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Kurzfassung

Shor’s Algorithmen für die Primfaktorzerlegung und für das Problem des diskreten
Logarithmus zählen zu den bahnbrechendsten Entwicklungen im Bereich der Quanten-
informatik. Sie lösen Probleme in polynomieller Zeit mithilfe eines Quantencomputers,
für welche keine effizienten klassischen Algorithmen bekannt sind. Diese Tatsache unter-
streicht den Nutzen von Quantencomputern im Allgemeinen.

Heutzutage existieren Bibliotheken und Simulatoren, die es ermöglichen, Quantenalgorith-
men zu implementieren und zu analysieren. Eine dieser Bibliotheken, welche außerdem
noch die Möglichkeit bietet, die Algorithmen auf echten Maschinen auszuführen, ist Qiskit.
Qiskit beinhaltet zurzeit jedoch keine Referenzimplementierung für Shor’s Algorithmus
für den diskreten Logarithmus.

Für eine Implementierung müssen zusätzlich zur allgemeinen Beschreibung des Algo-
rithmus noch Prozeduren für modulare Arithmetik bereitgestellt werden. Für diese
Berechnungen gibt es viele unterschiedliche Algorithmen, wobei manche sehr klassi-
schen Prozeduren ähneln und andere wiederum die Eigenheiten von Quantencomputern
ausnutzen.

Diese Arbeit liefert eine Referenzimplementierung von Shor’s Algorithmus für das Problem
des diskreten Logarithmus. Dabei werden drei verschiedene Versionen der benötigten
Routinen für modulare Arithmetik verwendet. Da aktuelle Quantencomputer immer noch
relativ wenige Quantenbits, oder Qubits, für die Berechnung zur Verfügung stellen, liegt
der Hauptfokus der Arbeit auf Möglichkeiten der Implementierung, die eine minimale
Anzahl an Qubits benötigen.

Mithilfe der Simulationsfunktionen von Qiskit wird zusätzlich zum Vergleich der Imple-
mentierungen bezüglich der asymptotischen Zeitkomplexität ein Vergleich der verschie-
denen Versionen anhand der konkreten Anzahl an elementaren Operationen für kleine
Probleminstanzen vorgenommen.

Außerdem wird diese Analyse um eine genaue Untersuchung der Erfolgswahrscheinlichkeit
ergänzt, da diese für die Laufzeit insgesamt ausschlaggebend ist.
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Abstract

One of the groundbreaking results in the field of quantum computing is Shor’s work
describing algorithms for prime factorization and for the discrete logarithm problem.
These algorithms solve problems in polynomial time on a quantum computer, for which
no efficient solution is known on a classical computer, which highlights the utility of
quantum computers.

Today there are libraries and simulators available that enable the implementation and
analysis of quantum algorithms. One of these development environments is Qiskit, which
furthermore enables its users to execute quantum algorithms on real devices. However,
this library currently does not contain a reference implementation of Shor’s algorithm for
the discrete logarithm problem.

For such an implementation, not only the structure of the overall algorithm but also
procedures for performing modular arithmetic on a quantum computer have to be
provided. There are various ways of performing these calculations. Some are very similar
to classical procedures and some utilize the peculiarities of quantum systems.

This work provides a reference implementation of Shor’s algorithm for the discrete
logarithm problem. This quantum program makes use of three different implementations
of the required modular arithmetic procedures. Since current quantum computers are
still small in the number of qubits available for computation, this thesis focuses on
implementation proposals that optimize the space complexity of the algorithm for the
discrete logarithm problem.

The presented implementations are compared using their asymptotic complexity bounds.
Additionally, using Qiskit’s simulation capabilities, a comparison of the different versions
using concrete values for the number of elementary instructions for small problem instances
is presented.

Furthermore, this analysis is extended to also investigate the actual success probability
of the algorithm as this value is crucial for the overall runtime.
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CHAPTER 1
Introduction

Shor’s factoring algorithm and the algorithm for the discrete logarithm problem, which
were both first presented in [31], sparked a lot of interest in the field of quantum computing.
They were some of the first algorithms to solve problems in polynomial time on a quantum
computer that are not known to be solvable efficiently on a classical computer.

The mathematical problems these algorithms find answers to are of interest for cryptog-
raphy. Both the RSA cryptosystem and the Diffie-Hellman key exchange protocol use
the fact that some efficiently computable functions are hard to reverse [10, 31]. As an
example, part of the public information that is shared in the Diffie-Hellman key exchange
protocol is the integer gX mod m, where both g and m are publicly known. This value
can be computed efficiently on a classical computer. However, to be able to break this
protocol and obtain the private key, an attacker has to compute the hidden value X from
the publicly available information.

The security of this protocol stems from the fact that obtaining X, i.e., computing the
discrete logarithm, is a computationally costly task as the fastest known algorithms for
solving this task on a classical computer run in superpolynomial time [31]. Efficient
solutions to this problem, such as Shor’s algorithm for the discrete logarithm problem,
therefore diminish the security of such protocols. The speedup that is obtained by the
use of quantum computers makes these algorithms and quantum computers in general a
very important topic to study.

Both, Shor’s factoring algorithm and the algorithm for discrete logarithms, make use of
a quantum computer’s ability to efficiently approximate the period of a function given
only a quantum program, or circuit that computes its result for any input. A simple
example of this process is given by the function f(x) = ax mod m as it is used in the
factoring algorithm. If a and m are coprime, there is some smallest positive integer r
such that ar ≡ 1 mod m. For this function f(x) = f(x + r) holds, meaning this function
is periodic with period r. A quantum computer can be used to obtain this period r.
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1. Introduction

In recent years, the nature of the problems solved by Shor’s algorithms has been extensively
studied. The problem of finding the period of the function above, or in other words
the multiplicative order of a, as well as the problem of finding the discrete logarithm,
have been generalized as the hidden subgroup problem [24]. Explained roughly, there is a
function f : G → X that maps each group element x ∈ G to an element of the set X.
Furthermore it is given that f is constant on the cosets of some subgroup K of G [24].
The task is to specify the subgroup K, given a way of computing the function f . For
the example of the order finding problem, this subgroup of the integers is given by the
multiples of the multiplicative order of a [25].

Additionally, the algorithm for solving such problems can be generalized to the process
of phase estimation [24]. Herein, the eigenvalues of a unitary operator are approximated
using a quantum computer. This generalization will also be used to present the algorithm
for finding the discrete logarithm in this text.

Both algorithms presented by Shor are not only of interest because of their applications
to cryptography. They also suggest that there might be problems that can be solved more
efficiently on quantum computers than on classical computers, which has implications for
theoretical computer science. In particular, the algorithms cast doubt on the complexity-
theoretic strengthening of the Church-Turing thesis: “Any algorithmic process can be
simulated efficiently using a Turing machine” [25]. As the word efficiently is usually
understood as only allowing a polynomial simulation overhead, the thesis would imply
that there also is a polynomial-time algorithm for prime factorization and for the discrete
logarithm problem on classical computers. However, such an algorithm still has not been
found, which poses the question whether quantum computers are more powerful than
classical computers.

Even though the concept of a quantum computer was purely hypothetical when Shor’s
results were first presented, there have been significant advances in this field in recent
years. Libraries and development environments for quantum algorithms have been
developed and, albeit small, there are now quantum computers available for the general
public to use. One such library is Qiskit1. It enables its users to implement, analyze and
simulate quantum algorithms as well as execute them on real quantum devices. Qiskit also
provides a reference implementation for Shor’s algorithm for prime factorization which is
based on a version of this algorithm proposed by Beauregard [2] and was implemented by
Rui Maia and Tiago Leão [21]. As of now, Qiskit does not contain a program solving the
discrete logarithm problem, which prompts for the implementation of Shor’s algorithm
for the discrete logarithm problem in Qiskit.

The goal of this work is to provide such a reference implementation of Shor’s algorithm
for the discrete logarithm problem in Qiskit. Several variants of this algorithm have
been proposed, some of which are presented and implemented as part of this work. One
particular challenge at the moment is that existing quantum computers are very small in
the number of quantum bits, also referred to as qubits, that can be used for computation.

1https://qiskit.org/
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Furthermore, simulating quantum algorithms using a large number of qubits on a classical
computer is very inefficient, if not practically impossible, because of the exponential
overhead required to represent a quantum state. Therefore, proposals for implementations
of quantum algorithms aim to keep the number of used qubits as small as possible [2, 11,
16].

Both of Shor’s algorithms employ a subroutine that performs the modular exponentiation
operation ax mod m, where x is an input stored in a quantum register. The overall space
complexity of the algorithm, as given by the number of used qubits, is influenced both
by the amount of qubits required to perform phase estimation and by the number of
qubits needed to perform this modular exponentiation operation. Quantum algorithms,
similar to classical algorithms, often use temporary storage space. Keeping the number
of temporary storage qubits, or ancilla qubits, that are used for modular exponentiation
minimal, also improves the space complexity of the overall algorithm.

There are various different approaches on how to perform arithmetic on a quantum
computer which can be employed to perform modular exponentiation. Some rely on
circuits that behave very similar to classical processes and, for example, employ carry
qubits to perform addition [16]. Others make use of peculiarities of quantum systems to
perform operations that are not possible on classical computers to produce a result [11].
For this work, three different proposals for implementations of modular exponentiation
are examined. In addition to providing implementations in Qiskit, a goal of this work is
to compare these approaches regarding their resource usage.

Decreasing the number of qubits used in an algorithm sometimes goes hand in hand
with an increase in its time complexity. Therefore, the comparison of the proposed
implementations discusses these effects as well.

Ultimately, the thesis provides a reference implementation of Shor’s algorithm of the
discrete logarithm problem in Qiskit. This implementation is able to compute the
discrete logarithm using all implementation variants and all modular exponentiation
gates presented in this text. This enables an overall comparison of the performance of
the different versions.

This thesis starts out by giving the required number-theoretic background for the discrete
logarithm problem as well as by introducing the concept of quantum computing and the
utilized complexity measures in Chapter 2. It continues with presenting work related
to this topic and gives a brief overview of existing implementation proposals for this
algorithm in Chapter 3. Chapter 4 covers Shor’s algorithm as an application of the
phase estimation process in detail and examines its success probability as well as its
complexity. A detailed description of the different modular exponentiation circuits used
for the algorithm, along with an analysis of their complexity in the number of qubits
used and in the number of operations applied, is then given in Chapter 5. Finally, these
implementations and the different variants of the overall algorithm presented in this text
are compared in Chapter 6.
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CHAPTER 2
Background

To aid the presentation of phase estimation and its application to the discrete logarithm
problem, relevant background information on both the nature of the problem and on
quantum computing is given in this chapter.

The discrete logarithm problem as it is presented in [31] concerns the fields of integers
modulo a prime p. These fields and in particular its multiplicative group share some
interesting properties which are repeatedly applied both in Chapter 4 and in Chapter 5
of this text. For this reason, this chapter provides a recapitulation of the theorems and
properties used in this thesis before introducing the discrete logarithm problem formally.

As Shor’s algorithm for the discrete logarithm problem is a quantum algorithm, the most
important concepts in quantum computing are introduced in Section 2.2. At the time
when Shor’s work was presented, the notion of a quantum computer still was purely
hypothetical. However, today there are, albeit small in the number of available quantum
bits, functioning quantum computers as well as powerful simulators which can be used
to implement and study quantum algorithms. In Section 2.3 one such development
environment, Qiskit1, is introduced.

By providing different variants of the algorithm as implementations in Qiskit, their
complexity both in the number of operations performed as well as in the number of
quantum bits required to perform the algorithm is studied. A summary of the theoretical
foundation of quantum complexity is therefore given in Section 2.4.

2.1 The Discrete Logarithm Problem
Before presenting the discrete logarithm problem in detail, some number-theoretic
theorems and properties will be presented, which are used repeatedly in this work.

1https://qiskit.org/
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2. Background

Some proofs are omitted to aid readability, although references where those proofs can
be found are given.

The first property of importance for this work is the algebraic structure of the integers
modulo a prime number p.

Theorem 2.1.1. For a prime number p the integers modulo p, denoted as (Zp, +, ·),
together with the operations + and · representing modular addition and multiplication,
form a field.

Of particular interest is the property that each element a ∈ Zp \ {0} has a multiplicative
inverse element. Such an element a−1 ∈ Zp \ {0} exists if and only if the congruence

aa−1 ≡ 1 mod p

admits a solution. Using Euclid’s algorithm (see Chapter 1 in [1]) it is possible to find
integers e and f such that

gcd(x, y) = ex + fy

for any integers x, y. Since p is prime, gcd(a, p) = 1, there are integers e and f such that

1 = ea + fp.

Rewriting this equation yields (−f)p = ea − 1 which is equivalent to the congruence
ea ≡ 1 mod p, giving the inverse element a−1 ≡ e mod p.

In slightly other words, the fact that every nonzero element in this structure has an
inverse element shows that Zp \ {0}, together with modular multiplication forms a group,
denoted by (Zp \ {0}, ·).
However, some of the definitions presented next hold not only in a field but also in a
ring, where not every nonzero element is invertible.

Definition 2.1.1 (Group of units). For any integer module m, let Z∗
m be the set of

invertible elements with respect to multiplication modulo m:

Z∗
m = {a ∈ Zm | ∃a−1 : aa−1 ≡ 1 mod m}

= {a ∈ Zm | gcd(a, m) = 1}.

Together with modular multiplication, this set forms the commutative group (Z∗
m, ·),

referred to as the group of units.

To judge the size of the group of units for arbitrary modules, Euler’s totient function [1]
can be used.

Definition 2.1.2. Euler’s totient function φ(m) gives the number of integers 1 ≤ x < m
that are relatively prime to m. More formally,

φ(m) =
&&&&{x ∈ N | x < m, gcd(x, m) = 1}

&&&&.
6



2.1. The Discrete Logarithm Problem

The definition shows that φ(m) gives the number of elements in the group of units Z∗
m.

Euler’s totient function can be calculated by using the following two facts [1].

• If gcd(a, b) = 1, then φ(ab) = φ(a)φ(b).

• For a prime p and e ∈ N+, φ(pe) = pe
�
1 − 1

p

�
.

The group of units, as well as subgroups of it, are of particular interest for the problem
studied in this text. Let g be an element from the group of units. By repeatedly
multiplying g with itself a sequence of integers

g1 mod m, g2 mod m, g3 mod m, . . .

is generated. Since Z∗
m is a group, it is closed under application of the group operation,

which, since Z∗
m itself is finite, implies that this generated set is also finite. In fact, it

can even be shown that this set contains the identity element and forms a group with
modular multiplication.

Definition 2.1.3 [20]. A cyclic group G = �g� is a multiplicative group G containing an
element g ∈ G such that, for all b ∈ G, there is an i ∈ N+ with gi = b. The element g is
referred to as the generator.

Theorem 2.1.2. Any g ∈ Z∗
m generates a cyclic subgroup �g� ⊆ Z∗

m.

Proof. As noted above, the set of elements generated by g is finite and closed under
modular multiplication. Also, the associative law holds because it holds in (Z∗

m, ·).
The first property that remains to be proven is the existence of an identity element. As
this set is finite, |�g�| = k for some k ∈ N can be asserted. The way of constructing the
elements for this set as powers of g allows listing k + 1 elements as

g1 mod m, g2 mod m, . . . , gk mod m, gk+1 mod m.

Obviously, there has to be a duplicate element gi ≡ gj mod m, 1 ≤ i < j ≤ k + 1. As
gi ∈ Z∗

m, there exists an inverse element g−i ∈ Z∗
m. Multiplying with this element on

both sides yields

gig−i ≡ gjg−i mod m if and only if
1 ≡ gj−i mod m.

Since for i < j, 1 ≤ j − i ≤ k + 1 holds, the element gj−i ≡ 1 mod m was part of this
list and therefore is in �g�.
The second property that remains to be shown is the existence of inverse elements for all
elements in �g�. There is an r ∈ N such that gr ≡ 1 mod m. Let ge ∈ �g� be arbitrary

7



2. Background

and let f be an integer such that e + f ≡ 0 mod r, which implies e + f = rq, for some
q ∈ Z. Examining the element ge+f gives

ge+f ≡ grq mod m if and only if
gegf ≡ 1q mod m if and only if
gegf ≡ 1 mod m,

which shows that the inverse element of ge can be expressed as a power of g and is
therefore also in �g�.

Note that in this text G or (G, ·) refers to an arbitrary group with some group operation ·,
while �g� usually only refers to the subgroup generated by g. Some of the following
properties refer to arbitrary groups (G, ·) and can therefore also be applied to the special
case �g�.
Not all units generate subgroups of the same size, and to express these differences the
concept of the order is introduced.

Definition 2.1.4 (Order of a group element [20]). Let (G, ·) be a finite group and x ∈ G
be an arbitrary element of that group. The size of the subgroup �x� generated by x is
referred to as the order of x.

ord(G,·)(x) = |�x�| = min{r ≥ 1 | xr = 1}

The order of an element in Z∗
p is of particular interest for the algorithms proposed by

Shor [31]. For the algorithm for prime factorization, the quantum computer is responsible
for finding the multiplicative order of a group element modulo the integer that is to be
factored, as this seems to be a computationally difficult task for a classical computer.
Furthermore, in the algorithm for the discrete logarithm problem, the order of a generator
is part of the eigenvalue that is estimated as described in Section 4.3.

A useful relation can be given between the order of a particular element and the number
of elements in a group.

Definition 2.1.5 (Order of a group). Let (G, ·) be a finite group, the number of elements
in the group |G| is referred to as the order of G.

Theorem 2.1.3. Let (G, ·) be a finite group with order |G| and let H be a subgroup of
G. Then the order of H divides the order of G.

For the proof of this theorem refer to [20]. In particular, this theorem shows that the
order of any generator in a group divides the order of the whole group. This fact allows
for a characterization of the orders of elements in the group studied in this thesis, (Z∗

p, ·).
As every integer 0 < x < p is coprime to the prime p, Z∗

p contains exactly p − 1 elements.
Furthermore, each element g ∈ Z∗

p is a generator of some subgroup �g� ⊆ Z∗
p with order

|�g�| = r such that r | p − 1.

8



2.1. The Discrete Logarithm Problem

Having covered the required background, the discrete logarithm, as well as the problem
of finding the discrete logarithm, are presented. The discrete logarithm can be seen as
the number-theoretical equivalent to the logarithm in analysis.

Definition 2.1.6 (Discrete logarithm). If p is prime, g ∈ Z∗
p is a generator and b is an

integer such that gm ≡ b mod p, then m is referred to as the discrete logarithm.

The goal of the discrete logarithm problem (DLP) is to find the value m given p, g and b.

To give an example, consider the field of integers modulo 13:

Z13 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.

Since 13 is prime, every nonzero element of this field generates a subgroup of the group
of units Z∗

13 = {1, 2, . . . , 11, 12} (see Theorem 2.1.2). Let the generator g be 5 for this
example, then the generated subgroup has the form �5� = {50, 51, 52, 53} = {1, 5, 12, 8}.
Using this representation it is trivial to see that the discrete logarithm of the integer 12
relative to the base 5 and the module 13 is 2, since 52 ≡ 12 mod 13.

Unfortunately, in the worst case, this subgroup contains φ(p) = p − 1 elements. For
this reason, the naive solution of simply enumerating the elements to find the discrete
logarithm would take exponential time in the number of bits required to represent p.

There are other more advanced approaches to solving the problem of finding m. Yet there
still is no polynomial-time algorithm for solving this problem on a classical computer,
which is why algorithms for the DLP using quantum computers have been proposed.

To conclude the introduction of the DLP, one application of this problem is given to
highlight the significance of fast algorithms for solving it. This application is the Diffie-
Hellman key exchange protocol [10]. This system ensures that two communication
partners A and B can agree on an encryption key over an insecure medium without the
key itself ever being transmitted. To do that, they pick a sufficiently large prime p as
well as some generator g. As the size of the subgroup generated by g is important for
the security of the protocol, |�g�| = p − 1 should hold. This negotiation is performed in
plaintext, meaning both g and p are public.

Both A and B then individually pick a private integer XA and XB from {1, . . . , p − 1}.
Using these, A computes YA = gXA mod p and B computes YB = gXB mod p. By sharing
YA and YB publicly, both A and B can obtain their shared key KA = Y XA

B mod p and
KB = Y XB

A mod p respectively.

