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Kurzfassung

In dieser Arbeit stellen wir eine mit Machine Learning (ML) erweiterte Large Neighbor-
hood Search (LNS) vor, um das Staff Rerostering Problem (SRRP) zu lösen. Das SRRP
ist ein kombinatorisches Zeitplanungsproblem, das sich mit Störungen eines bestehenden
Arbeitsplans befasst, z. B. Krankenstand von Arbeitnehmer:innen oder Änderung des Per-
sonalbedarfs. Das Ziel des SRRPs ist es, einen neuen Arbeitsplan unter Berücksichtigung
dieser Störungen zu erstellen und so wenige Änderungen wie möglich am ursprünglichen
Plan vorzunehmen.

Eine LNS besteht aus sich wiederholenden Anwendungen einer Zerstör- und einer Repara-
turmethode. Zuerst hebt die Zerstörmethode die zugewiesenen Werte einer Teilmenge von
Entscheidungsvariablen (Zerstörmenge) auf und fixiert die Werte der anderen Variablen.
Danach versucht die Reperaturmethode, die vorherige Lösung durch das Suchen von
besseren Werten für die Variablen aus der Zerstörmenge zu verbessern. Der Hauptbei-
trag dieser Arbeit ist eine ML-basierte Zerstörmethode. Wir trainieren ein Conditional
Generative Model, das eine Wahrscheinlichkeitsverteilung lernt. Diese Verteilung gibt
an, welche Variablen in die Zerstörmenge aufgenommen werden sollten. Um hochwertige
Zerstörmengen aus diesen Wahrscheinlichkeiten zu erstellen, präsentieren wir eine auf das
SRRP zugeschnittene Strategie. Das verwendete Neuronale Netz ist ein Graph Neural
Network (GNN), das als Eingabe einen Graphen verwendet, der eine SRRP-Instanz
modelliert. Wir wenden Imitation Learning an, um das Neuronale Netz zu trainieren
und dabei ein spezielles gemischt-ganzzahliges lineares Programm (MILP) nachzuahmen.
Dieses MILP berechnet optimale Zerstörmengen. Es benötigt aber zu viel Zeit, um in
tatsächlichen Anwendungen verwendet zu werden. Die Reparaturmethode unserer LNS
besteht darin, ein vorgeschlagenes MILP für das SRRP zu lösen.

Unsere ML-basierte LNS liefert mehr als doppelt so gute Resultate in Bezug auf die
durchschnittliche Optimalitätslücke als das Lösen des SRRP-MILPs mit Gurobi. Sie
übertrifft sogar die Ergebnisse einer leistungsstarken LNS, ausgestattet mit einer manuell
gestalteten Zerstörmethode. Sehr bedeutungsvoll ist, dass die ML-basierte LNS auf
unterschiedliche Zeitpläne mit unterschiedlicher Anzahl von Mitarbeitern generalisieren
kann und auch die anderen Ansätze hierbei deutlich übertrifft.
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Abstract

We propose a large neighborhood search (LNS) enhanced with machine learning (ML) for
the staff rerostering problem (SRRP). The SRRP is a combinatorial timetabling problem
and deals with disruptions to an existing schedule, e.g., illness of employees or change in
demand for staff. The goal of the SRRP is to construct a new schedule considering these
disruptions and introducing as few changes as possible to the original schedule.

An LNS consists of repeated applications of a destroy and a repair operator. First, the
destroy operator induces a subproblem by unassigning a subset of decision variables
(destroy set) and fixing the others. Then, by solving this subproblem, the repair operator
tries to improve the previous solution by finding better assignments for the unassigned
variables. The main contribution of this thesis is an ML-based destroy operator. We
train a conditional generative model to estimate probabilities indicating which variables
should be destroyed. We propose a refined sampling strategy tailored to the SRRP to
build high-quality destroy sets from these probabilities. Our model is a graph neural
network (GNN), which takes a custom graph modeling an SRRP instance as an input.
To train our neural network, we apply imitation learning to mimic a mixed-integer linear
program (MILP) based approach that can compute optimal destroy sets but is far too
expensive to use in actual applications. We utilize an additional GNN to learn optimal
parameters for the destroy set sampling process. The repair operator of our LNS consists
of solving a proposed MILP.

Our learning-based LNS outperforms solving the MILP with Gurobi by a factor greater
than 2.65 in terms of optimality gap. It even surpasses the results of a well-performing LNS
with a meaningful manually designed destroy operator in all respects. Most importantly, it
generalizes to different schedules with various numbers of employees and also comfortably
outperforms the other approaches on this test set.
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CHAPTER 1
Introduction

This thesis deals with solving the staff rerostering problem (SRRP), a combinatorial
timetabling problem, with a machine learning (ML) enhanced large neighborhood search
(LNS). The motivation of this work is presented in Section 1.1. In Section 1.2, we discuss
the aim of this thesis. Lastly, we outline the following chapters in Section 1.3.

1.1 Motivation
Our motivation regarding this thesis is two-fold. First, we seek to contribute to the
research concerning the integration of ML techniques into traditional state-of-the-art
combinatorial optimization methods. We believe that learning-based strategies have
the potential to improve the performance of optimization algorithms, considering that
hardware components and neural network architectures have become increasingly powerful
over the last few years. Concerning hard combinatorial optimization problems (COP), end-
to-end learning approaches are, in general, still clearly outperformed by conventional state-
of-the-art optimization methods. Therefore, we propose a hybrid approach embedding
an ML model into an LNS meta-heuristics for improved guidance of the heuristic search.
Second, we aim to efficiently solve the SRRP, for which we show that the ML-enhanced
LNS is a highly suitable choice. Efficiently solving scheduling problems has a considerable
impact on social aspects such as the well-being of employees but also heavily influences
the economic capacities of institutions.

For most companies and institutions, it is crucial to meet the given demand as best
as possible at any moment. In the industrial sector, for example, supplies need to be
available on time. In public transport, transport links must be operated so that employees
can commute to work. In healthcare, an adequate number of caregivers needs to be
provided to the patients. If employees are absent, shortages can occur that prevent
the demand from being met. Reasons for these absences might be overwork, illness,
injury, childcare obligations, or other appointments. If the minimum required staff is
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1. Introduction

not available, a work schedule requires rerostering. For the healthcare domain, Moz and
Pato [MP03] defined the nurse rerostering problem (NRRP), which occurs when one or
more nurses cannot cover their previously assigned shifts. In this thesis, we adapt the
NRRP to a more general version, which we call the SRRP.

The SRRP is an extension of the classical nurse rostering problem (NRP). Similar to
the NRP, it deals with constructing work schedules for employees. Employees shall be
assigned to shifts or may have off-days. Only specific shift sequences are allowed to ensure
the work roster complies with labor laws. For example, there may be the requirement
that there must be an eleven-hour rest between two shifts and that the total number
of workdays has to be within a specified range. There are constraints on how many
consecutive shift assignments in total and per shift type are allowed. In this work, we
specifically consider early, day, and night shifts. The extension of the SRRP to the NRP
lies in the fact that the SRRP has to deal with employee absences since employees cannot
work shifts if they are absent. This has an impact on the objective of the problem as
well. The goal is to create a roster that covers the demands per shift and day, assigns the
employees an approximately even workload, and incorporates employee preferences as
well as possible. While this aim could be the same for the NRP, for the SRRP, we have
the additional goal to make the new schedule as similar as possible to the original one.
In contrast to the NRRP, we also consider demand disruptions, which means that the
staffing requirements for specific shifts may change in the SRRP. For a more extensive
overview of the SRRP, see Section 2, and for a formal definition of the problem, we refer
to Section 5.

Moz and Pato [MP07] proved that already the NRRP with the single objective of
minimizing the differences from the original schedule is NP-hard. Traditionally, it is
distinguished between three main approaches to solve NP-hard optimization problems:
exact algorithms, approximation algorithms, and heuristics. Since exact algorithms,
which are typically based on branch-and-bound, may not scale well to large instances and
approximation algorithms provide quality guarantees that often are too weak for practical
purposes or have scalability issues in respect to practical runtimes, often heuristics are
used in practice. In this thesis, our goal is to find high-quality solutions fast since
rerostering needs to be done at short notice, and relatively quick decisions are vital.
Hence, we propose an LNS [PR10] meta-heuristics, which Pisinger et al. [PR10] argue to
be highly successful in routing and scheduling applications, to solve the SRRP. Since
SRRP instances often are composed similarly in one real application, we enhance the
LNS by an ML-based destroy operator trained to exploit this structure.

1.2 Methodological Approach
Typically the LNS applies a destroy and repair operator combination in each iteration.
First, it partially destructs the incumbent solution by freeing a subset of the decision
variables while fixing the others to their current values. A subproblem is hereby induced
and its space of feasible solutions forms a (large) neighborhood. By exactly or heuristically
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1.2. Methodological Approach

solving this subproblem, the LNS tries to improve the previous solution by finding better
assignments for these “destroyed” variables and fixing the others. If a new solution with
a better objective value than the incumbent is found, it is the starting point for the next
destroy and repair iteration. The LNS repeats this procedure until a stopping criterion is
reached.

If the sub-problems created by the destroy operator are small enough, they can be solved
efficiently by effective exact approaches. Our LNS approach relies on a mixed-integer
linear program (MILP) which we solve with the Gurobi1 solver as a repair method. The
more challenging aspect is to design the destroy operator and therefore an appropriate
neighborhood structure. Standard approaches for destroy operators are problem-specific
fast heuristics and randomized methods. However, designing and choosing effective
methods often is time-consuming and still gives no guarantee for a successful solution
method. Recently, learning-based techniques have been applied to COPs for discovering
patterns that are hard to find by hand. These strategies reduce or even eliminate the
need to manually construct heuristics and have the potential to unveil connections that
humans might not see.

Thus, this thesis aims to design an ML-based LNS consisting of a learning-based destroy
operator and a MILP as a repair method. We apply imitation learning to train a
conditional generative model predicting probabilities indicating which variables should
be destroyed. Based on these probabilities, we propose a sampling strategy tailored to
the SRRP for an appropriate selection of these variables. For this sampling strategy,
we introduce an additional neural network producing suitable parameters steering the
sampling process. As our neural network architectures, we employ graph neural networks
(GNN), for which we provide a custom graph structure representing an SRRP instance.
A GNN [GMS05, SGT+08] is a neural network architecture that is independent of the
graph size and therefore also problem instance size and able to represent the underlying
structure of a problem. Compared to existing methods, our custom graph structure
enables efficient learning and inference, facilitating the application of ML to highly
constrained COPs such as the SRRP.

In addition to our custom learning LNS, we design a conventional LNS that relies on a
meaningful manually designed destroy method and the same MILP-based repair operator.
We compare our learning-based LNS approach to this standard LNS and solving the
defined MILP directly with Gurobi. To the best of our knowledge, no SRRP benchmark
instance dataset that meets our requirements is available. Hence, we created a custom
collection of benchmark instances to test our methods. The learning-based LNS, trained
on a schedule with 110 employees and multiple different sets of disruptions, outperforms
solving the MILP with Gurobi by a factor greater than 2.65 on average in terms of
optimality gap. It also improves the optimality gaps achieved by the handcrafted LNS
by more than 1% on average. Most importantly, the learning-based LNS shows the same
performance on different original schedules with various (unseen) numbers of employees
and surpasses the results of the handcrafted LNS in all respects.

1https://www.gurobi.com
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1. Introduction

1.3 Outline of the Thesis
In Section 2, we provide an extensive overview of the SRRP. Afterward, in Section 3,
we review the literature regarding staff rostering problems and ML in combinatorial
optimization, including existing work about neural LNSs with a learned neighborhood
destruction method [ANA20, SLYD20, CGCL20, SWK+21]. In Section 5, we formalize
the SRRP and model it as a MILP. Section 6 contains the used LNS framework consisting
of the employed construction heuristic, repair operator, and manually designed destroy
method. The main section of this thesis is Section 7, where we introduce our learning-
based destroy operator and all associated details, such as the training data generation.
In Section 8, we provide details on the test instance generation and present the results
obtained in computational results. Finally, Section 9 concludes this thesis by summarizing
the achievements and giving an outlook on promising future work.

4



CHAPTER 2
The Staff Rerostering Problem

The SRRP is a combinatorial timetabling problem and closely related to the NRP. The
main difference is that the SRRP deals with disruptions to an existing work schedule
instead of creating a new one. In the literature, the SRRP is usually called NRRP.
This name, however, is connected to the healthcare sector and might implicitly indicate
some domain-specific properties. For example, the number of nurses needed for a shift
usually does not change. At least, this has not been considered in NRRPs so far
[MV11, MV13, MP03, MP04, MP07, WSB19]. In other industry sectors, changes in
demand are more frequent, e.g., due to vehicle problems or track work in the railway
domain. Moreover, the number of nurses employed in a hospital unit frequently is smaller
than the number of employees in other industry branches. Thus, we aim to keep the
problem general and refer to it as SRRP.

We first specify the problem statement of the NRP since the SRRP builds on top of this
definition. Moreover, this approach allows us to emphasize the differences and similarities
of these problems in more detail. The NRP deals with constructing a periodic work
schedule for a set of heterogeneous employees. More specifically, each employee shall be
assigned to one possible shift from a set of shifts or an off-day on each day in this period.
This final work schedule should then meet diverse constraints. Burke et al. [BDCBVL04]
identified the parameters and constraints most commonly used in the NRP literature
and summarized them in the following way:

• Planning period. The planning period determines the time frame over which the
employees are scheduled.

• Skill category. Specifies the qualification or skill set of employees. Particular shifts
may require different qualifications or skills.

5



2. The Staff Rerostering Problem

• Shift type. Shift types usually determine the start and end times of a shift. Most
frequently, NRPs deal with the traditional three 8-hour shifts. These are the early
shift (e.g., 7 am – 3 pm), day shift (3 pm – 11 pm), and night shift (11 pm – 7 am).

• Coverage constraints. These state the demand for employees and specific skill-sets
for every single shift in the planning horizon.

• Time-related constraints. Time-related constraints include the availability of em-
ployees, shift preferences of employees, and constraints on demanding an equal
workload among the staff.

• Work regulations. They stem from the contracts of the employees, labor laws, or
other institutional regulations. Possible constraints falling in this category are the
minimum rest between working shifts, the maximum number of working shifts in
the planning period, and similar ones.

All these constraints are usually defined as hard or soft constraints. A solution is infeasible
if the hard constraints are not satisfied. On the contrary, it is possible to violate soft
constraints but these violations are penalized in the objective function. For example, an
employee might request a day off. To improve employee satisfaction it is encouraged to
grant this request. But if it is not reasonable or even impossible to consider this request
in the schedule, violating it is still allowed. However, disregarding soft constraints leads
to penalization in the optimization objective, which reduces the quality of the solution
as a consequence. Thus, the interaction of the soft constraints plays a vital role in the
solution-finding process. To account for the different importances of soft constraints,
weights are assigned to them.

As we have previously mentioned, the SRRP builds on top of the problem statement
of the NRP. Hence, the already stated properties and constraints hold for this problem
as well. Additionally, the SRRP deals with the occurrence of disruptions to an already
created roster. For this reason, the classical rostering problem has to be solved in advance
of the SRRP to obtain this initial schedule. A disruption occurs if an employee is unable
to perform assigned shifts or if the number of required employees in a shift has changed
on one or more days. We distinguish between three different types of disruptions:

• Single-shift disruption. This type of disruption occurs when an employee is unable
to cover a single shift, e.g., because of a medical or otherwise necessary appointment.

• Multi-shift disruption. They arise if an employee is unable to perform more than
one consecutive working shifts. Reasons for multi-shift disruptions can, for example,
be illness or vacation.

• Demand disruption. These disruptions occur when the required number of employees
unexpectedly changed on one or more days.

6



The goal of the SRRP is to modify the original roster to incorporate these changes. In
addition to the constraints arising from the classical rostering problem, the disruptions
lead to two new constraints. The first constraint is time-related. It specifies that
employees cannot be assigned to a shift if they are absent at the time of this shift. The
second constraint deals with the changes made to the original roster. These should be as
small as possible for the convenience of the employees. Again, this new schedule should,
similarly to the NRP, fulfill all the hard constraints and meet the soft constraints as well
as possible.

For our specific SRRP definition, we build on a modified version of the NRRP by Maenhout
and Vanhoucke [MV11], and also we rely on their instance generation algorithm [VM09].
The details of the test instance generation are covered in Section 8.1. We consider a
three-shift setting, where the early shift lasts from 7 am to 3 pm, the day shift from 3
pm to 11 pm, and the night shift from 11 pm to 7 am. Additionally, we add a free shift
indicating that an employee does not have to work that day to model off days. We refer
to the free shift as a non-working shift and the other as working shifts. In the following,
we state the hard (prefix H) and soft constraints (prefix S) that we consider for the SRRP.
We provide a formal description of the problem in Section 5.

HOSPD (one shift per day) Each employee can only be assigned to one working shift
per day or the free shift.

HREST (minimum rest) An employee has to rest at least 11 hours after each working
shift.

HWSA (working shift assignments) An employee must not be assigned to less than a
minimum or more than a maximum number of working shifts in the scheduling
period.

HCWSA (consecutive working shift assignments) An employee must not be assigned
to less than a minimum or more than a maximum number of consecutive working
shifts.

HSTA (shift type assignments) An employee must not have less than a minimum or
more than a maximum number of assignments to a shift type in the scheduling
period.

HCSTA (consecutive shift type assignments) An employee must not have less than a
minimum or more than a maximum number of consecutive assignments to a shift
type.

HABSE (employee absences) Employees cannot be assigned to a working shift if they
are absent for the time of this shift on this day.

SCREQ (cover requirements) The staffing requirements per day and shift should be
met.

7



2. The Staff Rerostering Problem

SMOD (modifications to orignal roster) The original roster should be modified as little
as possible.

SPREF (employee preferences) Employee preferences should be taken into account.

SEWL (even workload) The workload should be distributed as evenly as possible among
the employees.

Hard constraints HOSPD, HREST, HWSA, HCWSA, HSTA, and HCSTA are time-
related constraints. These enforce that the new roster is compliant with labor laws
and other institutional regulations. Moreover, the constraints having a minimum and
maximum can be used to ensure the social quality of the schedule. For example, an
employee assigned to a long sequence of night shifts might find it hard to maintain social
contact. Hard constraint HABSE is a rerostering-specific constraint. An employee can be
unable to do a shift for several reasons such as vacation, illness, or medical appointments.
Absences due to vacation or illness might even spread over multiple days. The first soft
constraint SCREQ is a so-called coverage constraint. Staffing requirements are often
classified as a soft constraint since it is possible to engage external replacement or use
less personnel in a shift. Both of these variants might come at an extra cost. On the one
hand, using fewer employees than required could decrease customer satisfaction or slow
down production. On the other, hiring short-term staff at short notice is more expensive.
Another goal of the rerostering problem is to modify the original roster as little as possible
(SMOD) since employees build their life around the duty schedule. Hence, too many
changes might decrease employee satisfaction. Not only modifications to the original
roster but also neglected shift preferences can lower employee contentment, which is the
focus of soft constraint SPREF. Finally, constraint SEWL deals with fairness. It should
ensure that employees should more or less have an even workload over the planning
period.

8



CHAPTER 3
Related Work

In this section, we discuss the related work relevant to this thesis. First, we give a
literature overview of classical rostering problems such as the NRP. Second, scientific
work concerning rerostering problems is reviewed. And finally, we discuss different
strategies, how ML has been applied in the literature to solve COPs, including methods
dealing with the introduction of ML into algorithmic templates such as the LNS.

3.1 Staff Rostering Problems
Staff rostering, or scheduling, is a problem that has been addressed by computer scientists
and operations researchers for decades. It deals with the construction of work schedules
for the employees of an organization such that different objectives are achieved. These
objectives might be to reduce costs, fulfill demands, increase employee well-being, enhance
job satisfaction, or a combination thereof [EJKS04]. Many companies from different fields,
such as the healthcare, transportation, or industrial sector, are affected by these goals.
Since there are various requirements or unique needs in each domain, many staff rostering
problem variants exist. Ernst et al. [EJKS04] give an overview of rostering problems in
different application areas and the solution methods proposed in the literature.

Since the efficient utilization of time and effort is crucial in the healthcare domain,
the NRP, also called nurse scheduling problem, is strongly represented in research
[BDCBVL04, CLLR03]. Burke et al. [BDCBVL04] and Cheang et al. [CLLR03] give an
overview of models and solution methods in their surveys dedicated to the NRP. Similar
to the general staff rostering problem, many different variants of the NRP arose over
time. Therefore, Van den Bergh et al. [VdBBDB+13] categorize papers based on the
characteristics of the considered problems. They perform these categorizations within
different fields such as personnel attributes, constraints, solution method, and application
area. For example, in the field of personnel attributes, they classify problems based on
whether skills are considered or not, amongst other criteria.

9



3. Related Work

This variety of NRPs makes it hard to compare various solution approaches. Vanhoucke
and Maenhout [VM09] observed this lack of unified formulations and benchmark instances.
Thus, they proposed an algorithm to generate NRP instances based on selected complexity
indicators. These indicators contain the number of employees, the length of the scheduling
period, and the number of possible shifts. Additionally, they include values determining
the distributions of the coverage requirements and employee preferences for working
specific shifts. More benchmark problems and instances were introduced in the First
[HDCSS14] and Second International Nurse Rostering Competition [CDDC+19].

Driven by the practical relevance of the NRP, researchers have proposed several solution
methods for this problem. Especially MILP approaches have shown popularity in research.
In addition to exactly solving MILPs with branch-and-price procedures [LOR19, MV10],
hybrid MILP-based strategies have often been applied successfully [LOR19, BLQ10,
GTS17, STGR16, BC14, VGG+12]. Frequently, these hybrids consist of combining integer
programming with local search techniques. For example, Burke et al. [BLQ10] use a MILP
to solve a sub-problem containing all hard and only a subset of soft constraints. Then,
they improve this solution by applying a variable neighborhood search (VNS). Santos
et al. [STGR16] use a greedy heuristic to generate an initial solution and then enhance
it by utilizing a MILP-based VNS. Particularly successful is the hybrid approach of
Valouxis et al. [VGG+12], which won the First International Nurse Rostering Competition
[HDCSS14]. They apply MILPs in two stages of their algorithm to achieve certain sub-
goals. These consist of determining the workload of nurses and distributing the daily
shifts. Additionally, they improve the solutions with different local searches.

In this work, we apply a LNS [Sha98]. The LNS is a powerful meta-heuristics for solving
COPs and has been successfully applied to various complex problems, including the
vehicle routing problem (VRP) [Sha98], facility location problem (FLP) [JORR20], and
the resource-constrained project scheduling problem (RCPSP) [Mul09]. Furthermore,
Pisinger and Ropke [PR10] claim that the LNS heuristics has been most successful in
routing and scheduling applications. Syed et al. [SAKB19] even name LNS as the state-
of-the-art method for VRP. The LNS usually consists of a destroy and repair operator
combination that is applied to a solution repeatedly. An extension of the LNS is the
adaptive large neighborhood search (ALNS) which consists of multiple destroy and repair
operators. In the ALNS, the operators are newly selected in each iteration based on their
previous performances.

LNSs have also been applied in the context of nurse scheduling in the literature. Bilgin et
al. [BDCRB12], for example, applied an ALNS with a tabu list to solve the NRP. They
represent the solution as a set of (nurse, day, shift type, skill type)-tuples to indicate
an allocation of a nurse to a specific shift. In contrast to the classical LNS approach
with operators that destroy or repair variable assignments of a solution, the strategy
of Bilgin et al. [BDCRB12] is slightly different. They apply various methods similar to
local searches that either remove, add, or modify single tuples of a solution. In the case
a tuple is only changed, they argue that this operator is a destroy and repair operator in
one method. Another ALNS approach for solving the NRP was proposed by Legrain et
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al. [LOR19]. They apply three randomized destroy operators that work in the classical
sense. The first destroy method randomly selects nurses from the set of all nurses, the
second one nurses having the same skill, and the last one nurses with the same contracts.
For each operator, they destroy the schedules of the selected nurses for a specific number
of weeks. Similarly to the chosen destroy operator, this number of weeks is determined
based on its effectiveness in previous iterations. The destructed solutions are repaired by
a MILP that is solved with a branch-and-price procedure that Legrain et al. [LOR19]
also present in their paper.

