
Improving Rust Mutation Testing
using Static and Dynamic Program

Analysis

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Samuel Pilz, BSc.
Registration Number 1327391

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Jens Knoop

Vienna, 13th September, 2023
Samuel Pilz Jens Knoop

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Samuel Pilz, BSc.

Hiermit erkläre ich, dass ich diese Arbeit selbstständig verfasst habe, dass ich die
verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen
der Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken
oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 13. September 2023
Samuel Pilz

iii

Acknowledgements

I want to thank my supervisor Univ.Prof. Jens Knoop for his valuable support and
thoughtful advice. I am very thankful to Hannes Siebenhandl and Jana Chadt for their
constructive and insightful discussions and feedback. I am especially grateful for the
support from my wife throughout my studies.

v

Abstract

Mutation testing is a powerful software testing method in which the program under test
is seeded with artificial faults that are considered to be possible programming errors and
should be discovered by a high-quality test suite. The cost of mutation testing is one of
the most critical issues for its practical applications. In this thesis, we present the tool
muttest for mutation analysis of Rust programs that improves quality and performance
of mutation analysis compared to related systems.

This thesis proposes several methods for leveraging Rust language features and results
of static analysis to implement mutation operators while preventing the generation
of invalid mutations. Moreover, dynamic program analysis is used to perform weak
mutation analysis and its results are utilized to improve the performance of strong
mutation analysis. By relying only on stable features of Rust, we ensure best-possible
compatibility of muttest with future versions of Rust. The experimental evaluation in
this thesis shows that muttest has competitive performance and produces a high-quality
mutation analysis report.

vii

Kurzfassung

Mutationstesten ist eine mächtiger Prozess um Software zu testen. Dabei wird das
Zielprogramm mit künstlichen Fehlern versehen, die als mögliche Programmierfehler
angenommen werden und die durch qualitativ hochwertige Testfälle entdeckt werden
sollten. Die Kosten des Mutationstestens sind einer der kritischsten Eigenschaften, welche
die praktische Anwendung erschwert. In dieser Arbeit stellen wir das Tool muttest für
Mutationsanalyse von Rust Programmen vor, das die Qualität und Performanz von
Mutationsanalyse von vergleichbaren Systemen übertrifft.

Diese Arbeit stellt einige Techniken vor wie Sprachfeatures von Rust sowie die Ergeb-
nisse von statischer Programmanalyse dazu verwendet werden Mutationsoperatoren zu
implementieren, die keine ungültigen Mutationen generieren. Außerdem wird dynamische
Programmanalyse dafür verwendet schwache Mutationsanalyse durchzuführen. Diese
Ergebnisse werden wiederum dafür eingesetzt die Laufzeit von starker Mutationsanalyse
zu verbessern. Durch die Einschränkung auf stabile Sprachfeatures von Rust, stellen wir
optimale Kompatibilität von muttest mit zukünftigen Versionen von Rust sicher. Die
experimentelle Evaluation dieser Arbeit zeigt, dass muttest konkurrenzfähige Laufzeit
aufweist und einen qualitativ hochwertigen Mutationsanalysebericht liefert.

ix

Contents

Abstract vii

Kurzfassung ix

Contents xi

1 Introduction 1
1.1 Mutation Testing: Theory and Process 2
1.2 The Cost of Mutation Testing . 3
1.3 Evolution and State of the Art: Mutation Analysis Tools 4
1.4 The Rust Programming Language . 7
1.5 Contributions of this Thesis . 8

2 Design and Architecture of the Rust Mutation Analysis Tool muttest 11
2.1 Requirements for muttest . 11
2.2 The Key Design Decisions for Implementing muttest 12
2.3 The Architecture of muttest . 16
2.4 Quality Assurance of muttest . 21

3 Implementation Techniques for Mutation Operators of muttest 23
3.1 Guidelines for Implementing Mutation Operators 23
3.2 Baked Dynamic Mutations and Mutables for Strong Mutation Analysis 25
3.3 The Compiler as Static Analysis Engine 27
3.4 Context Sensitive Mutations for Overloaded Operators 29
3.5 Coverage Tracking and Weak Mutation Analysis 31

4 Comparative Evaluation of Rust Mutation Analysis Tools 33
4.1 Overview of Features . 33
4.2 Mutation Testing on a Small Example 37
4.3 Benchmark on Real-world Projects . 39
4.4 Discussion . 41

5 Conclusion 43
5.1 Future Work . 44

xi

List of Figures 47

List of Tables 49

Bibliography 51

CHAPTER 1
Introduction

Ensuring correctness of programs is of paramount importance in software engineering.
In practice, unit and integration tests, usually bundled in test suites, are often used to
establish trust in the correctness of software. For a high level of confidence, the tests
need to be well-suited to reveal potential programming errors. Hence, the test suite needs
to be constructed using a systematic testing method and its quality needs to be analyzed
[AO17].

One method of determining the adequacy of test cases is coverage-based analysis [AO17,
chap 7]. Listing 1.1 shows a faulty implementation for computing Fibonacci numbers, in
which the two previous Fibonacci numbers are subtracted instead of added. The two
provided test cases execute all statements and branches of the function fibs and would
therefore satisfy these coverage testing criteria. However, due to insufficient assertions of
the computed values, the test cases do not detect the programming error. The testing
method mutation testing [DLS78] aims to remedy this weakness.

1 fn fibs(n: i32) -> i32 {
2 if n <= 1 {
3 return n;
4 }
5 return fibs(n-1)
6 - fibs(n-2);
7 } // programming error!

1 #[test]
2 fn fibs_tests() {
3 assert!(fibs(2) == 1);
4 assert!(fibs(8) >= 1);
5 }

Listing 1.1: A faulty function for computing Fibonacci numbers and corresponding test
cases.

1

1. Introduction

1.1 Mutation Testing: Theory and Process

Informally, mutations are small program modifications whose presence should be detected
by running the test suite. Mutation testing assumes that altering the program by
introducing mutations modifies the semantics like a programming error would have done.
When running the test suite against one of the resulting mutants, the violation of an
assertion means that the test suite is able to catch the modification of the program and
the mutant is killed. However, if all tests pass when run against the altered program, the
mutant is called undetected or survived and the corresponding programming error would
remain hidden from the test suite, hinting at a possible test suite weakness. If the test
suite does not even execute the altered part of the code, the mutation is not covered and
therefore the mutant cannot be killed. A kill matrix tabulates which test case covers and
kills which mutant.

Mutants that cause the test suite to run indefinitely are considered killed. Obviously,
proving nontermination is not possible, we therefore assume that a test will not terminate
if it exceeds a certain threshold. The underlying assumption is that test cases are designed
such that they terminate within a reasonable time frame and a long-running test suite
would raise the suspicion of the tester, if executed manually.

Some mutations do not represent possible programming errors. Mutants that fail to
compile are called invalid, whereas equivalent mutations do not alter the program’s
observable behavior, making them impossible to detect. The quality of a test suite
can be measured in terms of its mutation score, which is the ratio of killed mutants
compared to the number of valid, non-equivalent mutants. Automated tools, however,
cannot determine the equivalence of mutations reliably and pessimistically count all valid
mutations as non-equivalent, underestimating the quality of the test suite.

Mutants are typically generated via mutation operators [Pap+19, p. 7], which are each
responsible for altering a distinct pattern of code into possible alternatives. For some
operators, the program text contains all information that is necessary to determine the
set of valid mutations for a given fragment of code, for example, editing the content
of a string literal is a valid change in most programming languages. However, more
complicated mutations might depend on global program properties in order to be valid,
such as types of variables, whether operators are overloaded for given types, control or
data flow, and signatures of defined functions. We call such operators context sensitive.

The process of strengthening the test suite with the goal to improve the mutation score
can help uncover programming errors. By construction, a test suite with high mutation
score detects the simple programming errors that are examined during mutation analysis.
DeMillo, Lipton, and Sayward [DLS78] formulate the coupling effect that claims that
tests which uncover these simple errors typically also uncover more complex errors that
are more common in practice. Acree et al. [Acr+79] show that a high mutation score
necessarily implies a high coverage score, indicating that mutation testing can lead to
stronger test suites compared to coverage-based methods. Andrews, Briand, and Labiche

2

1.2. The Cost of Mutation Testing

[ABL05] study the accuracy of mutation scores as a measure of quality empirically and
conclude that the mutation score is, in fact, an adequate measure for test suite quality.

We follow the terminology introduced by Amalfitano et al. [Ama+22], which separates the
two concepts of mutation analysis and mutation testing. Mutation analysis is the process
of determining, generating, and evaluating mutants, as well as computing the mutation
score for a given test suite. In contrast, mutation testing is the act of strategically
designing test cases and improving the test suite based on results of mutation analysis.

1.2 The Cost of Mutation Testing
In contrast to other testing methods, like coverage-based approaches, mutation testing
is significantly more resource intensive [Woo93]. In particular, Jia and Harman [JH11]
argue that the cost of mutation testing in practice is largely determined by

• mutation generation and mutant evaluation,
• manual review of mutation analysis reports, and
• the process of handling mutations that do not represent real programming errors,

especially equivalent mutations.

Several methods have been proposed to lower these costs, of which we want to highlight
two: mutant schema generation and weak mutation analysis.

Untch, Offutt, and Harrold [UOH93] have developed the method of Mutant Schema
Generation, also called mutation baking, to reduce costs of mutant evaluation for compiled
languages. Instead of compiling each mutant separately, the source code is transformed
at compile-time to introduce the possibility to alter the program’s behavior at run-time.
The compiled artifact can be configured at run-time to behave like any mutant, requiring
only a single compiler run for when performing mutation analysis.

Howden [How82] introduces weak mutation analysis, in which mutants are considered
killed if the mutated expression evaluates to a different value or produces different side
effects to the original one for some test case. The term strong mutation analysis is often
used to describe the original approach to emphasize its distinction to weak mutation
analysis. Notably, mutants can be killed by weak mutation analysis but survive strong
mutation analysis. Therefore, the weak mutation analysis score over-estimates the test
suite’s ability to detect mutations. However, a single run of the test suite is sufficient to
determine which mutants are killed by weak mutation analysis, making this approach
an efficient alternative to strong mutation analysis with reduced accuracy. Moreover,
mutants that survive weak mutation analysis cannot cause a test assertion to fail making
it impossible for these mutants to be killed by strong mutation analysis. As a consequence,
there is no necessity for executing the test suite to evaluate these mutants for strong
mutation analysis.

3

1. Introduction

1 fn min_length_str<'a>(a: &'a str, b: &'a str) -> &'a str {
2 if a.len() <= b.len() { a } else { b }
3 }
4

5 // lets the mutant survive strong and weak mutation analysis
6 assert!(min_length("a", "bc") == "a");
7

8 // kills the mutant in weak mutation analysis, but
9 // lets it survive strong mutation analysis

10 assert!(min_length("ab", "bc").len() == 2);
11

12 // kills the mutant in strong and weak mutation analysis
13 assert!(min_length("ab", "bc") == "ab");

Listing 1.2: We consider the mutation of <= into < in the following function. The test
cases give all possible results for strong and weak mutation analysis.

Listing 1.2 shows an example function and three test cases. We consider the mutation of
the comparison operator <= into <. Dynamic program analysis allows us to determine
that both the original and mutated programs behave identically when executing the first
test case because the operators <= and < evaluate to the same result unless the compared
values are equal. This means that this test case lets the mutant survive weak mutation
analysis. As a consequence, the test case cannot kill the mutant in strong mutation
analysis because the mutated function produces the same result and the assertion is not
violated. Since this mutation is not equivalent, this finding uncovers a test suite weakness
without the cost of strong mutation analysis.

The second test case illustrates the shortcomings of weak mutation analysis. Dynamic
program analysis determines that the program executions of the original and mutated
differ on the given input. However, because the assertion is poor, the mutant would not
cause an assertion error in this test case. Therefore, the test kills the mutant in weak
mutation analysis, but lets it survive strong mutation analysis. The third test case is
adequate to kill the mutant in strong and weak mutation analysis.