By substituting the definition of YA and YB it can be shown that the key each communi-
cation partner computes is equal to the key the other party obtains:

KA = Y XA
B mod p = gXBXA mod p = Y XB

A mod p = KB.

This equality holds since the multiplication is commutative and it can be defined similarly
for other structures where this is the case.

9



2. Background

This system ensures that no third party can obtain the shared key KA = KB , since it can
only be computed using the private integers XA or XB. However, as Diffie and Hellman
note [10], if an efficient algorithm for computing the discrete logarithm is found, the
private integers XA and XB can be obtained from YA and YB , which would allow a third
party to compute the shared key KA = KB.

2.2 Quantum Computing
While in a classical computer each bit is always in either the state 0 or 1, the state of a
quantum bit, or qubit, can be described as

α |0� + β |1� .

Here α and β are complex numbers, for which the relation

|α|2 + |β|2 = 1

holds, where | · | is the absolute value. The state of a qubit can therefore be expressed as
an element of a two-dimensional complex vector space with basis {|0� , |1�}, which is also
referred to as H.

As in classical computation, algorithms usually require more than a single qubit. Such
a collection of qubits is referred to as a quantum register. For a register of size n, its
state can be expressed as a linear combination of elements of the computational basis
{|0� , |1� , . . . , |2n − 1�} using complex coefficients αx [7].

|ψ� =
2n−1#
x=0

αx |x�

Similar to the one qubit case, the following relation
2n−1#
x=0

|αx|2 = 1 (2.1)

has to hold for these amplitudes. The collection of coefficients together forms an element
in a 2n-dimensional vector space. To more formally describe this vector space, the tensor
product [25] is introduced.

Definition 2.2.1. Let V and W be n- and m-dimensional vector spaces over the same
field with orthonormal bases {|v1� , . . . , |vn�} and {|w1� , . . . , |wm�} respectively. Then
V ⊗ W gives an nm-dimensional vector space with basis {|vi� ⊗ |wj� | 1 ≤ i ≤ n, 1 ≤ j ≤
m}.

Just as the elements in both V and W can be expressed as linear combinations of the
given basis vectors, the elements in V ⊗ W can be expressed as linear combinations of
the combined basis vectors |vi� ⊗ |wj�.

10



2.2. Quantum Computing

Concrete elements of V ⊗ W can also be obtained using the tensor product of vectors
|v� ∈ V and |w� ∈ W as

|v� ⊗ |w� =

#
|vi�

ai |vi�
 ⊗

#
|wj�

bj |wj�
 =

#
|vi�

#
|wj�

aibj |vi� ⊗ |wj� .

If it is clear from the context, the tensor product of two vectors is also sometimes given
as |v� |w�, |v, w� or even |vw� if the binary representation of the state is of interest.

A similar operation is defined for matrices A and B [25]:

A ⊗ B =

� a11 . . . a1n
... . . . ...

am1 . . . amn

� ⊗ B =

� a11B . . . a1nB
... . . . ...

am1B . . . amnB

� .

Here the entries of the resulting matrix are all elements of A multiplied with all elements
of B. As with vectors, the dimension of the resulting matrix is the product of the
dimensions of the original matrices. This operation is particularly useful as it allows for a
parallel combination of operators when examining quantum algorithms as will be shown
later.

Extending a quantum register by additional qubits extends the dimension of the vector
space representing the register states. Using the concept of the tensor product, an n-qubit
register state is an element in the vector space obtained by applying the tensor product
of H with itself n times:

|ψ� ∈ H ⊗ · · · ⊗ H
or equivalently

|ψ� ∈ H⊗n.

This also gives another explanation of the nature of the computational basis: The entries
of the computational basis are the decimal representations of the basis vectors obtained
using the tensor product.

{|0� ⊗ · · · ⊗ |0� , |0� ⊗ · · · ⊗ |0� ⊗ |1� , . . . , |1� ⊗ · · · ⊗ |1�}
= {|0� , |1� , . . . , |2n − 1�}

Similar to the state of one register, the state of a whole m qubit system can also be
described as an element in H⊗m.

Before going on to show how computational results can be extracted from a quantum
system, one important property of the nature of quantum states is defined. Up until now,
it has been shown that a state of an n qubit system |ψ� can be expressed as a linear
combination using the states in a basis of H⊗n. Furthermore it was noted that these
basis states can be obtained by the tensor product of basis states in {|0� , |1�}. It is,
however, important to note that not all states can themselves be described as the tensor
product of states in lower-dimensional vector spaces.

11



2. Background

Definition 2.2.2 (Entanglement [25]). Consider H⊗n and H⊗m and the tensor product
space H⊗n ⊗ H⊗m = H⊗(n+m). Let |ψ� ∈ H⊗(n+m), then |ψ� is separable if and only if
there are |φ1� ∈ H⊗n and |φ2� ∈ H⊗m such that |ψ� = |φ1� ⊗ |φ2�. If there are no such
elements |φ1� and |φ2�, then |ψ� is entangled.

It depends on how a specific vector space H⊗n is factored to determine if an element of this
vector space is entangled. Consider the three-qubit state |ψ� = 1√

2(|000� + |110�) ∈ H⊗3.
This state can be separated into |φ1� ∈ H⊗2 and |φ2� ∈ H⊗1 as

|ψ� = 1√
2

(|00� + |11�) ⊗ |0� = |φ1� ⊗ |φ2� ,

however there is no possible separation into H⊗1 ⊗ H⊗2.

The state |φ1� in this example is one of the so-called Bell states [25] and is more commonly
referred to as |β00�. It will be used repeatedly in this chapter for various examples. The
fact that states, such as the Bell states, are entangled, has ramifications for the outcome
of measurements as it is shown in the next subsection.

2.2.1 Measurement
Unlike classical computation, the state of a quantum system as described by the coef-
ficients of the basis vectors can generally not be fully extracted, or observed, during
the computation. Assuming the system is in state |ψ� = $

b∈B αb |b�, where B is any
basis of H⊗n, a measurement operation is only able to determine one basis vector. The
exact basis vector |b� that is determined is chosen using a probability proportional to the
absolute value squared of the coefficient αb [25].

As the description suggests, measurements can be performed in various bases. However,
for the purposes of this text, measurements are always performed in the computational
basis. When measuring all qubits of an arbitrary n qubit state

|ψ� =
2n−1#
x=0

αx |x� ,

the measurement determines one element |x� from the computational basis. This means
that some binary integer 0 ≤ d < 2n is returned. The exact element that is chosen is
then determined by the coefficient αx. Using this coefficient the probability of measuring
each |x� can be expressed as

Pr(d = x) = |αx|2.

As Equation (2.1) has to hold for any state of a quantum system, it is assured that the
probabilities for measurement sum up to 1.

It is, however, not necessary to always measure the whole system. To properly define the
measurement outcome for the measurement of only a subset of the qubits in a system,
the process of projective measurement is introduced for the computational basis.

12



2.2. Quantum Computing

It is defined by an observable, which is a Hermitian operator. Such an operator only
possesses real eigenvalues and this observable can be given by its decomposition into its
eigenvalues λ and projections into the respective eigenspaces:

H =
#

λ

λPλ.

These projections Pλ : H⊗n → Eλ, where Eλ is the eigenspace for the eigenvalue λ, are
essential for the mathematical description of the measurement.

Definition 2.2.3 [25]. The probability that a measurement returns the specific eigenvalue
λ for a state |ψ� is given by Pr(λ) = �ψ|Pλ|ψ� = �Pλ |ψ��2, where �|v�� =

"�v|v� is the
norm of a vector |v� and � · | · � denotes the inner product.

As an example, consider the state |β00� as presented above. To find the probability that
the first qubit in the computational basis is |0�, a projection into the eigenspace identified
by the basis {|00� , |01�} is defined, where in each basis vector the first qubit is |0�.

Pλ = |00� �00| + |01� �01|
Applied to |β00�, the result of the projection is

Pλ |β00� = (|00� �00| + |01� �01|) 1√
2

(|00� + |11�)

= 1√
2

(|00� �00|00� + |01� �01|00� + |00� �00|11� + |01� �01|11�)

= 1√
2

|00� .

Here the fact that �x|y� = 1 for elements |x� and |y� of an orthonormal basis if and only
if |x� = |y�, and it is zero otherwise, is used.

Now the probability to measure λ can be calculated as Pr(λ) =
%% 1√

2 |00� %%2 = 1/2.
Therefore, half of the performed measurements of this state should lead to λ as the result.
Usually not the eigenvalue of the observable is of interest, but the properties of the state
it represents. In this case, it can be expressed as

Pr(the leftmost qubit is |0�) = 1
2 .

Another important property of quantum computation is the fact that this observation
of the state itself influences the state of the system after the measurement. In a sense,
a measurement of a subset of qubits might influence the state of other qubits in the
resulting state. This fact can also be described using the projector given above.

Definition 2.2.4 (successor state [25]). The state immediately after a measurement of
λ given the state |ψ� is given by

Pλ |ψ�
�Pλ |ψ�� = Pλ |ψ�"

Pr(λ)
.
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The ramifications of this rule are best illustrated by an example. Consider the state

|γ� = 1√
2

(|0� + |1�) ⊗ 1√
2

(|0� + |1�) = 1
2(|00� + |01� + |10� + |11�),

where both qubits are in a superposition of both basis states.

A measurement of the first qubit can be conducted similar to the measurement per-
formed above. The projection into Eλ gives Pλ |γ� = 1

2 (|00� + |01�), which implies the
measurement probability

Pr(the leftmost qubit is |0�) =
%%%%1

2 (|00� + |01�)
%%%%2

=
!�1

2

�2
+

�1
2

�2 2

= 1
2 .

By using the formula above, the state that remains after |0� has been measured in the
leftmost qubit is

1/2 (|00� + |01�) 
1
2

=
√

2
2 (|00� + |01�) = 1√

2
(|00� + |01�) = |0� ⊗ 1√

2
(|0� + |1�).

From this representation it is evident that the second qubit remains in a superposition of
both basis states and each measurement outcome for the second qubit can be obtained
with equal probability.

Furthermore, as the first qubit is now in state |0�, repeating this measurement after once
obtaining |0� for the first qubit will never change the measurement outcome. Although this
qubit started in a state comprised of both basis states, only the basis state that has been
measured can now be obtained when the measurement is repeated. The superposition
has collapsed into the |0� state.

For entangled states, this rule has even further implications. Consider again the Bell
state |β00� = 1√

2(|00� + |11�). For both the first and second qubit, a measurement similar
to above reveals that the probability of measuring |0� is 1/2. Therefore both qubits are
not in any basis state and the measurement outcome for both is uncertain.

Now apply the rule from Definition 2.2.4 assuming the first qubit was |0� when measured.

Pλ |β00� 
1
2

=
1√
2 |00�

1√
2

= |00�

After having measured the first qubit only, the state of the whole system is now |00�.
Therefore any subsequent measurement performed on both the first and second qubit
leads to |0� with certainty. Although only one qubit was measured, the fact that they
were entangled means that the state of the second ‘untouched’ qubit is now known
without measuring.
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2.2. Quantum Computing

2.2.2 Operations

Quantum algorithms are, similar to boolean circuits for example, represented by circuits
that start with individual qubits in an initial state (usually |0�), then perform a series of
single or multi-qubit transformations and finally measure the result, which should give
the solution to the problem that is to solve.

The individual qubits involved in the computation are represented by wires, while the
performed transformations are represented by boxes, or in some cases circles, on those
wires. For example, the circuit in Figure 2.1, when read left to right, performs the H
operation on |q0� as well as two X operations on |q1�, then it performs a transformation
involving both qubits, before finally measuring the result.

|q0� = |0�
|q1� = |0�

H

X X X

Figure 2.1: A quantum circuit performing transformations on two qubits before measuring
the result.

As qubit states can be described as complex vectors, these transformations, or quantum
gates can be described as complex matrices. Specifically, they are described as unitary
matrices.

Definition 2.2.5 [7]. An operator U is unitary if and only if U †U = I, where U † is the
conjugate transpose matrix of U obtained as

�
U

�T
.

Using this representation of the gates in the circuit it is possible to mathematically
describe how the state of the quantum system evolves during the execution of the
algorithm. Figure 2.1 serves as an example of how this is done and how some elementary
gates are described. For a more comprehensive overview of the most important gates
refer to [33] and Chapter 4 in [25].

The first such transformation is the Hadamard gate H [25]. It is represented by the
unitary

H = 1√
2

�
1 1
1 −1

�
.

As seen in the example circuit in Figure 2.1, this operation is applied to the topmost
qubit which starts in state |0�. The state |0� = 1 |0� + 0 |1� is represented as a column
vector (1, 0)T and the result of the application of this gate is then obtained by the matrix
multiplication

H |0� = 1√
2

�
1 1
1 −1

� �
1
0

�
= 1√

2

�
1
1

�
= 1√

2
(|0� + |1�) .
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2. Background

Similarly the application of the two X gates on the qubit |q1� can then be described by
the multiplications XX |0�. However, to highlight an important property of quantum
operations, the calculation of the state in the shown circuit will proceed differently.

Note that by Definition 2.2.5 any operator has an inverse obtained by the conjugate
transpose. The gate X can be described as the gate that swaps the coefficients of |0�
and |1� in the description of a state and is given by the matrix

X =
�

0 1
1 0

�
.

Note that this gate is sometimes also visualized by the � symbol in circuit diagrams.

For X it holds that X† =
�
X

�T
= X, and therefore X = X−1. This simplifies the

derivation of the state after applying both operations as then XX = I and XX |0� =
I |0� = |0�.
If the state of the whole system before the application of the transformations on both
qubits is separable, these gates can be applied independently. However, should this not
be the case, the gates can still be applied using their tensor product. In the example
in Figure 2.1 the system evolves starting from the two-qubit input state |0� ⊗ |0� by
first applying (H ⊗ X) and then applying (I ⊗ X). This resulting state can in total be
described as (I ⊗ X)

�
(H ⊗ X)(|0� ⊗ |0�)�, which is further simplified using the argument

above to (H ⊗ I)(|0� ⊗ |0�).
Therefore, after the application of all single-qubit gates in Figure 2.1, the system is in
the state

(H ⊗ I)(|0� ⊗ |0�) = 1√
2

(|0� + |1�) ⊗ |0� = 1√
2

(|00� + |10�) .

The next gate that is applied in Figure 2.1 is a multi-qubit operation: CNOT , also
referred to as CX [25]. This is a controlled operation, meaning another qubit controls
the application of the X gate. In particular, it takes the state |0� ⊗ |ψ� to |0� ⊗ |ψ� and
the state |1� ⊗ |ψ� to |1� ⊗ X |ψ�.
Therefore the CNOT gate is only applied if the control qubit is |1�. Of course, the state
of the control qubit could be in a superposition of both |1� and |0�. To calculate the
result of the application of this gate on such a state, either the matrix representation of
the gate, or the fact that it can be expressed by its basis vectors is used.

Consider the arbitrary two qubit state |ψ� given by the coefficients α, β, γ, δ ∈ C in the
computational basis as

|ψ� = α |00� + β |01� + γ |10� + δ |11� .
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Applying CNOT using the first qubit as the control qubit and utilizing the fact that this
is a linear transformation gives the resulting state

CNOT |ψ� = α |00� + β |01� + γ |1� ⊗ X |0� + δ |1� ⊗ X |1�
= α |00� + β |01� + γ |11� + δ |10� .

This scheme of determining the application of some gate by a control qubit is used
repeatedly during various quantum algorithms. Furthermore, it is also possible to use
multiple control qubits, in which case the gate is only applied for those basis vectors
where all control qubits are one.

For the sake of completeness, the matrix representation of CNOT is given by

CNOT =

���
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

��� .

Continuing with the example from Figure 2.1 by applying CNOT after the application
of all single-qubit gates gives

CNOT (I ⊗ X)(H ⊗ X) (|0� ⊗ |0�) = CNOT
� 1√

2
(|00� + |10�)

�
= 1√

2
(CNOT |00� + CNOT |10�)

= 1√
2

(|00� + |1� ⊗ X |0�)

= 1√
2

(|00� + |11�) .

Because this is exactly the Bell state |β00� presented in the previous subsection, the
circuit in Figure 2.1 can be used to prepare this state.

Lastly, measurement operations are performed. These measurements, given the state
|β00�, according to the calculations in Section 2.2.1 give |00� or |11� with equal probability
of 1/2.

Reversible computation

Examining the properties of unitary operators (see Definition 2.2.5) more closely reveals
another important characteristic of quantum computation: the state transformations are
reversible [25]. Since U †U = I, the inverse U−1 of any transformation U always exists
and can be obtained by U †.
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In particular, since compositions and serial applications of unitary transformations are
obtained by the tensor and matrix product as described above, any circuit can, excluding
non-unitary measurement operations, be given as a unitary operator.

This means that for any circuit C performing C |φ0� = |φ1�, the inverse C−1 performing
C−1 |φ1� = |φ0� has to exist and is easily obtained.

On the one hand, this fact simplifies the construction of quantum algorithms as the inverse
operation is often of interest. Consider a gate performing the addition ADD(|a� |b�) =
|a� |a + b�. The inverse of this operation gives ADD−1(|a� |a + b�) = |a� |b�, or expressed
differently:

ADD−1(|a� |b�) = |a� |b − a� .

This is a subtraction gate obtained by simply inverting the addition gate using the fact
that this addition is reversible.

On the other hand, this need for reversible gates sometimes complicates the construction
of algorithms considerably. Simply put, for a gate to be reversible, after the application
of this gate, all information that is needed to restore the initial state has to be present.
To give a simple example, consider the classical conjunction. It outputs 1 if and only if
both inputs are 1, and outputs 0 otherwise. The truth table for this operation is given in
Table 2.1.

A B A ∧ B

0 0 0
1 0 0
0 1 0
1 1 1

Table 2.1: Truth table for the classical conjunction.

If the result of this operation is 0, there are three different input states that could have
caused this result. But from the result alone it is not possible to determine which one it
actually was. Thus, this gate is not reversible.

More generally, such an operation can be represented by a function f(x), with x ∈ {0, 1}n.
One measure that is taken to make this operation reversible, is to keep the input as part
of the output in separate qubits and perform the map

|x� |y� → |x� |f(x)� .

Herein, |y� represents a qubit in an arbitrary state before the operation is applied. This
qubit contains the result afterwards. However from |x� |f(x)� the content of |y� still
cannot be inferred. Therefore another measure has to be taken: The output qubit should
not contain the result of the operation itself, but it is mapped to |y ⊕ f(x)�, where ⊕
represents the classical exclusive disjunction.
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|a� |b� |c� |a� |b� |c ⊕ (a ∧ b)�
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

Table 2.2: Truth table for the reversible version of the conjunction gate, the Toffoli gate.

For the classical conjunction this leads to a reversible operator with the truth table shown
in Table 2.2.

The gate with this truth table is referred to as the Toffoli gate [25]. This table also gives
another interpretation for this gate. The gate flips the last qubit if and only if both of
the first two qubits are |1�, as indicated by the two bold rows in the table. So this gate
can be considered a version of the CNOT gate that uses two control qubits instead of
one.

2.3 Qiskit and IBM Quantum

As the development of quantum computers progresses there is also the need for software
development kits. One of them is Qiskit2, an open-source library3 containing tools for
the development and analysis of quantum algorithms.

Aided by these development tools, Qiskit also provides a comprehensive introduction into
quantum computing, which contains programming examples as well as explanations of
their functionality [29].

Using a simple Python interface, it is possible to build and visualize quantum circuits
using a vast array of prebuilt gates. As an example, Listing 2.1 shows how a two-qubit
quantum circuit which takes the system into the Bell state

|β00� = 1√
2

(|00� + |11�),

as shown in Figure 2.2, can be constructed.

2https://qiskit.org/
3https://github.com/Qiskit
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|0�
|0�

H

X
|β00�

Figure 2.2: A circuit which takes the system to the Bell state |β00�.

1 reg = QuantumRegister(2)
2 circ = QuantumCircuit(reg)
3
4 circ.h(reg[0])
5 circ.cx(reg[0], reg[1])

Listing 2.1: Constructing a circuit that takes two qubits to the Bell state |β00�.

The constructed circuits can then be simulated in various ways to test their functionality
and to gather more information on their properties.

One way of simulating the behavior of the circuit is to perform a state vector simula-
tion [32]. This type of simulation returns a vector of complex numbers representing the
coefficients of the basis states at the end of the circuit.