Often expected or unexpected events lead to the need that an existing schedule has to
be adapted. Most of the time, these events are employee-related and can be due to
illness, vacation, or appointments. Moz and Pato [MP03] were the first researchers that
formally defined the NRRP. The NRRP deals with creating a new employee schedule
given absences of the staff on specific days. Therefore, it is an extension of the NRP
focusing on the reconstruction of disrupted work schedules. Moz and Pato [MP07] proved
that the NRRP is NP-hard given the single objective of minimizing the differences from
the original schedule. The NRRP is not as widespread in research as the NRP but has
been considered in several works [MV11, MV13, MP03, MP04, MP07, WSB19, PM08].

Moz and Pato [MP03] formulated a multi-commodity flow model with the single objective
of reducing the deviations from the original work roster. Furthermore, they solved
the integer linear programming formulation of this model and created a construction
heuristic to reconstruct the schedule instantly. However, this construction heuristic does
not guarantee feasible solutions. Later, Moz and Pato [MP04] formulated a new multi-
commodity flow model with decreased size and showed that the corresponding integer
program could outperform the existing version. In addition to integer programming, Moz
and Pato [MP07] applied a genetic algorithm to solve the NRRP. In this paper, they also
improved the construction heuristic from [MP03]. To test their algorithms, Moz and Pato
[MP03, MP04, MP07, PM08] relied on real-world instances from a hospital in Lisbon.
Pato and Moz [PM08] also were the first to address the NRRP with multiple objectives.
The two goals were to create a schedule with an even workload between nurses and to
incorporate preferences. Therefore, they designed a bi-objective genetic heuristic.

Similar to Moz and Pato [MP07], Maenhout and Vanhoucke [MV11] also proposed a
genetic algorithm to solve the NRRP. In contrast to the previously discussed papers,
however, they considered multiple objectives such as minimizing under- and overstaffing,
promoting an even workload, and including employee preferences as well as possible.
They claim that their approach outperforms the genetic algorithm of Moz and Pato
[MP07]. To compare the algorithms, they modified Moz and Pato’s algorithm to make it
compatible with their constraints and objectives. Furthermore, Maenhout and Vanhoucke
[MV11] investigated whether it is necessary to contemplate the whole schedule during
the reconstruction. They found out that to get reasonable solutions fast, it suffices to
consider parts of the roster only. They confirmed this in a follow-up study [MV13] where
they claim that the days before and after the disruptions are the most important during
re-optimization. Additionally, they argue that it is sufficient to consider the affected
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nurses and a subset of other nurses when rerostering.

Finally, Wickert et al. [WSB19] proposed multiple solution approaches. Like Maenhout
and Vanhoucke [MV11], they consider an NRRP with multiple objectives. First, they
formulated a MILP that is, in contrast to the flow model from Moz and Pato [MP03,
MP04], based on an assignment problem. Second, they designed a variable neighborhood
descent meta-heuristics to avoid the dependency from a commercial solver. To obtain
test instances, they introduced random disruptions to the NRP instances of the Second
International Nurse Rostering Competition [CDDC+19]. Additionally, they used the
Lisbon hospital instances from Moz and Pato [MP03].

3.2 Machine Learning in Combinatorial Optimization
In recent years many researchers have been investigating the application of ML to COPs.
The goal is to automate (part of) the demanding process of handcrafting algorithms for
these types of problems. Since a successful approach to automate this process would lead
to significant savings in time or other resources, several different techniques and methods
have been proposed.

One strategy found in research is centered around the application of supervised machine
learning [VFJ15, LCK18]. Vinyals et al. [VFJ15], e.g., proposed a sequence-to-sequence
model called Pointer-Network. The Pointer-Network is an adaptation of the long short-
term memory model (LSTM) [HS97] by Hochreiter et al., enabling the model to work on
inputs of variable lengths. To achieve this, the network points back to an input value,
which is selected based on the outputs of a softmax function. Vinyals et al. [VFJ15]
applied supervised machine learning to train their Pointer-Network and solved small
instances of the traveling salesperson problem (TSP) amongst other problems.

To successfully apply supervised machine learning to COPs, however, optimal or high-
quality solutions are needed in the training phase. For NP-hard problems those optimal
solutions are difficult to find. Therefore, supervised learning approaches are limited to
small instances or have to rely on a non-optimal ground truth, which hurts the solution
quality. To overcome this issue, reinforcement learning (RL) [SB18] is a promising
technique [BPL+16, NOST18, MDM+20, KDZ+17, AXSS19, HPD19]. In a reinforcement
learning environment an agent automatically explores solutions and learns from received
feedback. Thus, no ground truth is required in this setting.

Bello et al. [BPL+16] built on top of the work of Vinyals et al. [VFJ15] and combined
Pointer-Networks with a reinforcement learning training regime to solve the 2D Euclidean
TSP. They apply the asynchronous advantage actor-critic (A3C) [MBM+16] algorithm
to optimize the parameters of their model. The actor-critic approach aims to stabilize
the reinforcement learning training process by introducing an extra model, the critic,
which evaluates the actions of the main model, the actor. The parameters of the actor
are then updated based on the evaluations of the critic. Once the model is trained, Bello
et al. [BPL+16] sample multiple solutions based on the softmax outputs of the model
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and took the best. With this approach, they could outperform the results of Vinyals et
al. [VFJ15] and report near-optimal solutions for TSP instances with up to 100 nodes.

Despite these improvements, Pointer-Networks still suffer from limitations. One limitation
is that Pointer-Networks consider sequences as inputs and outputs. Therefore, they
automatically force an ordering on the solution. Many problems such as the TSP,
however, are independent of any order. Cappart et al. [CCK+21] refer to this limitation
as “invariance to permutation” in their work. Furthermore, it is hard to effectively reflect
the underlying structure of a problem with Pointer-Network models. A neural network
architecture family that addresses and solves these issues is the GNN [GMS05, SGT+08].
Graph neural networks have been around for over a decade but have gained high popularity
in recent years due to the need for structured representations and computations in learning,
as described by Battaglia et al. [BHB+18]. The main idea behind these networks is to
create a node’s representation by aggregating its own and neighbors’ features [WPC+20].
Graph neural networks can be categorized into four groups after Wu et al. [WPC+20]:
recurrent GNN (RecGNN) , convolutional GNN (ConvGNN), spatial–temporal GNN
(STGNN), and graph autoencoder (GAE). RecGNNs and ConvGNNs are the most
frequently used architectures in the context of combinatorial optimization. Wu et al.
[WPC+20] define the main difference between these two groups in their distinct use of
the learnable parameters. Whereas RecGNNs use the same parameters over all their
layers, ConvGNNs have a different set of parameters in each layer.

The combination of graph neural network and reinforcement learning has been applied
by several researchers in some form [KDZ+17, AXSS19, ANA20] and currently seems to
be one of the most promising strategies for solving combinatorial optimization problems
with machine learning methods. The first researchers to employ this approach in the
context of combinatorial optimization problem were Khalil et al. [KDZ+17].

Khalil et al. [KDZ+17] argue that most COPs can be transformed into problems on
graphs and therefore focus on solving combinatorial graph problems. They applied a
structure2vec (S2V) [DDS16] GNN architecture belonging to the RecGNN class and
paired it with Q-learning [WD92]. Q-learning is a RL method where actions are not
selected directly but indirectly through estimated average future rewards. Their approach,
called S2V-deep Q-network (DQN), imitates a greedy heuristics. It generates solutions
by iteratively applying the trained model to the problem and adding the node with the
highest score to the solution until it is feasible. Khalil et al. [KDZ+17] showed that
the S2V-DQN outperforms basic heuristics and approximation algorithms on graphs
with up to 500 nodes for the minimum vertex cover problem (MVC), maximum cut
problem (MAXCUT), and TSP. Moreover, they reported that they outperformed the
Pointer-Network approach of Bello et al. [BPL+16] in their experiments. To obtain
similar inference times, Khalil et al. [KDZ+17] let the Pointer-Network greedily choose
the nodes based on their softmax scores instead of the sampling method mentioned above.
Finally, they showed that the S2V-DQN trained on instances with 50 and 100 nodes
could still reach an approximation ratio less than 1.11 on test instances with up to 1200
nodes for all mentioned problems.
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Reinforcement learning research has also been driven forward by the interest and in-
vestigations of many researchers in the domain of combinatorial games. AlphaGo Zero
[SSS+17] by Silver et al., for example, is a superhuman engine of the ancient Chinese
board game Go. This learning engine attracted attention in this research community as
Go has a large search space. Moreover, many people believed that it required human
intuition to be successful in this game. Later, Silver et al. generalized the AlphaGo Zero
algorithm to AlphaZero [SHS+18] and showed that it could also learn other combinatorial
games such as Chess and Shogi more efficiently than different approaches. The AlphaGo
Zero and AlphaZero RL algorithms combine self-play with Monte Carlo Tree Search
(MCTS), a combination of tree search and random sampling [BPW+12], to train a deep
neural network.

Due to its success in combinatorial games, Alpha Zero also aroused the interest of
researchers in the field of combinatorial optimization [AXSS19, HPD19]. Huang et
al. [HPD19] combined AlphaZero with a special neural network architecture and high-
performance computing to solve the graph coloring problem. They claim to have learned
new state-of-the-art heuristics. Abe et al. [AXSS19], on the other hand, considered a
more general strategy. Similar to Khalil et al. and their S2V-DQN they focused on
graph formulations for COPs as well. Therefore, Abe et al. applied the AlphaZero RL
algorithm to train GNNs. Instead of selecting a single GNN model, they tested various
architectures. These were S2Vs [DDS16], graph convolutional networks (GCN) [KW17],
graph isomorphism networks (GIN) [XHLJ19], and 2-IGN+ [MBHSL19]. Except for the
S2Vs, all networks fall into the class of ConvGNNs. In their experiments, they considered
the MVC, MAXCUT, and the maximum clique problem (MAXCLIQUE). Due to its long
inference times, the 2-IGN+ frequently did not finish within the time limit. But for the
other architectures, Abe et al. [AXSS19] showed that their approach outperforms the
S2V-DQN. Moreover, when using MCTS during test-time, they could even surpass the
best-known solutions for seven instances of MAXCLIQUE. The application of MCTS
during test-time increases inference time significantly, however.

Machine learning techniques that learn heuristics for COPs in an end-to-end fashion have
been steadily improving over recent years. Nonetheless, they are usually still outperformed
by state-of-the-art classical optimization methods. This especially holds for problems with
complex side constraints. Consequently, to close this performance gap a new paradigm
often referred to as “learning to search” [SLYD20] has evolved in research. This paradigm
deals with the introduction of automatically learned heuristics in algorithmic templates.
Therefore, eliminating the need for manually created algorithms. For example, learnable
heuristics were used for guiding beam search [NGG18], deciding on how to branch in
branch-and-bound (B&B) algorithms [GCF+19, HDIE14, KBS+16], and learning destroy
or repair operators in LNS meta-heuristics [ANA20, SLYD20, CGCL20, SAKB19, HT19].

Especially the research around learning how to branch in exact algorithms such as B&B
seemed to be promising. However, this approach failed to deliver practical impact. Song
et al. [SLYD20] claim that the main reason for this lies in the requirement to modify
commercial solvers like CPLEX and Gurobi, which only offer limited and inefficient
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interfaces. Moreover, they mention the possibility of altering open-source solvers such as
SCIP [Ach09]. These solvers, however, are significantly slower than leading commercial
solvers making this strategy unsuitable as well [SLYD20]. Therefore, researchers have
shifted their attention to powerful meta-heuristics such as the LNS, which consists of
an alternating application of destroy and repair operators. So far, these operators were
manually created heuristics, which often were randomized or built after greedy criteria.
But as previously mentioned, the rise of ML in combinatorial optimization has driven
forward investigations on how to use learning to reduce or even eliminate the need for
handcrafted heuristics.
One way of integrating machine learning into the LNS framework is to learn the repair
operator. Syed et al. [SAKB19] and Hottung et al. [HT19] chose this strategy in their
research. Both approaches rely on manually created destroy methods and focus on
training a repair method to solve the resulting sub-problems. Similarly, both works
apply slightly modified variants of the Pointer-Network. Syed et al. [SAKB19] employed
an actor-critic reinforcement learning strategy, whereas Hottung et al. [HT19] used
supervised learning. Finally, both showed that their approaches outperform the classical
LNS with handcrafted repair heuristics.
In the design of the LNS, sub-problems often are made small enough such that highly
optimized general purpose MILP solvers such as CPLEX or Gurobi can be used as repair
methods [JORR20]. Song et al. [SLYD20] and Addanki et al. [ANA20] followed this
approach. They learned destroy-heuristics that automatically select a subset of variables
that are then unassigned. Subsequently, they rely on the MILP solver for repairing the
solutions.
Song et al. [SLYD20] proposed a general LNS framework for solving MILPs. They
used a decomposition-based LNS. In this version of the LNS, all variables are split into
disjoint sets in each iteration. Then, each variable set is destroyed and repaired one
after the other, concluding one iteration of the LNS. Song et al. [SLYD20] trained a
model intending to learn these decompositions for a given solution. They experimented
with three different learning approaches: behavior cloning [Pom88] and forward training
[RB10], which both belong to the class of imitation learning, and classical RL, applying
the basic REINFORCE [Wil92] algorithm. The behavior cloning method trains the model
on samples created by experts in a supervised manner. Contrarily, forward training is
closer to RL. It collects samples on its own by applying the experts’ actions in each state.
Hence, there exists a relation to the predicted decomposition of previous states. Instead
of consulting an expert, Song et al. [SLYD20] randomly sampled multiple decompositions
for each solution and took the best. They could show that their approach outperforms
a LNS with random decompositions in the destroy method. Furthermore, Song et al.
[SLYD20] report that their LNS variants find equally good solutions between two to
ten times faster than Gurobi for the MVC and MAXCUT amongst other problems.
Regarding the different learning algorithms, basic reinforcement learning performed worst.
The reason for this, however, could be the out-dated REINFORCE algorithm.
Another instance of “learning to search” is the work of Addanki et al. [ANA20]. Similar
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to Song et al. [SLYD20], they suggested a general framework for solving MILPs as well.
They called their approach neural LNS and also rely on a MILP solver as the repair
operator. The framework of Addanki et al. [ANA20], however, has two key differences
from the framework of Song et. al. [SLYD20]. First, Song et. al. [SLYD20] did not
specify which ML model they were using. But based on their explanations it seemed to
be a model that can only handle inputs of the same dimensions. In comparison, Addanki
et al. [ANA20] applied a message-passing neural network (MPNN) which can be classified
as a ConvGNN after Wu et al. [WPC+20]. They obtained a graph structure called
Constraint-Variable Incidence Graph (CVIG) from the MILP constraints by introducing
a node for each variable and constraint, then adding an edge between them if the variable
occurs in the constraint. The weight of the edge is equal to the factor of the variable
in the constraint. Second, instead of having a model that predicts decompositions, the
MPNN of Addanki et al. [ANA20] only infers single nodes. They apply the MPNN to the
solution, unassign the selected variable, and repeat this process until they “destroyed” the
desired amount of variables. As their learning method of choice, Addanki et al. [ANA20]
chose the V-trace algorithm [ESM+18], which is yet another actor-critic strategy. Like
other works in the learning LNS niche, they showed that their approach could outperform
LNSs with randomized and other MILP-based destroy methods.

In recent works, Nair et al. [NBG+20] and Sonnerat et al. [SWK+21] abandoned RL and
focused on supervised ML as a conditional generative modeling task. Although Nair et
al. [NBG+20] did not consider an LNS in their research, their proposed Neural Diving
algorithm still turned out to be a promising starting point for the work of Sonnerat et al.
[SWK+21] and this thesis. In principle, Neural Diving is a primal heuristic represented by
a neural network model. This model is trained to approximate a conditional distribution
that, given a MILP, generates probabilities that can be used to sample high-quality
decision variable assignments. As training data, Nair et al. [NBG+20] collected all the
feasible solutions that a MILP solver found during solving the training instances. They
designed their learning task such that better solutions are assigned a higher probability
and therefore have a higher weight in the loss function, and worse solutions have a
lower probability and weight. Eventually, they applied their model to sample multiple
partial assignments, employed the MILP solver to find values for the unassigned variables,
and reported the best solution found as a result. An important aspect of their work
is that, in contrast to Addanki et al. [ANA20], they perform their predictions for all
variables simultaneously instead of one neural network evaluation per variable. This
approach significantly speeds up computations at test time. However, due to the required
assumption of conditional independence, some accuracy is lost when approximating the
conditional distribution. Nonetheless, this is a reasonable trade-off in the domain of
heuristic optimization.

As we have already mentioned, Sonnerat et al. [SWK+21] built on top of Nair et
al. [NBG+20] and proposed a learning-based LNS. Their applied generative modeling
approach conditions on a current solution in an LNS run and defines a distribution over
destroy sets. Unlike Nair et al. [NBG+20], they only assign a probability of one to the

16



3.2. Machine Learning in Combinatorial Optimization

best destroy set for a solution in the defined conditional distribution. To create training
data, they used an expert policy to generate LNS trajectories. This expert policy consists
of their main MILP in combination with local branching [FL03], which only allows the
solution to change in at most η variables. By then comparing the old solution with the
newly created one, they can extract optimal destroy sets. During test time, Sonnerat et
al. [SWK+21] first apply their model to generate probabilities for each variable. Then,
they iteratively select variables to be destroy proportionally to their probabilities until
the maximum capacity of the destroy set is reached. Similar to Nair et al. [NBG+20],
they also employed a CVIG to model their problems and a GCN-based neural network
architecture. Both, Nair et al. [NBG+20] and Sonnerat et al. [SWK+21] reported strong
empirical results outperforming or tying classical approaches on multiple MILP instance
datasets.
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CHAPTER 4
Methodology

In this section, we give an overview of the theoretical foundations and optimization
methods applied in our algorithm. We begin by defining what an optimization problem is
in Section 4.1. Then, we focus on heuristics in Section 4.2, where we also discuss the LNS.
In Section 4.3, we explain the main concepts of mathematical programming. Afterward,
we deal with the ML domain in Section 4.4, where we focus on RL and GNNs especially.

4.1 Optimization Problems
We follow Papadimitriou and Steiglitz [PS98]. Researchers usually distinguish between
two categories of optimization problems. These are continuous and discrete optimization
problems. As their names indicate, they either deal with problems involving continuous
or discrete variables. Discrete optimization problems, also called COPs, are typically
concerned with finding a set, permutation, or graph structure from a finite or countably
infinite input set. The problem we consider in this thesis, the SRRP, is a COP since its
decision variables are discrete, and the goal is to find a set of shift assignments for each
employee. Optimization problems stand in contrast to satisfaction problems. Satisfaction
problems deal with the question of whether there is a feasible solution at all, e.g., “Is
it possible to deliver all customers in one route?”. An optimization problem, on the
contrary, aims to find not just one but the best solution w.r.t. a given objective (cost)
function. Hence, the respective question could be “What is the shortest route to deliver
all customers?”. To formalize these intuitions, we state the definition of an optimization
problem by Papadimitriou and Steiglitz [PS98] in Definition 1.

Definition 1 An optimization problem is a set of problem instances. An instance is a
pair (S, c), where S is the set of all feasible solutions (the solution space), and c is a cost
function c : S → R. The problem is to find a solution s ∈ S, such that for all y ∈ S it
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holds that c(s) ≤ c(y). Such a solution s is called a globally optimal or simply an optimal
solution.

Note that in this definition, the problem is viewed as a minimization problem since s is
an optimal solution if its cost value c(s), also called objective value, is smaller or equal
to the value c(y) of all other solutions y ∈ S. Nevertheless, Definition 1 also holds for
maximization problems. The reason for this is that one can transform any maximization
problem into a minimization problem by simply multiplying its cost function by minus
one.

A naive approach for solving COPs is to enumerate all feasible solutions s ∈ S, compare
their objective value c(s), and take the best solution. This procedure falls under the
category of exact methods as it guarantees the optimality of the found solution. While
this naive approach works for small and simple problems, it usually does not work well
for hard problems, such as the SRRP. For those, the solution space is in general too
large, making it intractable to iterate over all the feasible solutions.

A more sophisticated exact method is B&B, which relies on the idea of intelligently
enumerating feasible solutions. Let (S, c) be an instance of a discrete minimization
problem and s∗ its optimal solution. Then, a value d ∈ R is called dual bound (lower
bound) if and only if d ≤ c(s∗). Oppositely, a value p ∈ R is called primal bound (upper
bound) if and only if c(s∗) ≤ p. Thus, the objective value c(f) of a feasible solution
f ∈ S is always a primal bound. Once a solution s ∈ S is found such that p = d = c(s)
holds, then s is guaranteed to be an optimal solution. The B&B method stores the best
solution found and its objective value, which automatically is the best upper bound
found, during the whole procedure. The algorithm works by dividing the solution space
into multiple mutually exclusive subproblems (branching). For example, for a problem
with a set of binary variables X, some unsassigned variable x ∈ X is set to 0 for one
subproblem and to 1 for the other. Then, upper and lower bounds are computed for
these subproblems (bounding). If the lower bound is higher than the upper bound of the
global best solution, the algorithm discards this subproblem since no better solution can
be found by expanding it. Otherwise, the procedure later branches on the subproblem
again. The algorithm stops once the lower bounds for all subproblems are higher than or
equal to the globally best upper bound, or all feasible solutions have been visited.

Hence, in the worst-case, the B&B algorithm also requires a complete enumeration. In
practice, however, it often achieves substantial accelerations compared to more naive
approaches. Note that for a maximization problem, the dual bound is an upper bound,
and the primal bound is a lower bound. Furthermore, the B&B procedure works the
same only the lower and upper bounds are used the other way around.

4.2 Heuristics
Another class of approaches for solving COPs is the application of heuristic and meta-
heuristic methods. For the review on these, we use Blum and Raidl [BR16] as a basis. In
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contrast to exact methods, heuristics give no guarantee for a specific solution quality. As
we have discussed previously, exact approaches ensure the optimality of the generated
solution. This guarantee comes at the cost of extensive computation times too high for
practical applications, especially for hard and real-world problems. Heuristics offer an
alternative way of generating high-quality, even near-optimal solutions in an acceptable
amount of time in exchange for this guarantee of optimality. Hence, they are generally
applied for solving COPs in practice since reasonably good solutions are often sufficient.
In this review, we focus on construction heuristics, the local search, and the LNS. We do
not directly apply a local search in our solution algorithm. However, the basic concepts
of the local search, such as the definition of a neighborhood, are essential for the LNS as
well.

4.2.1 Construction Heuristics
Construction heuristics are used to create initial solutions and also serve as a foundation
for other heuristic algorithms, which further operate on this solution. They generally
work by iteratively adding components to an initially empty solution until it is complete
or one cannot extend it further. Hence, they have the name construction heuristics
as they construct solutions step by step from scratch. Moreover, they are typically
fast but usually leave room for improvement. One of the most common strategies for
construction heuristics is the greedy strategy. Here, a greedy function evaluates the
potential components to be added to the solution from a local perspective. Then, the
component with the highest value is greedily selected. Again, this procedure is repeated
until a solution is complete or not extendable.

4.2.2 Local Search
In contrast to construction heuristics, local search does not generate solutions from
scratch. Instead, it operates on an already existing solution, which depicts its starting
point. Then, the local search iteratively replaces the current solution with a better
solution found in an appropriately defined neighborhood of the current solution. It
repeats this procedure until the neighborhood of the current solution does not contain a
solution which is better than the current one. In Definition 2, we state Blum and Raidl’s
[BR16] definition of a neighborhood, which more formally is a neighborhood function.
Remember that an instance of an optimization problem is defined as (S, c), where S is
the solution space and c : S → R the cost function.

Definition 2 A neighborhood function N : S → 2S assigns to each solution s ∈ S a set
of neighbors N (s) ∈ S, which is called the neighborhood of s.

The goal of the local search is to reach a local minimum, which is a solution ŝ ∈ S such
that ∀s ∈ N (ŝ) : c(ŝ) ≤ c(s) holds with respect to a neighborhood function N . A local
minimum is not necessarily a globally optimal solution as previously defined. Otherwise,
the local search would be an exact method as well. Another essential aspect of the local
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search is the selection of the new solution in the neighborhood. This new solution must
be better than the current solution, but there can be more than one such solution. Most
commonly, two so-called step functions are applied to handle this selection. These are the
first improvement and the best improvement step functions. Whereas the first solution
which is better than the current solution is selected in the first improvement strategy, the
best improvement method searches the whole neighborhood and takes the best solution.
In Algorithm 1, we show the pseudocode for a basic local search procedure.

