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Kurzfassung

Navigationssysteme begleiten uns täglich und viele Menschen nutzen sie sowohl in bekann-
ten als auch in unbekannten Umgebungen. Üblicherweise geben diese Navigationssysteme
dem Benutzer die kürzeste Route vor. Obwohl dieser Ansatz in bestimmten Situationen
vorteilhaft sein kann, folgt der Benutzer dabei den Anweisungen passiv. Das wiederum
schränkt die Interaktion mit der Umgebung und selbstständige Entscheidungen ein. Des
Weiteren gibt es Literatur, die darauf hindeutet, dass die Nutzung von Navigations-
systemen unsere räumliche Wahrnehmung und Orientierung negativ beeinflussen kann.
Als häufiger Grund dafür wird geteilte Aufmerksamkeit genannt, da der Nutzer sich
abwechselnd auf das Navigationssystem und die Umgebung konzentrieren muss. In den
letzten Jahren wurden mehrere Navigationsansätze vorgeschlagen, um diese Auswir-
kungen abzuschwächen und den Erwerb von räumlichem Wissen (auf Englisch spatial
knowledge acquisition) zu unterstützen. Diese Ansätze versuchen, den Benutzer aktiv
in den Entscheidungsprozess einzubinden. Allerdings geben diese Systeme immer noch
eine vordefinierte Route vor und fordern weiterhin eine geteilte Aufmerksamkeit. Dabei
werden die räumlichen Fähigkeiten des Benutzers meistens nicht berücksichtigt. Dies
steht im Gegensatz zu dieser Arbeit, in der die Berücksichtigung von räumlichen Benut-
zerfähigkeiten eine personalisierte Unterstützung erlaubt. In dieser Arbeit werden zwei
neue Navigationskonzepte vorgestellt, die die oben genannten Probleme berücksichtigen,
indem sie dem Benutzer eine aktive Rolle im Entscheidungsprozess zuschreiben. Das erste
Konzept heißt Free Choice Navigation (FCN) und ist ein nicht visueller Navigationsansatz,
der einen Kompromiss zwischen freier Erkundung der Umgebung, der Anzahl an Naviga-
tionsanweisungen und einer maximalen Routenlänge eingeht. Anhand von geschätzten
Wahrscheinlichkeiten und den räumlichen Fähigkeiten des Benutzers versucht dieser Na-
vigationsansatz zu bestimmen, ob der Benutzer an der nächsten Kreuzung Unterstützung
benötigt. Der zweite vorgestellte Navigationsansatz heißt Beeline Augmented Reality
(BeeAR) und zeigt das Ziel permanent mittels einer Augmented-Reality-Datenbrille
an. Dadurch kompensiert er den potenziellen Fehler, der bei dem FCN-Ansatz durch
die Schätzung der Benutzerorientierung entstehen kann. In beiden Ansätzen soll die
erhaltene Informationsmenge reduziert werden und der Nutzer aktiv am Entscheidungs-
prozess teilnehmen. Daher wird erwartet, dass diese Ansätze den Erwerb von räumlichem
Wissen unterstützen. In einer empirischen Nutzerstudie wurden diese zwei neuen Kon-
zepte evaluiert. Dabei diente der weitverbreitete Turn-by-Turn-Navigationsansatz als
Vergleichsgrundlage. Eine der wichtigsten Entscheidungen bei der Planung von solchen

vii



Experimenten ist die Auswahl der Route(n) innerhalb eines Testgebiets. Diese müssen
experimentspezifische Kriterien erfüllen. Nach jetzigem Stand gibt es kaum systematische
Informationen über den möglichen Einfluss von Routen auf Studienergebnisse. Daher wird
in einer agentenbasierten Simulationsstudie der mögliche Einfluss der Routenauswahl auf
die Studienergebnisse untersucht. Außerdem wird untersucht, ob sich die Stichprobengröße
auf diesen potenziellen Einfluss auswirkt. Der zweite Beitrag dieser Arbeit zur Bedeutung
der Routenauswahl in Navigationsexperimenten ist die Entwicklung eines Frameworks
für systematische und reproduzierbare Routenauswahl in Navigationsexperimenten. In
Anbetracht der Vielzahl möglicher Routen und ihrer potenziellen Auswirkungen auf die
Studienergebnisse sollte dieses Framework die ökologische Validität erhöhen, da die ausge-
wählten Routen die experimentspezifischen Kriterien am besten erfüllen. Das wiederum
ermöglicht eine größtmögliche Verallgemeinerung der Ergebnisse. Neben der Auswahl
von Routen aus einer potenziellen Routengrundgesamtheit ermöglicht das Framework
die Suche von ähnlichen Routen in verschiedenen geografischen Gebieten. Diese Art der
Unterstützung erleichtert die Studienreplikation in anderen Ländern. Darüber hinaus
wird ein Verfahren zur Ermittlung von Routen vorgeschlagen, die wahrscheinlich zu
Ergebnissen führen, die mit den meisten Routen im Testgebiet übereinstimmen.



Abstract

Navigation assistance systems have become widespread, and many people use them
daily in familiar or unfamiliar areas. These navigation systems require the user to
follow a predefined route, usually the shortest one. Although this approach can be
beneficial in certain situations, this circumstance reduces the user to a passive follower,
limiting at the same time the interaction with the environment and active decisions.
Furthermore, the literature suggests that the usage of navigation assistance systems
may adversely affect spatial cognition and orientation, often explained by the forced
attention shifts between the supporting navigation system and the environment. Several
approaches focusing on enhancing spatial knowledge acquisition have been proposed
over the years to mitigate these effects. These approaches try to engage the user in the
decision-making process actively. However, they still force users to divide attention or
follow a predefined route. In contrast to this work, they do not incorporate the user’s
environmental spatial abilities allowing for personalized assistance. The work presents
two novel concepts tackling these problems by increasing the user’s active participation
in the decision-making process. The first concept, Free Choice Navigation (FCN), is
a non-visual navigation approach focusing on a compromise between free exploration,
the number of issued instructions, and a maximum allowed walking distance. Based on
estimated probabilities and environmental spatial abilities, this approach also tries to
determine whether the user needs assistance at the next junction. The second introduced
navigation approach, Beeline Augmented Reality (BeeAR), is permanently displaying
the destination through augmented reality data glasses, compensating for the potential
errors in users’ orientation estimation of the FCN approach. Both approaches focus on
decreasing the amount of information provided to the user and involve the user in the
decision-making process. Therefore, these approaches are expected to support spatial
knowledge acquisition. Both novel concepts were evaluated through an in situ empirical
user study using the state-of-the-art turn-by-turn approach as a baseline. One of the
most crucial experimental design decisions for such evaluations is selecting the route(s)
within an experimental area that must satisfy experiment-specific criteria. As of today,
there is little systematic information about the potential influence of routes on study
results. Therefore, an agent-based simulation study demonstrates the potential influence
of route selection on study results. Furthermore, it will be scrutinized if the sample size
impacts this potential influence. The second contribution of this work regarding the
importance of route selection in navigation experiments is the development of a route
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selection framework for wayfinding experiments allowing for systematic and reproducible
route selection. Given the abundance of possible routes and their potential impact on
study results, this framework should increase ecological validity as the selected routes best
satisfy the experiment-specific criteria, which in turn allows for generalizing the findings
as much as possible. Besides selecting routes from a potential route population, the
framework enables finding similar routes in different geographic areas, which facilitates
study replication in other countries. Moreover, a procedure for finding routes leading
likely to results in line with most routes in the experimental area is proposed.
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CHAPTER 1
Introduction

In this work, two main aspects are addressed: (1) the potential of giving the user more
decision-making options while using a pedestrian navigation assistance system and the
impact thereof on spatial knowledge acquisition; (2) the potential impact of route selection
in wayfinding experiments and a systematic approach for route selection.

1.1 Motivation and Problem Statement

The motivation and the problems addressed in this thesis will be illustrated with two
scenarios, one from everyday life and one from academia.

Two friends, Alice and Bob, are walking down the street in the city center. After a
stroll of roughly 30 minutes, they got hungry. Bob remembers that he recently passed
by a newly opened Polish restaurant in the city center and wrote down its name on
his smartphone. He became only aware of the restaurant because the noise of the last
refinements drew his attention. Unfortunately, his smartphone runs out of battery, but
he remembers the first part of the restaurant’s name. Alice takes out her smartphone and
starts typing. Both are convinced that they will know the exact location within seconds
and receive navigation instructions to the restaurant. To their surprise, the restaurant is
not listed in the result. None of them knows that the restaurant’s information has yet to
be included in any of the main map provider services. Alice asks Bob if he remembers
the rough location or any other details of the environment close to the restaurant. Bob
admits that he was very much focused on the navigation instructions he received from
the smartphone and that only by chance the noise made him aware of the restaurant. He
does not remember any further details of the environment he traversed back then. If he
had interacted more with the environment, Bob could potentially recall further elements
of the environment that are findable on a map.
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1. Introduction

This short scenario illustrates one type of navigation system users (Webber et al.,
2012), an inattentive user, following the navigation instructions and a predefined route
passively without paying attention to the environment. Missing potentially valuable
information may have different degrees of severity. It can vary from knowing where the
next defibrillator is in an emergency to being aware of the next Colombian restaurant
with a group of friends visiting you. Not every information is to be found easily on the
internet. The information may be missing or outdated (e.g., Camboim et al., 2015; Deitz
et al., 2021; Weiss et al., 2020). Therefore, it is important to know our surroundings.
Missing information from the environment is one of the negative effects these navigation
systems may have, as the literature suggests that the usage of navigation assistance
systems may adversely affect spatial cognition and orientation (e.g., Fenech et al., 2010;
Ishikawa, 2019; Dahmani and Bohbot, 2020). This negative impact is often explained by
users needing to divide their attention between the supporting navigation system and
the environment (e.g., Gardony et al., 2013). The negative impact on spatial cognition
could be mitigated by keeping the user active, e.g., by incorporating the user in the
decision process about which branch to take next (Huang et al., 2022) or orientation
quizzes (Parush et al., 2007; J. Wen et al., 2014). However, these approaches continue to
divide the user’s attention, and they do not consider individual spatial abilities allowing
for personalized assistance, as instruction demand may differ (e.g., Golab et al., 2022).
Therefore, further navigation assistance systems supporting active navigation need to be
tested and will be presented in this thesis.

Whenever a new navigation system is to be tested empirically, the experiment needs to be
designed carefully to avoid potential biases. One obligatory task during the experimental
design phase for wayfinding experiments is the selection of one or more experimental
routes. The following scenario illustrates problems in the current workflow of finding
such experimental routes.

A new professor from the geoinformation domain moves to a foreign country and starts
her work at a new university. After several months of setting up the labs and preparing
teaching materials, she finally wants to start research. Together with her research group,
they developed a novel pedestrian navigation assistance system. They want to test it
in real-world environments and meticulously prepare all the navigation conditions and
procedures. As the professor is new in this city, she has no historical portfolio of "proven
routes" to be used in this study. Therefore, she asks other research groups within the
same department for advice. After several emails were sent, the professor received two
routes used for several years by other research groups. They are placed in different
parts of the city and of different lengths. Furthermore, one of them is a shortest path,
and the other is not. Given these differences, the professor gets back to both research
groups and asks about the rationale behind the indicated routes. One replies: "It is
close to the experimenter’s house, and there is a church along the route". The second
researcher replies: "The route has five turning points and a length of 700 meters". The
professor was not very satisfied with both answers. She started to think about how
many routes in the city would meet one of these descriptions. After a network analysis,
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1.1. Motivation and Problem Statement

the professor discovers that millions of possible routes meet these descriptions. Visual
inspection discovers great differences between routes fulfilling the same description. One
difference regards the average number of branches a wayfinder can select along the route.
The angles of intersecting branches at junctions are another difference discovered. Both
differences have the potential to impact the wayfinder’s behavior during the experiment
(e.g., Haque et al., 2007; Fogliaroni et al., 2018; Iftikhar and Luximon, 2023; Dalton,
2003). Two questions come to the professor’s mind: (1) How can I select a route in a
systematic and reproducible manner? (2) Do different routes considerably impact the
study results? If so, how can I control the route’s impact on the results?

This short scenario shows two issues in the route selection process in wayfinding experi-
ments. First, many researchers would agree that different routes lead to different results,
but there is no systematic work on the impact of route selection on study results. The
influence of the street network topology on navigation has been examined (e.g., Amores
et al., 2021), but the influence of individual routes has not been scrutinized. Second, there
is no framework to facilitate systematic and reproducible route selection for wayfinding
experiments. There have been proposed route selection algorithms, however, they usually
optimize one characteristic, e.g., the ease of describing navigation instructions for a
route (Mark, 1986; Duckham and Kulik, 2003). These procedures are not designed to
incorporate the specific needs of researchers while selecting a route for a wayfinding
experiment.

Not knowing the influence of route selection on the results of wayfinding studies limits
the generalizability of these experiments. Even selecting several routes for a wayfinding
experiment does not necessarily solve the problem as the selected routes may produce
similar results by chance, and the selected routes are possibly not representative for the
experimental area. The results would be meaningful for the tested routes, but their
generalizability may be questionable. The selection rationales in the scenario above also
show what researchers have in mind while selecting a route, therefore, this process is not
random but relatively arbitrary and not reproducible, as many routes would correspond
to the descriptions. This is problematic as these selections are based on certain criteria
relevant to the research questions, but there still may be differences between these routes
with respect to criteria not taken into account. Given these differences, the routes
might not be representative for the experimental area. Furthermore, these differences
can potentially influence study results. In consequence, there is a need for an approach
allowing for the selection of representative routes in a systematic and reproducible manner,
as route selection is part of every study requiring a route.

The remainder of this thesis is structured as follows:

1. The related work regarding the problem statement is discussed.

2. The main research questions and aims are defined.

3. The methodology of the conducted research is described.

3



1. Introduction

4. The publications are summarized, and the scientific contribution is highlighted.

5. The full publications, followed by the following sections: Discussion, Conclusion
and possible future work, conclude the thesis.

1.2 Related Work
This subsection discusses the relevant literature regarding spatial knowledge and nav-
igation systems. Furthermore, the influence of route selection in wayfinding studies is
thematized, together with systematic route selection approaches. This literature overview
identifies research gaps, allowing for the derivation of research questions in the next sec-
tion (see Section 1.3). This subsection provides rather an overview than an all-embracing
literature review, as every published or submitted paper has its related work section.

1.2.1 Spatial Knowledge
People learn about their surroundings by directly traversing them (see Anastasiou et al.
(2022) for an overview) or interacting with a representation of this space (e.g., map,
3D model, description) (Richter, 2013). This knowledge is used then to find our way
in the environment. According to Siegel and White (1975), there are three sequential
types of spatial knowledge: landmark knowledge - knowledge about unique locations;
route knowledge - knowledge about landmark sequences forming a route, together with
actions needed to go from one landmark to the next one; survey knowledge - knowledge
about the configurational relations connecting distinct routes and landmarks, forming a
more holistic overview of the environment, including topology and metric information.
Montello (1998) argues that these three types of spatial knowledge are not necessarily
acquired in a strict order.

This argument is supported by empirical evidence showing that these three knowledge
types do not build on each other (Moar and Carleton, 1982). The results of Meilinger et al.
(2013) suggest that route and survey knowledge are uncorrelated, at least in a familiar
environment. The authors hypothesize that the underlying representations of these two
types of spatial knowledge are different. Kim and O. Bock (2021) provide empirical
evidence against the stage concept of Siegel and White (1975). In their study, participants
traversed three routes and subsequently performed spatial knowledge acquisition tasks.
This procedure was repeated ten times, and the results showed that landmark, route, and
survey knowledge are built in parallel and that the correlations between them increased
with every trial.

There is also an ongoing discussion about how spatial knowledge is stored in our minds.
Whether it is rather a cognitive map (e.g., Tolman, 1948) or rather a cognitive graph
(e.g., Kuipers, 1982) or a combination of both (MacEachren, 1992; Peer et al., 2021).
According to McNamara (2013), spatial knowledge has the following four key properties:
(1) fragmented - there is detailed knowledge about some areas, whereas knowledge about
other areas is of low quality. These areas might be adjacent; (2) distorted - remembered
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1.2. Related Work

distances, angles, and orientations frequently differ from real-world measurements; (3)
hierarchical - spatial knowledge is organized in categorical and hierarchical units (e.g., X
is part of Y); (4) orientation dependent - depending on the perspective, spatial relations
may be recognized or remembered more efficiently.

