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Abstract

In this thesis, we analyse and compare two approaches for multivariate count data time
series with an excessive amount of zeros. The first approach belongs to the class of
generalised linear models (GLM) and fits a univariate integer-valued generalized autore-
gressive conditional heteroskedasticity model of order (p,q) (INGARCH(p,q) model) for
each dimension. The second approach is based on compositional data analysis (CoDA)
and uses the relative structure of our data to build a vectorised autoregressive (VAR)
model from it. In addition, we also consider alternative options like zero-inflated models
(ZIM) and integer-valued autoregressive (INAR) models. Providing the mathematical
background for the INGARCH(p,q) and CoDA approach and exploring different para-
meter settings for them, we evaluate their performance on real world data and compare
different tuning options. We then introduce an error measure for comparison and use
it to compare the performance on different time series. We provide a handbook of our
analysis in the statistical software R and present the used packages and functions. At
last, we show the results of our analysis. All models outperform the naive random walk
model, but they cannot take all three major characteristics, integer-valued, multivariate
and excessive amount of zeros, simultaneously into account.

Keywords: Compositional Data Analysis, General Linear Models, INGARCH, Mul-
tivariate Count Data Time Series, R
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Kurzfassung

In dieser Diplomarbeit werden zwei Ansätze für multivariate Zähldaten-Zeitreihen mit
einer überproportionalen Anzahl von Nullen analysiert und verglichen. Der erste Ansatz
gehört zu der Klasse der verallgemeinerten linearen Modelle (GLM). Dabei wird ein
ganzzahliges verallgemeinertes autoregressives Model mit bedingter Heteroskedastizität
der Ordnung (p,q) (INGARCH(p,q) Model) für jede Dimension gefitted. Der zweite
Ansatz basiert auf der Analyse von Kompositionsdaten (CoDA) und nutzt die relati-
ve Struktur der Daten, um daraus ein vektorisiertes autoregressives Model (VAR) zu
erstellen. Darüber hinaus betrachten wir auch alternative Optionen wie Zero-Inflation-
Modelle (ZIM) und ganzzahlige autoregressive Modelle (INAR). Wir beschreiben den
mathematischen Hintergrund des INGARCH(p,q)- und des CoDA-Ansatzes, untersu-
chen verschiedene Parametereinstellungen, vergleichen Tuning-Optionen und testen die
Modelle mit realen Daten. Anschließend führen wir ein Fehlermaß zum Vergleich ein
und verwenden es, um die Güte der Modelle bei verschiedenen Zeitreihen zu vergleichen.
Wir stellen ein Benutzerhandbuch für unsere Analyse in der Statistiksoftware R zur Ver-
fügung und erklären die verwendeten Pakete und Funktionen. Zuletzt präsentieren wir
die Ergebnisse der Analyse. Unsere Modelle liefern bessere Ergebnisse als eine zufällige
stochastische Irrfahrt, können aber nicht die drei Haupteigenschaften, Multivariabilität,
ganzzahlige Werte und überproportionale Anzahl an Nullen, gleichzeitig berücksichtigen.

Schlagworte: Compositional Data Analysis, General Linear Models, INGARCH,
Multivariate Count Data Time Series, R
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1 Introduction

1.1 Motivation
Multivariate count data is a reoccurring theme in real-world applications. While there
are various methods among the classical statistical models to handle such data, there are
fewer methods available to handle it in a time series context. Even more so, when there
is an excessive amount of zeros or missing values present. In this thesis, we compare
various models for such data and compare their predictive power. We test our models
on real world data, which was kindly provided to us, and analyse their performance. In
the following, we will shortly describe the general framework and objective.

This thesis is part of a bigger project being carried out at the Technical University of
Vienna in cooperation with the company Schrankerl GmbH. Schrankerl GmbH operates
food vending machines in offices, which are filled with food ranging from appetizers
and main course to snacks and beverages. Each week the vending machines, or in the
following also called fridges, are being restocked and the number of items sold in the
past week is being recorded. In addition, non-sold items are being disposed of which
results in monetary losses. The objective is to find a model to predict the amount the
company needs to order for the upcoming week, in a bid to minimise the loss.

1.2 Data Description
In this section, we describe the structure of our data, which is essential in choosing the
right model. We have several multivariate time series with integer values, with each
series representing a vending machine. The dimensions represent the various categories
of the food where each item is of one of the four main categories 1,2,3,4 and one of the
various subcategories. We mainly analyse the time series on the aggregated level of the
main categories; however, the models can also be applied to the subcategories. In this
case we have a model for each main category instead of each vending machine. The
values for each category represent the number of items sold. For a fridge f denote this
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time series with {
Yt : t = 1, . . . , Tf ; Yt ∈ NK

0

}
f

, (1.1)

where K stands for the number of categories, Tf denotes the total length of the time series
and NK

0 = N0 × . . . × N0. .. .
K−times

. This means Yt = (Y1t, . . . , YKt)T with Ykt ∈ N0, t = 1, . . . , Tf

and k = 1, . . . , K. Since we will sometimes not use all of our data but only a fraction of
it, we will denote with T the length of the time series used

{
Yt : t = 1, . . . , T ; Yt ∈ NK

0

}
f

. (1.2)

So Equation (1.1) describes the whole time series available, while Equation (1.2) de-
scribes the time series used and it holds T ≤ Tf . In the following we will use Equation
(1.2) to indicate that we may only use a fraction of the whole time series. We will dive
more into that in Section 4.1.

The data is measured on a weekly basis and hence our points in time are equidistant.
One noteworthy feature of our data is the amount of 0 and NA values, which will be
dived into in later sections. An additional characteristic of our data is the difference in
length for various time series. While for some time series we have 70+ data points, for
others we have less than 10. An example view of our data would be:

Fridge ID Week Date Main Category Sub Category Sold
111 2021-01-18 1 3 6
111 2021-01-18 1 8 7
111 2021-01-25 2 6 4
222 2022-06-06 3 15 1
222 2022-06-06 4 11 0
222 2022-06-13 1 100061 0
222 2022-06-20 2 6 30
222 2022-06-20 2 10 15

Table 1.1: Example data

As mentioned before, we mainly aggregate our data on main category level. This
means that we do not differentiate between the subcategories and are only interested
in the number of items sold for each main category. Our data in Table 1.1 would then
change to Table 1.2:

2



Fridge ID Week Date Main Category Sold
111 2021-01-18 1 13
111 2021-01-25 2 4
222 2022-06-06 3 1
222 2022-06-06 4 0
222 2022-06-13 1 0
222 2022-06-20 2 45

Table 1.2: Example data aggregated on main category level

1.3 Outlook
The remainder of the thesis is split in the following way. In Chapters 2 and 3, we
describe our methodologies used and the reasoning why we are using them. We provide
a short literature review about count data time series in Section 2. In these chapters,
we also lay the mathematical groundwork for the considered methods. In Chapter 4, we
explain the specification and tuning options for our models and also introduce an error
measure to evaluate their performance. We show the results on some exemplary time
series and then show the results of each tuning parameter. In Section 4.4, we explain
the R-functions used and provide a guidebook. In Chapter 5 we summarise our findings
and provide a further outlook on the topic.
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2 Count Time Series Models

2.1 Motivation

In this section, we introduce the different count time series models. We begin with a
short literature review about possible count data models and then provide a motivation
on why we decided to focus on our models. The review is mainly based on Liboschik
(2016) and Heinen (2003) and a more detailed review can be found in MacDonald and
Zucchini (1997). Later, we define the models themselves and list some of their properties.

Since our data can be seen as a discrete time series with count data, we want a model
which is able to take these properties into account. Hence, common features of count
data, like autocorrelation and overdispersion, should not be neglected and instead be
modelled properly.

One common way to deal with count data are Markov chains. In Markov chains, the
dependent variable can take on all possible values in the so called state space and the
probability of changing states is then modelled as a transition probability. A limitation
is the fact that these models become cumbersome if the state space gets too big and the
model loses tractability, see Heinen (2003). As an extension to the basic Markov chains
models, Hidden Markov chains are proposed by MacDonald and Zucchini (1997). In this
case, one assumes that the observations follow a discrete distribution, i.e. the Poisson
distribution. However, instead of assuming that the parameter of this distribution is
fixed, it is assumed that it follows a Markov chain with finite state space. This makes
it possible to account for serial correlation, as well as overdispersion, see MacDonald
and Zucchini (1997). But, since there is no generally accepted way to determine the
order of the Markov chain, it can cause problems if the data structure does not provide
intuitive ways to do it. Another issue is that the number of parameters which needs
to be estimated gets big quickly, especially if the order of the model is big, see Heinen
(2003).

Other common models for time series data are the ARMA models and their discrete
version, the discrete autoregressive moving average (DARMA) models. They can be
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defined as a mixture of discrete probability distributions and a suitable chosen marginal
probability function, see Biswas and Song (2009). While there have been various applic-
ations, for example in Chang, Delleur, and Kavvas (1987), there seem to be difficulties
in their estimation, see Heinen (2003).

State space models with conjugated priors are proposed by Harvey and Fernandes
(1989). Here, one assumes that the observations are drawn from a Poisson distribution
whose mean itself follows a Gamma distribution. The parameters of the Gamma dis-
tribution, which are seen as latent variables, are chosen in such a way that the mean
is constant, but the variance is increasing. While there are ways proposed by Zeger
(1988) to handle overdispersion, their models have the weakness of needing further as-
sumptions to handle zeros while also having more complicated model specifications, see
Heinen (2003).

We decide to focus on the class of generalised linear models (GLM) and in particular
on the INGARCH(p,q) and log-linear model. For those models, the observations are
modelled conditionally on the past and follow a discrete distribution. The conditional
mean is then connected with a link function to the past observations and conditional
means. A covariate vector can be included in the model to factor in additional, external
information. While being easy to use and estimate, they still provide a good amount of
flexibility and additionally, a wide array of tools is available for various tests and fore-
casts, see Liboschik (2016). We also introduce an extension of the INGARCH(p,q) model
to multivariate data. However, since to our knowledge there is currently no R-package
available to fit these models, we stay with the univariate version. The INGARCH(p,q)
and log-linear model will be discussed in detail in Sections 2.2 and 2.6 respectively.

Since our data features many zero values, we also investigate zero-inflated models
(ZIM) with the focus on a zero-inflated version of the INGARCH(p,q) model. The
structure of this model follows an INGARCH(p,q) model but with a zero-inflated Poisson
distribution as the conditional distribution. However, due to a lack of appropriate R-
packages, we use a slightly different version of the ZIM introduced by Lambert (1992).
This model is basically a generalised linear regression model with a logit link where the
data is assumed to follow a zero-inflated Poisson distribution. More details can be found
in Section 2.5.

Another popular approach for count time series are the integer-valued autoregress-
ive (INAR) models presented in Section 2.8.1. These models are based on a thinning
operator and a parameter α. The dependent variable yt is modelled as the sum of an
error term and the sum of yt−1 draws from an integer-valued distribution with mean
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α and finite variance. They are attractive since they have a linear-like structure and a
similar correlation structure to AR or ARMA models and hence can be seen as a discrete
counterpart, see Heinen (2003).

The simple naive random walk, defined in Section 2.4, is the simplest and most basic
approach. Since this is the model that is currently used for forecasting, it is ideal as a
benchmark. We will use it to compare the performance of the models with the help of
a new error measure in Section 4.2.

Since the INGARCH and the INAR model are based on their real-valued counterparts,
the GARCH and AR model, we will also provide a short review for them for better
comparison and clearness on why we choose the integer-valued versions. However, we
will consider neither the GARCH nor the AR model in our analysis.

2.2 INGARCH Model

We base this whole section on Liboschik (2016) and construct the INGARCH(p,q) model
like the author. Take again our time series

{
Yt : t = 1, . . . , T ; Yt ∈ NK

0

}
f

for fridge f

and denote the univariate time series for category k with {Ykt : t = 1, . . . , T ; Ykt ∈ N0}f

for k = 1, . . . , K. This means Yt = (Y1t, . . . , YKt)T . Denote an r-dimensional time
varying covariate vector with Xkt = (Xk

t1, . . . , Xk
tr)T . Let the conditional mean be

λkt = E [Ykt|Fk,t−1] where Fk,t−1 is the σ-field generated by Ykt and λl for l < t

, Fk,t−1 = σ(Yk1, . . . , Ykl, λ1, . . . , λl). Therefore, the conditional mean of the time series
is dependent on its combined history of the past conditional means and its past values.
With this, we can define the integer-valued generalized autoregressive conditional het-
eroskedasticity model of order (p,q) (INGARCH(p,q) model) for category k = 1, . . . , K

as

Ykt|Fk,t−1 ∼ P (λkt); ∀t ∈ N,

E [Ykt|Fk,t−1] = λkt = β0 +
p∑

i=1
βiYk,t−i +

q∑
j=1

αjλk,t−j,
(2.1)

where p, q ∈ N and P (λkt) is a Poisson distribution with mean λkt. The integer p defines
the number of past values to regress on, whereas q does the same for the past conditional
means. In order to account for external effects as well, we can add the covariate vector
Xkt
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Ykt|Fk,t−1 ∼ P (λkt); ∀t ∈ N,

E [Ykt|Fk,t−1] = λkt = β0 +
p∑

i=1
βiYk,t−i +

q∑
j=1

αjλk,t−j + ηT Xkt,
(2.2)

where η is the parameter for the covariates such that ηT Xkt ≥ 0. In this case Fk,t

also includes the past information from Xkt up to time t + 1. From the distributional
assumption Ykt|Fk,t−1 ∼ P (λkt) it follows

pkt(y; θ) = P(Ykt = y|Fk,t−1) = λy
kt exp(−λkt)

y! , y ∈ N0. (2.3)

Furthermore, it can be shown that conditionally on the past history Fk,t−1, the model
is equidispersed, i.e. it holds λkt = E [Ykt|Fk,t−1] = V [Ykt|Fk,t−1]. However, uncondi-
tionally the model exhibits overdispersion. In that case it holds E [Ykt] ≤ V [Ykt], see
Liboschik (2016), Fokianos and Tjøstheim (2011), and Heinen (2003).