Algorithm 1: Local Search
Input: initial solution s.

1 while ∃s ∈ N(s) : c(s ) < c(s) and termination criterion not met do
2 s ← StepFunction(N(s))
3 end
4 return s

4.2.3 Large Neighborhood Search
The LNS proposed by Shaw [Sha98] belongs to the class of meta-heuristics [PR10]. Meta-
heuristics are high-level and problem-independent algorithmic frameworks or templates
for creating heuristic optimization algorithms. They aim at combining construction
heuristics, local search methods, or both with other concepts. One essential property of
meta-heuristics is that they all have integrated mechanisms for escaping local optima.
Therefore, they can explore the solution space more flexibly, enhancing the solution quality
of such approaches. The LNS achieves this by increasing the size of the neighborhood and
using more suitable algorithms to find better solutions instead of iterating through all the
neighbors. Prominent meta-heuristics are ant colony optimization, variable neighborhood
search, simulated annealing, tabu search, and genetic algorithms, to name a few.

In this thesis, we design an algorithm based on the LNS meta-heuristics, which we review
in this section. In addition to Blum and Raidl [BR16], we orient ourselves on Pisinger
and Ropke [PR10] for this review. As we have already mentioned in previous sections, the
LNS consists of a destroy and a repair method, also called destroy and repair operators.
While the destroy method d(·) partially destructs a current solution, the repair operator
r(·) rebuilds the destructed solution aiming to improve it. The neighborhood N (s) for
a solution s ∈ S, cf. Definition 2, is therefore implicitly represented by the destroy and
repair methods since N(s) is a set of solutions that can be reached by applying r(d(s)).

Algorithm 2 shows the principle of LNS in pseudocode. First, an initial solution is created
by some construction heuristic for a problem instance (S, c), where S is the solution
space and c : S → R the cost function. Then, in each iteration, the incumbent solution
scurrent is partially destroyed by removing some of its components resulting in spartial.
The number of components to remove, called the degree of destruction, is an important
parameter of the LNS. Besides, the way how to choose these components is an important
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Algorithm 2: Large Neighborhood Search
Input: problem instance I = (S, c).

1 scurrent ← GenerateInitialSolution(I)
2 sbest ← scurrent

3 while termination criterion not met do
4 spartial ← d(scurrent)
5 snew ← r(spartial)
6 if c(snew) < c(sbest) then
7 sbest ← snew

8 end
9 scurrent → ApplyAcceptanceCriterion(snew, scurrent)

10 end
11 return sbest

design choice as well. Often, destroy methods include some stochasticity such that the
probability of destructing different components in each iteration is higher. After every
application of the destroy method, the LNS invokes the repair operator to create a new
solution snew from spartial. A powerful technique to achieve good solutions is to rely on
highly optimized solvers, such as MILP solvers. Since only parts of the problem are
destroyed, and most of the solution remains fixed, the complexity of the subproblems is
considerably smaller, and exact solvers may be effective again. Stopping the solver before
it reaches optimality is often a valid strategy because the optimized components might
change again in the next iteration. The LNS automatically stores the best solution sbest

reached so far. For the acceptance of a new incumbent solution, an acceptance criterion
can be applied which chooses between snew and scurrent. Possibilities are to select the
better solution or use a metropolis criterion as applied in simulated annealing.

4.3 Mathematical Programming
We base this overview on mathematical programming on Blum and Raidl [BR16], Schrijver
[Sch98], and Wolsey et al. [WN99]. Mathematical programming has many facets. In this
section, we focus on linear modeling approaches such as integer linear programs (ILP),
MILPs, and linear programs (LP). Here, the task is to formulate and solve mathematical
models for problems having a linear objective function and a set of linear constraints.
Especially ILPs and MILPs are popular approaches for solving COPs in practice. The
reason for this is a combination of the ease of creating a valid model and the existence of
powerful generic solvers such as CPLEX, Gurobi, or SCIP.

An ILP can in general be stated in the following form

zILP = min{c x | Ax ≥ b, x ≥ 0, x ∈ Zn} (4.1)

where x is an n-dimensional integer variable vector of domain Zn and c ∈ Qn is an
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n-dimensional vector of constants, often referred to as costs. The objective function of the
model is defined by the dot product c x of the costs and variables. The goal of an ILP is
to find a variable assignment for x that minimizes the objective value without violating
the given constraints. In (4.1), these constraints are represented by the inequalities based
on coefficient matrix A ∈ Qm×n and vector b ∈ Qm. In this ILP definition, we considered
a minimization problem. To translate a maximization into a minimization problem and
vice versa, solely the sign of c has to be changed. Similarly, by changing the sign of the
corresponding coefficients, one can transform greater-than-or-equal-to inequalities into
less-than inequalities. Equality constraints can be converted into pairs of inequalities.
Hence, without loss of generality, we only consider here models of the stated form.

In contrast to ILPs, MILPs also allow continuous variables in addition to discrete variables.
We state a formal definition of a MILP in (4.2), where y is an additional non-negative
p-dimensional continuous variable vector, d ∈ Qp the cost vector for variables y, and
B ∈ Qm×p the coefficient matrix for the constraints. The other variables and constants
are defined equally as for (4.1).

zMILP = min{c x + d y | Ax + By ≥ b, x ≥ 0, y ≥ 0, x ∈ Zn} (4.2)

Solving ILPs and MILPs is NP-hard [Pap81]. General-purpose solvers such as CPLEX
and Gurobi belong to the class of exact methods. Therefore, they apply highly optimized
methods based on B&B, as sketched in Section 4.1, to solve integer programs. Relaxations
are a fundamental concept in this context. A problem is relaxed if some constraints are
loosened or omitted. The relaxed problem is typically easier to solve than the original one.
The solutions of relaxed problems are not necessarily feasible for the original problem but
represent bounds of it. An LP relaxation of an integer program is obtained by relaxing
its integrality constraints. Thus, the domain of the integer variable vector is changed
from Zn to Rn. In (4.3), we show the LP relaxation of the MILP in (4.2). The solution
of the relaxed program is a lower bound of the respective MILP, which means that
zLP ≤ zMILP. Hence, B&B methods for solving MILPs are often based on LP relaxations
used to compute the lower bounds in a B&B node.

zLP = min{c x + d y | Ax + By ≥ b, x ≥ 0, y ≥ 0, x ∈ Rn} (4.3)

The reason why LP relaxations can in general be solved more efficiently than integer
programs is that LPs are in P. Therefore, it is possible to find optimal solutions in poly-
nomial time. Examples of polynomial-time algorithms are the ellipsoid method [Kha80]
and the interior point method [Kar84]. However, the ellipsoid algorithm provides poor
performance in practice. Even though this is not the case for interior point approaches,
the simplex method by Dantzig [Dan51] is still the most frequently used algorithm in
practice. Despite its exponential worst-case complexity, the simplex algorithm is usually
superior to other methods.
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4.4 Machine Learning
For this review of ML, we follow Murphy [Mur12], Goodfellow et al. [GBCB16] and
Géron [Gér19], unless stated otherwise. Since there are several manifestations of ML, we
start this section by giving a generic definition by Mitchell [M+97], determining what
learning in the context of computer programs means:

Definition 3 A computer program is said to learn from experience E with respect to
some task T and some performance measure P , if its performance on T , as measured by
P , improves with experience E.

Usually, researchers divide ML into three sub-fields. One of these sub-fields is supervised
learning. In supervised ML, the goal is to learn a mapping from inputs x ∈ X to outputs
y ∈ Y , given a labeled input dataset D = {(Xi, Yi)}N

i=1. Here, D, also called the training
set, corresponds to the experience E from Definition 3 and contains N training samples
or instances. The structure of the training inputs X may vary from task to task. On the
one hand, they can be p-dimensional vectors of numbers, called features or attributes, in
the simplest case. On the other, they might represent complex objects such as images
or graphs. There are two types of supervised learning depending on the domain of the
labels y ∈ Y . If y is categorical or nominal, meaning that y ∈ {1, . . . , C} for some
number of classes C, the problem is known as classification. On the contrary, if y is
real-valued, it is called a regression. The mentioned mapping is expressed as a function
fθ, which depends on a set of parameters θ. In the context of ML, this function fθ is
called a model, and its parameters are called weights. There also are non-parametric
models which we do not consider in this review. During the learning process, the model
repeatedly receives input instances (x, y) ∈ D and computes the similarity between its
output ŷ = fθ(x) and the actual label y with a so-called error or loss function. Popular
loss functions for the regression and classification are the mean squared error and the
cross-entropy loss, respectively. Then, the weights θ of the model are updated based on
this score (loss) to improve the future performance of the model. Methods to update the
weights are usually gradient descent-based approaches such as stochastic gradient descent
(SGD) or momentum optimizers. Gradient descent methods operate by computing the
gradients of the loss function for the weights θ and updating the weights in the direction
of the descending gradients. Finally, similar to Definition 3, a performance measure T is
consulted to evaluate the progress and the final performance of the model. If a model is
too expressive and extensively trained on the

The other two sub-fields of ML are unsupervised learning and RL. In supervised learning,
there exists a ground truth represented by the labels Y . In unsupervised learning and
reinforcement learning, however, there are no labels. Hence, the given inputs are of
the form D = {Xi}N

i=1 in an unsupervised learning setting. Here, the goal is to find
patterns in the data without specifying these patterns or defining a specific error function.
Examples of unsupervised learning tasks are principal component analysis and clustering.
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4.4.1 Reinforcement Learning
In this overview of RL, we follow Sutton and Barto [SB18] and Zai and Brown [ZB20].
As previously mentioned, there is no labeled data in the context of RL and hence no data
that can be directly used to train a model. Therefore, the setting of RL consists of an
agent and an environment. The agent takes actions in the environment and moves from
one state to another. Based on these actions and state transitions, the agent receives
positive or negative rewards, which it uses to learn from and make better decisions in the
future. Customarily, RL problems formally are modeled as a Markov decision process
(MDP). MDPs were introduced by Howard et al. [How60] and are represented by a 4-tuple
(ST, As, T, R) where ST is a set of possible states, As is a set of available actions from
state s, T : ST × As → ST is a state transition function, and R : ST × As → R is a
reward function. Figure 4.1 shows such a described agent-environment interaction in an
MDP.

Agent

Environment

action a ∈ Asobserve

reward R(s, a)

new state s ∈ ST

Figure 4.1: The agent–environment interaction in a Markov decision process. Adapted
from [SB18, p. 48].

Q-Learning MDPs are the formal foundation for modeling RL problems, but they do
not define how the agent learns from its actions in the environment. For this reason,
Watkins et al. [WD92] introduced the Q-learning approach, “which provides agents with
the capability of learning to act optimally in Markovian domains by experiencing the
consequences of actions”. Standard Q-learning is based on a table that holds so-called
Q-values Q(s, a) for each state-action pair (s, a) ∈ ST × As. A Q-value Q(s, a) represents
the average reward upon leaving state s with action a, plus expected later rewards. When
the agent then takes action a in state s of the environment at time step t, the Q-values
are updated by applying the following formula:

Qnew(st, at) ← (1 − α) · Q(st, at)
old value

+ α

learning rate
·
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learned value

rt

reward

+ γ

discount factor

· max
a

Q(st+1, a)

estimate of optimal future value

. (4.4)

The learning rate α ∈ (0, 1] in (4.4) regulates how quickly the new Q-value adjusts to the
learned value. Hence, too small values for α lead to slower convergence, and too large
values might lead to divergence. The parameter γ ∈ [0, 1] determines the importance
of the future values. Therefore, γ is an important ingredient to handle the temporal
difference (TD) of the rewards. Formula (4.4) shows the update based on 1-step TD
learning since it is based on just one next reward. An extension to this approach would
be n-step TD learning. The idea is to wait for n steps before updating the Q-values to
get a more accurate estimate of the future rewards. Using Q-learning and given enough
time, the Q-values will eventually converge to their optimal values if the agent takes a
random action in each state [WD92]. Usually, an epsilon-greedy strategy, a combination
of random actions and greedily choosing the best action based on Q-values, is used during
training to improve exploration of the state-action space.

Due to memory issues, however, tabular Q-learning methods cannot deal with problems
that consist of a vast amount of state-action pairs. Hence, Mnih et al. [MKS+13] were
the first to apply deep-Q-networks, which take a state s and action a ∈ As as input and
approximate the Q-values for such state-action pairs. These deep-Q-networks are trained
based on the difference between the old and new Q-value and rely on deep learning and
neural networks, which we both cover in Section 4.4.2.

Policy Gradient Methods In Q-learning, actions are indirectly selected based on
their expected rewards, the Q-value. However, there also exist methods where a network
directly outputs a probability distribution over the actions. Such methods are called
policy gradient methods. Here, a policy function πθ with parameters θ takes a state
s ∈ ST as an input and for all actions a ∈ As, returns a probability πθ(a|s) indicating
the preference of this action in this state. In modern applications, neural networks
approximate these policy functions. One of the most famous policy gradient learning
method is the REINFORCE algorithm by Williams [Wil92]. Since this algorithm serves
as a basis for many other methods in this area, we state its pseudocode in Algorithm 3.

The REINFORCE algorithm is also called Monte Carlo Policy Gradient. In RL, the term
“Monte Carlo” not only refers to methods with an essential random component but also
to methods performing updates only after the termination of an episode. Episodes are
repeated interactions in an agent-environment setting, e.g., plays of a game. Moreover, a
trajectory is a sequence of state-action-reward triples (st, at, rt+1) collected by an agent
in each time step t ∈ {1, . . . , T − 1} during the execution of an episode. These triples
represent the rewards rt+1 that the agent received for taking action at in state st at
time step t. An episode begins independently of how its previous episode ended, and
eventually, they all terminate in a state called terminal state. Since Monte Carlo methods
wait until the completion of an episode before updating the parameters, they represent
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Algorithm 3: REINFORCE: Monte Carlo Policy Gradient
Input: a differentiable policy function πθ(a|s), learning rate α, discount rate γ.

1 θ ← InitializeParameters()
2 while termination criterion not met do
3 s0, a0, r1, . . . , sT −1, aT −1, rT ← GenerateEpisode(πθ)
4 foreach step of the episode t = 1, . . . , T − 1 do
5 Gt = T

k=t+1 γk−t−1rk

6 θ ← θ + αγtGtΔ ln πθ(at|st)
7 end
8 end
9 return θ

the counterpart of 1-step TD learning. The n-step TD strategy lies between those two
approaches. Returning to the REINFORCE procedure shown in Algorithm 3, the first
step deals with initializing the parameters. Then, the algorithm enters the training loop,
where a trajectory is generated with respect to the current policy πθ(·|·), meaning that an
agent executes an episode based on its current state of “knowledge”. Next, REINFORCE
iterates over each time step t ∈ {1, . . . , T − 1}. First, it computes Gt representing the
total sum of discounted future rewards starting at time step t. Subsequently, it updates
the weights θ based on the gradients of the logarithmized model output πθ(at|st) and the
discounted Gt value considering the learning rate α and the discount rate γ. This update
method is based on the Policy Gradient Theorem, for which we refer to Sutton and
Barton [SB18, p. 325]. The intuition behind this update strategy is that the parameters
are pulled in such a direction that the model assigns higher probabilities to actions that
received higher rewards in a specific state and vice versa.

4.4.2 Neural Networks & Deep Learning

An important concept in the artificial neural network domain is the perceptron introduced
by Rosenblatt [Ros57]. Perceptrons aim to model biological neurons that receive signals as
inputs, sum this information up with different weights, and fire if this sum exceeds a certain
threshold. Mathematically, the perceptron is defined as a function pθ(x) = σ(x θ + b),
where x ∈ Rn is the n-dimensional input, θ ∈ Rn the vector of weights, b a bias constant,
and σ : R → R a non-linear activation function. Popular activation functions are the
sigmoid, rectified linear unit (ReLU), and hyperbolic tangent (Tanh) functions. In
Figure 4.2a, we show a visual representation of a perceptron. The expressiveness of
perceptrons is limited, e.g., they are unable to model exclusive-or functions. Therefore,
they are seldomly used as a single model for practical applications. In the same way as
the brain, artificial neural networks do not consist of a single neuron either. Instead,
they get their power from the interaction of a collection of them. Thus, the multi-layer
perceptron (MLP) [Ros57], a neural network model, uses perceptrons as its most essential
component. We show an example of an MLP with four inputs, one hidden layer with
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(a) Visualization of a perceptron [Ros57]. Each
input xi, including a bias constant, is multi-
plied with a corresponding weight wi. The
summation node sums up the resulting prod-
ucts, and the final value is “activated” by a
non-linear activation function.
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(b) Multi-layer perceptron (MLP) with four-
dimensional inputs, one hidden layer with five
nodes and three outputs. The arcs represent
the weights. Bias, summation, and activation
nodes are omitted for clarity in this MLP.

Figure 4.2: Visualizations of a perceptron and a MLP.

five nodes, and three outputs in Figure 4.2b. In an MLP, each hidden and output layer
node is the output of an embedded perceptron. Since each such perceptron comes with
its own set of parameters, researchers struggled to find an appropriate way to train the
MLP successfully for several years. Then, Rumelhart et al. [RHW85] introduced the
backpropagation training algorithm in 1985. This algorithm combines gradient descent
with an efficient method for automatically computing the gradients for each parameter
and is still used to train neural networks today. The standard gradient descent algorithm
is SGD, but more sophisticated algorithms such as ADAM [KB17] exist. The MLP is
also called a feed-forward network, as the information flows from the input to the output
layer without entering any feedback loops.

Together with the MLP, convolutional neural networks (CNN) and recurrent neural
networks (RNN) are the most frequently used classical neural network architectures. We
introduced the MLP because it is seen as the basis for more advanced models having
significant implications for practical application. The CNN, which is most successful in
object and image recognition, is a specialized version of the MLP. Furthermore, the RNN,
which empowers many language processing or speech recognition applications, builds
upon its concepts. Also, more complex models frequently use MLPs as an additional
component.

The main difference between deep learning and classical ML is that a deep learning
problem is expressed as a composition of multiple, possibly even different functions.
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Hence, a model in the deep learning context is a function of the following form

f(x) = f
(k)
θk

(. . . (f (2)
θ2

(f (1)
θ1

(x))) (4.5)

where k ≥ 2 and for each depth level l ∈ {1, . . . , k} of the model, there is a function
f

(l)
θl

(·) with a set of parameters θl. Usually, such a model is a neural network. Here, f
(1)
θ1

is called the first layer, f
(2)
θ2

the second layer, and so forth. Due to this stack of functions,
a deep neural network can build its own features from an input. Hence, it suffices to use
raw inputs, e.g., the pixel values of an n × m image, instead of manually creating features.
For example, in image recognition applications, such handcrafted features could be the
distance between the eyes, the roundness of the face, the nose width, or the cheekbone
structure of a human face [BP93].

Graph Neural Networks One caveat of the mentioned neural network architectures,
except for RNNs, is that they can only handle inputs of equal dimensions. For example,
if a CNN is build for 32 × 32 pixel images, it can only operate on inputs of this
dimension. Another limitation of these architectures is that they are not able to reflect
the underlying structure of an object or problem. Therefore, researchers have come up
with an architecture called GNNs. GNNs solve the discussed issues by using a graph to
model the structure of a problem and assigning feature vectors to the nodes and edges of
this graph. In this overview on GNNs, we follow the definitions of Wu et al. [WPC+20].
As we have already discussed in Section 3.2, there are four groups of GNNs: RecGNNs,
ConvGNNs, STGNNs, and GAEs. The most used classes in the domain of combinatorial
optimization, which we consider in this thesis, are the RecGNN and ConvGNN. Since
the difference of those two groups lies in the fact that RecGNNs use the same set of
parameters across all layers and the ConvGNNs has a different parameter set in each
layer, we focus on ConvGNNs here. Similar to classical CNNs, also ConvGNNs follow the
concept of convolutions. The idea behind convolutions is to aggregate the information
stored in a node and all its neighboring nodes. In Figures 4.3a and 4.3b, we show the
differences of 2-dimensional convolutions such as applied in CNNs and graph convolutions.
The goal of GNNs is to create a representation of a node by iteratively updating its
current features with graph convolution applications.

The class of ConvGNNs contains several different models, such as the MPNN model,
which is the most generic ConvGNN due to its structure. We here present the MPNN to
provide a more detailed overview on how GNNs work. Let G = (V, E) be a graph, where
V is the set of vertices or nodes with n = |V |, and E the set of edges with m = |E|.
Let a node be denoted by v ∈ V , and an edge pointing from v to u by (v, u) ∈ E. The
neighborhood of a node v is defined by N (v) = {u ∈ V | (v, u) ∈ E}. Furthermore, in the
considered context, the graph is an attributed graph, i.e., it has node attributes given by
matrix X ∈ Rn×d, where Xv ∈ Rd is the feature vector of a node v. Additionally, also the
edges may have attributes. These are represented by an edge feature matrix Xe ∈ Rm×c,
where Xe

v,u ∈ Rc is the feature vector of an edge (v, u). To update the representation
H

(k)
v of a node v in layer k, the MPNN applies the following message-passing update
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(a) 2-dimensional convolution: Each node rep-
resents a pixel from an image. Assuming the
fully red node is chosen, a 2-D convolution
selects the neighbors of the red node and takes
an weighted aggregation of their values. Here,
the neighborhood is of fixed size determined
by a filter size. Figure recreated from Wu et
al. [WPC+20].

(b) Graph convolution: The neighbors of a
selected node (fully red node) are defined by
the structure of the graph. The graph convo-
lution takes a weighted aggregation over these
neighbors. The size of the neighborhood is flex-
ible and depends on the selected node. Figure
recreated from Wu et al. [WPC+20].

Figure 4.3: Visual representations of a 2-dimenstional and a graph convolution.

function

H(k+1)
v = Uk H(k)

v ,
u∈N(v)

Mk(H(k)
v , H(k)

u , Xe
v,u) (4.6)

where Uk and Mk usually are parameterized, learnable functions, and H(0) = X. Assume
that the applied MPNN consists of K layers in total. In the beginning, H

(0)
v = Xv for

each node v ∈ V . To update the node representation H
(0)
v of an arbitrary node v ∈ V and

transform it into H
(1)
v , the MPNN applies update function (4.6). In this update function,

the neural network first aggregates the information contained in v’s neighbors u ∈ N(v).
Therefore, the learnable function M0 takes the current node vector H

(0)
v , the current

representation H
(0)
u of a neighbor u, and the associated edge feature vector Xe

v,u as inputs
and computes a so-called message. The genericity of the MPNN lies in the fact that M0
can be any learnable function. For example, it could be an MLP taking the concatenation
of H

(0)
v , H

(0)
u , and Xe

v,u as an input. It could also be a simplified function where some of
the inputs are not required. Next, m

(0)
v = u∈N(v) M0(H(0)

v , H
(0)
u , Xe

v,u) represents the final
neighborhood aggregation for node v, where the messages obtained from all neighbors
of v are summed up into a single message m

(0)
v . Finally, the second function U0 of

the first layer is applied on the current node representation H
(0)
v and message m

(0)
v . It

updates v’s representation H
(1)
v = U0(H(0)

v , m
(0)
v ). Again, U0 can be any learnable function.

The MPNN performs the described node update for each node v ∈ V to compute its
representation for the next layer. Once every node representation is updated, the whole
process is repeated until the final output representation H

(K)
v for each node v ∈ V is

obtained. The size of these final node vectors depends on the structure of the MPNN.
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These computed node representations can be used for different tasks such as node or
graph classification. In node classification, an MLP is usually independently applied
on each final node representation vector to classify this node. In graph classification,
the final node vectors are aggregated by taking the sum or mean, and then an MLP is
employed on this single vector to classify the whole graph.
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CHAPTER 5
Problem Formalization

In this section, we formalize the SRRP stated in Section 2. First, we establish the needed
notation for the formalization. Then, we apply this notation to define MILPs for the
classical staff rostering problem and the SRRP.

