this thesis is a continuation of
works previously undertaken by the TU Wien and Honda R&D, Japan.

The BEXSLP2 can be classified in various ways, each describing and focusing on different
aspects of the problem. According to Boloori et al. [BF12], it can be classified as Facility
Location-Allocation Problem [BF12], i.e., an optimization problem where there is a finite
set of users with demand for a service and a finite set of potential locations for facilities
that will offer said service to the users. A Facility Location-Allocation Problem is the
most basic version of the problem to which it can be reduced. It also resembles the
Capacitated Multiple Allocation Fixed Charge Facility Location Problem investigated by
Laporte et al. [NSdG19] in which customers need to be assigned to facilities to satisfy
their demand while minimizing the costs for building facilities and serving customers.
Another important aspect of this problem is that charging takes time, which limits the
battery slots considerably. Therefore, it can also be classified as a Multi-Period Facility
Location Problem [NSdG19] to highlight that the problem should be solved concerning a
time horizon. When limiting the number of stations (or modules), the problem may be
categorized as a p-Median problem, according to Laporte et al. [NSdG19].
Problems regarding the optimal placement of recharging or refueling stations for electric
vehicles are well-studied in academic literature. Yan et al. [YLK21] are looking for the
optimal placement of battery charging stations concerning tourism activities in Taichung
City, Taiwan. They formulated their model as an integer network flow problem with side
constraints. Similarly, Efthymiou et al. [ECMA17] tried to solve the optimal placement
of electric vehicle charging stations in Thessaloniki. They used linear programming with
multi-objective optimization and a genetic algorithm. Lin et al. [LLKL22] developed
a grid-based multi-objective stochastic allocation model to solve the problem of the

15

3. Related Work

optimal placement of battery-swapping stations. In one of his previous works, Lin et
al. [LLYL21] also proposed an optimal scooter battery-swapping station allocation model
with uncertainty, which featured a Monte Carlo simulation to solve the uncertainty
of battery-swapping event. Wang et al. [WYW+19] proposed an improved differential
evolutional algorithm combined with the Monte Carlo searching method to obtain the
optimal location of battery-swapping stations in a region in Beijing, China.

Using a MILP model to solve Facility Location or Location-Allocation problems is also
very common. Due to the limited availability and accessibility of maternal healthcare
clinics in India, Chousksey et al. [CAT22] proposed a MILP model to solve a hierarchical
capacitated facility location-allocation problem to predict the optimal placement of such
clinics. Additionally, they also made use of valid inequalities to improve the model
further. Rathore et al. [RSS20] tried to improve urban solid waste management in India.
The objective was to determine the number and placement of garbage bins required;
therefore, it was necessary to solve a location-allocation problem they formulated as a
MILP model. Boujelben et al. [BGM16] studied a multi-period facility location problem.
A two-phase solution approach was developed to solve said problem. In the first phase,
a clustering procedure based on set-partitioning formulation was used to calculate the
distances and costs of transport from distribution centers to customers. In the second
phase, the calculated costs are input to the facility location problem, formulated, and
solved as a mixed integer linear programming program. After encountering problems
to solve larger instances of said problem, they also proposed a linear relaxation-based
heuristic.

Ruiz and Stützle [RS07] first proposed the iterated greedy algorithm. It essentially
consists of two main phases, namely a destruction and construction phase, which are
applied consecutively. This operation is executed multiple times on a given solution. For
a problem similar to the BEXSLP2, Guo et al. [GYL18] used the iterated greedy heuristic.
Compared to the BEXSLP2, they did not consider periods; thus, the time required for a
battery to charge was also not part of their research. Consequently, it would be difficult
to model whether a station is fully occupied by batteries (which are all recharging).
Instead, they focus on the users’ range anxiety and distance deviations, which they iden-
tified as major barriers to the mass adoption of electric vehicles. Gokalp et al. [Gok20]
utilized the iterated greedy heuristic to solve an Obnoxious p-Median Problem. The work
sought to maximize the distance between each non-facility location and its nearest facility.

A very similar approach to ours was used by Yang et al. [YS15] in their attempt to
solve their battery swap stations location routing problem. For the optimal placement
of the battery-swapping station, they, too, used a MILP model, which is used in an
iterated greedy heuristic. However, before that, they needed to generate a routing plan
with a modified sweep algorithm. This approach was expanded by Liu et al. [LGL19] by
considering time windows. Jamshidi et al. [JCvEN21] pursued a different goal. Their
work aims to optimize taxi requests; therefore, charging electric vehicles during the day

16

3.1. Previous Work

is necessary. They solve this problem using three MILP models sequentially, which use
different granularity of the considered time frame. The first considers the whole day in
an aggregated fashion. The second and third variants consider smaller pieces of a day
and are used to optimize decision-making for the individual vehicle.

3.1 Previous Work
The BEXSLP2 is based on the MBSSLP [JORR20] and the BEXSLP developed by Honda
R&D, Japan. The MBSSLP aims to identify optimal battery-swapping station locations
and appropriately determine their capacities to cover a specified level of assumed demand
at minimum cost. A MILP, modeling the customer demand over time in a discretized
fashion and considering battery charging times, is proposed. Additionally, the MBSSLP
also considers an inevitable dropout of customers when assigned to stations inducing
long detours.

17

CHAPTER 4
The Battery Exchange Station

Location Problem 2

In the Battery Exchange Station Location Problem 2 (BEXSLP2), the task is to plan
the setup of new stations to exchange batteries for electric scooters or extend existing
stations to minimize three different objectives while satisfying an expected demand. The
three objectives are (a) the setup cost for additional stations and extension modules, (b)
the cost of charging batteries, and (c) the total duration of detours for users to exchange
batteries.

We consider a time horizon of one day discretized into equally long consecutive time
intervals, for example, hours. These intervals are indexed by T = {1, . . . , tmax}. Moreover,
we consider the planning horizon to be cyclic, i.e., the predecessor of the first interval is
the last one, and the successor of the last one is the first interval.

We make the simplifying assumption that charging any battery always takes the same
time, and only fully recharged batteries are provided to customers again. Moreover, as
trips in an urban environment are usually relatively short, we further assume that trips
start and end in the same time interval.

We assume a battery-swapping station can be set up at any of n different locations
referred to as L = {1, . . . , n}. Each location l ∈ L has an associated

• setup cost cl ≥ 0 for setting up a station with an initial configuration of BEX
modules at this location;

• setup cost cmodul
l ≥ 0 for each additional BEX module at a location where a station

is set up or exists already;

• capacity in terms of the number of battery slots of the initial station configuration
sini

l ∈ N;

19

4. The Battery Exchange Station Location Problem 2

• maximum number of additional BEX modules allowed at location emax
l ∈ N;

• timespan T ex
l ∈ T , in which the station is open for customers and batteries may be

exchanged;

• and charging costs cdch
l ≥ 0 and cnch

l ≥ 0 for batteries during daytime and nighttime
(i.e., outside daytime) charging hours, respectively.

The capacity of subsequent modules smodul is the same for all stations.

We also consider that at some locations l ∈ L, a station with a corresponding configuration
of BEX modules may have already been set up at a previous time. In this case, the costs
cl for setting up the station are zero. The initial station configuration sini

l accounts for
all existing slots, including the already existing extension modules. If feasible, such a
station may still be extended by installing up to emax

l additional BEX modules.

Customer travel demands are given for origin-destination (O/D) pairs Q; let m = |Q| be
the number of these O/D pairs. Moreover, let wq ≥ 0 be the expected travel time for
each O/D pair q ∈ Q when taking the most direct route without exchanging batteries.
Furthermore, let w̃l

q be the expected travel time for the O/D pair q ∈ Q when making the
fastest possible detour to location l ∈ L for exchanging batteries there. Clearly, w̃l

q ≥ wq

will hold for any q ∈ Q, l ∈ L.

We only consider one type of battery but different vehicle types that require different
numbers of batteries. We assume that all vehicle batteries are always exchanged together
simultaneously. Let I ⊂ N be the set of vehicle types represented by the corresponding
numbers of needed batteries. The expected number of users with vehicle type i ∈ I that
need to change batteries on trip q ∈ Q during a time interval t ∈ T is denoted as dt

qi.

All customer demand has to be fulfilled.

dsat =

q∈Q

t∈T

i∈I

i · dt
qi. (4.1)

Note that we weigh demands by the number of batteries of their respective vehicle type,
such that vehicles with fewer batteries are not favored during the optimization, as vehicles
with more batteries require more resources to satisfy their demand.

Moreover, the number of total BEX modules is restricted due to production limitations.
Therefore, zmodules ∈ N refers to the maximum number of available BEX modules.

A solution is primarily given by a pair of vectors x = (xl)l∈L ∈ {0, 1}n and y = (yl)l∈L

with yl ∈ {0, . . . , emax
l } where xl = 1 indicates that a swapping station is to be used at

location l and yl is the corresponding number of additionally installed BEX modules.
BEX modules may only be allocated at locations where a swapping station is located,
i.e., xl = 0 → yl = 0, or expressed as a linear inequality

emax
l · xl ≥ yl, l ∈ L. (4.2)

20

Consequently, the maximum number of battery slots at a location l is sini
l · xl + smodul · yl.

It is assumed that customers who want to exchange batteries specify their trip data
(origin, destination, approximate time) online and are automatically assigned to an
appropriate station for the exchange (if one exists). This way, better utilization of the
swapping stations can be achieved. Consequently, let assignment variables at

qli denote
the part of the expected demand of O/D pair q ∈ Q and vehicle type i ∈ I which we
assign to a location l ∈ L during time interval t ∈ T ex

l .

A battery returned to a station l ∈ L during a period t ∈ T ex
l can only be provided to a

customer again after tc periods from T have passed. We denote the set of times in which
a battery is being charged when returned to a station at time t as T ch(t) with t being
the time in T at which the battery starts charging and ((t + tc − 1) mod tmax) + 1 being
the last time period in which the battery is being charged.

In the MBSSLP, returned batteries are unavailable for tc periods by effectively reducing
a station’s capacity of batteries available for an exchange within the next tc periods after
an exchange. Similarly, for the BEXSLP2, it must hold that

t′∈T ch(t)

q∈Q

i∈I

i · at′
qli ≤ sini

l xl + smodulyl ∀l ∈ L, t ∈ T ex
l (4.3)

The goal of the BEXSLP2 is to minimize three different objectives. The first objective is
to minimize the setup costs for stations and their corresponding BEX modules, i.e.,

l∈L

(clxl + cmodul
l yl). (4.4)

The second objective is to minimize the total charging costs. For this purpose let cch
lt

refer to the costs for charging a battery at station l ∈ L during time interval t ∈ T , i.e.,

cch
lt =

�
cdch

l for t ∈ T dch,

cnch
l else.

(4.5)

The total cost of fully charging a battery cchret
lt at location l starting with interval t ∈ T

is therefore

cchret
lt =

t′∈T ch(t)

cch
lt′ . (4.6)

Then, considering the assignment variables at
qli over all locations, O/D pairs, vehicle

types, and opening times, the total charging costs are

l∈L

q∈Q

i∈I

t∈T ex

l

cchret
lt · i · at

qli. (4.7)

21

4. The Battery Exchange Station Location Problem 2

Finally, besides minimizing the station setup and battery charging costs, our last objective
is also to minimize the total travel delay induced by the detours for charging; thus, the
sum of the differences in travel times between the routes with the charging at the assigned
stations and the corresponding direct routes, calculated by

l∈L

q∈Q

�
w̃l

q − wq


·

t∈T ex

i∈I

at
qli. (4.8)

We linearly combine the different objectives with weights αsetup > 0, αcharging > 0 and
αdelay > 0 to obtain the total objective function.

In summary, we express BEXSLP2 by the following MILP.

min αsetup

l∈L

(clxl + cmodul
l yl) +

αcharging

l∈L

q∈Q

i∈I

t∈T ex

l

cchret
lt · i · at

qli +

αdelay

l∈L

q∈Q

�
w̃l

q − wq


·

t∈T ex

l

i∈I

at
qli

(4.9)

emax
l · xl ≥ yl ∀l ∈ L (4.10)

l∈L|t∈T ex
l

at
qli ≤ dt

qi ∀t ∈ T , i ∈ I, q ∈ Q (4.11)

t′∈T ch(t)

q∈Q

i∈I

i · at′
qli ≤ sini

l xl + smodulyl ∀l ∈ L, t ∈ T ex
l (4.12)

q∈Q

l∈L

t∈T ex

l

i∈I

i · at
qli ≥ dsat (4.13)

l∈L|cl>0

xl +

l∈L

yl ≤ zmodules (4.14)

xl ∈ {0, 1} ∀l ∈ L (4.15)
yl ∈ {0, . . . , emax

l } ∀l ∈ L (4.16)

0 ≤ at
qli ≤ min

�
sini

l + emax
l · smodul

i
, dt

qi

�
∀l ∈ L, t ∈ T ex

l , i ∈ I, q ∈ Q (4.17)

The objective function (4.9) minimizes the total setup costs, the total charging costs,
as well as the total detours of customers as defined by Equations 4.4, 4.7, and 4.8.
Inequalities (4.10) link variables xl and yl and correspond to (4.2). Constraints (4.11)
enforce that the total demand assigned from an O/D pair q to locations does not exceed
dt

qi during all periods. Inequalities (4.12) ensure that the required battery modules are
available at all locations over all periods. The minimal satisfied demand to be fulfilled
over all time intervals is expressed by inequality (4.13). Similarly, Constraint (4.14)
restricts the number of BEX modules available. Finally, the domains of the variables are
given in (4.15)–(4.17).

22

Theorem 4.0.1. The BEXSLP2 is N P-hard.

Proof. N P-hardness of the BEXSLP2 is proven by providing a reduction from the
well-known capacitated facility location problem (CLP) known to be N P-hard.
Let Λ be a set of all facilities and M be the set of customers. Further, let γλ denote the
fixed cost of opening facility λ ∈ Λ and let ωλµ refer to the costs of shipping a product
from facility λ ∈ Λ to customer µ ∈ M . Moreover, δµ denotes the demand of customer
µ ∈ M . Let oλ refer to the capacity of a facility λ ∈ Λ. Let binary variables ψλ indicate
whether a facility λ ∈ Λ is opened or not, and let variables βλµ refer to the fraction of
demand of customers µ assigned to a facility λ. The goal is to minimize the overall costs.
Then, a linear model for the CLP is formulated as follows.

min

λ∈Λ

µ∈M

ωλµδµβλµ +

λ∈Λ

γλψλ (4.18)

s.t.