Individual differences lead to qualitative differences in the acquired spatial knowledge
(Ishikawa and Montello, 2006). Although spatial knowledge can improve with repeated
exposure, the literature suggests that accurate metric information about the environment
is either acquired during the first exposure or not at all (Moeser, 1988; Ishikawa and
Montello, 2006). The learned knowledge about the environment is not always used in
the same manner while navigating. In a familiar environment, we can use two different
navigation strategies (Dahmani and Bohbot, 2020; Hegarty et al., 2023): (1) spatial-
memory strategy (also known as place strategy) in which the wayfinder relies on the
acquired spatial knowledge to deduce new paths and positions relative to already known
elements of the environment; (2) (stimulus-) response strategy in which the wayfinder
takes usual routes following a sequence of actions (e.g., “turn right at the upcoming
junction”).

Further literature about spatial knowledge representation will not be discussed, as this
thesis deals with the influence of own decisions and engagement with the environment
on spatial knowledge acquisition rather than the storage and representation of spatial
knowledge in our minds. In the first scenario (see Section 1.1), Bob did not acquire
considerable spatial knowledge about the environment he traversed because he blindly
followed the turning instructions issued by the navigation system without paying attention
to the environment.

1.2.2 Turn-by-Turn Navigation and its Disadvantages
The turn-by-turn navigation approach (TBT) is commonly used by pedestrians, car
drivers, runners, and cyclists (e.g., Google Maps), and is based on turning instructions
issued just before or at a turning point until the destination is reached. The TBT
navigation approach can be implemented in a visual (Rümelin et al., 2011), auditory (Xu
et al., 2022) or vibrotactile (Lin et al., 2008; Giannopoulos et al., 2015) manner or a
combination thereof and comes in different forms and shapes. The turning instruction
can be transmitted via an annotated paper map, a digital map-based interface (e.g.,
Xu et al., 2022) and holograms displayed with augmented reality (AR) technology
(Huang et al., 2012; Yount et al., 2022; Qiu et al., 2023), among others. While this
navigation approach is efficient in guiding users to their desired destination, there is
empirical evidence suggesting the potentially negative effect of navigation assistance
systems (mainly implementing the TBT approach) on spatial cognition.

Hejtmánek et al. (2018) investigated the effects of using a GPS-like map on spatial knowl-
edge acquisition and unassisted navigation in a virtual environment. They conclude that
spending more time with the map leads to less accurate spatial knowledge. Furthermore,
longer map usage times lead to longer walking routes during the unassisted navigation
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task. Ishikawa (2019) scrutinized the relation between the experience with navigation
systems (in-car) and pedestrian wayfinding and spatial knowledge acquisition. Partici-
pants with more accumulated experience showed less accurate spatial acquisition with
both a digital and a paper map and less efficient wayfinding with a paper map. Ruginski
et al. (2019) found a negative influence of GPS usage on spatial transformation processes
(mental rotation - Vandenberg and Kuse (1978) and perspective-taking - Kozhevnikov
and Hegarty (2001)), which in turn influence visual environmental learning.

The TBT approach can differently influence distinct types of spatial knowledge. Krüger
et al. (2004) concluded in their work that TBT navigation fosters landmark knowledge,
whereas survey knowledge acquisition is not fully supported. Similar to Ishikawa (2019),
Dahmani and Bohbot (2020) assessed the lifetime GPS experience of drivers. They
conclude that participants with increased experience have worse spatial memory while
navigating unassisted (without GPS). Additionally, they found that increased GPS usage
was not bound to a poor self-reported sense of direction, suggesting that increased GPS
usage is likely leading to worse spatial memory than vice versa. The results of Dickmann
(2012) suggest that car drivers remember more spatial objects along the route with a
paper map than with a navigation device. However, nowadays, a paper map is rarely
preferred over a digital navigation assistance system by wayfinders. In the experiment of
Fenech et al. (2010), participants had to drive a route twice. One group drove the first
trial with and the second trial without GPS. The second group did not use GPS in any
trial. According to their results, participants with no GPS performed better in the scene
recognition task, suggesting that TBT impairs the visual encoding of the environment.
On the other hand, in a similar setup, the results of Kelly et al. (2022) suggest that not
all types of spatial knowledge may be affected by using navigation assistance systems.
Participants with permanent guidance did not perform worse in the route retracing task,
a test for route knowledge.

These above-mentioned negative effects on spatial cognition are often attributed to
forced attention switches between the environment and the assistance system (Gardony
et al., 2013; Gardony et al., 2015) and to the fact that the user is not involved in the
decision-making process. Passive instruction following and higher automation levels may
lead to less spatial knowledge acquisition (Brügger et al., 2019). The results of Bakdash
et al. (2008) suggest that decision-making is crucial for learning a (virtual) environment.
Parush et al. (2007) concluded that keeping the user active during the wayfinding task
can positively impact spatial knowledge acquisition. Furthermore, the presence of a
navigation system impacts the eye-movement behavior by decreasing the share of forward
fixations (Brügger et al., 2018), leading to less interaction with the environment.

Given these problems, researchers have proposed modifications to the TBT approach.
Enriching the turning instructions with more landmark information (Wunderlich and
Gramann, 2021a) or contextual information (Richter and Klippel, 2005; Schwering et al.,
2017) is one approach to make TBT more engaging and supporting spatial knowledge
acquisition. The environment can also be modified by adding virtual global landmarks,
favoring spatial knowledge acquisition (Singh et al., 2021; J. Liu et al., 2022). Another

6



1.2. Related Work

approach is to let the user request information about the surroundings (e.g., points of
interest, building floors, weather) (Kota et al., 2010). Another approach to make the user
spatially more aware is the schematization of maps (Schmid et al., 2010; Galvao et al.,
2020). Involving the user in the path planning procedure (before TBT navigation) can
improve survey knowledge and self-orientation, whereas redirecting the user’s attention
to the environment supports landmark and route knowledge (Lu et al., 2021). In order
to overcome the drawbacks of TBT, not only have modifications been proposed, but also
approaches reducing the number of turn-by-turn instructions or avoiding them at all.

1.2.3 Alternative Navigation Approaches
While navigating with the TBT approach, the user is required to follow a predefined route
with predefined instructions. Alternatives to the TBT approach offer more options to
the user, which can actively participate in the decision-making process. In consequence,
the discussed alternatives share the feature of not having a completely predefined route.
Where applicable, the impact on spatial knowledge acquisition will be reported.

One alternative to the TBT navigation approach is the so-called beeline navigation. The
working principle is based on the least-angle strategy (Hochmair and Frank, 2002), which
presumes that wayfinders prefer to select branches with the least angle in relation to
the (assumed) destination. The information about the true destination direction can be
conveyed by different means, e.g., vibrations, displays, or auditory cues.

There are several implementations of the beeline approach using vibrotactile feedback (e.g.,
Robinson et al., 2010; Pielot et al., 2011; Dobbelstein et al., 2016). Robinson et al. and
Dobbelstein et al. report on successful navigation without imposing a length limit on the
walked route. In the experiment of Robinson et al., users walked longer routes compared
to the shortest path, 53% (dynamic feedback) and 65% (static feedback) on average. The
PocketNavigator (Pielot et al., 2012) combines a map-based (OpenStreetMap) navigation
system with beeline navigation. The information about the direction was conveyed either
visually or visually and by vibrations. The beeline is not pointing towards the destination
but towards the next waypoint (similar to Erp et al., 2005). The study (9400 hours
of app usage recorded) did not reveal any difference regarding navigation performance
between groups (with vs. without vibrotactile feedback).

Savino et al. (2020) compared the beeline approach (also called as-the-crow-flies - ATCF)
with TBT for cyclists. A first experiment showed that beeline participants took longer
routes on both test routes (25-70%). There was no significant difference between these
groups regarding the pointing to the start point task. The TBT approach led to shorter
routes, fewer errors and a lower task load. In a second experiment, they compared the
initial ATCF system with an enhanced version thereof (ATCF+) that includes visual cues
about dead-ends and a mini-map, among others. These enhancements should overcome
the drawbacks of the initial system. There were no statistically significant differences
between ACTF and ACTF+ regarding route length, the number of errors, task load, or
the pointing task.
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1. Introduction

Albrecht et al. (2016) investigated two audio-based navigation systems. Either the user
was guided to the next junction along the route until the destination was reached (route
guidance) or the audio source was located at the destination and the user had to find
an appropriate route (beacon guidance). Only the second approach can be considered a
beeline approach. The users preferred the first system in unfamiliar environments and if
in a hurry. The beeline approach was considered more helpful in known environments
and in a tourism scenario. Clemenson et al. (2021) followed a similar beacon approach
as Albrecht et al. (2016) but focused on mental map creation in their research. They
compared their soundscape approach with verbal TBT instructions on a scavenger hunt
with five points of interest on the Microsoft campus. Both systems were tested by
participants unfamiliar (naïve) and familiar (experts) with the experimental area. Two
tasks to assess spatial learning were employed; (1) pointing to five points of interest; (2)
placing these 5 POIs on a simplified map. The soundscape system helped naïve users to
perform better in both tasks, compared to naïve users with verbal TBT instructions. In
the expert group, no improvement was found.

Kuo et al. (2020) compared four navigation systems in a virtual environment: traditional
map-based TBT, augmented reality (AR) TBT, AR orientation-based (arrow pointing to
the destination + distance information) and reference-based (enriched turning instructions
regarding one reference object, a Ferris wheel). The orientation-based approach uses the
beeline method. Using a within-subject design, every participant had to navigate four
routes twice, once with and once without an assistance system. While navigating without
further assistance, if participants felt lost, they were allowed to check a smartphone
to receive navigation instructions. In the first experiment (with a navigation system),
users of the reference-based method had significantly longer completion times than
all other navigation approaches. The travel distance was similar in all conditions. In
the second experiment (without any navigation system but smartphone consultations
allowed), participants who had previously followed reference-based guidance had the
shortest completion times and route length, whereas orientation-based users had the
longest. Former reference-based users were less dependent on smartphone hints (overall
phone-checking time) than TBT (map-based and AR) users. Former reference-based
users rated the task difficulty lower than users of the other three navigation approaches.
Only participants who had used the reference-based method could improve their route
length compared to the assisted trial, i.e., the potential benefit of this system was only
visible in the second independent task.

Willamowski et al. (2022) proposed a smartwach-based navigation system for runners
(FlexNav) that defines runnable zones. In these zones, the runner can freely explore the
surroundings. Between the zones, the runner is required to follow a predefined path.
After the trials with FlexNav, 26 participants had to place 12 intersections on a map,
thereof 6 in runnable zones. The results suggest that less navigation support (runnable
zones) may stimulate spatial learning.

Huang et al. (2022) proposed a navigation system supporting the free exploration of
the environment. The system defines a so-called Potential Route Area (PRA), which
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encompasses all possible routes from the current location to the destination no longer
than a predefined threshold. This area is updated frequently and highlighted on a digital
map with landmarks, and no further instructions are given. The underlying concept
assumes that the destination will be reached within the predefined distance threshold
as long as the user is within the PRA. A user study showed that, compared to Google
Maps participants, users of the PRA system drew better sketch maps in terms of survey
likeness and route likeness (Krukar et al., 2018). The performance in the orientation task
(pointing to the starting point) and the number of drawn points of interest in the sketch
map did not reveal a significant difference between both groups.

Although there are approaches tackling the problem of divided attention between the
device and the environment, none of the proposed systems takes the spatial abilities of
the users into account to personalize the navigation experience. This step would allow
finding a compromise between free exploration supporting spatial knowledge acquisition
and a maximum allowed walking distance while reaching the destination. Furthermore,
the discussed beeline implementations can be realized with augmented reality (AR) and
potentially improve spatial knowledge acquisition as the destination can be placed directly
in the real world. These two approaches will be part of the thesis. The AR-based approach
potentially allows for more goal-directed navigation than auditory cues (Dobbelstein
et al., 2016).

1.2.4 Influence of Route Selection in Comparative Wayfinding Studies
In this subsection, wayfinding studies with more than one route are discussed regarding
whether the route was considered an independent variable in the analysis. The discussion
will shed light on how the potential influence of routes is considered during analysis. This
subsection will exemplify both the consideration and the negligence of the impact routes
may have on study results.

Savino et al. (2020) compared two navigation systems for cyclists on two different routes.
They considered the potential influence of the route on study results and analyzed data
for each route separately. The analysis of both data sets led to the same conclusions
regarding route length, task load, and orientation, but the number and the types of errors
made differed for both routes. Liao et al. (2019) tried to predict (machine learning) user
tasks from eye-tracking data collected on two different routes. They were mindful of
the potential influence of the routes, and the results suggested that the used learning
algorithm might have learned the features of both routes. Using data from one route
and predicting the other yielded different accuracies depending on the training set
(route). Sönmez and Önder (2019) scrutinized the perception of the environment with
two navigation approaches on two routes in Istanbul, Turkey. As both routes and their
respective environments are different, the authors analyze the data for both routes
separately, revealing no difference in the number of drawn items (sketch map) between
both navigation conditions, however, it is important to keep in mind that participants
were told before the experiment that they would have to draw a sketch map afterward.
This circumstance may have impacted the study results considerably. Stefanucci et al.
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(2022) compared four navigation system scenarios in two different virtual environments
with one route each. Before the analysis, they performed t-tests comparing duration
and pointing errors for both routes. As they found no difference, they excluded the
environment (route) as a factor.

Dong et al. (2021) compared two navigation systems for pedestrians on three different
routes on the campus of Beijing University of Posts and Telecommunications. They
treated the route as a factor in an ANOVA analysis. The route had no significant effect
on any of the scrutinized eye-tracking indicators. Only the influence on duration was
significant, but this was expected as routes had different lengths. However, during further
sketch map analysis (logistic regression), the route was no longer considered a potential
factor. Kuo et al. (2020) compared four navigation systems on four different routes in a
virtual environment. They classified the route from easy (three turns) to difficult (six
turns). Although the authors expected the route to impact navigation performance,
the results did not mention this variable. Therefore, it is unclear whether the route
impacted the study results. Thi Minh Tran and Parker (2020) compared three AR-based
navigation systems in a virtual environment on three different routes. Each route was of
equal length and had the same number of turning points and junctions. One navigation
system was assigned to exactly one route. In consequence, it remains unclear whether
the presented results are an effect of the navigation system, the route, or the interplay of
both. Ishikawa et al. (2008) compared three navigation conditions on six short routes
(144–298 m), each having three turns. Their analysis did not scrutinize whether the route
influenced the participant’s behavior (e.g., number of stops or sketch map accuracy).

As discussed, there are works in which the route is considered an important variable and
treated explicitly in the analysis. We saw as well the potential impact of routes on study
results. Sometimes the routes may lead to the same result, but this may be by chance.
On the other hand, routes are not always given importance, although they may impact
study results. Given the vast amount of possible routes and their potential impact on
study results, a systematic approach for route selection is desirable.

1.2.5 Systematic Route Selection
Given that there are millions of possible routes in areas of non-trivial size, a route selection
procedure is needed. All the more because of their potential influence on study results
(see Section 1.2.4). Usually, existing procedures are limited to one start-destination pair,
and they find optimal routes regarding one or more criteria. In the navigation domain,
not only the shortest path (e.g., Ishikawa and Takahashi, 2014; De Cock et al., 2019)
but also the fastest (e.g., Gonzalez et al., 2007) or the most scenic route (e.g., Hochmair
and Navratil, 2008; Gavalas et al., 2017) may be of interest for a wayfinding experiment.