5.1 Notation
A summary of the used notation can be found in Table 5.1. The SRRP is defined on a set
of employees N = {1, . . . , k}, a set of days representing the time horizon D = {1, . . . , h},
and a set of shifts S = {E,D,N,F}, where E stands for the early shift, which lasts from
7 am to 3 pm, D represents the day shift lasting from 3 pm to 11 pm, and N denotes the
night shift starting at 11 pm and ending at 7 am. Lastly, F stands for the free shift where
an employee does not have to work. Furthermore, Rds ∈ N0 holds the number of employees
needed for each shift s ∈ S on each day d ∈ D. This corresponds to the formalization of
the staffing requirements. Moreover, each employee n ∈ N states a preference for each
shift s ∈ S of each day d ∈ D expressed by the value Pnds ∈ {1, . . . , |S|}. The lower the
number, the more desirable it is for an employee to do a shift.

To account for the minimum and maximum constraints HWSA, HCWSA, HSTA, and
HCSTA from Section 2, the following parameters are given. Parameters αmin, αmax ∈ N0
represent the minimum and maximum number of working assignments in the planning
horizon, respectively. Therefore, they refer to constraint HWSA stating that an employee
must not be assigned to less than a minimum or more than a maximum number of
working shifts in the scheduling period. HCWSA concerns the minimum and maximum
number of allowed consecutive working days. These minimum and maximum numbers
are denoted by βmin, βmax ∈ N0. Parameters γmin

s , γmax
s ∈ N0 are the minimum and

maximum number of assignments per shift s ∈ S in the planning horizon. They refer
to constraint HSTA regulating the allowed number of assignments to a specific shift
type. Finally, parameters δmin

s , δmax
s ∈ N0 represent the minimum and maximum number
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of consecutive working assignments per shift s ∈ S. Hence, they belong to constraint
HCSTA stating the permitted number of consecutive assignments to a shift type.

So far, the inputs are similar to the classical NRP. The SRRP requires the following
additional information. To compute the changes made to the original schedule. The old
roster prior to the disruptions is represented in the following way. The value xold

nds = 1
if employee n ∈ N is scheduled for shift s ∈ S on day d ∈ D in the original roster and
xold

nds = 0 otherwise. The disruptions are modeled as follows. First, we distinguish between
single- and multi-shift disruptions. The single-shift disruptions are represented by a set
of triples U ssd, where each triple (n, d, s) ∈ U ssd indicates that employee n ∈ N is unable
to cover shift s ∈ S on day d ∈ D. For multi-shift disruptions, we consider whole days
on which an employee is unable to work at all. Thus, Umsd

nd = 1 if and only if employee
n ∈ N cannot work on day d ∈ D and Umsd

nd = 0 otherwise. Second, Rc
ds ∈ Z shows how

the demand changed for each shift s ∈ S on each day d ∈ D compared to the original
demand.

The decision variables used to solve the SRRP are the following:

xnds = 1 if employee n ∈ N is scheduled to work shift s ∈ S on day d ∈ D

0 otherwise

To compute overstaffing and understaffing, we make use of auxiliary variables. Variables
vSCREQ-

ds ∈ N0 state by how many employees shift s ∈ S on day d ∈ D is overstaffed. In
other words, vSCREQ-

ds indicates how many employees would have to be withdrawn from
shift s on day d to cover the staffing requirements exactly. Complementary, vSCREQ+

ds ∈ N0
holds the same information for a potential understaffing of shift s ∈ S on day d ∈ D. We
explicitly introduce two variables for overstaffing and understaffing as this enables us
to define a different penalty weight for each of them. All the weights are represented
by ωi ∈ N0 where i stands for the type of constraints. Weight ωSCREQ- refers to the
penalization for overstaffing and ωSCREQ+ for understaffing. The penalty term of a new
schedule regarding coverage requirement violations is then computed in the following
way:

d∈D s∈S

(ωSCREQ+ · vSCREQ+
ds + ωSCREQ- · vSCREQ-

ds ) (5.1)

Further auxiliary variables are needed to compute how well employee preferences have
been taken into account. The, variable vSPREF

nds ∈ {0, . . . , |S|} is assigned the value Pnds if
employee n ∈ N is assigned to shift s ∈ S on day d ∈ D and vSPREF

nds = 0 otherwise. The
penalty term for employee preferences is defined in (5.2), where the associated weight
value is ωSPREF.

n∈N d∈D s∈S

ωSPREF · vSPREF
nds (5.2)

Next, the variables vSEWL-
n ∈ R≥0 and vSEWL+

n ∈ R≥0 are assigned the numbers of
working assignments that employee n ∈ N works more or less than the average employee,
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5.1. Notation

Table 5.1: Notation for the staff rostering problem and the SRRP formulation.

Symbol Definition
Input Data
n ∈ N n is the index of the employee, and N is the set of employees
d ∈ D d is the index of the day and D is the set of days
s ∈ S s denotes a shift from the set of shifts S = {E,D,N,F}
Rds ∈ N0 number of required employees for shift s on day d
Rc

ds ∈ Z change in demand for shift s on day d compared to the
original roster

Pnds ∈ {1, . . . , |S|} the lower the number, the more desirable for employee n
to work shift s on day d

xold
nds ∈ {0, 1} 1 if employee n is scheduled for shift s on day d in the

original roster, otherwise 0
(n, d, s) ∈ U ssd set of single-shift disruptions (n, d, s) indicating that em-

ployee n is unable to cover shift s on day d
Umsd

nd ∈ {0, 1} multi-shift disruptions denoting that employee n ∈ N is
unable to work on day d ∈ D

(s1, s2) ∈ S− an assignment to shift s1 on day d must not be followed
by an assignment to shift s2 on day d + 1

αmin, αmax ∈ N0 minimum and maximum number of working days in plan-
ning horizon

βmin, βmax ∈ N0 minimum and maximum number of consecutive working
days

γmin
s , γmax

s ∈ N0 minimum and maximum number of assignments for shift s
in the planning horizon

δmin
s , δmax

s ∈ N0 minimum and maximum number of consecutive assignments
to shift s

ωSCREQ- ∈ N0 weight for overstaffing violations
ωSCREQ+ ∈ N0 weight for understaffing violations
ωSPREF ∈ N0 weight for preference violations
ωSEWL ∈ N0 weight for uneven workloads
ωSMOD ∈ N0 weight for changes in original schedule
Decision Variables
xnds ∈ {0, 1} 1 if employee n is scheduled for shift s on day d in the

solution roster, otherwise 0
Auxiliary Variables
vSCREQ-

ds ∈ N0 overstaffing violations for shift s on day d

vSCREQ+
ds ∈ N0 understaffing violations for shift s on day d

vSPREF
nds ∈ {0, . . . , |S|} penalty cost of assigning employee n to shift s on day d

vSEWL-
n ∈ R≥0 number of working assignments that employee n works

more than the average employee
vSEWL+

n ∈ R≥0 number of working assignments that employee n works less
than the average employee

vSMOD
nds ∈ {0, 1} 1 if xnds is different from xold

nds for an employee n and shift
s on day d, otherwise 0 35



5. Problem Formalization

respectively. Weight ωSEWL is used to penalize this potential unevenness in the workload.
The total associated penalty value is

n∈N

ωSEWL · (vSEWL+
n + vSEWL-

n ). (5.3)

Additionally, ωSMOD denotes the penalty weight for each modification made to the old
schedule. To count these modifications, we introduce auxiliary variables vSMOD

nds ∈ {0, 1}.
For employee n ∈ N on day d ∈ D and shift s ∈ S, variable vSMOD

nds = 1 if and only if
xnds is different from xold

nds. The penalty term for penalizing violations changes to the
original roster is defined in (5.4). The value is divided by two since each assignment
change leads to two modifications.

1
2

n∈N d∈D s∈S

ωSMOD · vSMOD
nds (5.4)

Both the objective functions of the classical staff rostering problem and the SRRP are
based on these penalty terms. For the classical problem, the goal is to minimize the
penalties regarding the staffing requirements (SCREQ), the preferences (SPREF), and
the unevenness in the workload (SEWL). Therefore, its objective function is defined as

min (5.1) + (5.2) + (5.3). (5.5)

The SRRP additionally needs to account for the modifications compared to the original
roster (SMOD). Since the goal to have as few changes as possible to the old schedule
implicitly covers the preference and even workload requirements, we omit those penalty
terms in the objective function of the SRRP and state it as

min (5.1) + (5.4). (5.6)

In Section 6.2, we formulate a MILP, for which we relax the hard constraints and turn
them into soft constraints. Therefore, additional auxiliary variables and weights are
required. For better readability, we state and discuss them in the respective section.

5.2 Mathematical Formulations
In the following, we apply the introduced notation to define two MILPs, one for the
classical staff rostering problem and one for the SRRP. We distinguish between these two
models since we require a separate program for creating the original schedules in the test
instance generation (see Section 8.1). Furthermore, the model of the regular rostering
problem builds the basis for the SRRP program. Hence, we can directly reuse some of the
constraint definitions and objectives for the SRRP. Finally, we introduce an additional
MILP model with some of the hard constraints transformed into soft constraints.
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5.2. Mathematical Formulations

5.2.1 Staff Rostering Problem Model
We now formulate the mixed-integer linear program for the classical staff rostering
problem including the constraints defined in Section 2.

min (5.1) + (5.2) + (5.3) (5.7)
s.t.

s∈S

xnds = 1 ∀n ∈ N, d ∈ D (5.8)

xnds1 + xn(d+1)s2 ≤ 1 ∀n ∈ N, (s1, s2) ∈ S−, d ∈ {1, . . . , |D| − 1} (5.9)
αmin ≤

d∈D s∈S\{F}
xnds ≤ αmax ∀n ∈ N (5.10)

s∈S\{F}

min (|D|,d+βmin−1)

d =d

xnd s ≥ βmin ·


s∈S\{F}
(xnds − xn(d−1)s)


∀n ∈ N, d ∈ D

(5.11)

s∈S\{F}

d+βmax

d =d

xnd s ≤ βmax ∀n ∈ N, d ∈ {1, . . . , |D| − βmax} (5.12)

γmin
s ≤

d∈D

xnds ≤ γmax
s ∀n ∈ N, s ∈ S

(5.13)
min (|D|,d+δmin

s −1)

d =d

xnd s ≥ δmin
s · (xnds − xn(d−1)s) ∀n ∈ N, d ∈ D, s ∈ S (5.14)

d+δmax
s

d =d

xnd s ≤ δmax
s ∀n ∈ N, s ∈ S, d ∈ {1, . . . , |D| − δmax

s }

(5.15)

n∈N

xnds + vSCREQ+
ds − vSCREQ-

ds = Rds ∀d ∈ D, s ∈ S

(5.16)
vSPREF

nds = Pnds · xnds ∀n ∈ N, d ∈ D, s ∈ S (5.17)

d∈D s∈S\{F}
xnds + vSEWL+

n − vSEWL-
n = 1

|N |
n ∈N d∈D s∈S\{F}

xn ds

∀n ∈ N (5.18)
xnds ∈ {0, 1} ∀n ∈ N, d ∈ D, s ∈ S (5.19)
vSCREQ+

n , vSCREQ-
n ≥ 0 ∀d ∈ D, s ∈ S (5.20)

0 ≤ vSPREF
nds ≤ |S| ∀n ∈ N, d ∈ D, s ∈ S (5.21)

vSEWL+
n , vSEWL-

n ≥ 0 ∀n ∈ N (5.22)
xn0s = 0 ∀n ∈ N, s ∈ S (5.23)
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Constraints (5.8) ensure that an employee is assigned exactly to one shift, including
the free shift, on each day (HOSPD). Together with Constraints (5.8), Constraints (5.9)
enforce the mandatory rest of at least eleven hours between two working shifts (HREST).
This is realized by disallowing the following working shift sequences for two consecutive
days: night to early shift, night to day shift and day to early shift. These invalid sequences
are stored as tuples in S− = {(N,E), (N,D), (D,E)}. Hard constraint HWSA states that an
employee must be assigned to a number of working shifts within a minimum (αmin) and
a maximum (αmax) in the planning horizon. This constraint is considered in Constraints
(5.10). Constraints (5.11) and (5.12) enforce that each employee works at least βmin and
at most βmax consecutive days, respectively. They refer to hard constraint HCWSA. The
realization of Constraints (5.12) is straight forward since for each βmax + 1 consecutive
days and each employee there must be at most βmax working assignments. Constraints
(5.11), however, are slightly more complex. There, βmin only has to be enforced as a
lower bound if employee n is assigned to work on day d but is assigned a free shift the
day before d. According to Constraints (5.13), each employee must have a minimum
of γmin

s and a maximum of γmax
s assignments to a shift s ∈ S in the whole scheduling

period (HSTA). Constraints (5.14) and (5.15) are similar to Constraints (5.11) and (5.12)
but they ensure that each employee has at least γmin

s and at most γmax
s consecutive

assingments to a certain shift s ∈ S (HCSTA).

So far, we have discussed the formalizations of the hard constraints in the model. Now,
we deal with the soft constraints. More specifically, we show how to compute the values
for the auxiliary variables associated with the soft constraints. These are then used to
calculate the penalties, and therefore the objective value of a solution. According to
Constraints (5.16) the demand on each day for each shift should be satisfied (SCREQ).
However, the sum of employee assignments does not necessarily match the demand
exactly. Instead, auxiliary variables vSCREQ-

ds and vSCREQ+
ds compensate the case when

too many or not enough employees are assigned to shift s on day d, respectively.

To incorporate employee preferences as required by soft constraint (SPREF), Constraints
(5.17) are introduced. Finally, Equations (5.18) are defined to help calculate the equal
workload violations from soft constraint SEWL. The right-hand side of the equation
computes the average number of assignments to working shifts for all employees in the
planning period. Then, cn is used to determine the difference between this average and
an employee n’s total number of working shifts.

The goal of the staff rostering problem is to create a high-quality employee duty schedule.
More formally, high-quality means that all hard constraints are satisfied and the soft
constraints are fulfilled as well as possible. We have already introduced the auxiliary
variables vSCREQ+

ds , vSCREQ-
ds , vSPREF

nds , vSEWL+
n , and vSEWL-

n representing the violations of
soft constraints. Their corresponding penalty terms (5.1), (5.2), and (5.3) are used in the
objective function (5.7) that should be minimized. Again, (5.1) calculates the penalty for
the overstaffing and understaffing violations (SCREQ), (5.2) represents the preference
violations (SPREF), and (5.3) penalizes unequal workloads among employees (SEWL).
For completeness, we state the domains of the model’s variables in Inequalities (5.19)
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5.2. Mathematical Formulations

- (5.22) and Constraints (5.23). As it is possible in Constraints (5.11) and (5.14) that
d − 1 = 0 /∈ D, we add constants xn0s = 0 for n ∈ N , s ∈ S, to account for this fact and
to keep the constraints valid. All these domain specifications hold for the rerostering
problem as well.

5.2.2 Staff Rerostering Problem Model
In this section, we state the mixed-integer linear program for the SRRP. Therefore, we
reuse some of the previously defined constraints and combine them with new SRRP-
specific constraints.

min (5.1) + (5.4) (5.24)
s.t. (5.8), (5.9), (5.11), (5.12), (5.14), (5.19) to (5.23)

αmin −
d∈D

Umsd
nd ≤

d∈D s∈S\{F}
xnds ≤ αmax ∀n ∈ N (5.25)

γmin
s −

d∈D

Umsd
nd ≤

d∈D

xnds ≤ γmax
s ∀n ∈ N, s ∈ S \ {F} (5.26)

γmin
F ≤

d∈D

xndF ≤ γmax
F +

d∈D

Umsd
nd ∀n ∈ N (5.27)

d+δmax
s

d =d

xnd s ≤ δmax
s

∀n ∈ N, s ∈ S \ {F}, d ∈ {1, . . . , |D| − δmax
s } (5.28)

d+δmax
F

d =d

xnd F ≤ δmax
F +

d+δmax
F

d =d

Umsd
nd

∀n ∈ N, d ∈ {1, . . . , |D| − δmax
F } (5.29)

s∈S\{F}
xnds ≤ 1 − Umsd

nd ∀n ∈ N, d ∈ D (5.30)

xnds = 0 ∀(n, d, s) ∈ U ssd (5.31)

n∈N

xnds + vSCREQ+
ds − vSCREQ-

ds = Rds + Rc
ds ∀d ∈ D, s ∈ S (5.32)

vSMOD
nds ≤ xold

nds + xnds ∀n ∈ N, d ∈ D, s ∈ S (5.33)
vSMOD

nds ≥ xold
nds − xnds ∀n ∈ N, d ∈ D, s ∈ S (5.34)

vSMOD
nds ≥ xnds − xold

nds ∀n ∈ N, d ∈ D, s ∈ S (5.35)
vSMOD

nds ≤ 2 − xnds − xold
nds ∀n ∈ N, d ∈ D, s ∈ S (5.36)

vSMOD
nds ∈ {0, 1} ∀n ∈ N, d ∈ D, s ∈ S (5.37)

In the previous section, we defined Constraints (5.8)–(5.15) that formalize the hard
constraints HOSPD, HREST, HWSA, HCWSA, HSTA, and HCSTA. From these, (5.8),
(5.9), (5.11), (5.12), and (5.14) can be directly reused for the MILP model of the SRRP.
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However, the formalization of hard constraints HWSA, HSTA, and HCSTA requires
adaption due to the multi-shift disruptions. Since these disruptions are mostly caused
by illness and vacation, an employee could be unavailable for multiple consecutive days.
Therefore, it might be impossible to adhere to the minimum number of working shifts,
the maximum number of free shifts, and the maximum number of consecutive free shifts
constraints. Thus, Constraints (5.25)–(5.29) are introduced to compensate for this fact.
The main idea behind these adapted variants is to incorporate the days of absence to
reduce the lower bounds or raise the upper bounds. Additionally, Constraints (5.30) and
Constraints (5.31) refer to hard constraint HABSE and ensure that an employee cannot
be assigned to a shift the employee is unable to cover.

In contrast to the hard constraints, we do not consider all the soft constraints from the
previous section for the rerostering model. That is the case for constraints SPREF and
SEWL. They deal with the requirements that employee preferences should be included
in the schedule and that the roster should have an even workload for each employee,
respectively. The reason we do not include them in the rerostering formulation is that
they are implicitly covered by the goal to be as close as possible to the original solution
(SMOD). For the previously formalized staffing constraints SCREQ, adopted formulations
have to be introduced due to the disruptions. Therefore, Constraints (5.32) ensure that
the staffing requirements for each shift are covered. They extend the cover Constraint
(5.16) from the last section by adding Rc

ds to the right-hand side of the equation. Hence,
a change of demand, which can be caused by track work or train failures, is included in
the model. Finally, constraint SMOD is SRRP-specific and states that there should be
as few changes as possible to the original roster. Constraints (5.33)–(5.36) model these
changes from the original schedule to the new roster incorporating the disruptions. We
achieve this by combining the auxiliary variable vSMOD

nds with exclusive-OR constraints.
This means that vSMOD

nds = 1 if and only if the values of xold
nds and xnds are different for

an employee n ∈ N , a shift s ∈ S, and a day d ∈ D. Hence, either xold
nds = 1 or xnds = 1

but not both. Again, using these constraints may very likely lead to some penalties that
cannot be avoided but have no consequences when solving the problem.

Finally, the objective function (5.24) of the SRRP consists of two parts. The first one,
(5.1), refers to the violations of the coverage requirements constraint (SCREQ). The
second one, (5.4), corresponds to the penalties for changes in the schedule compared
to the old roster (SMOD). In (5.4), the value is divided by two to indicate that every
modification is counted twice by Constraints (5.33)–(5.36). As previously mentioned, the
domain specifications of the staff rostering problem can be reused as well. Additionally,
the domain for the rerostering-specific variables vSMOD

nds is stated in Constraints (5.37).
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CHAPTER 6
Large Neighborhood Search

We have already pointed out that Moz and Pato [MP07] proved the NRRP, which is a
simpler variant of the SRRP, to be NP-hard. Hence, solely relying on exact solutions
methods is not a promising approach to efficiently solve large instances of the SRRP.
Therefore, we propose a LNS meta-heuristics to find high-quality solutions fast for this
hard problem. For a general review of the LNS, we refer to Section 4.2.3. In this section,
we introduce the LNS framework that is the foundation of our work. We define the
construction heuristic and the repair operator used in each LNS applied in this thesis.
Additionally, we propose a randomized destroy operator, serving as a benchmark in
our computational experiments presented in Section 8.2. In the following section, we
eventually define our learning-based destroy operator, representing the main contribution
of this thesis.

Algorithm 4 shows the LNS pseudocode matching the requirements regarding our solution
approaches. Since we use two alternative destroy methods in this work, our LNS-
Framework takes a destroy operator DestroySolution in addition to an SRRP instance
I as an input. We assume that an instance contains all the required input data to define
the SRRP. For an extensive overview of the notation and data contained by an SRRP
instance, we refer to the problem formalization in Section 5 and especially to Table 5.1.
Each solution in the solution space S is represented by decision variables xnds ∈ {0, 1} for
all employees n ∈ N , days d ∈ D, and shifts s ∈ S. If an employee n is scheduled for shift s
on day d in the solution, xnds = 1, otherwise xnds = 0. Algorithm 4 starts by constructing
an initial solution. We describe the construction heuristic ConstructSolution used
to create those initial solutions for both LNS approaches in Section 6.1. Then, we enter
the main optimization loop, where a solution first is partially destroyed. We review the
classical randomized destroy method in Section 6.3 and afterward discuss the learning-
based approach concerning the neural network architecture and the learning method used
in Section 7. In the next step, we repair the partially destroyed solution. We distinguish
between feasible and infeasible solutions in the repair operator and adapt our repair
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6. Large Neighborhood Search

Algorithm 4: LNS-Framework
Input: SRRP instance I, destroy method DestroySolution.

1 xnds ← ConstructSolution(I)
2 xbest

nds ← xnds

3 while termination criterion not met do
4 feasible ← IsFeasible(xnds)
5 xpartial

nds ← DestroySolution(I, xnds)
6 xnds ← RepairSolution(I, xpartial

nds , feasible)
7 if c(xnds) < c(xbest

nds) then
8 xbest

nds ← xnds

9 else
10 xnds ← xbest

nds

11 end
12 end
13 return xnds

mechanism accordingly. Therefore, we use IsFeasible to compute whether or not a
solution is feasible. The repair method RepairSolution is discussed in Section 6.2.
We only accept a new solution if it has been improved in the last destroy and repair cycle.
Here, c : S → R represents the objective function. Eventually, we repeat the training
loop until the termination criterion is met.

6.1 Construction Heuristic
Usually, the goal of construction heuristics is to create a promising feasible solution.
However, obtaining feasible solutions is not always computationally easy, which also
holds for the SRRP. Therefore, we suggest a fast construction heuristic, which generates
solutions that may be infeasible but possibly can be transformed into high-quality feasible
solutions quickly in the following LNS iterations. The idea is to take the original schedule
before the disruptions as a solution and change employees’ working assignments to
non-working or free shifts if they are absent on a day or shift. Hence, we build on the
fact that these former schedules were already optimized to minimize cover requirement
violations. Additionally, this new solution has a low number of modifications compared
to the old roster since we only change shifts if employees are absent and can therefore be
considered a promising starting point.

Algorithm 5 shows the pseudocode for the construction heuristic ConstructSolution.
In Lines 1-3, we first retrieve problem-specific information such as the sets of employees N ,
days D, and shifts S from the instance. Moreover, we obtain the multi-shift disruptions
Umsd

nd ∈ {0, 1} for each employee n ∈ N and day d ∈ D. Here, Umsd
nd = 1, if an employee n

is absent for all shifts on a day d, otherwise Umsd
nd = 0. Lastly, we collect U ssd representing

the set of single-shift disruptions, which contains tuples (n, d, s) for each employee n
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Algorithm 5: ConstructSolution
Input: SRRP instance I.