Parameter Estimation and Forecasting

We summarise the estimation of the INGARCH(p,q) model as described in Liboschik
(2016). The model is estimated for each category k = 1, . . . , K separately.

The parameter space for the INGARCH(p,q) model with external effects, Model (2.2),
is given by

Θ =
({θ ∈ Rp+q+r+1 : β0 > 0; β1, . . . , βp, α1, . . . , αq, η1, . . . , ηr ≥ 0;

p∑
i=1

βi +
q∑

j=1
αj < 1

)} .

(2.4)
To ensure positivity of the conditional mean λkt, the intercept β0 must be positive
while all other parameters must be non-negative. The upper bound of the sum ensures
that the model has a stationary and ergodic solution with moments of any order, see
Ferland, Latour, and Oraichi (2006), Fokianos, Rahbek, and Tjøstheim (2009), and
Doukhan, Fokianos, and Tjøstheim (2012). A quasi maximum likelihood approach is
used to estimate the parameters θ. For observations yk = (yk1, . . . , ykT )T for category
k = 1, . . . , K, the conditional quasi log-likelihood function, up to a constant, is given by

ℓk(θ) =
T∑

t=1
log pkt(ykt; θ) =

T∑
t=1

(ykt log(λkt(θ)) − λkt(θ)) , (2.5)

where pkt(ykt; θ) is the probability density function defined in Equation (2.3). The
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conditional mean is seen as a function λkt : Θ → R+. The conditional score function is
given by

SkT (θ) = ∂ℓk(θ)
∂θ

=
T∑

t=1

(
ykt

λkt(θ) − 1
)

∂λkt(θ)
∂θ

. (2.6)

The vector ∂λkt(θ)
∂θ

can be computed recursively. The conditional information matrix is
given by

GkT (θ; σ2
k) =

T∑
t=1

Cov

(
∂ℓk(θ; Ykt)

∂θ

|||||Fk,t−1

)

=
T∑

t=1

(
1

λkt (θ) + σ2
k

) (
∂λkt(θ)

∂θ

) (
∂λkt(θ)

∂θ

)T

.

(2.7)

In the case of the Poisson distribution, we have σ2
k = 0. If the Negative Binomial

distribution is used, see Section 4.1.2, then we have σ2
k = 1

ϕk
where ϕk is the disper-

sion parameter of the Negative Binomial distribution. Finally, assuming that the quasi
maximum likelihood estimator (QMLE) θ̂T of θ exists, it is the solution to

θ̂ = θ̂T = arg max
θ∈Θ

(ℓk(θ)). (2.8)

The dispersion parameter can be estimated using

T∑
t=1

(Ykt − λ̂kt)2

λ̂kt + λ̂2
kt/ϕ̂k

= T − (p + q + r + 1), (2.9)

where λ̂kt = λkt(θ̂) is the fitted value. The variance is then σ̂2
k = 1

ϕ̂k
, see Christou and

Fokianos (2014), Liboschik (2016).
The optimal one-step ahead forecast with regard to the mean squared error is the

conditional expectation λk,t+1 = E [Yk,t+1|Fkt]. For h > 1, the h-step ahead predic-
tion is calculated iteratively with the one-step ahead predictions of Yk,t+1, Yk,t+2, . . ., see
Liboschik (2016).

2.2.1 Multivariate INGARCH Model

Since we have multivariate data, we also investigate multivariate versions of the ING-
ARCH model. There have been various approaches in literature to expend the univariate
INGARCH model to more dimensions. For example, bivariate models have been pro-
posed by Liu (2012) and extended by Cui and Zhu (2018).
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The authors in Fokianos, Støve, et al. (2020) and Fokianos (2021) introduce and
review the multivariate INGARCH model on the basis of a data generating process.
Since the extension from the univariate Poisson assumption to the multivariate case
is quite complex, the authors focus on constructing a joint distribution, such that the
components are marginally Poisson distributed but not the joint distribution itself.

Let Yt = (Y1t, . . . , YKt)T , λt = ❊[Yt|Ft] where λt = (λ1t, . . . , λKt)T and Ft is the
σ-field generated by {Y0, . . . , Yt, λ0}. Then for each k = 1, . . . , K we assume

Ykt|Ft−1 ∼ P (λkt),
λt = d + Aλt−1 + BYt−1,

(2.10)

where d is a K-dimensional vector and A, B are K × K matrices. The elements of
d, A, B are assumed to be positive such that λt > 0. Therefore, Equation (2.10) im-
plies, that {Yt} is marginally a Poisson process. However, the joint distribution is not
necessarily assumed to be a multivariate Poisson distribution. Instead, the joint distri-
bution is constructed using a copula structure. This allows for arbitrary dependence
between the components. The joint distribution is constructed with the help of the
following process. Take a starting value λ0 = (λ1,0, . . . , λK,0)T and then

1. Let Ul = (U1,l, . . . , UK,l) for l = 1, . . . , m be a sample from a K-dimensional copula
C(u1, . . . , uK). Then by definition of a copula, Uil follows marginally the uniform
distribution on (0, 1) for i = 1, . . . , K and l = 1, . . . , m.

2. Define the transformation Xil = − log( Uil

λi,0
). Then the marginal distribution of Xil

is exponential with parameter λi,0.

3. For Y0 = (Y1,0, . . . , YK,0)T and m large enough, define Yi,0 = max
1≤j≤m

(∑j
l=1 Xil) ≤ 1.

Then Y0 is marginally a set of starting values of a Poisson process with parameter
λ0.

4. Use Model (2.10) to obtain λ1.

5. Go back to step 1 to obtain Y1 and so on.

see Fokianos, Støve, et al. (2020).
This construction of the joint distribution imposes the dependence among the com-

ponents of the process {Yt}. This approach can be extended to other marginal count
processes if they can be generated by continuous arrival times, see Fokianos, Støve, et al.
(2020).
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We can then define the multivariate INGARCH model as

Yt = Nt(λt),
λt = d + Aλt−1 + BYt−1,

(2.11)

where {Nt} is a sequence of independent K-variate copula-Poisson processes that counts
the number of events in [0, λ1t]×, . . . , ×[0, λKt], see Fokianos, Støve, et al. (2020).

Another approach is taken by S. Lee, D. Kim, and B. Kim (2023). Instead of con-
structing a joint distribution for the multivariate vector Yt, they fit a one-parameter
exponential family conditional distribution to each component Ykt

pk(y|ν) = exp(νy − Ak(ν))hk(y), y ∈ ◆0, (2.12)

where Ak and hk are known functions and ν is the natural parameter. Both Ak and
Bk(ν) = dAk(ν)

dν
are strictly increasing. The multivariate INGARCH model is then given

for each k = 1, . . . , K by

Ykt|Ft−1 ∼ pk(y|νkt),
λt = ❊[Yt|Ft−1] = fθ(λt−1, Yt−1),

(2.13)

where Ft−1 is the σ-field generated by {Yt−1, Yt−2, . . .}, Bk(νkt) = λkt, and fθ is a non-
negative function on [0, ∞)K ×NK

0 , depending on the parameter θ ∈ Θ ⊂ Rd with d ∈ N.
So for each component Ykt, a univariate INGARCH model is fit, but the components are
connected by the conditional mean process. A popular choice of fθ results in a linear
relationship. Take a K-dimensional vector W with positive entries and K × K matrices
A, B with non-negative entries satisfying either

sup
θ∈Θ

( K∑
j=1

(aij + bij)
) < 1, i = 1, . . . , K, (2.14)

for a compact set Θ ⊆ RK+2K2 and the vectorization of the K-dimensional vector W

and the K × K matrices A, B, θ = vec(W , A, B), or

sup
θ∈Θ

(
max

1≤j≤K
(

K∑
i=1

aij) + max
1≤j≤K

(
K∑

i=1
bij

))
< 1. (2.15)

Then Model (2.13) becomes
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Ykt|Ft−1 ∼ pk(y|νkt),
λt = ❊[Yt|Ft−1] = W + Aλt−1 + BYt−1,

(2.16)

see S. Lee, D. Kim, and B. Kim (2023).

2.3 GARCH Models

INGARCH models are structurally derived from the generalised autoregressive condi-
tional heteroscedasticity (GARCH) models, which themselves are generalisations of the
autoregressive conditional heteroscedasticity (ARCH) model. ARCH models, which were
first developed by Engle, see Engle (1982), in an economic context, model the variance
conditional on past values. Since we no longer assume our data to be integer-valued,
our time series has the form {Ykt : t = 1, . . . T ; Ykt ∈ R}f . Denote again with Fk,t the
information available at time t. Then the ARCH(q) model is given by

Ykt|Fk,t−1 ∼ N(0, hkt),
hkt = a0 + a1Y

2
k,t−1 + . . . + aqY

2
k,t−q,

(2.17)

with a0 > 0, ai ≥ 0, i = 1, . . . , q, see Bera and Higgins (1993).
The GARCH model generalises this approach by adding the past variances as another

source of information. The GARCH(p,q) model for non-negative parameters a0 > 0,
a = (a1, . . . , aq)T ≥ 0 and b = (b1, . . . , bp)T ≥ 0 with p, q ∈ ◆, p ≥ 0, q > 0 is given by

Ykt|Fk,t−1 ∼ N(0, hkt); ∀t ∈ ◆,

[Ykt|Fk,t−1] = hkt = a0 +
q∑

i=1
aiY

2
k,t−i +

p∑
j=1

bjhk,t−j; ∀t ∈ ◆.
(2.18)

Other distributions than the normal distributions can be taken as well, see Bollerslev
(1986).

2.3.1 Parameter Estimation and Forecasting

Estimation of the parameters can be done with maximum likelihood and an iterative
algorithm. First, the model is rewritten and the logarithm of the likelihood function is
taken. Second, after differentiation with respect to its variance and mean parameters,
the Berndt, Hall Hall and Hausman algorithm, see Berndt et al. (1974), is used to
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obtain the maximum likelihood estimates, see Bollerslev (1986). Further details and
assumptions can be found in Bollerslev (1986).

If one is interested in forecasting {Ykt}, then the minimum mean squared one-step
error forecast is ❊[Yk,t+1|Fk,t] = 0 where Fk,t is the information available at time t. One
should note, that the forecast is independent of the model parameters. If the conditional
variance should be forecasted, the parameters are estimated and the known values are
plugged in. For h > 1, h-step predictions are computed recursively with plugging in the
forecasts for h − 1, h − 2, . . . in the model, see Zivot (2009).

2.3.2 Testing for GARCH Models

To decide whether to use a GARCH model, one can test for volatility or the validity
of GARCH models in general. In the original paper of Bollerslev (1986), the author
suggests a Lagrange multiplier test. Other popular tests include the Box–Pierce–Lung-
type portmanteau tests and residual-based diagnostics, see Hong and Y.-J. Lee (2017).
The authors in Hong and Y.-J. Lee (2017) present further methods.

2.3.3 Applications

The introduction of ARCH and subsequently GARCH models in the 1980s has been
revolutionary. ARCH models have originally been introduced for modelling macroeco-
nomic key figures, such as inflation rates, but since then have been used in a variety of
fields. GARCH models generalised the ARCH model approach to allow the modelling of
a more flexible lag structure. They have found wide applications in finance mathematical
problems, especially for the modelling of a changing variance and volatility in financial
markets. They are often used to estimate volatility of various financial instruments, see
Bollerslev (1986) and Kreiß and Neuhaus (2006).

Since the ARCH and GARCH models are used to model and forecast volatility or the
conditional variance, but not values, we will not use it in our application. In addition,
the INGARCH model also accounts for the discrete nature of our data, which makes it
the preferred choice.

2.4 Naive Random Walk
The Naive Random Walk model is one of the simplest and most comprehensive fore-
casting models, which makes it a popular benchmark model. In addition, it is what
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is currently employed, so using it enables us to directly see if our models outperform
the current model. It assumes that the one-step difference between two values is i.i.d
distributed with mean 0. We again no longer assume our data to be integer-valued
{Ykt : t = 1, . . . T ; Ykt ∈ R0}f . Then the Naive Random Walk model is given as

Yk,t+1 = Ykt + ϵkt, (2.19)

where {ϵkt} ∼ WN(σ2
k) is a white noise process with variance σ2

k ∈ R+. It can be shown
easily, that the optimal one-step ahead forecast with regard to the mean squared error
(MSE) is given by

Ŷk,t+1 = Ykt, (2.20)

where Ŷk,t+1 is the predicted value at time t + 1. In other words, the predicted value is
the last known value, see Nau (2014) and Deistler and Scherrer (2018).