Mark (1986) proposed an approach to find routes that balance the route length and the
instruction complexity along the route’s junctions. Continuing this work, Duckham and
Kulik (2003) adapted the instruction complexity measure and introduced the simplest
path, allowing for finding routes with the least instruction complexity without considering
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the route length. Their simplest paths were, on average, 16% longer than the shortest
paths. Based on this work, Richter and Duckham (2008) integrated spatial chunking
(Klippel et al., 2003), and extended characteristics of instructions such as landmarks or
ambiguities. Routes selected by this approach achieved shorter descriptions than the
shortest and simplest paths proposed by Duckham and Kulik (2003). Another approach
concentrating on optimizing one particular aspect was proposed by Krisp and Keler
(2015). Their procedure finds routes between a start and end node, avoiding complicated
crossings. Multi-criteria approaches have also been proposed to find optimal routes
regarding different route attributes, allowing for finding compromises. Chakraborty
et al. (2005) proposed a genetic algorithm recommending several near-optimal alternative
routes between given start and end points. Kriegel et al. (2010) used skyline queries
optimizing for different features such as gas consumption and the number of traffic lights.
They proposed an algorithm capable of handling large graphs (170 000 nodes). Here,
again, start and end points need to be selected apriori. J. D. Bock and Verstockt (2021)
developed a two-step route recommendation framework based on multiple criteria. The
researcher assigns a weighting configuration consisting of a positive or negative impact
sign and a factor for each criterion. First, the framework ranks a set of predefined routes
between the same two points selected by the user. These routes come from the route
provider TomTom. Second, waypoints are added to the most suitable predefined route to
find potentially more suitable routes by minor deviations. With this step, the framework
tries to decrease the dependency on the route provider.

These discussed approaches are limited to one preselected start-destination pair and do
not recommend other start-destination pairs in the experimental area. This circumstance
can be desirable if research constraints limit the start and end points of a wayfinding
experiment. However, this limitation may introduce the potential bias of having selected
a route that is not representative for the experimental area, and in consequence, impact
study results. If a selected route is considerably distinct from most routes in the
experimental area, the results may not be generalizable. However, none of the discussed
approaches was designed to find routes representative for the experimental area, allowing
for potentially more generalizable results.

1.3 Main Research Questions
This subsection will present the main research questions of this thesis, together with the
rationale behind each of them.

Given the lack of systematic knowledge about the potential influence of route selection on
wayfinding study results, investigating this effect is of utmost importance. The literature
(see Section 1.2.4) provides examples in which route selection impacted study results,
as well as studies in which the outcome remained unchanged across routes. The tested
routes may have been similar enough to produce similar results, but this may also have
happened by chance. Therefore, the first research question is:

RQ1: Does the route selection influence study results?
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Given the vast amount of possible routes in any experimental area of non-trivial size, there
is a research gap in providing a methodological approach for systematic and reproducible
route selection without preselecting the start and end point, as this may already introduce
the potential bias described above. Finding one route in a systematic and reproducible
manner does not necessarily mitigate the problem of potential bias caused by route
selection. It would also be desirable to select routes that represent the given experimental
area as best as possible. These steps can be combined into a methodological approach, e.g.,
a route selection framework, that should be able to find routes that are similar to other
routes in a systematic and reproducible manner. This would allow for more transferable
results, since the selected routes are similar to most routes in the experimental area. Of
course, routes can be described by various characteristics (e.g., the number of turns and
the variation of terrain slope). Therefore, features describing the potential routes in the
experimental area need to be preselected to define the basis for similarity. The selection
of features characterizing the routes needs to be adapted to the research questions for a
given experiment, e.g., the average number of landmarks for an experiment scrutinizing
spatial knowledge acquisition. Therefore, the second research question is:

RQ2: Can we select representative routes for wayfinding experiments in a systematic
and reproducible manner given an experimental area?

If we can find similar routes within an experimental area, this approach can be extended
beyond the original experimental area and allow for finding similar routes in other geo-
graphic areas. This would facilitate the replication of wayfinding studies and provide one
step towards more comparable results of wayfinding studies across different experimental
areas. In an ideal world with features perfectly describing routes, two similar routes
should lead to similar results if other variables are kept constant. From this assumption,
the following research question originates:

RQ3: Can we find routes in other geographic regions that can potentially produce
similar study results as the original route?

The last research question regarding route selection concerns the sample size in wayfinding
experiments. As sample sizes vary considerably in wayfinding experiments (e.g., Singh
et al., 2021; Golab et al., 2022), they could impact study results together with the selected
route. If this is the case, then routes providing stable results across different sample sizes
are desired. Assuming that route selection impacts study results, the following research
question arises:

RQ4: Does the effect of route selection on study results differ for different sample sizes?

As we have seen, there is empirical evidence that wayfinding systems, in their current
form, may be adverse to spatial cognition (see Section 1.2.2). There is work suggesting
that keeping the user active may improve spatial knowledge acquisition (Parush et al.,
2007; J. Wen et al., 2014; Clemenson et al., 2021). On the other hand, there is also
literature that does not confirm these findings entirely (Kelly et al., 2022; Huang et al.,
2022). Given these differences, it becomes apparent that more research in this direction is
needed. This thesis contributes to this ongoing discussion by designing and evaluating two
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navigation systems that encourage the user to engage with the environment in order to
make own decisions along the route. Therefore, the following research question becomes
evident:

RQ5: Does more decision-making freedom and engagement with the environment lead
to improved spatial knowledge acquisition?

There is also an ongoing discussion if new navigation systems should be developed and if
they should focus on spatial knowledge acquisition, as current navigation systems already
provide the primarily requested functionality of a navigation system, which is successful
guidance to a selected destination. The thesis will contribute to this discussion with the
following research question:

RQ6: Are people willing to take longer routes if they have more freedom to make
decisions along the route or learn more about the environment?

With the answer to this question, navigation system users may express their subjective
importance regarding predefined routes and spatial knowledge acquisition. This will shed
light on whether this research direction should be followed further.

1.4 Aims of the Thesis
In this subsection, the aims of this thesis are presented. They are tightly related to the
main research questions (see Section 1.3) and the research gaps shown in Section 1.2.

The first aim is to investigate whether different routes lead to different study results.
This aspect will be scrutinized by means of an agent-based simulation study in the city
center of Vienna, Austria (see Section 1.5.1). On potential routes in the experimental
area, two navigation approaches will be compared with respect to their arrival rate.
This experiment not only sheds light on the differences produced by different routes but
will also provide information about the shares of routes leading to contradictory results.
The hypothesis is that there are routes leading to contradictory results, meaning that
the result of a study may depend on route selection. As the sample size in wayfinding
studies may vary considerably (e.g., Thi Minh Tran and Parker, 2020; Golab et al., 2022),
different sample sizes (N = 15, 25, 50, 3000 agents) will be tested in the simulation to
scrutinize whether the effect of route selection on study results differs for different sample
sizes, i.e., arrival rates for the same routes will be compared across different sample sizes.

The second aim of this thesis is to develop a route selection framework for wayfinding
studies to support informed route selection. Routes can be described with different
characteristics, therefore, the framework should be flexible enough to incorporate im-
portant information for the given wayfinding study (e.g., points of interest in a study
about spatial knowledge acquisition). It will assist in systematic and reproducible route
selection. Furthermore, it would also be desirable to have frequent routes in a given area,
similar to many other routes. Therefore, the framework will be able to find routes similar
to a hypothetical average route in the experimental area. This should allow for more
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generalizable study results. Having such a framework would provide several advantages
to the research community:

• Ecological validity - selecting an arbitrary route carries the risk that it has
unusual characteristics for the experimental area, i.e., that it is not representative.
Therefore, choosing a route similar to most routes in the study area should lead to
generalizable results for the entire area.

• Replication - as of today, wayfinding studies conducted in real-world environments
are not replicated in other geographic areas. One possible reason for this status quo
can be the difficulty of finding similar routes in different real-world environments.
The route selection framework will be able to find similar routes both within the
experimental area and in different geographic areas. Conducting a wayfinding
experiment in two countries on similar routes would allow validation of the results
and may reveal cultural differences in navigation.

• Comparison - in many wayfinding studies, the widespread map-based turn-by-turn
(TBT) approach acts as the baseline (e.g., Giannopoulos et al., 2015; Huang et al.,
2022), therefore, a considerable amount of data is potentially available. If we find
similar routes, we could estimate the performance for routes alike. If these estimates
are robust, running this condition may become superfluous.

These first two aims can be combined into a third objective: selecting routes leading
to similar results across sample sizes that are likely to be compatible with most routes.
Such a procedure will be proposed as well in this thesis and aims for more generalizable
study results, as the selected route should lead to similar results as most routes.

Keeping the user active and redirecting the user’s attention to the environment has
the potential for supporting spatial knowledge acquisition (Lu et al., 2021). Given this
potential and possible adverse effects of current navigation systems on spatial cognition
(see Section 1.2.2), the fourth aim of this thesis is to investigate whether participation in
the decision-making process along the route will foster spatial knowledge acquisition and
users’ spatial awareness. Therefore, two novel navigation approaches encouraging the
user to make own decisions will be proposed.

Although both navigation systems encourage users to make own decisions along the route,
the two navigation approaches differ considerably. One system will give personalized
support based on environmental spatial abilities coming from a standardized questionnaire
filled out before the experiment. The same system provides information about the
destination only at the beginning, whereas the second system provides a permanent
visualization of the destination. Therefore, in one system, the user needs to reorient
frequently, whereas, in the second system, the user always knows where the destination is
located. Furthermore, both novel navigation approaches differ in their automation levels.
One system occasionally gives instructions along the route, while the second proposed
system never provides information about which branch to take next. This contrasts the
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turn-by-turn navigation approach, which assists the user at every turning point (full
support). As outlined, own decisions made by the wayfinder are the core idea of both
systems, but additional features (e.g., destination visibility) are scrutinized (see Section
1.6 for more details). Both proposed navigation approaches limit potential distractions
and encourage the user to make own decisions while interacting with the environment.
These circumstances are expected to support spatial knowledge acquisition (Ishikawa
et al., 2008; Meade et al., 2019).

Both systems will be compared against the classic turn-by-turn approach regarding spatial
knowledge acquisition, arrival rate, workload, and user experience. The acquired spatial
knowledge will be tested with a series of tasks, e.g., pointing to the start point, retracing
the walked route on a map and drawing in remembered points of interest on a map.
These navigation assistance systems will be tested in real-world urban environments on
the outskirts of Vienna, Austria. This study will contribute to the discussion of whether
active wayfinders acquire more spatial knowledge about their surroundings, as there is no
complete accordance in the literature (e.g., Parush et al., 2007; Kelly et al., 2022). In the
same study, in a pre-experiment phase, participants will be asked whether they would
accept walking longer routes between start and destination if this would result in more
spatial knowledge acquisition. This data will show whether wayfinders would appreciate
a navigation system having an additional feature besides guiding to the destination.
The last aim of the thesis is to contribute to the ongoing discussion on whether current
navigation assistance systems have an adverse effect on spatial knowledge acquisition
(e.g., Ishikawa et al., 2008; Fenech et al., 2010; Hejtmánek et al., 2018). Given the
experiment setup, conclusions about short-term effects can be drawn.

1.5 Methodology
This subsection presents the methodology used to answer the research questions (see
Section 1.3). It includes agent-based simulations, standardized questionnaires, and in-situ
wayfinding studies with spatial knowledge acquisition tasks.

1.5.1 Agent-based Simulations
Simulating human navigation can have many advantages. It allows the testing of novel
navigation systems before implementing the first real-world prototype. On the other hand,
in certain scenarios, a real-world experiment with human subjects would be infeasible
due to limited resources. Furthermore, simulations allow testing a multitude of possible
scenarios. Different aspects influencing human wayfinding such as uncertainty (e.g.,
Jonietz and Kiefer, 2017), visual attention (e.g., Schrom-Feiertag et al., 2016), herd
behavior (e.g., Vizzari et al., 2020), affordances (e.g., Raubal, 2001), spatial cognition
(e.g., Kielar et al., 2016), and landmarks (e.g., Filomena and Verstegen, 2021) can
be modeled with agent-based simulations. Many agent-based simulations are focussed
on indoor spaces (e.g., Raubal, 2001; Hajibabai et al., 2007; Schrom-Feiertag et al.,
2016). Agent-based simulations can be of different granularity levels. Fine-grained
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simulations focus on details such as obstacles, signage or doors (e.g., Hajibabai et al.,
2007; Karmakharm et al., 2010; Vizzari et al., 2020), whereas other simulations mainly
focus on the street network (e.g., Filomena and Verstegen, 2021; Amores et al., 2021;
Savino et al., 2022).

Amores et al. (2021) and Savino et al. (2022) are examples of using agent-based simulation
for collecting data that otherwise would have been very time-consuming. Amores et al.
(2021) tested a novel navigation approach for car drivers on 13500 routes in three cities,
also analyzing the influence of the city’s topology on navigation performance. Savino
et al. (2022) simulated the beeline navigation approach (least-angle strategy) for cyclists
on 10000 routes in 1633 cities worldwide. They identified street network features favoring
successful beeline navigation. Both studies focus on the city’s topology and features
describing the city as a graph, but they have not scrutinized the impact a single route
may have on study results.

In this thesis, all potential routes within an experimental area should be traversed with
a certain navigation system to see their potential impact on study results. As, depending
on the criteria, there are thousands or millions of candidate routes, an agent-based
simulation approach will be employed to investigate the potential impact route selection
may have on study results. Computing all potential routes in a given experimental area is
an NP-complete problem (see Chapter 10), however, the population of possible routes can
be limited with criteria such as length (Euclidean distance) or the number of junctions
along the route.

The agent-based simulation will also be used to verify the viability of one of the proposed
novel navigation approaches. Only one of the approaches will be verified with a simulation
study, as the underlying approach of the second proposed navigation system (beeline
navigation) has already been studied (Hochmair and Frank, 2002). One possible benefit
of these navigation approaches is improved spatial knowledge acquisition. Several models
for agent-based simulations integrating spatial cognition have been proposed (Raubal,
2001; Kielar et al., 2016; Schrom-Feiertag et al., 2016; Jonietz and Kiefer, 2017). This
aspect, however, was not modeled in this thesis, as the aim of the simulation was, in
the first place, to gain insights about the viability of the novel navigation approach.
Although agent-based simulations are a valuable research tool, it has to be kept in mind
that a model is always a simplification of reality and may not be modeled adequately.

1.5.2 Wayfinding Studies
Studies about different aspects of wayfinding can be conducted either by means of
simulations (see Section 1.5.1), in real-world settings (e.g., Golab et al., 2022; Kapaj
et al., 2022), virtual environments (e.g., Kuliga et al., 2020; Gath-Morad et al., 2021),
or with the aid of questionnaires (e.g., Lawton and Kallai, 2002; Montello and Xiao,
2011). Dong et al. (2022) compared the wayfinding behavior of pedestrians in a virtual
and a real environment. Although the wayfinding performance was comparable in both
environments, they were differences in visual attention and distance estimation. After
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considering the advantages and disadvantages, and given the potential differences, a
real-world experiment on the outskirts of Vienna was designed to evaluate the two novel
navigation systems. They were compared against the classic TBT approach regarding
spatial knowledge acquisition, arrival rate, walking distance, workload, and user experience
(see Section 1.5.3).

Spatial Knowledge Acquisition Tasks

Since there are different types of spatial knowledge (see Section 1.2.1), there are different
tasks to approximate each of them. This subsection gives a brief overview of how the
acquired spatial knowledge can be tested after a wayfinding task and is by no means
exhaustive. Landmark knowledge can be tested by deciding whether a scene has been
seen during navigation (scene recognition task - e.g., Lu et al., 2021; Sugimoto et al.,
2022; Kim and O. Bock, 2021) or by enumerating points of interest (e.g., Sugimoto et al.,
2022). The acquired route knowledge of study participants can be tested by walking the
same route back from the destination to the starting point (e.g., Brügger et al., 2019) or
by traversing the same route without assistance (e.g., Meade et al., 2019; Kelly et al.,
2022). Furthermore, this type of spatial knowledge can be assessed by indicating the
sequence of actions (left, right and non-turn) along the route (e.g., Kuil et al., 2021),
by ordering pictures of junctions or landmarks (e.g., Kim and O. Bock, 2021), or by
indicating the executed action at the depicted junction (e.g., Kuil et al., 2021; Lu et al.,
2021). Survey knowledge (also called configuration knowledge) is assessed by pointing to
different locations (e.g., W. Wen et al., 2013; Kuil et al., 2021; Kim and O. Bock, 2021;
Stefanucci et al., 2022). This task is also called the judgment of relative direction task
and can be executed physically or by using additional devices. The placement of locations
(landmarks and junctions) on a map is another task to assess survey knowledge (e.g., Kuil
et al., 2021; B. Liu et al., 2022). The same type of spatial knowledge is approximated by
estimating distances between locations (e.g., Kuil et al., 2021). Two widespread tasks
are drawing the walked route on a map (e.g., Lu et al., 2021; Kim and O. Bock, 2021)
and drawing a sketch map of the traversed environment on a blank sheet of paper (e.g.,
Ishikawa and Montello, 2006; J. Liu et al., 2022). However, the analysis of sketch maps
is not a trivial task, as they can be analyzed along many dimensions (see Hátlová and
Hanus (2020) for an overview). For example, they can be assessed according to their
route- and survey-likeness (Krukar et al., 2018), cartographic generalization (Manivannan
et al., 2022), or alignment with metric maps (Schwering et al., 2014).