1 N, D, S ← GetEmployeesDaysShifts(I)
2 Umsd

nd , U ssd ← GetDisruptions(I) // multi- and single-shift disruptions
3 xold

nds ← GetOldSchedule(I) // original schedule prior to the disruptions
4 xnds ← xold

nds ∀n ∈ N, d ∈ D, s ∈ S
5 for n ∈ N do
6 for d ∈ D do
7 if (∃s ∈ S : (n, d, s) ∈ U ssd) or (Umsd

nd == 1) then
8 xnds ← 0 ∀s ∈ S \ {F}
9 xndF ← 1 // assign employee n to free shift on day d

10 end
11 end
12 end
13 return xnds

that is absent for a shift s on a day d. The algorithm then works by copying the values
from the old roster xold

nds to the initial solution xnds for all n ∈ N , d ∈ D, and s ∈ S.
Then, it checks for all employees n ∈ N and days d ∈ D whether the employee is absent
from the previously assigned shift or the whole day d. If this is the case, the employee is
withdrawn from this previous shift and assigned to the free shift.

6.2 Repair Operator
As we have discussed in the previous section, our construction heuristic may return
infeasible solutions. Additionally, the destroy operator might not select all the relevant
variables required to turn the solution feasible with one repair operator application. As a
consequence, we have to deal with infeasible solutions during the repair operation and the
LNS in general. Therefore, we propose a further MILP model, where we transform some
of the hard constraints into soft constraints. The relaxed hard constraints are HREST,
HWSA, HSTA, HCWSA, and HCSTA. We recap the meaning of these constraints when
introducing the auxiliary variables required for this relaxation. See also Section 2 for
the definitions of these constraints. As a result, a solution to the new model can violate
these hard constraints at the cost of additional penalizations. To reduce the chance that
infeasible solutions have better objective values than any feasible solution, we assign
these weights a value 100 times greater than the highest weight from the regular MILP.
Using this model in the repair operator of the LNS allows us to start the search from an
infeasible solution and gradually move towards a feasible one.

Before we formulate the MILP, we discuss our repair operator RepairSolution shown
in Algorithm 6. As input, it takes an SRRP instance and a partial solution where a
subset of decision variables was freed. The actual repairing of the solution lies in solving
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Algorithm 6: RepairSolution
Input: SRRP instance I, partial solution xpartial

nds , boolean value which is true if
and only if the solution was feasible before destruction ν.

1 if ν then
2 xnds ← solve xpartial

nds with standard MILP from Section 5.2.2
3 else
4 xnds ← solve xpartial

nds with MILP having hard constraints relaxed
5 end
6 return xnds

the subproblem induced by fixing the other variables. Another essential input is the
information on whether or not the partial solution was feasible before destruction. If it
was, we apply the standard MILP from Section 5.2.2 to solve the mentioned subproblem
since we know that the resulting solution will be feasible again. And if the solution was
infeasible, we employ the MILP with relaxed hard constraints, which we state in the
remainder of this section.

To transform hard constraints into soft constraints, we introduce the following auxiliary
variables to account for hard constraint violations. Variables vHREST

nds ∈ N0 for n ∈ N ,
d ∈ D, and s ∈ S are established to identify violations of the minimum rest between
work shifts, thereby refering to constraint HREST. Next, vHWSA+

n ∈ N0 and vHWSA-
n ∈ N0

indicate how many shifts an employee n ∈ N has to work more or less, respectively, to lie
within the allowed range of total working days in the planning horizon (HWSA). Similarly,
vHSTA+

ns ∈ N0 and vHSTA-
ns ∈ N0 state how many days more or less an employee n ∈ N

must be assigned to a shift s ∈ S, such that the total number of assignments to shift s is
within the allowed range for s (HSTA). To compute if the constraint for the minimum
and the maximum number of consecutive working days is violated (HCWSA), variables
vHCWSA+

nd ∈ N0 and vHCWSA-
nd ∈ N0 are introduced. For an employee n ∈ N and a starting

day d ∈ D, vHCWSA+
nd and vHCWSA-

nd represent the number of shifts that employee n has
to work more or less in a specific horizon to satisfy HCWSA. Finally, vHCSTA+

nds ∈ N0
and vHCSTA-

nds ∈ N0 for n ∈ N , d ∈ D, and s ∈ S similarly indicate violations of HCSTA,
which defines the minimum and the maximum number of consecutive assignments to
a shift s. The weights used to penalize the violations of hard constraints are given by
ωHREST, ωHWSA, ωHSTA, ωHCWSA, and ωHCSTA ∈ N0.

min 1
2

n∈N d∈D s∈S

ωSMOD · vSMOD
nds +

d∈D s∈S

(ωSCREQ+ · vSCREQ+
ds + ωSCREQ- · vSCREQ-

ds +

n∈N d∈D s∈S

ωHREST · vHREST
nds +
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n∈N

ωHWSA · (vHWSA+
n + vHWSA-

n )

n∈N s∈S

ωHSTA · (vHSTA+
ns + vHSTA-

ns ) +

n∈N d∈D

ωHCWSA · (vHCWSA+
nd + vHCWSA-

nd ) +

n∈N d∈D s∈S

ωHCSTA · (vHCSTA+
nds + vHCSTA-

nds ) (6.1)

s.t. (5.8), (5.19) to (5.23), (5.30) to (5.37)
xnds1 + xn(d+1)s2 − vHREST

nds1 ≤ 1
∀n ∈ N, (s1, s2) ∈ S−, d ∈ {1, . . . , |D| − 1} (6.2)

αmin −
d∈D

Umsd
nd ≤

d∈D s∈S\{F}
xnds + vHWSA+

n − vHWSA-
n ≤ αmax

∀n ∈ N (6.3)

s∈S\{F}

min (|D|,d+βmin−1)

d =d

xnd s + vHCWSA+
nd ≥

βmin ·


s∈S\{F}
(xnds − xn(d−1)s)


∀n ∈ N, d ∈ D (6.4)

s∈S\{F}

d+βmax

d =d

xnd s − vHCWSA-
nd ≤ βmax ∀n ∈ N, d ∈ {1, . . . , |D| − βmax} (6.5)

γmin
s −

d∈D

Umsd
nd ≤

d∈D

xnds + vHSTA+
ns − vHSTA-

ns ≤ γmax
s

∀n ∈ N, s ∈ S \ {F} (6.6)
γmin
F ≤

d∈D

xndF + vHSTA+
nF − vHSTA-

nF ≤ γmax
F +

d∈D

Umsd
nd ∀n ∈ N (6.7)

min (|D|,d+δmin
s −1)

d =d

xnd s + vHCSTA+
nds ≥ δmin

s · (xnds − xn(d−1)s)

∀n ∈ N, d ∈ D, s ∈ S (6.8)
d+δmax

s

d =d

xnd s − vHCSTA-
nds ≤ δmax

s

∀n ∈ N, s ∈ S \ {F}, d ∈ {1, . . . , |D| − δmax
s } (6.9)

d+δmax
F

d =d

xnd F − vHCSTA-
ndF ≤ δmax

F +
d+δmax

F

d =d

Umsd
nd
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6. Large Neighborhood Search

∀n ∈ N, d ∈ {1, . . . , |D| − δmax
F }(6.10)

vHWSA+
n , vHWSA-

n ≥ 0 ∀n ∈ N
(6.11)

vHSTA+
ns , vHSTA-

ns ≥ 0 ∀n ∈ N, s ∈ S
(6.12)

vHCWSA+
nd , vHCWSA-

nd ≥ 0 ∀n ∈ N, d ∈ D
(6.13)

vHCSTA+
nds , vHCSTA-

nds , vHREST
nds ≥ 0 ∀n ∈ N, d ∈ D, s ∈ S(6.14)

We do not relax hard constraints HOSPD and HABSE. They ensure that each employee
is assigned only to one shift per day and that employees cannot be assigned to shifts
when they are absent, respectively. Therefore, we include the regular formalizations
of these constraints (5.8), (5.30), and (5.31) in the model. Constraints (5.19)–(5.23)
and (5.32)–(5.37) refer to the soft constraints regarding the cover requirements and the
modifications to the original roster, including the variable domain specifications. These
are contained in the model as well. Furthermore, Constraints (6.2)–(6.9) represent the
hard constraints modified into soft constraints. Compared to the original Constraints
(5.8), (5.9), (5.11), (5.12), (5.14), and (5.25)–(5.29), each of the modified constraints
contains an additional variable that is either added or subtracted. These variables are
the variables described in the previous paragraph. They ensure that the lower and upper
bounds of the minimum and the maximum constraints are respected. Therefore, they
turn the hard into soft constraints. Constraints (6.11)–(6.14) define the domains of the
new variables. Finally, the objective function of the SRRP with relaxed hard constraints
is given by (6.1). It is similar to the objective function (5.24) of the regular SRRP with
hard constraints. In addition to all the terms in objective function (5.24), objective
function (6.1) contains the sums of the penalized hard constraints violations.

6.3 Randomized Destroy Operator
One intuitive approach to design a randomized destroy operator for the SRRP is to
randomly sample an employee n ∈ N , a day d ∈ D, and a shift s ∈ S, destroy the
respective variable xnds, and repeat this process for some iterations. However, with this
strategy, it is rather unlikely to sample multiple shifts for the same day and employee.
Therefore, the later applied repair operator has frequently no or little chance to change the
assignment of an employee and to improve the solution. To address this issue, a natural
adaption of the mentioned destroy operator is to randomly select an employee n ∈ N , a
day d ∈ D, and destroy the variables xnds for all s ∈ S instead of sampling the shifts too.
Then, the repair operator has the guaranteed possibility to change the assignment of an
employee on a specific day. Although this approach might seem promising, preliminary
results have shown that it is not mature enough to obtain good results. The reason for
this lies in the constraints regulating the consecutive number of working shifts (HCWSA)
and the consecutive assignments per shift type (HCSTA). Here, the repair operator can
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only produce improvements if consecutive days are selected, which is, similarly to the
issue before, too improbable.

Algorithm 7: RandomDestroySolution
Input: SRRP instance I, current solution xnds, number of destroy cycles z1,

number of days to destroy before and after selected day z2.
1 N, D, S ← GetEmployeesDaysShifts(I)
2 employeeDayPairs ← {(n, d) | ∀n ∈ N, d ∈ D}
3 foreach i = 1, . . . , z1 do
4 (n, d) ← select random tuple from employeeDayPairs
5 period ← {max(1, d − z2), . . . , d, . . . , min(|D|, d + z2)}
6 foreach day d ∈ period do
7 remove (n, d ) from employeeDayPairs
8 destroy xnd s for all s ∈ S

9 end
10 end
11 return xnds

A more elaborate strategy to solve the discussed challenges, is to destroy multiple
consecutive days for an employee. Similar to the last variant, we randomly select an
employee n ∈ N and a day d ∈ D forming an employee-day pair (n, d). Then, we pick
the period {max(1, d − z2), . . . , d, . . . , min(|D|, d + z2)} based on d, where we select the
days ranging from z2 days before d to z2 days after d, respecting that one is the index
of the first and |D| the index of the last day. Afterward, we destroy xnd s for each shift
s ∈ S, each day d in the chosen period, and the selected employee n. In Algorithm 7,
we show the RandomDestroySolution destroy method formulating this strategy. In
RandomDestroySolution, the described process is repeated z1 times. Both z1 ∈ N0
and z2 ∈ N0 are strategy parameters that Algorithm 7 needs as input. Note that we keep
track of the already destroyed employee-day pairs (n, d ) to reduce the number of overlaps.
The upper bound of the total number of destructed employee-day pairs is z1 · (2z2 + 1).

When presenting the results in Section 8.2, we will show that the LNS utilizing the
RandomDestroySolution destroy method delivers strong empirical performance.
Moreover, we found that the insights obtained in this section are essential for efficiently
solving the SRRP using an LNS. Therefore, we implement a similar consecutive-day
selection scheme for our learning-based destroy operator introduced in the following
section.
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CHAPTER 7
Learning-Based Destroy Operator

The concept of our learning-based destroy operator is to utilize a neural network that,
given an instance and a current solution represented by features, returns a policy to select
promising employee-day pairs to destroy from {(n, d) | ∀n ∈ N, d ∈ D}. The objective is
that the used ML model learns an intelligent selection policy through imitation learning,
where we train the model to mimic an expert policy. Therefore, we pose the problem
of selecting a destroy set as a MDP in Section 7.1. Our applied learning approach is
based on conditional generative modeling, where the policy defines a distribution over
the destroy sets. We establish this learning strategy in Section 7.2.
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Figure 7.1: Overview of our learning-based destroy operator at test time.
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Figure 7.1 provides an overview of our learning-based destroy operator. Here, πθ represents
the primary model. It takes a featurized version of a state st ∈ ST at step t of an LNS run,
consisting of an SRRP instance I and its current solution xt

nds, as an input. As already
stated in Section 6, we assume that an instance contains all the required input data to
define the SRRP. We refer to the problem formalization in Section 5 and especially to
Table 5.1 for an overview of the notation and data contained by an SRRP instance. In our
learning-based destroy operator, the model πθ outputs a value µnd for each (n, d) ∈ N ×D,
indicating the probability of an employee-day pair (n, d) to be contained in the destroy
set. More specifically, πθ consists of two independently trained neural networks: one
handling states containing infeasible solutions and one dealing with states containing
feasible solutions. We decided to make this distinction as we observed that the behavior
to learn can be quite different for feasible and infeasible solutions. Also, more training
data is created for feasible solutions since the LNS spends more time in the feasible
space. By considering two neural networks, we thus also avoid problems arising from the
imbalance in training data. The only difference between the models in πθ is the data
used to train them. Hence, to improve readability, we will only refer to πθ indicating the
respective neural network throughout this whole section.

Another important aspect of our learning-based destroy operator is the temperature τ
which is a strategy parameter regulating the influence of πθ’s output in the destroy set
sampling process. To optimize the choice for τ , we introduce another model πTφ, which
receives a state st and the output of πθ as inputs and predicts a temperature τ for the
current situation. Again, πTφ consists of two independently trained neural networks, one
for infeasible and one for feasible solutions, and for the sake of readability, we will only
refer to πTφ.

We explain the data generation process for each learning task in Section 7.6. Moreover, we
define all the neural network architectures in Section 7.4 and review the relevant training
procedures in Section 7.5. The next step in our learning-based destroy operator is the
destroy set sampling process. Here, we use πθ’s outputs and the predicted temperature τ
to select the employee-day pairs to be unassigned in the current solution. In Section 7.3,
we provide the details regarding our destroy set sampling strategy. Eventually, in
Section 7.7, we discuss the features used and state how they are extracted from a current
state.

Our approach is inspired by Nair et al. [NBG+20] and Sonnerat et al. [SWK+21]. We
will point out differences and similarities in the respective subsections. To summarize
some of the key differences to those approaches: we propose a custom graph structure
representing a current state, which allows us to apply a GNN even on this highly
constrained COP. Moreover, we use an extra iteration in our data generation process for
collecting data on more relevant states and introduce additional neural networks to learn
optimal temperatures. Finally, we apply those temperatures in our destroy set sampling
strategy tailored to the SRRP.
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7.1 Markov Decision Process Formulation
As we have already stated in Section 4.4.1, an MDP is represented by a 4-tuple consisting
of the set of states, the set of actions, a transition function, and a reward function. Let
ST be the set of states and A the set of actions. In our setting, we define a state st ∈ ST
at step t of an episode to consist of an SRRP instance I and its current solution xt

nds,
where n ∈ N, d ∈ D, s ∈ S. An action at ∈ {0, 1}|N×D| at step t represents the selection
of employee-day pairs to be destroyed. A positive assignment at

nd = 1 for an employee
n ∈ N and a day d ∈ D indicates that employee day pair (n, d) is contained in the destroy
set. Therefore, for such a tuple (n, d) and all s ∈ S, variables xt

nds are unassigned in
the current solution. Given a previous state st and an action at, the transition function
T : ST × A → ST determines the next state T (st, at) = st+1. Here, T (st, at) is reached
by destroying all variables associated with at in solution xt

nds and then repairing the
partial solution with the repair operator proposed in Section 6.2. We do not define a
reward function since it does not play a role in our considerations.

7.2 Destroy Set Prediction as Conditional Generative
Modeling

Before establishing our conditional generative modeling setting, we briefly discuss why
we chose this approach over RL. The main issue with RL in our context is that it is
vastly expensive to obtain enough training data since a single episode is equivalent to an
entire LNS run. As the SRRP is a hard problem requiring longer computation times to
reach high-quality solutions, the time needed to finish an episode also increases. Since
today’s RL algorithms typically require many episodes to develop their true strengths,
we consider alternative strategies, such as our approach, to be more promising.

Inspired by Nair et al. [NBG+20], we propose a conditional generative model representing
the distribution of actions (i.e., destroy sets) in a current state. For an arbitrary step t
in an LNS run, consider a state st ∈ ST , an action at ∈ A, and the previously defined
transition function T . Moreover, let c : ST → R represent a function returning the
objective value of a current solution xt

nds stored in a state st ∈ ST with respect to the
SRRP objective function stated in (6.1). We define the following energy function over an
action at:

E(at; st) = c(T (st, at)) if c(T (st, at)) < c(st),
∞ otherwise,

(7.1)

which as in Nair et al. [NBG+20] defines the conditional distribution:

π(at|st) = exp(−E(at; st))
Z(st) , (7.2)

where Z(st) = (a )t exp(−E((a )t; st)). Our learning efforts aim to approximate the
conditional distribution in (7.2) utilizing a model πθ(at|st) parameterized by θ. By using
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the unscaled energy function as presented in (7.1), destroy sets leading to solutions with
better (lower) objective values after repairing have a higher probability. And destroy sets
not leading to improvements in objective value have zero probability. However, since our
goal is to generate the best action in each state, we re-scale the energy function such
that we assign probability π((a∗)t|st) = 1 to an optimal action (a∗)t and a probability of
zero to each other action in state st. Sonnerat et al. [SWK+21] adapted the conditional
generative modeling design from Nair et al. [NBG+20] in the same way. As a consequence,
we only have to consider training data containing optimal actions. We describe how we
obtain such optimal or near-optimal labels in Section 7.6.

7.3 Sampling Destroy Sets
In Section 6.3, we introduced the randomized destroy operator, which selects z1 employee-
day pairs (n, d) ∈ N × D and destroys all the variables associated with employee-day
pairs within the range of z2 days before to z2 days after d. Remember that z1 ∈ N0 and
z2 ∈ N0 are strategy parameters. Moreover, we described that selecting employee-day
pairs without this range does not give good results since the SRRP consists of constraints
regarding consecutive working assignments. These constraints are HCWSA ensuring
that an employee is not assigned to less or more than a specified number of consecutive
working assignments, and HCSTA enforcing that for each employee, the number of
consecutive assignments to a specific shift is within an allowed range. Hence, we need to
select consecutive days to improve a solution, which is not probable enough if randomly
selecting single employee-day pairs at a time. Although in our learning-based destroy
operator, the neural network πθ outputs a value for each employee-day pair describing its
probability to be in the destroy set, we encounter the same issues. Therefore, we cannot
directly apply the approach of Sonnerat et al. [SWK+21], which would construct a destroy
set U by iteratively adding an employee day pair (n, d) with probability proportional to

(πθ(at
nd = 1 | st) + )

1
τ · I[(n, d) ∈ U ], (7.3)

where τ is a temperature parameter to strengthen or weaken the influence of the neural
network and > 0 is an offset to give every pair a non-zero probability. This approach
ensures that the size of the destroy set can be predetermined. Note that Sonnerat
et al. [SWK+21] refrain from sampling destroy decisions directly from the Bernoulli
distributions since this often leads to small destroy sets. We also independently observed
this behavior in our experiments. It results from the unbalanced data as only a small
number of employee-day pairs is part of the destroy set. Hence, the neural network
predicts a lower probability for each pair.
To counter the discussed challenges, we propose a new destroy set sampling strategy, where
we select a block of consecutive employee-day pairs. We assign each pair (n, d) ∈ N × D
a weight

wnd =
min(|D|, d+z2)

d =max(1, d−z2)
(πθ(at

nd = 1 | st) + )
1
τ · I[(n, d ) ∈ U ], (7.4)
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which can be interpreted as the sum of all neural network outputs for employee n in
a window of 2z2 + 1 consecutive days around day d. Then, we randomly select an
employee-day pair (n, d) proportional to its weight wnd and add pairs (n, d ) for all
d ∈ {max(1, d − z2), . . . , d, . . . , min(|D|, d + z2)} to U . We repeat this process z1 times.
Eventually, for each (n, d) ∈ U , we unassign variables xt

nd s for each shift s ∈ S in the
current solution.

7.4 Neural Networks
Applying classical neural network models such as the MLP, CNN, or RNN has the
disadvantage that the order of the input features impacts the output of the model.
Moreover, these models, except the RNN, only work on inputs of equal dimensions.
GNNs do not impose such restrictions and even make it possible to model the structure
of a problem as a graph. For these reasons, we also rely on a GNN as our ML model
of choice. A GNN parameterizes a graph enabling it to learn from data on the graph.
However, the SRRP is not directly defined on a graph. Addanki et al. [ANA20] propose
a learning LNS framework for solving MILPs in general. They use a CVIG [AGCL12]
which is a bipartite graph where one partition contains a node for each variable and
the other a node for each constraint in the MILP. An edge exists between a variable
and a constraint node if the variable occurs in the constraint. A corresponding CVIG
for practical instances of the SRRP would be huge. In preliminary tests, we observed
that this huge graph makes it inefficient to compute outputs and update the network
parameters.

7.4.1 Custom Graph Representation

We propose the following custom graph representation for the SRRP. This graph represen-
tation is not a reformulation of the SRRP as a graph problem, but it reflects a knowledge
graph containing information for choosing promising employee-day pairs. We define this
graph as a structure G = (V, E, X), where V is the set of nodes, E the set of edges,
and X ∈ R|V |×p a node feature matrix which assigns each node v ∈ V a p-dimensional
feature vector Xv = (Xv,1 . . . Xv,p). The set of nodes V = Vemp ∪ Vassign ∪ Vday is com-
posed of three different types which are employee Vemp = {n | n ∈ N}, assignment
Vassign = {(n, d) | n ∈ N, d ∈ D}, and day Vday = {d | d ∈ D} nodes. The assignment
nodes represent the employee-day pairs. There are edges between an assignment node
and its associated employee and day nodes. Moreover, since the days represent a se-
quence, we add edges between each day and the day that directly follows it. Hence,
E = {(v, u) | v ∈ Vemp, u = (n, d) ∈ Vassign, v = n} ∪ {(v, u) | v ∈ Vday, u = (n, d) ∈
Vassign, v = d} ∪ {(v, u) | v, u ∈ Vday, u = v + 1}. Finally, we provide the actual features
X extracted from a state st in Section 7.7. In Figure 7.2, we show an example graph of
an SRRP instance with three employees and days to provide more intuition for this graph
structure. The interpretation of this representation is that an employee is involved in an
assignment and this assignment takes place on a specific day in the planning horizon. A
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N1 N2 N3

(N1, D1) (N2, D1) (N3, D1) (N1, D2) (N2, D2) (N3, D2) (N1, D3) (N2, D3) (N3, D3)

D1 D2 D3

Figure 7.2: Graph-based representation of the SRRP on an example instance with three
employees and three days. There is a node for each employee (N1, N2, N3) and each day
(D1, D2, D3). For each employee-day pair (Ni, Dj), there is a node, which is connected to
the employee node Ni and the day node Dj . Each day Di is connected to the day that
follows it D(i+1), if such a day exists in the planning horizon.

state st ∈ ST , consisting of an SRRP instance and its current solution xt
nds, holds all the

required information to create such a graph structure. If we later use a state directly as
an input to our neural network, we mean that it has first been transformed into such a
graph representation.

Classical GNNs such as the GCN [KW17], GIN [XHLJ19], or graph attention network
(GAT) [VCC+18] assume that the given graph is homogeneous, meaning that all nodes
are of the same type and therefore contain the same features. Our proposed graph
structure, however, comprises three different types of nodes. The main reason for this
design choice is the size of the graph since it directly influences the run times of the
GNN forward pass. With the suggested graph structure, there are O(|N | · |D|) nodes
and O(|N | · |D|) edges. For a homogeneous graph consisting of employee-day pair nodes,
there would be at least O(|N |2 · |D|) edges. The reason is that this graph requires edges
between the employee-day pair nodes of the same day to share information concerning
the cover requirements of that day. However, it is not sensible to leave out nodes of
the same day in this connection. In total, this results in |D| complete subgraphs having
|N |2 edges. In our proposed structure, the employee and day nodes can naturally hold
features that aggregate information for an employee or a day. For example, employee
nodes might contain the number of assignments to working shifts of an employee, and
day nodes the number of employees assigned to a specific shift on a day as features.