λ∈Λ

βλµ = 1 ∀µ ∈ M (4.19)

µ∈M

δµβλµ ≤ oλψλ ∀λ ∈ Λ (4.20)

βλµ ≥ 0 ∀λ ∈ Λ, ∀µ ∈ M (4.21)
ψλ ∈ {0, 1} ∀λ ∈ Λ (4.22)

Constraint 4.18 is the objective function of the CLP, which minimizes both the total
setup cost and the cost of shipping the product. Equation 4.19 states that all customer
demand must be fulfilled, whereby any combination of facilities can fulfill the demand.
Constraint 4.20 ensures that the capacities of a facility are not exceeded. Finally, the
domains of the variables are given with 4.21 and 4.22.
Given an instance to the CLP, we construct a corresponding BEXSLP2 instance in which
the set of locations V corresponds to the set of facilities Λ and the set of O/D-pairs
Q corresponds to the set of customers M . The constructed BEXSLP2 instance only
has a single time interval T = {1}, and depleted batteries are immediately available in
the next interval, i.e., tc = 0. Additionally, there is only a single battery type I = {1}.
Moreover, wq = 0 for all q ∈ Q and w̃l

q corresponds to the associated shipping costs ωλµ

with λ = l, µ = q. The demand d1
ql of an O/D-pair q ∈ Q corresponds to δµ with µ = q.

The fixed costs cl for opening a station l with some initial configuration are γλ. The
initial configuration of a station l is chosen according to oλ with l = λ. Besides the first,
no further modules can be added to a station. There are no restrictions on the number
of stations that can be opened. Costs for charging batteries cch

l1 are zero for all stations
l ∈ L. Consequently, αcharging = 0, while αsetup = αdelay = 1. Finally, we require all
demands to be satisfied by a station, i.e., dsat = 1.
Let (x, y, a) be a feasible solution to this derived BEXSLP2 instance. Note that yl = 0
for all l ∈ L. A corresponding feasible solution to the CLP (ψ, β) can be derived by

23

4. The Battery Exchange Station Location Problem 2

• opening all locations λ ∈ Λ for which xl = 1 with l = λ

• and by assigning a1
ql1 demand of customer µ to facility λ with l = λ, q = µ.

Constraint (4.12) ensures that the capacities of a facility are not exceeded, and Con-
straint (4.13) ensures that all demand is satisfied. Therefore, the resulting solution is
a feasible CLP solution. Additionally, the objective value of the solution (x, y, a) is
also the objective value of the corresponding CLP solution (ψ, β). Since all applied
transformations require polynomial time, the BEXSLP2 is N P-hard.

24

CHAPTER 5
Iterated Greedy Heuristic

In this section, we present an approach for constructing a solution to the BEXSLP2
using an iterated greedy heuristic. Starting from an initial solution, an iterated greedy
algorithm consists of two alternate phases. In the first phase, a solution will be partially
destroyed, while the heuristic will try to repair the partial solution in the second phase.
Typically, the repair operation is used to construct the initial solution. Nevertheless, the
initial solution can also be created using a different greedy heuristic. Moreover, each
repair phase consists of multiple iterations in our case, with each iteration considering
only a subset of the problem and the already partially constructed solution. Our repair
heuristic uses a very similar formulation to the original MILP. The main change is that
the formulation now focuses on solving the MILP for selected time intervals which are a
subset of T , and each iteration builds upon the solution of the previous iteration. After
constructing an initial solution, the destruction and repair steps alternate in which we
destroy parts of the solution (i.e., stations, modules, and the assigned demand) and then
repair the partial solution in the following step. The best existing solution is used as a
starting point for the subsequent destruction operation. To construct the initial solution,
we use the same procedures that we also use to repair a solution.

5.1 Repair & Construction Heuristic

We construct a solution iteratively over T considering only the customer demand of a
subset of time intervals (and unassigned demand from previous intervals) at each iteration.
Let (x̂, ŷ, â) refer to a partial solution concerning a set of time intervals T ′ ⊆ T or a
partial solution created by the destroy and repair cycle. Furthermore, let τ ⊆ T be the
time intervals selected in this iteration. No element of τ is yet in T ′ . After each execution
of the MILP, the elements of τ will be added to T ′ .

25

5. Iterated Greedy Heuristic

Moreover, let
dsat[τ] =

q∈Q

t∈τ

i∈I

i · dt
qi. (5.1)

We solve the following MILP multiple times for the new time intervals τ ⊆ T \ T ′ :

min αsetup

l∈L

(clxl + cmodul
l yl) +

αcharging

l∈L

q∈Q

i∈I

t∈T ex

l

cchret
lt · i · at

qli +

αdelay

l∈L

q∈Q

�
w̃l

q − wq


·

t∈T ex

l

i∈I

at
qli

(5.2)

emax
l · xl ≥ yl ∀l ∈ L (5.3)

l∈L|t∈T ex
l

at
qli ≤ dt

qi ∀t ∈ τ, i ∈ I, q ∈ Q (5.4)

t′∈T ch(t)

q∈Q

i∈I

i · at′
qli ≤ sini

l xl + smodulyl ∀l ∈ L, t ∈ T ex
l (5.5)

q∈Q

l∈L

t∈T ex

l
∩τ

i∈I

i · at
qli ≥ dsat[τ] (5.6)

l∈L|cl>0

xl +

l∈L

yl ≤ zmodules (5.7)

xl ∈ {x̂l, 1} ∀l ∈ L (5.8)
yl ∈ {ŷl, . . . , emax

l } ∀l ∈ L (5.9)

ât
qli ≤ at

qli ≤ min
�

sini
l + emax

l · smodul

i
, dt

qi

�
∀l ∈ L, t ∈ τ, i ∈ I, q ∈ Q (5.10)

As mentioned, the MILP is almost identical to the original BEXSLP2 MILP (4.9)–(4.17).
However, already assigned demand â and previously decided location capacities (x̂, ŷ) are
preserved in the new solution with (5.8)–(5.10). Moreover, the MILP also aims to satisfy
all demand, as does the original MILP. However, only concerning the customer demand
at time intervals in τ . Note, however, that it is not guaranteed that the MILP can always
extend a solution. Opening a station provides fewer BEX modules than extending a
station. Sometimes opening a station can result in no feasible solution because fulfilling
all demand is no longer possible.

5.1.1 Repair Strategies
This section describes the different strategies for repairing an incomplete solution. While
all strategies use the MILP formulation described above, the strategies differ in the
order and groups in which the time intervals are selected. One key takeaway is that,

26

5.1. Repair & Construction Heuristic

in general, it may be advantageous to reduce the number of iterations in our iterated
greedy procedure, which would have tmax iterations if each iteration only considered
one interval. This is because some overhead will always remain, even when solving a
single iteration is trivial. To reduce this effect, we do not consider iterations with zero
associated demand. We also group different intervals in a single iteration step, referred
to as buckets. We propose different approaches that can improve the quality of the
solution further. Reducing the number of iterations/buckets too drastically decreases the
performance because the remaining iterations are hard to solve. Therefore, the strategies
below try to find a balance between reducing the number of iterations without drastically
increasing the time a single iteration takes.

The following repair strategies share two parameters. The first parameter, sz, describes the
size of a bucket, i.e., how many succeeding time intervals are grouped in a single iteration.
The second parameter, co, indicates after how many time intervals the procedure is cut
off, and the remaining instance is solved by combining all remaining timestamps into
one iteration. The idea of this parameter is that the remaining time intervals barely
impact the previously constructed solution and are less challenging to solve. This results
from the non-uniformly distributed demand of the different intervals. Therefore, after a
certain number of iterations of the repair procedure, solving the remaining time intervals
in a single iteration is more efficient. To simplify the notation, whenever we use a cutoff,
it is a cutoff of 12 iterations. Consequently, the name will be simplified to, e.g., sz=1 .
The sequence in which the buckets will be selected is again determined pseudo-randomly
using tournament selection. The buckets will be selected by the demand associated with
the time frame, with more significant demand being more likely to be picked first.

Strategy sz=1 . This is the baseline strategy. We rebuild the solution one time period
at a time until all time periods with demand associated with them have been considered.

Strategy sz=tc. A unique variation of the first strategy is if the bucket size is tc + 1
intervals. This strategy then considers an entire charging cycle, i.e., the time it takes to
charge a battery fully. Therefore, the demand associated with a t ∈ T is the demand
associated with T ch(t), which contains an entire loading cycle. The demand for each t
can then be determined by

q∈Q

i∈I

t′∈T ch(t)

i · dt′
qi ∀t ∈ T (5.11)

The elements in T ch(t) are removed from the list of available elements and are no longer
considered in the calculation for the associated demand. The order in which the intervals
are selected is determined using tournament selection introduced in Chapter 2.2.5.

Strategy sz=dyn. Another unique case is sz=dyn. In this variation, the size of the
bucket is calculated dynamically. Each bucket should hold the same amount of demand.

27

5. Iterated Greedy Heuristic

The charging cycle with the most associated demand determines the number of buckets.
The charging cycle with the most demand associated with it is calculated by

thd = argmaxt∈T



q∈Q

i∈I

t∈T ch(t)

i · dt
qi

 ∀t ∈ T (5.12)

which will be called thd. We use the demand in this time interval as the upper limit
of how much demand a single bucket should contain. Consequently, we determine the
number of buckets we want to create by

⌈

�
q∈Q

�
i∈I

�
t∈T

i · dt
qi�

q∈Q

�
i∈I

�
t∈T ch

hd

i · dt
qi

⌉ (5.13)

We then use the same idea already used in the other strategies to determine the order
of the intervals with a slight variation. Utilizing tournament selection, we determine a
charging cycle to fill the bucket. Additionally, if space remains in the bucket, we add
adjacent time intervals to the already selected intervals, i.e., at the start intervals, t − 1
and t + tc + 1 are considered. Since T is a cyclical collection of intervals, we consider
the first and last interval tmax neighbors. Moreover, the interval with more demand is
always chosen. The bucket is full if either there is no eligible interval (no adjacent time
interval which is in T but not already selected) or the demand is equal to or more than
the allowed amount. For the special case sz=dyn, no cutoff parameter is needed because
the bucket’s fixed size works very similarly to a cutoff.

Using the abovementioned parameters, we concluded after initial testing that the variants
sz=1 , sz=tc, and sz=dyn are promising. If a cutoff is used (i.e., strategies sz=1 and
sz=tc), we use a cutoff of 12 because we neither want the last bucket to be too big (and
consequently very performance intensive) nor too small.

5.2 Destroy Strategies
In this section, we discuss strategies to destroy a solution partially. We focus on strategies
that destroy a station, i.e., setting the corresponding x, y, and a variables to zero. This
allows the MILP to choose a different set of locations than the destroyed one.

Destroying a time period t or certain a variables has the disadvantage that removing
all associated demand to a station is improbable. Therefore, it seldom happens that a
station can be closed completely so that a new (different) station can be built instead.

Given a solution (x, y, a) to the BEXSLP2, let L(x) ⊆ L be the set of all locations at
which a station is built.

28

5.2. Destroy Strategies

Strategy rloc = X. From the set L(x), we randomly destroy ⌈X · |L(x)|⌉ stations.

Strategy wloc = X. In this strategy, instead of destroying stations entirely at random,
we destroy them in a random weighted fashion, weighted by the induced objective cost
divided by the amount of demand assigned to the station. Again, as already described in
Chapter 2.2.5, we use tournament selection to determine which stations will be destroyed.
To determine the ranking of the stations, we calculate for each station l ∈ L(x) the
induced objective value per unit of assigned demand using the following equations:

osetup
l = αsetup(clxl + cmodul

l yl) (5.14)

ocharging
l = αcharging

q∈Q

iI

t∈T ex

l

cch
lt · i · at

qli (5.15)

odelay
l = αdelay

q∈Q

�
w̃l

q − wq


·

t∈T ex

l

i∈I

at
qli (5.16)

odemand
l =

q∈Q

i∈I

t∈T ex

l

at
qli (5.17)

ototal
l = osetup

l + ocharging
l + odelay

l

odemand
l

(5.18)

We then use the ototal
l to sort the list, with the highest value being the first element. We

apply this procedure until ⌈X · |L(x)|⌉ are destroyed.

5.2.1 Destroying additional demand
This section is inspired by the idea that destroying only stations alone will likely result
in the same station being built again in the subsequent repair iteration. Therefore,
destroying some portion of the remaining demand is advantageous. We use this method
in combination with the strategies mentioned above. We denote the modified version by
adding a prime to the strategy, i.e., wloc′.

Additionally, to the already destroyed stations, we select the demand which contributes
the most to the objective function. However, defining which a variables are responsible
for the construction cost is not trivial. One idea is to split the construction cost equally
between all a variables assigned to a station. This, however, is not true since if the station
is already built to accommodate a demand peak, then assigning demand in downtime
has virtually no cost besides the detour and the charging cost. Theoretically, the most
relevant variables are those at the peak periods (of a given station). If there are multiple

29

5. Iterated Greedy Heuristic

periods that force the station to be of an actually chosen size, they are all equally at
fault. This, however, will likely lead to all a variables at the peak periods being very
costly. Consequently, we decided that no explanation considers the construction cost and,
simultaneously, weighs a variables fairly. Therefore, we use only the charging and delay
part of the objective function and ignore the construction cost. We, thus, calculate for
each a variable:

oa
ltiq = αcharging · cchret

lt · i · at
qli + αdelay ·

�
w̃l

q − wq


· at

qli ∀l ∈ L, t ∈ T ex
l , i ∈ I, q ∈ Q

(5.19)

We then sort the resulting list by associated weight and remove those a variables pseudo-
randomly. To do this, we again use tournament selection to select those a variables which
cause the most weight until the specified amount of demand has been destroyed. We
decided always to destroy half of the given percentage of the total demand, which is
illustrated by the following equation:

⌈X

2 ·

q∈Q

i∈I

t∈T

i · dt
qi⌉ (5.20)

It should be noted that the destruction of stations occurs before removing the additional
demand. Therefore, stations selected to be destroyed already have corresponding a
variables of zero. Consequently, the additional demand is only destroyed from not
destroyed stations.