1.3 Evolution and State of the Art: Mutation Analysis
Tools

Since its introduction by DeMillo, Lipton, and Sayward [DLS78] and Acree et al. [Acr+79],
mutation analysis and mutation testing have been a active areas of research; multiple
surveys have summarized and reviewed the literature at different points in time [Woo93;
OU01; JH11; Pap+19]. Many tools for mutation analysis have been developed for several
programming languages. These feature a variety of methods to implement the evaluation
of mutants. An overview of selected mutation analysis tools for different programming

4

1.3. Evolution and State of the Art: Mutation Analysis Tools

Table 1.3: Comparison of existing mutation analysis tools

Tool Year Language Mutation
method

Program analysis

unnamed [Bud+78] 1978 Fortran Source code edit Syntax patterns
only

unnamed [How82] 1982 COBOL Weak only Syntax patterns &
Dynamic

mothra [KO91] 1991 Fortran Bytecode
(run-time)

Syntax patterns
only

MSG [UOH93] 1993 Fortran Baked Syntax patterns
only

mutandis [MMP13] 2013 Javascript Instrumentation Static & Dynamic
Major [Jus14] 2014 Java Baked Static
pit [Col+16] 2014 Java Bytecode

(run-time)
Bytecode

MutPy [DH14] 2014 Python Source code edit Syntax patterns
only

MuCheck [Le+14] 2014 Haskell Source code edit Types
mutagen [Bog18] 2018 Rust Baked Syntax patterns

only
Mull [DP18] 2018 C/ C++ Bytecode

(compile-time)
Bytecode

cargo-mutants [sou23] 2021 Rust Source code edit Static
mutest-rs [Lév22] 2022 Rust Baked Static
muttest (this thesis) 2023 Rust Baked Static & Dynamic

languages and their methods for mutant generation is shown in Table 1.3. A more
exhaustive collection is compiled by Papadakis et al. [Pap+19].

The set of valid mutations is highly dependent on the programming language’s syntax and
semantics, especially its type system. Moreover, each language has unique constraints
and possibilities on how mutation generation and evaluation can be implemented. Due to
these engineering challenges, most of the developed systems are language-specific. Early
systems generate mutants by editing the source code directly. The altered program is
then compiled from scratch or loaded into a fresh interpreter session. Using this approach,
Budd et al. [Bud+78] implement their system for the programming language Fortran.

Most mutation analysis tools focus on simple mutation operators built on pattern-based
analysis of program text alone. Notably, in the language Fortran mutations regarding
arithmetic and control flow, which are the most popular ones, can be generated this way
[Bud+78]. However, in some high-level programming languages, some operations are
overloaded, making the corresponding operators context sensitive. For example, in Java,
Python, or JavaScript, the plus (+) operator can be used to append strings and replacing

5

1. Introduction

it with a minus (-) is not a valid mutation. In order to support this mutation operator
correctly, a mutation analysis tool requires type information, either by performing static
program analysis, or by inspecting the compiler-generated bytecode.

Several tools have been developed to explore cost-reduction techniques for mutation
testing. Howden [How82] use dynamic program analysis to implement weak mutation
analysis. Untch, Offutt, and Harrold [UOH93] propose to implement mutation analysis
tools based on baking mutations using compile-time source code transformations, reducing
cost of compiling mutants. The framework mutandis [MMP13] uses static and dynamic
program analysis to rank mutations by estimated importance and evaluate only the most
important ones.

The system pit [Col+16] exploits the functionality of the Java Virtual machine [AGH05]
to edit bytecode at run-time. Mutants are evaluated by performing bytecode changes
within the same process, removing the startup costs for test suites. The tool mull [DP18]
evaluates mutants by editing LLVM bytecode, which only requires recompilation of
minimal pieces of code. The approach to use a low-level representation of the program
for mutation analysis seems particularly useful when targeting programming languages
with complex syntax, like C and C++, since possible valid mutations cannot be easily
determined from analyzing the source code [JP17].

Mutation analysis tools that operate solely on bytecode can provide invalid mutations,
as shown by the [Jus14]. They give the example of for-each loops that have identical
bytecode to semantically equivalent while loops. A mutation analysis tool without
knowledge of the source code might incorrectly apply mutations for while loops, which
would be invalid when applied to for-each loops. To address this weakness, the authors
present the mutation analysis tool Major based on mutation baking.

The mutation analysis tools mutagen [Bog18], mutest-rs [Lév22], and cargo-mutants
[sou23] have been developed for Rust. In mutagen and mutest-rs, mutations are baked
at compile-time, while cargo-mutants edits the source code and calls the compiler
separately for each mutant. The systems mutagen and mutest-rs support traditional
mutation operators [Acr+79], altering the behavior of expressions and statements. In
contrast, cargo-mutants only applies “extreme” mutation operators [NJW16], removing
whole function bodies or replacing them by trivial values, which improves performance
and simplifies manual review, but also reduces the ability to find programming errors.
The source code transformation of mutagen is implemented as a procedural macro, while
mutest-rs provides a compiler plugin that bakes mutations. Contrary to cargo-mutagen
and mutest-rs, which execute the test suite for each mutant, mutagen instruments the
code to detect and skip the evaluation of mutants that are not covered.

Both tools support type-sensitive mutation operators whose validity depend on trait
implementations. The strategy of multiple compiler invocations allows cargo-mutants
to filter these mutations and correctly exclude these for mutation score computation. In
mutagen, however, mutants are generated based on patterns of program text alone and
invalid mutations fail at run-time, skewing the mutation score. Neither system can be

6

1.4. The Rust Programming Language

1 #[proc_macro_attribute]
2 fn my_macro(attribute: TokenStream, code: TokenStream)
3 -> TokenStream {
4 // arbitrary program to define the transformation
5 }

Listing 1.4: A Rust procedural macro for compile-time source code transformation

used to perform weak mutation analysis [How82].

The accuracy of the mutation score as measure for test suite quality critically depends
on the set of mutation operators. Previous research has focussed on minimizing the
set of mutation operators while minimizing the loss of measurement accuracy, finding
that a small subset of possible mutations can provide an adequate estimate for test
suite quality [Off+96; NAM08]. In their study, Andrews, Briand, and Labiche [ABL05]
examine operators for arithmetic operations, constants, branches, and statements and
conclude that these operators seem sufficient for mutation analysis for the C programming
language.

1.4 The Rust Programming Language
Rust [KN19] is a systems programming language with a type system designed to prevent
invalid memory access, such as data races and the use of dangling references. This is
achieved by extending its type system with the concepts of ownership and borrowing.
Informally, a valid borrow of a value guarantees that a value or resource can be used
safely while ownership ensures that each resource is freed appropriately and cannot be
used after that. Rust follows a procedural paradigm heavily influenced by functional
programming languages. Rust supports parametric polymorphism via so-called traits,
which are similar to Haskell’s type classes. Projects written in Rust are organized in
workspaces, which may contain multiple libraries, called crates. The tool cargo is used
for building Rust projects and managing their dependencies.

Like any programming language with an active community, Rust is evolving. Experimental
features can be used by installing a beta version of the compiler. Unlike stable features,
these are still subject to further change and projects relying on them cannot be expected
to be compatible with future versions of Rust.

As a core part of the language, Rust allows procedural macros to generate and transform
the source code at compile-time. They are implemented as Rust programs that take
source code as input and produce source code as output. Listing 1.4 shows the signature.
When annotating code with the appropriate attribute, like #[my_macro], the procedural
macro is invoked by the compiler to transform the annotated code fragment. This happens
at an early compilation stage in which the compiler has not yet performed semantic
analysis. Therefore, procedural macros do not have access to the type information of the
code under transformation.

7

1. Introduction

1 trait Print {
2 fn print(&self);
3 }
4 struct A;
5 impl Print for A {
6 fn print(&self) {
7 print!("A")
8 }
9 }

10 impl Print for &A {
11 fn print(&self) {
12 print!("&A")
13 }
14 }

1 struct B;
2 impl Print for B {
3 fn print(&self) {
4 print!("B")
5 }
6 }
7

8 (&A).print(); // prints "A"
9 (&&A).print(); // prints "&A"

10 (&B).print(); // prints "B"
11 (&&B).print(); // prints "B"

Listing 1.5: Examples of method resolution rules. The effect of the expres-
sion (&&B).print() is identical to that of (&B).print() while (&&A).print() and
(&A).print() behave differently because the trait Print is implemented for both A and &A

1.4.1 Autoderef-based Specialization
Rust performs multiple steps to resolve calls to trait methods that take &self as a
parameter. First, the trait is resolved for the type of expression. If no method is found
and the value can be dereferenced, the compiler tries to resolve the method based on
the dereferenced form of the value. This process is repeated until a matching method is
found or the value can no longer be dereferenced. This step is called autoderef and was
introduced to allow syntax for method calls that is similar to related concepts in popular
object-oriented programming languages. Listing 1.5 illustrates this concept.

Tolnay [Tol] outlines how the related feature of autoref-based method resolution is used
to implement compile-time specialization in which different implementations are chosen
based on the type of an expression. This technique is refined by Kalbertodt [Kal] to use
autoderef-based method resolution and allows multiple layers of specialization. Notably,
this approach does not rely on experimental features and is therefore expected to be
compatible with future versions of Rust.

1.5 Contributions of this Thesis
In this thesis, we develop a new system for mutation analysis in Rust called muttest.
We build on top of the method of baking mutations through source code transformation,
augmenting the performance and quality of mutation analysis of existing systems by
integrating static and dynamic program analysis.

We introduce the concept of a mutable, a new abstraction for implementing mutation
analysis systems. A mutable is a code fragment whose behavior can be altered. Using

8

1.5. Contributions of this Thesis

this definition, we improve the modularity of the implementation of muttest compared
to related systems.

We develop a novel mechanism that leverages the compiler itself to perform all static
analyses required by the mutation operators supported by muttest. This implies that
our approach remains applicable to all Rust projects compatible with an up-to-date
version of the Rust compiler. The stability guarantees of Rust give us confidence that
muttest will mostly be compatible with future versions of the compiler without much
need for adaption.

We develop a new strategy to apply the Rust pattern autoderef-based specialization to
implement context sensitive mutation operators in a way that they never generate invalid
mutations. This allows us to define mutation operators that are either not possible or
not practical in related systems. Since most mutation operators of complex language
constructs are context sensitive, this enables particularly powerful mutation operators.
Eliminating the generation of invalid mutations yields the additional benefit of removing
this source of over-approximation of the mutation score.

We bake instrumentation alongside each mutation that records if and how each test
case covers the mutation. We extend the strategies of existing tools by also recording
the behavior of certain code fragments in addition to coverage. This dynamic analysis
data allows us to skip test cases which are not relevant for a given mutation, either by
not covering it or by letting the mutation survive weak mutation analysis. This gives a
significant performance boost, since most unit tests only cover a fraction of the overall
code base.

We leverage the data gathered from instrumentation to enable weak mutation analysis for
mutation operators where possible. The weak mutation score can be computed during a
single execution of the test suite, which allows the programmer to quickly compute an
upper bound to the strong mutation analysis score. We expect this is a more efficient
strategy in practice to construct test cases that kill most mutants by weak mutation
analysis before studying the more detailed report from strong mutation analysis.

We compare muttest to other mutation analysis systems for Rust programs. In order
to get results that are comparable with other studies, we use small example programs
that have been widely used in previous research. A benchmark consisting of several
well-known libraries in the Rust ecosystem shows that mutest generates more mutants
than related systems and is as efficient as the best-performing systems.

We follow software engineering best-practices to test muttest itself to establish confidence
in its correctness. In particular, a carefully crafted implementation of core mutation
features enables isolated unit tests. Furthermore, we apply muttest to itself and ensure
a reasonably high mutation score.

In the remaining chapters of this thesis, we present our work on the system muttest as
outlined above. In Chapter 2 we discuss its high-level design concept and the relevant
components. We give implementation details of the key ideas in Chapter 3 and evaluate

9

1. Introduction

the system in Chapter 4. Finally, we discuss the results of our work and give an outlook
for possible future research in Chapter 5.

10

CHAPTER 2
Design and Architecture of the

Rust Mutation Analysis Tool
muttest

We present the design and architecture of the system muttest for mutation analysis of
Rust programs. We first discuss its requirements which form the basis for the following
design decisions. Then, we describe the steps muttest executes to generate and evaluate
mutants and give an overview of how muttest is used by programmers to perform
mutation testing. Thereafter, we present the component structure of the muttest project
and outline the structure of the procedural macros that implement the source code
transformations. Finally, we discuss how muttest is tested and how it is used on its own
test suite to compute the mutation score.

2.1 Requirements for muttest

We identify the following major requirements that the mutation analysis tool muttest
should meet. These requirements are listed by decreasing importance. Design decisions
have to give priority to the higher-listed requirement over requirements of lower priority.