One way to address that classical GNNs assume homogeneous graphs would be to apply
the relational graph convolutional network (R-GCN) proposed by Schlichtkrull et al.
[SKB+18]. The R-GCN works on relational data expressible as triples of the form (subject,
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Figure 7.3: Simplified representation of the applied neural network architecture for the
primary model πθ. The figure is inspired by [CCCR21].

predicate, object). Then, we could transform our graph by directing and labeling the
edges to mimic relational data, e.g. (employee, assignedTo, assignment) and (assignment,
takesPlaceOn, day). However, this approach would require a custom implementation
and prevent us from using existing optimized GNN libraries. Therefore, we decided to
follow another strategy, which is to use the same feature vector for all nodes, consisting
of the union of all node-type-specific features plus the node type encoded with a one-max
encoding. Let femp

1 , . . . , femp
qemp be the employee features, fassign

1 , . . . , fassign
qassign the assignment

features, and fday
1 , . . . , fday

qday the day node features, where qemp, qassign, qday are the number
of employee, assignment, and day node features, respectively. Then each feature vector
xv of a node v, independent of the node type, is of the form

(femp
1 , . . . , femp

qemp , fassign
1 , . . . , fassign

qassign , fday
1 , . . . , fday

qday , fenc
1 , fenc

2 , fenc
3 ) (7.5)

where fenc
1 , fenc

2 , fenc
3 ∈ {0, 1} is the mentioned one-max encoding indicating whether the

node is an employee, assignment, or day node, respectively. For example, if a node is
an employee node, its feature vector contains the employee’s values for femp

1 , . . . , femp
qemp ,

zeros for the assignment and day features, and the associated one-max encoding. In
Section 7.7, we provide and discuss the features used.

7.4.2 Architectures
So far, we have established the underlying graph structure. Now, we introduce the GNN
used to parameterize this graph and the network architecture for the destroy set model
πθ utilized to obtain the weights for selecting employee-day pairs. Figure 7.3 shows a
simplified representation of this neural network architecture. First, we employ a basic
GNN similar to the neural network for graphs (NN4G) [Mic09] architecture. The NN4G
is the first work towards spatial-based ConvGNNs [WPC+20]. Our GNN updates the
feature representation H(l) in layer l by applying the update function

H(l) = σ H(l−1)W
(l)
1 + AH(l−1)W

(l)
2 + b(l) , (7.6)
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where H(0) = X, A is the adjacency matrix, σ is a non-linear activation function, b(l) ∈ Rq

is the learnable bias, and W
(l)
1 , W

(l)
2 ∈ Rm×q denote the weight matrices for layer l, where

m, q ∈ N0 are the input and output feature dimensions, respectively. Applying the GNN
to an input yields the final node representation H(L), where H

(L)
v is the final vector

representation for each node v ∈ V . Our neural network architecture additionally consists
of an MLP, which utilizes a sigmoid activation in the last layer. This MLP is applied to
each final vector representation H

(L)
v for all v ∈ V . As a result, we receive a single value

between 0 and 1 for each node. Note that in Figure 7.3, the final vector representations
are depicted by y. We only require the final output for the assignment nodes. Hence, it
would be sufficient to employ the MLP on their final vector representations only. We
still applied it on all the nodes since in our thesis, only about 4% of the nodes are not
assignment nodes, and since we have an efficient implementation being faster without
filtering out the other nodes. Nevertheless, it might be different for other works.

To make the connection to our conditional generative modeling approach and the condi-
tional distribution π from Section 7.2, let πθ be our previously presented neural network,
where θ are all the learnable parameters, including the GNN and MLP weights. Remem-
ber that an action at

nd at step t indicates whether an employee-day pair (n, d) ∈ N × D
is contained in the destroy set (at

nd = 1) or not (at
nd = 0). Also, remember that the sets

Vassign and N × D are isomorphic, meaning that there is a one-to-one correspondence
between each assignment node and employee day pair (n, d) = v ∈ Vassign. As Nair et al.
[NBG+20] and Sonnerat et al. [SWK+21], we define πθ to be a conditional-independent
model of the form

πθ(at | st) =
(n,d)∈Vassign

πθ(at
nd | st), (7.7)

which, given a state st, predicts the probability of an employee-day pair (n, d) being con-
tained in the destroy set independently of the other employee-day pairs. The probability
πθ(at

nd | st) is a Bernoulli distribution, and we compute its success probability µnd as

tnd = MLP(H(L)
(n,d); θ), (7.8)

µnd = πθ(at
nd = 1 | st) = 1

1 + exp(−tnd) . (7.9)

Despite Nair et al. [NBG+20] pointed out in their work that it is not possible to accurately
model a multi-modal distribution using the assumption of conditional independence, they
could still report strong empirical results. Mathematically more accurate alternatives are
autoregressive models [Ben00] or inferring one employee-day pair at a time by repeatedly
evaluating the neural network. However, this increased accuracy comes at the cost of
significantly slower inference times [NBG+20, SWK+21], which are not reasonable in our
setting.

The architecture of the temperature neural network πTφ is similar to the previously
discussed architecture of the destroy set model πθ. However, there are some key differences,
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Figure 7.4: Simplified representation of the temperature model πTφ neural network
architecture. We add the outputs of the destroy set model πθ to the node features. The
final MLP returns a vector containing a probability for each temperature τ ∈ T to be
the best selection.

which can already be seen in the simplified representation shown in Figure 7.4. The
temperature model πTφ evaluates if the influence of πθ on the destroy set sampling process
should increase or decrease in a specific state st. Therefore, we add the output of πθ as
an additional feature to the node features of the graph representation. More specifically,
we append µnd = πθ(at

nd = 1 | st) for assignment nodes (n, d) = v ∈ Vassign and zero
for every other node v ∈ Vemp ∪ Vday. Another difference is that we employ a read-out
layer on the final node representations H

T,(L)
v , which summarizes the information into

one vector by applying v∈V H
T,(L)
v . Here, we use H

T,(L)
v to represent the final node

representations of the temperature GNN for each v ∈ V . In Figure 7.4, these are depicted
by y again for simplicity. Finally, we utilize an MLP with a softmax function in the last
layer to return a probability for each temperature τ ∈ T to be the best selection.

7.5 Training
The training set for the destroy set model πθ is represented by Dtrain = {(s1:Tj

(j) , a
1:Tj

(j) )}M
j=1

containing the data from M sampled trajectories. For each such trajectory j ∈ {1, . . . , M}
consisting of Tj steps, {st

(j)}Tj

t=1 are the states and {at
(j)}Tj

t=1 the corresponding expert
actions or destroy sets. We learn the weights θ of our model πθ by minimizing the loss
function

L(θ) = −
M

j=1

Tj

t=1
log πθ(at

(j) | st
(j)), (7.10)

which is the negative log likelihood of the expert actions.

The training set DT
train = {(s1:Tj

(j) , o
1:Tj

(j) , y
1:Tj

(j) )}MT

j=1 for the temperature model πTφ contains
the outputs {ot

(j)}Tj

t=1 of πθ in the respective states {st
(j)}Tj

t=1 for each sampled trajectory
j ∈ {1, . . . , MT}. The associated labels {yt

(j)}Tj

t=1 consist of a one-max encoding of the best
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7. Learning-Based Destroy Operator

temperature for each time step t of a trajectory j. Eventually, we optimize the weights φ
by minimizing the cross-entropy loss

LT(φ) = −
MT

j=1

Tj

t=1
yt

(j) log πTφ(st
(j), ot

(j)). (7.11)

We perform each training in mini-batches of size 32. In addition to Dtrain and DT
train, we

also create validation sets of the same form as the respective training sets containing
about a fourth of the total generated trajectories. We hold out this data from Dtrain
and DT

train to evaluate the progress on unseen data during training. Furthermore, we use
early stopping [GBCB16, p. 246], which Geoffrey Hinton called a “beautiful free lunch”
[Gér19, p. 141], to avoid overfitting. Here, the training is stopped as soon as the loss
or another metric of choice stays above an observed minimum for a certain number of
training iterations. Then, the model achieving the best score is selected as the final
model. As our optimizer, we use ADAM [KB17] with a learning rate of 0.001 and an
exponential decay rate of 0.9 for the first and 0.999 for the second momentum.

7.6 Training Data Generation
Our data generation process is inspired by the expert policy from Sonnerat et al.
[SWK+21], which uses local branching [FL03] to create optimal destroy sets in a given
state. In local branching, a constraint is added to the MILP that allows at most η
decision variables to change compared to a given previous solution. In the course of this
section, we refer to the MILP extended with the local branching constraints as extended
MILP or local branching-based MILP. If this extended MILP is solved to optimality in a
current state st, an optimal destroy set can be generated by comparing the old solution
xt

nds with the new solution x
(t+1)
nds for all n ∈ N, d ∈ D, s ∈ S and collecting the variables

that changed. Since our destroy sets do not directly consist of decision variables but
employee-day pairs, we define the following additional constraints

(n,d,s)∈N×D×S: xt
nds

=0
x

(t+1)
nds +

(n,d,s)∈N×D×S: xt
nds

=1
(1 − x

(t+1)
nds ) ≤ 2η, (7.12)

which ensure that at most η employee-day pairs change compared to the previous solution.
Given an employee-day pair (n, d) for an employee n ∈ N and a day d ∈ D, the
set {xnds | ∀s ∈ S}nd contains all the decision variables represented by this pair. A
modification of a variable xnds leads to two changes in total since the hard constraint
HOSPD enforces that each employee must be assigned to exactly one shift, including the
free shift, on each day. Hence, we need to multiply η by two on the right-hand side of
(7.12). In the following, we refer to solving the local branching-based MILP and applying
the best extracted destroy set as our expert policy.

To generate training samples for the destroy set model πθ, we modify and extend the
behavior cloning [Pom88] procedure of Sonnerat et al. [SWK+21]. In behavior cloning,
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7.6. Training Data Generation

Algorithm 8: DAGGER
1 D ← ∅
2 π̂1 ← expert policy π∗

3 foreach i = 1, 2 do
4 sample trajectories for randomly sampled SRRP instances using π̂i in parallel
5 create dataset Di = {(st, π∗(st))} containing all states st visited in the

sampled trajectories and expert actions π∗(st)
6 D ← D ∪ Di

7 train model πθ on D
8 π̂i+1 ← πθ

9 end
10 return π̂3

an expert policy is used to sample trajectories for training instances. Then, a model
is trained on the expert actions in the encountered states to mimic the expert policy.
Sampling a trajectory using a policy π̂ means that in each state st at step t of an episode
(LNS run), we store state st, use π̂ to create a destroy set at = π̂(st), and move to the
next state st+1 = T (st, at). For a learned policy πθ, we apply the destroy set sampling
strategy from Section 7.3 with temperature τ = 1 to generate a destroy set in a current
state.

The caveat of behavior cloning is that the visited trajectory states solely depend on the
expert policy. Since it is hard to train a model completely mimicking the expert policy
in every situation, we probably encounter unfamiliar states when following the trained
policy. In preliminary experiments, we encountered issues arising from this problem, as
our models sometimes got stuck in challenging states for which the expert policy did not
collect enough reference data. To avoid such problems, we propose two strategies:

(a) The first one is to extend the behavior cloning algorithm for the destroy set model
by an additional iteration. In this iteration, we use the trained behavior cloning model
to sample new trajectories and save the encountered states together with the expert
policy actions as new training data. Then, we train a new model on the data aggregated
over all iterations. Algorithm 8 shows the pseudocode of this procedure, where the first
iteration is equivalent to behavior cloning. This extension of behavior cloning is called
Dataset Aggregation (DAGGER) and was proposed by Ross et al. [RGB11]. Usually, one
applies more than two iterations of DAGGER. However, computing the expert policy
action is expensive since we have to solve the extended MILP. Therefore, we decided to
take measures to make the data generation more efficient. First, we terminate solving
the local branching-based MILP in a state after a time limit. Second, we execute the
trajectory sampling for each SRRP training instance in parallel. And lastly, we only
create a training sample for every third visited state when sampling trajectories with a
trained model if the solution is feasible. The SRRP training instances are generated on
the fly by randomly sampling new disruptions as described in Section 8.1.
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7. Learning-Based Destroy Operator

In the results presented in Section 8, we will show that the enhanced data generation
algorithm slightly improves the performance for the LNS with the learned destroy operator.
However, there are still some states in the test instances for which the trained models
struggle to find good destroy sets. Possibly, additional DAGGER iterations could solve
this issue. However, we propose another, more efficient strategy.

(b) This strategy involves training an additional model πTφ with parameters φ which
optimizes the temperature parameter τ for the destroy set sampling process. The
temperature τ determines the influence of the primary model πθ on selecting employee-
day pairs for the destroy set. While a low temperature, τ < 1, increases the impact of
πθ, a higher one, τ > 1, decreases it. We refer to Section 7.3 for a detailed description of
the destroy set sampling process. Therefore, πTφ acts as an evaluator of the main model.
If it recognizes that the outputs of πθ are bad in a specific state st, it predicts a higher
value for τ to diminish the influence of πθ and vice versa. We treat the learning task
as a classification problem and provide the details about the training of πTφ and πθ in
Section 7.5. For the data generation, we predefine a set of temperatures

T = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 5}. (7.13)

Next, we produce trajectories using πθ, where we apply each temperature τ ∈ T to sample
three destroy sets in a state st at step t of an episode. Then, we save st, πθ(st), and the
temperature τ∗ creating the best destroy sets on average. To evaluate the best average
performance, we consider the objective value of the newly created solution if the solution
has been improved. Otherwise, we consider an upper bound value, the objective value of
the initially constructed solution, in the evaluation. Therefore, we prefer temperature
values consistently improving the solution over temperatures that improve the solution
well once but have a lower probability of improving it in general. Finally, we move
to the next state T (st, at

τ∗), using an action sampled with τ∗. Algorithm 9 shows the
outlined temperature data generation process for one SRRP instance. Note that a current
state consists of an SRRP instance and its current solution as defined in Section 7.1.
In practice, we perform multiple executions of Algorithm 9 in parallel to obtain all the
temperature training data.

7.7 Node Features
For all the different node types our graph structure G, which are employee Vemp, assign-
ment Vassign, and day Vday nodes, we assemble a set of SRRP-specific features summarized
in Table 7.1. Most of these features are dynamic and refer to the current solution xt

nds

stored in a state st.

We state and describe the features in the order they occur in the feature vector and start
by introducing the employee node features. These include the total number of working
assignments of an employee, the total number of working assignments of an employee
minus the minimum allowed number of working days (αmin), and the maximum allowed
number of working days (αmax) minus the total number of working assignments of an
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Algorithm 9: Temperature Data Generation
Input: fully trained destroy set model πθ

1 D ← ∅
2 I ← randomly sample SRRP instance
3 xnds ← ConstructSolution(I)
4 ub ← c(xnds) // c : S → R objective function
5 while true do
6 Sτ ← 0 for every τ ∈ T
7 Xτ ← ∅ for every τ ∈ T
8 foreach τ ∈ T do
9 foreach i = 1, 2, 3 do

10 xnds ← copy current solution xnds

11 aτ ← sample action with πθ((I, xnds)) and τ (see Section 7.3)
12 xnds ← extract solution from T ((I, xnds), aτ )
13 if c(xnds) < c(xnds) then
14 add c(xnds) to Sτ

15 add xnds to Xτ

16 else
17 add ub to Sτ

18 end
19 end
20 end
21 break while-loop if IsEmpty(Xτ ) for all τ ∈ T
22 τ∗ ← argminτ∈T Sτ

23 save ((I, xnds), πθ((I, xnds)), τ∗) in D
24 xnds ← randomly sample action from Xτ∗

25 end
26 return D

employee. Moreover, they contain the total number of assignments to each shift s ∈ S of
an employee, the total number of assignments to each shift s ∈ S of an employee minus the
minimum allowed number of assignments to this shift s (γmin

s ), and the maximum allowed
number of assignments to shift s ∈ S (γmax

s ) minus the total number of assignments to
this shift s of an employee. The final information stored for an employee node is the total
number of whole day absences and the total number of absences for each shift s ∈ S of
an employee. These features should provide the ML model with the required information
regarding the workload constraints (HWSA and HSTA) of the SRRP. To normalize and
hence bring the whole input data into similar scales, we divide all the employee node
features by the number of days |D|.

Next, we describe the features of the assignment nodes, where each node represents
an employee-day pair (n, d) for an n ∈ N and d ∈ D. There, the first |S| features are
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7. Learning-Based Destroy Operator

Table 7.1: Description of the features. The Count column specifies how many features
derive from a description.

Feature Description Count
Employee n
- total number of working assignments of employee n 1
- total number of working assignments of employee n minus minimum
number of working days in the planning horizon (αmin)

1

- maximum number of working days in the planning horizon (αmax) minus
total number of working assignments of employee n

1

- total number of assignments to shift s ∈ S of employee n |S|
- total number of assignments to shift s ∈ S of employee n minus minimum
allowed number of assignments to this shift s (γmin

s )
|S|

- maximum allowed number of assignments to shift s ∈ S (γmax
s ) minus

total number of assignments to this shift s of employee n
|S|

- total number of whole day absences of employee n 1
- total number of absences per shift s ∈ S of employee n |S|
Assignment (n, d)
- flag indicating whether employee n is assigned to shift s ∈ S on day d |S|
- flag indicating whether employee n is assigned to shift s ∈ S on day d in
the original roster

|S|

- flag indicating whether employee n is absent on shift s ∈ S on day d |S|
- flag indicating whether the minimum number of consecutive working days
constraint is violated for employee n on day d

1

- flag indicating whether the maximum number of consecutive working days
constraint is violated for employee n on day d

1

- flag indicating whether the minimum number of consecutive assignment
constraint is violated for employee n on day d and shift s ∈ S

|S|

- flag indicating whether the maximum number of consecutive assignment
constraint is violated for employee n on day d and shift s ∈ S

|S|

Day d
- total number of assignments to each shift s ∈ S on day d |S|
- total number of assignments to each shift s ∈ S on day d minus cover
requirements for this shift s on day d (Rc

ds)
|S|

Type Encoding
- flag indicating whether the node is an employee, assignment, or day node
(onemax encoded)

3
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a one-max encoding indicating to which shift s ∈ S employee n is assigned on day d.
Similarly, the assignment node features include another one-max encoding stating the
assigned shift s ∈ S of employee n on day d in the original roster. Furthermore, they
include an one-max encoding showing whether employee n is absent on shift s ∈ S on day
d. With these features, we want to supply the model with the information concerning the
changes to the original schedule (SMOD) and the shifts an employee is absent (HABSE).
More assignment node features are dealing with the workload constraints for consecutive
days. These include flags indicating whether the minimum and the maximum number of
consecutive working days constraints (HCWSA) are violated for employee n on day d.
And two one-max encodings stating whether the minimum and the maximum number of
consecutive working assignments to a shift s ∈ S (HCSTA) are violated for employee n
on day d.

Finally, the last node type is the day node for a day d. The day node features include
the total number of assignments to each shift s ∈ S on day d and the number of total
assignments to each shift s ∈ S on day d minus the cover requirements for this shift s on
day d. To normalize the day node features, we divide them by the number of employees
|N |. Hence, these features hold the information regarding under- and overstaffing of all
the shifts per day. Lastly, the last three features are represented by a one-max encoding
indicating whether the given node is an employee, assignment, or day node.

As we have already described in Section 7.4, each node, independent of its type, is
equipped with a feature vector of the same form as shown in (7.5). This feature vector
consists of the union of all the node-type features plus the one-max node type encoding.
For example, if a node is an employee node, it contains its respective features for employee
nodes, zeros for the other node type features, and the associated node type encoding.
Note that for models only dealing with already feasible solutions, the assignment node
features concerning constraint violations would all constantly have a value of zero. Hence,
we remove them for those models and reduce the feature space size from 11 · |S| + 9 to
9 · |S| + 7.
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CHAPTER 8
Computational Results

In this section, we present the computational results for the described optimization
algorithms and the proposed destroy operators. First, we introduce the test instance
generation process and state the parameters used for these instances in Section 8.1. Then,
in Section 8.2, we establish the configurations used for the computational experiments
and finally present the obtained results.

8.1 Test Instances
Benchmark or test instances are needed to examine the robustness and performance
of algorithms. To the best of our knowledge, no SRRP benchmark instance dataset
meeting our requirements is available. There are two main issues with the existing
datasets from Moz and Pato [MP07] and Wickert et al. [WSB19]. First, their goal is
slightly different from ours. While we seek to find fast and high-quality solutions for one
specific schedule suffering from disruptions, they deal with the occurrence of disruptions
to various schedules. Hence, their datasets do not contain any rosters for which there are
sufficiently many disruption variants. Second, even if we selected one of their schedules
and sampled new disruptions for it, those instances would not be hard enough. From the
results of Wickert et al. [WSB19], one can conclude that the instances of both datasets
can be solved to optimality rather quickly with a state-of-the-art MILP solver. This
especially holds for instances with a planning horizon of four weeks, which is the setting
we consider in our work. However, the benefits of the LNS meta-heuristics lie in the
ability to find high-quality solutions for problems where exact methods are not efficient
enough. Therefore, we require more challenging instances for our research.

Based on this argumentation, we decided to create our own benchmark instance generation
process. We apply this approach to create 60 validation and 120 test instances for a
randomly created base schedule with 110 employees. We do not specify a fixed number
of training instances since we generate them on the fly by randomly sampling new
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disruptions for this base schedule. Furthermore, we use the same generation process
to create 30 test instances for randomly created schedules with 120, 130, 140, and 150
employees. We use these 120 instances to evaluate how our learning-based algorithm
generalizes to different schedules. In the following explanations, we will refer to the
instance generation regarding the base schedule with 110 employees. However, this
approach works equivalently for instances with different numbers of employees.

Our instance generation approach is based on a three-step process:

1. Generate a hard staff rostering or NRP instance.

2. Solve the staff rostering instance by creating a high-quality schedule.

3. Introduce disruptions to the schedule.

Generating Hard Staff Rostering Instances For the first step, we implemented
the nurse scheduling problem instance generation algorithm (NSPGen) from Vanhoucke
and Maenhout [VM09]. This algorithm allows us to create randomized NRP instances
with specific characteristics. These instances consist of a coverage requirements matrix
and a preference matrix. The coverage requirements matrix specifies the number of
employees needed for each shift on all days. In the preference matrix, all employees
have a value between 1 and |S| (number shifts) for each shift on each day, indicating
their desire to do this shift. The lower the number, the more desirable it is for an
employee to work a shift. The characteristics of these matrices are described by indicators
belonging to three classes: problem size, preference distribution measures, and coverage
distribution measures. The problem size class contains the number of employees |N |, days
|D|, and shifts |S| as indicators. The preference distribution measures are described by
the NPD, SPD, and DPD indicators. Finally, the TCC, DCD, and SCD are the coverage
distribution measures. Each of these six distribution indicators can take a value between
0 and 1 to determine the characteristics of an instance. In Table 8.1, we summarize
the indicators and state their interpretations. For more details on the formulas behind
them, we refer to Vanhoucke and Maenhout [VM09]. Some indicators have conflicting
goals. Therefore, it is not possible to realize all indicator combinations. This should be
taken into consideration if a high accuracy of the indicators is required. The right-most
column in Table 8.1 shows the selected complexity indicator values, which we used to
create our NRP instance. We determined these values based on experiments with the
goal of creating a hard and, at the same time, realistic class of instances. Regarding the
indicators of the problem size class, we chose |N | = 110, |D| = 28, and |S| = 4 for the
number of employees, days, and shifts, respectively. Furthermore, we set the preference
distribution measures NPD, SPD, and DPD to 0.5. Lastly, for the coverage distribution,
we used TCC 0.85, DCD 0.15, and SCD 0.2 to create our NRP instance.

Solving the Staff Rostering Instances Once the NRP instance is generated, the
next step is to construct a feasible and high-quality schedule for it. For this purpose, we
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Table 8.1: Summary of the NSPGen algorithm [VM09] indicators including their inter-
pretations. The Selected Values column shows the considered complexity indicators in
the NRP instance generation process. Adapted from Vanhoucke and Maenhout [VM09].