30

CHAPTER 6
Instances

In this chapter, we describe the instances used to compare the algorithms. First, we
describe how we converted a BEXSLP instance given to us by Honda R&D to a BEXSLP2
instance. In total, we received three completely different instances and a unique variation
of one instance containing street network data. Afterward, a test instance creator is briefly
described that Rauscher [Rau22] developed in his thesis regarding the same problem.
The instance set he created contains six different groups with increasingly more O/D
pairs and stations. Each group contains 30 instances. In total, 180 instances are included
in this instance set.

6.1 Honda Instances
Test instances are derived from given BEXSLP instances. In the BEXSLP, an underlying
graph GBEXSLP represents a geographical region partitioned into equally sized areas,
where V (GBEXSLP) corresponds to the set of areas and E(GBEXSLP) contains a directed
edge for each pair of geographically adjacent areas. Additionally, for each edge in
E(GBEXSLP), the distance, the travel time ttravel : E → R+, as well as the required power
consumption (kWh) for traveling between the areas is specified. Note that the size of the
area affects how close the given routes/stations represent reality.

From GBEXSLP we derive a graph G = (V, A, w) with

• V = V (GBEXSLP)

• A = �
(v1,v2)∈E(GBEXSLP){(v1, v2), (v2, v1)}

• w((v1, v2)) = ttravel({v1, v2}) for all (v1, v2) ∈ A

This graph calculates the distance wq ≥ 0, the expected travel time when taking the most
direct route without exchanging batteries. Additionally, we calculate w̃l

q, the expected

31

6. Instances

travel time when making the fastest possible detour to location l ∈ L for exchanging
batteries there. As a result, all instances contain only the distances for any possible
detour.

Stations are assumed to be built in the center of an area. For each area of the graph,
we know if a station can be built in the area. If that is the case, we also know the
day/night time charging times, the respective charging costs, and the costs for opening a
new station and installing BEX modules.

Furthermore, for already existing stations, we know the area in which the station is built,
the number of already existing BEX modules, the start and end times within which
batteries can be exchanged, and the start and end times within which batteries can be
charged at the station. Additionally, each BEXSLP instance has a global maximum
number of BEX modules a station can have and a global maximum number of battery
slots an initial/additional BEX module can have.

From the given data, we can then derive the set L of stations and associated attributes
straightforwardly. However, note that the initial station configuration for non-existing
stations is the sum of costs for opening a station and adding the first BEX module.
Moreover, the initial station configuration costs are zero for already existing stations.
As no opening times or times at which batteries can be charged are given for not yet
existing stations l ∈ L, we assume that T ex

l = T .

In the given BEXSLP instances, different types of scooters I exist, with each type i ∈ I
having i batteries. Additionally, a set of users U is given. Each user u ∈ U has an
associated vehicle type and a state of charge (SOC) level given as an interval [θLL

u , θUL
u]

in which the user feels most comfortable, i.e., if possible the users SOC should always
remain between the lower and upper bound.

Users have associated data points marked with a time stamp between 0 and 14400 which
also contains the current state of charge (SOC) and position of the user’s vehicle and has a
flag indicating whether a user is leaving home or returning home. Note that the trip data
describes direct trips from an origin to a destination without detours to battery-swapping
stations.

We derive Q from the user trip data by extracting all trips T . Each trip has a flag that
describes whether the user is leaving or returning home. Each extracted trip τ ∈ T is
associated with

• the respective user u(τ),

• the scooter type i(τ) of the user,

• an origin o(τ),

32

6.2. Artificial Instance Set (AIS)

• a destination ρ(τ),

• the state of charge SOCstart(τ) of the scooter at the start of the trip,

• the state of charge SOCend(τ) of the scooter at the end of the trip,

• a trip time t(τ) = ⌊ tstart(τ)+tend(τ)
2·60 ⌋ mod 24 where tend(τ) and tstart(τ) refer to the

start and end time of τ , respectively.

The origin and destination of a trip τ are derived from the start and end of τ such that
o(τ) ≤ ρ(τ). Trips τ with the same origin and destination refer to the same O/D pair
(o(τ), ρ(τ)) ∈ Q. Moreover, the demand dt

qi of an O/D pair q = (v1, v2) ∈ Q at a time
t ∈ T for vehicle type i ∈ I is defined as follows:

First, we calculate the total power consumption of a user u ∈ U over all of his trips, i.e.

pu =

τ∈T |u=u(τ)
SOCend(τ) − SOCstart(τ). (6.1)

Then, the minimum and maximum amount of battery swaps on u is given by

exmin
u = pu

100 − θLL
u

and exmax
u = pu

100 − θUL
u

, (6.2)

respectively.

Thus, as the time horizon spans ten days, on average, a user needs to exchange batteries
exavg

u = exmin
u +exmax

u
2·10 times a day. Based on this average number of battery exchanges, the

demand dt
qi at time t is calculated as

dt
qi =

τ∈T |t=t(τ)

exavg
u(τ) · SOCend(τ) − SOCstart(τ)

pu(τ)
. (6.3)

From the data received from Honda, we calculated that tc = 2.

Honda R&D Japan provided four instances, referred to as case1, case2, case3, and case3
street network. Table 6.1 shows the characteristics of the derived BEXSLP2 instances
referred to by the same names. Note that charging costs are the same for daytime and
nighttime for all stations and instances. Additionally, only the case2 instance has more
than one type of vehicle. Case3 street network contains precise location data.

6.2 Artificial Instance Set (AIS)
In this section, we describe the process of creating a new artificial instance set (AIS),
which will be used to evaluate the BEXSLP2. The main problem with the converted

33

6. Instances

Table 6.1: Key characteristics of the four Honda instances, with n representing the
number of potential station locations, m referring to the number of O/D pairs, nd

referring to the number of non-zero demand values dt
qi over all t ∈ T q ∈ Q, i ∈ I, emax

representing the maximum number of BEX modules which can be added to a station,
and zmodules being the maximum number of new modules which may be built.

inst. n m nd emax zmodules

case1 63 898 1074 5 3
case2 67 428 493 3 8
case3 67 322 407 3 8
case3 street network 70 677 801 2 8

instances is that they offer slight variations in the user data. Therefore, it was crucial
to develop instances that offered more variation so that we could test our developed
algorithms more reliably. As mentioned, Rauscher [Rau22] developed an instance creator
that constructs various instances of different sizes. Consequently, this is only a very brief
introduction. Further information can be found in his thesis. The number of station
locations and O/D pairs measures the size of an instance. Six different instance groups
were created of the sizes:

Table 6.2: This table provides the number of locations, O/D pairs, and the number of
instances on all the existing instance groups in the AIS instance set.

group name locations (n) O/D pairs (m) instances
(50 100) 50 100 30
(100 200) 100 200 30
(200 400) 200 400 30
(300 600) 300 600 30
(400 800) 400 800 30
(500 1000) 500 1000 30

For each instance group, 30 different instances were created. The idea was to recreate
the settings from the BEXSLP as closely as possible while adding more variation and
increasing the size. The cost of building stations and adding additional modules was
decreased; however, the ratio was kept. The costs for building the station are chosen
uniformly at random from {5000, · · · , 7000} while the cost for adding a module is between
{2000, · · · , 4000}. The various other elements of the station are slightly varied as well.
O/D pairs and resulting demand are generated as well. Demand is distributed unevenly;
there is a peak in the morning and the evening, as in the BEXSLP instances. In all
instances, the parameter zmodules is chosen to create a challenge for the algorithms without
being impossible to solve. At most, 3% of all possible modules can be built. Additional
information and further details can be found in the work of Rauscher [Rau22]

34

CHAPTER 7
Results and Discussion

In this section, we evaluate our algorithms developed for solving the BEXSLP2. All
algorithms are implemented in Julia1 1.9.3 using the JuMP package and Gurobi2 9.1 as
underlying MILP solver. All test runs have been executed on an Intel Xeon E5-2640 v4
2.40GHz machine in single-threaded mode with a global time limit of four hours per run
(if not mentioned otherwise) and depending on the instance group can use the following
maximum amount of memory depicted in Table 7.1

Table 7.1: Maximum allowed memory to be used for each instance.

Instance Group Maximum allowed memory
(50 100) 4 GB
(100 200) 4 GB
(200 400) 6 GB
(300 600) 12 GB
(400 800) 24 GB
(500 1000) 36 GB
case1-case3 & street network 36 GB

First, we evaluate the BEXSLP2 using the MILP formulation given by Equations (4.9)–
(4.17). Afterward, we present the results for our iterated greedy heuristic. For both
implementations, we present the results for the AIS instances and the results for the
Honda instances.

1https://julialang.org/
2https://www.gurobi.com/

35

https://julialang.org/
https://www.gurobi.com/

7. Results and Discussion

7.1 MILP Results
We first evaluate the MILP using the AIS instances and, afterward, discuss the results
for the Honda instances.

7.1.1 Results for the Artificial Instance Set
We first examine the AIS instances using different weights for the objective function
simulating different interests when evaluating the program. Changing the αcharging has
little to no impact on both the solution’s performance and quality. However, changing
αsetup and αdelay has huge implications. Nevertheless, increasing the value of αdelay brings
about identical results to reducing the αsetup. Therefore, we focus only on changing
αdelay. We apply the following configurations to test the program:

1. αsetup = 0.01, αcharging = 0.01, αdelay = 0.1

2. αsetup = 0.01, αcharging = 0.01, αdelay = 1.0

3. αsetup = 0.01, αcharging = 0.01, αdelay = 10.0

Since only the αdelay value is adapted, the different versions will be referred to as
αdelay = 10, αdelay = 1, αdelay = 0.1.

αdelay = 10 αdelay = 1 αdelay = 0.1
(n m) gap (%) time (s) gap (%) time (s) gap (%) time (s)
(50 100) 0.0 207.5 0.0 299.2 0.0 44.7
(100 200) 0.4 2,050.4 0.1 2,214.4 0.0 440.1
(200 400) 15.0 14,415.6 14.1 14,415.6 1.1 10,644.8
(300 600) 67.6 14,425.8 52.5 14,426.1 10.1 14,426.3
(400 800) 81.8 14,444.3 57.4 14,443.9 29.4 14,443.4
(500 1000) 82.8 14,457.8 61.2 14,459.3 37.3 14,458.3

Table 7.2: This table shows the optimality gap as well as the run time for the artificially
created instance set for the configurations αdelay = 10, αdelay = 1, αdelay = 0.1

Table 7.2 shows the optimality gap as well as the run time for the artificially created
instance set for the configurations αdelay = 10, αdelay = 1, and αdelay = 0.1. As expected,
the median computation times and the average gaps increase as the size of the instances
increases. Moreover, in Table 7.2 for the first two instance groups, in which most of the
instances could be solved to optimality, we can also see how different α weightings affect
the solving time. The most challenging instances to solve (run time-wise) are those where
a certain equilibrium exists between delay and construction cost. This was also noted in
the earliest versions of the Honda instance set. Consequently, increasing or decreasing

36

7.1. MILP Results

αdelay leads to faster solving times, which can also be seen in Figure 7.1. It displays the
gaps for the different instance groups and αdelay values. This, however, does not mean
that the gap is the largest for the αdelay = 1 instances, since typically, the αdelay = 10
configuration has higher gap percentages.

(5
0
,1

0
0
)

(1
0
0
,2

0
0
)

(2
0
0
,4

0
0
)

(3
0
0
,6

0
0
)

(4
0
0
,8

0
0
)

(5
0
0
,1

0
0
0
)

0

50

g
a
p
 (

%
)

Gap with delay = 10

(5
0
,1

0
0
)

(1
0
0
,2

0
0
)

(2
0
0
,4

0
0
)

(3
0
0
,6

0
0
)

(4
0
0
,8

0
0
)

(5
0
0
,1

0
0
0
)

0

25

50

75

g
a
p
 (

%
)

Gap with delay = 1

(5
0
,1

0
0
)

(1
0
0
,2

0
0
)

(2
0
0
,4

0
0
)

(3
0
0
,6

0
0
)

(4
0
0
,8

0
0
)

(5
0
0
,1

0
0
0
)

0

20

40

g
a
p
 (

%
)

Gap with delay = 0.1

(5
0
,1

0
0
)

(1
0
0
,2

0
0
)

(2
0
0
,4

0
0
)

(3
0
0
,6

0
0
)

(4
0
0
,8

0
0
)

(5
0
0
,1

0
0
0
)

0

5000

10000

15000

ru
n
ti

m
e
 (

s
)

Run time with delay = 10

(5
0
,1

0
0
)

(1
0
0
,2

0
0
)

(2
0
0
,4

0
0
)

(3
0
0
,6

0
0
)

(4
0
0
,8

0
0
)

(5
0
0
,1

0
0
0
)

0

5000

10000

15000

ru
n
ti

m
e
 (

s
)

Run time with delay = 1

(5
0
,1

0
0
)

(1
0
0
,2

0
0
)

(2
0
0
,4

0
0
)

(3
0
0
,6

0
0
)

(4
0
0
,8

0
0
)

(5
0
0
,1

0
0
0
)

0

5000

10000

15000

ru
n
ti

m
e
 (

s
)

Run time with delay = 0.1

Figure 7.1: This figure displays the gaps and run times for the various instance groups
and αdelay values.

The difference in the gap between the different αdelay values can be partly explained
by the increase and decrease in the absolute value of the objective. The total cost
for constructing stations for all configurations remains relatively stable because of the
necessity to serve all customers. The base value (without the αdelay modifier) of the
induced delay varies drastically between the three configurations depending on the weight
of αdelay. This behavior is expected because an increase in αdelay renders it crucial to
minimize the delay in the objective function.

A similar effect can also be seen in the next step, in which we assess the quality of the
solution when only optimizing for one specific term of the objective function. For this
purpose, we first evaluate the model for each objective term individually by setting each
respective α value to one and the others to zero, i.e., ignoring the other optimization goals.

In Figure 7.2 the gaps for all instance groups of the AIS are shown. It becomes evident
that the real issue at hand is to solve it optimally for the delay. Limiting the number of
modules allowed to be built and optimizing the delay proves exceptionally challenging.
Additionally, it can be seen that finding lower bounds when optimizing for delay only
appears to be very challenging. Otherwise, a gap of nearly 100% cannot be explained for
the largest instance group. Optimizing setup and charging costs can be done optimally
within the given time in nearly all cases. On average, it takes less than 1000 seconds for
the largest instances to be solved when only considering either setup or charging costs.