Depending on the exact setup of the task approximating spatial knowledge, more than
one type of spatial knowledge can be tested or rather a mix thereof. Due to modifications
following the underlying research questions, the tasks do not need to be always comparable.
In this thesis, the following tasks were employed to assess the acquired spatial knowledge
of the participants: (1) Pointing to the start point; (2) Estimation of the walking distance
(meters); (3) Abstract route drawing - drawing the sequence of turns and crossed junctions
(i.e., non-turns); (4) Retracing the walked route on a map; (5) Draw recalled points
of interest (POI) on the same map. Further details about these tasks can be found in
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Chapters 7 and 8.

1.5.3 Standardized Questionnaires

Standardized questionnaires are often used in studies to collect data about the user’s
workload or experience. The questionnaires described below were employed and analyzed
in the user study.

The raw NASA Task Load Index (NASA TLX) is a questionnaire measuring the subjective
workload after conducting a task (Hart and Staveland, 1988). It has six subdimensions:
mental demand, physical demand, temporal demand, performance, effort, and frustration
level. To each of these subdimensions, a score between 1 and 20, ranging from very low
to very high or from perfect to failure, can be assigned. Lower scores indicate a lower
workload. It has been used in wayfinding studies (e.g., Rehrl et al., 2014; Wunderlich
and Gramann, 2021b; B. Liu et al., 2022; Huang et al., 2022). This questionnaire was
also used in the presented study because increased mental load was expected due to the
incorporation of the user in the decision-making process.

Another frequently used questionnaire is the Santa Barbara Sense of Direction Scale
(SBSOD) (Hegarty et al., 2002). It is a self-reported scale for environmental spatial
abilities, consisting of 15 questions. Participants had to decide to which degree they
agree with positively (e.g., "I am very good at judging distances.”) and negatively (e.g.,
"It’s not important to me to know where I am.”) framed questions. The higher the score,
the better the participant’s self-estimation. In previous works, the correlation between
this scale and performance in spatial tasks has been shown (e.g., Nori and Piccardi, 2015;
Anacta, 2020). Therefore, this data was collected during the experiment to ensure that
the observed differences in arrival rate, walking distance, spatial knowledge acquisition,
workload, and user experience come from the navigation system and not from the user’s
environmental spatial abilities. Furthermore, this data was an input for one of the
proposed navigation assistance systems.

Two further questionnaires regarding the system’s usability (SUS - Brooke, 1996) and the
user experience (UEQ - Laugwitz et al., 2008) were used in the real-world experiment.
The System Usability Scale (SUS) consists of 10 questions regarding how easy it is to use
and learn the system at hand (5-Point Likert Scale). The higher the score, the better the
system performs regarding usability (Sauro and Lewis, 2012). The format of the User
Experience Questionnaire (UEQ) is a semantic differential comprising 26 adjectives and
their corresponding antonyms. The participant decides on a 7-Point Likert scale which
adjective of the adjectives pair (e.g., boring – exciting and clear – confusing) describes
the system better. The UEQ has six factors: attractiveness, perspicuity, efficiency,
dependability, stimulation, and novelty. Again, the higher the scores, the better the
participant’s experience. Both questionnaires were used in wayfinding studies to evaluate
a navigation system (Rehrl et al., 2014; Giannopoulos et al., 2015; Rudi et al., 2016;
Gerstweiler et al., 2018; Stähli et al., 2020). Both questionnaires were employed in the
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real-world study to gather insights about usability and user experience, and potential
future improvements of both navigation systems.

1.6 Summary of Published Articles
This subsection will summarize all published and submitted articles. The research
questions addressed in each article will be emphasized. Furthermore, the connection
between the articles is highlighted.

1.6.1 Not Arbitrary, Systematic! Average-Based Route Selection for
Navigation Experiments

Potentially, there are millions of possible routes in a given experimental area. Therefore,
selecting one or more experiment routes is not a trivial task. Furthermore, it would be
desirable that the selected route(s) reflect the characteristics of the entire experimental
area to render the results more generalizable. This article, first, reviewed rationales
and justifications for selected routes in wayfinding experiments, and second, proposed
a framework for systematic route selection reflecting average characteristics of the
experimental area.

A review of six major journals and conferences (AGILE, COSIT, GIScience, IJGIS, LBS
and SCC) from 2010 to 2020 showed rather poor justifications for the selected routes in
navigation experiments. The route description often omitted even basic route properties
such as length, type of environment or the number of decision points. Only articles with
wayfinding tasks for participants and studies presenting predefined routes were screened.
The selection of the six mentioned sources was by no means exhaustive, but it provided
an insight into the route selection process and the importance given to it. It also left the
impression that the selected routes originated from ad-hoc decisions. This circumstance
causes two problems: First, it represents a barrier to replicate a study, as similar routes
cannot be identified given the lack of described route features. Second, the selected route
might unintentionally be a particular case rarely present in the experimental area. This
would limit the generalizability of the study results.

Therefore, this article addressed RQ2 by proposing a framework for systematic and
reproducible route selection. Furthermore, the selected routes try to be as similar as
possible to a hypothetical average route. To measure route similarity, first, features
describing a route needed to be defined. This article used features such as the average
number of options at a decision point, the number of right, left, and non-turns along the
route, land cover and terrain slope to describe routes. Depending on research questions
and experimental design, this list can be extended by features essential to the researcher.
The hypothetical average route contains the average value for each route feature (e.g., the
number of left turns) based on the entire route population in the experimental area. The
distance between this route and every potential route was calculated with the weighted
Euclidean distance. The route features can be assigned weights to reflect importance. All
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potential routes, which can be limited by length or the number of decision points, were
then ranked according to their distance to the average route. The lower the distance, the
more similar the compared routes.

The viability of this approach was demonstrated with both synthetic and real-world data.
The results of three synthetic scenarios showed the expected results according to the
presented framework. The results of the scenario with real-world data from two different
environments (city center and residential area) in Vienna, Austria, showed the ability of
the proposed framework to find routes as close as possible to a route reflecting global
averages of the experimental area. The framework supports informed route selection
during experimental design for wayfinding studies. Furthermore, it contributes to the
replicability of wayfinding studies as route features are made explicit while using the
framework. It potentially allows for finding similar routes in other geographic areas. This
claim will be scrutinized in the two following articles (see Sections 1.6.2 and 1.6.3).

1.6.2 Route Selection – From Replication to Recreation
This article is an extension of the original route selection framework paper. The route
selection framework was originally designed for wayfinding studies involving pedestrians.
In this article, the framework’s suitability for cyclists was demonstrated, addressing as
well RQ2. Beyond highlighting the potential application scenarios for cyclists (and other
users of public space), the article showed how to find similar routes in different geographic
areas, whereas the original work focused on finding representative routes within one
given experimental area. The ease of exchanging the target route (hypothetical average
route or another existing route) showed the flexibility of the route selection framework.
Although similar routes in Vienna (Austria), Florence (Italy) and Bremen (Germany)
were found, it remained unclear whether they would lead to similar results. This research
question will be addressed in the following article. If similar routes (according to the
framework) lead to similar results, the framework will show additional value beyond
supporting informed route selection in wayfinding studies.

1.6.3 Replication of Wayfinding Studies in Different Geographic Areas.
A Simulation Study

This article addressed RQ3, as it verified whether routes in other geographic areas that
are likely to produce similar results to the original route in an experimental area could
be found. The replication of wayfinding studies is mainly limited to questionnaire-based
studies (e.g., Lawton and Kallai, 2002; Montello and Xiao, 2011). This circumstance
may be caused by the difficulty of finding similar routes in other geographic areas. The
previously introduced route selection framework (see Section 1.6.1) claimed to mitigate
this problem. On similar routes (according to the framework), similar results regarding a
selected metric (e.g., arrival rate) were expected.

Therefore, first, the route reflecting best the city center of Vienna, Austria, was selected.
Second, the five most similar and the five least similar routes from the Western part
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of Djibouti City were identified with the framework. As a real-world study would be
resource-intensive, an agent-based simulation was employed. On every selected route in
both environments, agents navigated with two different navigation systems: turn-by-turn
(TBT) and Free Choice Navigation (FCN). In TBT, agents were supposed to follow a
predefined route while getting instructions at turning points. In the FCN approach, agents
had to make own decisions about which branch to take next while occasionally getting
instructions at turning points (see Section 1.6.5). Therefore, FCN agents will stick less
to the predefined path and explore the experimental area more. Both navigation systems
were compared regarding the success rate. An agent was successful if the destination was
reached with a route no longer than 150% of the shortest path. To limit the population
of potential routes, only the shortest paths with 12 decision points and a length between
550 m and 1000 m were considered.

In Vienna, there were four routes with a minimal weighted Euclidean distance of 0.12 to
the hypothetical average route. As none of them could be identified as more suitable
than the others, all four routes in Vienna were considered in the simulation study. For
each route in Vienna, the framework calculated the five most and the five least similar
routes in Djibouti City. Six thousand agents navigated each of these routes either with
TBT or FCN. Suppose the framework was capable of finding similar routes in different
geographic areas. In that case, the most similar routes in Djibouti should have yielded
more similar arrival rates to those in Vienna compared to the five least similar routes in
Djibouti City. For the TBT approach, more similar routes (according to the framework)
in Djibouti City yielded more similar results to those from Vienna than less similar
routes in Djibouti City. This suggests the suitability of the framework to find similar
routes in different areas for the TBT approach. In the case of FCN, different results
were observed, as less similar routes in Djibouti city yielded more similar arrival rates
to those in Vienna than more similar routes. The potential explanation is that FCN
agents were more likely to take different routes and, by this, explored the environment
more. However, the features described only the route itself but not the neighborhood,
which should be considered for navigation systems supporting free exploration. Taken
together, for the widespread TBT approach, the route selection framework is a first step
towards easier replication of wayfinding studies in different geographic areas. Moreover,
the obtained results suggest a potentially considerable influence of routes on study results.
This aspect will be scrutinized systematically in the following article.

1.6.4 Rethinking Route Choices! On the Importance of Route
Selection in Wayfinding Experiments

The previously summarized articles focussed on systematic route selection, replicability,
and finding similar routes. However, the remaining question is whether route selection
has the potential to influence study results considerably (RQ1). Many researchers
would agree that arbitrary route selection for a wayfinding experiment could impact
the results. This article systematically scrutinized the potential impact of all routes
in the experimental area (city center of Vienna) on study results. This is all the more
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important, as we have seen previously (see Section 1.6.1), that route selection is not
always given importance because only a few details about the selected routes are made
explicit. Therefore, there is a chance that the selected route for a wayfinding study
considerably influences the study outcome.

In order to gain insights about this influence (RQ1), again, an agent-based simulation
study comparing TBT and FCN regarding the arrival rate was employed (see Section
1.6.1). The exact details of both navigation systems are not relevant for this summary. The
important point is that they support the user differently while reaching the destination.
In this study, four different sample sizes (N = 15, 25, 50, 3000) were tested to see whether
the sample size impacts the route influence on study results, i.e., whether the arrival rate
on a route changes with the sample size, thus addressing RQ4. Both systems showed a
stable success rate (share of successful agents) across sample sizes (TBT - around 97%;
FCN - around 90%). The average difference (subtracting the FCN success rate from
TBT) between the two systems varied slightly across sample sizes (between 5.7% and
7.7%), suggesting the superiority of TBT regarding the success rate. At first glance, this
result gives the erroneous impression that route selection is not crucial, as the trend (TBT
better than FCN) was maintained across sample sizes. However, the minimum difference
(TBT − FCN) is a negative value, meaning that there was at least one route on which
FCN was more successful than TBT. Therefore, route-wise differences were examined.
Here, another picture was drawn across sample sizes. With N = 3000, around 8% of
the tested routes led to results contradicting the global trend, i.e., the FCN navigation
system was equally or more successful than TBT on these routes. This share increased
with decreasing sample size (N = 50 - 16%, N = 25 - 30%, N = 15 - 47%).

These results revealed the potential influence of routes on study results. Depending on
the selected route, the study results may be contradictory. The share of routes causing
contradictory results increases with decreasing sample size. Therefore, ad-hoc decisions
for route selection should be avoided. In consequence, this article proposed an approach
to select suitable routes. It is a two-step filtering process. First, routes with consistent
success rates across all four sample sizes are selected. Second, routes are chosen in line
with the global trend (aka population mean). The given list of suitable routes can be
ranked with the route selection framework introduced earlier (see Section 1.6.1).

1.6.5 Navigating Your Way! Increasing the Freedom of Choice During
Wayfinding

As shown in Section 1.2.2 navigation assistance system may adversely impact spatial
cognition. This is often attributed to forced attention switches (Gardony et al., 2013)
and blindly following a predefined route (Lu et al., 2021) like in the turn-by-burn (TBT)
navigation approach. Therefore, this article proposed a novel navigation approach, called
Free Choice Navigation (FCN), trying to balance the number of free choices, route length
and the number of instructions given. The idea behind FCN was to involve the user in
the decision-making process and engage the user more with the environment. This article
was the foundation for RQ5 but did not address spatial knowledge acquisition directly,
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as this aspect was not modeled in the agent-based simulation study. To test the viability
of this approach, an agent-based simulation study with 6000 agents (between-subject
design) in 3 different cities comparing two navigation systems (FCN and TBT) was
employed. In every city, having a different network topology (Thompson et al., 2020),
100 random routes with a length between 500 m and 5000 m were selected. An agent was
successful if the route to the destination was no longer than 150% of the shortest path.

One tested navigation system was the widespread TBT navigation approach in which the
agent received navigation instructions at turning points. Agents using this navigation
system had the ability to follow a navigation instruction correctly, meaning that errors
could occur. The mechanics of the FCN approach are more complex and need to
be explained in more detail. At the beginning, every FCN agent received two pieces
of information: the beeline distance and the direction to the destination. While the
agent was walking towards the destination, the system estimated if the agent needed an
instruction or if it was still well-oriented to make reasonable decisions. This estimation
was based on agent traits such as environmental spatial abilities, spatial confidence, and
the ability to follow instructions correctly. Furthermore, the environmental complexity of
junctions was taken into account by the FCN navigation system. The system did not
give any help at the first two junctions the agent traversed, as at this point, the agent
should be oriented well. Orientation, in this case, referred to the subjective direction
in which the agent believed the destination was located. The agent’s orientation was
modeled based on environmental spatial abilities and time (the number of traversed
junctions). The lower these abilities and the more the agent walked, the worse the
agent’s orientation. Based on this orientation and the agent’s spatial confidence, staying
at a junction, the agent determined which branch to take next toward the destination
(based on the least-angle strategy). Based on this information known to the system,
FCN decided if an instruction should be issued. There were several scenarios in which
the system assumed that assistance was needed: (1) if the agent was one street segment
away from the destination to support destination recognition; (2) if the agent selected a
costly detour towards the destination; (3) if the agent selected a branch that needed to
be traversed back in case the shortest path was taken at the next junction. If none of
these scenarios occurred, the agent followed the branch selected previously. The FCN
system needed to be parametrized to define, among others, what a costly detour and
the maximum allowed walking distance were. Depending on the city type, a different
parametrization might be optimal. Therefore, different combinations were tested, and
optimal parameters regarding a tradeoff between the success rate and the number of
given instructions were found for each city.

The simulation results were promising for the FCN approach, as over 90% of the agents
in every city were successful. Nevertheless, the TBT approach was more successful in
guiding agents to the destination. Agents using the FCN approach received more turn
instructions (normalized by the number of traversed junctions) than TBT agents. As
expected, agents with low environmental spatial abilities were less successful with the
FCN approach than agents with medium or high abilities. The results of this simulation
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and the potential to support spatial knowledge acquisition, as users are forced to engage
with the environment, led to a real-world study with the FCN approach presented in the
following article.