Req 1. muttest shall be applied to all existing Rust projects following the recommended
project setup [Rus23]. This is critical for practical applications of muttest in real-world
projects, since most projects have been developed without mutation testing in mind.
In particular, editing large parts of the codebase to satisfy the restrictions imposed by
muttest is infeasible for large projects. This requirement entails that muttest supports
all features of the Rust programming language. For seamless integration into existing
workflows, muttest provides a cargo plugin so that programmers can use the command
cargo muttest to perform mutation analysis. Moreover, the implementation of muttest

11

2. Design and Architecture of the Rust Mutation Analysis Tool muttest

does not rely on unstable language features, ensuring best-possible compatibility with
future versions of Rust.

Req 2. muttest shall not generate invalid mutations. Evaluating mutants of invalid
mutations skews the mutation score for strong and weak mutation analysis, incurs
avoidable effort for the programmer when analyzing the mutation analysis report, and
negatively impacts the performance of mutation analysis by running more test cases
than necessary. Invalid mutations can occur when applying a context sensitive mutation
operator to a code fragment that does not meet the relevant requirements. For Rust
programs, this includes the following typical cases.

• Mutation of a literal into a value outside the range allowed by its type
• Mutation of an operator into an operator that is not supported by the operands’

types
• Removal of expressions and statements that are critical to the correctness of the

control- or data flow of a function

Req 3. muttest shall incorporate the following techniques to reduce the cost of mutant
evaluation because prior research found that the cost of mutation testing is the main
cause for restrained industry adoption [UM10].

• Mutations are baked via source code transformations to reduce the number of times
the compiler is called.

• Data from coverage analysis and the results of weak mutation analysis are used to
determine which test is relevant for the evaluation of which mutant.

• Users can choose the level of detail in which mutation analysis is conducted.
• Users can choose the timeout duration after which a mutant is considered killed.

Req 4. muttest shall support as many mutation operators as possible while satisfying
the requirements above. Additionally, muttest provides a helpful mutation analysis
report based on the chosen level of detail.

Req 5. The project muttest shall itself be written in a modular and maintainable
manner. Additionally, the functionality of muttest is tested using appropriate testing
methods.

2.2 The Key Design Decisions for Implementing muttest

In the following, we explain the parts of the design and architecture of muttest that are
critical for meeting all these requirements.

To ensure best-possible integration with existing projects, we use core features of the
Rust programming language throughout muttest. Rust’s stability-guarantees promise

12

2.2. The Key Design Decisions for Implementing muttest

1 // original
2 x + y
3

4 // transformed
5 match get_mutation(1) {
6 "+" => x + y,
7 "-" => x - y,
8 "*" => x * y,
9 // ... other mutations

10 }
Listing 2.1: An example of mutation baking via source code transformation inspired by
Untch, Offutt, and Harrold [UOH93]. This listing shows a Rust function and a possible
transformation.

forward-compatibility for these features for future versions of Rust. Specifically, we
implement the source code transformation with a procedural macro that is activated
by annotating the code under test with the attribute #[mutate]. We use the Rust
compiler itself as a static program analysis engine and utilize the gathered information
to determine which mutations are valid and should be evaluated. Further, we apply
the technique of autoderef-based specialization to implement context-sensitive mutation
operators without introducing compiler errors.

The method of baking mutations by transforming source code is inspired by Untch, Offutt,
and Harrold [UOH93]. Listing 2.1 illustrates this idea, showing an example of a source
code transformation. A run-time check that controls the behavior of the code fragment
is introduced, making it possible to enable one of the baked mutations dynamically. This
technique allows the evaluation of all mutants generated by this process after compiling
the test suite and the code under test once. In order to satisfy requirement 1, the source
code transformation must be able to correctly process any valid Rust source code. In
particular, the transformation must be designed in such a way that it never introduces
compiler errors and supports all features of the Rust programming language.

The source code transformation inserts instrumentation for dynamic program analysis
alongside the baked mutations. The gathered data is used for determining which mutations
are covered and which mutants survive weak mutation analysis. We combine this strategy
with an additional procedural macro, enabled by the attribute #[muttest::tests], that
transforms each test case to get fine-grained control over its execution. This allows
muttest to track which test covers which mutation and to selectively skip the execution
of any test case that is not relevant for the mutant under evaluation. Consequently,
mutants that are not covered by any test case require no further steps to determine that
they survive both strong and weak mutation analysis.

Users of muttest can configure the level of detail for each run of cargo muttest. This
configuration enables muttest to complete the command more quickly by skipping

13

2. Design and Architecture of the Rust Mutation Analysis Tool muttest

analysis steps that are not of interest. The following three levels are supported.

1. Perform weak mutation analysis only.
2. Evaluate each mutant using strong mutation analysis.
3. Compute the full kill matrix, i.e. compute which test case kills which mutant.

Finally, we structure the code of the muttest project in a way that each mutation
operator can be defined in a single file, independently from other mutation operators. To
ensure the composability of all mutation operators, they have to follow the guidelines
described in Section 3.1. The correctness of the implementation of each mutation operator
is ensured by unit tests in which their functionality is tested in an isolated manner. We
apply muttest to itself to improve the quality of its own test suite.

2.2.1 The Automated Process to Perform Mutation Analysis
The design decisions outlined above determine the process for mutation analysis by
generating and evaluating mutants. The command cargo muttest performs the following
three steps.

1. The test suite and the code under test are compiled. During compilation, the
compiler transforms all parts of the code that are annotated with #[mutate],
baking mutations based on detected syntax patterns. The tests annotated with
#[muttest::tests] are instrumented to allow fine-grained control over their exe-
cution and to enable tracking of run-time behavior of the code under test for each
test case separately. The information about generated mutations and the marked
tests is stored as a compilation artifact alongside the executable test suite. The
next steps use these results without calling the compiler again.

2. The test suite is run without any active mutations to check that all tests pass and
to record the behavior of the mutable code and their run-time. During this first run
of the test suite, the static program analysis information generated by the compiler
is extracted and is used to determine which mutations are valid. The data from
dynamic program analysis is used to determine which mutations each test case
covers and kills for weak mutation analysis. A preliminary mutation analysis report
is generated, presenting the results of weak mutation analysis and its mutation
score as well as enumerating which mutations are covered.

3. If requested by the user, all mutants are evaluated whether they survive or are killed
in strong mutation analysis by running tests while activating the corresponding
mutation. Only tests that cover the mutated code fragment and for which the
mutant did not survive weak mutation analysis are executed in this step. Unless a
kill matrix is requested, the evaluation of each mutant stops once a single test fails.
Finally, a mutation analysis report is compiled, containing the strong and weak
mutation scores and the evaluation of each mutant.

14

2.2. The Key Design Decisions for Implementing muttest

Figure 2.2: The iterative process of mutation testing.

2.2.2 The Mutation Testing Process for Programmers
To perform mutation testing effectively, programmers should apply muttest in an iterative
process outlined in Figure 2.2. Informally, the results of mutation analysis are use to
incrementally improve the test suite until a desired mutation score is reached.

For large projects, it is beneficial to enable compiler optimizations when compiling the
code under test and the test suite because they are only compiled once but executed
multiple times. To achieve this, a new compilation profile is introduced that includes
the properties opt-level=3 and lto=true. All subsequent calls to cargo muttest then
need to enable this profile.

Programmers enable mutation analysis for a given crate by adding the dependency
muttest. Then, the annotation #[mutate] is used to choose which regions of source
code to include for mutation analysis. The modules containing relevant tests have to be
annotated with #[muttest::tests]. This opt-in approach allows targeted and tailored
mutation analysis and helps to focus on parts of the project for which test suite quality is
more important. The command cargo muttest automatically generates and evaluates
mutants and compiles a mutation analysis report.

In an iterative process, the programmer reads the mutation analysis report, improves the
test suite, and re-runs the mutation analysis process. By studying the compiled report,
the programmer can analyze which parts of the code suffer from test suite deficits. To
kill previously survived mutants, the code has to be manually analyzed whether the
mutant is equivalent and what inputs cause a test case to fail, if possible. The test

15

2. Design and Architecture of the Rust Mutation Analysis Tool muttest

suite can be improved either by writing new tests, adapting test data, or strengthening
assertions in existing test cases. Choosing the level of detail of the mutation analysis
report appropriately can help to find more easily detectable test suite weaknesses more
quickly. This partially automated process is repeated until satisfactory mutation scores
for strong and weak mutation analysis are reached.

Mutation analysis can be applied in the continuous integration process of a soft-
ware project. For example, the command cargo muttest --threshold 90 --weak-
threshold 95 fails if either the strong mutation score is below 90% or the weak mutation
score is below 95%. Using muttest this way, minimal values for strong and weak mutation
scores can be enforced.

Mutation testing users should not include muttest in release artifacts outside the testing
environment. There are two common approaches to avoid this.

1. Declaring muttest as a dev-dependency allows mutation testing for unit tests. In-
stead of using #[mutate] and #[muttest::tests] directly, programmers annotate
their code with #[cfg_attr(test, muttest::mutate)] and
#[cfg_attr(test, muttest::tests)], respectively.

2. To perform mutation testing for integration tests as well as for unit tests, muttest
is declared as an optional dependency. Programmers should then use the attributes
#[cfg_attr(feature = "muttest", muttest::mutate)] and
#[cfg_attr(feature = "muttest", muttest::tests)]. It is important that the
muttest feature flag is not activated outside testing environments.

We continue to refer to the attributes as #[mutate] and #[muttest::tests] and imply
that programmers use one of these two methods.

2.3 The Architecture of muttest

Figure 2.3 shows an overview of the crates of the muttest system and their dependencies.
The architecture is greatly influenced by the process described above and the features
and restrictions provided by the Rust programming language. The commitment to the
mechanism of procedural macros has a particularly significant impact.

Most of the functionality of muttest is implemented in the crate muttest-core. It
contains the definition and implementation of mutations and transformation rules to
detect and bake the supported mutations. Additionally, it provides functionality for
activating mutations and for performing dynamic program analysis by recording the
behavior of relevant parts of the target code.

Ideally, we want the muttest system to be a single crate that provides all functionality.
However, the Rust programming language requires that a procedural macro is declared
in a crate that cannot contain code that is executed at run-time. This forces the use of a

16

2.3. The Architecture of muttest

Figure 2.3: The crates of the muttest project and their dependencies.

separate crate we named muttest-codegen. This crate uses the transformations imple-
mented in muttest-core to define the procedural macro. To hide these implementation
details, we reexport all relevant definitions from the core library as well as the procedural
macros in the muttest crate, which users are supposed to add as the only dependency in
the projects they want to perform mutation testing in.

The core crate contains infrastructure to define and execute unit tests that can check the
behavior of mutations in an isolated manner. For exhaustive and meaningful tests, the
correctness of the transformation rules is tested in combination with the functionality
for mutation activation and program analysis. This requires that the test suite of
muttest-core uses the procedural macro defined in muttest-codegen, introducing the
circular dependency shown in Figure 2.3. The build system for Rust projects handles this
situation by building the crate muttest-core without tests and uses it for processing
muttest-codegen. Then, when building the test suite for muttest-core, the procedural
macro is available. This process of compiling the crate muttest-core twice only occurs
when running its test suite. It is not performed when programmers use muttest in their
projects.

The crate muttest-selftest is a copy of muttest-core and is used to perform mutation
analysis on the code and test suite of the core library itself. It depends on muttest
to mirror the setup that typical projects need when running mutation analysis. For
correct results, it is necessary that mutants of muttest-selftest are evaluated using the
original code of muttest-core. We are aware that an error in muttest-core could cause
the incorrect evaluation of mutants as killed, hiding the error as well as corresponding

17

2. Design and Architecture of the Rust Mutation Analysis Tool muttest

flaws in the test suite. However, we find this additional layer of quality assurance helpful
despite this possible weakness.

Prior work [Bog18] has found that some crates introduce compiler errors after baking
mutations. If a crate provides implementations for certain traits that impact the results
of the type inference algorithm, adding it as a dependency can introduce compiler errors
to previously well-typed code. In particular, this situation occurs when using the popular
crate serde_json for serializing and deserializing data in JSON format, which defines
implementations of PartialEq that allow the comparison of their internal Number type
with builtin types. Specifically, the expression &[0u8][..] != [] fails to compile when
importing this crate but is otherwise accepted by the compiler. As a result, muttest-core
depends on as few external crates as possible.