37

7. Results and Discussion

(5
0
,1

0
0
)

(1
0
0
,2

0
0
)

(2
0
0
,4

0
0
)

(3
0
0
,6

0
0
)

(4
0
0
,8

0
0
)

(5
0
0
,1

0
0
0
)

0

50

100
g
a
p
 (

%
)

delay = 1

(5
0
,1

0
0
)

(1
0
0
,2

0
0
)

(2
0
0
,4

0
0
)

(3
0
0
,6

0
0
)

(4
0
0
,8

0
0
)

(5
0
0
,1

0
0
0
)

0.0

0.5

1.0

1.5

g
a
p
 (

%
)

setup = 1

(5
0
,1

0
0
)

(1
0
0
,2

0
0
)

(2
0
0
,4

0
0
)

(3
0
0
,6

0
0
)

(4
0
0
,8

0
0
)

(5
0
0
,1

0
0
0
)

0.00

0.01

0.02

g
a
p
 (

%
)

charging = 1

Figure 7.2: This figure displays the gaps and run times for the various instance groups
when optimizing for a single objective, e.g., αdelay = 1 with both αsetup and αcharging
being zero.

(5
0
,1

0
0
)

(1
0
0
,2

0
0
)

(2
0
0
,4

0
0
)

(3
0
0
,6

0
0
)

(4
0
0
,8

0
0
)

(5
0
0
,1

0
0
0
)

0

50

g
a
p
 (

%
)

Gap with delay = 10

(5
0
,1

0
0
)

(1
0
0
,2

0
0
)

(2
0
0
,4

0
0
)

(3
0
0
,6

0
0
)

(4
0
0
,8

0
0
)

(5
0
0
,1

0
0
0
)

0

50

100

g
a
p
 (

%
)

Gap with delay = 1

(5
0
,1

0
0
)

(1
0
0
,2

0
0
)

(2
0
0
,4

0
0
)

(3
0
0
,6

0
0
)

(4
0
0
,8

0
0
)

(5
0
0
,1

0
0
0
)

0

50

100

g
a
p
 (

%
)

Gap with delay = 0.1

Quality of delay

(5
0
,1

0
0
)

(1
0
0
,2

0
0
)

(2
0
0
,4

0
0
)

(3
0
0
,6

0
0
)

(4
0
0
,8

0
0
)

(5
0
0
,1

0
0
0
)

25

50

75

g
a
p
 (

%
)

Gap with delay = 10

(5
0
,1

0
0
)

(1
0
0
,2

0
0
)

(2
0
0
,4

0
0
)

(3
0
0
,6

0
0
)

(4
0
0
,8

0
0
)

(5
0
0
,1

0
0
0
)

0

50

g
a
p
 (

%
)

Gap with delay = 1

(5
0
,1

0
0
)

(1
0
0
,2

0
0
)

(2
0
0
,4

0
0
)

(3
0
0
,6

0
0
)

(4
0
0
,8

0
0
)

(5
0
0
,1

0
0
0
)

0

25

50

g
a
p
 (

%
)

Gap with delay = 0.1

Quality of setup cost

Figure 7.3: This figure displays the quality of the MILP solution compared to the optimal
values of delay and setup cost.

Another salient aspect is the quality of the best-found MILP solution regarding the
optimal values for delay and setup. Note that our instance sets contain some instances
where the optimal delay/best-found lower bound is zero. Therefore, for these instances,
we cannot calculate a gap to the respective lower bounds according to Equation 2.15
(unless the optimal solution has been found within the time limit). For these instances,
we have assumed – similar to Gurobi – a gap of 100%. Some of the gaps regarding the
delay shown in Figure 7.3 are slightly distorted due to this aspect.

Nevertheless, while not all instances could be solved optimally when considering only a
single objective, the quality of the generated solutions is sufficient to convey an impression
of the best possible values we can achieve for each objective term. The influence of

38

7.1. MILP Results

increasing or decreasing the αdelay value can be observed. For example, with a higher
αdelay, the setup cost becomes less optimal while the delay value approaches the optimal
value.

Results for the Honda Instance Set

For each Honda instance, Honda R&D Japan also provided the respective BEXSLP
solutions with specific weights for the terms in the objective function. Therefore, we apply
these solutions as references to the solutions generated by our MILP. For this purpose,
however, we must convert the given BEXSLP solutions into BEXSLP2 solutions. This
was done by fixing the stations and BEX modules according to the BEXSLP solutions
and then applying the MILP solver to assign the demand optimally. However, it has to
be noted that to generate a feasible solution to case1, it was necessary to add one more
BEX module to the solution. The BEXSLP2 algorithm determined where this module
must be built. Table 7.3 presents an overview of the provided BEXSLP solutions w.r.t. to
the α weights used for their generation. The table also compares the number of stations
and modules between the provided BEXSLP solutions and their BEXSLP2 counterpart
solutions. Noteworthy is that for case2 αsetup and αcharging are zero. Therefore, the
BEXSLP2 algorithm builds stations and BEX modules until the total cap of eight BEX
modules is reached.

Table 7.3: Configurations used for generating the provided BEXSLP solutions. The
number of stations and BEX modules between the BEXSLP solutions and their BEXSLP2
counterpart solutions are also shown.

BEXSLP BEXSLP2
αdelay αsetup αcharging nstations nmodules nstations nmodules

case1 50 0.0005 0.0005 22 24 23 23
case2 1 0 0 29 29 29 29
case3 1 0.0001 0.0001 22 26 27 27
case3 10 0.0001 0.0001 22 26 27 27
case3 100 0.0001 0.0001 22 26 29 29
case3 1000 0.0001 0.0001 25 29 29 29
case3 10000 0.0001 0.0001 26 29 29 29

Table 7.4 draws up a comparison between the solutions generated by our MILP, referred
to as BEXSLP2, and the solutions derived from the BEXSLP solutions, referred to as
BEXSLP, for case1 and case2. It presents the time required for our MILP to solve
the instances, the gap of the generated solutions to the best-found lower bounds, the
unweighted objective value, and the unweighted values of each objective term. Since
Gurobi found the optimal solutions within the time limit for both instances, we expect
the derived solutions to be worse than the generated solutions. For case1, the objective of
the solution derived from the BEXSLP solution is roughly 20% worse, while in case2, the

39

7. Results and Discussion

best-found solution is roughly 46% higher than the solution of the BEXSLP2. Moreover,
as previously mentioned, the charging costs are the same for all stations and times of an
instance. Therefore, the generated solutions, as well as the derived solutions, have the
same charging costs.

Furthermore, note that for case2, only αdelay is greater than zero. Therefore, the setup
costs are very high. Both the BEXSLP2 and the BEXSLP solution build all eight possible
modules. In case1, the delay value is better than in the BEXSLP2. This is because the
provided solution is not feasible in the BEXSLP2. Therefore, another module had to be
built, which resulted in increased setup costs and a better delay value.

Table 7.4: Run time, gap, weighted total objective value, and unweighted objectives
(delay, setup, and charging) of solutions generated from the BEXSLP2 model and solutions
derived from Honda’s BEXSLP approach.

objective
time (s) gap (%) BEXSLP2 BEXSLP

case1 5426s 0.00 161305.08 194381.99
case2 24s 0.00 28.10 41.13

delay setup charging
BEXSLP2 BEXSLP BEXSLP2 BEXSLP BEXSLP2 BEXSLP

case1 76.18 71.26 3148362.00 3814818.00 1559.89 1559.89
case2 28.10 41.13 7834736.00 7834736.00 1525.89 1525.89

As we have received multiple BEXSLP solutions for case3 w.r.t. different weighting of
αdelay, we now give a more detailed evaluation of the case3 instance. To gain further
insights about the impact of αdelay we tested additional values for αdelay while maintaining
αsetup and αcharging unchanged. Table 7.5 provides an overview of all tested αdelay values
and shows how they each affect the solving time. Additionally, the table also shows
a comparison of the weighted objective values between the derived solutions and their
BEXSLP2 counterparts. Note that for αdelay ∈ {1, 10}, it was not possible to find an
optimal solution within the time limit. However, the table demonstrates that the solving
time decreases as αdelay increases. Moreover, note that the first four configurations result
in the same solution. However, the configurations require vastly different solving times.
The instances appear easier to solve as the setup costs become less important.

Figure 7.4 compares the total objective values between our generated solutions and those
derived from the BEXSLP solutions. The figure shows that the solutions generated by
our MILP have, in general, a better objective value than the solutions derived from the
BEXSLP solutions. Additionally, we see that the difference between the objective values
increases with increasing values of αdelay. Figure 7.5 compares the objective values of the

40

7.1. MILP Results

Table 7.5: Run time, gap, and the weighted total objective value for all tested configura-
tions for case3.

objective
αdelay time (s) gap (%) BEXSLP2 BEXSLP
1 14408s 8.0% 36813.83 58936.09
10 14407s 7.1% 37714.36 60333.08
100 2061s 0.00% 46719.66 89049.58
200 38s 0.00% 56725.56 -
500 22s 0.00% 85625.47 -
1000 23s 0.00% 119276.41 185186.38
2000 18s 0.00% 170085.57 -
5000 18s 0.00% 321470.26 -
10000 17s 0.00% 573778.07 1146554.45

ca
se

1
ca

se
2

ca
se

3

delay
=

1
ca

se
3

delay
=

10
ca

se
3

delay
=

100
ca

se
3

delay
=

1000

ca
se

3

delay
=

10000

103

105

o
b
j

Weighted objectives

Construction (BEXSLP2)

Delay (BEXSLP2)

Construction (BEXSLP)

Delay (BEXSLP)

Figure 7.4: Comparison of objective values between BEXSLP and BEXSLP2 solutions.

BEXSLP and BEXSLP2 solutions. The objectives are compared by calculating the gap
between the objective values of solutions derived from the BEXSLP solutions to their
BEXSLP2 counterparts. For case1 and case2, we observe gaps of 20.5% and 46.37%,
respectively. For case3 with αdelay = 1 we already obtain a gap of 60.1% which increases
as αdelay increases, resulting in gaps up to 99.82% for αdelay = 10000.

In the following, we examine case3 with all tested configurations in more detail. Figure 7.6
shows how the number of stations and BEX modules develops as αdelay increases. As
expected, more stations and BEX modules are added to the solutions as αdelay increases
due to the fact that setup costs become increasingly less important. In the instances
with αdelay1 − 500, only modules are built (besides a necessary station to fulfill demand
in the middle of the night). Configuration αdelay = 1000 adds three stations but removes
one module from an expanded station by a BEX module. This is a result of the very
high delay value. For the configurations αdelay = 2000, αdelay = 5000 and αdelay = 10000

41

7. Results and Discussion

ca
se

1

ca
se

2

ca
se

3

de
la
y
1

ca
se

3

de
la
y
10

ca
se

3

de
la
y
10

0

ca
se

3

de
la
y
10

00

ca
se

3

de
la
y
10

00
0

0

20

40

60

80

100

g
a
p
(%

)

Figure 7.5: Gaps between BEXSLP and BEXSLP2 solutions. The gaps show how
much worse a solution derived from a BEXSLP solution is, compared to its BEXSLP2
counterpart.

another station was opened. All configurations with a αdelay >= 1000 use the maximum
number of modules that the algorithm is allowed to construct.

d
e
la

y
=

1

d
e
la

y
=

1
0

d
e
la

y
=

1
0
0

d
e
la

y
=

2
0
0

d
e
la

y
=

5
0
0

d
e
la

y
=

1
0
0
0

d
e
la

y
=

2
0
0
0

d
e
la

y
=

5
0
0
0

d
e
la

y
=

1
0
0
0
0

20

25

30

s
ta

ti
o
n
s

20

25

30

B
E
X

 m
o
d
u
le

s

Battery Slots & Station Comparison

Figure 7.6: number of stations and BEX modules to be built for the different configura-
tions.

Figure 7.7 shows a visualization of solutions to case3 regarding the different configurations.
Additionally, it is easy to spot that gradually, more and more stations are added to the
solution as αdelay increases.

Next, we evaluate the quality of the individual terms of the objective function. Similar
to what was done for the AIS instances, we first calculate the optimal value for each

42

7.1. MILP Results

0 5 10 15 20 25

x

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

y

delay = 1 - delay = 200

new stations

existing stations

unused locations

0 5 10 15 20 25

x

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

y

delay = 500

new stations

existing stations

unused locations

0 5 10 15 20 25

x

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

y

delay = 1000

new stations

existing stations

unused locations

0 5 10 15 20 25

x

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

y

delay = 10000

new stations

existing stations

unused locations

Figure 7.7: Geographic station placement for the different configurations of case3.

term by setting all other weights to zero. It should be mentioned that for case3, the
optimal delay is not zero; therefore, we calculate gaps for the delay in the same way as
for the setup and charging costs. Figure 7.8 shows the quality of the different unweighted
terms of the objective function for the generated and derived solutions. As previously
mentioned, all stations have the same charging costs. Thus, the charging costs are always
the same and consequently optimal. The figure demonstrates that for the configurations
αdelay ∈ {1, 10, 100, 200}, the generated MILP solutions have optimal construction costs.
Only for larger values of αdelay construction costs become increasingly less important.
Eventually, the optimal delay value is reached for αdelay = 10000. We also notice that
the delay improves for the derived solutions with increasing αdelay; however, not as much
as the solutions generated by our MILP.

Finally, in Figure 7.9, we compare the weighted objectives between our generated solutions
and those derived from the BEXSLP solutions. The figure shows the weighted objective
values for each configuration and how much each term individually contributes to the
total objective. The delay becomes increasingly essential for both groups while the setup
costs stay roughly the same for all configurations. However, our MILP seems better
at managing increasing αdelay values. It should be noted, though, that our comparison
requires converting BEXSLP solutions into BEXSLP2 solutions and, thus, naturally
favors generated BEXSLP2 solutions over derived BEXSLP solutions. Therefore, our
generated solutions are expected to feature better results in this context.