1.6.6 Free Choice Navigation in the Real World: Giving Back
Freedom to Wayfinders

This article presented a real-world implementation of the Free Choice Navigation (FCN)
approach presented in the previous article. It was compared with the widespread Turn-by-
Turn (TBT) approach in a real-world wayfinding study to scrutinize whether own decisions
and increased engagement with the environment while navigating lead to improved spatial
knowledge acquisition (RQ5). As the FCN approach uses the environmental spatial
abilities of the user, a series of online questionnaires had to be filled out before the in-situ
experiment. The SBSOD questionnaire (see Section 1.5.3) was employed as a proxy of
environmental spatial abilities. During this online session, participants were also asked
about their willingness to walk longer routes (1) if they would gain more control over the
walked route (compared to a fixed route) and (2) if they would gather more knowledge
about the environment (RQ6). Besides comparing the novel FCN navigation approach,
this study was the first application of the Route Selection Framework in a real-world
study (see Section 1.6.1).

The in-situ wayfinding study took place on the outskirts of Vienna. All 48 participants
(FCN - 26, TBT - 22) were unfamiliar with the experiment area. The study followed
a between-subject design, i.e., each participant navigated either with FCN or TBT
along one of the three similar routes selected with the assistance of the route selection
framework. As a reminder, FCN participants received two pieces of information at the
starting point: the direction towards the destination and the beeline distance to it. Later,
at the upcoming junctions, the system decided whether a turn instruction, given via a
Bluetooth earbud, was needed. If no instruction was issued, the participant decided which
branch to follow. No graphical display was involved in the FCN approach (audio only).
The TBT baseline was represented by the Android application Organic Maps, offering
typical elements such as a map with a position indicator, including the facing direction.
At the destination, participants were asked to complete questionnaires about subjective
workload, user experience and usability. Afterward, they were given several tasks to
approximate the acquired spatial knowledge about the environment they just traversed:
pointing to the starting point, estimating the walked distance, drawing the traversed
route abstractly, retracing the traversed route on a map and drawing in remembered
points of interest (POI) on the same map.

All TBT participants reached the destination successfully, with a route no longer than
1.5 * shortest path length, whereas 23 out of 26 FCN participants were successful too.
FCN participants received fewer instructions (normalized by the number of traversed
junctions) than TBT users. Although FCN users were forced to make own decisions
and to engage with the environment, none of the spatial knowledge acquisition tasks
revealed a significant difference between both groups. It is, however, notable that FCN
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users achieved a high configuration similarity of the drawn POIs, although this group
was not equipped with a map. Stimulation and novelty (UEQ) of the FCN system were
rated higher than for TBT. No significant differences between both systems were found
regarding SUS and NASA TLX. The two questions about willingness to walk longer
distances (RQ6) revealed that acquiring knowledge about the environment is a stronger
reason to walk longer routes than gaining control over the route. These answers showed
people’s interest in spatial knowledge acquisition.

1.6.7 BeeAR: Augmented Reality Beeline Navigation for Spatial
Knowledge Acquisition

This article extended the study presented in the previous work (see Section 1.6.6). As
the collected data showed, people are interested in gaining more knowledge about their
environment. They are willing to walk longer routes to achieve this objective. On the
other hand, the previous experiment demonstrated that making own decisions alone
is not enough to foster spatial knowledge acquisition. As the Free Choice Navigation
(FCN) approach does not provide information about the destination on a continuous
basis and estimates the user’s orientation, a novel system was proposed to overcome these
shortcomings.

Beeline Augmented Reality (BeeAR) navigation is a head-mounted augmented reality
system that displays the destination permanently in the real world. The user does not
need to map any information between a device and the environment, as the digital
information is anchored in the real world. The destination is marked with a magenta
cuboid (width: 10 m; length: 10 m, height: 120 m). As this is the only information
the navigation system provides, this navigation approach requires the user to make all
decisions along the route. However, in contrast to the FCN approach, the user does not
need to keep track of the destination, as it is permanently visible while looking toward it.
This circumstance potentially frees up resources to engage more with the environment
and possibly fosters spatial knowledge acquisition. In the previous study, data on three
different routes were collected. For the BeeAR condition, however, data on only two
routes (out of these three previously used routes) were collected due to time limitations.
On each route, 8 participants navigated with the BeeAR approach. After the trial, the
participants filled out questionnaires about workload, user experience, and usability. The
tasks approximating the acquired spatial knowledge remained the same: pointing to the
starting point, estimating the walked distance, drawing the traversed route abstractly,
retracing the traversed route on a map and drawing in remembered points of interest
(POI) on the same map.

For the analysis, there was data for three navigation approaches on two different routes
(N = 48; FCN = 16; TBT = 16; BeeAR = 16). The data regarding TBT and FCN
originated from the previous study described in Section 1.6.6. Given the same gen-
eral conditions, this extension to the previous study also addressed RQ5. As the
route/environment did not influence the results, data collected on both routes was ana-
lyzed together. FCN participants walked longer distances than TBT users. Five out of
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16 FCN participants retraced their walked route perfectly on a map. The same applies to
14 TBT and 15 BeeAR participants. Especially the performance of the BeeAR group is
notable, as all but one participant retraced the route perfectly, despite the absence of a
map, in contrast to the TBT approach. BeeAR participants drew more existing points of
interest (POI) on a map than FCN users. All three groups achieved a high configuration
similarity, a measure that expresses the similarity between drawn POIs and their true
locations.

1.7 Scientific Contribution
This subsection highlights the scientific contribution of this thesis. First, the potential
influence of route selection on the results of wayfinding studies was scrutinized sys-
tematically. The results indicate that routes have the potential to invert study results.
Therefore, route selection should be given more importance in the experimental design
phase. Given that sample sizes may vary considerably in wayfinding studies, the potential
influence of the sample size on the route’s impact on study results was considered. The
results indicate that the smaller the sample size, the more crucial route selection becomes.
It has also been shown that the descriptions of selected routes are relatively poor, and
even basic features are not reported. Given these problems with the current state of route
selection for wayfinding studies, a route selection framework was developed to assist the
researcher during this crucial phase of experimental design. The framework is flexible and
can be adapted according to research needs (e.g., weighting system) and data availability.
Furthermore, it leads to systematic and reproducible route selection. The framework can
find average-based routes and also similar routes in other geographic areas. The first
aspect should foster the generalizability of study results. The second aspect is a first step
to facilitate the replication of wayfinding studies in other environments.
The second contribution block of this thesis is the analysis of the potential of free choices
for spatial knowledge acquisition. Two novel navigation systems were proposed. Both
navigation systems give wayfinders more freedom and encourage them to make own
decisions while navigating. The first system, Free Choice Navigation (FCN), tries to
balance the number of free choices, route length and the number of given instructions,
whereas the second proposed navigation system, Beeline Augmented Reality (BeeAR),
makes the destination permanently visible to the user. These two navigation approaches
were compared with the widespread turn-by-turn approach (TBT) in a real-world user
study. FCN participants did not perform significantly better than TBT users in tasks
approximating the acquired spatial knowledge. BeeAR participants could retrace walked
routes more accurately than FCN users, suggesting that making own decisions is not
enough to foster spatial knowledge acquisition, as both systems require users, at least
partially, to decide on their own. The main difference between both systems was
that in the BeeAR condition the destination was permanently visible, whereas in FCN
information about the destination was provided only at the beginning. On average,
BeeAR participants remembered more details of the environment than FCN and TBT
users. Although this difference was not statistically significant (Holm correction), it
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indicates that having an anchor point and making own decisions can benefit landmark
knowledge. Nevertheless, participants of all three groups achieved a high configuration
similarity between the drawn points of interest and their true locations, indicating that
survey knowledge can also be acquired without an overview map and by traversing
the environment only once. A further finding of the conducted experiment is that the
TBT navigation approach does not affect negatively spatial knowledge acquisition in a
pedestrian wayfinding scenario, as no significant differences between TBT and the other
two proposed navigation systems were found in this respect. While planning the outlined
user study, the above-mentioned route selection framework was employed for the first
time in a real-world study.
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Part 1 – Informed Route Selection
for Wayfinding Experiments

Chapters 2 – 8 begin with information about the publication and the author’s contri-
bution to the corresponding article. Then, each chapter contains the reprint of the
publication/submission. In total, there are six published articles and one submitted
paper.
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Abstract
While studies on human wayfinding have seen increasing interest, the criteria for the choice of the
routes used in these studies have usually not received particular attention. This paper presents a
methodological framework which aims at filling this gap. Based on a thorough literature review
on route choice criteria, we present an approach that supports wayfinding researchers in finding a
route whose characteristics are as similar as possible to the population of all considered routes with
a predefined length in a particular area. We provide evidence for the viability of our approach by
means of both, synthetic and real-world data. The proposed method allows wayfinding researchers
to justify their route choice decisions, and it enhances replicability of studies on human wayfinding.
Furthermore, it allows to find similar routes in different geographical areas.
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1 Introduction

Selecting a route for a human wayfinding study in a systematic manner is a non-trivial
task. Despite its potential impact on the results, reasonable justifications for routes based
on their features are often neglected. In this paper, we propose, implement and evaluate a
methodological framework which enables researchers to choose a route for human wayfinding
experiments in a given area according to predefined, weighted criteria. The determined
routes are – with respect to these criteria – representative for a (weighted) average route for
the chosen area. Using this framework will, therefore, lead, among others, to an increased
comparability and replicability of in-situ wayfinding studies.

Starting with the replication crisis in psychology [34], reproducibility and replicability
have both seen increased interest in all subfields of geographical sciences in recent years (see
e.g., [32, 35, 20, 24]). At the same time, studies which aim to understand human wayfinding
and/or how interactive assistance can be provided to wayfinders have gained momentum
[21, 12]. These research efforts will likely be continued in the future, as there is neither a
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general agreement on algorithms nor route descriptions or an anywhere close to definite
understanding of the interplay between spatial cognition and the assistance provided by
mobile navigation companions. While there has been some recent progress in terms of
reproducibility (i.e., software and data are made available to the scientific community and
rerunning the analysis using the software and data yields the published results, see [6]), e.g.,
through initiatives like the AGILE initiative on reproducible publications (see also [32]),
increasing the level of replicability may be much harder to achieve. In particular, up until
now, the replicability of wayfinding studies often suffers from the possibility to choose a
route in a systematic manner: the decisions which led to the choice of a particular route are
often not made explicit, leading to the impression that routes are often chosen in an ad-hoc
manner (see Section 2). As a result, oftentimes information other than length, number of
decision points, and a rough classification of the urban environment (e.g., European) is not
given. As a consequence, the impact of differences in route properties cannot be assessed in
an appropriate manner if researchers fail to replicate the results.

2 Related Work

This section provides a thorough overview of route features in studies involving wayfinding
tasks. It provides the basis for the set of features, we use in our methodological framework.
(see Section 3). In order to gain an insight into common practice among researchers to justify
their route choices and the route characteristics they pay attention to, we have systematically
screened six major venues (conferences and journals) in the broader area of geographic
information science and related fields since 2010.

While our search is not exhaustive by any means, the number of papers screened is still
suitable to provide a reasonably grounded insight into the state-of-the-art. In identifying
relevant papers, we focused exclusively on studies involving either wayfinding tasks by
participants or studies, in which routes were presented to users, e.g., on maps. This implies,
that we deliberately excluded all studies involving route retrieval from memory without
performing an actual wayfinding task or which involved human wayfinding without predefined
routes.

Overall, 32 papers were found which present studies on wayfinding/navigation in both,
virtual and real-world environments. Each of the relevant articles/papers found was checked
for the rationale researchers have given for the chosen route and which route characteristics
they have mentioned explicitly.

Table 1 reveals several important insights regarding common practices among researchers:
The three most often named aspects are: the length of a route (mentioned by 16 publications),
the type (e.g., a residential area) of environment a study was conducted in (15), and the
name of the city/town of a study (11). While these criteria are the most frequent ones, it is
important to note that only half of the papers mention route length and type of environment
whereas the name of the city/town is stated only by one third of the papers explicitly.
In addition to basic route data and information about the local environment of different
granularity, a variety of features mentioned by researchers deal with decision points (DPs).
We consider each intersection on a route as a decision point, which is neither the start nor
the end point of the route. While authors describe at least the overall number of DPs and
the proportion of those DPs which require a turn, the layout of the DPs is given rather rarely.
Several other aspects related to route instructions, visibility of environmental cues and – in
case two or more routes are compared – how routes relate to one another are mentioned
occasionally.
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Table 1 Overview of route features named (multiple features per paper possible) in human
wayfinding studies in major research outlets since 2010. Relevant papers for the AGILE conference:
[1, 14, 23]; for the GIScience conference: [38, 29, 19]; for the COSIT conference: [40, 46, 47, 18,
22, 11, 3, 2]; for the IJGIS: [26]; for the LBS Journal: [13, 37, 39]) and for the SCC Journal:
[33, 45, 49, 27, 36, 17, 43, 25, 48, 42, 16, 7, 31, 44].

Feature AGILE COSIT GIScience IJGIS LBS SCC Freq (N=32)

Basic Route Data

length 3 4 1 1 2 5 16
walking duration 0 2 2 0 0 0 4
name of city 1 4 0 0 2 4 11
size of area 0 0 0 0 0 1 1

Local Environment

uniformity of env. 0 1 0 0 0 0 1
type of env. (e.g., residential) 1 2 1 0 2 9 15
terrain (e.g., flat) 0 1 0 0 0 0 1
complexity of env. (e.g., narrow streets) 0 4 0 0 1 3 8
type of walkways (e.g., sidewalk) 0 0 1 0 1 0 2

Decision Point / Intersection

#DP 1 1 1 0 0 3 6
#DP with turn 2 1 0 0 2 3 8
#type of turn (l,r, non-turn) 1 0 0 1 0 0 2
Inclusion of diff. actions at DP 1 0 1 0 0 0 2
DP layout (e.g., 3-way, 4-way) described 1 1 0 0 0 1 3
variety of DP layouts mentioned 0 0 2 0 2 0 4
DP density 0 0 0 0 1 0 1
Distance between DP 0 1 0 0 0 0 1

Route Instruction Features
inclusion of landmarks 0 0 1 0 1 4 6
inclusion of street names 0 0 1 0 0 0 1
Destination (landmark) 1 0 0 0 0 0 1

View / Visibility related

views offered (e.g., open vista) 0 0 1 0 0 0 1
visibility of dest. from start (or vice versa) 0 1 0 0 0 1 2
long-distance vistas 0 1 0 0 0 1 2
visibility of street names 0 0 0 0 0 1 1

Relation to other Routes equal length 0 0 0 0 0 1 1
equal starting and end points 0 0 0 0 0 1 1

Number of distinct criteria 9 13 10 2 9 14 26

Taken together, this overview of common practices provides evidence for a lack of proper
justification of route choices and only very basic features of routes being made explicit. In
particular, half of the publications do not even mention basic properties, such as route length,
and even environmental and decision point-related aspects are insufficiently described. This
is, from our perspective, a clear barrier to any attempts to the replicability of these research
results.

3 Route Selection Criteria

It is obvious that route selection is deeply intertwined with a study’s research question.
The literature review above has revealed, however, that this selection is often insufficiently
justified. Moreover, even basic route properties are often not made explicit. This may be
a hint to the practice to use ad-hoc choices for routes, a decision which may result in a
considerable bias stemming from route choice. Even for those studies, which want to assess
the impact of a given route, it would be desirable to be able to quantify the degree as to
which a chosen route represents a special case given a set of criteria researchers want to take
into account. The possibility to select routes for human wayfinding studies in a systematic
and reproducible manner is, therefore, highly desirable. In order to achieve scientifically
valid results, researchers interested in conducting (not only replicating) human wayfinding
studies must base their research on a route, which is selected in a systematic and reproducible
manner. For many of these studies, it is desirable not to use a route which would represent a
special case given the researcher’s requirements about routes. In human wayfinding studies
in real-world, the population of routes to select from encompasses millions of possible routes
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of a given number of decision points for any area of non-trivial size. Given these figures,
selecting a route based on the average of all routes fulfilling the researchers’ requirements
seems reasonable for those studies which do not use a route as an independent variable.
Outliers are expected to have only a small effect as the population is vast, and the number
of criteria to be taken into account is large. Therefore, the best possible route to be chosen
would be a route, which meets the average for all criteria a researcher wants to take into
account as close as possible. We refer to such a route using the expression average route
because it is average-based. As mentioned above, even those studies in which route is an
independent variable, knowing the deviation from the average route in an area may provide
researchers with valuable information to interpret their results.

In order to make research more comparable and to provide other stakeholders (scientists,
urban planners, politicians etc.) with assistance to choose one route for their needs, we
present an approach which finds a route which is as close as possible to a theoretically existing
average route in a given area. The idea is that a route selected in such a systematic manner
should provide more transferable results as it reflects the characteristics of the specified area.