2.5 Zero-Inflated Models

Since we encounter a large number of zeros, we also consider zero-inflated models. Zero
inflation means that the proportion of observed zeros is bigger than that of the underlying
distribution and hence would not be expected. The idea of zero-inflated models is to add
a degenerated distribution with mass at zero to the probability mass function, which
enables one to explain the large amount of zero values. The probability mass function
of a ZIP (λ, ω) distribution for a random variable Y is defined as

P(Y = y) = ωδy,0 + (1 − ω)λy exp(−λ)
y! , y ∈ N0, (2.21)

where 0 < ω < 1 is the zero-inflation parameter, λ is the Poisson parameter and δy,0 is
the Kronecker delta for which δy,0 = 1 if y = 0 and δy,0 = 0 else. This way our zeros can
come from two different sources. The first part of Equation (2.21) δy,0 is the degenerated
point mass distribution, see Zhu (2012).

Let Fk,t−1 be the σ-field generated by {Yk,t−1, Yk,t−2, . . .}. Assume, conditionally on
Fk,t−1, that Yk,1, . . . , Yk,T are independent. Now we can define the zero-inflated Poisson
(ZIP) INGARCH(p,q) as
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Ykt|Fk,t−1 ∼ ZIP (λkt, ωk); ∀t ∈ N,

E [Ykt|Fk,t−1] = λkt = β0 +
p∑

i=1
βiYk,t−i +

q∑
j=1

αjλk,t−j,
(2.22)

with 0 < ωk < 1, β0 > 0, βi ≥ 0, αj ≥ 0 for i = 1, . . . , p, j = 1, . . . , q, p ≥ 1, q ≥ 0.
If ωk = 0 then we get the standard INGARCH(p,q) model discussed above. It can be
shown that the conditional mean and variance are given by

E[Ykt|Fk,t−1] = (1 − ωk)λkt, V[Ykt|Fk,t−1] = (1 − ωk)λkt(1 + ωkλkt), (2.23)

which implies V[Ykt|Fk,t−1] > E[Ykt|Fk,t−1]. This means that Model (2.22) can handle
overdispersion in our data, see Zhu (2012). More details about zero-inflated models and
especially the zero-inflated INGARCH(p,q) model can be found in Zhu (2012).

However, due to a lack of available R-packages for zero-inflated Poisson INGARCH
models, we use a zero-inflated Poisson autoregressive model. We assume that we have
discrete count data {Ykt} which is conditionally ZIP (λkt, ωkt) distributed. For the para-
meters λkt and ωkt, the ZIP autoregressive model is given by

Ykt|Fk,t−1 ∼ ZIP (λkt, ωkt); ∀t ∈ N,

log(λkt) =
p∑

i=1
βib

k
t−1,i,

log
(

ωkt

1 − ωkt

)
=

q∑
i=1

γiz
k
t−1,i,

(2.24)

where β = (β1, . . . , βp)T and γ = (γ1, . . . , γq)T are the parameters to be estimated and
the vectors Bk

t = (bk
ti) and Zk

t = (zk
ti) are the explanatory covariates. In Model (2.24) a

logit link function has been used although, it can be replaced with other link functions
like the probit or log link, see Yang (2012).

In our case we regress on the past values of our time series. In that case Model (2.24)
becomes

log(λkt) = β1 + β2Yk,t−1,

log
(

ωkt

1 − ωkt

)
= 1 · γ.

(2.25)
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2.5.1 Parameter Estimation and Forecasting

Parameter estimation for Model (2.25) is done with the maximum partial likelihood
estimate. However, since there exists no closed form solution, iterative algorithms like
the Expectation-Maximisation (EM), Newton-Raphson (NR), or Fisher Scoring (FS)
can be used, see Yang (2012). Further details can be found in Yang (2012).

The one-step ahead predictor is again given by E[Ykt|Fk,t−1] = (1 − ωkt)λkt with the
estimated coefficients plugged in.

2.6 Log-Linear Models

As mentioned in Section 2.1, we also investigate log-linear models. These models are
structurally very similar to the normal INGARCH(p,q) model, only with a logarithmic
link function. Under the same assumptions as for Model (2.1), they have the form

Ykt|Fk,t−1 ∼ P (λkt); ∀t ∈ N,

νkt = log(λkt) = β0 +
p∑

i=1
βi log(Yk,t−i + 1) +

q∑
j=1

αjνk,t−j.
(2.26)

The past values get transformed by h(x) = log(x + 1) to get them on the same scale
as νkt and avoid zero values in the logarithm, see Liboschik (2016) and Fokianos and
Tjøstheim (2011).

We consider the log-linear model because it provides solutions to at least two draw-
backs from the INGARCH(p,q) model. First, Model (2.1) only allows positive serial
correlation. Second, when we include covariates, they can only have a non-negative
regression term because otherwise the mean λkt can become negative. However, in the
log-linear case we can extend this to

Ykt|Fk,t−1 ∼ P (λkt); ∀t ∈ N,

νkt = log(λkt) = β0 +
p∑

i=1
βi log(Yk,t−i + 1) +

q∑
j=1

αjνk,t−j + ηT Xkt.
(2.27)

with η ∈ Rr. Additionally, because of the updated definition of the parameter space,
see Equation (2.28), it also allows for negative autocorrelation, see Liboschik (2016) and
Fokianos and Tjøstheim (2011).
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2.6.1 Parameter Estimation and Forecasting

The parameter estimation for the log-linear model is done similarly to the INGARCH
model in Section 2.2. Only the parameter space Θ is different

Θ =
({θ ∈ Rp+q+r+1 : |β1|, . . . , |βp|, |α1|, . . . , |αq| < 1, |

p∑
i=1

βi +
q∑

j=1
αj| < 1

)} . (2.28)

Just like parameter estimation, forecasting is also performed in the same way as the
INGARCH model. The optimal one-step ahead prediction with regards to the mean
squared error is given by the conditional expectation λk,t+1 = E [Yk,t+1|Fkt]. The h-step
ahead predictions for h > 1 are calculated iteratively again, see Liboschik (2016).

Log-Linear models are further discussed in Fokianos and Tjøstheim (2011), Woodard,
Matteson, and Henderson (2011), and Douc, Doukhan, and Moulines (2013).

2.7 AR Models
Autoregressive models of order p (AR(p)) are one of the most simple time series mod-
els, which makes them very popular. Assuming again our time series is real-valued
{Ykt : t = 1, . . . T ; Ykt ∈ R}f , taking coefficients a = (a1, . . . , ap)T ∈ ❘

p, and a white
noise process {ϵkt} ∼ WN(σ2

k), called innovations, they are defined as

Ykt = a1Yk,t−1 + . . . + apYk,t−p + ϵkt. (2.29)

If {Ykt} is stationary, it is an autoregressive process of order p (AR(p) process). The mul-
tivariate version for

{
Yt : t = 1, . . . , T ; Yt ∈ RK

0

}
f

, also called vectorised autoregressive
model (VAR(p)), is defined as

Yt = a1Yt−1 + . . . + apYt−p + ϵt, (2.30)

where aj ∈ ❘
K×K are the coefficient matrices and {ϵt} ∼ WN(Σ) is a multivariate

white noise process with covariance matrix Σ, see Deistler and Scherrer (2018).

2.7.1 Parameter Estimation and Forecasting

The simplicity of AR models makes parameter estimation and forecasting easy. There
are various ways to estimate the parameters in Model (2.30) such as the Yule-Walker
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equations, the ordinary least squares (OLS) estimator, and if the innovations {ϵt} are
multivariate normal distributed, then the maximum likelihood estimator can be used as
well, see Deistler and Scherrer (2018) and Hamilton (1994).

Like parameter estimation, forecasting is also straightforward in the AR model. We
use the mean squared error as an error measure and only consider affine forecasts with
m ≥ p, m ∈ ◆ past values, hence the forecast has the form

Ŷt+h = c1Yt + . . . + cmYt−m+1, (2.31)

with coefficients ci ∈ ❘K×K . Under some additional assumptions for {Yt}, which can
be found in chapter 5.1 and 5.2 of Deistler and Scherrer (2018), it turns out that the
optimal one-step ahead prediction is simply

Ŷt+1 = a1Yt + . . . + apYt−p+1. (2.32)

So the optimal one-step ahead forecast consists exactly of the coefficients of the AR
model. For h > 1, one simply continues recursively, using Ŷt+1, Ŷt+2, . . .. Since we
normally do not know the exact coefficients ai, their estimations âi can be plugged into
Equation (2.32), see Deistler and Scherrer (2018).

2.7.2 Testing for AR Models

To test whether or not a time series follows an AR(p) process, the estimates of the white
noise process {ϵ̂t} can be used. These estimates should follow a white noise process and
hence should show no signs of serial correlation. Popular tests are the Portmanteau and
the Breusch-Godfrey Test, see Lütkepohl (2007).

The Portmanteau Test tests the null hypothesis H0 : ❊[ϵtϵ
T
t−m] = 0, i.e. if the

estimated innovations are uncorrelated. Under the assumption that {Yt} is an AR(p)
process and an AR(p) model has been fit, the used test statistic converges against a
chi-squared distribution, see Lütkepohl (2007).

The Breusch-Godfrey Test tests if the coefficients (d1, . . . , dh) in the model

ϵt = d1ϵt−1 + . . . dhϵt−h + ηt, (2.33)

are zero. The process {ηt} is a white noise process and hence we test if {ϵt} follows an
AR(h) structure or not. Under the null hypothesis the test statistic follows a chi-squared
distribution again, see Lütkepohl (2007).
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2.8 INAR(p) Models
Integer-valued autoregressive models of order p (INAR(p)) are another option to handle
univariate count data. To define them, we first need to define the generalised thinning
operator. Take an integer-valued, non-negative random variable X and α ∈ [0, 1]. Fur-
ther, take a sequence of i.i.d. integer-valued, non-negative random variables (Zi)X

i=1 with
finite mean α and variance σ2 < ∞ which are independent of X. Then the generalised
thinning operator ◦ is defined as

α ◦ X =
X∑

i=1
Zi. (2.34)

The sequence {Zi}X
i=1 is called the counting series of X, see I. Silva et al. (2005).

We can then define the INAR(p) model for a positive integer-valued time series {Xt}
as

Xt = α1 ◦ Xt−1 + α2 ◦ Xt−2 + . . . + αpXt−p + ϵt, (2.35)

where

1. {ϵt} is a sequence of integer-valued i.i.d. random variables, called innovations,
with finite first, second, and third moment,

2. αi ◦ Xt−i =
Xt−i∑
j=1

Zi,j for i = 1, . . . , p and for each i the counting series {Zi,j}
with j = 1, . . . , Xt−i are mutually independent, independent of {ϵt}, and it holds
E[Zi,j] = αi, as well as V[Zi,j] = σ2

i and E[Z3
i,j] = γi,

3. αi ∈ (0, 1] for i = 1, . . . , p − 1 and 0 < αp < 1,

4.
p∑

j=1
αj < 1.

The last condition ensures the existence and stationary of the process, see I. Silva et al.
(2005).

Let {Ykt : t = 1, . . . T ; Ykt ∈ N0}f be again the univariate integer-valued time series for
category k for k = 1, . . . , K and fridge f . Then the INAR(p) model is given by

Ykt = αk1 ◦ Yk,t−1 + αk2 ◦ Yk,t−2 + . . . + αkp ◦ Yk,t−p + ϵkt. (2.36)

For simplicity, we will consider INAR(1) models, although the optimal choice of the lag
is something that could be further investigated.
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2.8.1 Distributional Assumptions

While we will mainly assume that the innovations {ϵt} follow a Poisson distribution,
they can also follow other distributions. One interesting option is, that one can choose a
zero-inflated distribution, see Garay et al. (2022). This could make the model adequate
for our data.

2.8.2 Parameter Estimation and Forecasting

Parameter estimation can be done in several ways. Possible methods are: moment based
estimators (MM), regression based or conditional least squares (CLS), and maximum
likelhood (ML) based estimators. Especially for the Poisson model, those methods have
been studied in detail in literature, see I. Silva et al. (2005) for more details.

The authors in I. Silva et al. (2005) present two types of forecasting methods for
INAR(1) models. The first approach is a classical method for performing predictions in
a time series context and makes use of the conditional expectation. It was obtained by
Brännäs (1993) and Freeland and McCabe (2004). Assuming that {ϵkt} ∼i.i.d P (λk) is
Poisson distributed with parameter λk, the h-step ahead predictor, for h ∈ ◆, based on
n past observations Yk = (Yk1, . . . , Ykn) is given by

Ŷk,n+h = E[Yk,n+h|Yk] = αh
k

[
Ykn − λk

1 − αk

]
+ λk

1 − αk

. (2.37)

However, this forecast hardly ever produces integer values. One option to counter this
problem, is to take the value which minimises ❊[|Yk,n+h − Ŷk,n+h||Yk,n], the absolute
expected error, instead of the MSE. This turns out to be the median m̂n+h of the h-step
ahead conditional distribution of Yk,n+h|Yk,n. Another option is a Bayesian approach
presented in I. Silva et al. (2005). It is based on the assumption that both, the future
prediction Yk,n+h and the vector of unknown parameters θ = (αk, λk) are random. Since
the complexity of the posterior probability density function makes it difficult to work
with it directly, a sampling algorithm can be deployed for estimation. The details are
given in I. Silva et al. (2005). The estimator for the conditional expectation is then given
by

Ŷk,n+h = Ykn

(
1
m

m∑
i=1

αh
ki

)
+

(
1
m

m∑
i=1

1 − αh
ki

1 − αki

λki

)
, (2.38)

where m is the sampling size and the pairs (αki, λki) for i = 1, . . . , m and a fixed k with
k = 1, . . . , K are the sampled parameters, see I. Silva et al. (2005) and Freeland and
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McCabe (2004).