43

7. Results and Discussion

delay
=

1

delay
=

10

delay
=

100

delay
=

200

delay
=

500

delay
=

1000

delay
=

2000

delay
=

5000

delay
=

10000

0

100

200

300

400
G

a
p
 t

o
 o

p
ti

m
a
l
o
b
je

c
ti

v
e
 (

%
)

99 99 99 99

68

6 0 0 00 0 0 0
18

80 88 88 88

Optimality of the objectives (BEXSLP2)

delay (BEXSLP2)

construction (BEXSLP2)

charging (BEXSLP2)

delay
=

1

delay
=

10

delay
=

100

delay
=

1000

delay
=

10000

0

100

200

300

400

G
a
p
 t

o
 o

p
ti

m
a
l
o
b
je

c
ti

v
e
 (

%
)

209 209

113 113 113

60 60

114 114 114

Optimality of the objectives (BEXSLP)

delay (BEXSLP)

construction (BEXSLP)

charging (BEXSLP)

Figure 7.8: Optimality of the different objectives for both the BEXSLP2 solution and
the recreated Honda solutions.

delay
=

1

delay
=

10

delay
=

100

delay
=

200

delay
=

500

delay
=

1000

delay
=

2000

delay
=

5000

delay
=

10000

0.00

0.25

0.50

0.75

1.00

1e6 Weighted objectives

Construction (BEXSLP2)

Delay (BEXSLP2)

Construction (BEXSLP)

Delay (BEXSLP)

Figure 7.9: Weighted objectives of the BEXSLP2 and the recreated Honda solutions.

Case3 Street Network

Honda R&D Japan also provided a modified case3 in which the mentioned grid was no
longer used. Instead, distances for w̃l

q and wq are calculated via a more detailed street
network. Table 7.6 provides an overview of the various configurations’ runtime, gap, and
objectives. Again, as was done for case3, we use the same configurations with increasing
αdelay. One thing that can be noticed immediately is that the street network’s runtime is
lower than the grid’s. This, however, does not consider the time to create the instance
that is likely to be higher for the street network.

Also, the delay value is consistently higher than in the grid version of case3. The charging
values are lower. This results from the conversion process, where demand is assigned
depending on the battery consumed. In the street network, the energy consumption is
lower; consequently, the instance converter assigns a little less demand to the trips. This
also brings about another implication which can be seen when comparing the setup costs.
While for the runs with a smaller αdelay the setup cost is lower compared to the grid
network in the runs with αdelay = 2000, αdelay = 5000 and αdelay = 10000 it is higher.
This can also be seen in Figure 7.10. We identify that fewer modules have to be built
for smaller αdelay values. While for αdelay = 2000 and above, more stations are built,

44

7.1. MILP Results

Table 7.6: Run time, gap, and the weighted objectives for all tested configurations for
case3 utilizing the street network.

objectives
αdelay time (s) gap (%) delay setup charging total
1 362.46 0.00 271.20 16518.42 19.48 16809.10
10 361.62 0.00 2712.01 16518.42 19.48 19249.91
100 28.85 0.00 27120.10 16518.42 19.48 43658.00
200 9.25 0.00 54240.21 16518.42 19.48 70778.11
500 10.18 0.00 103471.95 33036.84 19.48 136528.26
1000 6.62 0.00 166578.32 62417.10 19.48 229014.90
2000 6.31 0.00 320233.10 72210.52 19.48 392463.11
5000 14.14 0.00 793863.32 75278.94 19.48 869161.74
10000 17.86 0.00 1587726.64 75278.94 19.48 1663025.06

increasing construction cost.

d
e
la

y
=

1

d
e
la

y
=

1
0

d
e
la

y
=

1
0
0

d
e
la

y
=

2
0
0

d
e
la

y
=

5
0
0

d
e
la

y
=

1
0
0
0

d
e
la

y
=

2
0
0
0

d
e
la

y
=

5
0
0
0

d
e
la

y
=

1
0
0
0
0

20

25

30

s
ta

ti
o
n
s

20

25

30

B
E
X

 m
o
d
u
le

s

Street Network: Battery Slots & Station Comparison

Figure 7.10: number of stations and BEX modules to be built for case3 using the street
network.

In Figure 7.11 a trend similar to the one in the regular case3 instance can be observed.
While the setup cost is optimal initially, increasing αdelay values shifts the priority.
Consequently, additional BEX modules must be installed for αdelay = 500 and higher.
This results in the delay value approaching optimality and the construction cost becoming
increasingly less optimal.

Nevertheless, a direct comparison to the case3 grid case is not trivial. While the data
describes the same case in both instances, some inaccuracies inevitably result from the
conversion to the grid. Figure 7.12 represents the station placement of the street network
where stations are projected on a city map. When comparing these results to case3, one

45

7. Results and Discussion

delay
=

1

delay
=

10

delay
=

100

delay
=

200

delay
=

500

delay
=

1000

delay
=

2000

delay
=

5000

delay
=

10000

0

200

400

G
a
p
 t

o
 o

p
ti

m
a
l
o
b
je

c
ti

v
e
 (

%
)

70.81 70.81 70.81 70.81
30.34

4.92 0.85 0 00 0 0 0

100

277.86

337.15
355.73 355.73

Optimality of the objectives (Street Network)

delay

construction

charging

Figure 7.11: Optimality of the different objectives for the various configurations of case3
with the street network.

can identify that the positions of the stations are derived from the same data.

7.2 Iterated Greedy Results
This section discusses the results for both the AIS instances and the Honda instances for
the iterated greedy heuristic.

7.2.1 Results for the Artificial Instance Set
This section discusses the performance of the previously presented iterated greedy heuristic
on the artificial instance set. First, we look at the results of the different construction
heuristics. Afterward, we evaluate the different destroy and repair operations individually
to gain a better understanding of their respective performance. Finally, we combine
everything and analyze the achieved results. Again, we will be using three different
configurations in which we vary the αdelay parameter:

1. αsetup = 0.01, αcharging = 0.01, αdelay = 0.1

2. αsetup = 0.01, αcharging = 0.01, αdelay = 1.0

3. αsetup = 0.01, αcharging = 0.01, αdelay = 10.0

Therefore, if not explicitly specified otherwise, it can be assumed that αdelay = 0.1 and
αsetup = 0.01 for all shown results. We use Equation 2.15 to calculate the optimality
gaps.

Construction Heuristics

In this section, we evaluate the performance of all the construction heuristics introduced
in Chapter 5. The construction heuristics in question are sz=1 , sz=tc, sz=dyn as can be
seen in Figures 7.14 and 7.13, which display the gap and the run time of the different

46

7.2. Iterated Greedy Results

107.550

107.575

107.600

107.625

107.650

107.675

107.700

107.725

107.750

lon

6.96

6.94

6.92

6.90

6.88

6.86

6.84

6.82

la
t

Street Network: delay = 1 - delay = 200

new stations

existing stations

unused locations

107.550

107.575

107.600

107.625

107.650

107.675

107.700

107.725

107.750

lon

6.96

6.94

6.92

6.90

6.88

6.86

6.84

6.82

la
t

Street Network: delay = 500

new stations

existing stations

unused locations

107.550

107.575

107.600

107.625

107.650

107.675

107.700

107.725

107.750

lon

6.96

6.94

6.92

6.90

6.88

6.86

6.84

6.82

la
t

Street Network: delay = 1000

new stations

existing stations

unused locations

107.550

107.575

107.600

107.625

107.650

107.675

107.700

107.725

107.750

lon

6.96

6.94

6.92

6.90

6.88

6.86

6.84

6.82

la
t

Street Network: delay = 10000

new stations

existing stations

unused locations

Figure 7.12: Geographic station placement for the different configurations of case3
utilizing the street network.

construction heuristics in the various instance groups and configurations. From the
gathered results, one can infer there is no single best construction heuristic. For the
smaller instance sizes, all construction heuristics take the same time. However, when
looking at the largest instance size (500 1000), we see that sz=1 is much faster than
the others. This is due to the fact that the computational requirements for the smaller
instances are shallow; therefore, it can be advantageous to group iterations together to
reduce some overhead. However, as soon as the iterations become increasingly more
challenging, sz=1 constantly achieves faster run times.

47

7. Results and Discussion

sz
=

1
′

sz
=
tc

′

sz
=
d
y
n

10

20

30

40

ru
n
ti

m
e
 (

s
)

(50 100)

sz
=

1
′

sz
=
tc

′

sz
=
d
y
n

50

100

150

200

ru
n
ti

m
e
 (

s
)

(100 200)

sz
=

1
′

sz
=
tc

′

sz
=
d
y
n

1000

2000

ru
n
ti

m
e
 (

s
)

(200 400)

sz
=

1
′

sz
=
tc

′

sz
=
d
y
n

2000

4000

ru
n
ti

m
e
 (

s
)

(300 600)

sz
=

1
′

sz
=
tc

′

sz
=
d
y
n

2500

5000

7500

10000

ru
n
ti

m
e
 (

s
)

(400 800)

sz
=

1
′

sz
=
tc

′

sz
=
d
y
n

5000

10000

15000

ru
n
ti

m
e
 (

s
)

(500 1000)

Runtime until initial solution is found with delay = 10

sz
=

1
′

sz
=
tc

′

sz
=
d
y
n

25

50

75

ru
n
ti

m
e
 (

s
)

(50 100)

sz
=

1
′

sz
=
tc

′

sz
=
d
y
n

0

200

400

600

ru
n
ti

m
e
 (

s
)

(100 200)

sz
=

1
′

sz
=
tc

′

sz
=
d
y
n

0

2000

4000

6000

ru
n
ti

m
e
 (

s
)

(200 400)

sz
=

1
′

sz
=
tc

′

sz
=
d
y
n

0

5000

10000

15000

ru
n
ti

m
e
 (

s
)

(300 600)

sz
=

1
′

sz
=
tc

′

sz
=
d
y
n

5000

10000

15000

ru
n
ti

m
e
 (

s
)

(400 800)

sz
=

1
′

sz
=
tc

′

sz
=
d
y
n

5000

10000

15000

ru
n
ti

m
e
 (

s
)

(500 1000)

Runtime until initial solution is found with delay = 1

sz
=

1
′

sz
=
tc

′

sz
=
d
y
n

10

20

30

40

ru
n
ti

m
e
 (

s
)

(50 100)

sz
=

1
′

sz
=
tc

′

sz
=
d
y
n

100

200

ru
n
ti

m
e
 (

s
)

(100 200)

sz
=

1
′

sz
=
tc

′

sz
=
d
y
n

500

1000

ru
n
ti

m
e
 (

s
)

(200 400)

sz
=

1
′

sz
=
tc

′

sz
=
d
y
n

500

1000

1500
ru

n
ti

m
e
 (

s
)

(300 600)

sz
=

1
′

sz
=
tc

′

sz
=
d
y
n

0

2000

4000

ru
n
ti

m
e
 (

s
)

(400 800)

sz
=

1
′

sz
=
tc

′

sz
=
d
y
n

0

5000

10000

ru
n
ti

m
e
 (

s
)

(500 1000)

Runtime until initial solution is found with delay = 0.1

Figure 7.13: Run time until the initial solution is found for αdelay = 10, αdelay = 1, and
αdelay = 0.1 as well as the various configurations and instance groups.

Nevertheless, achieving good results regarding the optimality gap for a good construction
heuristic is also relevant. Furthermore, we see that sz=1 performs worse than the other
heuristics. Additionally, as was already the case for the MILP results, it can be noted
that solving instances with the parameter αdelay set to 10 leads to the most significant
gaps. This, of course, is to be expected since all previous results indicate the same
behavior; both the run time and the optimality increase in this configuration. A key
takeaway is that all three of them compare well against the normal MILP. For size (300
600), we can already see that all the construction heuristics outperform the MILP in
every configuration. Especially the variants sz=tc and sz=dyn achieve remarkable results.
Naturally, these results come at a cost. Both take quite some time longer than sz=1 .
The variants sz=tc and sz=dyn achieve similar results. Judging by performance alone,
there is no clear winner between those two. However, considering the time it takes to
find an initial solution, we can say that using sz=tc over sz=dyn in all cases is probably
advisable. Nevertheless, this does not hold true for the comparison between sz=tc and
sz=1 . In this case, it depends on the performance of the destroy and repair part of the
heuristic as well as the available time.

48

7.2. Iterated Greedy Results

M
IL

P
sz

=
1

′

sz
=
tc

′
sz

=
d
y
n

0

20

40

g
a
p
 (

%
)

(50 100)

M
IL

P
sz

=
1

′

sz
=
tc

′
sz

=
d
y
n

0

20

40

g
a
p
 (

%
)

(100 200)

M
IL

P
sz

=
1

′

sz
=
tc

′
sz

=
d
y
n

0

25

50

75

g
a
p
 (

%
)

(200 400)

M
IL

P
sz

=
1

′

sz
=
tc

′
sz

=
d
y
n

0

25

50

75

g
a
p
 (

%
)

(300 600)

M
IL

P
sz

=
1

′

sz
=
tc

′
sz

=
d
y
n

25

50

75

g
a
p
 (

%
)

(400 800)

M
IL

P
sz

=
1

′

sz
=
tc

′
sz

=
d
y
n

40

60

80

g
a
p
 (

%
)

(500 1000)

Gap with delay = 10

M
IL

P

sz
=

1
′

sz
=
tc

′

sz
=
d
y
n

0

20

40

g
a
p
 (

%
)

(50 100)

M
IL

P

sz
=

1
′

sz
=
tc

′

sz
=
d
y
n

0

20

40

g
a
p
 (

%
)

(100 200)
M

IL
P

sz
=

1
′

sz
=
tc

′

sz
=
d
y
n

0

20

40

60

g
a
p
 (

%
)

(200 400)

M
IL

P

sz
=

1
′

sz
=
tc

′

sz
=
d
y
n

20

40

60

g
a
p
 (

%
)

(300 600)

M
IL

P

sz
=

1
′

sz
=
tc

′

sz
=
d
y
n

20

40

60

g
a
p
 (

%
)

(400 800)

M
IL

P

sz
=

1
′

sz
=
tc

′

sz
=
d
y
n

20

40

60

80

g
a
p
 (

%
)

(500 1000)

Gap with delay = 1

M
IL

P

sz
=

1
′

sz
=
tc

′

sz
=
d
y
n

0

10

20

g
a
p
 (

%
)

(50 100)

M
IL

P

sz
=

1
′

sz
=
tc

′

sz
=
d
y
n

0

10

20

30

g
a
p
 (

%
)

(100 200)

M
IL

P

sz
=

1
′

sz
=
tc

′

sz
=
d
y
n

0

10

20

g
a
p
 (

%
)

(200 400)

M
IL

P

sz
=

1
′

sz
=
tc

′

sz
=
d
y
n

0

20

40

g
a
p
 (

%
)

(300 600)

M
IL

P

sz
=

1
′

sz
=
tc

′

sz
=
d
y
n

0

20

40

g
a
p
 (

%
)

(400 800)

M
IL

P

sz
=

1
′

sz
=
tc

′

sz
=
d
y
n

0

20

40

g
a
p
 (

%
)

(500 1000)

Gap with delay = 0.1

Figure 7.14: Achieved optimality gaps of the initial solution for αdelay = 10, αdelay = 1,
and αdelay = 0.1 as well as the various configurations and instance groups.