Based on the set of criteria currently used by researchers (see Section 2) our framework
takes the following criteria into account. We base the decision made for in-/exclusion on
both, prior research practice and the widespread availability of data:
Pre-emptive criteria

Researchers must select, first and foremost, an area in which they want to conduct their
study in. In accordance with the widespread report of this criterion, we use the number
of decision points (DPs) as a criterion researchers must specify. If researchers wish to do
so, they can additionally provide a minimum and maximum route length.

Used criteria
According to the literature reviewed, researchers consider criteria related to DPs as
important. Therefore, our framework considers the average number of options a DP offers
and the number of n-way intersections on a route – both of which are derived from the
intersection framework [10]. The same framework [10] provides information about the
regularity of a DP (the sum of angles branches need to be rotated in order to create a
regular intersection, see [10, p. 3:4] for further details). As a fourth DP-related aspect,
we consider the number of right, left and non-turns at DPs on a route. We calculate these
properties according to the point orientation algorithm [4]. In order to count non-turns
and avoid false negatives we use a 10 degree threshold, i.e., a 20 degree cone, to identify
continuations. Undoubtedly, landmarks play an important role in human navigation.
However, we lack sources of salience values for arbitrary regions. Consequently, we use
points of interest (POI) as a proxy (see e.g., [9] or [41] for publications with a similar
approach). As there is no commonly agreed definition of POI available, we extract POIs
from OpenStreetMap data based on tag amenity=*. Our methodological framework,
however, is open to other definitions researchers may want to employ. We take two POI-
related criteria into account: the average number of POIs at a DP and the uniqueness
of a POI category at a DP. The average number of POIs on a route is given by the
amount of POIs within a given radius from any DP divided by the number of DPs. The
uniqueness of a POI, according to Rousell and Zipf [41], is defined as 1

j where j is the
number of POIs of the same type (e.g. restaurant) in the considered set. Finally, two
environmental features are considered: Slope (shares of route with negative, positive and
zero slope sourced from a digital elevation model1) is taken into account as a proxy for
criterion terrain, whereas land cover data (Urban Atlas2) reflect the type of environment.

1 https://www.wien.gv.at/ma41datenviewer/public/, last access June 5th, 2020
2 https://land.copernicus.eu/local/urban-atlas/urban-atlas-2012, last access March 20th, 2020
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This list can be extended if more data is available or of particular interest for a navigation
study to be conducted. In short, we are aiming to get as close as possible to the average
route based on user-defined weights for route features in a given area.

4 Methodology

Given a certain area in a built environment, we aim at ranking all possible routes with a
given number of DPs. This ranking is based on the average of all routes in this area according
to a set of given criteria (see Section 3). The closer a route is to the average values, the
higher this route will be ranked. In the following we provide a step-by-step description of
the required computation steps. At the end of this section information about software and
hardware used is provided. Our street network data are based on OpenStreetMap. The
computations are based on a graph created out of nodes representing intersections and edges
representing the street segments. For a detailed description of all data sources see Section 3.

Step 1: Extracting all potential routes. We represent all potential routes3 in the given
area with their criteria as a decision matrix X �. As these criteria are measured on different
scales, a z-score standardization is applied in order to normalize the values, i.e., a z-score of
z = 0 represents the average. Since we are interested only in the deviation from the average,
X � contains only absolute values of z-scores.

X � =


x�

11 x�
12 . . . x�

1m

x�
21 x�

22 . . . x�
2m

. . . . . . . . . . . .

x�
n1 x�

n2 . . . x�
nm

 (1)

where n denotes the number of routes and m the number of criteria. In order to retrieve
all possible routes of a certain number of DPs without loops, a street network graph was
utilized. This can be approached as a subgraph isomorphism problem, which is NP-Complete.
Although street networks can be modeled as planar graphs (for simplification reasons) in
reality they are not [5]. Thus, the subgraph isomorphism problem on non planar graphs
grows in general, exponentially. However, there are algorithms with acceptable practical
execution time[8].

Step 2: Best possible solution. Based on the z-scores for all criteria, we retrieve the best
possible solution A+ (see Eq. 2): This is an artificial (and unlikely to exist) route which
comprises the minima of all z-scores, i.e., it is as close to the average of all criteria one can
get.

A+ = (y+
1 , y+

2 , . . . , y+
m) where y+

j = min
i=1,2,...,n

x�
ij (2)

The best possible solution contains the minimum for each criterion. A value of 0 means that
this value reflects the global mean perfectly. Negative values are not possible due to the
performed standardization step.

3 It is important to note that users of the proposed method are free to take any type of routes into
account,i.e. routes w/o loops, shortest path between two distinct points, round tours etc.
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Step 3: Weighted similarity. There are several spatial as well as spatio-temporal similarity
measures available for a variety of problems [15, 30]. We identified the cosine similarity and
the weighted euclidean distance as the most promising ones for our approach. The cosine
similarity measure, which is widely used for multidimensional data, had to be discarded after
encountering counter-intuitive results during testing. The explanation for this discrepancy
between intuition and hard numbers is that cosine similarity measures only the angle between
two normalized vectors, and therefore ignores the magnitude of difference between them.

As described earlier (see Section 3), researchers can specify weights for each criterion
according to their research interest (i.e., the higher a weight, the more important an average
value of a characteristic is to a researcher). These weights are used during the distance
calculation between a route and the best possible solution. Each route is compared to the best
possible solution (equation 2) by means of the n-dimensional weighted euclidean distance: In
Equation 3, x�

j represents the j-th criterion of a route and wj is the weight for this high-level
criterion.

dist =

�		� m

j=1

wj(x�
j − y+

j )2 (3)

A high-level criterion is, for example, the regularity of a decision point which can be
represented by the sum of angles needed to obtain a regular intersection [10]. It is, however,
not reasonable to build averages across different n-way intersections. Therefore, the sum of
angles is computed for each n-way intersection (called subdimension) separately. For example:
If seven is the largest number of branches for all intersections in the area-of-interest, the sum
of angles is calculated for 3- to 7-way intersections separately. In this particular example
each subdimension would have a weight of wj/5, where wj is the weight assigned to criterion
decision point regularity. The sum of the weight vector is 1.

Step 4: Ranking of results. Finally, all routes are ranked according to their distance
(equation 3) to the best possible solution (equation 2). The smaller the distance, the closer a
route is to the average in the area of interest, given the user defined weights for the applied
criteria.

Implementation. This paragraph specifies the software and hardware used to implement
our approach. In order to find all possible routes without loops (step 1) SageMath 9.0 with
its SubgraphSearch function4 was used, whereas steps 2-4 were implemented in Python 3.6.
Two features from the real world example (see section 5.2), namely, the average number of
POIs per DP and type of environment were calculated in a PostGIS (v 2.4) database. All
analyses run on an AMD Ryzen Threadripper 1950X 16-Core Processor, 3400 Mhz, with 64
GB RAM.

5 Evaluation

As a proof of concept, we first evaluate our approach on synthetic data (subsection 5.1).
Using synthetic data enables us to use predefined values for all criteria and, thereby, formulate
the expected results. We then continue with a real-world example in Vienna, Austria (see
subsection 5.2).

4 http://sage-doc.sis.uta.fi/reference/graphs/sage/graphs/generic_graph_pyx.html#sage.
graphs.generic_graph_pyx.SubgraphSearch, last access June 5th, 2020
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5.1 Synthetic data
We use 100 x 100 regular grid graphs as synthetic data. The graph used has 10 000 nodes
and 19 800 edges. All edges have the same length and characteristics (which is a difference
to the real-world data, see Section 5.2). We distinguish between type I and type II nodes.
While type I nodes have 3 POIs all of which have unique categories, type II nodes have 6
POIs which show an average uniqueness of their categories of 1/3. Therefore, routes will have
different average POI numbers due to different proportions of type I and II nodes in a route.
They have different characteristics regarding POIs in order to be able to observe changes
in results. It is important to note that the order of magnitude of these differences does not
matter as long as it is unequal to 0. The 4 corners of the grid have only 2 edges and are
considered as “2-way intersections”: Taking them into account is reasonable to show that our
approach takes the global distribution (frequency) of n-way intersections into account. All
nodes along the border of the graph, with exception of the 4 corners points just mentioned,
have 3 edges. All other nodes have 4 edges, i.e., they are regular 4-way intersections.

For all evaluations on synthetic data we set the number of decision points to k = 7. This
number was chosen due to computation time limitations, which is reasonable based on the
fact that the route recommendation algorithm is NP-Complete (due to the subgraph search
problem). Based on all these routes the best possible route was calculated (see equation 2)
as target route. In total, 55 396 400 possible routes without loops (represented as subgraphs)
having 7 DPs plus 1 starting and 1 end point were found in this synthetic graph. These
routes do not have to be a shortest path between two points. Routes have, in general, the
same characteristics (e.g., slope) but they vary considering with respect to the type of actions
taken at decision points (i.e., turning right or left and continuations).

(a) (b) (c)

Figure 1 Schematic Representation of Synthetic Data (data used were 10 times bigger, but with
the same ratios of type I (blue) and type II (red) nodes): (a) Scenario 1: Regular grid network with
only nodes of type I; (b) Scenario 2: Regular grid network with ratio 9:1 of type I to type II nodes;
(c) Scenario 3: Regular grid network with equal shares of type I to type II nodes.

We evaluate our approach with respect to synthetic data based on three scenarios, which
differ in the proportion of type I and II nodes (see Figure 1). Each of the scenarios share
three high-level criteria, namely the number of 2-, 3-, 4-way intersections, the sum of angles
needed to obtain regular 3- and 4-way intersections [10] and the frequency of right and left
turns and non-turns at decision points.

Scenario 1
In this scenario the whole 100 x 100 regular grid network consists of type I nodes, only (see
Figure 1a). 97% of all possible routes contain 4-way intersections only and all of these are
regular 4-way intersections. The average number of right-, left- and non-turns is 2.18, 2.18
and 2.64, respectively. Based on these figures we expect the route with the least distance to
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the average route to have 4-way intersections only, 2 right, 2 left and 3 non-turns at DPs.
As all intersections are regular, the sum of angles equals zero and, therefore, is omitted in
the results for synthetic data.

Table 2 presents the results. Due to the synthetic dataset, we observe many routes having
equal scores. Therefore, the table reports the first 10 groups of routes, where each group
represents a unique combination of the two high-level criteria (number of n-way intersections
and frequency of right and left turns and non-turns). The results meet our expectations, as
rank 1 group contains routes which comprise 4-way intersections only and show 2 right and
left turns and 3 non-turns at DPs. While lower ranks in the table show the same distribution
of intersections, rank 1 routes are the ones with the least euclidean distance to the best
possible route. It is important to note that the euclidean distance reflects different degrees
of deviations from the best possible route: The worst group, which is not shown in Table 2
consists of routes which have one 2-way and six 3-way intersections, 1 left or right and 6
non-turns. Similarly (also not presented in Table 2 for space reasons), routes with the same
distribution (0,0,7) but with no left/right turns and 7 non-turns got a lower rank than routes
with n-way distribution 0, 1, 6 and a more balanced distribution of actions at decision points.

Table 2 Results for scenario 1 where all nodes are of type I. Only the first 10 highest ranked
groups of routes are shown in the table, some of which share a rank.

Rank # Routes # Intersections # Turns
2-way 3-way 4-way left straight right

1 7 635 056 0 0 7 2 3 2

2 6 341 188 0 0 7 2 2 3
6 341 188 3 2 2

3 3 931 208 0 0 7 1 3 3
3 931 208 3 3 1

4 3 808 196 0 0 7 1 4 2
3 808 196 2 4 1

5 3 869 072 0 0 7 3 1 3

6 1 458 408 0 0 7 1 2 4
1 458 408 4 2 1

Scenario 2
In scenario 2 the grid network now contains type I and type II nodes at a ratio of 9:1 (see
Figure 1b). This induces variance in the data by including points-of-interest (POIs) as
an additional high-level criterion, which comprises the number of POIs and the average
uniqueness of a POI at a DP. Again, all high-level criteria are equally weighted. As no
changes to the layout of the graph were applied, we expect routes with exclusively 4-way
intersections to be higher ranked than those including also other types of intersections. In
contrast to scenario 1, however, routes can now have a different number of type I and II
nodes: As the average number of POIs per DP in all routes is 3.26 and the average uniqueness
of POIs per DP equals 0.94, we expect routes with six type I nodes and one type II node to
be higher ranked than other combinations of those types5.

5 This assumption is also backed up by the average number of type II nodes in a route which equals 0.61.
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Table 3 Results for scenario 2. Only the first 11 highest ranked groups of routes are shown in
the table, some of which share a rank. POI subdimensions are rounded to 2 decimals.

Rank # Routes # Intersections # Turns # Type II
Nodes

Avg. #
of POIs

Avg. Uniq.
of POIs2-way 3-way 4-way left straight right

1 31 024 0 0 7 2 3 2 1 3.43 0.90
2 6 914 264 0 0 7 2 3 2 0 3 1

3 23 934 0 0 7 2 2 3 1 3.43 0.90
23 934 3 2 2 1 3.43 0.90

4 5 743 264 0 0 7 2 2 3 0 3 1
5 743 264 3 2 2 0 3 1

5 38 668 0 0 7 2 3 2 2 3.86 0.81

6 32 526 0 0 7 2 2 3 2 3.86 0.81
32 526 0 0 7 3 2 2 2 3.86 0.81

7 14 160 0 0 7 3 3 1 1 3.43 0.90
14 160 1 3 1 1 3.43 0.90

The results presented in Table 3 meet our assumptions. The highest ranked group
represents routes which have only 4-way intersections, a balanced (close to global average)
frequency going right, left or straight ahead at a decision point throughout the route, one type
II node and the closest possible values to the global average regarding POI subdimensions.

Scenario 3
In scenario 3 we increase the variance in the data by changing the proportion of type I to
type II nodes to 1:1, while keeping the graph layout unchanged (see Figure 1c). This means,
scenario 3 simulates an area in which two 2 subareas are clearly different but have an equal
share. The same high-level criteria as in scenario 2 are applied. As the frequency of n-way
intersections and direction changes remain unchanged, we still expect routes with 4-way
intersections only and a balanced frequency of right-, left- and non-turns at a decision point
to be higher ranked. Given the 1:1 ratio of node types and the odd number of decision
points (7), we expect routes with either three type I and four type II or four type I and three
type II nodes to be ranked highest. These two combinations of type I and type II nodes are
equally close to the global average for both POI subdimensions (avg. number POI: 4.5, avg.
uniqueness POI: 0.66). The results for the third scenario are presented in table 4. In-line
with our expectations, the highest ranked group has only 4-way intersections, a balanced
(close to global average) frequency of (non-)turns and a balanced ratio between type I and
type II nodes and, therefore, close to global average values for both POI subdimensions.

Taken together, the results of these three scenarios provide evidence that our approach
yields reasonable results based on the controlled conditions of synthetic data. We will now
continue with real-world data and the full set of criteria mentioned before (see Section 3).

5.2 Real World Example
We have chosen two different areas in Vienna, Austria. Both regions significantly differ with
respect to their degree of sealed soil, where Region 1 (located in the city center) shows a
high degree and Region 2 (residential area) a low-medium degree of soil sealing (according
to Urban Atlas 2012). We specified both pre-emptive criteria (see Section 3) and set the
number of DPs to k = 10, and route length to a range between 1 000 m and 1 500 m. The
length of possible routes in terms of both, the number of DPs and the distance, was chosen
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Table 4 Results for scenario 3. Only the first 8 highest ranked groups of routes are shown in the
table, some of which share a rank. POI subdimensions are rounded to 2 decimals.

Rank # Routes # Intersections # Turns # Type II
Nodes

Avg. #
of POIs

Avg. Uniq.
of POIs2-way 3-way 4-way left straight right

1 37 092 0 0 7 2 3 2 3 4.29 0.71
37 092 2 3 2 4 4.71 0.62

2 38 668 0 0 7 2 3 2 2 3.86 0.81
38 668 2 3 2 5 5.14 0.52

3

28 310

0 0 7

2 2 3 3 4.29 0.71
28 310 3 2 2 3 4.29 0.71
28 310 2 2 3 4 4.71 0.62
28 310 3 2 2 4 4.71 0.62

based on computation time (see Section 5.1). The underlying graph for Region 1 has 1 196
nodes, 1 740 edges and 4 290 636 possible routes of 12 points length (10 decision points plus
start and end point which are not considered to be DPs). Of these routes, 62 294 have a
length between 1 000 m and 1 500 m. The underlying graph for Region 2 has 498 nodes, 744
edges and 2 276 070 possible routes of 12 points length and 834 114 of these have a length
between 1 000 m and 1 500 m. The observed difference in the number of considered routes
is likely a result of the fact that the average segment length between two subsequent DPs
in the city center area (Region 1, 2.25 km2 area) is less than in case of the residential area
(Region 2, 2.84 km2 area).