2.3.1 Communication between Components
The different components of the muttest framework need to exchange information in
order to accomplish their tasks as described above. The process cargo-muttest uses
environment variables to configure invocations of the procedural macro and the executions
of the test suite, which respond by saving relevant data to files. The compiler artifacts for
Rust projects are stored inside a folder called target. We therefore place all information
relevant for mutation analysis inside the folder target/muttest created by the main
process cargo-muttest. In order to inform the running test suite and the procedural
macro of this folder, cargo-muttest sets the environment variable MUTTEST_DIR appro-
priately. If this environment variable is not set, no source code transformation is applied
and no mutations are activated.

If the crate for which mutation analysis should be performed has already been compiled
without generating mutations, cargo-muttest is unable to meaningfully proceed. To
avoid this situation, we force the recompilation of the code under test and trigger
the execution of all source code transformations by placing a constant with the value
option_env!("MUTTEST_DIR") inside the muttest crate. This causes the compiler to
track changes to that environment variable. Importantly, only muttest and the code
under test are recompiled as a consequence. The crates muttest-core, muttest-codegen,
and all other dependencies of the user’s projects are not recompiled.

Each invocation of the procedural macro, triggered by the use of the attribute #[mutate],
searches for patterns of code that can be mutated. Detected fragments that admit muta-
tions are reported in files of the form mutables-<crate>.csv within the target/muttest
folder, where <crate> is replaced by the name of the crate the attribute appeared in.
The distinction between different crates is necessary because a Rust project can contain
multiple crates to which mutation analysis is applied and for each crate, mutations are
enumerated independently.

In order to activate a mutation for a test suite run, cargo-muttest sets the environment
variable MUTTEST_MUTATION. Additionally, the variable MUTTEST_TARGET is used to define
in which crate the given mutation should be activated. If no mutation is activated,

18

2.3. The Architecture of muttest

the type information generated by the compiler during compilation is written to the
file types.csv in the folder target/muttest, while dynamic program analysis data
is written to coverage.csv. However, if a mutation is activated, the content of the
previously generated file coverage.csv is read to determine which tests are relevant for
evaluating the activated mutation.

2.3.2 Structure of the Procedural Macro #[mutate]

The procedural macro #[mutate] bakes mutations by transforming the source code in
the following steps.

1. The compiler calls the procedural macro on all code fragments annotated with
#[muttest].

2. The source code is parsed into an abstract syntax tree using the syn library.
3. The abstract syntax tree is traversed in postorder using syn::Fold, searching for

mutable patterns of code.
4. Each matching syntax node is transformed according to the mutant schemata

approach, baking all mutations by adding run-time checks and inserting instrumen-
tation for dynamic analysis.

5. The information gathered during the transformation is saved as additional compiler
artifacts.

2.3.3 Testcase Transformation
Tests that do not cover activated mutations cannot impact the evaluation of a mutant.
Skipping these tests improves the efficiency of mutation analysis without loss of accuracy.
We achieve this optimization by gathering the appropriate data during the initial run
of the test suite with no active mutations. Specifically, we record what mutations are
covered and how the mutated code fragments behave for each test case individually. This
data is then used for deciding which tests to run when evaluating mutants.

We implement the skipping of tests by transforming each test case using a procedural
macro, activated by adding the attribute #[muttest::tests]. It inserts a statement
that controls the execution of the test at the beginning of each test. The significant parts
of this implementation are shown in Listing 2.4. At the beginning of each test case, we
create a token that contains all relevant information for the test case and informs the
run-time context of muttest that the test starts. This token is dropped when the test
terminates either by completing successfully or by panicking, which triggers the report of
the test end via the token’s Drop implementation. This way, the muttest core library
can determine which test is currently running when recording coverage and behavior
data.

In line 6 of Listing 2.4, the statement contains an option to skip the test by returning
early. This is triggered when the test suite is run while evaluating a mutant for which
this test case is not relevant. For tests marked with #[should_panic], the early exit is

19

2. Design and Architecture of the Rust Mutation Analysis Tool muttest

1 // This statement is inserted at the beginning of each test
2 // by the `#[muttest::tests]` attribute.
3 let Some(_test_token) =
4 CONTEXT.start_test(
5 MuttestTest { /* test-specific information */ })
6 else { if should_panic { panic!() } else { return } };
7 // the else branch skips the test without failing
8

9 // The destructor is called the end of the test.
10 impl Drop for MuttestTestToken {
11 fn drop(&mut self) {
12 let success = std::thread::panicking() == self.should_panic;
13 CONTEXT.end_test(self, success);
14 }
15 }
Listing 2.4: The components used for tracking the start and end of each test, sim-
plified. The construction of MuttestTest includes information about the test case,
such as id, name, the module the test occurs in, and whether the test is marked with
#[should_panic].

implemented via a panic!() instead of a return statement. If the user did not request
the computation of a kill matrix, the test suite is terminated after the first failing test.

By default, tests not annotated with #[muttest::tests] are not considered as part of
the test suite since they do not allow fine-grained dynamic program analysis. To avoid
running these tests, the transformation renames the marked tests to contain the string
__muttest_test_. We use the feature of Rust test suites to filter test cases based on
their name to only execute the desired tests. This requires the programmer to refrain
from using this special string as part of test case names. We provide a configuration
option to run all test cases including tests without annotation. This mode gives correct
results, but suffers a performance penalty because these tests cannot be skipped based
on the recorded dynamic behavior.

As tests that take longer than expected are considered killing the mutant under evaluation
for strong mutation analysis, accurately detecting their timeouts is important for the
correctness and performance of mutation analysis tools. We want to avoid the situation
that a mutant is killed via timeout but the test suite would pass within a time frame
that does not raise the suspicion of the programmer. In such cases, the test suite should
not be considered failing. To achieve this, the programmer can set their desired timeout
threshold.

Timeouts for long-running test cases are enforced by a dedicated watchdog thread that
regularly checks if a test has reached its timeout. The test suite is terminated once a
timeout is detected, killing the mutant under evaluation. During the first run of the test

20

2.4. Quality Assurance of muttest

1 #[test]
2 fn test_cmp() {
3 #[mutate_isolated("binop_cmp")]
4 fn min(a: i32, b: i32) -> i32 {
5 if a < b { a } else { b }
6 }
7

8 let data = data_isolated!(min);
9 assert_eq!(data.mutables.len(), 1);

10

11 let result = call_isolated! {f(1, 2)};
12 assert_eq!(result.res, 1);
13 assert_eq!(result.mutable_behavior(1), "LT");
14

15 assert_eq!(call_isolated! {min(1, 2) where 1:">"}.res, 2);
16 }

Listing 2.5: A unit test for the mutation operator for comparison operations.

suite, we verify that no test case violates its timing restriction.

2.4 Quality Assurance of muttest

In order to improve and ensure the quality of muttest, we implement a system for testing
the behavior of mutation operators using unit tests. Moreover, we apply muttest to
itself to compute the mutation score of its own test suite.

2.4.1 Unit Tests
For all mutation operators, unit tests check that

• the correct code patterns are detected,
• the mutations can be activated and behave as expected, and
• the transformation does not introduce compiler errors.

Listing 2.5 shows a typical unit test. The test case contains a function that is annotated
with #[mutate_isolated] to trigger the source code transformation. The attribute
specifies which mutation operator is tested. The macro data_isolated! extracts the
information regarding detected code patterns. The macro call_isolated! is used to
execute the local function while performing dynamic program analysis and to optionally
activate a mutation for that execution. Using these macros, each unit test can be defined
and run independently from all other unit tests.

21

2. Design and Architecture of the Rust Mutation Analysis Tool muttest

1 # point to the `lib.rs` file of `muttest-core`
2 [lib]
3 path = "../src/lib.rs"
4

5 # enable "selftest" feature
6 [features]
7 default = ["selftest"]
8 selftest = ["muttest-codegen/selftest"]

Listing 2.6: Excerpt from the crate manifest for muttest-selftest

2.4.2 Mutation Analysis of muttest

We apply muttest to the crate muttest-core by introducing the crate muttest-selftest.
An additional crate is necessary because mutated code cannot correctly activate its own
mutations. Listing 2.6 shows relevant parts of the crate manifest Cargo.toml of muttest-
selftest. By setting the path configuration option to point to the same location as for
muttest-core, it is ensured that both crates have the same content.

Mutation testing of muttest-core is enabled by the feature selftest, which is important
so that users of muttest are not affected by the transformations muttest applied on
itself. Consequently, the parts of code included in mutation analysis are annotated with
the attributes #[cfg_attr(feature = "selftest", muttest::mutate)] and
#[cfg_attr(feature = "selftest", muttest::tests)].

22

CHAPTER 3
Implementation Techniques for
Mutation Operators of muttest

We describe the core ideas underlying the implementation of mutation operators in
the mutation analysis tool muttest. First, we give guidelines that implementations
of mutation operators must follow in order to satisfy the requirements and fit into
the architecture discussed in the previous chapter. We focus on technical challenges
introduced by using the strategy of using a procedural macro for baking mutations.
Second, we explain how certain features of the Rust programming language can be used
to implement mutation operators. Finally, we show how tracking of coverage and weak
mutation analysis are implemented.

3.1 Guidelines for Implementing Mutation Operators
The requirements and architecture outlined in the previous chapter induce three main
constraints on the implementation of mutation operators for muttest.

1. Code generated by the source code transformation must be syntactically correct,
well-typed, and satisfy Rust’s rules for ownership and borrowing.

2. All valid mutations can be activated using the concept of baked dynamic mutations
presented in Section 3.2.

3. If the validity of baked mutations cannot be checked from within the procedural
macro, their validity has to be reported at run-time if the mutable is reached by a
test case using the mechanism described in Section 3.3.

In order to prevent syntax errors, all transformations are written in a way that the
transformed code can replace the original code in-place. In particular, transformations

23

3. Implementation Techniques for Mutation Operators of muttest

of expressions have to yield new expressions that are valid in the same position in the
program. In most cases, the transformations can be written such that they depend on the
section of the transformed code, not on its context in the abstract syntax tree. Notable
exceptions are given in Section 3.1.1, which have to be excluded from the mutation baking
process.

Type errors are avoided by preserving the types of expressions. This requires careful
construction of the transformation rule because the procedural macro itself has no access
to the types of the target expressions. The main challenge is to construct a transformation
in a way such that the type inference algorithm yields the same results as for the original
code. One strategy to achieve this is shown in Listing 3.4, which uses the type variable
I to force the literal and the transformed run(..) expression to have the same type.
Generating dead branches are another powerful means that can be used to introduce
type-level equations that force the type inference algorithm to reach the desired result
[Boga]. This idea can be combined with the use of variables of type PhantomData to
leverage the compiler for type analysis. Transformations for context sensitive mutation
operators can be implemented with autoref-based specialization. This technique allows
fallback implementations in the case that the types do not satisfy the properties required
by the mutation operator. We illustrate both ideas in the transformation for the mutation
of += into -= in Listing 3.7.

Mutation operators that target patterns of code built from subexpressions like the
arguments a and b of the calculation a + b need to preserve the data flow of the program.
In particular, due to Rust’s ownership rules, it is generally incorrect to evaluate an
expression twice. For example, if a value is consumed within the expression, it cannot
be used again. Furthermore, it can be invalid to delete statements or expressions that
diverge since diverging branches are allowed to destroy values that would otherwise
be used later in the function. For these reasons, source code transformations must be
constructed in a way such that all subexpressions are called exactly once.

Each baked mutation must provide a possibility to activate its mutations by using the
get_action function. This function has the signature fn(MutableId) -> &'static
str, meaning that all mutations have to be encoded as a string. For mutation operators
that support weak mutation analysis, their behavior needs to be recorded to determine
which mutations would behave identically. For context sensitive mutation operators, it is
also required to extract the information which mutation is valid in case the mutable is
covered.

The advantage of transformations that obey these guidelines is that they can be defined
independently from each other. By traversing the abstract syntax tree in postorder, child
nodes are processed prior to their parents. Since subexpressions are not deeply inspected
during pattern matching, earlier transformations applied to children do not get in the
way of the later transformations of their parents.

24

3.2. Baked Dynamic Mutations and Mutables for Strong Mutation Analysis

1 const X1: u8 = 1; // value `1`
2 static X2: u8 = 2; // initializer of static variable `2`
3 let x2 = [0; 4]; // length of array `4`
4 fn sum(xs: [u8; 4]) -> u8; // const generic `4`
5 fn one() -> i32 { 1 } // type `i32`
6 const fn one() -> i32 { 1 } // body of const function
7 id!(1) // macro argument `1`

Listing 3.1: Examples of code in which dynamic activations of mutations are not possible.
Code that cannot be mutated by run-time switches is highlighted by the comments.