Destroy Operators

In this chapter, we look at the different destroy operators, namely rloc, rloc′, wloc, and
wloc′. Each operation destroys 20% of the existing stations, and in the case of rloc′ and
wloc′, an additional 10% of the existing a variables will be destroyed. We compare the
achieved gaps to each other and the initial starting value. For this, we use the result of the
worst (regarding optimality) construction heuristic sz=1 and always use sz=tc as a repair
operation. In order to enable a fair comparison between the various destroy operators,
we always use the same starting solution (generated by the construction heuristic) for
each instance. We collect the results for each destroy operation after two hours of run
time. This is approximately the time left for the destroy & repair procedure to improve
the result for the biggest instances.

The first thing worth mentioning is that all destroy operations use very little time of
the fixed time limit, as seen in Table 7.7. Depending on the operator and the instance
group, results vary from less than 0.001 to 1.383 seconds for one destroy operation. The
fastest one, an average being rloc followed by wloc. The chosen αdelay value has minimal
impact. The time spent destroying increases with larger instance groups and higher

49

7. Results and Discussion

αdelay values. Interestingly, we can observe that wloc achieves more iterations than rloc.
This is because, on average, fewer a variables are destroyed with the wloc operator than
the rloc one. Usually, less optimal stations typically do have less demand assigned to
them. Therefore, when we remove a less optimal station, we typically remove fewer a
variables, making it easier to reconstruct the solution. More detailed results can be seen
in Table 7.7.

Table 7.7: The average time spent destroying (called atsd, which is the average time it
took in a single iteration for the destroy part in seconds) and the number of iterations
(iter) for all destroy operators for αdelay = 10, αdelay = 1 and αdelay = 0.1 are shown.

Results for αdelay = 10
rloc rloc′ wloc wloc′

(n, m) atsd iter atsd iter atsd iter atsd iter
(50 100) 0.000 2,579.9 0.007 1,843.4 0.003 2,453.3 0.010 1,704.9
(100 200) 0.001 982.1 0.020 939.9 0.010 799.8 0.030 979.7
(200 400) 0.010 94.8 0.120 66.5 0.060 96.6 0.174 71.5
(300 600) 0.022 41.6 0.276 29.1 0.136 45.0 0.433 28.5
(400 800) 0.039 22.2 0.580 13.7 0.269 23.2 0.883 13.7
(500 1000) 0.062 14.4 0.931 8.0 0.385 15.8 1.272 9.3

Results for αdelay = 1
rloc rloc′ wloc wloc′

(n, m) atsd iter atsd iter atsd iter atsd iter
(50 100) 0.000 2,835.2 0.007 2,042.4 0.003 1,973.4 0.009 1,709.4
(100 200) 0.001 774.2 0.022 605.5 0.010 593.7 0.028 1,065.9
(200 400) 0.008 118.8 0.122 79.6 0.053 99.6 0.173 65.4
(300 600) 0.015 56.7 0.268 36.8 0.115 45.0 0.442 24.8
(400 800) 0.029 30.4 0.487 19.5 0.185 28.3 0.784 14.3
(500 1000) 0.051 17.2 0.818 11.8 0.317 17.4 1.383 8.9

Results for αdelay = 0.1
rloc rloc′ wloc wloc′

(n, m) atsd iter atsd iter atsd iter atsd iter
(50 100) 0.000 3,453.0 0.006 2,926.4 0.002 2,849.2 0.007 2,543.1
(100 200) 0.001 953.9 0.021 727.1 0.007 1,477.1 0.021 2,054.2
(200 400) 0.006 171.4 0.113 106.5 0.045 122.9 0.135 105.9
(300 600) 0.013 67.3 0.246 51.7 0.088 60.7 0.336 43.2
(400 800) 0.024 37.5 0.489 29.1 0.194 29.0 0.621 26.2
(500 1000) 0.041 21.2 0.830 17.3 0.296 18.3 1.166 14.3

Regarding optimality, destroying additional demand positively affects the performance of

50

7.2. Iterated Greedy Results

the destroy and repair phase. We also noticed that it significantly affects whether the 10%
additional demand is random a variables or if we choose to destroy them by our weighted
tournament selection. Only destroying the stations has the main disadvantage in that
the solutions are more likely to be reconstructed the same as before. As was already
mentioned, the solution created by the construction heuristic is already an improvement
to the MILP solution for the bigger instance sizes. The destroy and (re)construction
phase further improves the solution.

M
IL

P
ch

rl
o
c

rl
o
c'

w
lo

c
w

lo
c'

0

20

40

g
a
p
 (

%
)

(50 100)

M
IL

P
ch

rl
o
c

rl
o
c'

w
lo

c
w

lo
c'

0

20

40

g
a
p
 (

%
)

(100 200)
M

IL
P

ch
rl
o
c

rl
o
c'

w
lo

c
w

lo
c'

0

25

50

75

g
a
p
 (

%
)

(200 400)

M
IL

P
ch

rl
o
c

rl
o
c'

w
lo

c
w

lo
c'

0

25

50

75

g
a
p
 (

%
)

(300 600)

M
IL

P
ch

rl
o
c

rl
o
c'

w
lo

c
w

lo
c'

20

40

60

80

g
a
p
 (

%
)

(400 800)

M
IL

P
ch

rl
o
c

rl
o
c'

w
lo

c
w

lo
c'

40

60

80

g
a
p
 (

%
)

(500 1000)

Gap with delay = 10

M
IL

P
ch

rl
o
c

rl
o
c'

w
lo

c
w

lo
c'

0

20

40

g
a
p
 (

%
)

(50 100)

M
IL

P
ch

rl
o
c

rl
o
c'

w
lo

c
w

lo
c'

0

20

40

g
a
p
 (

%
)

(100 200)

M
IL

P
ch

rl
o
c

rl
o
c'

w
lo

c
w

lo
c'

0

20

40

60

g
a
p
 (

%
)

(200 400)

M
IL

P
ch

rl
o
c

rl
o
c'

w
lo

c
w

lo
c'

20

40

60

g
a
p
 (

%
)

(300 600)

M
IL

P
ch

rl
o
c

rl
o
c'

w
lo

c
w

lo
c'

20

40

60

g
a
p
 (

%
)

(400 800)

M
IL

P
ch

rl
o
c

rl
o
c'

w
lo

c
w

lo
c'

20

40

60

80

g
a
p
 (

%
)

(500 1000)

Gap with delay = 1

M
IL

P
ch

rl
o
c

rl
o
c'

w
lo

c
w

lo
c'

0

10

20

g
a
p
 (

%
)

(50 100)

M
IL

P
ch

rl
o
c

rl
o
c'

w
lo

c
w

lo
c'

0

10

20

30

g
a
p
 (

%
)

(100 200)

M
IL

P
ch

rl
o
c

rl
o
c'

w
lo

c
w

lo
c'

0

10

20

g
a
p
 (

%
)

(200 400)

M
IL

P
ch

rl
o
c

rl
o
c'

w
lo

c
w

lo
c'

0

20

40

g
a
p
 (

%
)

(300 600)

M
IL

P
ch

rl
o
c

rl
o
c'

w
lo

c
w

lo
c'

0

20

40

g
a
p
 (

%
)

(400 800)

M
IL

P
ch

rl
o
c

rl
o
c'

w
lo

c
w

lo
c'

0

20

40

g
a
p
 (

%
)

(500 1000)

Gap with delay = 0.1

Figure 7.15: This figure shows the gap (%) of all destroy operators as well as the
MILP solution and the starting value determined by the construction heuristic (ch) for
αdelay = 10, αdelay = 1 and αdelay = 0.1

However, results for rloc and wloc were expected to be more compelling. In two hours
and on average 14.4 (for n = 500, m = 1000 and αdelay = 10) iterations rloc only
achieves an improvement from an average 63.4% gap to 59.5%. This is especially
surprising considering that we started with the worst construction heuristic (to leave
enough room for improvement to compare the destroy operators) and used a better
one for reconstruction. The same also holds for wloc. The results for rloc′ and wloc′

are significantly better. Nevertheless, the number of iterations achieved in two hours
is underwhelming due to the increased number of destroyed variables. 7.9 iterations
on average for rloc′ when using αdelay = 10 and the largest instance group (500 1000)
achieve a gap improvement from 65.6% to 50.0%. When comparing the random version
with their weighted random counterparts, it is hard to determine a winner. The weighted

51

7. Results and Discussion

random has a slim advantage that is not significant. More detailed results for all instance
groups and αdelay values can be found in Table 7.15.

Repair Operators

In this chapter, we look at the different repair operators, namely sz=1 , sz=tc, and sz=dyn.
We compare the achieved gaps to each other and the initial starting value. For this, we
use the result of the worst (regarding optimality) construction heuristic sz=1 and always
use rloc′ as a destroy operation. As with the destroy operators, all configurations use the
same solution as a starting point created in an extra run. Again, the collected results for
each repair operation after two hours of run time can be seen in Table 7.8.

The results are similar to those of the construction heuristic. Again, sz=tc and
sz=dyn perform very similarly. It is very close, but in most cases, sz=dyn performs
slightly better than sz=tc. This may be because it achieved as many iterations as sz=tc.
One reason for this is the easier-to-solve MILP program since most of the solution remains
intact, which may also cause the bad performance of sz=1 , which achieves fewer iterations
than both sz=tc and sz=dyn. This, to us, is very surprising. Again, as was already the
case in all other results, αdelay = 0.1 is the easiest of the configurations. The gap for this
configuration is consistently lower, while the number of iterations achieved is higher.

7.2.2 Final Results for the Iterated Greedy Heuristic
We used the versions displayed in Table 7.9 of our iterated greedy heuristic for our final
test. The table includes each tested configuration’s construction heuristic, repair, and
destroy operator.

Each of the configurations was tested for four hours. Configurations that use the same
construction heuristic use the same initial solution as a starting point. The initial solution
was created in an extra run. In contrast to our tests for the destroy & repair operators, we
use the time it took to create the initial solution and subtract it from the total available
time. Because our operators use an element of randomness, this procedure ensures that
the randomness is limited and affects our results as little as possible. It also guarantees
that the achieved results reflect the performance of each configuration.

Results for the Artificial Instance Set

Table 7.10 shows the achieved results of all tested configurations. Both test configurations
using sz=dyn outperformed the sz=tc versions in all different settings. The final test
results start outperforming the MILP at instance size (200 400) in the case of αdelay = 10
and αdelay = 1 and (300 600) if the chosen αdelay parameter is 0.1. In the case of (500
1000) IG-v2 was able to outperform the MILP by 40% with the other test configurations
not being too far behind. Again, a smaller αdelay value leads to better gaps. In the
case of αdelay = 0.1, the best result achieved has an average gap of only 4.6%. Gaps

52

7.2. Iterated Greedy Results

Table 7.8: The optimality gap and the number of iterations (iter) for all repair operators
for αdelay = 10, αdelay = 1 and αdelay = 0.1 are shown.

Results for αdelay = 10
milp const sz=1 sz=tc sz=dyn

(n, m) gap gap gap iter gap iter gap iter
(50 100) 0.0% 37.3% 10.1% 1,405.0 5.9% 1,889.6 5.6% 1,433.0
(100 200) 0.7% 41.1% 20.9% 555.9 9.6% 1,338.9 6.3% 265.3
(200 400) 11.4% 44.8% 24.6% 61.1 11.9% 72.3 11.0% 63.7
(300 600) 71.1% 55.7% 40.5% 22.4 25.3% 26.7 24.6% 22.8
(400 800) 82.2% 61.6% 50.1% 11.3 39.5% 13.3 38.6% 11.3
(500 1000) 82.7% 63.4% 57.0% 7.6 46.5% 8.0 44.1% 7.4

Results for αdelay = 1
milp const sz=1 sz=tc sz=dyn

(n, m) gap gap gap iter gap iter gap iter
(50 100) 0.0% 19.3% 5.4% 1,652.5 7.1% 2,131.9 6.9% 1,968.9
(100 200) 0.1% 26.6% 11.3% 574.4 6.1% 734.5 6.1% 773.2
(200 400) 11.1% 32.8% 20.6% 50.5 10.2% 82.3 10.2% 93.7
(300 600) 52.5% 43.1% 32.7% 26.6 23.7% 40.1 25.2% 33.1
(400 800) 57.8% 46.1% 40.3% 12.6 32.6% 19.0 33.0% 17.0
(500 1000) 61.4% 49.1% 42.9% 9.1 36.5% 11.7 36.8% 9.8

Results for αdelay = 0.1
milp const sz=1 sz=tc sz=dyn

(n, m) gap gap gap iter gap iter gap iter
(50 100) 0.0% 4.7% 0.8% 1,778.3 0.9% 2,795.3 0.9% 2,972.4
(100 200) 0.0% 9.8% 2.6% 627.1 2.3% 471.1 1.9% 856.2
(200 400) 0.4% 9.6% 4.4% 79.7 1.6% 111.4 1.9% 140.2
(300 600) 9.6% 13.5% 8.0% 37.1 4.7% 52.3 4.5% 62.5
(400 800) 29.8% 12.7% 9.3% 17.5 6.4% 28.7 6.8% 34.1
(500 1000) 39.2% 15.7% 12.3% 12.2 8.9% 17.3 8.6% 19.4

Table 7.9: Tested configurations for both the Honda and the AIS instances.

Configuration Construction Heuristic Repair Operator Destroy Operator
IG-v1 sz=tc sz=tc wloc′

IG-v2 sz=tc sz=tc rloc′

IG-v3 sz=dyn sz=dyn wloc′

IG-v4 sz=dyn sz=dyn rloc′

53

7. Results and Discussion

Table 7.10: The achieved gaps (%) for all test configurations for αdelay = 10, αdelay = 1
and αdelay = 0.1 are shown.