2.8.3 Testing for INAR(1) Models
To test the adequacy of the INAR(1) model, there are again various options.

Parametric re-sampling is a popular method. The idea is to generate data with the
help of the fitted model, construct the empirical distribution of the functional of interest
and check if the original sample is a reasonable point within that empirical distribution,
see I. Silva et al. (2005).

Residual based methods are based on the Pearson residuals defined by

rkt = Ykt −❊[Ykt|Yk,t−1]
[Ykt|Yk,t−1]1/2 , (2.39)

where estimated quantities are plugged in. If the model is specified correctly, the resid-
uals should have mean zero, variance one and no significant serial correlation, see I. Silva
et al. (2005).

Another option is based on predictive distributions where an adjusted probability
integral transform (PIT) is used. Further details can be found in I. Silva et al. (2005).

2.8.4 Difference to AR(p) Models
Depending on the definition of the INAR(p) model, the degree of similarity varies.
If one follows the definition of Jin-Guan and Yuan (1991), which is the one given in
Equation (2.35), then the autocorrelation function follows that of an AR(p) process, see
M. Silva and Oliveira (2005). However, the authors in Alzaid and Al-Osh (1990) propose
a different definition. In their work, given Ytk = ytk, the conditional distribution of
(α1 ◦Ytk, . . . , αp ◦Ytk) is multinomial with parameters (α1, . . . , αp, ytk) and is independent
of the history of the process. Under those assumptions, the components αi ◦ Yt,k of Yt,k

for i = 1, 2, . . . , p have a stronger mutual dependence structure than the corresponding
AR(p) process and induce a moving-average structure, see Alzaid and Al-Osh (1990).
Because of this additional dependence, it can be shown that the autocorrelation behaves
more like a standard ARMA(p,p-1) process, see Alzaid and Al-Osh (1990).
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3 Compositional Data Models

3.1 Motivation

Another way to see our data is as a compositional time series. Compositional data,
which is by nature multivariate, describes relations between the parts instead of absolute
values. We assume that for each point in time t, our K-dimensional data (Y1t, . . . , YKt)T

is part of a (K − 1)-dimensional simplex defined in Equation (3.1) with total sum κt.
Hence, the value of each category can be seen as the relative share at the current time.
With the use of a transformation, we map the data to the Euclidean vector space, fit a
time series model there, predict the relative share of the category for the next point in
time and then back transform the result into the original space. Since we are ultimately
interested in the absolute value, we also investigate the inclusion of the total sum of
all categories as an additional variable and predict it as well. We use the predicted
shares and the predicted total value to calculate the absolute values of each part. This
is modelled as the so-called T -Space, which will be explained in further detail in Section
3.5. For the actual modelling, we choose VAR models. Their easiness to estimate and
interpret, as well as other beneficial properties with our choice of transformation, make
them desirable, see Kynčlová, Filzmoser, and Hron (2015).

3.2 Preliminaries

The basis of this section is given by Kynčlová, Filzmoser, and Hron (2015), Egozcue,
Pawlowsky-Glahn, et al. (2003) and Filzmoser and Hron (2020).

CoDA, which is short for “Compositional Data Analysis”, works with compositional
data. The key to compositional data analysis is the fact that only the relative relation
of the parts to each other is important. To define compositional data, we first need to
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define the (D − 1)-dimensional simplex

❙
D =

{
(x1, . . . , xD)T : xi > 0, i = 1, . . . , D;

D∑
i=1

xi = κ

}
, (3.1)

where κ is a positive constant. The choice of κ is not relevant, as the relative information
in the compositional parts stays the same. A D-dimensional vector x = (x1, . . . , xD)T is
said to be compositional if it is part of ❙D. Next, we can induce a (D − 1)-dimensional
vector space on ❙D by perturbation and power transformation. For x, z ∈ ❙D and b ∈ R
they are defined respectively as

x ⊕a z = C(x1z1, x2z2, . . . , xDzD)T , b ⊙a x = C(xb
1, xb

2, . . . , xb
D)T . (3.2)

Since we will use these operations to induce a geometry called the Aitchison geometry,
we will mark them with the subscript a. Here C is the closure operation that maps each
compositional vector from the real value space ❘D

+ into its representation in ❙D

C (x) =
(

κx1∑D
i=1 xi

, . . . ,
κxD∑D
i=1 xi

)T

. (3.3)

Using z−1 = C(z−1
1 , z−1

2 , . . . , z−1
D ), the inverse perturbation can be defined as

x ⊖a z = x ⊕a z−1. (3.4)

Now we further define an inner product in order to have an inner product space over
the simplex ❙D. For two compositions x, z ∈ ❙D define the Aitchison inner product as

⟨x, z⟩a = 1
2D

D∑
i=1

D∑
j=1

log( xi

xj

) log( zi

zj

). (3.5)

In addition, a norm and distance measure can be defined

∥x∥2
a = ⟨x, x⟩a , da(x, z) = ∥x ⊖a z∥a. (3.6)

With this, we induced the Aitchison geometry and it allows us to express a composition
x ∈ ❙D as a perturbation-linear combination of a basis of ❙D, see Filzmoser and Hron
(2020) and Kynčlová, Filzmoser, and Hron (2015).

However, in order to use standard statistical tools, it is desirable to move from this
geometry to the Euclidean real space, see Filzmoser and Hron (2020). There are various
ways to map the data from the simplex ❙D to the Euclidean real space. A review of the
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most common transformations is provided in the following section.

3.3 Common Transformations

Let x, z ∈ ❙D be D-part compositions.

alr Coordinates

The additive log-ratio (alr) Coordinates are defined as

z(k) = alrk(x) =
(

log
(

x1

xk

)
, . . . , log

(
xk−1

xk

)
, log

(
xk+1

xk

)
, . . . , log

(
xD

xk

))T

, (3.7)

and map the composition x to the real space RD−1, see Kynčlová, Filzmoser, and Hron
(2015). They are mainly mentioned for historic purposes since they are an intuitive way
of transformation. However, limitations are posed by their dependence on the choice
of the denominator xk and the fact that they are not orthogonal to each other, see
Filzmoser and Hron (2020).

clr Coefficients

Let g(x) be the geometric mean of x. The centered log-ratio coefficients are then defined
as

w = (w1, . . . , wD)T = clr(x) =
(

log
(

x1

g(x)

)
, . . . , log

(
xD

g(x)

))T

, (3.8)

see Kynčlová, Filzmoser, and Hron (2015). This transformation maps x into the hyper-
plane V =

{
w ∈ RD : ∑D

i=1 wi = 0
}

⊂ RD. Hence, the transformed data is constrained,
which is emphasised by the term ’coefficient’ instead of ’coordinates’, see Filzmoser and
Hron (2020). It can be shown that the clr transformation is an isometry, see Egozcue,
Pawlowsky-Glahn, et al. (2003). Therefore it holds

⟨x, z⟩a = ⟨clr(x), clr(z)⟩ , (3.9)
da(x, z) = d(clr(x), clr(z)). (3.10)
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ilr Coordinates

The isometric log-ratio (ilr) are closely related to the clr coefficients. Assume the inverse
clr transformation is isometric. Let {v1, . . . , vD−1} be an orthonormal base in the hy-
perplane V . Then ei = clr−1(vi), i = 1, . . . , D −1 is an orthonormal basis in the simplex
❙

D. For x ∈ ❙D, the ilr transformation can then be defined as

u = ilr(x) = (⟨x, e1⟩a , . . . , ⟨x, eD−1⟩a)T . (3.11)

In addition to being isometric, the ilr transformation is also isomorph. Let x, z be two
compositions and a, b ∈ ❘. Then

ilr(a ⊙a x ⊕a b ⊙a z) = a · ilr(x) + b · ilr(z), (3.12)

as well as,

⟨x, z⟩a = ⟨ilr(x), ilr(z)⟩ , (3.13)
da(x, z) = d(ilr(x), ilr(z)), (3.14)

∥x∥a = ∥ilr(x)∥, (3.15)

see Kynčlová, Filzmoser, and Hron (2015). From the definition of the ilr coordinates it
can be seen, that they can be expressed as a linear combination of the basis induced
by the clr coefficients as seen above. Let V be a D × (D − 1) matrix with columns
vi = clr(ei). For a composition x, the vector of ilr coordinates associated with V is
given by

uV = ilrV(x) = VT clr(x) = VT log(x). (3.16)

The matrix V is the contrast matrix with the orthonormal basis (ei)D−1
i=1 , see Egozcue,

Pawlowsky-Glahn, et al. (2003). A special choice of orthogonal coordinates leads to the
coordinates

ilr(x) = (u1, . . . , uD−1)T ,

uj =
√

D − j

D − j + 1 log
( xj

D−j

√∏D
l=j+1 xl

) , j = 1, . . . , D − 1.
(3.17)
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With this choice, the problem of interpretation, which arises from the relative nature of
the compositional data and the dimension of the simplex, can be solved. The part x1 is
only contained in z1 and therefore contains all relative information of x1, see Kynčlová,
Filzmoser, and Hron (2015) and Filzmoser and Hron (2020).

Since the ilr transformation is defined as a one-to-one mapping, we can transform the
data back in the simplex. The inverse transformation is given by

x1 = exp
(√

D − 1
D

u1

) , (3.18)

xi = exp
(−

i−1∑
j=1

1√
(D − j + 1)(D − j)

uj +
√

D − i

D − i + 1ui

) , i = 2, . . . , D − 1, (3.19)

xD = exp
(−

D−1∑
j=1

1√
(D − j + 1)(D − j)

uj

) , (3.20)

see Kynčlová, Filzmoser, and Hron (2015).

3.4 The VAR Model
Since we have established the basic setting, we can now introduce compositional time
series (CTS). A CTS {xt}n

t=1 can be defined as a series where xt = (x1t, . . . , xDt)T ∈ ❙D.
They are thus characterised by their positive components which sum up to a constant
κt for each point in time t = 1, . . . , n

D∑
i=1

xit = κt, xi > 0, i = 1, . . . D ; t = 1, . . . , n. (3.21)

Since we do not assume our data to be integer-valued, our time series has the form{
Yt : t = 1, . . . , T ; Yt ∈ RK

0

}
f

for fridge f . Further, assume that Yt = (Y1t, . . . , YKt)T is a
K-dimensional compositional vector measured at time t = 1, . . . , T and let ut = ilrV (Yt)
be its ilr transformation determined by the matrix V. Then the VAR model with lag
order p is given by

ut = cV + A(1)
V ut−1 + A(2)

V ut−2 + . . . + A(p)
V ut−p + ϵt, (3.22)

where cV ∈ RK−1 is a real vector, A(i)
V ∈ R(K−1)×(K−1) are parameter matrices, and

{ϵt} is a white noise process with covariance matrix Σϵ. The observation ut therefore
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depends on the p past observations ut−1, . . . , ut−p, see Kynčlová, Filzmoser, and Hron
(2015).

It can be shown, that two VAR(p) models resulting from different ilr transformations
are compositionally equivalent, which means that the same predictions are obtained, see
Kynčlová, Filzmoser, and Hron (2015).

Estimation and forecasting of Model (3.22) can be done with the methods described
in Section 2.7.1.

3.5 T -Spaces

As we have seen, the focus in compositional data analysis lies in the relative information
encoded in the observations. However, as is often the case in practice, the absolute
information is of interest as well. To retain this information, usually two practices are
used. First, for a vector x ∈ RD

+ the component wise logarithm log(x) is considered.
Second, the total sum, or some other function, of x is added as an additional variable.
Here, we will dive deeper into the second method mentioned. For more details see
Pawlowsky-Glahn, Egozcue, and Lovell (2013).

Let x ∈ RD
+ be a positive vector and C(x) the projection onto ❙D. Further, take

a function t : RD
+ −→ R+ (i.e. the sum, product,...). Then define the product space

T = R+ × ❙
D as the space of all possible elements (t(x), C(x))T . To define a D-

dimensional Euclidean vector space structure on T , we define an Abelian inner group
operation, an external multiplication, and an inner product. However, first we need to
induce the Euclidean structure on RD

+ with the same operations. For x, y ∈ ❘
D
+ and

α ∈ ❘ define the Abelian inner group operation, the external multiplication, and an
inner product respectively as

x ⊕+ y = (x1 · y1, . . . , xD · yD)T , (3.23)
α ⊙+ x = (xα

1 , . . . , xα
D)T , (3.24)

⟨x, y⟩+ = ⟨log(x), log(y)⟩ . (3.25)

Here, ⟨, ⟩ denotes the usual Euclidean inner product on ❘
D, see Pawlowsky-Glahn,

Egozcue, and Lovell (2013).
Now we can define for x̃, ỹ ∈ T and α ∈ ❘ the Abelian inner group operation as
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x̃ ⊕T ỹ = (t(x) ⊕+ t(y), x ⊕a y)T = (t(x) · t(y), C(x̃1ỹ1, . . . , x̃DỹD))T , (3.26)

and the external multiplication as

α ⊙T x̃ = (α ⊙+ t(x), α ⊙a x)T = (t(x)α, C(x̃α
1 , . . . , x̃α

D))T , (3.27)

where ⊕a and ⊙a are the perturbation and power transformation defined in Equa-
tion (3.2) and ⊕+ and ⊙+ the respective operations defined for ❘+ (3.23)(3.24), see
Pawlowsky-Glahn, Egozcue, and Lovell (2013).