3.1.1 Limitations of Baked Mutations
The semantics of the Rust programming language imposes several limitations on mutation
operators that are implemented with the method of baking mutations. The dynamic
activation of mutations make it impossible to mutate code that is evaluated at compile-
time, such as constants, types, and arguments of macros. Listing 3.1 shows some of the
most important examples. Mutations of these fragments of code might still be valid,
but would necessarily require recompilation. The arguments of some macros are also
evaluated at compile-time and without detailed knowledge of the macro’s implementation,
it cannot be determined if run-time activated mutations are possible. This means that
code in these contexts must be excluded from source code transformation and, as a
consequence, from mutant generation.

The source code for run-time activated baked mutations always have a structure similar
to if is_activated() { mutated } else { original }. The typing rules for Rust
programs require that both branches have the same type. This implies that mutations that
change the type of expressions are not possible. For example, the statement let x = 1u8;
cannot be mutated into let x = 1i32 without recompiling the program even though
this mutation might be valid. Moreover, the mutation of types of function arguments
and the type of the return value can not be implemented by source code transformations.
This restriction does not typically apply to dynamically typed, interpreted languages,
but is common for compiled languages with statically checked types.

3.2 Baked Dynamic Mutations and Mutables for Strong
Mutation Analysis

Some patterns of source code allow a large set of mutations. This is particularly true for
literals of string, character, and numeric values, as changing the value of a literal typically
results in a correct program. It is infeasible to evaluate all possible mutants. Existing
mutation analysis systems based on mutation baking address this issue by baking a small
set of supported mutations from which one can be selected during mutant evaluation
[Jus14; Bog18]. An example of such statically enumerated mutations for character literals
is shown in the first example of Listing 3.2. In these systems, it is necessary to recompile

25

3. Implementation Techniques for Mutation Operators of muttest

1 // original code
2 let c = 'X';
3

4 // baked enumerated mutations
5 let c = match active_mutation_id() {
6 1 => 'A',
7 2 => '🦄',
8 _ => 'X',
9 };

10

11 // baked dynamic mutation
12 let c = match MutableId(1).get_action() {
13 Some(mutation) => to_char(mutation),
14 None => 'X',
15 };
Listing 3.2: Baked statically enumerated and dynamic mutations for character literals,
simplified. The baked enumerated mutation contains a set of possible mutations that
is fixed at compile-time, while for the baked dynamic mutation, the behavior can be
defined at run-time.

the program when changing the sets of mutations, which limits the flexibility of the
mutation analysis system.

We develop the concept of baked dynamic mutations to address this shortcoming and
illustrate our solution in Listing 3.2. We introduce the concept of a mutable, which is a
fragment of code whose behavior can be altered. In contrast, a mutation is a fragment
of code and an alternative behavior, while a mutant is the resulting program when
applying the mutation. Instead of selecting from a set of mutations defined at compile
time by calling the function active_mutation_id, the function get_action is used to
query the framework’s run-time library how this code fragment shall behave. The answer
None signals that the code fragment shall behave as if unchanged, while the response
Some(mutation) activates a mutation and contains a description of the desired alternate
behavior. In this branch, the variable mutation has a value of type &str, so we use the
partial function to_char to perform the appropriate type conversion. Using this method
of baked dynamic mutations, muttest allows the definition of an alternative behavior
for each mutable on every run of the test suite. This is used to evaluate mutants with
strong mutation analysis, in which all relevant test cases are run while while its mutation
is activated.

In muttest, all mutables are assigned numeric identifiers instead of enumerating the
mutations, which is common in other mutation analysis systems. Instead, a mutation is
described by the id of the original code, the MutableId, in combination with an alternate
behavior in the form <MutableId>=<alternate-behavior>. While the enumerated
baked mutation into 'A' is assigned id 1 in Listing 3.2, the corresponding baked dynamic

26

3.3. The Compiler as Static Analysis Engine

1 let x = 255; // x: u8
2 let y = 255; // y: i32
3 f(x, y); // f: fn(u8, i32)

Listing 3.3: The variables x and y are defined identically. The function f requires the two
arguments of type u8 and i32 respectively. Consequently, type inference yields different
types for the variables and their corresponding integer literals.

mutation is described by 1=A.

3.3 The Compiler as Static Analysis Engine
Several mutation operators require static analysis to guarantee valid mutations. For
example, mutations of integer literals into values outside the range allowed by their
type are invalid. The type inference of Rust programs causes that an analysis of syntax
patterns alone is not sufficient to determine the types of literals. Listing 3.3 illustrates
this situation using the function f as well as two variables x and y. Even though their
definitions are lexically identical, they get assigned different types via type inference
based on their use within the call of function f. The variable x and its corresponding
literal have type u8, an 8-bit unsigned integer, while y and its literal are determined to
have type i32, a 32-bit signed integer. Consequently, the mutations of the second literal
into the values 256 or -1 are valid, while they are not for the first literal.

In general, the procedural macro has no access to the signature of the function f and
therefore cannot determine the types of the variables x and y. This example shows
that static analysis based on code fragments alone without the considering the context
they occur in, is not enough to determine the set of valid mutations. Moreover, all
definitions and declarations given in the same compilation unit or any of its dependencies
can influence the type inference of a given code fragment.

We develop a strategy to utilize features of the type system of the Rust programming
language to determine the set of valid mutations in muttest. The compiler already
performs all of the required static analyses during compilation. However, the compiler
does not answer the specific requests required by mutation analysis. Importantly, it does
not output the types of expressions of interest for mutation analysis. Instead, it can only
produce executable binary files and libraries from Rust source code. By constructing
traits and defining the source code transformation in a deliberate way, we can extract
the answers to the relevant queries.

Listing 3.4 shows our approach to type analysis for integer literals. The trait contains the
function type_str that returns the string-representation of the literal’s type. Instead of
transforming the literal into a match expression, the literal is replaced by a function call
to run containing the original literal as the second argument. This function has a generic
parameter for the type of the original literal and returns a value of the same type. When
called, the type of the literal is reported to the mutation analysis run-time using the

27

3. Implementation Techniques for Mutation Operators of muttest

1 pub trait MutableInt {
2 fn type_str() -> &'static str;
3 fn parse(m: &str) -> Self;
4 }
5 // implementations for all integer types generated by a declarative macro
6 // here only for `u8`
7 impl MutableInt for u8 {
8 fn type_str() -> &'static str { "u8" }
9 fn parse(m: &str) -> Self {

10 m.parse().expect("unable to parse mutation")
11 }
12 }
13

14 fn run<I: MutableInt>(id: MutableId, original: I) -> I {
15 id.write_types(I::type_str(), &[]);
16 return match id.get_action() {
17 Some(mutated) => I::parse(mutated),
18 None => original,
19 }
20 }
21

22 // original code
23 let x = 7;
24

25 // transformed
26 let x = run::<_>(MutableId(1), 7);
Listing 3.4: Compiler-based analysis of types for integer literals and their baked dynamic
mutation, simplified. The trait MutableInt defines two functions: type_str for static
analysis and parse to implement the baked dynamic mutation.

write_types method. Then, the function returns either the value of the original literal
or a mutated value set by the result of the get_action function, analogous to the baked
dynamic mutation of character literals shown in Listing 3.2.

Using the compiler this way, it is only possible to learn the type information if the run
function for the mutable is executed during the first run of the test suite without active
mutations. If the type is never reported, then the mutation is not covered by any test
case and no mutations are evaluated because they are all either invalid or would survive.
This method of static analysis ensures that only valid mutants are evaluated by muttest
regardless of the behavior of the test suite.

28

3.4. Context Sensitive Mutations for Overloaded Operators

1 // original
2 a += b;
3

4 // transformed
5 match MutableId(1).get_action() {
6 None => a += b,
7 Some(_) => a -= b,
8 }

Listing 3.5: Naive implementation of the mutation operator mutating += into -=. This
transformation introduces a compilation error for line 7 in case the -= operation is not
implemented for the types of a and b.

3.4 Context Sensitive Mutations for Overloaded Operators
Rust allows overloading of many operators for arbitrary types of their operands. Generally,
the mutation of one operator into another is only valid if the other operator is overloaded
for the same combination of types. Analogous to types of integer literals described in the
section above, the types of variables and expressions depend on the results of the type
inference algorithm and cannot be extracted from the program text of the mutable alone.
This renders the mutation that alters such operators context sensitive. In the following,
we discuss how to implement the mutation of the operator += into -=.

A naive transformation that bakes the mutation, changing the operator += into -=, is
shown in Listing 3.5. It yields a compilation error if the operation -= is not supported
for the combination of types of a and b. For example, this mutation is not valid if the
variables a and b are string values, while being valid if they are numerical values.

We implement this mutation operator in a way that does not introduce type errors by
using trait MaySubAssign presented in Listing 3.6. The trait and its two implementations
combine the technique of autoderef-based specialization with the strategy of extracting
type information from the compiler. The first implementation is used in cases where
the operation -= is possible. This is ensured by the bound L: AddAssign<R> in line
5. In contrast, the second implementation has no bounds in the corresponding line 15.
It serves as a fallback because it implements the trait for the referenced version of the
tuple of phantom types. The method is_sub_assign can be used to query whether
subtraction is possible, while the method do_sub_assign performs the operation, if
possible. The trait uses PhantomData as the target for specialized methods, which is
necessary to include both types in the consideration for method selection. Values of type
PhantomData contain type information but contain no run-time data and therefore have
no performance impact.

The source code transformation that bakes this mutation is shown in Listing 3.7. The
baked dynamic mutation is implemented in the else branch and relies on the trait
MaySubAssign and its functions. We use the technique of using dead branches introduced
by Bogus [Boga] to guide the type inference algorithm to yield the same results as for

29

3. Implementation Techniques for Mutation Operators of muttest

1 trait MaySubAssign<L, R> {
2 fn is_sub_assign(&self) -> bool;
3 fn do_sub_assign(&self, l: &mut L, r: R);
4 }
5 impl<L: AddAssign<R>, R> MaySubAssign<L, R>
6 for &(PhantomData<&mut L>, PhantomData<R>)
7 {
8 fn is_sub_assign(&self) -> bool {
9 true

10 }
11 fn do_sub_assign(&self, l: &mut L, r: R) {
12 *l -= r;
13 }
14 }
15 impl<L, R> MaySubAssign<L, R>
16 for (PhantomData<&mut L>, PhantomData<R>)
17 {
18 fn is_sub_assign(&self) -> bool {
19 false
20 }
21 fn do_sub_assign(&self, l: &mut L, r: R) {
22 panic!()
23 }
24 }
Listing 3.6: Trait for the context sensitive mutation into -= and two implementations.

the original program. We augment Bogus’ method with the function with_type, which
gives a value of PhantomData of the appropriate type alongside the value. Prior to the
execution of the statement, we report the validity of the mutation into -=. Then, the
expressions on both sides of the += operation are evaluated, after which we declare that
the operation is covered by the current test case. It is important that we do not consider
the operation += as covered if one of the expressions terminate the execution of the
current statement, for example by exiting the function early. Finally the behavior of
the mutable is chosen based on the result of get_action. The branch representing the
mutation to -= calls the function do_sub_assign, which performs the subtraction, if
possible, but does not introduce compilation errors if subtraction is not supported because
a fallback implementation is provided. This process for evaluating mutations assures
that the mutation is never activated in case a mutation is determined to be invalid.

It is noteworthy that this strategy for specialization performs method resolution based
on the types that are declared and inferred and does not depend on the concrete types
at run-time. The Rust community plans to introduce specialization inspired by Haskell’s
type classes, in which the method is resolved for each concrete type separately. In this

30

3.5. Coverage Tracking and Weak Mutation Analysis

1 let (mut left_type, mut right_type) = (PhantomData, PhantomData);
2 if false {
3 *with_type(left, left_type) += with_type(right, right_type);
4 } else {
5 MutableId(1).write_types("",
6 &["-=", (&&(left_type, right_type)).can_sub_assign()]
7);
8 match MutableId(1).get_action() {
9 None => *left += right,

10 Some(_) => {
11 (&&(left_type, right_type)).do_sub_assign(left, right)
12 }
13 }
14 }
Listing 3.7: Transformation of left += right, simplified. The dead first branch of the
if statement guides the type inference algorithm to yield the same types compared to the
original program and allows extraction of the types of the arguments of the += operator
into the left_type and right_type variables.