Results for αdelay = 10
(n, m) MILP IG-v1 IG-v2 IG-v3 IG-v4
(50 100) 0.0 10.4 9.1 6.5 6.7
(100 200) 0.4 8.2 8.2 6.5 5.7
(200 400) 15.0 11.6 12.6 10.8 11.1
(300 600) 67.6 21.7 22.3 20.4 21.5
(400 800) 81.8 36.8 37.1 35.3 35.3
(500 1000) 82.8 43.7 43.3 41.6 41.4

Results for αdelay = 1
(n, m) MILP IG-v1 IG-v2 IG-v3 IG-v4
(50 100) 0.0 4.5 4.8 4.4 5.3
(100 200) 0.1 7.1 7.4 6.0 6.0
(200 400) 14.1 8.3 8.7 8.6 8.6
(300 600) 52.5 19.4 20.2 21.0 20.4
(400 800) 57.4 26.9 27.3 27.3 27.2
(500 1000) 61.2 30.8 30.8 28.8 29.3

Results for αdelay = 0.1
(n, m) MILP IG-v1 IG-v2 IG-v3 IG-v4
(50 100) 0.0 2.4 3.4 1.7 1.6
(100 200) 0.0 2.2 2.3 1.9 2.5
(200 400) 1.1 2.2 2.4 2.2 2.1
(300 600) 10.1 3.9 3.8 3.6 3.5
(400 800) 29.4 3.9 3.7 3.6 3.5
(500 1000) 37.3 6.1 5.9 4.6 4.7

with a αdelay = 10 are much more significant. However, since the optimal solution is
unknown and we only work with the lower bound, this may be because the best found
lower bound, which is used in the calculation of the gaps with αdelay = 10 is poorer than
with αdelay = 0.1.

A reason for the performance of the sz=tc test configurations can be found when we
look at the achieved iterations. In Table 7.11, we can see that in most instance groups,
sz=tc has about the same number of iterations as sz=dyn. However, the performance in
the biggest set (500 1000) is surprisingly poor. With αdelay = 10 we only achieve two
iterations with sz=tc while we achieve 6 with sz=dyn on the median. However, in the
second largest instance group (400 800) sz=tc outperforms sz=dyn with 22 compared
to 17 iterations. This is certainly why sz=dyn outshines sz=tc that drastically in the

54

7.2. Iterated Greedy Results

Table 7.11: The achieved number of iterations for all test configurations for αdelay = 10,
αdelay = 1 and αdelay = 0.1 are shown.

Results for αdelay = 10
(n, m) IG-v1 IG-v2 IG-v3 IG-v4
(50 100) 3,304 4,104 4,578 2,691
(100 200) 425 428 408 419
(200 400) 111 112 129 114
(300 600) 52 46 42 40
(400 800) 22 22 17 16
(500 1000) 2 2 6 6

Results for αdelay = 1
(n, m) IG-v1 IG-v2 IG-v3 IG-v4
(50 100) 3,777 3,620 5,135 2,892
(100 200) 410 334 440 396
(200 400) 140 106 161 112
(300 600) 67 44 64 42
(400 800) 31 22 29 20
(500 1000) 2 2 13 10

Results for αdelay = 0.1
(n, m) IG-v1 IG-v2 IG-v3 IG-v4
(50 100) 4,976 5,438 7,550 5,112
(100 200) 765 809 902 686
(200 400) 207 183 261 207
(300 600) 96 76 102 82
(400 800) 52 43 56 46
(500 1000) 2 2 33 30

biggest instance set. Another interesting observation is that the number of iterations
does not increase with smaller αdelay values for sz=tc while for sz=dyn it does increase.

Lastly, in Figure 7.16, we display the improvement of the destroy and repair heuristics
of three instances of the (300 600) instance group using αdelay = 10, αdelay = 1 and
αdelay = 0.1. We used sz=dyn as construction and repair heuristic. With a weight of
αdelay = 10, we see constant improvements in the quality of the solution. While using
αdelay = 0.1, fewer solutions register as better solutions. We can also see that with a
decrease of the αdelay value, the number of iterations increases, and the quality of the
solution increases (smaller gaps). In all cases, we will likely see further improvements to
the solution if we achieved more iterations. This is especially true for αdelay = 10.

55

7. Results and Discussion

0 10 20 30 40

iterations

26.0

27.0

28.0

29.0

30.0

31.0

g
a
p
 (

%
)

i01 with delay = 10

rloc'

wloc'

0 10 20 30 40 50

iterations

24.0

25.0

26.0

27.0

28.0

g
a
p
 (

%
)

i02 with delay = 10

rloc'

wloc'

0 5 10 15 20 25 30 35

iterations

28.0

29.0

30.0

31.0

32.0

33.0

g
a
p
 (

%
)

i03 with delay = 10

rloc'

wloc'

0 10 20 30 40 50 60

iterations

17.5

20.0

22.5

25.0

27.5

30.0

32.5

g
a
p
 (

%
)

i01 with delay = 1

rloc'

wloc'

0 10 20 30 40 50 60 70

iterations

19.0

20.0

21.0

22.0

23.0

24.0

g
a
p
 (

%
)

i02 with delay = 1

rloc'

wloc'

0 20 40 60 80

iterations

25.0

26.0

27.0

28.0

29.0

g
a
p
 (

%
)

i03 with delay = 1

rloc'

wloc'

0 20 40 60 80 100

iterations

6.0

6.5

7.0

7.5

g
a
p
 (

%
)

i01 with delay = 0.1

rloc'

wloc'

0 20 40 60 80

iterations

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

g
a
p
 (

%
)

i02 with delay = 0.1

rloc'

wloc'

0 20 40 60 80 100 120

iterations

1.5

2.0

2.5

3.0

3.5

4.0

4.5

g
a
p
 (

%
)

i03 with delay = 0.1

rloc'

wloc'

Figure 7.16: Comparison of how solutions are iteratively improved. Displayed are the first
three instances (i01, i02, i03) of the (300 600) instance set with αdelay = 10, αdelay = 1
and αdelay = 0.1. As construction and repair heuristic sz=dyn was used in all cases.

56

7.2. Iterated Greedy Results

7.2.3 Results for the Honda Instance Set
In this section, we look at the results of the iterated greedy heuristic achieved on the
various instances of the Honda instance set. We ran the same configurations already used
for the BEXSLP instances, as seen in Table 7.9.

Table 7.12: Average gap (%) for all tested configurations for case1, case2 and case3
with all its different weightings. The MILP solution, the initially found solution of the
construction heuristic (sz=tc ch and sz=dyn ch respectively), and the final solution are
displayed.

MILP sz=tc sz=dyn
instance MILP sz=tc ch IG-v1 IG-v2 sz=dyn ch IG-v3 IG-v4
case1 0.0 23.8 0.2 0.1 23.7 0.2 0.1
case2 0.0 10.9 9.8 8.6 9.7 8.3 8.5
case3 8.0 24.0 8.0 8.0 22.2 8.0 8.0
case310 7.1 21.3 7.3 7.4 21.3 7.4 7.4
case3100 0.0 13.7 1.8 2.0 13.6 2.4 2.5
case3200 0.0 13.1 3.3 3.4 12.8 3.8 3.6
case3500 0.0 12.0 0.9 0.8 11.4 0.8 4.7
case31000 0.0 11.7 7.3 6.0 11.6 6.5 6.1
case32000 0.0 15.8 7.9 5.4 13.3 4.3 6.5
case35000 0.0 18.7 8.3 6.0 17.6 7.1 6.9
case310000 0.0 12.5 8.2 9.6 11.1 8.4 8.3

Table 7.13: Number of iterations achieved for all tested configurations for case1, case2
and case3 with all its different weightings.

instance IG-v1 IG-v2 IG-v3 IG-v4
case1 1199 1128 598 795
case2 11798 10032 11577 11038
case3 7090 6086 8192 10055
case310 20048 6931 8219 7647
case3100 8917 8726 9359 7263
case3200 9302 9259 10580 10072
case3500 9414 9374 9133 13890
case31000 14754 7401 19727 17861
case32000 12563 13548 14317 33548
case35000 11777 14426 11208 11685
case310000 12304 26771 11532 20588

All final gaps are below 10%. In fact, all configurations find excellent solutions in all
variations. Interestingly, increasing the αdelay value does not affect the quality of the

57

7. Results and Discussion

solution. The variant with αdelay times one is the closest to the MILP solution in both
configurations. However, it affects the number of iterations of the various configurations
achieved. The base variant of case3 (αdelay = 1) completed between 6086 iterations
and 10055 iterations. The number of iterations increases with increasing αdelay values.
Interestingly, all configurations achieve their respective maximum of iterations at different
αdelay weights. 20048 iterations are the maximum number of iterations achieved for IG-v1
when using αdelay of 10. IG-v2 achieved the most iterations with αdelay of 10000 while
IG-v3 achieved the maximum number of iterations with αdelay of 1000. Finally, IG-v4
peaked at 33548 iterations when using αdelay of 2000. More details regarding the number
of iterations for different instances and weightings can be found in Table 7.13.

Table 7.14: Average gap (%) for all tested configurations for case3 street network (sn)
with all its different weightings. The MILP solution, the initially found solution of the
construction heuristic (sz=tc ch and sz=dyn ch respectively), and the final solution are
displayed.

MILP sz=tc sz=dyn
instance MILP sz=tc ch IG-v1 IG-v2 sz=dyn ch IG-v3 IG-v4
case3_sn 0.0 30.5 0.1 0.1 29.5 0.1 0.1
case3_sn10 0.0 26.6 0.8 1.0 26.6 0.9 0.9
case3_sn100 0.0 17.6 4.2 3.6 17.6 4.9 3.8
case3_sn200 0.0 5.3 4.3 4.4 5.2 4.6 4.8
case3_sn500 0.0 6.6 3.9 4.0 8.8 4.5 4.6
case3_sn1000 0.0 11.8 3.1 2.1 10.7 2.7 2.4
case3_sn2000 0.0 4.1 1.4 4.1 4.7 0.5 0.6
case3_sn5000 0.0 4.9 2.3 4.9 4.9 4.9 1.8
case3_sn10000 0.0 2.6 2.6 2.6 2.6 2.6 2.6

When examining Table 7.14, we take notice of the fact that the gaps for the street network
variation of case3 lead to smaller gaps compared to the normal version. We already
paid attention to the fact that the street network variation appears to be easier to solve
when testing the street network variation using the MILP. Interestingly, the number
of iterations, seen in Table 7.15, decrease dramatically in the street network variation.
Again, it can be observed that the number of achieved iterations is lowest in the base
variation (with αdelay = 1). However, as was already the case for the normal variants of
case3, there is no recognizable pattern.

Additionally, there is no single configuration that objectively performed best. In the
street network variation of case3 IG-v4 performs best overall, followed by IG-v1 . In the
normal variation of the cases, the other variants perform best. Due to the randomness of
the repair operators, a single test on a single case does not suffice to provide a complete
picture. However, all tests have in common that the repair & destroy part performs

58

7.2. Iterated Greedy Results

Table 7.15: Number of iterations achieved for all tested configurations for case3 street
network (sn) with all its different weightings.

instance IG-v1 IG-v2 IG-v3 IG-v4
case3_sn 5200 902 1954 990
case3_sn10 2791 1550 2740 1637
case3_sn100 4303 2956 4446 4805
case3_sn200 3370 2787 3558 5226
case3_sn500 4745 2221 3924 1233
case3_sn1000 1769 3530 2786 3363
case3_sn2000 4414 4302 2712 4042
case3_sn5000 4671 15 5304 486
case3_sn10000 731 4401 1145 1843

better than in the AIS. Gaps of 20%-30% can be reduced to below 1%.

Furthermore, the higher the αdelay, the better the initial solution of the construction
heuristic. This holds true for both the street network and the regular variation. Interest-
ingly, the opposite is true for the repair & destroy procedure. With larger αdelay values,
the construction heuristic can only be improved by small amounts or not at all. Some of
that can be explained by considering that for αdelay = 1, most of the total cost comes
from the setup cost. Table 7.6 demonstrates that with αdelay = 10000, only a fraction of
the total cost is setup cost. This is because the number of modules is limited. Therefore,
the problem is reduced to finding the optimal configuration of modules and stations
regarding the delay.

59

CHAPTER 8
Conclusion and Future Work

This thesis considered the Battery Exchange Station Location Problem (BEXSLP2),
which aims to provide a guideline for planning the best battery-swapping stations con-
cerning setup cost, charging cost, and induced delay for customers. Such stations allow
customers to swap their empty batteries with fully charged ones. All demand created
by customers needs to be satisfied. The BEXSLP is then formulated as a mixed integer
linear programming (MILP) program, which minimizes the objectives mentioned earlier.
These objectives can also be weighted differently to allow different interest groups to use
the formulation.

We evaluated the MILP formulation of the BEXSLP on two different sets of instances.
The first instance set includes three instances derived from Honda’s data. In comparison,
the second one contained 180 instances inspired by the Honda instances but generated
artificially. The largest instances proved too hard to solve for an exact approach. We
achieved better solutions than the original BEXSLP in less time. Most of the instances
provided by Honda were easily solvable in the four-hour time frame. The hardest part
when solving the BEXSLP2 using the MILP solver was proving the given solution’s
optimality.

Therefore, we also proposed and implemented a matheuristic. A matheuristic combines
the exact solving capabilities of MILP solvers with the scalability of a heuristic approach.
In our case, we decided to use an iterated greedy heuristic. In this procedure, we construct
a solution by selecting a subset of intervals and only solve the MILP for the subset. We
then consider the next subset of intervals until all intervals have been considered. After
the construction of the initial solution, we then destroy parts of the solution and use
our construction heuristic as a means to repair the solution. We developed different
destroy and repair operators. When evaluating those operators, we discovered that the
construction heuristic beat the MILP solutions for the largest instance sizes. We also

61

8. Conclusion and Future Work

noticed that only destroying stations and their associated demand does not lead to good
quality solutions. Consequently, we also destroy random demand, allowing more flexibility
when repairing the solution. We noticed that considering a full charging cycle yields the
best results for the repair operators. The iterated greedy approach improved the quality
of the solution tremendously for the largest instance sizes. However, the improvement of
the destroy and repair operators could have been more impressive.