The inner product is defined as

⟨x̃, ỹ⟩T = ⟨t(x), t(y)⟩+ + ⟨C(x), C(y)⟩a , (3.28)

where ⟨, ⟩+ is the inner product in ❘+ and ⟨, ⟩a is the Aitchison inner product defined
in (3.5), see Pawlowsky-Glahn, Egozcue, and Lovell (2013).

Further we can define a distance on T with

d2
T (x̃, ỹ) = d2

+(t(x), t(y)) + d2
a(C(x), C(y)), (3.29)

with d2
+(x, y) = d(log(x), log(y)) and d is the Euclidean distance, see Pawlowsky-Glahn,

Egozcue, and Lovell (2013).
To ensure that the operations performed on C(x) are compatible with the ones per-

formed on T we need to impose some conditions on the function h : ❘D
+ → T ,

h(x) = (t(x), C(x))T . First, the function h needs to be a one-to-one function since
otherwise information could be lost by applying h or h−1. Since we can write x ∈ ❘D

+

as x =
∑D

i=1 xi

κ
· C(x), the function t must be related to the sum of the components.

This allows the reconstruction of x from the composition and total. To see this, write∑D

i=1 xi

κ
· C(x) = h−1((t(x), C(x))T ), see Pawlowsky-Glahn, Egozcue, and Lovell (2013).

The second condition is the preservation of the vector space properties in ❘D
+ and T

h(x ⊕+ y) = h(x) ⊕T h(y), (3.30)
h(α ⊙+ x) = α ⊙T h(x). (3.31)
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This means for the function t that

t(x ⊕+ y) = t(x) · t(y), (3.32)
t(α ⊙+ x) = (t(x))α. (3.33)

In Pawlowsky-Glahn, Egozcue, and Lovell (2013) it is shown that hs = ((ts(x), C(x))T )
with ts(x) = ∑D

i=1 xi is a one-to-one function, but not compatible with ⊕+, ⊙+ and
⊕T , ⊙T . However, as hs is a one-to-one function between ❘D

+ and T , there exists a
Euclidean structure in ❘D

+ that is isometric to the one in T . The vector space operations
can be defined as

x ⊕+s y = h−1
s (x̃) ⊕T h−1

s (ỹ), (3.34)
α ⊙+s x = α ⊙T h−1

s (x̃), (3.35)
d2

+s(x, y) = d2
T (hs(x, y)), (3.36)

where ⊕+s and ⊙+s are the new operations in❘D
+ that are compatible with the operations

in T and d2 is the squared distance in T , see Pawlowsky-Glahn, Egozcue, and Lovell
(2013).

With the structure established, we can model the relative structure and total sum
in one model. We have again Yt = (Y1t, . . . , YKt)T and hence T = R+ × ❙

K . So
Ỹt = h(Yt) = (t(Yt), C(Yt))T with t(Yt) = ∑K

k=1 Ykt. For wt = (t(Yt), ilrV (Yt))T take
the ilr transformation determined by matrix V . Further, let cV ∈ ❘K be a real vector,
A(i)

V ∈ RK×K parameter matrices, and {ϵt} be a white noise process with covariance
matrix Σϵ. Then we get the model

wt = cV + A(1)
V wt−1 + A(2)

V wt−2 + . . . + A(p)
V wt−p + ϵt. (3.37)

In our application, we will use t(Yt) = ∑K
k=1 Ykt or t(Yt) = log(∑K

k=1 Ykt) since we are
interested in the total sum at time t. The logarithmic sum is a popular choice in the
time series context as it prevents the sum of being too big, see Kynčlová, Filzmoser, and
Hron (2015). The estimation of Model (3.37) is carried out analogous to 2.7.1.
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3.6 Zero Handling

As we can see in the definition of the simplex (3.1), a compositional vector can only
consist of positive parts and since we have a considerable amount of zeros in our data,
we need to take care of them. There have been various methods proposed in literature
to handle zero values in compositional data but first, a distinction must be made in
the type of zeros present. One can differentiate between two types of zeros. The first
type of zeros is called structural zeros or essential zeros. Those values are truly zero.
The second type is called rounded zeros or count zeros. They appear due to imprecision
when measuring data or if the detected value is below the detection limit. Those values
are not truly zero and hence it makes sense to replace them to perform compositional
data analysis. In our data we have essential zeros. In the following we summarise the
methods presented in Lubbe, Filzmoser, and Templ (2021) and J. A. Martín-Fernández,
Barceló-Vidal, and Pawlowsky-Glahn (2003).

3.6.1 Rounded Zeros

Some basic methods for handling rounded zeros are proposed by J. A. Martín-Fernández,
Barceló-Vidal, and Pawlowsky-Glahn (2003), while more advanced methods are dis-
cussed in Palarea-Albaladejo and J. A. Martín-Fernández (2015). A common feature of
most of these methods is the assumption of the existence of a detection limit (DL). Due
to technical or other limitations, observations below this limit cannot be detected and
hence are missing. We start with the methods in J. A. Martín-Fernández, Barceló-Vidal,
and Pawlowsky-Glahn (2003) and later move on to those in Palarea-Albaladejo and J. A.
Martín-Fernández (2015).

Let x ∈ ❙D be a compositional vector and assume it has m zeros. Further take r ∈ ❙D

as its zero free replacement. Let S be the selection matrix of the non-zero components
and define a sub composition as xs = C(Sx) . If we have rounded zeros, a simple method
proposed in J. A. Martín-Fernández, Barceló-Vidal, and Pawlowsky-Glahn (2003) is to
replace zero values with DL · 0.65 where DL is the detection limit and 0.65 was found to
be optimal to minimise the distortion in the covariance structure, see Lubbe, Filzmoser,
and Templ (2021). This means r has the form

rj =

(�{�0.65 · DL, if xj = 0,

xj, if xj > 0.
(3.38)
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Additionally J. A. Martín-Fernández, Barceló-Vidal, and Pawlowsky-Glahn (2003) men-
tion three other methods.

First, the Additive Replacement Strategy, which was first introduced by Aitchison in
Aitchison (1986), and is given by

rj =

(�{�
δ(m+1)(D−m)

D2 , if xj = 0,

xj − δ(m+1)m
D2 , if xj > 0,

(3.39)

where D is the dimension and m the amount of zeros in x. As we can see in (3.39),
both zero and non-zero values are modified. In addition, this rule can be extended by
using a different δj for each component xj. However, the additive replacement strategy
is additive for non-zero values and hence not coherent with the basic operations of ❙D.
Other properties include:

1. The replacement value rj depends on both, the amount of zeros m and the dimen-
sion D.

2. For two vectors x, y ∈ ❙D with common zeros, i.e. xj = 0 ↔ yj = 0, j = 1, . . . , D,
their sub compositions xs, ys on their non-zero parts, and their replacements rx, ry,
the Aitchison distance is not preserved da(rx, ry) ̸= da(xs, ys).

3. Ratios are not preserved. If x has more than one zero, then rj

rk
̸= xj

xk
for xj, xk > 0.

4. The value rj

rk
depends on δ. Therefore, the covariance structure of the sub com-

positions of the non-zero parts is not preserved,

see J. A. Martín-Fernández, Barceló-Vidal, and Pawlowsky-Glahn (2003).
Second, the Simple Replacement Strategy, which formalises the procedure of replacing

the zeros in x with a small positive value δ, obtaining a strictly positive vector w ∈ ❘+

and applying the closure operation r = C(w)

rj =

(��{��
κ

κ+
∑

i|xi=0 δi
δj, if xj = 0,

κ
κ+

∑
i|xi=0 δi

xj, if xj > 0.
(3.40)

This method depends again on δj and the number of zeros m, see J. A. Martín-Fernández,
Barceló-Vidal, and Pawlowsky-Glahn (2003).

Third is the multiplicative replacement strategy, which is the main result of J. A.
Martín-Fernández, Barceló-Vidal, and Pawlowsky-Glahn (2003). The proposed replace-
ment is
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rj =

(�{�
δj, if xj = 0,(

1 −
∑

i|xi=0 δi

κ

)
xj, if xj > 0,

(3.41)

where δj is the imputed value. It has the following properties

1. It is a more intuitive approach. If δj is close to the actual censored value, then r

recovers the true composition. Further it does not depend on the number of zeros
m or the dimension D.

2. It is compatible with the Simplex vector space structure. For x ∈ ❙D, its non-zero
version r and their sub compositions xs = C(Sx), rs = C(Sr), it holds

• Subcomposition Invariance: xs = rs,

• Perturbation Invariance: ∀y ∈ ❙D : (y ⊕a r)s = (y ⊕a x)s,

• Power transformation Invariance: ∀α ∈ ❘ : (α ⊙a r)s = (α ⊙a x)s.

3. Ratios are preserved, which implies that the covariance structure for non-zero
components is preserved. For xj, xk > 0 it holds rj

rk
= xj

xk
.

4. Let again x, y ∈ ❙
D be two vectors with common zeros and their replacements

rx, ry which were obtained with the same imputation δj. Then it holds rx
j

ry
j

= xj

yj

for xj, yj > 0 and da(rx, ry) does not depend on the imputed values,

see J. A. Martín-Fernández, Barceló-Vidal, and Pawlowsky-Glahn (2003).
Another method proposed in Lubbe, Filzmoser, and Templ (2021) is to replace roun-

ded zeros with values drawn from a continuous uniform distribution U(0.1 · DL, DL).
Setting the lower limit to 0.1 ·DL makes sure that the values are not getting too close to
zero and not using a constant prevents underestimation of the variability. They further
present the R-package zCompositions by Palarea-Albaladejo and J. A. Martín-Fernández
(2015).

The authors in Palarea-Albaladejo and J. A. Martín-Fernández (2015) focus on the
case of rounded zeros which can be seen as left censored data. Their package includes
some more advanced methods which are based on Markov Chain Monte Carlo (MCMC),
the EM-algorithm or multiple imputation to perform imputation. They assume the data
is left-censored, or Type 1 censored, and follows a multivariate normal distribution in
❘

D. We review some of their methods presented and refer for more details to Palarea-
Albaladejo and J. A. Martín-Fernández (2015).
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EM-based algorithm

The Expectation-Maximisation (EM) algorithm of Dempster, Laird, and Rubin (1977)
is a widely used method in imputation. In the setting of multivariate compositional
data, it uses the information in the covariance structure to conditionally estimate the
censored values. Define a censoring pattern, as the indices of the missing components
for a composition x. Denote the missing components for a composition with xnon and
the observed components with xobs. Let r be the number of observed components and
m the number of non observed components. Then the EM-algorithm consists of two
steps with the t-th iteration given by

1. E-Step: Given a parameter estimate θ̂(t), compute ❊[xnon|xobs, xnon < DL; θ̂(t)].

2. M-Step: Compute a new estimate θ̂(t+1) based on [x̂non, xobs].

Here, DL is the mapped censoring threshold. Assuming a multivariate normal distri-
bution, the conditional expected value of xnon = (xnon1 , . . . , xnonm)T at step t is given
by

x̂(t)
nonj

= β̂1j +
r∑

i=1
xobsi

β̂(i+1),j − σ̂jλ̂j for j = 1, . . . , m, (3.42)

where λ̂
(t)
j = ϕ((DL−(1,xT

obs)β̂(t)
j )/σ̂

(t)
j )

Φ((DL−(1,xT
obs

)β̂(t)
j )/σ̂

(t)
j )

is the inverse Mills ratio. The function ϕ denotes the

standard normal density and Φ is its distribution. The parameter B̂ = (β̂1, . . . , β̂m) ∈
❘

(r+1)×m is the ML estimate of the regression parameters and σ̂2
j is the ML estimate

of the conditional variance for j = 1, . . . , m, see Palarea-Albaladejo and J. A. Martín-
Fernández (2015). As seen, an initial estimation is required to kick start the iteration.
This can be done by either using a subset of the data which was fully observed or by
using other imputation methods, see Palarea-Albaladejo and J. A. Martín-Fernández
(2015).

MCMC data augmentation

The Markov Chain Monte Carlo (MCMC) algorithm can be seen as the Bayesian counter
part to the EM-algorithm. While with the use of priors, external information can be
incorporated, in general, non-informative priors are used. With the same notation as
above, the algorithm consists of two steps again

1. Imputation-Step: Given θ̂t , simulate from P(xnon|xobs, xnon < DL; θ̂t).
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2. Posterior-Step: Generate θ̂t+1 by simulating from P(θ|x̂non, xobs).

In the imputation step, for xnon = (xnon1 , . . . , xnonm)T , the value x̂nonj
is drawn from the

conditional, right-truncated normal distribution with estimated mean (1, xT
obs)β̂

(t)
j , vari-

ance σ̂2
j , and truncation point given by DL, for j = 1, . . . , m. The posterior step simu-

lates the parameter θ from a normal inverted-Wishart distribution with non-informative
priors. This generates a Markov Chain with the posterior distribution of the transformed
censored data as the stationary distribution. After enough iterations, suitable random
values can then be drawn from the chain as a replacement, see Palarea-Albaladejo and
J. A. Martín-Fernández (2015).