For each region the closest to average route was calculated regarding the following 6
high-level and equally weighted criteria: cardinality of decision points (the number of n-way
intersections on a route and the derived average options per DP), frequency of right/left and
non-turns, terrain (proportion of negative, positive and zero slope), POIs (average number
within a 10 meter radius and average uniqueness of category per DP), regularity of DPs and
type of environment (land cover data). Figure 2 shows the routes for both regions which
are closest to the best possible solution. Considering the above-mentioned criteria, routes
from A to B achieve the same score as those from B to A. They only differ symmetrically in
slope and frequency of right/left and non-turns. This symmetry causes an equal distance to
the best possible route. Non symmetrical attributes like directed viewsheds would lead to a
difference in score between route A to B and route B to A.

(a) (b)

Figure 2 The closest to average routes for Region 1 (a) and Region 2 (b) considering all criteria
mentioned above (see Sec 3), which were equally weighted.
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Table 5 Comparison between highest ranked routes and the best possible solution. Land cover
classes are Urban Atlas classes: A (11100), B (11210), C (11220), D (11230), E (12100), F (12220),
G (12230), H (14100) and I (14200). Land cover values do not sum up to 1 due to rounding. If there
are two numbers for a feature this is due to having 2 winners for a region. Why the number of turns
of best possible routes do not sum up to 10 is explained in the discussion.

Name Avg.
Options

# Intersec. # Turns Slope Avg. #
of POIs

Avg. Uniq.
of POIs

Regularity Land Cover %
3 4 5 6 l s r neg none pos 3 4 5 6 A B C D E F G H I

Win. Reg 1 3.7 3 7 0 0 4/4 2 4/4 .05/0 .95 .05/0 .2 .2 55.68 16.31 NaN NaN .57 0 0 0 .09 .34 0 0 0
Best Reg 1 3.7 3 7 0 0 4 3 4 .03 .94 .03 .3 .17 51.97 17.24 83.2 69.34 .54 0 0 0 .09 .36 0 .01 0
Win. Reg 2 3.9 3 5 2 0 3/4 3 4/3 .03/.06 .91 .06/.03 0 0 57.75 19.86 72.80 NaN 0 .09 .48 .07 0 .36 0 0 0
Best Reg 2 3.9 3 5 2 0 3 3 3 .08 .84 .08 0 0 58.98 18.30 72.59 148.46 0 .06 .44 .07 0 .36 .01 .03 .01

Table 5 presents numerical results by providing figures for both, the highest ranked routes
(will be referred to as winners) and the best possible solution, i.e., a hypothetical route which
shows closest to average values for all criteria (will be referred to as best). Two aspects are
important to be kept in mind: 1) The best possible solution does not need to be an actually
existing route (see Sec 6); 2) there are two winners per region as each route can be traversed
in both directions.

For both regions, the distribution of scores (i.e., the euclidean distance to the best possible
solution) is similar (see discussion for an explanation of the maxima). The quantiles for the
score in Region 1 are 0%: 0.2250, 25%: 0.5894, 50%: 0.7290, 75%: 0.8569 and 100%: 32.3001.
The score quantiles in Region 2 are 0%: 0.1738, 25%: 0.5198, 50%: 0.6468, 75%: 0.8875,
100%: 5.2246. Regarding the cardinality of DPs, both winners in each region show a perfect
match with best, respectively. With respect to slope, winners 1 are closer to best 1 than
winners 2 are to best 2. It is vice versa regarding POIs, in which case winners 2 match best
2 perfectly (generally speaking, Region 2 is an area which is poor in POIs), whereas winners
1 have, on average, slightly less POIs at a DP than the best possible solution, but their
uniqueness is higher. Looking at the regularity of DPs both routes reflect global averages
very well if and only if they have this kind of n-way intersection6. Regarding land cover the
differences between winners and best in both regions are minimal7. Regarding frequency of
right/left and non-turns winners in Region 1 show one continuation less than the winner,
whereas winners in Region 2 show either one left or right more than the best possible route.
In both cases, the frequency of the best possible route is impossible to achieve (see Sec 6
below). Taken together, both winners in each region come close to the best possible route –
which is hypothetical in this case and very unlikely to exist in general but reflects global
averages as good as possible.

6 Discussion

In this work we propose and evaluate a systematic approach for the selection of pedestrian
routes in a street network, with a focus on wayfinding experiments. As described in the
related work section, a proper selection of street routes is crucial for several types of empirical
studies. Such a systematic approach can help select a route based on a multitude of criteria
and, furthermore, reduce the time necessary for manual selection. Moreover, the proposed
approach can be seen as a step towards replicability of research, allowing to select a similar
route at a completely different geographic location by exchanging the best possible solution

6 NaN in a route are not contributing to the euclidean distance.
7 If land cover does not sum up to 1 this is due to rounding.
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with the target route of another location. The proposed approach was evaluated utilizing
synthetic data serving as a ground truth. The results of this evaluation confirmed the validity
and applicability of our approach. We performed a proof of concept evaluation using real
data, once taken from the city center and once from a residential area in Vienna, Austria.

Two aspects of the results achieved for the real-world data need to be discussed in more
detail: Firstly, the difference in distance between the the upper quartile and the maximum
is very large for Region 1. However, the two routes (out of 62 294) having scores above 32
both have a 6-way intersection – a feature which is very uncommon for Region 1. Obviously,
Region 2 has no large outliers as the maximum euclidean distance is far less than for Region
1. For both regions, however, the distances up to the upper quartile are numerically small;
it is, therefore, a matter of future research whether these differences are meaningful for
wayfinding research and with respect to which criteria this might be the case (see Section 7).
Secondly, the fact that the best possible solutions do not match the predefined number of
DPs by one needs in-depth discussion. All best possible solutions are calculated based on
a z-score, which depends on the population mean and standard deviation. Due to the size
of the population of possible routes, it is very unlikely that mean and standard deviations
both are integers. The number of right, left and non-turns on an actual route (which is
the third factor needed to calculate a z-score), however, must be integers. The figures need
to be rounded (i.e., either floored or ceiled depending on the decimal digits), accordingly.
In addition to that, the means of right and left turns must be symmetric. Hence, the best
possible solution as a hypothetical route can show this anomaly of more/less (±1) DPs than
actually requested, whereas all actual routes in the population always have the predefined
number of decision points (and turns). It is important to note that, although slope is a
symmetric feature as well, its value can be decimal. Moreover, all other criteria are invariant
to the direction of travel on a route. To conclude, our framework supports systematic and
deterministic route selection for experiments considering weighted features provided by the
researcher. Furthermore, exchanging the best possible solution with another target route
(using this route as the average one) allows to find a similar route in a different place of the
world.

The criteria utilized in this work served as an example and can be easily extended or even
replaced by others. Of course, the more criteria used, the longer the route in terms of DPs,
or the larger the search area, the more computation time will be required. In most cases,
however, finding a reasonable route at the city level should be sufficient and this should be
possible in less than one day of computing time as our results were. Our methodological
framework allows to extend the list of criteria taken into account. Several aspects come to
mind: the segment length and orientation might be worthwhile to be taken into account; if
doing so, the number of POIs per segment of a given length may be worthwhile to take into
consideration in order to study on-route landmarks (see [28]). Traffic data, flow of humans
in an area and noise (e.g., stemming from factories) may have an impact on in-situ studies
and might be considered, although it might be very difficult to obtain this type of data on a
large-scale basis. While DPs per se have been extensively considered already, the order of
turns (e.g., llrrslr) and the sequence of intersection types might be included (see e.g., [12]).
One particularly important environmental feature, which is also missing due to unavailability
of large-scale data, is the architectural style/diversity of buildings in a given area.

Computation time and difficulty of validating the results obtained from real data are
the main limitations of this work. Concerning computation time, although this approach
cannot be utilized for real-time purposes, most of the relevant cases for wayfinding will not
be affected by that. Nevertheless, reducing computation time based on existing sub-graph
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search algorithms is already feasible (see Section 4), although this is out of the scope of
our work. Results for real data are difficult, if not impossible, to validate. Synthetic data
approaches for validation like the one presented above, however, ensure the validity of the
results at least for the cases covered.

7 Conclusion and Outlook

The proposed approach can be considered as a valuable methodological framework, which
can help to make informed decisions concerning route selections. As a consequence, this
framework can partially support the design of experiments and enhance replicability.

The results of the presented approach strongly rely on the availability of appropriate
data sources. The availability of pre-computed data, such as DP type and regularity [10] are
crucial for lowering the required computational costs. As a consequence, we will follow the
path of open data and pre-compute several features that might be relevant for route selection.
Furthermore, we plan to provide an API8 that will ease the access to our framework and
allow to compute a winner route with minimal effort.

Although for most cases only the best result (i.e., the winner route) is relevant, there
might be cases were the comparison between routes is of interest. Therefore, it is reasonable
to study whether the Euclidean distance is actually justifiable by means of empirical results:
The distance metric chosen should reflect empirical results, i.e., if participants are subject to
routes which differ more, less comparable results should occur and vice versa. We are going
to conduct within-group design wayfinding studies on this problem.
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Route Selection - From Replication to Recreation

BARTOSZ MAZURKIEWICZ, TU Wien, Austria

IOANNIS GIANNOPOULOS, TU Wien, Austria

The choice of a route from an origin to a destination depends on several criteria. These criteria can range from route length to
environment type. In several situations, we are not only interested in finding a route between two points, but to find a route between
all possible origin-destination points in a specific geographic area. This is very common during experimental design, when one is
seeking for a generalizable route to evaluate a navigation system. For this case, the selected route should be representative for the
area, and not an exception with peculiarities. In this work we demonstrate (1) how to choose an average route for a bike navigation
study in Vienna, Austria and (2) how to find similar routes in Florence, Italy and Bremen, Germany in order to replicate the study. The
selection is based on route features and associated weights. They can be highly customized according to the needs. We demonstrate
our approach and introduce four application scenarios to exemplify the benefits of a systematic route selection.

CCS Concepts: • Information systems→Geographic information systems; Location based services;Decision support systems; •General
and reference→ Empirical studies.

Additional Key Words and Phrases: Route Selection, Similar Routes, Human Wayfinding, Navigation, Experiments, Replicability

ACM Reference Format:
Bartosz Mazurkiewicz and Ioannis Giannopoulos. 2021. Route Selection - From Replication to Recreation. In Cycling@CHI: Towards a

Research Agenda for HCI in the Bike Lane at CHI ’21, May 8–13, 2021, Yokohama, Japan. ACM, New York, NY, USA, 5 pages.

1 INTRODUCTION

Navigation systems have found their way in our daily lives and are used in order to navigate us while walking, driving
by car or even by bicycle. There are many possible routes between an origin and a destination and these can have
different properties, such as total length and number of intersections, amongst other. Navigation systems, utilize these
properties in order to compute a desired result, e.g., shortest or cognitively easiest route. Navigation systems are
evaluated in order to prevent undesired effects, such as user frustration, but also for the investigation of novel systems.
Researchers strive to design their experiments as valid and replicable as possible. The route selection is one of the most
important steps towards these experimental goals. Unfortunately, this selection is mostly performed by the rule of
thumb, trying to mix different types of street segments and intersections.
Mazurkiewicz et al. [4] introduced a framework that is able to rank routes based on given criteria, such as length,

number of intersections, slope and number of turns, amongst other. This ranking is based on the average route of
the considered area. For instance, the highest ranked route will be the most representative/average route in the given
environment fulfilling the given weighted criteria. This is the first systematic approach towards route selection for
experimental design. The route selection is rather a universal problem and relevant for pedestrians, cyclists [5] and
cars. There have been some approaches trying to tackle this problem. Spretke et al. [6] derive representative driving
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routes for cars based on car fleet trajectory data. Unfortunately, the data is not always available, either in the necessary
amount or at all.
Through such a systematic approach [4], a novel bike navigation system can be evaluated on routes resembling

other routes in the given area without introducing peculiarities (e.g. 8-way intersection in an area where 3- and 4-way
intersections are prevalent). Finding and selecting routes in one environment that resemble routes in another distant
environment (e.g., finding the most similar route) can yield multiple and interesting benefits. In this work we adopt the
framework for cycling routes and introduce and address four relevant application scenarios.

2 APPLICATION SCENARIOS FOR CYCLISTS

The route selection framework [4] can serve multiple purposes. Four application scenarios become eminent:

(1) Ecological validity.When designing experiments for the evaluation of a novel bike navigation system, one
of the most important experimental decisions concerns the proper selection of test routes. The selected routes
should represent the relevant environment in order to allow to generalize the findings as much as possible.

(2) Replication. Replication of research in different geographic regions is crucial for multiple reasons, e.g., for
validation purposes, but also for measuring effects other than the ones resulting from the environmental
conditions, e.g., cultural effects.

(3) Comparison. Being able to run experiments on similar routes might allow to compare different navigation
systems. This can be achieved even though the experiments have been performed at different geographic areas,
without having to replicate the experiment of the other system entirely in order to get the results for comparison.

(4) Recreation. Apart from the introduced scientific and experimental purposes, this adapted framework can also
be utilized for recreational, entertainment and sports purposes. For instance, a cyclist can select a route for
her training fulfilling personal criteria, find comparable routes to challenge a peer cyclist from an other city or
country, or even prepare for a race competition by training in her local surroundings.

3 ROUTE SELECTION FOR EXPERIMENTAL AND RECREATIONAL PURPOSES

To address the application scenarios introduced in section 2 we consider Vienna, Austria as our baseline. Data from
Florence, Italy and Bremen, Germany will be used in order to exemplify the scenarios in different geographic areas. The
route features have to be defined, then the data have to be acquired and processed, and finally, the routes have to be
selected by the framework [4].

3.1 Route Features

While designing a navigation experiment or preparing for a bike tour, the route selection is crucial. Each route is
characterized by a large number of features, and a subset of them can be selected to extract a relevant route. In order to
address the application scenarios and exemplify our approach, the following feature categories were selected:

(1) Number of decision points, i.e., intersections. Start and end points are not considered as decision points. This
is a hard criterion which is set before the actual analysis starts. Hence, it has no associated weight.

(2) Cardinality of decision points, i.e., the average number of options a decision point has and the number of
𝑛-way intersections on the route, see Table 1.

(3) Frequency of turn types, i.e., the number of left and right turns, as well as the number of non-turns.
2
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(4) Regularity of decision points, i.e., the sum of angles the options at a decision point need to be rotated in order
to create a regular intersection [2]. This way the type of street network (e.g., gridded) can be approximated.

(5) Bearing of the route, i.e., the orientation of street segments with respect to true north.
(6) Length-related features, i.e., the total route length as well as the mean, standard deviation and median for the
segment lengths of the route.

The above features were considered in order to find an average route in Vienna. The number of decision points
was set to 12 (excluding start and end point) in order to avoid trivial route length, in terms of decision points. The
route length was limited to be between 2 and 3 km, which provides rides of around 10 minutes [3]. The features were
considered equally important for our experiment and were therefore equally weighted (for more details see [4]). It is
important to stress that these feature categories and weights can be extended (e.g., by slope or route safety) or changed
according to needs and data availability.

3.2 Data Acquisition and Preparation

The directed bike networks were downloaded via the OSMnx python package [1]. This data was the basis for four of the
feature categories, except for Number of decision points which was set a-priori to 12 and the Regularity of decision points

which was calculated according to [2]. In order to compute all possible routes with a given number of decision points
Sagemath 9.1 with its SubgraphSearch function1 was used. All routes containing at least one 2-way node were excluded.