We also evaluated the instance sets with different weightings of the objective function.
Generally speaking, increasing the delay leads to more significant gaps. The combination
of minimizing the delay while at the same time being restricted by the number of modules
that can be built is the most challenging task when solving the MILP. When comparing
the BEXSLP with BEXSLP2, we improved the results significantly. We also exposed
weaknesses in the BEXSLP when testing for different delay weightings. The BEXSLP
was not able to adapt appropriately to these changing values.

8.1 Future Work
As mentioned, we were unsatisfied with the results achieved by the destroy & repair part
of our iterated greedy algorithm. This was partly because we achieved fewer iterations
than we hoped for the largest instance sizes. Additionally, it could also be advantageous
to increase the achieved variation in the iterations and consequently reduce the number
of identical solutions (identical with regards to the opened stations and modules built).
We discussed the possibility of blacklisting specific solutions as well as the possibility
of mutating the solution and letting the MILP only assign the demand. However, we
ultimately decided against it because both ideas do not work well with our iterated
greedy procedure. Therefore, using a genetic algorithm (GA) instead of the iterated
greedy heuristic may be an interesting topic to explore.

Another potential area of research is to vary all existing parameters. This includes the
parameters to weigh the objective function and some assumptions made while working
on this problem. One possibility is to increase or decrease the length of a single time
interval which in our case was one hour. Another interesting starting point is to no
longer serve all customer demand but instead only satisfy a certain percentage or have a
function determining if users are willing to travel the distance to the battery-swapping
station or not. A further starting point for follow-up research may be to no longer have
the customers managed and optimized by the MILP but instead take a more realistic
approach of customers riding to one of the closest stations. Consequently, this may lead
to some stations being overcrowded, which in turn means that these stations may no
longer be able to fulfill the needs of all their customers.

Finally, we are most interested in determining how well our developed algorithms would
hold up in a real-world scenario. This implies verifying whether the assumptions made

62

8.1. Future Work

in this work still hold in such a scenario, comparing our algorithms to other works,
and testing which provides the best results regarding user experience and customer
participation rate.

63

List of Figures

1.1 A typical battery-swapping station developed by Honda 2

7.1 This figure displays the gaps and run times for the various instance groups
and αdelay values. 37

7.2 This figure displays the gaps and run times for the various instance groups
when optimizing for a single objective, e.g., αdelay = 1 with both αsetup and
αcharging being zero. 38

7.3 This figure displays the quality of the MILP solution compared to the optimal
values of delay and setup cost. 38

7.4 Comparison of objective values between BEXSLP and BEXSLP2 solutions. 41
7.5 Gaps between BEXSLP and BEXSLP2 solutions. The gaps show how much

worse a solution derived from a BEXSLP solution is, compared to its BEXSLP2
counterpart. 42

7.6 number of stations and BEX modules to be built for the different configura-
tions. 42

7.7 Geographic station placement for the different configurations of case3. . . 43
7.8 Optimality of the different objectives for both the BEXSLP2 solution and the

recreated Honda solutions. 44
7.9 Weighted objectives of the BEXSLP2 and the recreated Honda solutions. 44
7.10 number of stations and BEX modules to be built for case3 using the street

network. 45
7.11 Optimality of the different objectives for the various configurations of case3

with the street network. 46
7.12 Geographic station placement for the different configurations of case3 utilizing

the street network. 47
7.13 Run time until the initial solution is found for αdelay = 10, αdelay = 1, and

αdelay = 0.1 as well as the various configurations and instance groups. . . 48
7.14 Achieved optimality gaps of the initial solution for αdelay = 10, αdelay = 1,

and αdelay = 0.1 as well as the various configurations and instance groups. 49
7.15 This figure shows the gap (%) of all destroy operators as well as the MILP

solution and the starting value determined by the construction heuristic (ch)
for αdelay = 10, αdelay = 1 and αdelay = 0.1 51

65

7.16 Comparison of how solutions are iteratively improved. Displayed are the first
three instances (i01, i02, i03) of the (300 600) instance set with αdelay = 10,
αdelay = 1 and αdelay = 0.1. As construction and repair heuristic sz=dyn was
used in all cases. 56

66

List of Tables

6.1 Key characteristics of the four Honda instances, with n representing the
number of potential station locations, m referring to the number of O/D
pairs, nd referring to the number of non-zero demand values dt

qi over all
t ∈ T q ∈ Q, i ∈ I, emax representing the maximum number of BEX modules
which can be added to a station, and zmodules being the maximum number of
new modules which may be built. 34

6.2 This table provides the number of locations, O/D pairs, and the number of
instances on all the existing instance groups in the AIS instance set. . . . 34

7.1 Maximum allowed memory to be used for each instance. 35
7.2 This table shows the optimality gap as well as the run time for the artificially

created instance set for the configurations αdelay = 10, αdelay = 1, αdelay = 0.1 36
7.3 Configurations used for generating the provided BEXSLP solutions. The

number of stations and BEX modules between the BEXSLP solutions and
their BEXSLP2 counterpart solutions are also shown. 39

7.4 Run time, gap, weighted total objective value, and unweighted objectives
(delay, setup, and charging) of solutions generated from the BEXSLP2 model
and solutions derived from Honda’s BEXSLP approach. 40

7.5 Run time, gap, and the weighted total objective value for all tested configura-
tions for case3. 41

7.6 Run time, gap, and the weighted objectives for all tested configurations for
case3 utilizing the street network. 45

7.7 The average time spent destroying (called atsd, which is the average time it
took in a single iteration for the destroy part in seconds) and the number
of iterations (iter) for all destroy operators for αdelay = 10, αdelay = 1 and
αdelay = 0.1 are shown. 50

7.8 The optimality gap and the number of iterations (iter) for all repair operators
for αdelay = 10, αdelay = 1 and αdelay = 0.1 are shown. 53

7.9 Tested configurations for both the Honda and the AIS instances. 53
7.10 The achieved gaps (%) for all test configurations for αdelay = 10, αdelay = 1

and αdelay = 0.1 are shown. 54
7.11 The achieved number of iterations for all test configurations for αdelay = 10,

αdelay = 1 and αdelay = 0.1 are shown. 55

67

7.12 Average gap (%) for all tested configurations for case1, case2 and case3 with
all its different weightings. The MILP solution, the initially found solution
of the construction heuristic (sz=tc ch and sz=dyn ch respectively), and the
final solution are displayed. 57

7.13 Number of iterations achieved for all tested configurations for case1, case2
and case3 with all its different weightings. 57

7.14 Average gap (%) for all tested configurations for case3 street network (sn) with
all its different weightings. The MILP solution, the initially found solution
of the construction heuristic (sz=tc ch and sz=dyn ch respectively), and the
final solution are displayed. 58

7.15 Number of iterations achieved for all tested configurations for case3 street
network (sn) with all its different weightings. 59

68

List of Algorithms

2.1 Iterated Greedy . 11

2.2 Greedy Construction Heuristic . 11

69

Bibliography

[BBM08] Roberto Battiti, Mauro Brunato, and Franco Mascia. Reactive search and
intelligent optimization, volume 45. Springer Science & Business Media,
2008.

[BF12] Alireza Boloori Arabani and Reza Zanjirani Farahani. Facility location
dynamics: An overview of classifications and applications. Computers &
Industrial Engineering, 62(1):408–420, 2012.

[BGM16] Mouna Kchaou Boujelben, Céline Gicquel, and Michel Minoux. A milp
model and heuristic approach for facility location under multiple operational
constraints. Computers & Industrial Engineering, 98:446–461, 2016.

[BMRBR09] Marco A. Boschetti, Vittorio Maniezzo, Matteo Roffilli, and Antonio
Bolufé Röhler. Matheuristics: Optimization, simulation and control. In
María J. Blesa, Christian Blum, Luca Di Gaspero, Andrea Roli, Michael
Sampels, and Andrea Schaerf, editors, Hybrid Metaheuristics, pages 171–177,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[BT97] Dimitris Bertsimas and John N. Tsitsiklis. Introduction to linear optimiza-
tion, volume 6. Athena Scientific Belmont, MA, 1997.

[BW05] Dimitris Bertsimas and Robert Weismantel. Optimization over integers,
volume 13. Dynamic Ideas Belmont, 2005.

[CAT22] Ankit Chouksey, Anil Kumar Agrawal, and Ajinkya N. Tanksale. A hi-
erarchical capacitated facility location-allocation model for planning ma-
ternal healthcare facilities in india. Computers & Industrial Engineering,
167:107991, 2022.

[Dan90] George B. Dantzig. Origins of the simplex method. In A history of scientific
computing, pages 141–151. 1990.

[DT03] George Bernard Dantzig and Mukund N. Thapa. Linear programming:
Theory and extensions, volume 2. Springer, 2003.

71

[ECMA17] Dimitrios Efthymiou, Katerina Chrysostomou, Maria Morfoulaki, and Geor-
gia Aifantopoulou. Electric vehicles charging infrastructure location: a
genetic algorithm approach. European Transport Research Review, 9(2):1–9,
2017.

[Gok20] Osman Gokalp. An iterated greedy algorithm for the obnoxious p-median
problem. Engineering Applications of Artificial Intelligence, 92:103674,
2020.

[GYL18] Fang Guo, Jun Yang, and Jianyi Lu. The battery charging station location
problem: Impact of users’ range anxiety and distance convenience. Trans-
portation Research Part E: Logistics and Transportation Review, 114:1–18,
2018.

[JCvEN21] Helia Jamshidi, Gonçalo HA Correia, J Theresia van Essen, and Klaus
Nökel. Dynamic planning for simultaneous recharging and relocation of
shared electric taxies: A sequential milp approach. Transportation Research
Part C: Emerging Technologies, 125:102933, 2021.

[JORR20] Thomas Jatschka, Fabio F. Oberweger, Tobias Rodemann, and Günther R.
Raidl. Distributing battery swapping stations for electric scooters in an
urban area. In Nicholas Olenev, Yuri Evtushenko, Michael Khachay, and
Vlasta Malkova, editors, Optimization and Applications, volume 12422 of
LNCS, pages 150–165. Springer, 2020.

[Kar84] Narendra Karmarkar. A new polynomial-time algorithm for linear program-
ming. In Proceedings of the sixteenth annual ACM symposium on Theory
of computing, pages 302–311, 1984.

[Kha79] Leonid Genrikhovich Khachiyan. A polynomial algorithm in linear program-
ming. In Doklady Akademii Nauk, volume 244, pages 1093–1096. Russian
Academy of Sciences, 1979.

[LGL19] Hao Liu, Benhe Gao, and Yunhan Liu. Battery swap station location
routing problem with capacitated electric vehicles and time windows. In
2019 IEEE 6th International Conference on Industrial Engineering and
Applications (ICIEA), pages 832–836, 2019.

[LLKL22] Min-Der Lin, Ping-Yu Liu, Jia-Hong Kuo, and Yu-Hao Lin. A multiobjective
stochastic location-allocation model for scooter battery swapping stations.
Sustainable Energy Technologies and Assessments, 52:102079, 2022.

[LLYL21] Min-Der Lin, Ping-Yu Liu, Ming-Der Yang, and Yu-Hao Lin. Optimized
allocation of scooter battery swapping station under demand uncertainty.
Sustainable Cities and Society, 71:102963, 2021.

72

[NSdG19] Stefan Nickel and Francisco Saldanha-da Gama. Multi-Period Facility
Location, pages 303–326. Springer International Publishing, Cham, 2019.

[PR05] Jakob Puchinger and Günther R. Raidl. Combining metaheuristics and exact
algorithms in combinatorial optimization: A survey and classification. In
International work-conference on the interplay between natural and artificial
computation, pages 41–53. Springer, 2005.

[Rau22] Matthias Rauscher. A matheuristic for battery exchange station location
planning for electric scooters, 2022.

[RS07] Rubén Ruiz and Thomas Stützle. A simple and effective iterated greedy
algorithm for the permutation flowshop scheduling problem. European
Journal of Operational Research, 177(3):2033–2049, 2007.

[RSS20] Pradeep Rathore, Sarada Prasad Sarmah, and Arti Singh. Location–
allocation of bins in urban solid waste management: a case study of bilaspur
city, india. Environment, Development and Sustainability, 22(4):3309–3331,
2020.

[Sch98] Alexander Schrijver. Theory of linear and integer programming. John Wiley
& Sons, 1998.

[SR18] Thomas Stützle and Rubén Ruiz. Iterated greedy. Handbook of heuristics,
pages 547–577, 2018.

[WN99] Laurence A. Wolsey and George L. Nemhauser. Integer and combinatorial
optimization, volume 55. John Wiley & Sons, 1999.

[WYW+19] Shouxiang Wang, Lu Yu, Lei Wu, Yichao Dong, and Hongkun Wang. An
improved differential evolution algorithm for optimal location of battery
swapping stations considering multi-type electric vehicle scale evolution.
IEEE Access, 7:73020–73035, 2019.

[YLK21] Shangyao Yan, Chih-Kang Lin, and Zong-Qi Kuo. Optimally locating elec-
tric scooter battery swapping stations and battery deployment. Engineering
Optimization, 53(5):754–769, 2021.

[YS15] Jun Yang and Hao Sun. Battery swap station location-routing problem with
capacitated electric vehicles. Computers & Operations Research, 55:217–232,
2015.

73

	Kurzfassung
	Abstract
	Contents
	Introduction
	Problem Statement
	Aim of the Work
	Key Results

	Methodology
	Exact Methods
	Iterated Greedy Heuristic
	Hybrid Methods

	Related Work
	Previous Work

	The Battery Exchange Station Location Problem 2
	Iterated Greedy Heuristic
	Repair & Construction Heuristic
	Destroy Strategies

	Instances
	Honda Instances
	Artificial Instance Set (AIS)

	Results and Discussion
	MILP Results
	Iterated Greedy Results

	Conclusion and Future Work
	Future Work

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

		2023-08-31T09:09:22+0200
	Signature Box
	Bernhard Kreutzer
	Signature

		2023-08-31T09:11:43+0200
	Signature Box
	Bernhard Kreutzer
	Signature

		2023-08-31T09:12:57+0200
	Signature Box
	Bernhard Kreutzer
	Signature

		2023-09-01T11:47:43+0200
	Signature Box
	GÃ¼nther Raidl
	Signature