Bayesian-multiplicative replacement

A method for count data is the Bayesian-multiplicative replacement. For multivari-
ate count data one often assumes, that a vector x is a realisation from a multinomial
distribution with parameters [n, π1, . . . , πD] where πj is the probability of belonging to
category j. For the prior distribution of π = [π1, . . . , πD], an imprecise Dirichlet model
with parameter s and t = [t1, . . . , tD] with ∑

k tk = 1 and expectation ❊[πj] = tj is
considered. The posterior expectation is then given by

❊[πj|xj = 0] = tj
s

n + s
. (3.43)

Depending on the settings for s and t and based on (3.43), the imputation can be per-
formed by geometric Bayesian multiplicative (BM), square root BM, or Bayes–Laplace,
see Palarea-Albaladejo and J. A. Martín-Fernández (2015). The details of those methods
can be found in J.-A. Martín-Fernández et al. (2015).

3.6.2 Essential Zeros

The case of essential zeros is not as straightforward because zero is the true value of
the observation. In Aitchison and Kay (2003), the authors question the experimental
design in case of many essential zeros. They point out to overly fine division of the data
or the insignificance of the category as possible design faults. A solution in that case
would be the amalgamation of categories with low counts. Further, they also introduce
a two stage model. The first stage models the appearance of essential zeros, while in
the second stage the non-zero components are generated. The maximum likelihood
estimates of the parameters are suggested to be done via an MCMC algorithm. After
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this is done, hypothesis testing and statistical analysis can be performed, see Aitchison
and Kay (2003).

A vector space approach for the simplex is presented in Boogaart, Tolosana-Delgado,
and Bren (2006) and extended in the R-package compositions, see van den Boogaart,
Tolosana-Delgado, and Bren (2023). The idea is based on the clr coefficients (3.8) and
the spanned subspace. Let M contain the indices of the missing parts. Then according
to Egozcue and Pawlowsky-Glahn (2005), a subcomposition can be seen as a projec-
tion of the clr transformed composition into the orthogonal complement of the vectors
{wi : i ∈ M}, with wi = ei − 1

D
1 ∈ V and V =

{
w ∈ RD : ∑D

i=1 wi = 0
}

⊂ RD where
ei are the unit vectors and 1 = (1, . . . , 1)T ∈ ❘D. Hence, one only observes a projection
of the true composition. Let PM be the projection onto the orthogonal complement of
{wi : i ∈ M} and x a composition with zeros. Then the idea is to represent the in-
formation of x by the projected values PM(clr(x)) and PM itself. If MC denotes the
complement of M, so the indices of the non-zero parts, and xs is the sub composition of
x of MC then for this sub composition it holds

PM(clr(x))i =

(�{�clr(xs)i, if i /∈ M

0, if i ∈ M.
(3.44)

The subsequent ilr transformation is then based on this modified approach with ilrV(x) =
VT PM(clr(x)), see van den Boogaart, Tolosana-Delgado, and Bren (2023).

In Leininger et al. (2013) they provide a review of other possible methods for handling
essential zeros. They also introduce a model themselves, which allows zeros by modifying
the alr transformation with the help of latent variables. Assuming a category with no
zero values for all observations and taking it as the baseline component, they allow for
transformation into a lower dimensional space where they can perform regression, see
Leininger et al. (2013).
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4 Application

4.1 Model Specifications

As our data has a specific structure, some transformations can be made to increase
performance and stability. The most prominent characteristic of our data is its amount
of 0 or null values. As CoDA can’t handle 0 values, we have to accommodate for this.
The concrete way to do this will be described in the following subsections.

Another varying factor is the history. We define the history h as the proportion of the
length of the time series used for our model. While at first it may seem obvious to use as
much data as possible, it may actually not always result in a better model. Older values
may contain outdated information, which influences the estimation the of parameters.
Therefore we compare the performance of the models with various history lengths. So
instead of using Tf points in time, we will only use T = h · TF with 0 < h ≤ 1.

Closely related to the length of the history, is the shape of the window used. The
window determines which values are used to estimate the parameters at each point in
time. The shape includes both the initial length of the window and the way new values
are handled. As the different time series vary in length, we choose the possible window
length as a fraction of the time series history. Hence, we define the initial window length
as wf = w · T with 0 < w ≤ 1. For the way how new values are handled, we focus on
two different approaches. The first one uses a fixed window length. This means when
a new time point is available, it will be included in the estimation while simultaneously
the oldest time point will be removed from the estimation. This has the advantage of
only using the most recent and relevant information. The second approach extends the
window at each point in time. When a new value is available, it is included in the
estimation of the parameter. With this approach we have more data available at each
step and combined with the varying history length we don’t have to rely on information
that is too old.

The optimal one-step ahead prediction for the different models is given in their re-
spective theoretical sections. However, since none of the models return integer-valued
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results, we round the predicted values to the nearest integer.

4.1.1 CoDA Specifications

As mentioned above, the CoDA model must not include any zero values, since in this
context, a value of zero is not defined. In order to keep things simple, we consider two
options. The first one adds 0.5 to all time series values. The second one only replaces
zero values with a chosen value δ, which is the simple replacement strategy in (3.40).
Due to the fact that we have essential zeros and want to use the specific ilr coordinates,
we opt for these options.

Another way to handle the zero values and the low values for some categories is
a method we will call in the following one-vs-all. The principle is the following. A
category k is chosen as the pivot category kpivot. For all the chosen time points, at each
point, the values of the other categories get summed up

Yother,t =
K∑

k=1
k ̸=kpivot

Ykt. (4.1)

Together with the pivot category, the sum of the other categories are then transformed
as usual and the VAR model is calculated

ut = ilr([Yother,t, Ykpivot,t]). (4.2)

All categories are chosen as a pivot category at one point and the predicted values of the
pivot groups are then used as the final result. This method is basically an implementation
of the suggestions made in Aitchison and Kay (2003). We amalgamate all but one
category and therefore change the experimental design.

As already hinted in the description of the methodology, we consider the use of T -
Spaces. For this, at each time point, we calculate the total amount and include it as an
additional variable in the model. In addition, we can choose to take the logarithm of
the sum. This means we have

wt = [ilr(Yt), t(Yt)], (4.3)

with t(Yt) = ∑K
k=1 Ykt or t(Yt) = log

(∑K
k=1 Ykt

)
and we get Model (3.37).
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4.1.2 INGARCH Specifications

As an alternative to the Poisson distribution in (2.3), a Negative Binomial distribution
can be used as well. This would change (2.3) to

pkt(y; θ) = P(Ykt = y|Fk,t−1) = Γ(ϕk + y)
Γ(y + 1)Γ(ϕk)

(
ϕk

ϕk + λkt

)ϕk
(

λkt

ϕk + λkt

)y

, y ∈ N0.

(4.4)
where ϕk is the dispersion parameter, λkt the mean, and Γ is the gamma function.
With the Negative Binomial Distribution, the conditional variance is larger than the
conditional mean λkt = V [Ykt|Fk,t−1] > E [Ykt|Fk,t−1].

As seen in the Model (2.2), we can also choose to include external factors. However,
as our data is of the structure where we don’t have information about Xt at time t, we
cannot make use of it.

The values p and q are also varying parameters which have to be chosen. One could
use the AIC or some other criteria to get the optimal lag order. However, this is not in
the scope of this thesis and hence will be left as a future extension.

4.2 Error Measure
In order to compare the results of the methods with each other, we will introduce a new
error measure. The goal of this measure is to get a performance indicator for each fridge,
which can be used for comparison and summarisation. Since the scales of the fridges
vary, the measure should be scale independent but because our data contains many
zeros, we cannot use a percentage error measure. In addition, we want to penalise big
absolute differences between the predicted values and actual values. These requirements
lead us to the following measure.

For a fridge f , let t = 1, . . . , T denote the point in time and k = 1, . . . , K the category.
Then yftk is the t-th measured value of the time series for category k and fridge f , ŷftk

the predicted value, and ŷnaiveftk
the value predicted by the naive random walk model

(2.4). Then we define our measure as

Ef =
∑K

k=1
∑T

t=1(yftk − ŷftk)2∑K
k=1

∑T
t=1(yftk − ŷnaiveftk

)2 . (4.5)

With the use of the squared difference, we penalise big deviations from the measured
value. By taking the naive random walk model as a benchmark, we achieve scale in-
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dependence and are able to compare the performance of our model over different time
series. This error measure is basically the ratio of the mean MSEs for the chosen model
and the naive random walk model

Ef =
1
K

∑K
k=1 MSEfk

1
K

∑K
k=1 MSEnaivefk

. (4.6)

If the ratio is below 1, the mean of the MSEs of our method is lower than that of the
naive method and vice versa. This provides a performance indicator for our models.

Extension of the Error Measure

The measure in (4.5) can be further extended. For example, by allowing to use a subset
of all possible categories instead of all. Let GK ⊂ {1, . . . , K} then

EGK
f =

∑
k∈GK

∑T
t=1(yftk − ŷftk)2∑

k∈GK

∑T
t=1(yftk − ŷnaiveftk

)2 . (4.7)

This allows us to compare the performance on the subset of categories over various
fridges.

Another possible extension is to take the square root

~Ef =
∑K

k=1

√∑T
t=1(yftk − ŷftk)2∑K

k=1

√∑T
t=1(yftk − ŷnaiveftk

)2
. (4.8)

One future extension which can be investigated is the introduction of weights. This
could be used for example when the performance of the model in one category should
be put more into focus.

4.3 Examples of Model Application

To improve understanding of our data and the models, we show some application of
the models on some exemplary fridges. We choose fridges 4 and 24 so f ∈ {4, 24}.
Furthermore we start with analysing the aggregated 4 main categories which means
K = 4.

We first begin with plotting the values of time series. The x-axis shows the time and
the y-axis the number of units sold. Since we have four main categories for each fridge,
we have four subplots.

40



(a) Fridge 4 with all four main categories (b) Fridge 24 with all four main categories

Figure 4.1: Time series for two fridges

The two plots in 4.1 are good examples of the composition of our data. The scales
of the sold units within a fridge vary widely. For example in Figure 4.1b the values for
category 1 vary from above 50 to as low as 10, while for category 4 we only have values
in the range of 0 to 2. In both Subfigures 4.1 for category 4, we can see the excessive
amount of zero values in our data, which makes the previously mentioned zero handling
necessary.

Next, in Figure 4.2, we add the predictions of the CoDA model. For this model we
used the whole history h = 1 and half of the data for the window length w = 0.5.
In addition, we extend the window at every time point, use the simple replacement
strategy with δ = 0.1, use no T −Spaces, and use the one-vs-all method. We can see
that this captures the general trend well however, struggles with unexpected high peaks.
In addition, it is able to handle the difference in scales as seen in Figure 4.2a. Both,
categories 1 and 2 with bigger values and categories 3 and 4 with lower values, are in
general modelled well. Also for time series with less data available, as in fridge 24 4.2b,
the model works well. Especially category 3 with its low values is predicted well.

In Figure 4.3 we apply the INGARCH model to the time series. For this, we used
the whole history h = 1, half of the data for the initial window length w = 0.5, extend
the window at every time point, add nothing to the zero values, and use the Poisson
distribution. We use no external factors and set p = 1, q = 1 in Model (2.2). The
general trend is again captured well and in the instance of Figure 4.3a it seems to be
more reactive to sudden peaks, since often the value predicted after such a peak is heavily
influenced by it.

To directly compare both models, we plot the predictions in one Figure 4.4. The
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(a) Fridge 4 with the CoDA model (b) Fridge 24 with the CoDA model

Figure 4.2: Time series with the CoDA model

(a) Fridge 4 with the INGARCH model (b) Fridge 24 with the INGARCH model

Figure 4.3: Time series with the INGARCH model

model specifications are the same as above. We can see that the models produce similar
results to each other. In these instances it appears that INGARCH predicts slightly
higher values than CoDA.

To get some further insight in the accuracy of our predictions, we add 95 % prediction
intervals in Figure 4.5. Here, we can see some differences between the intervals. While
for categories with bigger values the bands are quite similar in width, for categories with
lower values, CoDA has much wider bands. This is especially visible in Figure 4.5a for
category 3 and 4. However, most data points are covered by both bands.
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(a) Fridge 4 with both models

(b) Fridge 24 with both models

Figure 4.4: Time series with both models

43



(a) Fridge 4 with both models and their prediction intervals

(b) Fridge 24 with both models and their prediction intervals

Figure 4.5: Time series with both models and their prediction intervals
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4.4 R-Code

4.4.1 R-Packages

We conduct our analysis in the statistical software R, see R Core Team (2022). For our
data cleansing, data handling, and plotting we use the tidyverse package of Wickham
et al. (2019). Further we use the packages here of Müller (2020), miceadds of Robitzsch
and Grund (2023), and parallel, which is part of core R, to facilitate our analysis.