Performing such a simulation with the circuit as created with the code in Listing 2.1,
returns a vector which matches |β00� up to rounding differences due to the representation
as floating-point numbers.���

0.70710678 + 0i
0 + 0i
0 + 0i

0.70710678 + 0i

��� ≈ 1√
2

���
1
0
0
1

��� = 1√
2

(|00� + |11�)

This state vector, and even other manually built state vectors, can further be used to
initialize the state for another circuit, which helps in testing the stages of the algorithm
presented in Section 4.3 separately [32]. The second stage can be executed and analyzed
independently from the first stage, by using the state vector at the end of the first stage
to initialize the second stage. In a sense, the simulator can be parametrized to take care
of state preperation which of course is not possible on a real device.

The second important simulation result is obtained by saving the unitary matrix for a
circuit [32]. For the circuit in Listing 2.1, the returned matrix has the form

U = 1√
2

���
1 1 0 0
0 0 1 −1
0 0 1 1
1 −1 0 0

��� .

This matrix is obtained by using the fact that parallel executions of gates can be described
by the tensor product of those gates and subsequent applications of gates can be seen as
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the matrix product (see Section 2.2.2). To verify this result, the unitary for the presented
circuit can be manually calculated.

Note that care has to be taken since the tensor product order of Qiskit’s simulation
result is different from the order as presented until now. The topmost qubit in the circuit
always represents the least significant bit b0 of a binary number bnbn−1 . . . b1b0 and the
tensor product is given accordingly as |bn� ⊗ |bn−1� ⊗ · · · ⊗ |b1� ⊗ |b0�. Here the topmost
qubit in the circuit is the rightmost vector in the tensor product. This contrasts the
convention used until now where the topmost qubit was the leftmost qubit in the tensor
product representation. Therefore, in the following derivation of the state as simulated
by Qiskit, the order of the operators in the tensor product has to be changed accordingly.

CNOT (I ⊗ H) = (I ⊗ |0� �0| + X ⊗ |1� �1|)(I ⊗ H)
= I ⊗ (|0� �0| H) + X ⊗ (|1� �1| H)

=
�

1 0
0 1

�
⊗

�
1 0
0 0

�
1√
2

�
1 1
1 −1

�
+�

0 1
1 0

�
⊗

�
0 0
0 1

�
1√
2

�
1 1
1 −1

�

=
�

1 0
0 1

�
⊗ 1√

2

�
1 1
0 0

�
+

�
0 1
1 0

�
⊗ 1√

2

�
0 0
1 −1

�

= 1√
2


���

1 1 0 0
0 0 0 0
0 0 1 1
0 0 0 0

��� +

���
0 0 0 0
0 0 1 −1
0 0 0 0
1 −1 0 0

���


= 1√
2

���
1 1 0 0
0 0 1 −1
0 0 1 1
1 −1 0 0

���
The representation of the circuit by its unitary matrix U also shows that the other Bell
states can be obtained by the same circuit by preparing a different input state. Similar
to above, the order of the tensor product differes in this representation:

U(|1� ⊗ |0�) = U

���
0
0
1
0

��� = 1√
2

���
0
1
1
0

��� = |β01� .

Obtaining the unitary matrix via the simulator is especially helpful when verifying circuits
performing arithmetic as presented in Chapter 5. The matrix shows which input state in
the computational basis is mapped to which output state, and therefore shows whether
the performed calculation is correct.
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|0�
|0�

H

X

Figure 2.3: A circuit which takes the system to the Bell state |β00� and then measures
the result.
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Figure 2.4: The simulated measurement result for the circuit in Figure 2.3.

Finally, it is also possible to obtain measurement results, similar to a real device, for a
circuit.

Proceeding with the example presented in Listing 2.1, the function circ.measure_all()

appends measurement operations to the end of the circuit, giving the circuit shown in
Figure 2.3.

Qiskit, for both the simulation and for actual runs of the circuit on a quantum computing
device, performs multiple shots and measures the result for each shot. It returns a
dictionary mapping the measurement result to its observed frequency. For the circuit in
Figure 2.3 the result for 1024 shots is plotted in Figure 2.4, which shows that |00� and
|11� are observed with approximately equal probability.

2.3.1 Transpiler and IBM Quantum

One of the major features of Qiskit is the ability to transpile and run the circuits on
actual quantum computers. IBM provides a number of quantum systems, which can be
used remotely either using their online development tools4, or by selecting their machines
as the backend in Qiskit.

4https://quantum-computing.ibm.com/
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Quantum computers generally only implement a small set of gates directly in hardware.
For example, in the ibmq_santiago system these elementary gates are CNOT , I , RZ
(the rotation around the Z-axis by arbitrary angles),

√
X and X [26]. It has been shown

that using only such a small universal set of operations, all gates can be approximated
up to an arbitrarily small error [7, 25]. Therefore, one responsibility of the transpiler
is to translate the conceptual circuit as described in Figure 2.3 to an equivalent circuit
composed of these basis gates [37]. The transpiled circuit for this example is shown in
Figure 2.5. As shown, this circuit after transpilation applies more gates to the top qubit
as the Hadamard gate is transpiled into three different gates. This suggests that the
circuit that is actually executed generally is more complex than the circuit constructed
using Qiskit. How this affects the runtime bounds will be examined in Section 2.4.

|0�
|0�

RZ(π/2) √
X RZ(π/2)

X

Figure 2.5: A circuit which takes the system to the Bell state |β00� and then measures
the result.

The only multi-qubit gate implemented in hardware is the CNOT gate. Other multi-qubit
gates such as the Toffoli gate are translated into a series of CNOT and single-qubit
gates. Furthermore, in circuits utilizing multiple qubits, the transpiler has to take special
care regarding the assignment of the qubits in the conceptual circuit and in the actual
circuit that is executed on the hardware [37]. This stems from the fact that the circuits
constructed in Qiskit can assume to be executed on an ‘ideal’ system, where each qubit
can be used with all other qubits to execute a CNOT . However this is not the case as
the qubit map in [26] shows: Only qubits directly connected in this map can be used in
the same CNOT instruction.

This leads to another important task of the transpiler. It has to map the virtual qubits to
their physical counterparts and introduce SWAP gates if two disconnected qubits have to
participate in a CNOT operation. As introducing SWAPs again increases the complexity
of the circuit it is beneficial if the transpiler finds an assignment to the physical system
that minimizes the number of required SWAPs. Unfortunately solving this problem is
NP-hard [37], which is why the transpiler in Qiskit employs a heuristic algorithm to find
a good, but not necessarily the best, solution.

Finally, the transpiler also tries to apply certain optimizations to remove unnecessary
operations and to decrease the size of the resulting circuit [37].

2.3.2 Reset

One operation that has not yet been presented and that can be performed on both the
IBM Quantum systems as well as on the simulator is the reset instruction [8]. This
instruction is used in the version of the algorithm studied in this text that uses only one
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input register (see Section 4.3.4). Hereby the reset instruction enables the system to use
the same input register for both stages of the algorithm.

The reset instruction is comprised of a measurement followed by an X gate conditioned
on the outcome of the measurement [8]. This way the X gate is applied only if |1� is
measured, and is omitted if |0� is measured. After the application of the reset gate, the
qubit continues in state |0� in all cases. Since information about the state before the
application of this instruction is lost, this operation is not unitary and must be treated
similar to a measurement.

2.4 Complexity
An important result of Shor’s work [31] is that there is a quantum computer algorithm
that solves the factorization problem in polynomial time, as opposed to superpolynomial
time as it is required for the best-known classical algorithms.

To show this property for the algorithms presented in this work, first the notions of
runtime and space complexity based on the representation of quantum algorithms as
circuits are examined.

In classical computation, space complexity describes the number of bits of storage that
are required to perform a given algorithm. More formally, it can be described as the
number of tape cells a Turing Machine requires to perform the algorithm. Very similarly,
for a given quantum circuit, the number of qubits involved in the computation defines
the space complexity of a quantum algorithm.

Time complexity refers to the number of elementary operations that are performed
before the algorithm terminates. For a Turing Machine, this is the number of steps, or
applications of the state transition function, required to reach a halting state.

This measure can be described in terms of steps performed by a quantum Turing Machine
(QTM) [4]. The definition of a QTM and its properties, however, exceeds the scope of
this work, thus a different, yet equivalent model [38] is used to define time and space
complexity. Since up until now quantum algorithms were described as quantum circuits,
the quantum circuit model serves as the base for defining the complexity of the studied
algorithms.

This model is assumed to be capable of preparing a state in the computational basis.
Furthermore, quantum circuits are able to perform elementary operations that together
form a universal set of transformations and finally measure the result of the computation
in the computational basis [25].

Even though the algorithms presented in this text can be used independently of the size
of the input, the quantum circuits involved in this computation are always constructed
for a specific input size. This contrasts classical algorithms as they are usually defined,
which perform computations independent of the input size. For this reason, it is vital
to specify properties of algorithms not depending on a specific quantum circuit but on
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2.4. Complexity

a family of quantum circuits [25, 38]. When studying the time complexity of Shor’s
algorithm for the discrete logarithm problem, it is implicitly assumed that the size of
the circuits in the family of circuits solving this problem for different input sizes n is
considered.

To give properties regarding the size of such a quantum circuit, the size of its encoding
as a binary string can then be used [38]. This number only depends on the number of
different gate operations that are applied to calculate the result.

There has to be a process that constructs the specific circuits in the familiy of circuits.
To ensure that the problem can be solved in polynomial time, this process must also be
performed in polynomial time. Extending upon the notion of a family of circuits, such a
collection is referred to as polynomial-time uniform if this is the case for each n ∈ N [38].
Note that since a polynomial-time algorithm can only construct circuits of polynomial
size, therefore this notion also implies that the circuit size is polynomial.

Throughout this work, all examined quantum algorithms are given as descriptions on how
to construct them. Therefore, although usually only the size of the quantum circuit itself
is examined when specifying the complexity, the descriptions implicitly give a polynomial-
time algorithm responsible for their construction. Thus the family of quantum circuits
solving the discrete logarithm problem presented in this thesis is polynomial-time uniform.

As shown in the previous section, a circuit can increase in size after it has been transpiled.
Due to the fact that only a limited universal set of instructions is available on the device
this circuit is executed on, every transformation has to be described as series of those.
Therefore the increase in the number of gate operations due to this translation has to be
accounted for.

For this reason, all circuits presented in this thesis are composed of a series of operations
which can be transpiled into a constant number of elementary gates. The circuit depth
after transpilation then increases only by a constant factor, which is irrelevant for the
complexity bounds since O(c · f(n)) and O(f(n)) are identical for any c independent of n.

Similarly, also the classical postprocessing that is required for the algorithms in this text
has to be examined with respect to its runtime complexity.

The complexity class generalizing polynomial-time algorithms for quantum computers is
BQP. In terms of the quantum Turing Machine BQP is defined as “the set of languages
that are accepted with probability 2

3 by some polynomial-time QTM” [4]. Quoting
essentially verbatim from [38], a similar definition for the circuit model can be given:

Definition 2.4.1. A language L ⊆ {0, 1}∗ is in BQP if there exists a polynomial-time
uniform family of quantum circuits {Qn} with the following properties.

• Each circuit Qn takes n qubits as input and produces one output qubit.

• If x ∈ L, then Pr(Q|x|(x) = 1) ≥ 2/3.

• If x �∈ L, then Pr(Q|x|(x) = 0) ≥ 2/3.
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Herein, Pr(Q|x|(x) = y) represents the probability of measuring y after applying the
circuit Q|x| to the input state |x�.

For this definition to be used regarding the problem of finding the discrete logarithm,
the problem has to be redefined as a decision problem first. This can be achieved similar
to the construction presented for the factoring problem in [38] by giving an upper bound
for the result as follows.

Definition 2.4.2 (DLP as decision problem)
Input: A prime p, a generator g ∈ Zp, b ∈ N and M ∈ N.
Question: Is there an m ∈ N with m < M such that gm ≡ b mod p?

This version of the problem can be solved using the algorithm presented in this text with
an additional step that compares the result with this upper bound.

The definition of the class BQP only concerns quantum circuits. However, as presented
in Chapter 4, there is some classical postprocessing that has to be performed before the
discrete logarithm is obtained. Therefore the involved quantum circuit in itself does not
solve the discrete logarithm problem. The fact that, given a classical circuit, a reversible
version of this circuit can be obtained with an overhead that is limited to a constant
factor only [25], is used to address this problem. The quantum circuits in this thesis can
be extended by reversible versions of the classical operations that have to be performed
in the postprocessing phase to obtain a circuit that fits Definition 2.4.1.

Of course, this argument is only used for the sake of showing BQP membership and in
actual implementations the postprocessing steps are performed classically.

The class BQP reflects the probabilistic nature of quantum computation and is chosen
as the quantum equivalent of the class BPP which is defined similarly for probabilistic
Turing Machines. Since their success probability can be increased to near certainty by
repeating the algorithm, these classes represent problems that are efficiently solvable [25].

Bernstein and Vazirani show in [4] that BPP ⊆ BQP and Shor’s algorithm shows that
there are problems in BQP that are not yet proven to also be in BPP. The pressing
question is whether BQP �= BPP, in which case quantum computers are provably more
powerful than classical computers. However, although there is evidence suggesting this
fact [4], it is not yet shown whether or not BQP �⊆ BPP.

To conclude this chapter another measure is introduced that, although it is not relevant
for the definition of the circuit complexity, is of practical significance regarding the
execution of quantum circuits: the circuit depth.

By dividing a given quantum circuit into ‘time slices’, where it is assumed that all gates
in a given time slice are performed simultaneously, the number of such slices gives the
circuit depth. In each of these slices, every qubit in the circuit can only participate in
one quantum gate.
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|q0�
|q1�
|q2�
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X
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Figure 2.6: A quantum circuit with circuit depth 3. Note that although the qubits |q1�
and |q3� are idle in the second time slice it is not possible to perform the next CNOT
operation in this time slice since the other qubit is participating in another operation.
However it would be possible to perform the Hadamard transformation on |q3� also in
the second time-slice.

There is a close relationship between polynomial-time and polynomial-depth quantum
circuits. Consider some circuit family {Gn} with circuit depth given by the polynomial
f(n), trivially at most f(n) · n elementary operations can be performed, when each qubit
participates in an operation in each time-slice. Conversely, let g(n) be a polynomial that
describes the circuit size in the number of elementary gate operations. The circuit depth
for this circuit can be at most g(n) if in each time-slice only one operation is executed.
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CHAPTER 3
Related Work

Shor’s work shows that two very important problems for the security of cryptographic
protocols can theoretically be solved efficiently on a quantum computer [31]. This fact
prompted a lot of interest in this field of study and lead to a number of works examining
the properties of Shor’s algorithm for prime factorization and Shor’s algorithm for the
discrete logarithm problem.

One important characteristic of both algorithms is that they can be seen as the application
of a more general process called phase estimation [6, 23–25], which is covered in more
detail in Section 4.2. Mosca describes the application of phase estimation to the discrete
logarithm problem in [23], which, although the states during the execution of the algorithm
are described differently, gives an equivalent quantum program to Shor’s algorithm for
the discrete logarithm problem. This text, as well as the descriptions of the process in
[24] and [19], serve as the basis for the description and implementation of the algorithm
in Chapter 4.

A main component of the phase estimation process is the quantum Fourier transform
(QFT). This operation and its implementation on a quantum computer is described in
detail for example by Cleve et al. [6], who also provide an overview of other important
quantum algorithms. Furthermore, the details of the QFT and its applications in
arithmetic algorithms are given by Draper [11].

There are various adaptions of the phase estimation algorithm aimed at reducing the size
of the control register by restructuring the operations performed to obtain the estimate.
Mosca and Ekert describe one such optimization based on the sequential nature of the
quantum Fourier transform in [24]. Another optimization, which is presented by Kaliski
in [19], reduces the quantum part of the algorithm to only obtain an estimate of one bit
of the result and computes the overall discrete logarithm classically using the reduced
circuit as an oracle.
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3. Related Work

To specify the runtime of both algorithms presented by Shor, the exact success probability
of the quantum circuit is of interest. The description of the algorithms in [31] shows
that, for both the factorization problem as well as the discrete logarithm problem, a
polynomial number of repetitions of the quantum part leads to the result. Although Shor’s
lower bound for the success probability suffices to prove that this is a polynomial-time
algorithm, it has been shown that the actual success probability is still underestimated
and various works aim to prove more accurate bounds [13, 23].

Gerjuoy [14] as well as Bourdon and Williams [5] examine the probability of obtaining a
divisor of the order of an element in Shor’s algorithm for prime factorization in detail.
They prove lower bounds of above 90% for the success probability of this process.

Both problems studied in Shor’s paper [31] can be generalized as instances of the hidden
subgroup problem [23, 24]. This of course leads to the question of whether or not other
problems can be described using this formulation. A thorough overview of different
problems that can be categorized as special cases of the hidden subgroup problem, as
well as a general algorithm for this problem, is given in [23] and [24].

An integral part of the algorithm for prime factorization as well as the algorithm for the
discrete logarithm problem is a subroutine that performs modular exponentiation. There
are various implementation proposals for the algorithm for prime factorization which also
describe how to build a circuit to perform this operation [2, 16, 34]. Since the algorithm
for the discrete logarithm problem also makes use of such a modular exponentiation
circuit, these proposals serve as important references for this thesis.

The modular exponentiation algorithm is usually composed of a series of modular
multiplications, which in turn perform modular additions [2, 16, 34]. In recent years a
number of ways of how to implement the addition of two quantum registers [11, 35] as
well as the addition of a classical constant with a quantum register [2, 16, 30, 34] have
been studied. For Shor’s algorithm, the value that is added is usually known at the time
when the quantum circuit is constructed. This addition with a classical constant is also
sometimes referred to as quantum-classical addition [30] and the fact that it requires
no second quantum register to hold the classical summand can be used to decrease the
complexity of the circuit.

One way of performing arithmetic on a quantum computer is to use constructions similar
to algorithms for classical computers. However, these algorithms usually use instructions
that are not reversible. For this reason, a lot of research has been conducted in recent
years on how to adapt these processes to obtain reversible quantum addition circuits.

One approach that was presented by Häner, Roetteler and Svore [16] is covered in more
detail in Section 5.2.2. It is based on a gate for computing the final carry of an addition
of a constant that is known at the time of construction and a quantum value. There are
also other carry-based addition circuits and a good overview including their time and
space complexity can be found in [30].

Although bitwise addition circuits, similar to those for classical systems, can be adapted
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for quantum computers, there is also research concerning the question of whether the
special properties of quantum states can be used to perform arithmetic in other ways.

Draper [11] describes one such algorithm that employs the quantum Fourier transform,
which is explained in more detail in the next chapter and in Chapter 5. Using the
transformed representation of the input, the process of addition itself can be simplified
to a series of controlled rotations for each qubit. In the case where quantum-classical
addition is performed, and the other summand is known at the time of construction of
the circuit, it even can be simplified to only one controlled rotation per qubit as shown
in Section 5.2.1.

Rines and Chuang give a detailed description and comparison of various modular multi-
plication algorithms in [30], one of which, the Montgomery modular multiplication [22]
using Fourier space addition, is presented in Section 5.4. They present three different
modular multiplication algorithms: modular multiplication based on a division algorithm,
modular multiplication based on Montgomery reduction and modular multiplication
based on Barrett reduction. Montgomery reduction and Barrett reduction aim to speed
up the calculation of the representative of the residue class modulo some integer n by
avoiding or simplifying costly processes such as the trial divisions required for exact
division [30]. The authors furthermore present implementations of these multiplication
algorithms for carry-based adders as well as for Fourier transform based adders.

To find fast quantum multiplication algorithms it is helpful to examine the fastest
known classical multiplication algorithms. The fastest multiplication algorithm for very
large numbers is Schönhage-Strassen multiplication [31] and an adaption for quantum
computers that performs two recursive steps of this process is proposed by Zalka [39].
However, as Zalka’s version of the Schönhage-Strasse multiplication algorithm still uses
significantly more qubits than the algorithms described above it was not considered for
this work. Zalka also briefly investigates the possibility of implementing another fast
classical multiplication algorithm, the Karatsuba-Ofman algorithm [39], but concludes
that the very extensive space requirement outweighs its benefits.