Indicator Interpretation Selected Values
|N | number of employees 110
|D| number of days in the planning horizon 28
|S| number of shifts including the free shift 4

NPD nurse preference distribution (NPD) = 0: there is
no clear preference for a particular shift among all
employees

0.5

NPD = 1: there is a clear preference among all
employees for a particular shift

SPD shift-preference distribution (SPD) = 0: all employ-
ees express indifference between the shifts

0.5

SPD = 1: each employee expresses a clear preference
ranking among the individual shifts

DPD day preference distribution (DPD) = 0: all em-
ployees express a similar preference or aversion for
similar shifts over all days

0.5

DPD = 1: each employees has assigned a different
preference value for similar shifts over the days

TCC total coverage constrainedness (TCC) = 0: the
amount of required employees is 0 for all shifts

0.85

TCC = 1: the average total daily coverage is equal
to the number of employees

DCD day coverage distribution (DCD) = 0: the coverage
requirements are equally distributed among all days

0.15

DCD = 1: the coverage requirements are maximal
for one or several days (depending on TCC), and
zero for all remaining

SCD shift coverage distribution (SCD) = 0: the coverage
requirements are equally distributed among all shifts
of a single day

0.2

SCD = 1: The coverage requirements are maximal
(depending of DCD) for a single shift, while all other
shifts on that day do not need employees
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have the MILP from Section 5.2.1. We solve this MILPs using a time limit of two hours
to obtain the schedules.

Introducing Disruptions to Schedules The final step consists of introducing dis-
ruptions to the constructed schedules. In Section 2, we defined three types of disruptions:
single-shift, multi-shift, and demand disruptions. According to the Austrian Bureau of
Statistics, the average length of sick leave was 9.7 days in Austria in 2019 [Sta]. Since
illness and vacation are the main categories of multi-shift disruptions and ten also sounds
reasonable for the average length of vacations, we model them in the same step. Therefore,
we use the binomial distribution B(28, 0.35), which has a mean of 9.8, to represent the
distribution of the length of sick leaves and vacations. Figure 8.1 shows the probability
mass function of B(28, 0.35). To incorporate the disruptions into the schedules, we select
a random employee n ∈ N and a random day d ∈ D. Then, we draw a random number L
from B(28, 0.35), and for all l ∈ {0, . . . , L − 1} set Umsd

n(d+l) = 1 to indicate that employee
n is absent on day d + l. We repeat this process until there are |N | days of absences in
total, which means that the staff is absent for |N | · (|S| − 1) shifts after introducing the
multi-shift disruptions. For simplicity, we consider each employee at most once. Next, to

0 5 10 15 20

0.00

0.05

0.10

0.15

Figure 8.1: Probability mass function for the binomial distribution B(28, 0.35) represent-
ing the distribution of sick leave and vacation length in days.

introduce single-shift disruptions, we randomly select |N |·(|S|−1)
2 employee assignments

(n, d, s) for n ∈ N , d ∈ D, and s ∈ S \{F} from the original schedule that are not affected
by the multi-shift disruptions. These are added to the set of single-shift disruptions
U ssd. Since we consider a planning horizon of 28 days and four shifts (including the
non-working shift) for all our schedules, the number of single- and multi-shift disruptions
corresponds to about 5% (

3
2 |N |·(|S|−1)

|N |·|D|·(|S|−1)) of the total possible working shift assignments.
Hence, for each day and each shift s ∈ S \ {F}, on average 5% of the employees are
not able to cover shift s. Finally, we need to introduce the demand disruptions Rc

ds,
which show how the demand for employees changed compared to the original staffing
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Table 8.2: Selected values for the parameters of the NRP or SRRP instances.

Parameter Interpretation Value
αmin minimum number of working days in planning horizon 18
αmax maximum number of working days in planning horizon 22
βmin minimum number of consecutive working days 2
βmax maximum number of consecutive working days 7
γmin

s ∀s ∈ S \ {F} minimum number of assignments for shift s in the
planning horizon

4

γmax
s ∀s ∈ S \ {F} maximum number of assignments for shift s in the

planning horizon
10

γmin
F minimum number of assignments for shift the free shift

in the planning horizon
6

γmax
F maximum number of assignments for shift the free shift

in the planning horizon
10

δmin
s ∀s ∈ S \ {N} minimum number of consecutive assignments to shift s 2

δmax
s ∀s ∈ S \ {N} maximum number of consecutive assignments to shift

s
7

δmin
N minimum number of consecutive assignments to the

night shift
2

δmax
N minimum number of consecutive assignments to the

night shift
4

ωSCREQ- weight for overstaffing violations 500
ωSCREQ+ weight for understaffing violations 1000
ωSPREF weight for preference violations 10
ωSEWL weight for uneven workloads 5
ωSMOD weight for changes in original schedule 100
ωHREST, ωHWSA,
ωHSTA, ωHCWSA,
ωHCSTA

weights for hard constraint violations in the MILP with
relaxed hard constraints

100000

requirements for a day d ∈ D and a shift s ∈ S. Therefore, we first set Rc
ds = 0 for each

day d ∈ D and each shift s ∈ S. Then, for each day d ∈ D, we select a random shift
s ∈ S \ {F} and randomly choose between setting Rc

ds = 1 and Rc
ds = −1.

Constraint and Weight Parameters. Another important aspect concerning the
benchmark instances are the parameters defining the constraints and the weights for soft
constraint violations, which we introduced in Section 5. Table 8.2 lists these parameters,
recaps their meaning, and shows the selected values for them. In this thesis, we use the
same parameter values for NRP and SRRP instances. We chose the parameters such
that the instances are as realistic and combinatorially hard as possible.
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8.2 Computational Experiments
All algorithms were implemented in Julia1 1.6.1. We want to particularly mention the
Flux.jl [ISF+18] package, which we used for our ML related implementations, and the
MHLib.jl2 package, which is an efficient toolbox for meta-heuristics. Furthermore, we
employed Gurobi3 9.1.0 for solving the MILPs. Concerning the hardware, we executed
all experiments in single-threaded mode on a machine with an Intel Xeon E5–2640
processor with 2.40 GHz and a memory limit of 16 GB. Since it is essential to find
high-quality solutions fast in practice, we worked with a time limit of 900 seconds to
evaluate our optimization algorithms. We use the optimality gap in percent to compare
the performance of the approaches. For an objective value zP of a solution, we define
this gap as

gap[%](zP ) = 100 · |zP − zD|
|zP | , (8.1)

which is determined with respect to the lower bound zD obtained by solving the SRRP-
MILP from Section 5.2.2 for three hours. Moreover, since all of our main approaches
return feasible solutions for all instances, we will not include feasibility as a primary
discussion aspect.

To enable a fair comparison, we use the same parameters z1 = 150 and z2 = 2 for both
the randomized and the learning-based destroy operator. We observed these parameters
to perform best during preliminary experimentation for the randomized LNS. Each of our
destroy operators can therefore select at most 750 employee-day pairs into the destroy
set. Another LNS-related configuration is that we use a time limit of five seconds for
solving the sub-MILPs in the repair operator of every LNS.

Note that the choice of z1 and z2 also influences the parameter η determining the
maximum number of employee-day pairs that our expert policy is allowed to destroy. We
set this parameter to η = 375. Since the expert actions then contain fewer employee-day
pairs than can be selected by the destroy operator, we increase the probability that we
can include all of those pairs when applying our destroy set sampling strategy from
Section 7.3. However, the primary reason we chose a lower value for η was to make the
data generation process more efficient as it is faster to obtain high-quality destroy sets
when solving the MILP with the local branching constraints. We always solve this local
branching-based MILP using a time limit of 30 minutes. For the destroy set model, we
work with a total of 150 and 50 training instances in the first and second iteration of the
DAGGER algorithm, respectively. To create the training set for the temperature model,
we generate trajectories for 150 randomly sampled SRRP instances.

Regarding the neural network architectures, preliminary experiments indicated that the
following architecture settings perform best. For our destroy set networks, we use a single

1https://julialang.org
2https://github.com/ac-tuwien/MHLib.jl
3https://www.gurobi.com
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GNN layer with an output dimension of 512 and an MLP with one hidden layer consisting
of 256 nodes. Similarly, for the temperature networks, we also utilize a single GNN layer.
However, we only require an output dimension of eight for this model. Furthermore,
the associated MLP consists of one hidden layer containing four nodes. Note that we
additionally use layer normalization [BKH16] between all layers in all our architectures
and always apply the activation function after the layer normalization. As the activation
function of our choice, we use Leaky ReLU with a slope of 0.01 for negative values. Note
that we could have adjusted some design choices based on the observation that the GNNs
perform best with a single layer. However, we chose to keep the proposed design as it
enables other researchers and us to plug in and experiment with different GNNs.

In the following subsections, we present the results obtained from our conducted ex-
periments. First, we compare the performance of the classical methods, including the
SRRP-MILP and the randomized LNS in Section 8.2.1. Second, we describe one of
our main results, which is the comparison between the randomized LNS and the LNS
with the learning-based destroy operator (Section 8.2.2). Then, in Section 8.2.3, we
investigate the abilities of the learning-based destroy operator to generalize to different
schedules with various numbers of employees. Finally, we elaborate on the influence
of the temperature model and the additional DAGGER iteration in Sections 8.2.4 and
8.2.5, respectively. As described in Section 8.1, we utilize 120 test instances consisting
of random disruptions to a main schedule with |N | = 110 employees for most of our
experiments. The only exception is Section 8.2.3, where we consider schedules with 120,
130, 140, and 150 employees for each of which we sample 30 different disruptions.

8.2.1 Comparison of Classical Methods
As classical methods, we consider solving the SRRP-MILP from Section 5.2.2 with Gurobi
and the LNS applying the randomized destroy operator from Section 6.3. In the following
figures and tables, we will refer to these approaches as MILP and LNS_RND, respectively.

Table 8.3 provides a summary of the performance of MILP, LNS_RND, and LNS_NN.
Here, LNS_NN denotes the LNS utilizing the learning-based destroy operator. However,
we will analyze its results later in Section 8.2.2. Table 8.3 contains the mean and
standard deviation (SD) of the optimality gaps and objective values for the solutions
of each approach. The average lower bound used to determine the optimality gaps is
834,313.15 and the associated average upper bound is 884,740.83. The bounds were
computed using the SRRP-MILP with a time limit of three hours. Noticeably, LNS_RND
clearly outperforms MILP by a factor greater than two on average concerning optimality
gaps. LNS_RND is also more robust than MILP. While the solutions found by MILP
have a standard deviation of 5.21, it is only 0.55 for LNS_RND solutions.

We complement Table 8.3 with Figure 8.2, providing a detailed comparison of the
optimality gaps of the MILP and LNS_RND solutions using boxplots. For all the
presented boxplots in this thesis, the y-axis represents the optimality gaps as “gap[%]”.
The results for MILP are depicted by the red and the results for LNS_RND by the blue
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Figure 8.2: Test set optimality gaps of the MILP and LNS_RND solutions represented
by boxplots.

boxplot. Even the optimality gap of the best solution found by MILP is greater than the
gap of the worst solution found by LNS_RND. Again, Figure 8.2 shows that LNS_RND
is more robust than MILP. Whereas the difference between the best and worst gap is
about 31% for MILP, it is not even 3% for LNS_RND. Interestingly, even though some
of its solutions have an optimality gap higher than 25% or 30%, MILP always found
feasible solutions for the instances in our test set. Given the results presented in this
section, we can conclude that the proposed classical LNS meta-heuristics is more suitable
for the SRRP than directly solving its MILP.

8.2.2 Comparison of Classical LNS and Learning-Based LNS

In the previous section, we have seen that the randomized LNS (LNS_RND) comfortably
outperforms the MILP approach (MILP). Therefore, we treat LNS_RND as a baseline
approach to evaluate the LNS utilizing our learning-based destroy operator (LNS_NN).
Note that the destroy operator of LNS_NN is the approach described in Section 7,
including the additional DAGGER iteration in the data generation process and the
temperature neural networks.

Again, we refer to Table 8.3, containing the main results for both LNS approaches. In
addition to the mean and standard deviation values for the optimality gap and the
objective value, it also contains the same statistics for the number of iterations performed
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Table 8.3: Comparison of the test set results of MILP, LNS_RND, and LNS_NN.

gap[%] obj_val iterations
mean SD mean SD mean SD

MILP 14.79 5.21 983,276.67 68,823.56 - -
LNS_RND 6.55 0.55 892,780.00 6,377.25 154.43 42.68
LNS_NN 5.52 0.40 883,036.67 6,185.57 119.88 16.51

by the LNSs. Given Table 8.3, one can conclude that LNS_NN outperforms MILP and
LNS_RND in all respects. On average, LNS_NN even surpasses the results of MILP
by a factor greater than 2.65 in terms of optimality gap. Compared to LNS_RND,
the average gap is slightly more than 1% lower for LNS_NN solutions. Furthermore,
the mean objective value achieved by LNS_NN is about 10, 000 points lower as well.
Given the instance parameters shown in Table 8.2, this is equivalent to avoiding either
ten understaffing violations, 20 overstaffing violations, or 100 changes to the original
schedule. From a total of 120 test instances, LNS_NN outperformed LNS_RND on 113
instances. LNS_NN achieves these results by performing, on average, about 25 iterations
less than LNS_RND, which strongly indicates or even proves that our learning efforts are
successful. Most probably, the decrease in iterations results from the fact that LNS_NN
finds meaningful destroy sets requiring more time to be repaired.

In Figures 8.3, the results of LNS_NN and LNS_RND are represented by the colors
orange and blue, respectively. We provide the optimality gap results of the LNS_NN and
LNS_RND solutions using boxplots in Figure 8.3a. Mainly, this representation confirms
what we have already analyzed in Table 8.3. Figure 8.3b, however, offers new insights
into the performance of LNS_NN and LNS_RND. It shows the average optimality gap
over time. Note that the y-axis, which contains the optimality gaps, is represented in
log-scale and that the region with the lighter colors around the lines depicts the standard
deviation. We keep these settings for every line plot in this thesis. Figure 8.3b shows
that the average performance of LNS_NN stays ahead of LNS_RND during the whole
time horizon and finds better solutions significantly faster. While LNS_NN reaches an
optimality gap of smaller than 10% after 165 seconds on average, it takes LNS_RND
322 seconds. Also, LNS_NN finds feasible solutions after approximately 110 seconds and
LNS_RND only after 208 seconds on average.

8.2.3 Generalization to Different Instance Sizes
In this section, we investigate the generalization abilities of the learning-based destroy
operator. Therefore, we use LNS_NN containing the neural network models trained on
data generated from the base schedule with |N | = 110 employees only. We randomly
create four rosters with sizes 120, 130, 140, and 150, generated using the same parameters
as our base schedule. For each of these schedules, we sample 30 random disruptions such
that we have 30 SRRP instances per roster size.
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Figure 8.3: Comparison of LNS_RND and LNS_NN based on boxplots and line plots.

Table 8.4 presents the results of the generalization experiments. It includes the average
gaps and respective standard deviations, the mean objective values, and the mean
iterations aggregated per instance size |N |. Additionally, Table 8.5 shows the average
lower bounds used to compute the gaps and the associated upper bounds, both obtained
with the SRRP-MILP and a time limit of three hours. In our setting, the instance size is
represented by the number of employees |N | as we treat the shift types and the planning
horizon as fixed.

Table 8.4: Test set results of the LNS_RND and LNS_NN solutions for different instance
sizes.

LNS_NN LNS_RND
gap[%] obj. value iterations gap[%] obj. value iterations

|N | mean SD mean mean mean SD mean mean
120 3.42 0.53 925,543.33 118.93 4.36 0.57 934,656.67 127.27
130 4.45 0.40 1,078,910.00 113.30 5.22 0.51 1,087,716.67 128.10
140 8.04 0.60 1,313,483.33 99.77 9.20 0.58 1,330,223.33 105.43
150 5.74 0.41 1,428,643.33 95.57 6.87 0.46 1,445,943.33 100.97

We can see that LNS_NN performs better than LNS_RND in each of these instance
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Table 8.5: The average upper and lower bounds for the different instance classes of the
generalization experiment computed using the SRRP-MILP with a time limit of three
hours.

120 130 140 150
Upper bound 923,280.00 1,073,766.67 1,292,256.67 1,408,446.67
Lower bound 893,923.35 1,030,929.55 1,207,795.87 1,346,613.47

classes without having seen any roster different from the |N | = 110 main schedule during
training. The results in Table 8.4 are similar to the ones from the previous section. On
average, LNS_NN improves the scores of LNS_RND by around 1% in optimality gap for
each instance class. In total, LNS_RND only reached better solutions than LNS_NN
for two of the 120 instances from this experiment. Again, LNS_RND performs more
iterations than LNS_NN on average, but the differences are lower than in the results for
the test set containing only instances with |N | = 110. An explanation for this could be
that repairing the larger schedules is more expensive in general, even with less meaningful
destroy sets. Therefore, the average number of iterations decreased more drastically for
LNS_RND than for LNS_NN. Figure 8.4a visually represents the described dominance of
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(a) Test set optimality gaps of the LNS_RND
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Figure 8.4: Comparison of LNS_RND and LNS_NN for instances of different sizes based
on boxplots and line plots.
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LNS_NN over LNS_RND with boxplots, where the x-axis contains the different instance
sizes and the y-axis shows the optimality gaps as usual. Again, the results of LNS_NN
and LNS_RND are represented by the colors orange and blue, respectively.

Finally, Figure 8.4b shows the average optimality gap progression of the LNS_NN
(orange) and LNS_RND (blue) solutions aggregated over all instance classes. Again, the
results are similar to the comparison of LNS_NN and LNS_RND for the regular test
instances with |N | = 100. However, the standard deviation is higher for both approaches,
probably resulting from the different instance sizes. Once more, LNS_NN reaches feasible
solutions and solutions with an optimality gap smaller than 10% faster than LNS_RND.
On average, it takes LNS_NN 190 seconds to find feasible solutions and 271 seconds to
acquire solutions with a beneath 10% gap. For LNS_RND, it takes 310 and 420 seconds,
respectively.

8.2.4 Influence of the Temperature Model
In this section, we elaborate on the influence of the temperature model πTφ on the final
performance of the LNS with the learning-based destroy operator (LNS_NN). Remember
that πTφ predicts a value τ given the output probabilities of the destroy set generation
model πθ and a current state. With this temperature parameter τ , πTφ determines the
influence of πθ on the destroy set sampling process. Therefore, it can regulate when to
trust πθ and when to rely on a more randomized selection of the destroy set. We use
the abbreviation LNS_NNτ=1 to refer to an LNS utilizing the learning-based destroy
operator without the temperature model and using a constant temperature τ = 1 instead.
In this experiment, we consider LNS_NNτ=0.5, LNS_NNτ=1, and LNS_NNτ=2.

Figure 8.5a shows the optimality gaps for the solutions of LNS_NNτ=0.5, LNS_NNτ=1,
LNS_NNτ=2, and LNS_NN using boxplots. The orange plot represents LNS_NN, the
purple plot LNS_NNτ=0.5, the grey plot LNS_NNτ=1, and the brown plot LNS_NNτ=2.
We cut off Figure 8.5a at a gap of 20% for better readability. LNS_NNτ=0.5 has seven
outliers being above this mark that are not shown in this figure. Particularly noticeable,
LNS_NNτ=0.5 and LNS_NNτ=1 contain several outliers. The solutions represented by
these outliers are all infeasible if the associated gap is above 14%. The performance of
both LNS_NNτ=2 and LNS_NN is very similar. Nonetheless, LNS_NN still achieves a
mean gap that is about 0.15% lower on average.

For a more detailed analysis, Figure 8.4b shows the average optimality gaps of the
LNS_NNτ=0.5, LNS_NNτ=1, LNS_NNτ=2, and LNS_NN solutions over time. Addition-
ally, this figure contains a vertical line indicating when solutions of LNS_NN turned
feasible on average. The colors representing the different approaches are the same as in
Figure 8.5a. One can see that the mean performance of LNS_NN is at least as good
and mostly better than all the other approaches for each point in the time horizon.
In contrast to LNS_NNτ=2, which gives the best results on average besides LNS_NN,
LNS_NN finds better solutions significantly faster. To provide some more details on
the working method of the temperature model, we compare LNS_NN with LNS_NNτ=1
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Figure 8.5: Comparison of LNS_NNτ=0.5, LNS_NNτ=1, LNS_NNτ=2, and LNS_NN
based on boxplots and line plots.

in Figure 8.4b. We chose LNS_NNτ=1 since τ = 1 was applied as a standard value
in the data generation process. Therefore, we can use this approach as a reference to
see when the temperature model detects an occasion to adapt the temperature. We
observed three main behaviors of the temperature model πTφ when predicting τ . First,
it completely trusts πθ in the first few iterations of the LNS run and consistently sets
τ = 0.1. In the top left corner of Figure 8.4b, one can see that this choice of τ leads
to faster improvements in the optimality gap since the gap between the orange line
representing LNS_NN and the grey line representing LNS_NNτ=1 increases. Second, πTφ
quickly increases τ to the highest possible value of five after these initial iterations until
the solution turns feasible (orange vertical line). Therefore, the temperature model gives
up some faster improvements. One can see this in Figure 8.4b as the lead of the LNS_NN
line decreases compared to LNS_NNτ=1. However, in return for foregoing these quick
improvements, the temperature model ensures that each solution turns feasible. As we
have seen in 8.5a, this is not the case for LNS_NNτ=1. Lastly, once the solution is
feasible, πTφ repeatedly selects a value for τ that is close to but below one, hence giving πθ

more influence. Again, this choice leads to faster improvements in the optimality gap. In
Figure 8.4b, one can see these improvements after the vertical orange line, where the gap
between the orange line (LNS_NN) and the grey line (LNS_NNτ=1) gradually increases.
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Eventually, the average performance of LNS_NN stays ahead of LNS_NNτ=1 for the
rest of the time horizon.

8.2.5 Influence of the DAGGER iteration

In the first approach of our data generation process, we used training data generated
by sampling trajectories using the expert policy only. As we have already discussed
extensively, this can lead to situations in testing where our learning-based destroy operator
struggles to find adequate actions in unfamiliar states. Hence, the LNS cannot improve
results as fast as desired. In this section, we investigate the influence of the DAGGER
iteration on the final performance of the LNS with the learning-based destroy operator
(LNS_NN). With the term DAGGER iteration, we indicate the additional iteration in
the training data generation, where we employ an already trained model to sample more
trajectories and obtain more relevant states for training. To elaborate on this influence, we
use LNS_NN_BC being an LNS utilizing the learning-based destroy operator, including
the temperature model. However, the destroy set generation models for LNS_NN_BC
are trained only with the data from the expert trajectories. Hence, we did not make use
of the additional DAGGER iteration for LNS_NN_BC. The BC in the name stands for
behavior cloning. As in the previous sections, the destroy operator of LNS_NN contains
all the features described in Section 7.
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Figure 8.6: Comparison of LNS_NN_BC and LNS_NN based on boxplots and line plots.

Figure 8.6a shows boxplots representing the test set optimality gaps of the LNS_NN_BC
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(grey) and LNS_NN (orange) solutions. These boxplots indicate that LNS_NN performs
slightly better than LNS_NN_BC. Whereas the maximum, third quartile, mean, and
first quartile are lower for the boxplot of LNS_NN, only the minimum found optimality
gap is better for LNS_NN_BC. LNS_NN improves the median optimality gap of
LNS_NN_BC by approximately 0.15% and the mean gap by about 0.18%. Therefore, we
can conclude that the additional DAGGER iteration positively impacts the performance
of our algorithm during testing. We suspect that even more DAGGER iterations could
further improve results. However, we have no data to corroborate this claim.

In Figure 8.6b, we present the average performance of LNS_NN_BC and LNS_NN over
time to analyze when the positive effects of this additional training data come into effect.
Once more, the results of LNS_NN and LNS_NN_BC are represented by the colors
orange and grey respectively. Remember that the solutions created with LNS_NN turn
feasible after about 110 seconds on average. Even though both lines in Figure 8.6b seem
nearly identical, it is around this time when the average gap of LNS_NN improves faster
than for LNS_NN_BC. One can see this best around 200 seconds when the orange line
has its largest distance to the grey line. LNS_NN can hold this advantage until the
termination of the algorithm. Hence, it appears that the additional DAGGER iteration
positively influences the performance right after solutions turn feasible.
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CHAPTER 9
Conclusion & Future Work

In this work, we defined a combinatorial optimization problem (COP) called the staff
rerostering problem (SRRP). In contrast to already known rerostering problems such
as the nurse rerostering problem (NRRP), the SRRP also contains demand disruptions
indicating changes to the coverage requirements on one or more days. Also, both
single- and multi-shift disruptions occur together in the SRRP making it more realistic.
Furthermore, we modeled the SRRP by formulating a mixed-integer linear program
(MILP) and proposed a classical large neighborhood search (LNS) meta-heuristic to
solve the SRRP efficiently. To this end, we introduced a straightforward construction
heuristic avoiding as many changes to an original schedule as possible and a repair
operator utilizing the SRRP-MILP. For the repair operator, we proposed an additional
SRRP-MILP with relaxed hard constraints dealing with the case that a current solution
is infeasible. To complete the classical LNS, we suggested a randomized destroy operator
incorporating the observation that it is more meaningful to destroy variables representing
consecutive days.