For building our CoDA model we use the packages vars of Pfaff (2008b) and Pfaff
(2008a) and robCompositions of Templ, Hron, and Filzmoser (2011) and Filzmoser,
Hron, and Templ (2018). Especially the functions pivotCoord, which performs the ilr

transformation described in Section 3.2,VAR, which builds the VAR model described in
Section 3.4, and pivotCoordInv, which performs the necessary back transformation to
get predictions in the desired space. The INGARCH analysis is mainly done with the
package tscount, see Liboschik, Fokianos, and Fried (2017) and Liboschik, Fried, et al.
(2020). The core function used is tsglm, which we use to fit the INGARCH(p,q) model
as well as the log-linear model. The zero-inflated models were fitted using the function
zeroinfl from the package pscl of Zeileis, Kleiber, and Jackman (2008). To fit the
INAR model we use two packages. First, ZINAp to calculate our predictions with the
Bayesian approach. The function estimate_zinarp is used to estimate the coefficients
and the values are then calculated according to the formula in N. Silva, Pereira, and
M. Silva (2009). Second, the classical approach is done using the function EST_ZINAR
from the package ZINA1.

In general, all other functions can be grouped into three categories: general, count
data model specific, and CoDA specific. General functions are used for both, the count
data models and the CoDA model. Count data models and CoDA specific functions are
only used for their respective methods.

4.4.2 Handbook

In this handbook, we will describe the use and results of the most important functions
used for our analysis. The code for them can be found in the GitHub repository, see
Schwaiger (2023).
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Data.Window

The function Data.Window splits the time series in the specified windows and the value
to be predicted. The models are then fitted on these windows and the prediction result
can be compared with the actual value.

Arguments:

• Timeseries: The time series to be split up in windows.

• Frame: The window length to split the time series into.

• Method: How the time series should be split up. For example if the windows
should be extended at each step or be kept at a fixed length.

• PredictionStep: The future prediction step.

Values:
A list of all windows is returned. A window is a list with the following elements:

• timeSeriesValue_window: The values of the window.

• timeSeriesValue_future: The value which should be predicted by this window.

Data.Preparation

The function Data.Preparation transforms the data in the right format, replaces miss-
ing values with 0, and accounts for the length of the history chosen. In addition, for
CoDA it also transforms the data into the right format needed for the one-vs-all method.

Arguments:

• Data_Raw: The data to be transformed in the right format.

• OneVsAll: When TRUE, then the one-vs-all method is used.

• PivotGroup: When one-vs-all is used, this specifies the pivot category.

• Category: The categories to consider for the transformation.

• NA_to: The value with which NA values should be replaced with.

• HistoryLength: The length of the history. Can be an absolute number or a ratio
0 < h ≤ 1.
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• TakeSubCategory: When TRUE, we transform the data for the subcategories in-
stead of the main categories.

Values:
A tibble with two or more columns is returned, depending on the number of categories:

• week_date: The dates of the recorded values of the window.

• Name of Category 1 : The number of sold items belonging to Name of Category 1.

When the argument OneVsAll is TRUE, then a tibble with three columns is returned.

• week_date: The dates of the recorded values of the window.

• PivotGroup: The amount of sold items belonging to the pivot group.

• other: The amount of all other sold items belonging to the other categories.

Model.Error

The function Model.Error calculates the specified error measure for each time series
and category. Since we want to compare the performance of a method with the naive
model in Section 2.4, we calculate the errors for this model as well.

Arguments:

• Model_Result: The result of Coda.Analysis or CountModel.Analysis.

• Fnct: The error function to be used. Currently the MSE and RMSE are imple-
mented.

• Category: The categories for which the errors should be caluculated.

Values:
A tibble with the columns is returned:

• id: The id of the fridge.

• category: The category for which the error was calculated.

• error: The error calculated according to the error function in the Fnct argument.

• error_naive: The value of the error function for the naive random walk model.

• model: The used model.
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Model.ErrorOverall

The function Model.ErrorOverall is closely related to Model.Error. This function
calculates the error measure defined in Section 4.2. One can decide if the error measure
should be calculated over all categories or if they should be split up in subsets as in
Subsection 4.2.

Arguments:

• Error_Result: The result of the function Model.Error.

• Fnct: Function to summarise the errors. This enables one to use different methods
like the mean or median.

• SplitByGroup: When TRUE, then the errors are split by groups defined in the
Groups argument.

• Groups: The grouped categories over which the error should be calculated.

• Category: The categories for which the error should be calculated for.

Values:
The result is a tibble with the columns:

• id: The id of the fridge.

• error: The error calculated according to the error function in the Fnct argument.

• model: The used model.

• group: The subsets of categories as defined in Subsection 4.2.

CountModel.DataPreparation

The function CountModel.DataPreparation transforms the data into the right format
needed to fit the count data models. At its core it uses the Data.Preparation function
but adds the additional option to replace zero values with 1.

Arguments:

• Data: The data to be transformed.

• ZeroHandling: Method for zero handling. Currently there is no treatment or them
being replaced with 1.
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• HistoryLength: The length of the history. Can be an absolute number or a ratio
0 < h ≤ 1.

• TakeSubCategory: When TRUE, we transform the data for the subcategories in-
stead of the main categories.

Values:
A tibble with two or more columns is returned, depending on the number of categories:

• week_date: The dates of the recorded values of the window.

• Name of Category 1 : The number of sold items belonging to Name of Category 1.

CountModel.Prediction

The function CountModel.Prediction is the function where the model is fit and the
predicted value is calculated. It uses the corresponding functions mentioned in Section
4.4.1 to fit the INGARCH, INAR, or ZIM model for each window and predicts the next
value.

Arguments:

• Data_Window: The data divided into the different windows by the Data.Window
function.

• Data_WindowNoTransform: The data without zero handling divided into the
different windows by the Data.Window function.

• Category: The category to predict.

• PredictionStep: The prediction step.

• Frame: The window length.

• Distribution: The distribution chosen for the model. Care has to be taken, since
every model can choose from a different list of distributions and its name has to
be specified correctly (i.e. "‘Po"’ for INAR but "‘poisson"’ for ZIM).

• Plot: For the INGARCH model, diagnostic plots can be generated. Currently not
implemented.

• WindowMethod: Method for splitting up the time series. For example if the
windows are extended at each step or kept at a fixed length.
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• External: For INGARCH. When TRUE, external factors as in Equation (2.2) are
used.

• PastOb: For INGARCH. How many past observations should be used. Equals p

in Equation (2.1).

• PastMean: For INGARCH. How many past means should be used. Equals q in
Equation (2.1).

• ModelType: Model to be fit.

Values:
It returns a list with two elements:

• prediction: A data.frame with the predicted values and some additional informa-
tion.

• model: A list of all the models fitted for each window.

CountModel.Analysis

The function CountModel.Analysis acts as a wrapper function to streamline and facil-
itate the analysis. The previously mentioned model specifications can be chosen here as
well as various other options. This is the sole function which has to be used by the user.
The other functions are mainly for internal use.

Arguments:

• Data_Raw: The raw data as extracted from the data base.

• Id: The ids of the fridges to be analysed.

• PredictionStep: The future prediction step.

• Distribution: The distribution chosen for the model. Care has to be taken, since
every model can choose from a different list of distributions and its name has to
be specified correctly (i.e. "‘Po"’ for INAR but "‘poisson"’ for ZIM).

• ModelType: Model to be fit.

• Plot: For the INGARCH model, diagnostic plots can be generated. Currently not
implemented.
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• Category_Main: The main categories to choose.

• TakeSubCategory: When TRUE, then we transform the data for the subcategories
instead of the main categories.

• Category_Sub: The sub categories to choose.

• Frame: The window length.

• WindowMethod: Method for splitting up the time series. For example if the
windows are extended at each step or kept at a fixed length.

• ZeroHandling: Method for zero handling. Currently there is no treatment or them
being replaced with 1.

• PastOb: For INGARCH. How many past observations should be used. Equals p

in Equation (2.1).

• PastMean: For INGARCH. How many past means should be used. Equals q in
Equation (2.1).

• External: For INGARCH. When TRUE, external factors as in Equation (2.2) are
used.

• HistoryLength: The length of the history. Can be an absolute number or a ratio
0 < h ≤ 1.

• Multicore: When TRUE, then calculations are done on multiple cores to improve
performance. Internally the parallelisation takes place across the different categor-
ies to be calculated.

• NCores: The number of cores to be used for parallelisation.

Values:
This function returns a list with two values:

• result: The analysis result in the form of a data.frame.

• model: A nested list with all models, fitted for each id, category and window.
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Coda.DataPreparation

The function Coda.DataPreparation is analog to CountModel.Preparation
Arguments:

• Data: The data to be transformed.

• ZeroHandling: Method for zero handling. Currently there is no treatment, the
simple replacement strategy or adding 0.5 to all values.

• TSpace: When TRUE, then T -Spaces are used.

• Log: When TRUE, then the logarithm of the total sum is used in the T -Space.

• OneVsAll: When TRUE, then the one-vs-all method is used.

• PivotGroup: When one-vs-all is used, this specifies the pivot category.

• HistoryLength: The length of the history. Can be an absolute number or a ratio
0 < h ≤ 1.

• DL: The value δ for the simple replacement strategy in (3.40).

Values:
The result is a tibble. The columns are the ilr transformed data and hence the number

of columns depends on the dimension of the data:

• week_date: The dates of the recorded values of the window.

• Name of ilr transformed category 1 : The ilr transformed values.

If T -Spaces are used then an additional column with the sum or log-sum is added:

• week_date: The dates of the recorded values of the window.

• Name of ilr transformed category 1 : The ilr transformed values.

• tsum: Either the total sum or log-sum.
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Coda.Prediction

The function Coda.Prediction acts like its respective count model counterpart.
Arguments:

• Data_Window: The data divided into the different windows by the Data.Window
function.

• Data_WindowNoTransform: The data without zero handling and no transforma-
tion divided into the different windows by the Data.Window function.

• Data_NoTransform: The data without zero handling and no transformation.

• PredictionStep: The future prediction step.

• OneVsAll: When TRUE, then the one-vs-all method is used.

• TSpace: When TRUE, then T -Spaces are used.

• Log: When TRUE, then the logarithm of the total sum is used in the T -Space.

• PivotGroup: When one-vs-all is used, this specifies the pivot category.

• Frame: The window length.

Values:
It returns a list with two elements:

• prediction: A data.frame with the predicted values and some additional informa-
tion.

• model: A list of all the models fitted for each window.

Coda.Analysis

Again Coda.Analysis is the wrapper function. This is again the only function which
needs to be used by the user to fit models for the specified time series.

Arguments:

• Data_Raw: The raw data as extracted from the data base.

• Id: The ids of the fridges to be analysed.
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• Frame: The window length.

• ZeroHandling: Method for zero handling.

• PredictionStep: The future prediction step.

• Log: When TRUE, then the logarithm of the total sum is used in the T -Space.

• TSpace: When TRUE, then T -Spaces are used.

• OneVsAll: When TRUE, then the one-vs-all method is used.

• PivotGroup: When one-vs-all is used, this specifies the pivot category.

• HistoryLength: The length of the history. Can be an absolute number or a ratio
0 < h ≤ 1.

• ModelType: Model to be fit. Currently only “coda” and “coda_OneVsAll” can be
chosen.

• WindowMethod: Method for splitting up the time series. For example if the
windows are extended at each step or kept at a fixed length.

• DL: The value δ for the simple replacement strategy in (3.40).

Values:
This function returns a list with two values:

• result: The analysis result in the form of a data.frame.

• model: A nested list with all models, fitted for each id, category and window.

4.5 Results
In this section, we present and describe the results of our methods with their variations.
For this we use the previously introduced error measure, calculate it for all available
fridges and summarise the results. We show the results as graphics for easier inter-
pretation. For a general comparison, we use the CoDA, INGARCH, ZIM, and INAR
models. Since we focus on the CoDA and INGARCH models, we additionally analyse
their results in more detail as well.
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4.5.1 Model Comparison

Here we compare the INGARCH(1,1) model with the CoDA and INAR(1) model. For
all three models we use the same parameter values, namely a window factor of w =
0.5, the whole history h = 1, and extending windows. For CoDA, the settings are no
T -Space, one-vs-all method, and the simple replacement strategy with δ = 0.1. For
INGARCH(p,q) we use p = q = 1, assume it is Poisson distributed, use no external
factors, and have no zero handling. For INAR(1) we use the classical forecasting method
described in Section 2.8.2. When we speak of standard settings or values in the following,
we mean these settings.

In Figure 4.6 we see a boxplot and quantile plot. In the boxplot the error measure
is calculated for all groups and all fridges for each model. The result is then shown
in a boxplot. In the quantile plot, the error measure for each fridge, each model, and
each category is calculated and sorted according to their size. The dot size indicates the
length of the respective time series and the vertical lines are the 0%,25%,50%,75%, and
100% quantile.

In the Boxplot 4.6a we can see that their performance is pretty similar. They all seem
to outperform the naive random walk model, which is especially true for the count data
models. In the Quantile Plot 4.6b we see the error measure split up by category. While
for category 1 and 2 all models perform reasonably well and similar, differences emerge
for category 3 and 4. CoDA seems to be the clear favourite in category 4, followed by
INGARCH and then INAR. However, for all models there are time series with errors
that are either too high to be shown, or that couldn’t get calculated at all.

In Figure 4.7 we also include the ZIM model. One drawback about the ZIM model is,
that it needs to have zero values in the fitted window. Because of the lack of them in
category 1 and 2, we couldn’t manage to fit it. Hence the Models in 4.7 were only fitted
on categories 3 and 4.