This thesis concentrates on the discrete logarithm problem in the multiplicative group
of integers modulo some prime p as described by Shor [31]. However, this problem can
be defined for other groups as well. A trivial example is the additive group of integers
modulo some integer n, (Zn, +), where the solution can be obtained in polynomial time
on a classical computer using Euclid’s algorithm [27]. Other more complicated groups,
where an efficient solution impairs the security of cryptographic protocols, are the elliptic
curves over finite fields. Proos and Zalka present an adaption of Shor’s algorithm for the
discrete logarithm problem for elliptic curves over GF(p) in [27]. They make use of the
fact that Shor’s original algorithm does not use properties of the group itself to solve the
problem, thus an adaption of the modular exponentiation gate, as well as an adapted
representation of the group elements, leads to a solution [27].

To accurately estimate the runtime of the algorithms studied in this thesis, a solid
theoretical foundation regarding computational complexity on quantum computers is
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required. The conceptual model that is usually employed to study computability and
complexity for classical algorithms is the Turing machine. Its quantum equivalent, the
quantum Turing machine, as well as complexity-theoretic results concerning the class
BQP are described by Bernstein and Vazirani [4]. Cleve furthermore gives a good
overview of different complexity scenarios that can be examined for quantum algorithms
in [7]. Additionally, Watrous presents an introduction of quantum computation and
quantum complexity using the circuit model in [38], which is also used in this thesis.

Lastly, Nielsen and Chuang [25] give an extensive introduction to the topic of quantum
computing. Their book furthermore provides a comprehensive overview of most of the
concepts discussed in Chapters 2 and 4 of this text and is therefore repeatedly referenced.
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CHAPTER 4
Shor’s Algorithm for the DLP

A quantum computer’s ability to efficiently determine the period of a function enables it
to solve some problems, such as the discrete logarithm problem, efficiently where no such
efficient solution on classical computers is known [31]. This process relies heavily on the
quantum Fourier transform (QFT) presented in Section 4.1. In addition to its ability to
extract certain information about a unitary operator, as it is used in Shor’s algorithm for
the discrete logarithm problem, the QFT is also a vital part of many other algorithms,
some of which are presented in Chapter 5.

The quantum algorithm used to compute the discrete logarithm will be presented as the
application of a more general process: phase estimation (see Section 4.2). This operation
is able to approximate eigenvalues of a unitary operator. This chapter will go on to show
that a certain operator, modular exponentiation, will contain the discrete logarithm in
its eigenvalues. This suggests that phase estimation can be used to extract this value
and solve the discrete logarithm problem.

How this is achieved will be explained in detail in Section 4.3. Additionally, the success
probability of this process, and based upon that, the runtime in the number of performed
elementary operations is examined. Lastly, this chapter also covers some optimizations of
this process which allows it to be performed using fewer qubits, thus reducing the overall
space complexity.

4.1 The Quantum Fourier Transform
A vital part of many quantum algorithms is the quantum Fourier transform (QFT).
On the one hand, the QFT enables quantum computers to transform particular tasks
into other problems that can be solved more efficiently as is done in Section 5.2.1. The
problem of addition is transformed into the task of phase shifting the input, which can
be performed efficiently on a quantum computer. On the other hand, the QFT can be

33



4. Shor’s Algorithm for the DLP

used to recover useful information about the state of the system as it is done in phase
estimation.

The QFT performs a transformation that closely resembles the discrete Fourier transform
in its mathematical description [25]:

|a� → 1√
2n

2n−1#
x=0

exp
�

2πi
ax

2n

�
|x� .

In this representation |a� represents an arbitrary element of the basis {|0� , . . . , |2n − 1�}
that is transformed into a superposition of those states. The fact that the matrix
representation of the discrete Fourier transform is a unitary matrix suggests that this
transformation can be implemented on a quantum computer.

To show how this gate can be constructed, the fact that the state after the transformation
is separable [6, 25] can be used. Given the input |a�, where a is a binary integer given by
its individual bits ai such that a = an2n−1 + an−12n−2 + · · · + a120, the result QFT |a�
can be expressed as follows:

1√
2n

� �
|0� + e2πi(0.anan−1...a1) |1�

�
⊗

�
|0� + e2πi(0.an−1...a1) |1�

�
⊗

· · ·

⊗
�
|0� + e2πi(0.a2a1) |1�

�
⊗

�
|0� + e2πi(0.a1) |1�

� �
.

(4.1)

The individual phases are given in a notation that represents binary fractions which is
often used in literature to highlight the structure of the QFT. Hereby 0.alal−1 . . . am

represents the fraction al/2 + al−1/4 + · · · + am/2l−m+1 [6, 11, 25]. This representation
shows that the phase introduced for each qubit is only influenced by the value of the
qubit itself and the values of the less significant qubits.

The quantum Fourier transform can be performed by using controlled phase gates1, which
map an arbitrary qubit state α |0� + β |1� to α |0� + exp(iλ)β |1�. The construction of the
QFT circuit relies on phase gates that introduce a phase of the form λ = 2π/2k, which
will in the following figure be referred to as Rk, to reflect representations in literature
[25].

To give an argument why this circuit performs the correct transformation consider some
qubit |aj�, 1 ≤ j ≤ n in the input state |an . . . a2a1�. First, the Hadamard gate is
applied which maps the state to |0� + (−1)aj |1�, since aj ∈ {0, 1}. Using the fact that
(−1)aj = exp(πiaj) = exp(2πi(aj/2)) for aj ∈ {0, 1}, this expression can further be
rewritten as |0� + exp(2πi(aj/2)) |1�. Note that in this argument the factor 1/

√
2 is

omitted to improve readability.
1https://qiskit.org/documentation/stubs/qiskit.circuit.library.PhaseGate.

html
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4.1. The Quantum Fourier Transform
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Figure 4.1: Circuit for the quantum Fourier transform with input |a� = |an . . . a2a1� as
presented in [25]. Note that in contrast to usual representations, the least significant
qubit a1 is the topmost qubit, which reflects the qubit order in Qiskit.

Next, a phase gate with λ = 2π/22 is applied which is controlled by aj−1. Since
exp(2πi0/22) = 1 and because this expression extends the coefficient of |1� as a multi-
plicative factor, the state after this conditional rotation can be expressed as

|0� + exp
�

2πi
aj

2

�
exp

�
2πi

aj−1
22

�
|1� = |0� + exp

�
2πi

�
aj

2 + aj−1
4

��
|1� .

Continuing until the last conditional rotation, the state is transformed to

|0� + exp
�
2πi

�
aj

2 + aj−1
4 + · · · + a1

2j

��
|1� ,

which can be represented using the notation for binary fractions again as

|0� + exp (2πi (0.ajaj−1 . . . a1)) |1� .

After performing the conditional rotations as shown in Figure 4.1, all correct output states
are present, yet they are not in the correct order. For example, the least significant qubit
|a1� is transformed to |0� + exp(2πi(0.a1)) |1�, which should be the result for the most
significant qubit |an� as shown in Equation (4.1). Therefore the outputs are swapped to
their correct positions before concluding the circuit for the QFT.

However, this swap operation can be omitted in some instances. If the overall quantum
algorithm finishes after the application of the QFT and the register is measured, then
this reordering can be done classically. Also, if it is known that the order of the outputs
has not been corrected and the rest of the quantum algorithm is adapted accordingly,
the reordering can be omitted similarly, as it is done when performing addition using the
QFT as shown in Section 5.2.1.

To give upper bounds for the runtime complexity of the QFT, it first has to be noted that
the controlled rotations can be performed in O(1) time using CNOT s and uncontrolled
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4. Shor’s Algorithm for the DLP

rotations. On each qubit |qi�, i − 1 rotations and one Hadamard gate are applied, before
finally performing �n/2� SWAPs. Therefore in total, the number of gates is given by�

n

2

�
+

n#
i=1

i ≤ n

2 + n(n + 1)
2 ,

which shows that the runtime of the QFT is in O(n2).

Of course, since the QFT can be implemented on a quantum computer, there is an also
an inverse operation. The inverse quantum Fourier transform, herein denoted as QFT−1,
is described as:

|a� → 1√
2n

2n−1#
x=0

exp
�

−2πi
ax

2n

�
|x� .

To conclude the introduction of the QFT, another useful equivalent representation [11] of
the individual qubits in the separable state after the transformation is given here. This
representation is used in Chapter 5.

Lemma 4.1.1. Similar to the tensor product representation given in Equation (4.1),
the state QFT |a� can also be represented as the tensor product of individual qubit states
denoted as |φk(a)�, where

|φk(a)� = 1√
2

�
|0� + exp

�
2πi

a

2k

�
|1�

�
. (4.2)

Proof. First, the value of a
2k is calculated as follows.

a

2k
= an2n−1 + · · · + a120

2k

= an2n−1−k + · · · + a12−k

= an2n−1−k + · · · + ak+22k+2−1−k + ak+12k+1−1−k + ak2k−1−k + · · · + a12−k

= an2n−1−k + · · · + ak+221 + ak+120 + ak2−1 + · · · + a12−k

= an2n−1−k + · · · + ak+221 + ak+120 + ak

2 + · · · + a1
2−k

= an2n−1−k + · · · + ak+221 + ak+120 + 0.ak . . . a1

Substituted into the coefficient of |1� in |φk(a)�, the expression can further be simplified:

exp
�

2πi
a

2k

�
= exp

�
2πian2n−1−k

�
· · · exp

�
2πiak+221

�
· exp

�
2πiak+120

�
· exp (2πi(0.ak . . . a1))

= exp (πian)2n−k · · · exp (πiak+2)22 · exp (πiak+1)2 · exp (2πi(0.ak . . . a1)) .
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Since for any ai ∈ {0, 1}, exp(πiai) ∈ {1, −1} and using the fact that the exponents for
all terms but the last are even this simplifies to

exp
�

2πi
a

2k

�
= exp

�
2πi(0.ak . . . a1)

�
,

which shows that in total the equality

|φk(a)� = 1√
2

�
|0� + exp

�
2πi

a

2k

�
|1�

�
= 1√

2
� |0� + exp

�
2πi(0.ak . . . a1)

� |1� �
holds.

4.2 Phase Estimation
Instead of immediately examining Shor’s algorithm for the discrete logarithm problem, first
a generalization of the approach used in the algorithm is presented: phase estimation [6,
24, 25].

This process is in itself not a complete description of a quantum algorithm as it assumes
certain properties about the circuit that will be executed. First, it is assumed that a way
to perform some transformation U in a controlled manner is given. This controlled gate
is referred to as an oracle, and the goal of phase estimation is to estimate properties of
the eigenvalues of this oracle.

In particular, it is assumed that U has an eigenvector |ψ� and that the corresponding
eigenvalue is described as e2πiφ. Furthermore, it is required that there is a process that
prepares the state |ψ�.
The result of the phase estimation algorithm is then an estimate of the value φ and
therefore an estimate of the eigenvalue as a whole.

The description of the algorithm as presented for example in [6] furthermore uses
oracles that also perform controlled U2i transformations. Although performing such a
transformation using a single gate is important for performance estimates as described
later on, for the purpose of explaining phase estimation in general, it can be assumed
that these transformations are simply repeated applications of the gate U using the same
control input.

The process as shown in Figure 4.2 uses two registers, where the first register starts in
the state |0� and the second register is prepared to start in the state |ψ�. The size n of
the first register is important for the quality of the estimate and will be examined more
closely in the later part of this subsection.
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Figure 4.2: Quantum circuit for phase estimation, assuming the bottom register is
prepared in the eigenstate |ψ� [6, 25]. The slashed line represents a register containing
multiple qubits. If the actual register size is of interest, this slash is annotated with the
number of qubits this line represents.

After applying Hadamard gates to the first register, the state of the system can be
described as

1√
2n

2n−1#
x=0

|x� |ψ� = 1√
2

� |0� + |1� � ⊗ · · · ⊗ 1√
2

� |0� + |1� � ⊗ |ψ� .

The application of the ith controlled gate using the ith control qubit then gives

cU2i 1√
2

(|0� + |1�) |ψ� = cU2i 1√
2

(|0� |ψ� + |1� |ψ�)
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�
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⊗ |ψ� .

In this description cU2i represents the controlled application of the gate U2i . The result
of the application of the controlled gate shows that the phase factor that is introduced
by U2i propagates from the second register to the first register.

The description of the state for one qubit after the application of the oracle is very similar
to the description of the state after the QFT as presented in Lemma 4.1.1. Indeed, the
state of the whole system after the application of the oracle gates using all control qubits
can be given as

1√
2n

2n−1#
x=0

exp
�
2πiφx

� |x� = 1√
2n

2n−1#
x=0

exp
�

2πi
φ2nx

2n

�
|x� .
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This fact suggests that in the case where φ2n is an integer, after applying the inverse
QFT on the top register, φ can be acquired exactly by dividing the measured value by 2n.
However, if this is not the case, obtaining a good estimate of the value φ is still possible
as the following argument shows.

Theorem 4.2.1 [6]. The measurement result after phase estimation will be the best n-bit
approximation of the phase φ with probability ≥ 4/π2.

Proof. Consider the circuit implementing phase estimation in Figure 4.2 where the top
register holds n qubits. The state of the system evolves as follows.

1. The system starts in the state |0� |ψ�.
2. A Hadamard gate is applied to each qubit in the top register. The resulting state is

1√
2n

2n−1#
x=0

|x� |ψ� .

3. The oracle function is executed, thus introducing the eigenvalue as described above.
The state is

1√
2n

2n−1#
x=0

e2πiφx |x� |ψ� .

4. Finally, QFT−1 is applied to the top register before measuring it, resulting in the
state

1
2n

2n−1#
x=0

2n−1#
y=0

e
−2πixy

2n e2πiφx |y� |ψ� .

Since φ2n is not an integer, this value can not be measured exactly. Therefore the best
n-bit approximation of the phase is the closest integer to φ2n, which is expressed as
y∗ = φ2n + Δ, where 0 < |Δ| ≤ 1

2 . This representation allows for the phase to be
expressed in terms of its best n-bit estimate

φ = y∗

2n
+ δ.

Since δ = Δ/2n, this error term is bounded by 0 < |δ| ≤ 1
2n+1 . Therefore, the size of the

top register influences the quality of the estimate as a larger size n decreases the error
term |δ|. By using this representation of the phase in the description of the state, the
probability for measuring y∗, denoted as Pr(y = y∗), can be given in terms of this error
term:

1
2n

2n−1#
x=0

2n−1#
y=0

e
−2πixy

2n e
2πi

�
y∗
2n +δ

�
x |y� |ψ� = 1

2n

2n−1#
x=0

2n−1#
y=0

e
2πi(y∗−y)x

2n e2πiδx |y� |ψ� .
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Then this probability is

Pr(y = y∗) =
&&&&& 1
2n

2n−1#
x=0

e2πiδx

&&&&&
2

.

By using formulas for the sum of a geometric series and introducing upper and lower
bounds for the numerator and denominator, the minimal success probability can then be
given as

Pr(y = y∗) =
&&&&& 1
2n

1 − e2πiδ2n

1 − e2πiδ

&&&&&
2

=

 1
2n

&&&1 − e2πiδ2n
&&&

|1 − e2πiδ|

2

.

Now the following two inequalities&&&1 − e2πiδ2n
&&& ≥ 4|δ|2n and

&&&1 − e2πiδ
&&& ≤ 2π|δ|

can be applied [3, 6, 12], which finally gives a lower bound for the success probability as

Pr(y = y∗) ≥
� 4|δ|2n

2n2π|δ|
�2

=
� 2

π

�2
= 4

π2 ≈ 0.405.

4.3 Finding the Discrete Logarithm
The principles presented in the previous section can be applied to solve the discrete
logarithm problem. How this is done was first presented by Peter W. Shor [31], and
properties, as well as generalizations of the algorithm, have been extensively studied in
the previous years [6, 19, 24].

In this thesis, a variant of the algorithm described by Michele Mosca and Artur Ekert
[19, 24] is presented. This algorithm is based on repeated phase estimation using the
same input register.

To show how the process of phase estimation can be applied to this problem, some
properties of the required oracle have to be examined first. The notation used here
follows the notation presented in [24].

Let p be a prime and c be an element in the field Zp. The modular exponentiation oracle
will perform the transformation

UcX |x� |y� = |x� Ucx |y� = |x� |cxy mod p� .

In this description UcX , is the controlled version performing the multiplication with cx

on the second register based on the value of x in the first register. Conceptually, this
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4.3. Finding the Discrete Logarithm

process can also be seen as the repeated application of the operator Uc, which performs
the modular multiplication with c:

|x� Ucx |y� = |x� (Uc)x |y� . (4.3)

Of course, for the process of phase estimation, the eigenvalues and eigenvectors of this
operator are of interest. In particular, the properties of the oracle for the case of the
multiplication with a generator are useful for the algorithm.

Lemma 4.3.1. Let g ∈ Zp be a generator with order r such that gr ≡ 1 mod p. Ug has
eigenvalues e

2πik
r with corresponding eigenvectors

|ψk� = 1√
r

r−1#
t=0

e
−2πikt

r |gt mod p� ,

for k = 0, 1, . . . , r − 1.

Proof. To show this property, the effect of the modular multiplication with g that is
performed by Ug on the eigenvector |ψk� is examined.

Ug |ψk� = 1√
r

r−1#
t=0

e
−2πikt

r |gt+1 mod p�

= 1√
r

r#
t=1

e
−2πik(t−1)

r |gt mod p�

= 1√
r

r#
t=1

e
−2πikt

r e
2πik

r |gt mod p�

= e
2πik

r
1√
r

r#
t=1

e
−2πikt

r |gt mod p�

Since e
−2πikr

r = e
−2πik0

r and gr ≡ g0 mod p, the sum can be rewritten to give

Ug |ψk� = e
2πik

r
1√
r

r−1#
t=0

e
−2πikt

r |gt mod p�

= e
2πik

r |ψk� .

As Ugx can be thought of as the repeated application of Ug (see Equation (4.3)),
Lemma 4.3.1 can be used to specify the eigenvalues of Ugx .

Lemma 4.3.2. For the generator g with gr ≡ 1 mod p, Ugx has eigenvalues e
2πikx

r with
corresponding eigenvectors

|ψk� = 1√
r

r−1#
t=0

e
−2πikt

r |gt mod p� ,

for k = 0, 1, . . . , r − 1.
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Proof. This lemma is proven by induction on x.

Base case: x = 0. The resulting state is

Ug0 |ψk� = (Ug)0 |ψk� = |ψk� = e
2πik0

r |ψk�
as desired.

Induction hypothesis: Let x be an arbitrary integer ≥ 0 and assume that Ugx |ψk� =
e

2πikx
r |ψk� holds.

Induction step: Consider the statement for x + 1. Then

Ugx+1 |ψk� = (Ug)x+1 |ψk�
= Ug(Ug)x |ψk�
= e

2πikx
r Ug |ψk� (using the induction hypothesis)

= e
2πikx

r e
2πik

r |ψk� (using Lemma 4.3.1)

= e
2πik(x+1)

r |ψk� .

For the discrete logarithm problem as described in Section 2.1, the properties of the
oracle given the input b are of interest. By expressing b in terms of the generator g, these
properties can be examined in detail.

Lemma 4.3.3. For the generator g with gr ≡ 1 mod p and the integer b ∈ �g� with
gm ≡ b mod p, Ubx has the eigenvalues e

2πikmx
r and the eigenvectors

|ψk� = 1√
r

r−1#
t=0

e
−2πikt

r |gt mod p� ,

for k = 0, 1, . . . , r − 1.

Proof. Since b can be expressed in terms of the generator as b ≡ gm mod p, the operator
Ubx also can be expressed in terms of the generator:

Ubx = Ugmx = (Ugx)m.

The lemma can then be proven similar to Lemma 4.3.2 by induction on m.

Base case: m = 0. Then the resulting state is

(Ugx)0 |ψk� = |ψk� = e
2πik0x

r |ψk�
as desired.

Induction hypothesis: Let m be an arbitrary integer ≥ 0 and assume that (Ugx)m |ψk� =
e

2πikmx
r |ψk� holds.

42



4.3. Finding the Discrete Logarithm

Induction step: Consider the statement for m + 1. Then

(Ugx)m+1 |ψk� = Ugx(Ugx)m |ψk�
= Ugx e

2πikmx
r |ψk� (using the induction hypothesis)

= e
2πikx

r e
2πikmx

r |ψk� (using Lemma 4.3.2)

= e
2πik(m+1)x

r |ψk� .