The main contribution of this work is a learning-based LNS. More specifically, the
learning-based destroy operator is controlled by a machine learning (ML) model. For
this LNS, we also relied on the construction heuristic and the repair operator from the
classical LNS. We trained a conditional generative model with imitation learning to
generate probabilities for destroy sets and suggested a refined sampling strategy based on
consecutive day selection to build high-quality destroy sets from these probabilities. We
proposed a custom graph structure modeling the SRRP as an input to a graph neural
network (GNN) and showed that it is possible to learn meaningful destroy sets using this
representation. Existing state-of-the-art approaches employ Constraint-Variable Incidence
Graphs (CVIG), resulting in huge graphs for problems like the SRRP, significantly slowing
down training and inference. Therefore, we proposed this alternative approach, providing
a scheme to successfully apply ML to larger instances of highly constrained COPs.
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To further improve the results, we applied the Dataset Aggregation (DAGGER) imitation
learning algorithm to acquire more relevant training data. Additionally, we utilized
another neural network to predict suitable temperature parameters for the destroy set
sampling process in a current state. In the computational results, we showed that both of
these strategies positively impact the performance of our learning-based destroy operator.

Our experiments showed that the learning-based LNS outperforms the approach of
solving the SRRP-MILP with Gurobi by a factor of greater than 2.65 on average in
terms of optimality gap. Furthermore, the obtained results also attest strong empirical
performance to the classical LNS as it comfortably outperforms the MILP-based approach.
Nonetheless, we could show that the learning-based LNS still surpasses the results of
the classical LNS in all respects. Most importantly, we finally showed that the proposed
learning-based destroy operator, only trained on data of one schedule with different sets
of disruptions, also generalizes to schedules with various numbers of employees it has
never seen.

Future Work. Despite the achievements presented, there are still further potential
improvements concerning our work. For example, the architecture of the utilized GNN is
rather simple. It might be profitable to investigate also other GNNs variants. The generic
design of our approach makes it easy to plug in and examine different architectures. As
we observed in our experiments, the currently used GNN performs best with a single
layer. Hence, the GNN does not take full advantage of its ability to aggregate information
from larger parts of the graph. There might be more suitable GNN architectures better
exploiting the given graph structure and therefore improving the performance of the
learning-based destroy operator.

In the experimental results, we showed that we could successfully learn suitable temper-
ature parameter values. In addition to this parameter, our LNS uses several different
parameters, such as the destroy set size or the time allowed to repair a solution with the
MILP. In future work, a further neural network, possibly with multiple heads, might be
introduced to make these design choices. Eventually, the destroy operator could make its
own decisions about which settings are most appropriate in the current situation.

In this thesis, we trained our neural network on a single schedule. Hence, it probably
works best on this roster, and a new neural network optimally is trained for each given
schedule. Considering this aspect, we designed a data generation process being as fast
and lightweight as possible. However, since we observed that our proposed approach
generalizes extremely well to different schedules, the next step would be to create a single
neural network optimized for all possible schedules. Following this strategy, we would
require training only once, meaning we could employ a more expensive data generation
process, including different rosters. Therefore, the neural network could profit from more
data and further improve results across various instances.

During preliminary tests, we ruled out reinforcement learning (RL) as a candidate learning
algorithm since executing an episode was too expensive. Finding ways to apply RL for
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learning a meaningful destroy operator is an interesting research direction concerning
future work. By utilizing RL, we could directly optimize a final performance metric such
as the optimality gap instead of searching for the most suitable action in a current state.
Even though the strength of the LNS is the ability to escape local optima and greedily
taking the locally best option might not be as harmful as in other algorithms, a policy
learned by RL might unveil more intelligent strategies.

As a final point, we want to emphasize that the general approach proposed in this thesis
is not limited to the SRRP but also may be applied to different classes of COPs.
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Appendix

Here, we provide the final objective values for all instances used in the main experiments.
Table 1 shows the objective values of LNS_NN, LNS_RND, and MILP solutions for the
test instance set with |N | = 110. Table 2 contains the objective values of LNS_NN and
LNS_RND solutions for the test set instances from the generalization experiment with
120, 130, 140, and 150 employees. Both tables also include the lower and upper bounds
used for computing the optimality gaps.
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Table 1: Final objective values of LNS_NN, LNS_RND, and MILP for all test set
instances with |N | = 110. Here, LB and UB show the lower and upper bounds computed
using the SRRP-MILP with a time limit of three hours.

instance LB LNS_NN LNS_RND MILP UB
n110_d28_s4_001 836,977 881,100 891,300 1,030,800 884,100
n110_d28_s4_002 845,615 891,600 907,100 1,061,100 897,300
n110_d28_s4_003 828,476 880,800 888,800 1,110,900 879,300
n110_d28_s4_004 827,067 872,200 887,600 941,600 864,500
n110_d28_s4_005 837,977 883,400 904,800 949,400 897,000
n110_d28_s4_006 841,662 893,400 900,400 985,300 880,400
n110_d28_s4_007 832,633 883,300 899,600 962,100 883,900
n110_d28_s4_008 838,547 881,700 895,700 1,007,100 889,800
n110_d28_s4_009 826,775 874,200 887,500 1,099,000 876,100
n110_d28_s4_010 840,414 885,100 902,100 1,138,600 881,400
n110_d28_s4_011 827,060 871,700 886,300 933,600 862,600
n110_d28_s4_012 835,372 882,400 892,000 947,900 888,600
n110_d28_s4_013 843,007 890,900 896,300 958,400 893,300
n110_d28_s4_014 828,428 870,900 891,600 1,045,800 888,300
n110_d28_s4_015 841,535 889,200 902,900 945,900 886,200
n110_d28_s4_016 831,171 881,900 892,900 945,500 890,000
n110_d28_s4_017 832,300 885,300 896,400 938,900 889,400
n110_d28_s4_018 830,546 876,400 889,600 1,076,200 877,400
n110_d28_s4_019 838,959 882,600 893,000 942,900 892,700
n110_d28_s4_020 834,389 886,200 890,900 947,300 894,500
n110_d28_s4_021 842,200 889,800 898,800 946,300 886,900
n110_d28_s4_022 839,413 880,700 891,800 930,800 883,500
n110_d28_s4_023 839,038 887,900 897,700 941,600 896,600
n110_d28_s4_024 832,375 882,400 889,600 945,300 867,600
n110_d28_s4_025 824,559 875,600 880,900 931,300 875,700
n110_d28_s4_026 838,237 888,100 900,000 944,700 899,300
n110_d28_s4_027 827,820 876,300 890,700 956,100 872,400
n110_d28_s4_028 841,308 893,400 901,900 944,900 888,300
n110_d28_s4_029 837,986 886,500 897,500 968,800 883,300
n110_d28_s4_030 818,561 870,100 888,100 935,400 868,500
n110_d28_s4_031 832,068 880,000 885,900 935,900 876,600
n110_d28_s4_032 836,866 888,800 903,400 961,500 905,700
n110_d28_s4_033 830,311 882,100 880,300 937,100 880,500
n110_d28_s4_034 836,919 887,500 884,000 1,178,000 893,000
n110_d28_s4_035 845,903 890,500 894,700 950,900 895,800
n110_d28_s4_036 835,160 881,200 884,400 980,400 878,100
n110_d28_s4_037 825,059 877,500 888,000 1,090,200 870,500
n110_d28_s4_038 837,528 887,500 895,500 967,000 873,700
n110_d28_s4_039 836,347 885,900 891,400 982,500 874,200
n110_d28_s4_040 823,882 870,900 887,600 961,100 887,900
n110_d28_s4_041 830,090 874,100 889,400 945,100 875,900
n110_d28_s4_042 831,417 882,100 893,500 947,300 879,900
n110_d28_s4_043 827,853 877,100 890,000 924,300 885,500
n110_d28_s4_044 830,173 877,000 890,800 924,900 882,600
n110_d28_s4_045 833,060 878,500 891,600 914,500 875,800
n110_d28_s4_046 826,849 876,200 891,300 964,200 866,900
n110_d28_s4_047 836,867 888,900 897,900 962,200 896,100
n110_d28_s4_048 840,569 887,900 902,200 919,300 887,800
n110_d28_s4_049 823,731 872,700 884,800 946,500 875,100
n110_d28_s4_050 836,791 885,400 893,400 934,300 885,400
n110_d28_s4_051 837,611 885,700 898,500 953,400 892,500
n110_d28_s4_052 829,008 881,200 894,100 953,700 880,800
n110_d28_s4_053 841,255 888,600 904,500 967,300 890,500
n110_d28_s4_054 835,137 885,800 892,600 947,100 887,500
n110_d28_s4_055 832,610 880,600 886,600 944,800 883,500
n110_d28_s4_056 823,376 876,900 884,000 941,000 884,400
n110_d28_s4_057 829,890 878,900 895,100 929,100 885,500
n110_d28_s4_058 837,787 891,600 898,400 968,700 906,500
n110_d28_s4_059 828,364 883,500 893,500 940,800 883,400
n110_d28_s4_060 826,232 878,800 882,600 943,000 880,000

instance LB LNS_NN LNS_RND MILP UB
n110_d28_s4_061 840,223 889,200 898,100 950,400 893,000
n110_d28_s4_062 830,009 882,100 888,700 942,400 884,400
n110_d28_s4_063 838,773 893,900 893,400 954,100 899,200
n110_d28_s4_064 831,799 882,600 897,600 928,400 888,200
n110_d28_s4_065 843,891 898,300 895,900 961,400 888,400
n110_d28_s4_066 842,788 886,300 889,800 957,800 887,800
n110_d28_s4_067 833,044 886,900 887,700 968,000 886,500
n110_d28_s4_068 831,374 883,900 887,300 968,200 880,600
n110_d28_s4_069 840,087 891,100 899,300 952,200 890,300
n110_d28_s4_070 838,611 884,500 891,800 961,000 892,900
n110_d28_s4_071 826,618 880,000 889,200 928,800 870,400
n110_d28_s4_072 840,714 888,600 902,400 957,300 879,500
n110_d28_s4_073 835,539 883,400 897,600 958,800 872,900
n110_d28_s4_074 834,107 882,000 893,800 981,200 878,100
n110_d28_s4_075 834,773 874,800 892,300 948,000 875,300
n110_d28_s4_076 836,086 880,300 898,000 984,500 882,600
n110_d28_s4_077 825,568 879,500 886,500 972,800 876,400
n110_d28_s4_078 822,717 868,000 882,500 958,200 871,800
n110_d28_s4_079 823,406 875,200 888,500 988,400 887,100
n110_d28_s4_080 836,390 880,500 896,200 1,005,900 879,300
n110_d28_s4_081 833,410 880,000 889,400 955,000 885,100
n110_d28_s4_082 832,394 880,700 887,400 1,065,300 881,400
n110_d28_s4_083 833,509 885,100 897,300 940,400 892,600
n110_d28_s4_084 833,126 883,800 897,500 978,700 894,200
n110_d28_s4_085 836,030 885,600 891,000 926,300 883,100
n110_d28_s4_086 848,270 891,300 901,000 970,900 894,800
n110_d28_s4_087 837,428 884,000 890,200 963,000 892,400
n110_d28_s4_088 828,210 875,900 881,900 1,072,400 877,900
n110_d28_s4_089 834,937 882,800 882,800 1,039,100 885,500
n110_d28_s4_090 833,010 884,000 897,700 1,027,900 882,800
n110_d28_s4_091 839,062 885,700 903,100 976,000 893,000
n110_d28_s4_092 832,538 886,400 892,500 1,077,900 888,800
n110_d28_s4_093 840,127 881,600 895,900 1,010,800 889,400
n110_d28_s4_094 831,603 874,500 889,600 1,066,500 867,700
n110_d28_s4_095 829,362 873,800 885,300 963,200 882,300
n110_d28_s4_096 841,785 888,800 904,100 1,059,500 893,900
n110_d28_s4_097 832,662 885,000 882,300 1,059,200 886,000
n110_d28_s4_098 838,065 883,600 887,200 1,087,700 894,700
n110_d28_s4_099 837,292 886,800 889,900 1,043,900 883,500
n110_d28_s4_100 835,315 883,600 889,900 1,061,300 887,500
n110_d28_s4_101 828,838 882,500 891,200 1,096,400 882,400
n110_d28_s4_102 842,659 894,200 905,200 1,145,400 899,700
n110_d28_s4_103 824,454 873,100 885,100 1,089,300 878,200
n110_d28_s4_104 837,231 885,000 894,800 1,386,200 894,000
n110_d28_s4_105 836,159 887,600 898,600 1,067,700 890,100
n110_d28_s4_106 843,629 891,000 900,500 1,064,300 899,200
n110_d28_s4_107 835,446 882,100 888,700 1,119,200 899,200
n110_d28_s4_108 844,868 890,600 896,900 951,100 888,400
n110_d28_s4_109 836,741 885,900 888,500 947,400 893,000
n110_d28_s4_110 836,178 884,700 889,800 936,400 878,800
n110_d28_s4_111 843,662 893,400 911,000 942,400 882,400
n110_d28_s4_112 829,080 883,000 892,000 922,200 872,900
n110_d28_s4_113 819,905 870,200 884,000 922,400 874,100
n110_d28_s4_114 834,685 874,400 882,400 924,300 881,400
n110_d28_s4_115 841,497 898,800 899,600 983,300 891,700
n110_d28_s4_116 842,284 883,700 886,500 953,700 889,800
n110_d28_s4_117 832,509 887,900 887,000 943,500 888,200
n110_d28_s4_118 829,857 881,600 886,700 926,900 875,100
n110_d28_s4_119 832,398 877,700 890,300 945,500 882,900
n110_d28_s4_120 831,666 884,400 898,400 923,200 885,600

106



Table 2: Final objective values of LNS_NN and LNS_RND for all test set instances with
120, 130, 140, and 150 employees. Here, LB and UB show the lower and upper bounds
computed using the SRRP-MILP with a time limit of three hours.

instance LB LNS_NN LNS_RND UB
n120_d28_s4_001 908,585 938,100 940,900 936,300
n120_d28_s4_002 891,877 920,200 931,900 920,600
n120_d28_s4_003 894,689 928,200 936,100 921,600
n120_d28_s4_004 895,437 929,500 937,900 925,900
n120_d28_s4_005 896,763 925,600 938,100 929,000
n120_d28_s4_006 887,270 914,400 922,600 914,900
n120_d28_s4_007 904,905 937,100 946,100 935,400
n120_d28_s4_008 895,066 928,300 937,100 934,600
n120_d28_s4_009 898,403 932,300 944,500 933,600
n120_d28_s4_010 896,857 923,100 932,000 919,100
n120_d28_s4_011 899,074 922,700 941,100 920,900
n120_d28_s4_012 882,820 921,700 927,100 919,700
n120_d28_s4_013 885,496 922,900 926,200 924,800
n120_d28_s4_014 898,291 938,500 955,700 942,000
n120_d28_s4_015 891,114 923,800 926,400 909,300
n120_d28_s4_016 896,813 933,900 940,300 916,800
n120_d28_s4_017 892,957 926,900 936,800 924,100
n120_d28_s4_018 886,918 921,800 926,300 923,200
n120_d28_s4_019 883,635 921,300 925,600 919,400
n120_d28_s4_020 892,769 930,500 945,500 929,000
n120_d28_s4_021 905,283 931,900 938,000 930,500
n120_d28_s4_022 887,118 919,300 928,200 904,300
n120_d28_s4_023 899,668 920,600 934,700 923,400
n120_d28_s4_024 902,259 933,100 946,500 934,500
n120_d28_s4_025 901,382 929,700 936,800 926,300
n120_d28_s4_026 883,843 917,400 922,000 915,900
n120_d28_s4_027 888,638 909,400 919,400 907,700
n120_d28_s4_028 886,783 921,700 928,600 919,900
n120_d28_s4_029 887,398 916,400 926,900 910,900
n120_d28_s4_030 895,576 926,000 940,400 924,800
n130_d28_s4_001 1,031,024 1,084,800 1,095,800 1,076,900
n130_d28_s4_002 1,018,064 1,067,100 1,077,600 1,061,700
n130_d28_s4_003 1,039,323 1,088,100 1,097,700 1,092,300
n130_d28_s4_004 1,039,321 1,084,100 1,094,200 1,081,500
n130_d28_s4_005 1,049,172 1,100,000 1,100,200 1,086,100
n130_d28_s4_006 1,026,743 1,072,200 1,082,300 1,068,300
n130_d28_s4_007 1,021,163 1,066,100 1,074,600 1,061,500
n130_d28_s4_008 1,035,598 1,084,200 1,089,800 1,081,000
n130_d28_s4_009 1,038,726 1,080,900 1,087,600 1,076,400
n130_d28_s4_010 1,025,681 1,074,700 1,098,600 1,074,800
n130_d28_s4_011 1,037,393 1,084,200 1,096,800 1,083,100
n130_d28_s4_012 1,033,056 1,075,400 1,088,400 1,068,200
n130_d28_s4_013 1,028,619 1,075,600 1,079,900 1,076,300
n130_d28_s4_014 1,031,631 1,080,800 1,092,800 1,075,400
n130_d28_s4_015 1,033,861 1,077,500 1,088,200 1,079,300
n130_d28_s4_016 1,032,003 1,090,600 1,091,900 1,075,900
n130_d28_s4_017 1,030,168 1,076,100 1,083,700 1,067,200
n130_d28_s4_018 1,026,535 1,073,100 1,081,000 1,070,200
n130_d28_s4_019 1,033,572 1,079,800 1,087,700 1,074,400
n130_d28_s4_020 1,030,686 1,081,900 1,086,500 1,071,400
n130_d28_s4_021 1,025,034 1,076,600 1,084,900 1,066,300
n130_d28_s4_022 1,021,755 1,064,400 1,077,900 1,068,000
n130_d28_s4_023 1,020,645 1,067,100 1,071,000 1,059,200
n130_d28_s4_024 1,031,785 1,088,300 1,106,400 1,075,000
n130_d28_s4_025 1,029,265 1,080,600 1,087,400 1,076,300
n130_d28_s4_026 1,032,140 1,075,000 1,084,900 1,072,800
n130_d28_s4_027 1,015,581 1,069,900 1,068,100 1,059,000
n130_d28_s4_028 1,033,095 1,082,800 1,087,000 1,077,600
n130_d28_s4_029 1,041,540 1,080,500 1,095,700 1,080,100
n130_d28_s4_030 1,034,697 1,084,900 1,092,900 1,076,800

instance LB LNS_NN LNS_RND UB
n140_d28_s4_001 1,213,462 1,309,200 1,327,000 1,301,300
n140_d28_s4_002 1,202,935 1,307,700 1,312,700 1,285,600
n140_d28_s4_003 1,217,304 1,307,600 1,321,400 1,305,700
n140_d28_s4_004 1,202,921 1,293,400 1,319,600 1,266,900
n140_d28_s4_005 1,201,224 1,309,900 1,335,500 1,295,400
n140_d28_s4_006 1,218,826 1,319,100 1,338,200 1,289,900
n140_d28_s4_007 1,211,185 1,318,000 1,330,200 1,287,400
n140_d28_s4_008 1,217,002 1,317,700 1,333,600 1,299,800
n140_d28_s4_009 1,202,109 1,319,200 1,328,600 1,294,400
n140_d28_s4_010 1,209,845 1,320,200 1,341,600 1,297,700
n140_d28_s4_011 1,203,715 1,295,700 1,332,600 1,284,100
n140_d28_s4_012 1,200,832 1,304,600 1,324,200 1,285,000
n140_d28_s4_013 1,202,397 1,318,600 1,332,800 1,281,600
n140_d28_s4_014 1,209,162 1,323,600 1,333,100 1,295,300
n140_d28_s4_015 1,203,839 1,314,500 1,335,300 1,297,800
n140_d28_s4_016 1,206,821 1,315,000 1,321,200 1,292,100
n140_d28_s4_017 1,201,992 1,303,800 1,331,900 1,290,800
n140_d28_s4_018 1,218,094 1,325,000 1,336,500 1,301,800
n140_d28_s4_019 1,207,887 1,313,100 1,343,800 1,295,600
n140_d28_s4_020 1,198,602 1,305,300 1,332,600 1,284,400
n140_d28_s4_021 1,205,402 1,305,400 1,335,600 1,294,600
n140_d28_s4_022 1,202,511 1,326,200 1,329,400 1,283,500
n140_d28_s4_023 1,199,900 1,310,500 1,326,000 1,288,000
n140_d28_s4_024 1,211,903 1,312,100 1,325,000 1,288,300
n140_d28_s4_025 1,219,203 1,328,500 1,334,500 1,300,900
n140_d28_s4_026 1,214,651 1,322,100 1,334,900 1,294,800
n140_d28_s4_027 1,205,955 1,305,700 1,319,800 1,279,800
n140_d28_s4_028 1,211,864 1,318,700 1,330,100 1,311,400
n140_d28_s4_029 1,198,805 1,321,900 1,317,800 1,299,800
n140_d28_s4_030 1,213,513 1,312,200 1,341,200 1,294,000
n150_d28_s4_001 1,341,288 1,423,300 1,443,300 1,406,700
n150_d28_s4_002 1,343,609 1,422,100 1,444,200 1,408,100
n150_d28_s4_003 1,356,149 1,423,100 1,450,400 1,415,900
n150_d28_s4_004 1,343,066 1,435,600 1,452,200 1,406,500
n150_d28_s4_005 1,343,199 1,426,800 1,429,900 1,409,000
n150_d28_s4_006 1,329,937 1,420,500 1,445,300 1,402,000
n150_d28_s4_007 1,341,877 1,427,500 1,440,000 1,408,500
n150_d28_s4_008 1,344,134 1,414,100 1,439,100 1,391,300
n150_d28_s4_009 1,351,095 1,431,200 1,447,700 1,409,300
n150_d28_s4_010 1,348,715 1,430,500 1,447,900 1,410,200
n150_d28_s4_011 1,345,292 1,432,900 1,449,500 1,401,200
n150_d28_s4_012 1,357,296 1,438,200 1,440,300 1,421,700
n150_d28_s4_013 1,352,408 1,433,200 1,453,800 1,411,700
n150_d28_s4_014 1,338,590 1,419,400 1,433,900 1,402,400
n150_d28_s4_015 1,348,719 1,437,400 1,459,500 1,413,900
n150_d28_s4_016 1,342,865 1,422,100 1,446,900 1,405,700
n150_d28_s4_017 1,345,604 1,421,800 1,443,100 1,406,800
n150_d28_s4_018 1,347,928 1,426,100 1,449,900 1,403,800
n150_d28_s4_019 1,349,459 1,423,100 1,447,000 1,407,300
n150_d28_s4_020 1,354,592 1,438,000 1,445,600 1,421,100
n150_d28_s4_021 1,347,892 1,425,500 1,440,700 1,399,100
n150_d28_s4_022 1,340,256 1,427,300 1,443,700 1,399,600
n150_d28_s4_023 1,350,645 1,441,800 1,454,300 1,418,000
n150_d28_s4_024 1,344,146 1,423,900 1,438,500 1,406,600
n150_d28_s4_025 1,348,148 1,434,100 1,453,300 1,407,400
n150_d28_s4_026 1,357,736 1,432,800 1,455,500 1,424,100
n150_d28_s4_027 1,355,590 1,440,000 1,452,900 1,416,500
n150_d28_s4_028 1,341,801 1,427,300 1,450,100 1,406,500
n150_d28_s4_029 1,345,753 1,435,200 1,445,900 1,410,200
n150_d28_s4_030 1,340,598 1,424,500 1,433,900 1,402,300
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