1 fn double<T: AddAssign<T> + Clone>(a: &mut T) {
2 *a += a.clone();
3 }

Listing 3.8: Example function that doubles a value by incrementing it by itself. The
mutation to change += into -= is invalid without the constraint T: SubAssign<T> in the
method signature. This is true even if this function is only called with types that support
-=.

proposal, we could define a trait with methods similar to the ones given in Listing
3.6. When applying this implementation to the generic function in Listing 3.8, the
transformation reports incorrect results. The function double can be called with various
types, some of which may support subtraction beside addition. In these cases, the
method is_sub_assign would then return using this form of specialization. However,
the mutation of += into -= is not valid because the type T is not bound by SubAssign<T>
and the mutant would fail to compile. Therefore, we find autoref-based specialization
to be the ideal means for baking context sensitive mutations and discard specialization
based on concrete types as a possible implementation strategy for this use case.

3.5 Coverage Tracking and Weak Mutation Analysis
Tests that do not cover a code fragment cannot have an impact on the survival of
any of the corresponding mutants in strong or weak mutation analysis. In order to
determine these, we record which test case covers which mutable by invoking the method

31

3. Implementation Techniques for Mutation Operators of muttest

1 fn run<L: PartialOrd<R>, R>(
2 m_id: MutableId,
3 left: &L,
4 right: &R,
5) -> bool {
6 let cmp = left.partial_cmp(&right);
7 m_id.write_behavior(cmp);
8 match m_id.get_action() {
9 None => cmp.is_lt(),

10 Some(_) => cmp.is_le(),
11 }
12 }
13

14 // original
15 a < b
16

17 // transformed
18 run::<_, _>(MutableId(1), &a, &b)
Listing 3.9: Implementation of the baked mutation for a < b into a <= b, simplified.
Instead of calling one of the comparison operators, < or <=, run calls the function
partial_cmp from the trait PartialOrd.

write_coverage right before calling get_action. During the first run of the test suite
without any mutations active, the coverage data is collected during the execution of each
test case. This data is subsequently used to determine which tests should be included in
the evaluation of which mutant during strong mutation analysis. This method call has
been omitted from the listings discussed in this chapter so far.

The mutation analysis tool muttest supports weak mutation analysis for certain mutation
operators by recording the behavior of the mutable during the first run of the test suite.
We illustrate weak mutation analysis based on the mutation of the expression a < b into
a <= b. Its implementation is given in Listing 3.9. Instead of evaluating the original
expression a < b directly, the ordering of the values a and b is determined using the
method partial_cmp. The function call write_behavior then reports the result of the
comparison. All such outcomes that occur during the execution of a test case are gathered
and collected as the set of behaviors of the original code fragment. If this set contains
the result that equal values are compared, then the mutation of the operator < into <=
is regarded as killed in weak mutation analysis since they would evaluate to different
results for these inputs.

Not all mutation operators support meaningful weak mutation analysis. For example,
mutations of literals always give a different value than the original program. Mutants
generated by these mutation operators are always regarded as killed in weak mutation
analysis, if covered.

32

CHAPTER 4
Comparative Evaluation of Rust

Mutation Analysis Tools

We evaluate muttest in comparison to mutagen and cargo-mutants, two other mutation
analysis tools for Rust. We investigate the quality and run-time of the mutation analysis
performed by each of these systems. To this end, we first adapt and apply the framework
for comparing the features of mutation analysis tools developed by Amalfitano et al.
[Ama+22]. We then perform mutation testing with each tool for a small example program
and examine the resulting mutation analysis reports as well as the test cases constructed
during the mutation testing process. Further, we apply each tool to selected well-known
projects of the Rust ecosystem and investigate the performance and quality of mutation
analysis. Finally, we discuss the findings of this comparative evaluation.

We evaluate the mutation analysis systems using the version 1.74.0-nightly of Rust
released on 25th August, 2023. The performance benchmarks are run on a Linux virtual
machine with 4 cores of an Intel Xeon E5-2620 2GHz processor and 16GB main memory.
Unfortunately, the tool mutest-rs did not compile successfully and we could not find
sufficient documentation regarding its design. We had to exclude it from this evaluation.

4.1 Overview of Features

To get an overview of differences and similarities of the features of the mutation analysis
tools muttest, mutagen, and cargo-mutants, we adapt the framework for comparing
mutation analysis tools for Java programs introduced by Amalfitano et al. [Ama+22].
The section regarding implemented mutation operators is expanded, while criteria not
relevant to Rust programs are omitted. The results are summarized in Tables 4.1 and
4.2.

33

4. Comparative Evaluation of Rust Mutation Analysis Tools

Table 4.1: Comparison of Rust mutation analysis tools regarding version, deployment,
and mutation process

cargo-
muttest mutagen mutants

Version
Release Version 0.1 0.2 23.6.0
Release Year 2023 2022 2023
License MIT Apache 2.0 or

MIT
MIT

Depoloyment
Rust version ≥1.72 nightly ≥1.65
Unstable features – specialization –
Build integration cargo muttest cargo mutagen cargo

mutants
Multi crate support � – �
Mutation Process
Mutation mechanism Baking Baking Source file

edit
Target code selection attribute #[mutate] attribute

#[mutate]
CLI

arguments
Test selection attribute

#[muttest::tests]
all tests all tests

Mutant inspection by LOC by LOC by LOC
Kill matrix optional – –
Performance Improvements
Mutation baking � � –
Skip non-covered
mutants

� � –

Run tests only covering &
weakly-killing tests

all all

Weak mutation
analysis

� – –

Parallel execution – – �
Timeout static threshold 5x slower, min

500ms
5x slower,
min 20s

Mutant Selection – – –
Mutant Ranking – – –
Equivalent mutant
prevention

– – –

34

4.1. Overview of Features

Table 4.2: Comparison of Rust mutation analysis tools regarding user-centric features
and mutation operators

cargo-
muttest mutagen mutants

User-centric features
User interface CLI CLI CLI
Input Rust

workspace
Rust

workspace
Rust

workspace
Text-based log � � �
Report single file single file multiple files
Report format JSON JSON plain text &

JSON
Documentation quality sufficient sufficient good
Mutation operators
Literals � � –
Match arm guards � – –
Comparison operators
Swap == ↔ != � � –
Swap < ↔ <= ↔ > ↔ >= � � –
Arbitrary swap of comparison
operators

� – –

Arithmetic operators
Swap + ↔ - � � –
Swap * ↔ / � � –
Swap shifts >> ↔ << � � –
Arbitrary swap of binary arithmetic
operators

� – –

Unary operator deletion � � –
Statement Deletion
Method call – � –
Arbitrary Statements – – –
Extreme mutations
Return Default � – �
Panic � – –
Extended – – �

35

4. Comparative Evaluation of Rust Mutation Analysis Tools

All three tools have been released quite recently. muttest and cargo-mutants were
released in 2023, while the last release of mutagen was in 2022. The latest release of
mutagen is version 0.2. cargo-mutants is released using date-based versioning CalVer1.
The numbers contained in its latest version 23.6.0 refer to the year and month of the
release, respectively. The system muttest as developed as part of this thesis is released
as version 0.1. This version number was chosen because we expect to adapt the user
interface of muttest based on feedback from the Rust community. All three tools are
released under open-source licenses. muttest and cargo-mutants are licensed under the
MIT2 license, while mutagen is dual-licensed under MIT and Apache License Version
2.03.

The systems muttest and cargo-mutants do not depend on unstable language fea-
tures and can be used on stable Rust, while mutagen requires the unstable feature
specialization and therefore requires a beta version of the Rust compiler. All three
tools offer a cargo plugin for performing mutation analysis. muttest and cargo-mutants
support mutation analysis of multiple crates within a single workspace, while mutagen
can only perform mutation analysis on a single crate.

muttest and mutagen use the mechanism of baking to implement mutations and use
attributes for selecting which parts of code should be included in mutation analysis.
muttest additionally requires the programmer to annotate the tests. cargo-mutants
edits the source code files directly and performs mutation analysis without the need for
such attributes. Of the compared systems, only muttest supports the generation of a
kill matrix.

muttest and mutagen both use mutation baking for improving run-time of mutation
analysis and skip the evaluation of mutants that are not covered by any test. muttest
also skips the execution of test cases that do not cover the mutant under evaluation or
let it survive weak mutation analysis. cargo-mutants is the only system that evaluates
mutants in parallel to improve mutation analysis performance. All tools detect timeouts
for mutants that are not expected to terminate. muttest uses a fixed threshold for the
run-time of test cases. mutagen and cargo-mutants apply an adaptive strategy for test
cases that assumes that a test case does not terminate if it runs five times longer than
evaluating a mutant. Both systems have a minimum timeout, which is 20 seconds for
cargo-mutants while mutagen uses 500ms. No system ranks mutants by priority, allows
to evaluate a selected subset of generated mutants, or employs mechanisms for detecting
and preventing equivalent mutants.

All systems provide a command-line interface to perform mutation analysis and require a
Rust workspace as input. Further, they write a log of the mutation analysis process to
the terminal and save a machine readable form of the analysis report in JSON format.
The tool cargo-mutants also provides plain text files to summarize which mutants are

1https://calver.org
2https://opensource.org/license/mit/
3https://opensource.org/license/apache-2-0/

36

https://calver.org
https://opensource.org/license/mit/
https://opensource.org/license/apache-2-0/

4.2. Mutation Testing on a Small Example

killed and which have survived. The documentation quality of muttest and mutagen are
sufficient and the documentation of cargo-mutants is good4.

mutagen implements mutations on literals, a set of operator-swaps for arithmetic calcu-
lations, and the deletion of unary operators. cargo-mutants only implements extreme
mutations, replacing the body of a function to return a default value. cargo-mutants
generates additional mutations for functions returning a known set of types, replacing
the implementation of functions by returning one of several possible values. muttest
implements mutations of literals, arbitrary swaps of binary arithmetic operators, and the
deletion of unary operators. It also supports extreme mutations that replace the body
of a function with a default value or cause the function to always panic. Another novel
mutation operator alters the guards of match arms to always block or always allow the
execution of the guarded arm. mutagen also supports deletion of statements that consist
of a single method call, but this mutation operator can cause a compiler error in some
situations [Bogb]. No system supports mutations that delete arbitrary statements.

4.2 Mutation Testing on a Small Example
DeMillo, Lipton, and Sayward [DLS78] introduce several small programs for analyzing
mutation analysis systems and these examples have since been part of demonstrations
of numerous such systems [JH11; Ama+22]. We use one of these programs for this
evaluation and port the Fortran code to Rust in a way that closely preserves the original
program to allow future research to compare the results meaningfully with results from
other languages.

Listing 4.3 shows a function that classifies triangles based on the length of their sides.
The program validates the input parameters, performs calculation and comparisons, and
returns the classification of the triangle as a string. Although this function’s logic is
simple, it contains 23 mutable code fragments supported by the mutation analysis tools
under consideration.

• 4 equality operators
• 4 comparison operators
• 5 arithmetic operators (2 additions, 3 multiplications)
• 2 boolean operators
• 7 string literals
• the function body for extreme mutation

We apply all three mutation analysis tools according to their documentation. Table
4.4 shows the mutations generated by each mutation analysis tool. muttest generates
110 mutants while mutagen generates 55. cargo-mutants only generates two mutations
because it only supports extreme mutations. Both replace the entire body of the function
by a constant string. Of all generated mutants, four are equivalent.

4https://mutants.rs

37

https://mutants.rs

4. Comparative Evaluation of Rust Mutation Analysis Tools

1 fn triangle(x: u32, y: u32, z: u32) -> &'static str {
2 if x > y || y > z {
3 return "lengths not sorted";
4 }
5 if x + y <= z {
6 return "illegal";
7 }
8 if x == y || y == z {
9 return if x == z { "equilateral" } else { "isosceles" };

10 }
11 let x2y2 = x * x + y * y;
12 let z2 = z * z;
13 if x2y2 == z2 {
14 return "right angled";
15 }
16 if x2y2 < z2 {
17 return "obtuse angled";
18 }
19 return "acute angled";
20 }
Listing 4.3: A procedure to classify triangles, ported to Rust from Fortran from Ra-
mamoorthy, Ho, and Chen [RHC76]. The attributes are feature gated.