Lemma 4.3.3 shows that the eigenvalue of Ubx contains the value m, which is the sought-
after discrete logarithm of b with respect to the generator g. This suggests that phase
estimation can be used to extract this value, which is exactly what is done in Shor’s
algorithm for the discrete logarithm problem as it is presented in [24].

Unfortunately, there still are a few obstacles to overcome before being able to compute
the discrete logarithm. First, it still has to be examined how the oracle computing UgX

as well as UbX can be constructed. A lot of research is being done on how to perform
this process, referred to as modular exponentiation (some examples can be found in
[2, 16, 30] and [34]), since it is both an integral part of Shor’s algorithm for prime
factorization as well as Shor’s algorithm for the discrete logarithm problem [31]. The
ways of implementing this gate that are used for this work are described in Chapter 5.

Furthermore, as the description of the phase estimation process in Section 4.2 notes, it
is required to prepare the eigenstate |ψk� for a known value k to be able to infer the
discrete logarithm m from the resulting phase. Following the description of the algorithm
in the appendix of [19], this preparation is the first stage of the algorithm while the phase
estimation giving the final result is the second stage.

4.3.1 First stage
To prepare the eigenstate in the second register and to extract the value k, the first stage
will perform phase estimation on UgX using a superposition of all eigenstates. This is
done by noting that the sum of the eigenstates can easily be prepared in the second
register [24, 25].

Lemma 4.3.4. Let g be a generator modulo the prime p with order r such that gr ≡
1 mod p. Then

|1� = 1√
r

r−1#
k=0

|ψk� .

Proof. Using the definition of |ψk� from Lemma 4.3.1 the superposition of the eigenstates
is given as

1
r

r−1#
t=0

r−1#
k=0

e
−2πikt

r |gt mod p� .
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|0�
1√
r

$r−1
k=0 |ψk� = |1�

n
H

UgX
QFT−1 . . . y1

Figure 4.3: First stage of the algorithm given in [24] and [19]. The number of qubits needed
in the second register depends on the chosen implementation of modular exponentiation.
The exact position of the measurement operation depends on the specific implementation
of this algorithm (see Section 4.3.4 and 4.3.5) and might even be deferred to the end of
the second stage, which is indicated by dots. The measurement outcome y1 is used to
infer the value k̃ which identifies the eigenstate remaining in the second register.

Since r is the order of g and 0 ≤ t ≤ r − 1 holds for the index in the first sum, all
|gt mod p� in the sum are pairwise distinct. The coefficient for a specific state |gt� mod p�
is given by

1
r

r−1#
k=0

�
e

−2πit�
r

�k

.

If t� = 0, this sum reduces to 1
r

$r−1
k=0 1 = 1. For all other 1 ≤ t� < r, the formula for the

sum of a geometric series can be applied to give

1
r

r−1#
k=0

�
e

−2πit�
r

�k

= 1
r

1 − e
−2πit�r

r

1 − e
−2πit�

r


= 1

r

�
1 − 1

1 − e
−2πit�

r

�
= 0.

This shows that the only remaining basis state in the description of this superposition is
|g0 mod p� = |1�, which proves this lemma.

By performing phase estimation using the superposition of eigenstates as input to
the second register as shown in Figure 4.3, the resulting measurement in the first
register will, with equal probability, be an estimate of the phase of some eigenstate |ψk�,
k ∈ {0, 1, . . . , r − 1} chosen uniformly at random [25].

Using this fact it is assumed for the rest of this explanation that the algorithm is
performed using some specific eigenstate |ψk̃�, since the argument for its correctness holds
for each eigenstate and when measuring only the results for one specific k̃ are returned.

Since for any specific k̃ the eigenvalue is e
2πik̃x

r , the measured value in the first register
will be y1 = k̃

r 2n [19]. By dividing with 2n, k̃ can be obtained using a multiplication
with r if the order is known. Should this not be the case, the resulting value can be
approximated as a fraction similar to Shor’s algorithm for prime factorization [31] to
obtain both k̃ and r.
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|0�

|ψk̃�

n
H

UbX

QFT−1 y2

Figure 4.4: Second stage of the algorithm given in [24] and [19]. The measurement
outcome y2 is used to approximate the value k̃m mod r, which can be used to infer the
discrete logarithm m.

The content of the second register is then reused to ensure that the phase estimation
performed in the second stage is performed using the same state |ψk̃�. Of course, as phase
estimation might not be exact, the value obtained in this stage might not be exactly k̃.
This approximation error is reflected in the success probability given in Section 4.3.3.

4.3.2 Second stage
As the first stage prepares the eigenstate |ψk̃� in the second register, phase estimation
using the oracle UbX can now be performed to extract the phase and in turn extract the
discrete logarithm m.

As shown in Lemma 4.3.3, the eigenvalue of the operator Ubx , for the eigenstate |ψk̃� is
exp

�
2πik̃mx

r

�
. Therefore the estimated phase will be k̃m

r . Since in some cases k̃m ≥ r

special care has to be taken since the coefficient exp
�

2πik̃mx
r

�
is indistinguishable from

exp
�

2πi(k̃m−qr)x
r

�
, for any integer q.

The measured value y2 after the second stage can therefore be described as

y2 = (k̃m mod r)
r

2n.

By again dividing by 2n and multiplying with r, m can be calculated by modular
multiplication with the inverse of k̃, where k̃ is known from the measurement of the first
stage.

4.3.3 Success probability and complexity
As the described algorithm for the discrete logarithm problem can be seen as two
consecutive runs of phase estimation, the state before the final measurement can be
described as

1
2n

1
2n

2n−1#
x1,y1=0

2n−1#
x2,y2=0

e
2πik̃x1

r e
−2πix1y1

2n e
2πik̃mx2

r e
−2πix2y2

2n |y1� |y2� |ψk̃� .

In this description, x1 and y1 get introduced by the Hadamard gates and the inverse QFT
in the first stage, while x2 and y2 are introduced by the respective gates in the second
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stage. This description of the state assumes that the measurements for both stages are
deferred to the end of the circuit.

The best approximations of the phases of the respective modular exponentiation gates
in each stage will be referred to as y∗

1 and y∗
2. To be able to perform the rest of the

algorithm, the following relationship has to hold for the measurement results for the first
and second stages:

(y∗
1 + δ1, y∗

2 + δ2) =
�

k̃

r
2n,

(k̃m mod r)
r

2n

�
.

Here δ1 and δ2 refer to the approximation error of the first and second stage in case the
phase can not be estimated exactly.

To calculate the probability that y∗
1 and y∗

2 will be measured, the success probability for
phase estimation as shown in Theorem 4.2.1 is used for each stage separately [23]:

Pr [(y1, y2) = (y∗
1, y∗

2)] ≥
� 4

π2

�2
.

As noted above, it can be assumed that at the beginning of the first stage, the target
register is in state |ψk̃�, because the target register actually starts in the superposition of all
eigenstates. Therefore the value k̃ will be chosen uniformly at random and unfortunately
not all values of k̃ eventually lead to a usable measurement result.

In particular, only those k̃ that have an inverse element k̃−1 ∈ Zr, or in other words,
where k̃m mod r has a solution for m will lead to a result. This is the case for all natural
numbers k̃ < r that are coprime to r, the number of which can be calculated using Euler’s
totient function φ(r).

This contrasts the probability given in [23], where it is assumed that r is prime and
therefore only k̃ = 0 is excluded. This leads to a total success probability greater than or
equal to

φ(r)
r

·
� 4

π2

�2
.

Since the actual value of φ(r) depends on the prime factorization of r, an asymptotic
lower bound for this value is used similar to [31] (see also Theorem 328 in [17]):

φ(r)
r

∈ Ω
� 1

log log r

�
.

Since the factor (4/π2)2 is constant, the lower bound for the success probability for this
algorithm is given by

Ω
� 1

log log r

�
.
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The number of repetitions required to obtain a number k̃ that is coprime to r can be given
as the reciprocal value of the success probability. As for functions f and g, f(x) ∈ Ω(g(x))
implies that 1/f(x) ∈ O(1/g(x)) and applying the fact that r < p, this shows that after
O(log log p) repetitions the algorithm is successful with high probability.

Using this expression for the number of repetitions, the upper bound for the complexity
of the algorithm can be given. First, examining the circuits for both stages shows that
the number of qubits in each input register is n. Herein, n is chosen to be the number of
bits required to represent the module p. Additionally the circuit needs a certain number
of qubits for the actual computation of the modular exponentiation as indicated by the
bottom register. This number depends on the actual implementation of the modular
exponentiation circuit that is chosen in Chapter 5 and shall be referred to as S(n) for
now.

Therefore the circuit uses 2n + S(n) qubits in total. This number can be decreased using
optimizations explained in the next subsections.

The remarkable property of Shor’s algorithm for the discrete logarithm problem is that
its runtime is polynomial. As the first stage and the second stage are almost identical in
the operations that are applied, the runtime for one stage can be examined to infer the
runtime of the whole algorithm.

It is assumed for this argument that the number T (n) of elementary gate operations ap-
plied in the modular exponentiation circuit is polynomial. Note that for this argument, the
modular exponentiation is treated as a single gate performing |x� |y� → |x� |y · ax mod p�,
and not a series of gates each performing multiplications.

One stage of the algorithm performs O(n) Hadamard operations on the top register,
followed by O(T (n)) elementary operations to perform modular exponentiation as well
as O(n2) transformations to compute the inverse QFT. In summary, as each of these
runtime bounds is polynomial, one stage can be performed in polynomial time.

As will be shown in the next chapter, the time required to perform modular exponentiation
O(T (n)) dominates the time required to perform the other steps of each stage of the
algorithm. Therefore the number of elementary gate operations can be given as O(T (n)).
The second stage of the algorithm then amounts to a repetition of all steps in terms of
the runtime, which is why the asymptotic runtime for the quantum computing part of
the algorithm is given by O(T (n)).

The only non-constant term in the success probability is the number of repetitions
required due to the fact that the inferred value k̃ might not have an inverse modulo r. It
is asserted that after O(log log p) repetitions a k̃ coprime to r is found. Since all other
terms of the success probability are constant, the time required until the algorithm yields
the result with near certainty is given by

O((log log p)T (n)).

47



4. Shor’s Algorithm for the DLP

In addition to the quantum part of the algorithm, some classical postprocessing is
performed. To make sure the classical part does not outweigh the quantum part in its
complexity, arguments that this part can be performed in polynomial time are given here.
For this algorithm four steps have to be performed:

• If the period r is not known it has to be inferred from the measurement result using
the continued fraction algorithm which can be carried out in polynomial time [31].

• Perform divisions with 2n and multiplications with r to obtain k̃ and k̃m mod r.
These arithmetic operations can be performed in polynomial time.

• Check whether the inverse of k̃ exists and calculate it in polynomial time using the
Euclidean algorithm. If it does not exist, restart the algorithm.

• Multiply with k̃−1 mod r and check if this result is correct by performing modular
exponentiation classically in polynomial time.

In summary, since the quantum circuit can be constructed and executed in polynomial
time, and the classical postprocessing can be performed efficiently, the whole algorithm
as presented here runs in polynomial time. It gives the correct result with near certainty
which, using the argument for the classical postprocessing from Section 2.4, shows the
membership of the discrete logarithm problem in BQP.

4.3.4 Reusing the input register
A major challenge for quantum computer development is handling problem instances with
an increased number of qubits. It is beneficial for todays hardware if the number of used
qubits in any circuit is minimized. One approach for achieving this goal is minimizing
the resources required for modular exponentiation as presented in Chapter 5. But there
are also variants of the overall algorithm that aim to reduce the number of used qubits.

One such variant [19, 24] uses the fact that the two applications of modular exponentiation
are performed in succession, which allows the top register to be reused.

The circuit performs both stages as described in Section 4.3.1 and Section 4.3.2 using
the same top register, thus saving n qubits and reducing the number of qubits needed
from 2n + S(n) to n + S(n).

A requirement for this variant is that there is a way of resetting the register content
after a measurement was performed, which can be done in Qiskit using the reset gate as
presented in Section 2.3.2.

4.3.5 Reducing the size of the control register
This subsection will introduce two optimizations of the phase estimation algorithm which
can be applied to the algorithm for the DLP above. The first one performs the QFT at

48



4.3. Finding the Discrete Logarithm

the end of the circuit semi-classically [15, 23, 24], which simplifies the implementation as
it eliminates the need for multi-qubit quantum gates. Building upon this circuit, another
optimization becomes evident. By exploiting the sequential nature of the QFT, it is
possible to perform phase estimation using only a single control qubit, thus eliminating
n − 1 qubits from the circuit [2, 23, 24].

Examining the circuit for the inverse QFT, i.e., the inverse of the circuit in Figure 4.1,
shows that the most significant qubit |φn(a)�, which will be transformed to |a1�, is only
used to control other conditional rotations after the Hadamard operation is applied.
Similarly, all other qubits will only be used to control other conditional operations after
the Hadamard gate has been applied.

By employing the deferred measurement principle (see Section 4.4 in [25]), the measure-
ment operations on each qubit can be moved forward to just after the Hadamard gate
has been applied to obtain an equivalent circuit. Since the subsequent operations are
then controlled classically, this approach is referred to as the semi-classical QFT.

Figure 4.5 shows the circuit performing the semi-classical inverse QFT. It takes the input
|φ(a)�, performs the inverse QFT to obtain |a�, while at the same time measuring to
obtain a binary measurement result ynyn−1 . . . y2y1.

|φ1(a)�

|φ2(a)�

|φn−1(a)�
|φn(a)�

0
0

0
0

...

...

H

R†
2 H

. . .

. . .

. . .

. . .

...

R†
n−1 R†

n−2
. . . H

R†
n R†

n−1
. . . R†

2 H

...

y1

y2

yn−1
yn

Figure 4.5: The semi-classical version of the inverse QFT. Note that in addition to the
measurements being moved forward, the swap operations at the beginning of the inverse
QFT are performed implicitly by changing which qubits the rotations are applied to as
well as the classical bit yi, they are measured into. The double wires indicate that not
the qubit, but the classical value that was measured is used to control an operation.

A noteworthy property of this circuit is that each qubit is idle after it has been measured,
since all operations that would have been controlled by it are now controlled by its
corresponding classical bit. Furthermore, as the circuit for phase estimation in Figure 4.2
shows, each control qubit is only used to control one of the oracle gates while remaining
idle the rest of the time.
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In summary, the lifecycle of the control qubit |qi� in the phase estimation algorithm with
semi-classical inverse QFT is as follows.

1. Apply the Hadamard gate.

2. Control the U2i−1 oracle.

3. Apply conditional rotations which all are controlled by classical values.

4. Apply Hadamard again.

5. Measure.

Performing these operations serially leads to the second optimization: phase estimation
with one control qubit [2, 23, 24]. Starting with i = n, the steps listed above are
performed in sequence. This is possible since the initial value of each control qubit is
known to be H |0�, therefore it can repeatedly be reinitialized after those steps have been
performed to continue with the next oracle. The circuit for this process in shown in
Figure 4.6.

|0�
|ψ�

0
0

0

...

H

U2n−1

H |0� H

U2n−2

R†
2 H

. . .

. . .

. . .

. . .

|0� H

U20

R†
n R†

n−1
. . .

...

H

...

y1

y2

yn

Figure 4.6: Phase estimation using only one control qubit. The sequential nature of
the inverse QFT is employed to be able to reuse one control qubit for each step in the
execution of the oracle. Before being measured, the rotations required for the inverse
QFT are performed based on the previously measured values. The non-unitary operation
denoted as |0� represents a reinitialization of the qubit to |0� as described in Section
2.3.2.

The fact that, instead of n control qubits, only one qubit is needed greatly reduces the
resource demand for the algorithm. The number of used qubits for this optimization
is given as 1 + S(n), which is almost entirely dependent on the space complexity of
modular exponentiation. This shows that, in addition to optimizing the process of phase
estimation, it is vital to perform the oracle transformations presented in the next chapter
efficiently.

Although it is possible to implement and simulate the circuit presented in Figure 4.6,
the rotations conditioned on a classical bit can at the moment not be performed on the
available quantum computers. This feature, however, is planned for the near future [36].
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CHAPTER 5
Modular Exponentiation

Both Shor’s algorithm for prime factorization as well as its counterpart for the discrete
logarithm problem utilize a gate performing modular exponentiation as a central compo-
nent of the circuit. As this operation is the most expensive operation of both algorithms
both in terms of the number of applied unitary transformations as well as in the number
of ancilla qubits required, various approaches have already been examined as to how this
operation can be performed most efficiently [2, 16, 30, 34].

As shown in Chapter 4, Shor’s algorithm requires a gate UaX that, ignoring ancilla qubits,
takes some input |x� |y� and computes the result |x� |y · ax mod p�. In this chapter,
we show in Section 5.1 how this calculation is performed using repeated application of
modular multiplication. This serves as the motivation for introducing different approaches
to performing modular multiplication in the later sections.

As a modular multiplier can be built using circuits that perform modular addition,
Section 5.2 presents two approaches solving this task. The first one is an adder that
uses the properties of the Quantum Fourier transform (Section 5.2.1), while the second
algorithm more closely resembles addition on a classical computer (Section 5.2.2).

Section 5.3, continues to show how these algorithms for modular addition can be extended
to perform modular multiplication. Of course, any algorithm for non-modular multiplica-
tion can be extended to an algorithm for modular multiplication by performing a division
to calculate the residue. As this division is a costly operation, a different approach is
presented in Section 5.4: Montgomery modular multiplication [22]. Here a representation
of the result is used that allows this division to be performed more efficiently.

For the argument in Section 4.3.3 that the discrete logarithm problem can be solved
in polynomial time, it was assumed that modular exponentiation can be computed in
polynomial time. This claim now has to be examined. Therefore, the complexity of these
algorithms both in the number of performed gate operations T (n) and in the number of
required qubits S(n) is given.

51



5. Modular Exponentiation

|x0�
|x1�

|xn−1�
|y�

. . .

U
a20 U

a21 . . . U
a2n−1

. . . |x�

|y · ax mod p�

Figure 5.1: Modular exponentiation using a built-in constant a as a series of controlled
multiplications.

5.1 Modular Exponentiation
As described in Shor’s original paper [31], modular exponentiation can be performed by
simply performing a series of modular multiplications with a constant that is built into
the circuit. The multiplications are controlled by the individual qubits of the input.

It is assumed that there is a gate Ua which performs the multiplication

Ua |y� = |ay mod p� , (5.1)

where |y� is a register large enough to hold any value 0 ≤ y < p for the prime p and a
is a constant known at the time when the circuit is constructed. Since c ∈ {0, 1}, the
controlled version of this gate can further be represented as

Uac |c� |y� = |c� |acy mod p� . (5.2)

How such a gate and its corresponding controlled version can be obtained for any constant
a is explained in the later parts of this chapter.

Notice that although for Shor’s algorithm for prime factorization it cannot be assumed
that p is prime, this is always the case for Shor’s algorithm for the discrete logarithm
problem. Therefore for the remainder of this chapter p is always an odd prime, as this
simplifies the presented algorithms.

The circuit will serially apply gates Ua for different constants a which are built into the
circuit. These gates are controlled by the input x as shown in Figure 5.1. In total, the
circuit will perform the following transformation

|x� |y� → |x� U
a20x0 |y� = |x� |y · a20x0 mod p�

→ |x� |y · a20x0 · a21x1 mod p�
. . .

→ |x� |y · a20x0 · a21x1 · · · a2n−1xn−1 mod p�
= |x� |y · a20x0+21x1+···+2n−1xn−1 mod p�
= |x� |y · ax mod p� .
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5.2. Modular Addition

Here the fact that x (represented as a binary integer) can be expressed as

x0 · 20 + x1 · 21 + · · · + xn−1 · 2n−1

is used.

This shows that, using a modular multiplier that performs a multiplication with some
built-in constant, the modular exponentiation can be constructed with gate complexity
O(n · Tmul(n)), where Tmul(n) specifies the number of elementary operations required to
perform multiplication. The modular exponentiation circuit uses n control qubits as well
as Smul(n) qubits holding the result.

The remainder of this chapter investigates how the multiplication gate that is required
for this algorithm as described in Equation (5.1) and Equation (5.2) is constructed.

5.2 Modular Addition
Modular multiplication on a quantum computer is usually performed by a series of
modular addition gates, which in turn are built using conditional additions. There are
various proposals for implementing the addition a + b, both where b is a variable stored
in a quantum register as well as where b is a constant built into the circuit.