In 4.7a we again see the boxplot for the summarised error. The ZIM is close to
INGARCH, but all three models still lag behind CoDA. In 4.7b we see again the error
measure for each category. While the models perform similar for category 3, the CoDA
still outperforms all models for category 4. Here it is worth mentioning, that category
4 is the main category with the most amount of zeros in our data. It should be pointed
out again, that all models don’t predict integer values, but rather real values which then
get rounded to the nearest integer value. Especially CoDA cannot predict zero values
but only small positive values which get rounded to zero.
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(a) Boxplot for the different models

(b) Quantiles for the different models

Figure 4.6: Comparison of the different models for all main categories
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(a) Boxplot for the different models

(b) Quantiles for the different models

Figure 4.7: Comparison of the different models for main categories 3 and 4
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4.5.2 General Specifications

First, we start with specifications which can be chosen for both CoDA and INGARCH.
We will always vary one parameter, while using the respective standard values for the
other parameters.

History

As mentioned various times throughout this thesis, the history is one of the parameters
which can be adjusted. In Figure 4.8 we visualise the results as a boxplot, a quantile
plot, and additionally a histogram to get a feeling for the error distribution.

(a) Boxplot for different h (b) Histogram for different h

(c) Quantiles for different h

Figure 4.8: Comparison of different h

In Figure 4.8 we can see that the results for CoDA do not vary too much for the
different histories. However, one can see in the Quantile Plot 4.8c that we have 8 less
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values for h = 0.5 than for h = 1. This probably results from the fact, that if we only
take half of the history for an already short time series, then we have too little values
for estimation.

For INGARCH, the results are similar as well. For h = 1 we get slightly higher values
for the error measure as seen in 4.8a. But again in 4.8c we see that we have less values
for the shorter history for the same reason as above.

Frame

Next, we vary the initial frame length wf . We choose to extend the frame with each
new data point. For this we vary the value w in wf = w · T . The results are portrayed
in 4.9. In general, there is not much difference between the different frames. INGARCH
seems to perform better for all three values.

(a) Boxplot for different w (b) Histogram for different w

(c) Quantiles for different w

Figure 4.9: Comparison of different w
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In the Boxplot 4.9a it looks like INGARCH performs worst for w = 0.5. However, in
the Quantile Plot 4.9c we can see that for w = 0.3, 0.7 the last errors are not included
in the plot. This could either be a result of them being too high, or that the model
couldn’t be fit on those fridges.

For CoDA there seems not to be much difference. The best results are obtained with
w = 0.3, but the differences are only marginal.

Window Shape

We also vary the shape of the window. As explained in Section 4.1 we either use a fixed
amount of points and add and remove points as time goes on, or we continuously add
points to the window. The results are in Figure 4.10. We can see that there are no big
differences between the methods. For both, CoDA and INGARCH, there are no notable
differences.

(a) Boxplot for different window
shapes

(b) Histogram for different window
shapes

(c) Quantiles for different window shapes

Figure 4.10: Comparison of different window shapes
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4.5.3 INGARCH Specifications Results

Next we will investigate the INGARCH specific options. As before, we use the standard
settings for the INGARCH(1,1) model and always vary one parameter.

Distribution

As mentioned in Section 4.1.2 we can replace the Poisson distribution with a Negative
Binomial Distribution in Equation (2.3). The results are shown in Figure 4.11.

(a) Boxplot for different distributions (b) Histogram for different distributions

Figure 4.11: Comparison of different distributions

As we can see, we get the exactly the same results for both distributions. However, as
mentioned in Section 2.2, we round the predicted conditional mean to the next integer.
Hence, we could get slightly different results for the different distributions. Nevertheless,
the difference is still negligible.

Number of Past Means and Observations

The order in the INGARCH(p,q) model is another parameter which can be chosen. For
simplicities sake, we only compare our INGARCH(1,1) with an INGARCH(1,2) and an
INGARCH(2,1) model. However, further models could be tried out and compared.

In Figure 4.12 we compare the INGARCH(1,1) model (red) with the INGARCH(1,2)
model (blue). We can see that the performance is very similar. Hence we prefer the
smaller model.

In Figure 4.13 we compare the INGARCH(1,1) (red) model with the INGARCH(2,1)
(blue) model. Again the performance is very similar in general.
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(a) Boxplot for a varying number of past
means

(b) Histogram for a varying number of past
means

(c) Quantiles for a varying number of past means

Figure 4.12: Comparison of a varying number of past means

As we see, there is not much difference between the INGARCH(1,1), INGARCH(2,1)
and INGARCH(1,2) model. One could compare the AIC or some other measure for the
different models and base their choice on that. However, this is not further explored
here and hence the INGARCH(1,1) model is taken because it is the smallest.
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(a) Boxplot for a varying number of past
observations

(b) Histogram for a varying number of past
observations

(c) Quantiles for a varying number of past observations

Figure 4.13: Comparison of a varying number of past observations

4.5.4 CoDA Specifications Results

Last, we will compare different CoDA specifications as mentioned in Section 4.1.1. Like
above, we choose one standard model for comparison and always only change one setting.
For CoDA our standard model uses extending windows, the full history h = 1, an initial
window length of w = 0.5, use the simple replacement strategy with δ = 0.1, no T -
spaces, and the one-vs-all method.
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4.5.5 Zero Handling
First, we compare the different options of handling zeros as explained in Section 4.1.1.
The results are shown in Figure 4.14. It seems that the simple replacement strategy
with δj = 0.1, ∀j results in marginally better performance.

(a) Boxplot for different zero handling
methods

(b) Histogram for different zero handling
methods

(c) Quantiles for different zero handling methods

Figure 4.14: Comparison of different zero handling methods

For the simple replacement strategy, one can also vary the parameter δ. In Figure
4.15 we plotted the results for δ = 0.01, 0.1, 0.5. While the difference does not seem big
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at first, when we calculate the error measure only for category 4, the category with most
zeros, we can see a drastic rise in performance, see Figure 4.16. While we seem to get
better results for smaller values of δ, one should remember, that CoDA cannot predict
actual zeros, but instead the predictions get rounded to the nearest integer.

Figure 4.15: Error Measure for all categories

Figure 4.16: Error Measure for category 4

To further investigate the differences, we look in detail at the time series with the
highest error measures for δ = 0.5. Fridge 100402 is the fridge with the highest error
and shown in Figure 4.17. We can see that for δ = 0.5 in category 4, the predictions
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stay at 1, even after a repeated amount of zero values. With the smaller δ-values on the
other hand, CoDA starts to predict zero values after one or two time points. While the
absolute difference is only one, the error measure is so high because the naive random
walk model predicts all values correctly as zero and therefore the nominator in Equation
(4.7) is theoretically zero. In practice, we implemented a fail-safe and set the nominator
to 1e-6 to avoid division by 0.

Figure 4.17: Time series of fridge 100402

The second highest error for CoDA is for fridge 100403, shown in 4.18. Again, we only
have zero values for category 4 and for δ = 0.5, CoDA never predicts zero. The same
reasoning as above can be used to explain the high error value.

The same thing happens for fridge 100191 in Figure 4.19. We have an excessive
amount of zero values and if δ is too high, CoDA fails to predict the correct value.

One thing that stands out in these time series is, that for categories 1 and 2, the
predicted values are the same for all three values of δ.

4.5.6 T -spaces

Next we compare CoDA for T −Spaces. The results are shown in 4.20. It seems that
using no T −Spaces result in slightly better results. Especially for shorter time series
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Figure 4.18: Time series of fridge 100403

Figure 4.19: Time series of fridge 100191
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using no T −Spaces returns better results. This can be seen in Figure 4.20c

(a) Boxplot for T −Spaces (b) Histogram for T −Spaces

(c) Quantiles for T −Spaces

Figure 4.20: Comparison of CoDA with and without T −Spaces

To further investigate the reason of this difference in performance, we picked out the
two time series with the highest error. Fridge 100321 has the highest error. Its time
series can be seen in Figure 4.21. As we can see, CoDA with T -Spaces performs worse
for category 1 and 2. However, the time series is also short by nature with only 14
recorded points in time.

The second highest error measure has fridge 20, shown in 4.22. Again, the problem lies
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Figure 4.21: Time series of fridge 100321

in category 1 and 2. Especially for category 1, CoDA with T -Space seems to continuously
underestimate the true values. For category 3 and 4, both settings have very similar
results.

Figure 4.22: Time series of fridge 20

4.5.7 One-vs-All Method

Now we analyse the one-vs-all method. Figure 4.23 shows the results. We can clearly
see, that the one-vs-all method performs better over all time series. This difference is
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highlighted in Figure 4.23c.

(a) Boxplot for One-vs-All (b) Histogram for One-vs-All

(c) Quantiles for One-vs-All

Figure 4.23: Comparison of CoDA with and without One-vs-All
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5 Conclusion

In this thesis, we compare multiple models for multivariate count data time series with an
excessive amount of zeros with the goal of finding the optimal model for predicting future
values. A special focus lies in the integer-valued generalized autoregressive conditional
heteroskedasticity model of order (p,q) (INGARCH(p,q) model) and the compositional
data analysis (CoDA) model. The other models include a zero-inflated model (ZIM) and
an integer-valued autoregressive model of order p (INAR(p) model). Since this thesis is
being carried out as part of a bigger project at the Technical University of Austria in
cooperation with Schrankerl GmbH, we are able to test our models on real world data
and compare them with the model currently in use.

The current model used for forecasting is the naive random walk model. While in
general, all tested models outperform the current model and deliver a similar output,
they come with their respective advantages and disadvantages.

The INGARCH model considers the discrete nature of our data, but ignores both, the
multivariate structure of it and the appearance of an unusual amount of zeros. While
there exists a multivariate version of the INGARCH model, to our knowledge, there is
no software implementation in R. The fitting of a multivariate INGARCH model and
assuming the data to be ZIP distributed, can be grounds for further investigations.

The CoDA model fits a multivariate model and sees our data as a compositional time
series. While it also neglects the fact that we have integer-valued data, the biggest issue
with CoDa is, that the data must not include zeros. While there exist various methods
to handle zero values as presented in Section 3.6, the handling of essential zeros, which is
what we have, still remains problematic. We opt for the suggested data amalgamation
and the simple replacement strategy because of their simplicity but a better way of
handling zeros could be worth future research.

The INAR model has similar assumptions as the INGARCH model. It accounts for
the discrete nature of our data, but neglects its multivariate structure and the amount
of excessive zeros. The excessive zeros seem to be troublesome for the INAR model in
general, since it performs the worst out of all models for time series with many zeros.
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The zero-inflated model is an intriguing model. It considers both, the excessive
amounts of zeros, and the discrete nature of our data and only ignores the multivariate
structure of it. However, while we do have an excessive amount of zeros, we do not
necessarily have zeros in every category of the time series and especially not if we only
use parts of them. But since the zero-inflated model needs to have at least one zero in
the sample, it cannot be fit on samples with no zeros present. This restricts us to fit the
ZIM only on the categories with the most zeros present.

While we did some small tuning and compared different parameter settings for our
models, we did not conduct an extensive analysis. Using some common model selection
criteria like the Akaike information criteria (AIC) or Bayesian information criteria (BIC)
are areas for further work. Another possible extension is the analysis of time series spe-
cific characteristics like seasonality and stationarity. Especially the test for seasonality
could be interesting since many offices are emptier during holiday season and hence there
are less possible costumers than usual.

Although we tried out many different models and conducted a literature review, it
turns out to be difficult to find a model which takes the three major characteristics of our
data, integer-valued, multivariate and excessive amount of zeros, into account. While
all the models outperform the naive random walk model, it would be interesting to find
a model which takes all three major characteristics of our data into account. In addi-
tion, the development of a multivariate INGARCH software package or the theoretical
extension of ZIM to multivariate data are points for future research.
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6 Summary

While multivariate count data time series with an excessive amount of zeros is a fre-
quently encountered real-world problem, there is yet a clear way to handle them. This
thesis is part of a bigger project carried out at the Technical University of Vienna in
cooperation with the company Schrankerl GmbH. The company operates food vending
machines in offices, which are restocked on a weekly basis. Since non-sold food gets
disposed of, the company is in search of a model which can predict the amount sold
in the upcoming week. For this, we compare various approaches with a focus on an
integer-valued generalized autoregressive conditional heteroskedasticity model of order
(p,q) (INGARCH(p,q) model) and a compositional data analysis (CoDA) model. Other
investigated models include a zero-inflated model (ZIM) and an integer-valued autore-
gressive model of order p (INAR(p) model). In the first half of the thesis, we provide
the mathematical background for these models. First, for the count time series mod-
els in Chapter 2 and later, for the CoDA model in Chapter 3. In the second half, we
compare these models on a real-world data set provided to us by the company. This is
done in Chapter 4. We investigate tuning options for our models in Section 4.1 and for
comparison across different time series and the currently employed model, we introduce
an error measure in Section 4.2. We conduct our analysis in the statistical software
R and provide a handbook for our code as well as an overview of all used packages.
In Section 4.5 we present the results of our analysis. Future extensions and possible
further research options are mentioned in Chapter 5. We have shown that our models
outperform the currently employed model, but come with their respective advantages
and disadvantages. Since, to our knowledge, there exists currently no model which takes
all three characteristics, the multivariate structure, the integer nature, and the excessive
amount of zeros, into account, the development of such a model poses an interesting
basis for future research.
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