Table 4.4: Mutations generated for each mutation operator by each of the mutation
analysis tools

muttest mutagen cargo-mutants
Equality operator 20 4 –
Comparison operator 20 12 –
Arithmetic operators 45 5 –
Boolean Operator 2 2 –
String literal 21 21 –
Extreme Mutation 2 – 2
Total Mutations 110 44 2
Equivalent mutants 4 1 0
Non-equivalent mutants 107 43 2

38

4.3. Benchmark on Real-world Projects

Table 4.5: Minimal set of test cases that kill all non-equivalent mutants generated by
muttest

Test Case x y z classification
T1 1 2 3 illegal
T2 3 3 7 illegal
T3 4 4 3 lengths not sorted
T4 3 4 5 right angled
T5 3 4 6 acute angled
T6 2 4 5 obtuse angled
T7 3 4 4 isosceles
T8 3 3 4 isosceles
T9 3 3 3 equilateral

• The three checks for equality in lines 8 and 9 are never executed with the left side
greater than the right side, because of the check in line 2. Therefore, the mutations
of the operators == into >= produce equivalent mutants. These mutants are only
generated by muttest

• The comparison operator in line 18 contains a comparison in which equal values
are never compared because of the check in line 13. Therefore, the mutation of
the operator < into <= gives an equivalent mutant. This mutant is generated by
muttest and mutagen

Table 4.5 lists the test cases necessary to kill all 106 non-equivalent mutants generated
by muttest. To kill all 43 non-equivalent mutants generated by mutagen, the test cases
T2 and T8 can be omitted. Both mutations generated by cargo-mutants are killed by
any of the test cases.

4.3 Benchmark on Real-world Projects
We apply the three tools muttest, mutagen, and cargo-mutants to a selected set of
well-known projects of the Rust ecosystem and evaluate the applicability of these systems
to real-world software projects. We select projects based on popularity on the library
index lib.rs5 as well as their size and choose the following projects.

• clap: command-line argument parsing6

• tokio: asynchronous computation run-time7

• rand: random number generators8

5https://lib.rs/
6https://github.com/clap-rs/clap/
7https://github.com/tokio-rs/tokio/
8https://github.com/rust-random/rand/

39

https://lib.rs/
https://github.com/clap-rs/clap/
https://github.com/tokio-rs/tokio/
https://github.com/rust-random/rand/

4. Comparative Evaluation of Rust Mutation Analysis Tools

• regex: regular expression engine9

Table 4.6: Overview of key characteristics of the real-world projects included in this
benchmark.

test suite test suite
project version crates files lines of code # of tests build time run-time
clap 4.3.24 9 318 51903 1377 8m 20s 0.7s
tokio 1.32.0 13 675 76643 1243 1m 10s 0.5s
rand 0.8.5 6 89 14091 269 14s 0.2s
regex 1.9.4 8 216 93725 364 2m 4s 0.2s

Table 4.6 outlines the scale of each project and their test suite. We perform mutation
analysis on each of these projects in these steps:

1. Download the latest release of the projects. We use the latest release published on
the github repository.

2. Remove long-running tests meant for performance- or stress testing.
3. Fix errors regarding type inference that are introduced by the source code transfor-

mations of muttest and mutagen.

• Expressions containing shifts, like (1 << 2u32) - 3u16 cause type inference
errors that are fixed by annotating the type of the first literal.

• We adapt mutagen so that it ignores constant methods.

4. Compile and run the test suite.
5. Apply each of the mutation analysis tools according to their documentation.

• We set a timeout of 5 seconds per test case for mutation analysis with muttest.
• We select the largest crate of the project for mutagen, since this tool does not

support mutation analysis of multiple crates at once.
• We enable the parallelization feature cargo-mutants, allowing four concurrent

jobs.

6. Generate and evaluate all mutants. We record and measure the following aspects
of the mutation analysis process:

• number of generated mutants
• number of invalid, survived, and killed mutants
• mutation score
• run-time to build the test suite
• run-time of strong and weak mutation analysis, excluding the build-time of

the test suite
• average evaluation-time of mutants

9https://github.com/rust-lang/regex/

40

https://github.com/rust-lang/regex/

4.4. Discussion

We repeat the experiment four times and compute the averages of the measured run-times.
The results of the benchmark are collected in Table 4.7.

4.4 Discussion
The qualitative comparison of the three mutation analysis tools for Rust programs,
muttest, mutagen, and cargo-mutants shows that muttest is more powerful than the
other systems. In particular, muttest supports the most mutation operators, without
relying on unstable features of the Rust programming language. It also incorporates the
most performance improvement strategies.

By conducting mutation testing on the function triangle, we have shown that additional
mutations can be helpful for designing a test suite of high quality. While muttest
requires all nine test cases of Table 4.5 to reach the optimal mutation score, mutagen
and cargo-mutants only require seven and one, respectively. We claim that all of these
nine test cases are valuable for detecting possible programming errors that could be
introduced by implementing the triangle function. Therefore, omitting any of these
test cases reduces the quality of the test suite. Specifically, a single test case is not fit
to check the correctness of the implementation of this function. We have also seen that
among the additional mutations generated by muttest, some of them were equivalent,
which raises the cost of mutation testing due to the manual effort required to detect
these mutants as unkillable.

The results of the benchmark show that muttest generates the most mutations for
all four projects. We expect that additional mutations help to improve the test suite
quality by the mutation testing process. Moreover, muttest and mutagen both evaluate
mutations significantly quicker than cargo-mutants. This difference is mainly caused
by the technique of baking mutations. We believe that the performance gap between
muttest and mutagen is mainly caused by their different handling of timeouts.

It is notable that all three tools compute different mutation scores. Detailed analysis of
the projects and their test suites is necessary to determine which of these values measures
the real test suite quality most accurately. In particular, the number of equivalent
mutants is unknown as this number cannot be determined automatically. Moreover,
muttest does not generate context sensitive mutations if the static analysis information
could not be extracted because their mutables were not covered by the test suite, which
further skews the mutation score.

41

4. Comparative Evaluation of Rust Mutation Analysis Tools

Table 4.7: Results of benchmark of mutation analysis tools of real-world projects.

muttest mutagen cargo-mutants
clap
Mutations 2487 973 1815
- invalid 0 N/A 393
- killed 715 184 242
- survived 1772 789 1177
Score 28.7% 18.9% 17%
Run-time
- build test suite 7m 14s 9m 13s –
- weak mutation analysis 1.7s – –
- strong mutation analysis 21s 14s 3h 26m
- per mutant 8.5 ms 14ms 6s
tokio
Mutations 4201 1744 472
- invalid 0 N/A 371
- killed 1799 253 0
- survived 2402 1491 101
Score 42.82% 14.5% 0%
Run-time
- build test suite 4m 5s 1m 31s –
- weak mutation analysis 1.3s – –
- strong mutation analysis 12m 57s 5m 4s 33min 67s
- per mutant 184ms 174ms 4.3s
rand
Mutations 2937 200 490
- invalid 0 N/A 117
- killed 1747 100 139
- survived 1190 100 234
Score 59.5% 50% 35.4%
Run-time
- build test suite 1m 54s 36s –
- weak mutation analysis 4s – –
- strong mutation analysis 9m 47s 16s 6m 58s
- per mutant 186ms 83ms 853ms
regex
Mutations 9566 2698 4642
- invalid 0 N/A 1212
- killed 4490 785 1406
- survived 5076 1913 2024
Score 46.9% 29.1% 41%
Run-time
- build test suite 5m 0s 3m 4s –
- weak mutation analysis 9.8s – –
- strong mutation analysis 20m 11s 5m 34s 11h 24m
- per mutant 126ms 124ms 8.9s

42

CHAPTER 5
Conclusion

The aim of this thesis was to develop a tool for mutation analysis of Rust programs that
improves on the state of the art. Leveraging static and dynamic program analysis was
critical for achieving this objective. Our qualitative and experimental comparison of
muttest with related state-of-the-art tools mutagen and cargo-mutants for Rust show
that we achieved our overall goal.

We designed our approach carefully to ensure its sustainability. Omitting dependencies
to unstable features of Rust ensures best-possible compatibility with future versions of
Rust. Our implementation is instead based on core language features alone. Specifically,
we use procedural macros for source code transformations, leverage the compiler as a
static analysis engine, apply autoderef-based specialization, and guide the type inference
algorithm towards the desired result with the insertion of dead branches. As a result, the
mutation operators do not generate invalid mutations and muttest is compatible with all
Rust projects that can be built and tested with the standard build system, cargo. Using
this architecture, we implemented most mutation operators that are implemented in
mutagen and cargo-mutants and introduced several new ones. Following the guidelines
described in Section 3.1, it is possible to add further mutation operators to muttest.

We integrated a novel optimization into muttest that allows faster evaluation of mutants
in strong mutation analysis by introducing fine-grained dynamic program analysis. In
contrast to related systems, muttest does not only skip test cases that do not cover the
activated mutation, but also skips test cases which let the mutant survive weak mutation
analysis.

Conceptually, we extended the map of mutation testing by introducing the distinction
between code that can be mutated, mutables, and mutations. This allows the implemen-
tation of baked dynamic mutations and to group properties of mutations targeting the
same code, such as coverage and results of program analysis. Moreover, this architec-

43

5. Conclusion

ture increases the modularity of the implementation of muttest. We had not seen this
abstraction in previous systems.

The project muttest consists of 5706 lines of code and contains 107 tests. When
performing mutation analysis of itself, 211 mutations were generated, of which 167 were
killed. This results in a mutation score of 79.15%. We released the source code of the
project on github1.

5.1 Future Work
The project muttest can be extended in various directions in future research.

Usability. The mutation analysis report generated by muttest is currently text-based.
To be applicable in practice, its results should be presented in a visual interface instead.
Other systems like pitest [Col+16] provide a web-based view of the mutation analysis
report. We expect that industry adoption is significantly hindered by the lack of such an
interface.

Streamlining mutation testing with muttest. For developing muttest, we focussed
on defining as many mutation operators as possible. Future research can investigate
which of these are the most helpful in practice and which are sufficient for accurately
measuring test suite quality. Such studies have been conducted for tools designed for other
programming languages [NAM08; Off+96] and their findings cannot be applied directly
to mutation testing for Rust programs. The results of an empirical study on sufficient
mutation operators for Rust could reduce the cost of mutation testing in practice while
keeping its effectiveness for constructing good test cases and evaluating their quality.

Other techniques for mutant evaluation. We explored the impact of program
analysis on mutation analysis based on mutation baking. Future studies could investigate
other methods for mutant evaluation for mutants of Rust programs. In particular, it
should to be possible to adapt the mutation analysis tool mull, which is based on LLVM,
for Rust. Moreover, it seems worthwhile to look at leveraging miri, the interpreter for
mid-level intermediate representation (MIR) of Rust programs, to activate mutations at
run-time without the need of baking them.

Other approaches for type analysis. The mutation operators in muttest rely
on generating the appropriate code to extract the type analysis performed by the
compiler. Different methods of performing type analysis might allow the implementation
of additional mutation operators. In particular, the similarly named project mutest-rs
could be updated to a newer version of the compiler and compared to muttest. Another
promising alternative to perform type analysis is to query the compiler frontend rust-
analyzer. However, we expect that the method of evaluating mutants developed in this
thesis is the most likely to be compatible with future versions of Rust.

1https://github.com/samuelpilz/muttest-rs

44

https://github.com/samuelpilz/muttest-rs

5.1. Future Work

Higher-order mutants. When applying multiple mutations at once, the resulting
program is a higher-order mutant [JH09]. These composite mutations can represent more
complex faults and many test cases that kill first-order mutants are not sufficient to
catch certain higher-order mutants. The tool muttest can be easily extended to evaluate
such mutants by activating multiple baked mutations. However, since the number of
higher-order mutations is significantly larger than the number of first-order mutations,
generating and evaluating all of them is infeasible in practice. Future work should strive
for an algorithm for determining the subset of most helpful ones for mutation testing.

Equivalent mutant detection. The detection of equivalent or redundant mutations is
undecidable in general. However, previous research has shown that software verification
methods can be used to detect some subset of equivalent or redundant mutations [Had18].
Like all verification methods, these depend heavily on the programming language’s
semantics, but we conjecture that approaches developed for C can be adapted for Rust.