For both algorithms presented by Shor’s [31], b is known at the time of construction.
Therefore, the addition gates presented in this section can use this fact to save instructions
and qubits. Unfortunately, the straightforward approach of implementing the addition of
some integer a with a constant b similar to a classical computer, while only using one
qubit to save the intermediate carries is not possible as this gate would not be reversible.
As an example, the following mappings |ak, cin� → |(a + b)k, cout� are required for adding
the bit bk = 1 to the input qubit ak, while respecting the previous carry cin and saving
the new carry cout:

|0, 0� → |1, 0�
|0, 1� → |0, 1�
|1, 0� → |0, 1�
|1, 1� → |1, 1� .

As both |0, 1� and |1, 0� would be transformed into the same state |0, 1�, this gate cannot
be reversible.

But there are other ways of performing this addition, some of which are examined in
the following subsections. Using these implementations, ways of performing the modular
addition (a + b) mod p and finally the modular multiplication ax mod p are presented in
the later sections.
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5. Modular Exponentiation

5.2.1 Addition using the Quantum Fourier Transfrom
Based on an implementation of the addition proposed by Draper [11], Beauregard
proposed a full circuit for Shor’s algorithm for prime factorization [2]. Rui Maia and
Tiago Leão provided an implementation of this circuit [21], which now serves as the
reference implementation of the algorithm for prime factorization in Qiskit.

As opposed to the adder presented in Section 5.2.2, which uses an approach very similar
to addition on a classical computer, Draper provides a circuit that makes use of operations
specific to quantum computers.

First, the input a is transformed into Fourier space using the Quantum Fourier transform
(QFT). Following the notation presented in Section 4.1, the resulting state is denoted
as |φ(a)�. Afterwards rotations on the qubits of |φ(a)� are performed, which give the
state |φ(a + b)�. Since b is known at the time of construction of the circuit, the angles
for these rotations can be precomputed. Lastly the inverse QFT is applied to |φ(a + b)�
resulting in |a + b� in the register.

A significant advantage of this approach is the elimination of ancilla qubits that save
intermediate carry values as it would be required when performing the addition in a more
classical way. To handle overflows, only one additional qubit is added to the register
containing the input a.

To illustrate how the addition is performed, the state of the system starting from the
m = n+1 qubit register containing the n qubit integer a and the ancillary qubit initialized
to |0� is examined. Applying the QFT to this registers gives

QFT |a� = |φ(a)� = 1√
2m

2m−1#
y=0

exp
�

2πi
ay

2m

�
|y� .

As noted in Section 4.1, this state is separable [11] and can be expressed as �m
k=1 |φk(a)�,

where

|φk(a)� = 1√
2

�
|0� + exp

�
2πi

a

2k

�
|1�

�
.

To perform the actual addition, each qubit is now rotated around the Z-axis on the Bloch
sphere using Qiskit’s phase gate1. This gate maps an arbitrary state α |0� + β |1� to
α |0� + exp(iλ)β |1�, where λ can be supplied at the time of construction. Depending on
the constant b and the position k of the qubit in the register, λ is set to 2πb

2k . Therefore
each qubit |φk(a)� is rotated to become

1√
2

�
|0� + exp

�
2πi

b

2k

�
· exp

�
2πi

a

2k

�
|1�

�
= 1√

2

�
|0� + exp

�
2πi

(a + b)
2k

�
|1�

�
= |φk(a + b)� .

1https://qiskit.org/documentation/stubs/qiskit.circuit.library.PhaseGate.
html
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|c0�
|c1�

|q� = |0�
|φ(a)� ADD

b

ADD
−p

QFT−1 QFT ADD
p

|φ((a + b) mod p)�
|msb(a + b − p)�

Figure 5.2: Modular addition |φ((a + b) mod p)� for a built-in constant b, excluding the
uncomputation of the ancilla qubit |q�. The qubits |c0� and |c1� are used as control
qubits. The circuit is taken from [2].

Consequently, the whole register then contains

1√
2m

2m−1#
y=0

exp
�

2πi
(a + b)y

2m

�
|y� = |φ(a + b)� .

By multiplying the input for the phase gate λ by −1, the addition can also easily be
transformed into a subtraction.

The inverse QFT can then be used to extract the result |a + b�.

Modular Addition using the Quantum Fourier Transform

For the extension to modular multiplication and modular exponentiation, a modular
addition providing two control bits is required. Beauregard [2] proposes such a circuit
that saves the information on whether the result of the addition needs to be adapted with
respect to the module p in an additional qubit. The circuit for modular addition assumes
that the register containing a is already transformed to Fourier space. The register is
denoted as |φ(a)�. This is valid since the additions are performed in succession and the
intermediate results do not have to be transformed back from Fourier space.

Before presenting the circuit for modular addition, a doubly controlled version of the
adder has to be constructed. This is done by controlling the rotations with two control
bits using rotations by half the desired angle. These rotations cancel out should one
control bit not be set. How such a gate can be constructed is shown in [28].

Assuming both control qubits are set, the circuit in Figure 5.2 first adds b and subtracts
p, by changing the factor of the rotations as explained above. Should the result be greater
than zero, then the register already contains the desired value |φ((a + b) mod p)�. If this
is not the case, the subtraction of p has to be reversed. To perform this case distinction,
the inverse QFT is applied to be able to extract the most significant bit of the register
content a + b − p. As the register now contains the result in two’s complement, the most
significant bit encodes the sign. In the case a + b − p < 0, the most significant bit will be
one. This bit is saved in an ancilla qubit which is used to control a conditional addition
of p after the register content has been transformed to Fourier space again.
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|c0�
|c1�

|msb(a + b − p)�
|φ((a + b) mod p)� ADD

−b
QFT−1 QFT ADD

b
|φ((a + b) mod p)�

|0�
Figure 5.3: Uncomputation of the ancilla qubit after modular addition as shown in
Figure 5.2 [2].

At this point, the input register itself will always contain |φ((a + b) mod p)�. Unfortu-
nately before the computation can be completed, the ancilla qubit still has to be restored
to zero. This is achieved by using the fact that, if a + b − p < 0, then a + b mod p > b.
This shows that the ancilla qubit was flipped in the previous operation if and only if
a + b mod p > b.

More formally, the relationship

msb(a + b − p) = 1 ⊕ msb(((a + b) mod p) − b)

is used, where msb(x) ∈ {0, 1} refers to the most significant bit of x and ⊕ is the
exclusive OR operator. Consequently, another comparison with b can be used with the
only difference that the complement of the result is used to flip the ancilla qubit. Of
course, to restore the result in the register after this comparison, it has to be transformed
to Fourier space and b has to be added again.

5.2.2 Bitwise Carry Addition
Originally used for the algorithm for prime factorization, Häner, Roetteler and Svore
propose in [16] an implementation for a modular adder for quantum computers, which
can be extended similar to Beauregard’s version to perform modular multiplication and
in turn modular exponentiation.

The adder itself utilizes a gate that calculates the final carry after addition of two integers.
As opposed to Beauregard’s modular adder this gate can be used to implement a simpler
comparison, which in turn allows for performing the modular addition with one less ancilla
qubit. Another difference is the fact that this implementation performs the addition in a
more “classical” way: For a subset of the bits, the carry is computed and added to the
next subset of bits, as opposed to the approach of calculating in Fourier space presented
in Section 5.2.1.

Computing the carry

The innermost operation calculates the carry of an addition of an n-bit constant b to
an n-bit input a, where b is built into the circuit. If the individual bits of the integers
a and b and the result r = a + b are represented as ai, bi and ri (0 ≤ i < n), then this
operation calculates rn, the carry after the last bitwise addition of an−1 and bn−1.
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5.2. Modular Addition

Conditioning operations on toggling

To save information on the intermediate carry values for each combination of qubits, the
proposed implementation in [16] uses borrowed qubits. These qubits are assumed to be
in an unknown state before the execution of the algorithm and have to be returned to
exactly this state after the computation. Therefore each operation that might be applied
to those qubits has to be reversed before the computation of the overall carry finishes.

This is done by conditioning certain parts of the circuit not on the actual value of the
qubit, but on the fact that it has been toggled during the execution of the operation.

For each bit of the input, the following operations are applied depending on the given
constant b. If bi = 0, and there is a carry ci−1 from bit i − 1 to bit i, there will be a carry
ci after the addition if and only if the input ai = 1. If there is no carry ci−1, then there
never will be a carry after adding ai and bi = 0. On the other hand, if bi = 1, then there
is a carry if either ci−1 = 1 or ai = 1, or both. This gives the following relationships
between input and output for |ci−1, ai, ci�, assuming the carry bits are ordinary ancilla
qubits and not borrowed qubits:

If bi = 0:

|0, 0, 0� → |0, 0, 0�
|1, 0, 0� → |1, 0, 0�
|0, 1, 0� → |0, 1, 0�
|1, 1, 0� → |1, 1, 1� .

If bi = 1:

|0, 0, 0� → |0, 0, 0�
|1, 0, 0� → |1, 0, 1�
|0, 1, 0� → |0, 1, 1�
|1, 1, 0� → |1, 1, 1� .

With ancilla qubits ci, where the state is fully known, this operation is just one Toffoli
gate in the case bi = 0. In the case bi = 1 this operation flips the resulting carry bit in
all cases except for the case ai = 0, ci−1 = 0. To achieve this, ci is flipped conditioned on
ai first and again conditioned on ci−1 and the complement of ai. Figure 5.4 shows this
circuit without the uncomputation of ai.

To facilitate the usage of borrowed qubits, the operations in Figure 5.4 have to be
conditioned not on the value of the qubits ci but on the fact that they have been
toggled. Also afterwards, they have to be returned to their original state. This is done by
executing this procedure once before the carry-bits have been toggled and then repeating
all operations that are controlled by carry-bits after they have been toggled. This way, if
a qubit is not toggled, the operation is repeated with the same control input and therefore
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bi = 0 bi = 1
|ci−1�

|ai�
|ci�

|ci−1�
|ai�
|ci�

Figure 5.4: The carry computation without the uncomputation of ai and the reset of
borrowed qubits for both cases bi = 0 and bi = 1.

|a0�
|a1�
|c1�
|a2�
|c2�
|r�

Operations on input
and toggling
of carries

Repeated operations
controlled by
carry qubits
after toggling

Uncomputation
of carry qubits

and input

Figure 5.5: The carry computation for the addition with a constant b = 5 taken from [16].
The circuit has been optimized using the fact that the first carry c0 from a0 to a1 is only
conditioned on the qubit a0 and can therefore be eliminated and a0 can be used instead.

reversed. In the case that the corresponding qubit has been toggled it is only executed
once. Finally, the circuit is run in reverse while ignoring all operations on the result rn.
This resets both the carry qubits ci and the input ai to their original state. Figure 5.5
shows the full carry gate for the example constant b = 5.

To give a more thorough argument for the correctness with respect to borrowed qubits,
one possible variant of the execution excluding the uncomputiation is examined more
closely. Assume the constant bi = 0 and during the execution the borrowed qubit
containing the carry from the previous bitwise addition is flipped, indicating that there is
a carry from the previous addition. The circuit for this example is shown in Figure 5.6.

|ci−1�
|ai�
|ci�

|ψ0� |ψ1�

. . . Computation of the
value of the previous

carry |ci−1�

. . .

|ψ2� |ψ3�

Figure 5.6: Computing the carry bit for one input bit in the case bi = 0. The intermediate
states |ψi� are examined in Table 5.1.
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Coefficients |ψ0� |ψ1� |ψ2� |ψ3�
α(1 − ai)γ |000� |100�
β(1 − ai)γ |100� |000�

αaiγ |010� |110� |111�
βaiγ |110� |111� |011�

α(1 − ai)δ |001� |101�
β(1 − ai)δ |101� |001�

αaiδ |011� |111� |110�
βaiδ |111� |110� |010�

Table 5.1: State during the computation of the carry for one bit for the intermediate steps
|ψi� in Figure 5.6. This represents the case where bi = 0 and the previous computations
resulted in a carry, thus ci−1 is flipped. For simplicity, each column shows only the cases
where the coefficient of a specific basis state changes. For example, column |ψ1� gives the
state |ψ1� = α(1−ai)γ |000�+β(1−ai)γ |100�+αaiγ |010�+βaiγ |111�+ · · ·+βaiδ |110�.

The system starts in an initial state, where the content of the borrowed qubits ci−1 and
ci is unknown. Such a state can be described as

|ψ0� = |ci−1� ⊗ |ai� ⊗ |ci� = (α |0� + β |1�) ⊗ ((1 − ai) |0� + ai |1�) ⊗ (γ |0� + δ |1�).
As for a basis state |ai� it holds that ai ∈ {0, 1}, the corresponding coefficients are
simplified to ai and (1 − ai).

Table 5.1 shows how the state of the previous carry ci−1, the input ai and the output carry
ci evolve during the execution of the circuit shown in Figure 5.6. As the X gate can be
thought of as swapping the coefficients of different basis states in the linear combination,
the table only shows which basis states are associated with different coefficients during
execution. For simplicity only changes from the previous state are shown.

The state after the computation of the carry and before the uncomputation can, according
to Table 5.1, then be described as

|ψ3� = βaiγ |011� + βaiδ |010� + β(1 − ai)γ |000� + β(1 − ai)δ |001�
+ αaiγ |111� + αaiδ |110� + α(1 − ai)γ |100� + α(1 − ai)δ |101�

= (β |0� + α |1�) ⊗ (aiγ |11� + aiδ |10� + (1 − ai)γ |00� + (1 − ai)δ |01�).

From this representation, it is evident that the outgoing carry qubit ci is only flipped if
ai = 1, which is correct since the incoming carry ci−1 has been flipped and the circuit
was constructed for bi = 0.

In total, this gate now maps |a, c, 0� to |a, c, rn�, where a is the n-bit input and c is the
register containing n − 2 borrowed qubits.

A naive implementation of an addition gate using the described carry computation would
simply calculate the carry for each subset of qubits in the input and then flip the result bit
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by bit accordingly. But Häner, Roetteler and Svore propose a different implementation
in [16] which is able to use the qubits that are not used in the current iteration of the
algorithm as borrowed qubits. Moreover fewer gate operations are used overall.

This divide and conquer approach recursively computes the carry for a subset of the
input bits and then increments the remaining bits by one accordingly.

Incrementer

To treat carry values for a subset of qubits at once, an incrementer is used. There
are many ways of implementing such a gate. One example would be to use Qiskit’s
multi-control X-Gate2 to flip a qubit – starting from the most significant one – if all less
significant qubits are one. Unfortunately using this gate would introduce unneccessary
complexity as it transpiles into a number of operations that depends on the number of
control qubits.

Fortunately, while the incrementer is used, half of the qubits required for addition are
idle. These qubits can be used as borrowed qubits to create a more efficient version. As
presented in [16], the incrementer is built using a circuit performing quantum-quantum
addition, meaning – in contrast to the addition gates presented in this chapter – not a
built-in constant is added, but the content of another quantum register.

|g�

|x�
SUB SUB

|g�

|x + 1�
Figure 5.7: The incrementer as shown in [16] using n borrowed qubits in the register |g�.

The quantum-quantum adder that is used for this implementation is taken from [35].
This circuit computes

|a� |b� → |a� |a + b� ,

where both registers are large enough to hold an n-qubit integer, while using a linear
amount of Toffoli and CNOT gates. Consequently, its inverse can then be used for
subtraction:

|a� |b� → |a� |b − a� .

As explained in [16], the circuit as shown in Figure 5.7 then realizes an incrementer.
To give an argument for its correctness, assume the register containing n borrowed
qubits resides in some arbitrary basis state |g�. The circuit performs the following

2https://qiskit.org/documentation/stubs/qiskit.circuit.library.MCXGate.
html#qiskit.circuit.library.MCXGate
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transformation:

|g� |x� → |g� |x − g�
→ |g� |x − g�
= |−g − 1� |x − g�
→ |−g − 1� |x − g − (−g − 1)� (5.3)
→ |g� |x + 1� .

Since the bitwise complement of g, denoted as g, is equivalent to −g − 1, where −g is the
two’s complement representation of g, the second register in Equation (5.3) simplifies to
x − g + g + 1. As this derivation is valid for any basis state |g�, it is furthermore valid for
arbitrary content in the borrowed register, as those can be expressed as a superposition
of those basis states.

Finally, a controlled incrementer using the incrementer presented above is constructed by
simply treating the control qubit as the least significant qubit of the input, and therefore
using one more borrowed qubit for the circuit. Should the control qubit be |0�, only itself
is incremented, and should it be |1�, the actual value |x� is incremented. In the latter
case the control qubit is also flipped. Therefore, to return the control qubit to its initial
state, in both cases one X gate has to be appended.

Divide and Conquer Addition

Using both the carry gate and the incrementer, subsets of the input are examined
recursively by splitting the current input x into xL and xH , where xL is comprised of
the lower 
n/2� qubits and xH represents the remaining �n/2� qubits in the upper half.

The circuit first calculates the carry for the addition of the constant to the lower half of
the input using the upper half as borrowed qubits. The information if there is a carry
is saved by toggling an ancilla qubit. This qubit now decides if one has to be added to
the upper half of the input, or if the upper half of the input is left unchanged. This
operation is performed by a controlled version of the incrementer.

At this point, the resulting state is |xL, xH + r�n/2�, r�n/2�� and to be able to reuse the
ancilla qubit it has to be reset to zero. Since the carry operation flips the ancilla qubit
if there is a carry and leaves the qubit unchanged if not, the carry gate can just be
appended to the circuit again to revert the computation of r�n/2�.

Summing up, if l = 
n/2�, one recursion step can be described as follows.

|xL, xH , 0� → |xL, xH , rl�
→ |xL, xH + rl, rl�
→ |xL, xH + rl, rl ⊕ rl�
= |xL, xH + rl, 0�
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|xL�

|xH�

|anc�

+1
CARRY

for xL + bL
+1

CARRY
for xL + bL

recurse
using xL

recurse
using xH

Figure 5.8: A recursive step of the computation of x + b for a constant b known at the
time of construction using one borrowed qubit [16].

Similar to above, the borrowed ancilla qubit cannot be assumed to be zero initially.
Therefore using a similar technique the incrementation of xH is conditioned on the
toggling of this qubit by first conditionally incrementing xH and then flipping all qubits,
before performing the actual calculation. After the calculation is performed all qubits are
flipped again and the ancilla qubit is reset by repeating the carry computation. Figure
5.8 shows the circuit performing this process.

To illustrate why this operation is correct, assume the ancillary qubit is in some unknown
state α |0� + β |1�. In the case where the carry is zero and the ancillary qubit is not
flipped, the state evolves in the following way (xL is left out since the content of xL is
unchanged during the computation):

α |xH , 0� + β |xH , 1� → α |xH , 0� + β |(xH + 1), 1�
→ α |xH , 0� + β |−(xH + 1), 1�
→ α |xH , 0� + β |−(xH + 1) + 1, 1� = α |xH , 0� + β |−xH , 1�
→ α |xH , 0� + β |xH , 1� .

In the case where the ancilla qubit is flipped because there is a carry the state is:

α |xH , 0� + β |xH , 1� → α |xH , 0� + β |(xH + 1), 1�
→ α |xH , 0� + β |−(xH + 1), 1�
→ α |xH , 1� + β |−(xH + 1), 0� (toggle by the

first carry gate)
→ α |xH + 1, 1� + β |−(xH + 1), 0�
→ α |xH + 1, 0� + β |−(xH + 1), 1� (toggle by the

second carry gate)
→ α |xH + 1, 0� + β |xH + 1, 1� .

This process is then repeated by splitting xL and xH recursively and applying the same
operations until the base case n = 1 is reached.
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At this point, all carry qubits that influence a particular qubit are already applied by the
increment operation. Therefore the base case is only the toggling of the qubit conditioned
on the input bi.

Ultimately, this approach computes the sum x + b using only one borrowed ancillary
qubit.

Controlled addition

As modular exponentiation will be implemented using a series of controlled modular
multiplications, which in turn are based on a series of doubly controlled modular additions,
the gates shown up until now need to be adapted slightly.

The modular addition that will be used to perform modular multiplication will make use
of both a single controlled carry gate and a doubly controlled carry gate.

To facilitate the use of control bits, the carry gate simply is adapted by controlling all
operations that are performed on the resulting bit rn. In the version with one control
bit, the CNOT gates are replaced by Toffoli gates and in the version with two control
bits, Qiskit’s multi-control Toffoli gate can be used, as the number of control qubits stays
constant.

The addition is then adapted by using this controlled carry gate.

Extension to Modular Addition

The addition and the carry computation itself can be extended to implement modular
addition by performing the addition conditionally.

The modular addition has to make sure that the result a + b is smaller than the modulus
p. Since a < p − b implies that a + b < p, the addition can be carried out as expected in
this case. If on the other hand a ≥ p − b, this implies that a + b ≥ p. In this case, p has
to be subtracted from the result to arrive at (a + b) mod p.

Häner, Roetteler, and Svore use an approach similar to the modular addition in [34]
and [2] that implements exactly this case distinction by adding b if a < p − b and
subtracting p − b if a ≥ p − b.

Figure 5.9 shows the process for modular addition as described in the following paragraphs.

To arrive at a doubly controlled version of this modular addition, the doubly controlled
carry gate is used as the comparator. Comparing some input a with the known constant
p − b is equivalent to calculating the most significant bit of the addition a + (−(p − b)).
In the case a < p − b, the result is negative and the ancilla qubit is flipped.

This qubit is then used to control all subsequent operations. First, a controlled addition
with b is applied. Afterwards, the ancilla qubit is flipped according to both control bits
(i.e., a Toffoli gate is applied to this qubit), before finally performing the controlled
subtraction by p − b.
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input: |a�

borrowed: |g�

ancilla: |0�
control: |c0�
control: |c1�

CARRY
for

+(b − p)

ADD b ADD b − p CARRY
for
−b

|(a + b) mod p�

|g�

|0�
|c0�
|c1�

Figure 5.9: Circuit for the computation of a + b mod p using the carry gate as a
comparator [16].

A subtraction can either be performed by using the fact that the addition is reversible,
or by simply adding b − p instead of subtracting p − b.

The ancilla qubit that saves the result of the comparator is expected to be zero at
the beginning of the operation in Figure 5.9. This leads to a circuit that performs no
operation unless both control bits |c0� and |c1� are set to one since both the addition and
the subtraction are conditioned on the result of the comparator as saved in the ancilla
qubit. If both control bits are set and the comparator still gives zero, the Toffoli gate
after the addition will flip the result bit to perform the subtraction with p − b.

Finally, the ancilla qubit indicating the result of the comparator has to be reset to zero.
This can be done by exploiting the fact that if b was added to the register, the result will
always be greater or equal than b and if p − b was subtracted, the result will always be
less than b. As after both the conditional addition as well as the conditional subtraction
have been applied the ancilla qubit is one if p − b was subtracted, it can again be flipped
by another comparison with b.

5.2.3 Time and Space Complexity
First, the complexity of modular addition using the QFT from Section 5.2.1 is exam-
ined. The number of qubits, excluding control qubits, this gate uses can be given
as Sqft_mod_add(n) = n + 2 since one ancilla qubit is needed to control addition and
substraction and the addition in Fourier space uses n + 1 qubits to handle overflows.

The non-modular addition in Fourier space is comprised of one conditional rotation for
each qubit, which is a linear time algorithm. However, the time complexity of the quantum
Fourier transform in the algorithm for modular addition dominates the runtime of the
circuit. The circuit for modular addition is comprised of 5 additions and subtractions on
n + 1 qubits as well as 4 applications of the QFT or its inverse on n + 1 qubits and some
constant number of operations manipulating the ancilla qubit. Its runtime can be given
as

Tqft_mod_add(n) ∈ O(5(n + 1) + 4(n + 1)2) = O(n2).

In the following only the leading most significant term of the polynomial representing
the runtime bound will be examined.
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5.2. Modular Addition

The carry-based addition uses a gate computing the final carry after the addition of a
constant as its main building block. In the worst case, this gate uses 6 operations per
input qubit which gives a time complexity of Tcarry(n) ∈ O(n). Note that in contrast
to the analysis in [16] where the number of applied Toffoli gates is of interest and all
other operations in the carry gate are treated as constant overhead, here the number of
elementary operations is considered.

The next building block is an incrementer gate. This gate uses an addition gate acting on
two quantum registers which computes the result in O(n) [35]. In the incrementer, the
adder is used twice on n + 1 qubits (to include the control qubit). Additionally O(n) X
gates are applied, which gives the time complexity of the incrementer as Tinc(n) ∈ O(n).

In each recursive step of the addition, the carry gate as well as the incrementer are
applied twice for half the current qubits. Additionally the upper half of the register is
conditionally flipped twice. This leads to a complexity of each recursive step given by
Tstep(n) ∈ O(Tcarry(n/2) + Tinc(n/2) + 2n/2) = O(n). The total time complexity of the
addition can then be given using a recursive formula similar to [16]:

Tcarry_add(n) = Tcarry_add

��
n

2

��
+ Tcarry_add

��
n

2

�
+ Tstep(n).

This gives the runtime of the carry-based addition as

Tcarry_add(n) ∈ O(n log2(n)).

Finally, the extension of this gate to perform modular addition (see Figure 5.9), uses
two adders as well as two carry gates to perform the comparison which leads to a total
runtime of

Tcarry_mod_add(n) ∈ O(2Tcarry_add(n) + 2Tcarry(n)) = O(n log2(n)).

This shows that although both approaches give polynomial time algorithms the carry-
based approach, ignoring multiplicative constants, is more efficient.

What remains to be shown is the number of qubits used by the carry-based addition.
This number, excluding control qubits, is greater than the corresponding number for the
version using the quantum Fourier transform:

Scarry_mod_add(n) = n + (n − 1) + 1 = 2n.

This is due to the fact that n − 1 borrowed qubits are needed to perform the comparisons
using the carry gate. However, as will be shown in the next section, there are enough idle
qubits that can be borrowed during multiplication so this shortcoming does not affect
the number of used qubits for the multiplication negatively.
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5. Modular Exponentiation

5.3 Multiplication
As described in [2, 16, 34], both implementations presented in Section 5.2 can be utilized
to perform modular multiplication. Since the goal is to perform modular exponentiation,
a controlled version of the multiplication is needed. Ultimately, assuming the control
qubit c is set, the following operation will be carried out:

|c, x� → |c, bx mod p� .

5.3.1 Partial Multiplication
The multiplication circuit is built using two partial multiplications and a swap of registers.
This partial multiplication computes |x, y� → |x, (y + bx) mod p� for an integer constant
b. The first quantum register contains the n bit integer x and the second register will
contain the n bit result. Additionally, the ancilla qubits required for the modular addition
as well as one control qubit are part of the circuit as well.

The top register containing x will, in addition to the overall control bit, be used to
control modular additions in the second register. Using the decomposition of x into its
binary representation x = 20x0 +21x1 + · · ·+2n−1xn−1, the circuit adds the precomputed
constant b · 2i conditioned on the qubit xi, which results in the following state transitions:

|x, y� → |x, (y + b · 20x0) mod p�
→ |x, ((y + b · 20x0 mod p) + b · 21x1) mod p�
. . .

→ |x, (. . . (y + b · 20x0 mod p) + b · 21x1 mod p) + · · · ) + b · 2n−1xn−1) mod p�
= |x, (y + b · (20x0 + 21x1 + · · · + 2n−1xn−1)) mod p�
= |x, (y + bx) mod p� .

These additions can be carried out using a series of the doubly controlled gates presented
in Section 5.2 conditioned on the individual bits xi in the first register.

5.3.2 Complete Multiplication
To arrive at the desired result containing only ax mod p in the first register, some
additional work has to be done. First, the multiplication as described above is performed,
which takes the system from |x, 0� to the state |x, (0 + bx) mod p�. Then a swap of
both registers conditioned on a control bit is performed. Finally, another application of
the multiplication described in the previous subsection with the additive inverse of the
multiplicative inverse of b modulo p gives the final result. Since for the purpose of this
algorithm p is always prime, there will always be such a multiplicative inverse.
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5.3. Multiplication

To illustrate how the circuit will arrive at the desired state |bx mod p, 0�, the individual
transitions, assuming the control qubit is set, are the following:

|x, 0� → |x, bx mod p�
→ |bx mod p, x� .

At this point, another partial multiplication |x�, y�� → |x�, (y� + (−b−1)x�) mod p�, with
x� = bx mod p and y� = x is performed. This completes the uncompuation of x in the
second register because, as the following calculation shows, the second register is |0�.

(y� + (−b−1)x�) mod p = (x − b−1(bx mod p)) mod p

= (x − b−1bx) mod p

= (x − x) mod p

= 0

Since the second register is initially set to zero and will arrive at zero after the computation,
it can be seen as n additional ancilla bits that are used for multiplication.

5.3.3 Time and Space Complexity
The multiplication algorithm presented in Section 5.3 can be based on any of the modular
addition circuits presented above. Consequently its runtime will be given depending on
Tmod_add(n) which can be substituted with the respective measure.

The multiplication starts with performing n modular additions, then swaps both registers
before finally performing another n modular additions. Each swap operation can be
performed using a constant number of CNOT gates. The complexity of this operation is
dominated by the time needed to perform the additions, which is why the swaps can be
ignored for the final measure. This leads to a runtime complexity of

Tmod_mul(n) ∈ O(n · Tmod_add(n)).

Substituting the runtime bounds for both addition circuits above yields

Tqft_mod_mul(n) ∈ O(n3)

and
Tcarry_mod_mul(n) ∈ O(n2 log2(n)).

The multiplication circuit uses two registers, where both are big enough to hold an n qubit
integer. In addition to that, the QFT-based modular addition needs one qubit to hold the
addition overflow and another qubit to analyze the most significant qubit after addition.
In total Sqft_mod_mul(n) = 2n + 2 excluding the control qubit. The carry-based addition
circuit only uses one ancilla qubit to hold the most significant qubit after addition but
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5. Modular Exponentiation

uses n − 1 borrowed qubits. However, each addition step in the partial multiplication
shown in Section 5.3.1 only uses one qubit of the left register as control. Therefore there
are n − 1 idle qubits that can be used as borrowed qubits without increasing the number
of total qubits used. This leads to the space complexity of Scarry_mod_mul(n) = 2n + 1.

Having examined the circuit size for both of these implementations, the overall time-
complexity for modular exponentiation can be given as

Tqft_mod_exp(n) ∈ O(n4)

and
Tcarry_mod_exp(n) ∈ O(n3 log(n)).

5.4 Montgomery Modular Multiplication
The multiplication algorithm presented in the previous section is able to perform multi-
plication modulo a prime p by using modular adders in succession. This creates overhead,
as it requires a conditional subtraction or addition in each addition step to transform
the result in its representation modulo p. Of course a naive implementation of modular
multiplication would be to multiply the inputs in a register sized appropriately to hold
the result and then perform a division by p to obtain the residue at the end only.

Implementing such a division is quite cumbersome, as it requires trial subtractions
by multiples of p and corrections if the result becomes negative. Additionally, these
operations have to be conditioned on the most significant bit of the currently examined
value, which in case of the addition in Fourier space as presented in Section 5.2.1
neccesitates performing a Quantum Fourier transform and its inverse in each step, thus
further increasing the overhead.

Montgomery modular multiplication [22] speeds up the modular multiplication process
by changing the representation of the input to allow for easier reduction of the result to
a representation modulo p.

For the algorithm, the performed multiplication is changed slightly. Instead of performing
the multiplication x · b for a constant b, the algorithm performs the multiplication
t = x · (bR mod p), for some R such that gcd(R, p) = 1.

The factor bR mod p is then called the Montgomery form of b. Of course to use the
result in further calculations, a final reduction, the Montgomery reduction

REDC(x · (bR mod p) | p, R) = x · (bR mod p)R−1 (mod p)

is needed.

Rines and Chuang [30] propose an algorithm that performs the multiplication as well as
the subsequent Montgomery reduction by using addition in Fourier space as presented in
Section 5.2.1. However, the authors employed an adapted version of the Fourier transform
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5.4. Montgomery Modular Multiplication

that uses rotations around the Y-axis. This version might introduce unwanted phase
differences, which is why in this text a version using the usual QFT is presented.

For the reduction, R is chosen to be 2n, where n is the smallest n such that 2n > p.
In the first step, the values u = tp−1 mod 2n and s = (t − up)/2n are calculated. For
the second value s, it can be shown that this result is congruent to the desired result
t2−n(mod p):

(t − up)2−n ≡ t2−n − up2−n (mod p)
≡ t2−n (mod p).

In this congruence that fact that p ≡ 0 (mod p) is used. Furthermore, the division in
the calculation for s will always give an integer result as

t − up ≡ t − tp−1p ≡ 0 (mod 2n).

Finally, it also holds that s is not only congruent to the result, but at most one correcting
addition away from the desired result.

t − up

2n
≥ −up

2n
= u

2n
(−p)

The inequality holds since t is always greater than or equal to 0, as it is the result
of the multiplication of the positive integer x and the positive Montgomery form of b.
Furthermore, both u and p are positive integers.

Since u < 2n, u can be substituted by 2n to show that t−up
2n ≥ 2n

2n (−p) = −p. Using the
fact that both u and p are positive, an upper bound can be given:

t − up

2n
<

t

2n
.

As t is the result of a multiplication of two integers smaller than p and 2n > p is set by
construction, the following holds for the result:

−p ≤ t − up

2n
<

p · p

p
= p. (5.4)

To sum up, this step gives an integer s which is congruent to the desired result t2−n (mod p)
and lies between −p and p. Therefore to get the final result only a conditional addition
of p is needed, in case p is negative.

5.4.1 Quantum Algorithm
Of course for the implementation of the algorithm outlined above, any addition algorithm
can be used. However, using the addition in Fourier space as described in Section 5.2.1,
allows for certain optimizations that will be described here, which is why this addition
algorithm is chosen.
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5. Modular Exponentiation

The algorithm presented in [30] transforms the result of the multiplication t = x(bR mod p)
to xb mod p. To perform such a multiplication, repeated additions similar to the ones
described in Section 5.3.1 can be used, with the only difference that regular addition
instead of modular addition is used and the result register is sized appropriately to hold
the result of the multiplication.

Given the input |c�1 |x�n |0�2n+1, the first register contains the control qubit and the
second register contains the input x and has size n, such that 2n > p. Since the third
register will have to hold the result of the multiplication, 2n qubits have to be used.
Additionally one ancilla qubit that will be required later is also included.

To keep the description concise, the control qubit c and the input x will be left out of the
description of the state. Furthermore, since the register is subdivided in varying ways
during the algorithm, the size of a register will be given as subscript in the descriptions,
in case the size is greater than one.

To compute t in the second register, repeated additions are performed. By adding in
Fourier space, only one QFT at the beginning is needed. Afterwards, the controlled
additions (see Section 5.2.1) can be performed in sequence without leaving Fourier space.
The factor bR mod p is known at the time of construction and can therefore be build
into the circuit.

After this initial multiplication, the system resides in the state

|φ(t)�2n+1 = |φ(x · (bR mod p))�2n+1 .

The quantum Montgomery reduction will now take this state and transform it to

|0�n |xb mod p�n |0�1 .

Estimation Stage

The first stage of the Montgomery reduction calculates the result s = (t − up)/2n. From
s alone, the input t cannot be reconstructed. Consequently, the value u is also part of
the output:

|φ(t)�2n+1 → |φ((t − up)/2n)�n+1 |u�n . (5.5)

In each iteration, one qubit ui of the value in the second result register is fixed by simply
assigning the current least significant qubit of the first register as the next qubit of the
second register. Of course the left register contains the value in Fourier space and it
therefore has to be transformed first, as the register content at the beginning of the ith
iteration is as follows.

|φ(t�)�l |u�i−1 = |φl(t�)� . . . |φ1(t�)� |ui−1� . . . |u1�

Here, l is the integer such that l + (i − 1) = 2n + 1.
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|φ(t)�2n+1

...
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H

−p∗
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t−up

2n

��
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Figure 5.10: Estimation stage for quantum Montgomery reduction, as shown in [30]. The
2n + 1 qubit register containing the input is successively reduced in size, which implicitly
divides its content by 2. Here −p∗ denotes subtractions that ignore the least significant
qubit. Note that the register order differs from Equation (5.5) to highlight the fact that
the least significant qubit of the bottom register is reused as the most significant qubit of
the top register.

Fortunately, the properties of the Quantum Fourier transform suggest that not the whole
register, but only the least significant qubit, has to be transformed. Examining this
particular qubit at the beginning of each iteration, where |φ(t�)�l is the register content
at this moment, reveals that a single Hadamard gate will suffice to transform this qubit
back to the computational basis.

H |φ1(t�)� = H

� 1√
2

�
|0� + e

2πit�
2 |1�

��
= H

� 1√
2

�
|0� + (−1)(t� mod 2) |1�

��
= |t�

1�

(5.6)

The Montgomery reduction thus only requires a simple extraction of the least significant
qubit, whereas the trial subtractions, required for division, need a full QFT on the whole
register.

As the least significant bit, from now on referred to as ui, has been extracted and added
to the second register, the value in the first register has effectively been divided by two.

In the last step of each iteration, the extracted qubit ui is then used to control a
subtraction by �p/2�. Making use of the properties for the QFT yet another time, the
subtraction can be performed by not subtracting p/2 from the resulting l − 1 qubit
register, but instead subtracting p from the left register in combination with the just now
extracted ui, but ignoring all operations that would be performed on ui.
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To show the correctness for all iterations, a formal argument is now given.

Lemma 5.4.1. One iteration of the estimation stage performs the transformation

|φ(t�)�l |u�i−1 → |φ(t�/2 − t�
1 · (p/2))�l−1 |t�

1�1 |u�i−1
= |φ(t�/2 − ui · (p/2))�l−1 |ui�1 |u�i−1
= |φ(t�/2 − ui · (p/2))�l−1 |u�i .

Proof. In the proof, the cases where t� is even and where t� is odd are distinguished.

Case 1: t� is even. It follows from Equation (5.6) that |φ1(t�)� = H |0�, and therefore
|t�

1� = |ui� = |0� after the transformation of the least significant qubit. Therefore, no
subtraction will be performed and after the iteration, the system will be in the state

|φl(t�)� . . . |φ2(t�)� |0� |u�i−1 .

Examining only the leftmost l − 1 qubits, this state can further be rewritten as� 1√
2

�
|0� + e

2πit�
2l |1�

��
⊗ · · · ⊗

� 1√
2

�
|0� + e

2πit�
22 |1�

��
.

As t� is even it further holds that t�
2l =

t�
2

2l−1 and t�
2 ∈ Z. Using this equality, the former

state is expressable as

� 1√
2

�
|0� + e

2πi t�
2

2l−1 |1�
��

⊗ · · · ⊗
� 1√

2

�
|0� + e

2πi t�
2

2 |1�
��

= |φl−1(t�/2)� ⊗ · · · ⊗ |φ1(t�/2)�
= |φ((t�/2) − 0 · (p/2))�l−1
= |φ((t�/2) − ui · (p/2))�l−1 .

Case 2: t� is odd. It holds that |φ1(t�)� = H |1� and therefore |t�
1� = |ui� = |1�. As

ui = 1, the subtraction with p, ignoring the least significant bit as described above, is
performed on the leftmost l − 1 qubits:

|φl(t�)� . . . |φ2(t�)� |1� → |φl(t� − p)� . . . |φ2(t� − p)� |1� .

As in this case for any prime p > 2, t� − p is even and t�−p
2 ∈ Z, a similar equality can be

given:

t� − p

2l
=

t�
2 − p

2
2l−1 .
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Applying this equality in a similar manner as in the first case gives the desired represen-
tation of the leftmost l − 1 qubits of the result after the subtraction.� 1√

2

�
|0� + e

2πi(t�−p)
2l |1�

��
⊗ · · · ⊗

� 1√
2

�
|0� + e

2πi(t�−p)
22 |1�

��

=
� 1√

2

�
|0� + e

2πi

�
t�
2 − p

2

�
2l−1 |1�

��
⊗ · · · ⊗

� 1√
2

�
|0� + e

2πi

�
t�
2 − p

2

�
2 |1�

��

= |φ((t�/2) − 1 · (p/2))�l−1
= |φ((t�/2) − ui · (p/2))�l−1

Again, the fact that this is the representation of the subtraction result in Fourier space
(see Section 4.1) is used.

Summing up, this shows that in both cases the result of the iteration is

|φ(t�/2 − ui · (p/2))�l−1 |t�
1� |u�i−1 = |φ(t�/2 − ui · (p/2))�l−1 |ui� |u�i−1

= |φ(t�/2 − ui · (p/2))�l−1 |u�i .