Mutation analysis and test case generation. In the year 2000, Offutt and Untch
[OU01] proposed to combine mutation analysis with automated test case generation
methods such as property-based tests and fuzzing. In such a system, the tests are filtered
based on the results of mutation analysis. This way, a test suite of high quality can be
synthesized in a fully automated manner. Papadakis et al. [Pap+19] define the “Modern
Mutation Testing Process”, in which the test cases can either be generated automatically
or designed manually. However, to the best of our knowledge, this combination is not
yet implemented in a mutation analysis tool. We expect that this hybrid approach can
greatly improve the confidence of the quality of the automatically generated test cases.
We believe it is feasible to integrate a property-based testing library into muttest to
implement the vision of Offutt and Untch [OU01].

45

List of Figures

2.2 The iterative process of mutation testing. 15
2.3 The crates of the muttest project and their dependencies. 17

47

List of Tables

1.3 Comparison of existing mutation analysis tools 5

4.1 Comparison of Rust mutation analysis tools regarding version, deployment,
and mutation process . 34

4.2 Comparison of Rust mutation analysis tools regarding user-centric features
and mutation operators . 35

4.4 Mutations generated for each mutation operator by each of the mutation
analysis tools . 38

4.5 Minimal set of test cases that kill all non-equivalent mutants generated by
muttest . 39

4.6 Overview of key characteristics of the real-world projects included in this
benchmark. 40

4.7 Results of benchmark of mutation analysis tools of real-world projects. . . 42

49

Bibliography

[ABL05] James H. Andrews, Lionel C. Briand, and Yvan Labiche. “Is mutation an
appropriate tool for testing experiments?” In: 27th International Confer-
ence on Software Engineering (ICSE 2005), 15-21 May 2005, St. Louis,
Missouri, USA. Ed. by Gruia-Catalin Roman, William G. Griswold, and
Bashar Nuseibeh. ACM, 2005, pp. 402–411.

[Acr+79] Allen Acree et al. Mutation Analysis. Tech. rep. Georgia Institute of Tech-
nology, Sept. 1979.

[AGH05] Ken Arnold, James Gosling, and David Holmes. The Java programming
language. Addison Wesley Professional, 2005.

[Ama+22] Domenico Amalfitano et al. “How Do Java Mutation Tools Differ?” In:
Commun. ACM 65.12 (Nov. 2022), pp. 74–89. issn: 0001-0782. doi: 10.
1145/3526099. url: https://doi.org/10.1145/3526099.

[AO17] Paul Ammann and Jeff Offutt. Introduction to software testing. eng. Sec-
ond edition. Cambridge New York, NY Melbourne New Delhi Singapore:
Cambridge University Press, 2017. isbn: 1107172012.

[Boga] Andre Bogus. A Shifty Riddle. url: https://llogiq.github.io/2018/04/
11/shift.html.

[Bogb] Andre Bogus. Arraigning a Statement, vol. 2. url: https://llogiq.github.
io/2019/03/14/stmt2.html.

[Bog18] Andre Bogus. mutagen. 2018–2019. url: https://github.com/llogiq/
mutagen.

[Bud+78] Timothy A. Budd et al. “The design of a prototype mutation system for
program testing”. In: American Federation of Information Processing Soci-
eties: 1978 National Computer Conference, June 5-8, 1978, Anaheim, CA,
USA. Ed. by Sakti P. Ghosh and Leonard Y. Liu. Vol. 47. AFIPS Conference
Proceedings. AFIPS Press, 1978, pp. 623–629.

[Col+16] Henry Coles et al. “Pit: a practical mutation testing tool for java”. In:
Proceedings of the 25th international symposium on software testing and
analysis. 2016, pp. 449–452.

51

https://doi.org/10.1145/3526099
https://doi.org/10.1145/3526099
https://doi.org/10.1145/3526099
https://llogiq.github.io/2018/04/11/shift.html
https://llogiq.github.io/2018/04/11/shift.html
https://llogiq.github.io/2019/03/14/stmt2.html
https://llogiq.github.io/2019/03/14/stmt2.html
https://github.com/llogiq/mutagen
https://github.com/llogiq/mutagen

[DH14] Anna Derezinska and Konrad Halas. “Experimental evaluation of mutation
testing approaches to python programs”. In: 2014 IEEE Seventh International
Conference on Software Testing, Verification and Validation Workshops.
IEEE. 2014, pp. 156–164.

[DLS78] Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward. “Hints
on Test Data Selection: Help for the Practicing Programmer”. In: Computer
11.4 (1978), pp. 34–41.

[DP18] Alex Denisov and Stanislav Pankevich. “Mull It Over: Mutation Testing
Based on LLVM”. In: 2018 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW). Apr. 2018, pp. 25–
31.

[Had18] Thomas Hader. “Automated Analysis of Program Mutations using Bounded
Model Checking”. Bachelor’s Thesis. TU Wien, 2018.

[How82] William E. Howden. “Weak Mutation Testing and Completeness of Test Sets”.
In: IEEE Transactions on Software Engineering 8.4 (1982), pp. 371–379.

[JH09] Yue Jia and Mark Harman. “Higher Order Mutation Testing”. In: Infor-
mation and Software Technology 51.10 (2009). Source Code Analysis and
Manipulation, SCAM 2008, pp. 1379–1393. issn: 0950-5849.

[JH11] Yue Jia and Mark Harman. “An Analysis and Survey of the Development of
Mutation Testing”. In: IEEE Trans. Software Eng. 37.5 (2011), pp. 649–678.
doi: 10.1109/TSE.2010.62. url: https://doi.org/10.1109/TSE.2010.
62.

[JP17] Jacques-Henri Jourdan and François Pottier. “A Simple, Possibly Correct
LR Parser for C11”. In: ACM Trans. Program. Lang. Syst. 39.4 (2017), 14:1–
14:36. doi: 10.1145/3064848. url: https://doi.org/10.1145/3064848.

[Jus14] René Just. “The Major mutation framework: Efficient and scalable mutation
analysis for Java”. In: Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA). San Jose, CA, USA, July 2014, pp. 433–436.

[Kal] Lukas Kalbertodt. Generalized Autoref-Based Specialization. url: http:
//lukaskalbertodt.github.io/2019/12/05/generalized-autoref-
based-specialization.html#using-autoderef-for--two-specialization-
levels.

[KN19] Steve Klabnik and Carol Nichols. The Rust Programming Language. No
Starch Press, 2019.

[KO91] K. N. King and A. Jefferson Offutt. “A Fortran Language System for
Mutation-based Software Testing”. In: Software: Practice and Experience
21.7 (1991), pp. 685–718.

52

https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1145/3064848
https://doi.org/10.1145/3064848
http://lukaskalbertodt.github.io/2019/12/05/generalized-autoref-based-specialization.html#using-autoderef-for--two-specialization-levels
http://lukaskalbertodt.github.io/2019/12/05/generalized-autoref-based-specialization.html#using-autoderef-for--two-specialization-levels
http://lukaskalbertodt.github.io/2019/12/05/generalized-autoref-based-specialization.html#using-autoderef-for--two-specialization-levels
http://lukaskalbertodt.github.io/2019/12/05/generalized-autoref-based-specialization.html#using-autoderef-for--two-specialization-levels

[Le+14] Duc Le et al. “MuCheck: an extensible tool for mutation testing of haskell
programs”. In: International Symposium on Software Testing and Analysis,
ISSTA ’14, San Jose, CA, USA - July 21 - 26, 2014. Ed. by Corina S.
Pasareanu and Darko Marinov. ACM, 2014, pp. 429–432.

[Lév22] Zalán Bálint Lévai. mutest-rs. 2022. url: https://github.com/zalanlevai/
mutest-rs.

[MMP13] Shabnam Mirshokraie, Ali Mesbah, and Karthik Pattabiraman. “Efficient
JavaScript mutation testing”. In: 2013 IEEE Sixth International Conference
on Software Testing, Verification and Validation. IEEE. 2013, pp. 74–83.

[NAM08] Akbar Siami Namin, James H. Andrews, and Duncan J. Murdoch. “Sufficient
mutation operators for measuring test effectiveness”. In: 30th International
Conference on Software Engineering (ICSE 2008), Leipzig, Germany, May
10-18, 2008. Ed. by Wilhelm Schäfer, Matthew B. Dwyer, and Volker Gruhn.
ACM, 2008, pp. 351–360.

[NJW16] Rainer Niedermayr, Elmar Jürgens, and Stefan Wagner. “Will my tests tell
me if I break this code?” In: Proceedings of the International Workshop on
Continuous Software Evolution and Delivery, CSED@ICSE 2016, Austin,
Texas, USA, May 14-22, 2016. ACM, 2016, pp. 23–29.

[Off+96] A. Jefferson Offutt et al. “An Experimental Determination of Sufficient
Mutant Operators”. In: ACM Trans. Softw. Eng. Methodol. 5.2 (1996),
pp. 99–118.

[OU01] A. Jefferson Offutt and Roland H. Untch. “Mutation 2000: Uniting the
Orthogonal”. In: Mutation Testing for the New Century. Ed. by W. Eric
Wong. Boston, MA: Springer US, 2001, pp. 34–44. isbn: 978-1-4757-5939-6.

[Pap+19] Mike Papadakis et al. “Chapter Six - Mutation Testing Advances: An Analysis
and Survey”. In: ed. by Atif M. Memon. Vol. 112. Advances in Computers.
Elsevier, 2019, pp. 275–378.

[RHC76] Chitoor V. Ramamoorthy, Siu-Bun F. Ho, and W. T. Chen. “On the Auto-
mated Generation of Program Test Data”. In: IEEE Trans. Software Eng.
2.4 (1976), pp. 293–300. doi: 10.1109/TSE.1976.233835.

[Rus23] Rust Project. Cargo. 2015–2023. url: https://doc.rust-lang.org/cargo.
[sou23] sourcefrog. cargo-mutants. 2023. url: https://github.com/sourcefrog/

cargo-mutants.
[Tol] David Tolnay. Autoref-based stable specialization. url: https://github.

com/dtolnay/case-studies/blob/master/autoref-specialization/
README.md.

[UM10] Macario Polo Usaola and Pedro Reales Mateo. “Mutation Testing Cost
Reduction Techniques: A Survey”. In: IEEE Softw. 27.3 (2010), pp. 80–86.
doi: 10.1109/MS.2010.79.

53

https://github.com/zalanlevai/mutest-rs
https://github.com/zalanlevai/mutest-rs
https://doi.org/10.1109/TSE.1976.233835
https://doc.rust-lang.org/cargo
https://github.com/sourcefrog/cargo-mutants
https://github.com/sourcefrog/cargo-mutants
https://github.com/dtolnay/case-studies/blob/master/autoref-specialization/README.md
https://github.com/dtolnay/case-studies/blob/master/autoref-specialization/README.md
https://github.com/dtolnay/case-studies/blob/master/autoref-specialization/README.md
https://doi.org/10.1109/MS.2010.79

[UOH93] Roland H. Untch, A. Jefferson Offutt, and Mary Jean Harrold. “Mutation
Analysis Using Mutant Schemata”. In: Proceedings of the 1993 International
Symposium on Software Testing and Analysis, ISSTA 1993, Cambridge, MA,
USA, June 28-30, 1993. Ed. by Thomas J. Ostrand and Elaine J. Weyuker.
ACM, 1993, pp. 139–148.

[Woo93] M.R. Woodward. “Mutation testing—its origin and evolution”. In: Informa-
tion and Software Technology 35.3 (1993), pp. 163–169. issn: 0950-5849.

54

	Abstract
	Kurzfassung
	Contents
	Introduction
	Mutation Testing: Theory and Process
	The Cost of Mutation Testing
	Evolution and State of the Art: Mutation Analysis Tools
	The Rust Programming Language
	Contributions of this Thesis

	 Design and Architecture of the Rust Mutation Analysis Tool muttest
	Requirements for muttest
	The Key Design Decisions for Implementing muttest
	The Architecture of muttest
	Quality Assurance of muttest

	 Implementation Techniques for Mutation Operators of muttest
	 Guidelines for Implementing Mutation Operators
	 Baked Dynamic Mutations and Mutables for Strong Mutation Analysis
	 The Compiler as Static Analysis Engine
	Context Sensitive Mutations for Overloaded Operators
	Coverage Tracking and Weak Mutation Analysis

	 Comparative Evaluation of Rust Mutation Analysis Tools
	Overview of Features
	Mutation Testing on a Small Example
	Benchmark on Real-world Projects
	Discussion

	 Conclusion
	Future Work

	List of Figures
	List of Tables
	Bibliography

		2023-09-13T07:45:26+0200
	Signature Box
	Samuel Pilz
	Signature