The estimation stage starts with a register containing the Fourier-transformed result of the
initial multiplication of the integer x with the Montgomery form of the constant b. This
product is denoted by |φ(t)�2n+1 = |φ(x · (b2n mod p))�2n+1. In total, the transformation
described by Lemma 5.4.1 will be performed n times for a decreasing number of qubits
in the register. It remains to show that ultimately, the state

|φ((t − up)/2n)�n+1 |u�n

as described at the beginning of Section 5.4 is reached.

Theorem 5.4.2. After n iterations as described above, the estimation stage performs
the transformation

|φ(t)�2n+1 → |φ((t − up)/2n)�n+1 |u�n ,

where u = tp−1 mod 2n.

Proof. The proof will proceed by induction on the number i of performed iterations.
In constrast to ui which describes the ith bit of the register containing u, t(i) and u(i)

describe the contents of the first and second register after the ith iteration in this proof.

Base case: i = 1. In the base case it has to be shown that u(1) = tp−1 mod 21 and
t(1) = (t − u(1)p)/21.

As p is assumed to be odd, the equation pp−1 ≡ 1 mod 2n implies that p−1 is odd also,
which in turn shows that the least significant bit of tp−1 depends solely on t. Therefore
the equality

tp−1 mod 2 = t mod 2 = t1
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applies. Lemma 5.4.1 shows that the least significant qubit t1 is extracted in the iteration
and assigned in the base case as the first bit of u. Using this fact u(1) = t1 = tp−1 mod 21

is shown.

Furthermore, Lemma 5.4.1 asserts that the state |φ(t)� is transformed to
|φ(t/2 − u1 · (p/2))�. Since u(1) consists only of the single bit u1 also the equation
t(1) = (t − u(1)p)/21 holds.

Induction hypothesis: Suppose i ≥ 1 and u(i) = tp−1 mod 2i and t(i) = (t − u(i)p)/2i

holds.

Induction step: Lemma 5.4.1 states that in one iteration the state |φ(t(i))� |u(i)�
is transformed to |φ(t(i)/2 − ui+1 · (p/2))� |t(i)

1 � |u(i)�. It first will be shown that the
extension of |u(i)� with the new most significant qubit |ui+1� = |t(i)

1 � preserves the
condition u(i+1) = tp−1 mod 2i+1.

As t
(i)
1 is the least significant bit of t(i), it can also be expressed as t(i) mod 2. Therefore

the extension of u(i) with this bit as its most significant bit is given by

u(i+1) = ui+12i + u(i)

= (t(i) mod 2)2i + u(i)

=
�

t − u(i)p

2i
mod 2

�
2i + u(i) (using ind. hyp. for t(i))

=
�

t − (tp−1 mod 2i) · p

2i
mod 2

�
2i + tp−1 mod 2i. (using ind. hyp. for u(i))

Now the congruence t ≡ tpp−1 mod 2 can be applied resulting in

u(i+1) =
�

tpp−1 − (tp−1 mod 2i) · p

2i
mod 2

�
2i + tp−1 mod 2i.

Aditionally, the fact that for odd p, p ≡ 1 mod 2 is used to reduce the equation to

u(i+1) =
�

tp−1 − (tp−1 mod 2i)
2i

mod 2
�

2i + tp−1 mod 2i.

The first half of this expression represents exactly the (i + 1)th bit of tp−1, which is then
shifted by i bits to the left before being added to tp−1 mod 2i. In total this gives

u(i+1) = (tp−1)i+12i + (tp−1 mod 2i)
= tp−1 mod 2i+1.

It remains to be shown that t(i+1) = (t − u(i+1)p)/2i+1. As mentioned above, the value in
the leftmost register after this iteration is given by |φ(t(i)/2 − ui+1 · (p/2))�. Therefore
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Figure 5.11: From a value that is congruent to the desired result, the correction stage
computes the representative of the residue class.

t(i+1) can be expressed as

t(i+1) = t(i)/2 − ui+1 · (p/2)

=
t−u(i)p

2i

2 − ui+1
p

2 (using the induction hypothesis)

= t − u(i)p

2i+1 − 2iui+1p

2i+1

= t − (ui+12i + u(i))p
2i+1 .

Similar to the argument for u(i+1), the extension with the new most significant bit can
be expressed as u(i+1) = ui+12i + u(i). This fact can be applied to show that the value in
the leftmost register after the iteration is

t(i+1) = t − u(i+1)p

2i+1 ,

which concludes this argument.

In total this estimation stage is performed only using Hadamard gates and conditional
subtractions, without ever having to fully transform the result back to the computational
basis. As noted at the end of the introduction of this section, a conditional addition is
still needed to calculate the representative of the residue class.

Correction and Uncomputation

After the estimation stage, the system resides in the state

|φ((t − up)/2n)�n+1 |u�n ,

where the first register contains a value that is congruent to the desired representative
of the residue class, and (by Equation (5.4)) lies between −p and p. In case the value
is negative, a correcting addition with p is still needed. Unfortunately, to examine the
sign of the value, the most significant qubit sn+1 has to be extracted. This requires a
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5. Modular Exponentiation

complete inverse QFT on the left register and another QFT on all but the sign-qubit in
the left register giving

|sn+1� |φ(s)�n |u�n .

So after an addition controlled by |sn+1�, the second register finally will contain the result

|sn+1� |φ(xb mod p)�n |u�n .

Now two parts have to be uncomputed, the sign qubit |sn+1� and the value |u�n. Rines
and Chuang [30] first modify the sign bit to be able to include it in the last register, thus
extending |u�n to |u�n+1 and finally uncompute |u�n+1. This is achieved by using the
fact that, if the conditional addition with the odd value p has been performed, the least
significant qubit of the result |(xb mod p)1� will change. By flipping |sn+1�, conditioned
on this qubit, the least significant qubit |s1� before this correction can be restored.
Summing up, a Hadamard gate will be used to extract |(xb mod p)1�. Afterwards, this
qubit will control a CNOT operation on |sn+1�, before restoring |φ1(xb mod p)� using
another Hadamard gate.

As the newly calculated qubit |s1� represents the least significant qubit before the
correction it can be treated similar to the estimation stage and reinterpreted as the most
significant bit |un+1� of the last register. In total, the state can now be described as

|un+1� |φ(xb mod p)�n |u�n .

This way, only the value u = tp−1 mod 2n+1 has to be uncomputed. For this task, the
manner in which t was computed at the beginning of this section, can be applied in
reverse. Since t is the result of conditional additions with a value bR · 2i mod p that is
known at the time of construction a similar representation can be used to express u:

u =
n−1#
i=0

xi(b2n · 2i mod p)p−1 mod 2n+1.

Therefore, n conditional subtractions by (b2n · 2i mod p)p−1 will restore the value of the
sign qubit as well as the last register to zero.

Finally, the result of the full Montgomery reduction is the result of the multiplication
(including the input |x�n):

|x�n |0� |φ(xb mod p)�n |0�n .

A final inverse QFT can now be used to obtain

|x�n |0� |xb mod p�n |0�n .

76



5.4. Montgomery Modular Multiplication

In-place Multiplication

In the last step, this multiplication algorithm has to be extended to allow in-place
multiplication as this is required to use it in Shor’s algorithm. As described in [30], this
is achieved by examining some properties of the out-of-place multiplication an its inverse.

The out-of-place algorithm performs the multiplication

|a�n |0�2n+1 → |a�n |0� |ab mod p�n |0�n

for a classical value b that is known at the time of construction. Ignoring the ancilla
qubits from now on, using the input b−1 mod p, the gate transforms |a�n |0�n to

|a�n |ab−1 mod p�n .

Therefore its inverse can be described as

|a�n |ab−1 mod p�n → |a�n |0�n . (5.7)

Since for any x, x = (xb mod p) · b−1 mod p, the description of the inverse gate in
Equation (5.7) can be used to show that the following transformation can be performed:

|xb mod p�n |x�n = |xb mod p�n |(xb mod p) · b−1 mod p�n

→ |xb mod p�n |0�n .

Therefore, to obtain an algorithm for in-place multiplication, first an out-of-place multi-
plication with b is performed, then both registers are swapped, before finally performing
the inverse of the out-of-place multiplication with b−1 as input.

As a controlled version of this gate is needed, the out-of-place mutliplication can be
controlled by conditioning the additions not only on the input x but also on the control
bit. This requires doubly controlled additions as described in Section 5.2.1. Additionally
the swap has to be performed based on the control bit.

In total the gate can then be described as

MONT_MULb(|1� |x�n |0�2n+1) = |1� |xb mod p�n |0�2n+1

and

MONT_MULb(|0� |x�n |0�2n+1) = |0� |x�n |0�2n+1 .

5.4.2 Time and Space Complexity
A major drawback in terms of runtime efficiency for the implementation of the modular
multiplication based on the adder in Fourier space (see Section 5.2.1 and 5.3) is that
for each modular addition the most significant qubit needs to be extracted using a full
quantum Fourier transform.
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Since in the algorithm for Montgomery multiplication not the most but the least significant
qubit is extracted, and since this operation can be done in constant time with only one
Hadamard gate, the circuit size tends to be significantly smaller.

In summary, the circuit presented here performs the following operations:

• Starting from the input in the computational basis, the QFT is applied which is
executed in quadratic runtime.

• The multiplication is then performed using n additions on O(n) qubits giving
O(n2).

• The estimation stage then applies n Hadamard gates and subtracts n times on a
subregister on decreasing size of at most O(2n) which results in a total runtime of
this stage as O(n2).

• In the correction stage, one QFT, one inverse QFT and an addition each on O(n)
qubits is applied. Additionally a constant number of gates are required giving
O(n2).

• Finally, the uncomputation stage is composed of n subtractions on a register of
size O(n), which is also performed in quadratic time.

This shows that the largest term in the polynomial representing the runtime is a quadratic
term and the runtime can be given as

Tmontgomery_mod_mul(n) ∈ O(n2).

Substituting into the corresponding formula for modular exponentiation, this yields the
following bound:

Tmontgomery_mod_exp(n) ∈ O(n3).
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CHAPTER 6
Results and Discussion

For this thesis, the algorithm presented in Chapter 4 including its optimized variants
has been implemented in Qiskit1. The implementation utilizes the multiplication and
modular exponentiation circuits presented in Chapter 5 as oracles.

Also, other implementation variants were considered for this work. One notable example
is presented in [19]. Here the fact that given an oracle that estimates one bit of the
discrete logarithm with success probability 1/2 +  , where  is small but positive, the
discrete logarithm can be obtained after a polynomial number of queries [19]. The
quantum part of the algorithm is therefore adapted to only obtain one bit of the result.

In this quantum algorithm, the second stage is initialized not with the value 0 as in
the version used for this text, but with a value that is classically computed based on
the measurement of the first stage. As this is currently not possible in Qiskit, the only
way of implementing this algorithm would be to implement the classical computation of
the initialization value in the quantum circuit itself. Since this process would prompt
the need for even more ancilla qubits and therefore would increase space complexity
drastically, this algorithm was not chosen for implementation.

For the implementation of Shor’s algorithm, a gate computing modular exponentiation
based on modular multiplication is required. The fastest classical multiplication algorithm,
for large n, is the Schönhage-Strassen multiplication based on the fast Fourier transform
[31]. This algorithm however uses a lot of additional space as ancilla qubits [30, 39].
Since the goal of this work was to keep the number of qubits low, the multiplication gates
presented in Chapter 5 have been chosen.

This chapter examines the success probability of Shor’s algorithm for the discrete logarithm
problem using simulations performed in Qiskit. For this comparison, a fixed number
of trials was performed and it was recorded how many of them were successful, by

1https://github.com/mhinkie/ShorDiscreteLog
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6. Results and Discussion

performing modular exponentiation with the resulting discrete logarithm classically to
verify the result. Additionally, the different implementations of modular exponentiation
are compared with respect to the number of used qubits as well as the number of applied
gate operations.

Using the optimizations from Section 4.3.5, the number of used qubits for the overall
algorithm can be reduced to S(n) + 1, where S(n) is the space required to perform
modular exponentiation, excluding control qubits, for an n-bit module. Therefore the
smallest circuit presented in this thesis, measured by its space complexity, is based on the
modular exponentiation gate by Häner, Roetteler and Svore [16], where S(n) = 2n + 1.
Unfortunately, as noted in the description of the optimization in Section 4.3.5, it is not
yet possible to execute this particular circuit on the quantum computers used for this
work as the feature of controlling quantum gates by classical bits is not yet available.
However there have been promising results indicating that it is possible to use this variant
of phase estimation on quantum computers [9], which is why it was implemented in
this work aswell. Furthermore, according to IBM’s roadmap for quantum computer
development [18, 36], this feature, referred to as ‘dynamic circuits’, should be available
soon.

Modular exponentiation gate # of qubits S(n) Gate operations
Beauregard [2] 2n + 2 O(n4)
Häner, Roetteler and Svore [16] 2n + 1 O(n3 log(n))
Rines and Chuang [30] 3n + 1 O(n3)

Table 6.1: Number of qubits, excluding control qubits, and gate complexity for the
different gates implemented in Chapter 5.

Using these implementations and the simulators it was possible, in addition to the
correctness proofs presented in Chapter 4, to experimentally verify the correctness of
the algorithm for small examples. Refer to Figure 6.1 of a comparison of the success
probabilities for the example p = 11. For this experimental verification not only the
expected performance on an actual quantum computer is of interest, but also to a certain
degree the performance of each version of the algorithm in the simulator. To obtain a
simulation result, Qiskit calculates the state vector for each step in the algorithm (see
Section 2.3) and, as explained in Section 2.2, such a vector will have exponential size
with respect to the register size. Therefore, when performing simulations, keeping the
number of qubits as small as possible is vital for improving the runtime of the simulation,
even for small instances.

The experiment results in Figure 6.1 also highlight the role of the order r of the different
generators for the success probability of this algorithm. For some values of r, such as
for the generators 3, 4, 5 and 9 with order r = 5 in the example, the chance of obtaining
the correct result is notably higher than for the others. This fact highlights the role of
the factor φ(r)/r in the formula for the success probability given in Section 4.3.3. It
defines a strict upper bound that depends on the order r. This is because even in the
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Figure 6.1: Comparison of the average success probability per generator with p = 11.
The probabilities have been obtained using different top register sizes n.

cases where the phase is estimated exactly, in some trials the returned value k̃ identifying
the eigenvector is not invertible modulo r. In these cases the calculation of the discrete
logarithm fails.

For some instances, especially those where r is prime, φ(r) is close to r and as a result
φ(r)/r is close to 1. This is the case for the generators mentioned above where r = 5 and
φ(r)/r = 4/5. On the contrary, for the generators 2, 6, 7 and 8, the order is composite
with r = 10, which results in the significantly lower success probability of at most 4/10.
The remaining generator g = 10 is a notable exception, since its order r = 2 is prime
but the probability seems to be rather low aswell. Although it is prime there is only one
possible value of k̃ that leads to a result, which gives a probability of at most 1/2.

In addition to the comparison of success probabilities for different generators, Figure 6.1
also highlights the improvement of the phase estimation process when a larger top register
is used. As mentioned in Section 4.2, the size of this register n influences the quality of
the estimate and the figure shows that the larger this register is, the better the chance of
successfully obtaining the discrete logarithm. The figure indicates that increasing the size
of the top register improves the probability of obtaining the discrete logarithm almost to
the described strict upper bound φ(r)/r for this example.

Using Qiskit it is also easily possible to not only compare the implementations using
their asymptotic runtime bounds but also using the number and type of gate operations
that are applied after transpilation. One way to get comparable measures for the number
of gates used in these circuits would be to transpile them using a real quantum computer
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as the backend. This forces the transpiler to use exactly the set of elementary gates
available on this quantum computer, which would allow for an estimation of the actual
number of gates applied. However, using a real device as the backend also prompts the
transpiler to adhere to this device’s qubit layout (for example the map shown in [26]).
This introduces SWAP operations which in turn increase the number of applied CNOT
operations. As some algorithms might be better suited for certain qubit layouts this
overhead might be different for each circuit and therefore could distort the comparison.

For this reason, another way of obtaining the number of elementary gates is chosen.
Qiskit’s transpiler is parametrized to use a specific set of elementary gates that are
allowed to persist after transpilation. For the comparison in Figure 6.2 and Figure 6.3 the
set {RZ , I ,

√
X , X} of one-qubit gates together with the two-qubit operation CNOT is

chosen. This mimics the gate set of actual devices while still transpiling for the simulator
which is not restricted regarding the qubit layout. This way no additional SWAPs are
introduced.

Of course, the exact gate set that is chosen for transpilation influences the exact number
of gate operations in the final circuit. Since the quantum computers that are available
through Qiskit usually support the set described above, this set is used for the comparison.
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Figure 6.2: Comparison of the circuit depth of the modular exponentiation gates presented
in Chapter 5 for different input sizes n.

Figure 6.2 and Figure 6.3 show that although the circuit based on the carry gate and divide
and conquer addition [16] seems to be the second best circut regarding the asymptotic
gate complexity in Table 6.1, it has to apply the most operations by a wide margin for
the small examples considered here. This is due to the fact that the addition gate and
the carry gate it is based on are relatively complex when compared to the addition in
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Figure 6.3: Comparison of the total gate count of the modular exponentiation gates
presented in Chapter 5 for different input sizes n. The filled part of each bar indicates
the number of CNOT gates, while the rest represents all remaining one-qubit operations.

Fourier space. Also, the overhead due to the quantum Fourier transform that is required
for both other implementations is not substantial for small n.

Furthermore, the figures show that also for these examples the gate based on Montgomery
multiplication in Fourier space [30] uses the least amount of elementary gates and therefore
should perform best. The drawback of this approach, however, is the increased number
of ancilla qubits that are required. This might hinder its usage on a current quantum
computer as the number of qubits is available is rather low.
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CHAPTER 7
Conclusion

By employing various implementation proposals for the overall algorithm and by reusing
ideas for modular exponentiation circuits from works regarding Shor’s factoring algorithm,
this thesis provides implementations of Shor’s algorithm for the discrete logarithm using
Qiskit1. Furthermore, the algorithm is improved by using a number of optimization
techniques found in the literature as well as by utilizing efficient circuits for modular
arithmetic.

Using Qiskit’s transpiler it was possible to not only compare these implementations
regarding their asymptotic runtime bounds but it was also easily possible to obtain the
circuit depth and circuit size for small examples.

In summary, the most efficient circuit in this work, measured by its number of qubits,
uses 2n + 2 qubits for n-bit modules. This version employs an optimized phase estimation
procedure which reduces the number of control qubits for the circuit to only a single
qubit. Furthermore, to perform modular exponentiation it uses the carry-based addition
and multiplication approach presented by Häner, Roetteler and Svore [16].

However, the most efficient implementation regarding its runtime complexity uses the
modular exponentiation circuit by Rines and Chuang [30], which performs a quantum
version of Montgomery modular multiplication.

Of course, there are many other classical multiplication and addition algorithms whose
implementation on a quantum computer would lead to better runtime bounds than those
chosen for this work. But since one goal is to minimize the space complexity to support
current quantum computers with a small number of available qubits, the presented
algorithms were chosen.

How the proposed circuits behave for small instances of the problem was compared using
Qiskit’s transpiler. This comparison shows that the circuit with the smallest number of

1https://github.com/mhinkie/ShorDiscreteLog
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qubits, unfortunately, results in the largest number of applied gate operations, which
suggests that the other algorithms in this thesis might be better suited for a reference
implementation.

In total, from these experiments it was evident that the circuit by Rines and Chuang not
only behaves best with respect to its runtime complexity for large n, but also for the
small instances that were studied.

Finally, the fact that Shor’s algorithm solves the discrete logarithm problem in poly-
nomial time as opposed to superpolynomial time of all known classical algorithms is a
groundbreaking result in the field of quantum computing. To investigate this fact, the
success probability of the quantum algorithm using simulations for small instances was
examined. This work gives a comparison of the probabilities and therefore of the number
of repetitions needed to obtain a usable result which also highlights the importance of
the size of the measured quantum register for the overall precision.

Although there already are usable quantum computers they are still not powerful enough to
run these algorithms for practically meaningful inputs. To execute the algorithm presented
here, they also require resources to perform error detection and error correction in addition
to the qubits required for the algorithms themselves. However, the implementations
presented in this work can be used to find the discrete logarithm for larger modules as
soon as the required computing power is available.
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