3.3 Baseline - Average Route in Vienna

The bike network of Vienna ("Wien, innere Stadt") consists of 938 nodes and 2 091 edges. There are 2 617 610 possible
routes of 12 decision points in this area, fromwhich 18 146 have a length between 2 and 3 km. According to Mazurkiewicz
et al. [4] the average route (ranked highest according toweighted euclidean distance based on z-scores), will be considered
as representative route. First, the best possible route is computed, which is likely a non-existent and hypothetical route.
The following steps are necessary: (1) all absolute values for each route are transformed into positive z-scores (whether
these values are over- or undershooting the mean is irrelevant); (2) the best possible route is created, which is a
hypothetical route containing the lowest z-score for each subcategory. In a perfect world this hypothetical route would
have a z-score of 0 for each subcategory.
Having the best possible route, the weighted euclidean distance between this route and any possible route is calculated.

All feature categories are equally weighted with 0.2 (the category Number of decision points is not weighted since it is a
hard criterion). This value gets split equally over all subcategories of a category, example: The category Frequency of

turn types has a weight of 0.2. Therefore, all three subcategories, number of right, left and non-turns get a weight equal
to 0.23 = 0.06. The route with the smallest weighted euclidean distance is the most average one (see Figure 1a). It has to
be noted, that the results of this framework should be considered as suggestions, serving as a recommendation that
requires human inspection, since we might not have all the relevant data in order to avoid unusual cases (see Section 4).
Having computed the average route in the city of Vienna, the four application scenarios can be addressed. For all

four cases, the most similar route in Bremen and Florence have to be computed. The only thing that has to be adapted in
our framework is the best possible route. We will do the same computations for the other two cities as we did for Vienna,
but this time, the average route computed for Vienna will serve as the best possible route instead of the hypothetical
route with the minimum z-score for each subcategory.

1http://sage-doc.sis.uta.fi/reference/graphs/sage/graphs/generic_graph_pyx.html#sage.graphs.generic_graph_pyx.SubgraphSearch, last access 04.02, 2021
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(a) (b) (c)

Fig. 1. Routes generated by the framework (in red). White dots indicate intersections in the bike network (in blue). Base layer :
OpenStreetMap. (a) The average route in Vienna, scale 1:10 000 (b) The most similar route in Florence, scale 1:13 000 (c) The most
similar route in Bremen, scale 1:10 000.

Table 1. Characteristics of the average route in Vienna and the most similar routes in Florence and Bremen. Abbreviations used: Seg. -
segment, M. - mean, St. dev. - standard deviation, Med. - median, W. - weighted

City Avg.
Options

# Intersec. Regularity # Turns Length-related Features W. M.
Bearing3 4 5 3 4 5 r l s Total

Length
M. Seg.
Length

St. dev. Seg.
Length

Med. Seg.
Length

Vienna 3.67 5 6 1 55.77 15.69 83.17 4 4 4 2259.58 173.81 169.98 88.51 174.86
Florence 3.58 7 3 2 60.11 109.39 78.10 2 4 6 2203.30 169.48 185.06 92.17 174.13
Bremen 3.42 7 5 0 68.18 37.30 NA 2 4 6 2178.39 167.59 211.47 74.93 195.33

3.4 Most Similar Routes for the Application Scenarios

The corresponding bike networks for Florence ("Firenze, centro storico") and Bremen ("Bremen, Altstadt") consist of
1 960 and 442 nodes and 3 901 and 1 018 edges, respectively. In Florence there are 70 726 routes of 12 decision points
and a length between 2 and 3 km, whereas Bremen has 55 548 of those. The street networks differ concerning the
intersection types, e.g., in Florence there are 7-way intersections which are not present in Vienna (see Section 4). If
subcategories in either Florence or Bremen were not identical with those ones in Vienna we excluded routes where one
of those subcategories was not 0, e.g., all routes with at least one 7-way intersection from Florence were excluded (the
subcategories for 6-way intersections are missing in Table 1 because the most average route in Vienna had zero 6-way
intersections and the most similar routes in Florence and Bremen too). Again, the absolute values were transformed
into z-scores for each city respectively. Now, the best possible route is the average route in Vienna, which was calculated
previously. The absolute values of this route were converted into z-scores based on all other routes in Florence and
Bremen, respectively. Next, the weighted euclidean distance was calculated for each route. The route with the smallest
distance is the most similar one to the average route in Vienna, given these subcategories and weights (see Figures
1b and 1c). Several similarities can be recognized. All routes have a part which goes back and forth. Furthermore, all
routes have one segment oriented towards south/south-west which comes after the back and forth part of the route.
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4 DISCUSSION AND CONCLUSION

The presented application scenarios in Section 2 were addressed in the following way. The selected route in Vienna,
can serve as a representative route for performing a cycling experiment that can generalize to a certain degree, thus
addressing the fist application scenario. The computed routes in Bremen and Florence are the most similar to the one
selected in Vienna, thus allowing to replicate the experiment, addressing the second application scenario. Similarly, the
same routes could be used for the evaluation of a novel navigation system, allowing to compare the results against the
results obtained by evaluating the navigation system in Vienna, addressing the third application scenario. Finally, in the
same manner, setting the best route to fulfill certain criteria might allow to optimize training sessions as well as be used
to satisfy recreational purposes, e.g., by weighting land cover parameters higher in order to compute a scenic route.
In this work we demonstrate (1) a systematic approach for choosing a route for a cycling experiment and (2) how to

find similar routes in other geographical areas. The framework should be utilized as a recommendation system requiring
human rating before choosing a route in order to avoid selecting unrealistic routes due to data limitations. Therefore, it
is important to validate several suggestions given by our framework in order to choose an appropriate one. On the
other hand, if the resulting routes are generally unusual, the categories and/or weights should be adapted accordingly.
Another aspect which should be discussed is how to handle differences in city properties. We excluded those routes

which had other properties that the average route in Vienna. There are several ways to handle this case. One possible
way of handling this issue, assuming that the missing property (in the average route) is important for the user, is
adding the mean value from the population of all routes to the target route. Another possibility would be to adjust the
weights, under the assumption that 7-way intersections are more similar to 6-way intersections than 3-way intersections
considering special aspects and therefore preferred. In our work, we presented only routes with the smallest weighted
euclidean distance. It is still uncertain how big a difference must be in order to yield different study results. Therefore, it
would be interesting to use the route as an independent variable in future experiments in order to see if indeed different
results originate from choosing different routes in terms of weighted euclidean distance. The presented framework is
flexible and new categories can be added. Furthermore, the weights allow to favor routes with specific characteristics.
Our approach depends greatly on data availability and processing. In order to lower the entry barrier an API2 will be
provided which will help to select and compare routes from different geographic areas for pre-computed attributes.
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Summary: Replication of real-world wayfinding studies is not a trivial task. Even less if it is to be 
replicated in a different geographic environment. The selection of one or several routes is one of many 
decisions to be made. Only recently (2021), a reproducible, systematic and score-based approach for 
route selection for wayfinding experiments was published. Besides allowing for selecting a route within 
a selected experimental area, it claims to be able to find similar routes in different geographic areas. 
However, it remains unclear if similar, according to this route selection framework, routes lead to 
similar study results. In order to answer this question, an agent-based simulation comparing Turn-by-
Turn and Free Choice Navigation approaches (between-subject design) is run in one European (Vi-
enna) and one African (Djibouti City) city. First, a route in Vienna is selected and, second, the 5 most 
and the 5 least similar routes in Djibouti City are found. These routes are used in the simulation in 
order to scrutinize if more similar routes lead to more similar results regarding the arrival rate as a 
metric. The results suggest that the route selection framework is suitable for replication studies for the 
Turn-By-Turn navigation approach but needs further improvement for the Free Choice Navigation ap-
proach by adding features describing the neighborhood of the route. 

1. Introduction 
The replication of studies is not a trivial task, as many factors need to be considered and kept 
as similar as possible to make the results comparable. The route selection is crucial for rep-
licating wayfinding studies. There are two possibilities regarding the experimental area. It 
can be kept constant, although some elements of the environment may have changed over 
time and potentially impact study results. The second option is to replicate a wayfinding study 
in another geographic area. In the second case, the route selection task is not as simple as in 
the first case (using the same route). The routes from both studies, the original and the repli-
cating one should be similar regarding the wayfinding task. 
We recently presented (2021) a framework [14] that allows systematic route selection, i.e., 
how to select a route from a given experimental area with many potential routes. Furthermore, 
we hypothesized that this framework would increase the replicability of wayfinding studies 
by finding similar routes in different geographic areas. If this assumption can be verified, 
then the above-mentioned problem of selecting similar routes in different geographical areas 
can be solved or at least mitigated. Therefore, we will use the previously proposed route 
selection framework, first, to identify an average-based [14] route in a European city (Vi-
enna) and, second, to find the most and the least similar routes in Djibouti City in Africa. 
Two navigation systems (see Section 3.2) will be compared on these routes with respect to 
the arrival rate. Since the framework can capture route characteristics, more similar routes in 
Djibouti City should lead to more similar results to those achieved in Vienna. As in our pre-
vious study [13], this hypothesis will be scrutinized through a simulation study. 
The contribution of this work is two-fold: First, the suitability of the route selection frame-
work for replication studies is investigated. Our results suggest the ability of the route selec-
tion framework to support replication studies in other geographic regions. Furthermore, it 
should increase the comparability of wayfinding studies if the selected experimental areas 
with their respective routes are similar enough. Second, we shed light on the importance of 
route selection in wayfinding studies by analyzing the arrival rates on single routes. 
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2. Related Work 
In this section, we discuss relevant literature, first, about reproducibility in the domain of 
GIScience in general and, second, about replication in the wayfinding domain. In this work, 
the terms reproducibility and replication are used in the sense of Claerbout/Donoho/Peng [2]. 
Reproduction means recreating the results with the same methods and input data that the 
authors provide. The related concept of replication means coming to the same conclusion by 
conducting a new study. 

2.1 Reproducibility in GIScience 
Reproducibility has seen considerable interest in the GIScience domain within the last years 
(e.g., [9, 3]). Ostermann and colleagues assessed 87 papers from GIScience conferences be-
tween 2012 and 2018 regarding reproducibility [17]. None of the assessed works was easily 
reproducible. This study replicated a study considering the AGILE conference [16]. In con-
clusion, both conference series are similar regarding reproducibility. Konkol and colleagues 
conducted a study about computational reproducibility in geographic research [10]. They 
studied the understanding of open reproducible research (ORR) through surveys, interviews 
and a focus group. They found that the meaning of ORR diverges considerably among the 
participants of the European Geosciences Union General Assembly 2016. Furthermore, the 
authors tried to reproduce the results and figures of 41 open access articles from Copernicus 
and the Journal of Statistical Software. They encountered technical issues of different sever-
ity levels in 39 works. 

2.2 Replication in Different Geographic Areas in the Wayfinding Domain 
Several studies have been conducted replicating real-world studies in virtual environments. 
Kuliga and colleagues [11] conducted a wayfinding study in a building and then replicated it 
three times in different virtual replicas. All four conditions yielded similar results regarding 
superfluous distances and absolute angular pointing errors. Savino and colleagues compared 
wayfinding in real-world and virtual environments [20]. They found differences between 
both navigation aids (paper map and smartphone) in both conditions regarding stopping time 
and task load, among others. No new route was selected in both studies, as the virtual envi-
ronment reflected the real world. 
Wayfinding studies replicated or conducted in a different geographic area are usually based 
on questionnaires rather than actual wayfinding studies (see e.g., [12, 15]). To the best of our 
knowledge, there is no work replicating an actual pedestrian wayfinding task in a different 
geographic area. One reason for this might be the difficulty of selecting appropriate routes. 
Our work contributes to the realization of replication studies in the wayfinding domain, which 
are conducted in different geographic areas by facilitating the route choice. 
In many wayfinding experiments (e.g., [6, 5]) in which at least two navigation systems are 
compared, one of the conditions is a map-based Turn-By-Turn navigation approach (e.g., 
Google Maps). The replication of this widespread baseline condition is rather simple (App 
availability) but still time-consuming. Given that many empirical results are available for this 
and other approaches, there might be a possibility to avoid the replication of baseline ap-
proaches in every experiment. This would allow comparing novel systems against existing 
ones by reproducing the experimental setup but having to collect the results for the novel 
approach only. 

3. Experimental Setup 
In this section, the agent-based simulation study with its two navigation systems, Turn-by-
Turn (TBT) and Free Choice Navigation (FCN), is described in detail. We will elaborate on 
both experimental areas and all potential routes with pre-defined features. As in our previous 
work [13], the study follows a between-subject design with 6000 agents. The choice between 
a between-subject or within-subject design is of less importance, as long as both groups do 
not differ significantly regarding their environmental spatial abilities (see Section 4), which 
mainly influence the performance (see Section 3.2). 
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3.1 Experimental Areas 
As the original experimental area (source city), the city center (surface area 2.5 km2) of Vi-
enna is chosen (see Figure 1). According to the classification by Thompson et al. [22], the 
network layout is of type high transit. The city for which suitable routes for a replication 
study need to be found is Djibouti City in Africa (see Figure 2), which is of network type 
irregular [22]. The selected experiment area is of similar size (surface area 2.27 km2) and lies 
in the western Part of Djibouti City (see Figure 2). The size of the experimental areas is of 
less importance, as long as there are routes of the desired length (see Section 3.3). Bigger 
experimental areas mean more potential routes and result in longer computation times. 

Figure 1: The experimental area in Vienna with six sample routes. Basemap © OpenStreetMap. 

Figure 2: The experimental area in Djibouti City with six sample routes. Basemap © OpenStreet-
Map. 

For both experimental areas, the raw network data were downloaded from OpenStreetMap 
(OSM)1. The intersections and their characteristics were calculated using the Intersections 
Framework [4], whereas street segments between two intersections were extracted with a 
custom script. For both areas, a networkx graph was created, which was used for the simula-
tion. 

3.2 Navigation Systems 
Following our previous work [13], we compare the same two navigation approaches, namely 

1 https://www.openstreetmap.org, last access March 25th, 2022 
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Free Choice Navigation (FCN) and Turn-by-Turn (TBT). The primary reason to use a navi-
gation assistance system is the desire to reach a defined destination. Therefore, the arrival 
rate is chosen as the success metric. An agent successfully reaches its destination if the 
walked distance does not exceed 150% of the shortest path length [13]. 

3.2.1 Turn-by-Turn (TBT) 
In this condition, the agent will be guided along the shortest path between origin and desti-
nation and receives only at turning points navigation instructions. It is a popular approach 
that is often used as baseline in navigation experiments (e.g., [8, 21]). Whenever agents have 
to go straight ahead (continuation within a 20° cone concerning the current walking direction) 
at a junction, then no instruction is issued, and the agent will not turn. Every agent has a fixed 
probability to interpret generic navigation instructions correctly, which ranges between 0.8 
and 1. We expect such a high probability [13] because navigation instructions are followed 
every day by millions of users. The agent interprets a turning instruction using a weighted 
random choice: The branch indicated in the instruction obtains a weight equal to the agent’s 
probability to interpret generic navigation instructions correctly. The remaining probability 
is distributed equally over all remaining branches, excluding the one indicated in the instruc-
tion and the most recently taken branch. Once the agent reaches the destination, the trial ends. 

3.2.2 Free Choice Navigation (FCN) 
Free Choice Navigation is a navigation paradigm aiming for more freedom of choice during 
navigation, trying to balance the number of free choices, given instructions and a maximum 
allowed route length [13]. The following example shows the working mechanism: Anna, a 
good wayfinder, navigates to an art gallery. Before the navigation starts, Anna receives in-
formation about the beeline direction and distance to the art gallery. The system does not 
issue any instructions at the first two junctions because the beeline direction should still be 
clear to the user after such a short period. In this situation, Anna decides on her own which 
branch to take. The third junction, however, is rather complex and has six branches. Anna is 
quite sure about the beeline direction towards the art gallery, but two branches seem to be 
good choices to her. Based on internal computations which take her spatial abilities and the 
environmental structure into account, the navigation system becomes aware of this difficulty 
(see our previous work [13]). Consequently, Anna receives an instruction because one of the 
branches results in a considerable deviation from the acceptable route length. The instruction 
is interpreted correctly and Anna continues her way to the art gallery. 
This example illustrates which components influence the internal computations of the navi-
gation system: the user’s environmental spatial abilities, the features of the current junction 
and the already traversed route. If an instruction is issued, a similar procedure as above ap-
plies, with the difference that the last taken branch is not excluded but has a lower probability 
of being taken. Another difference is that the agent’s probability to interpret the generic nav-
igation instruction correctly (as well between 0.8 and 1) depends linearly on its environmen-
tal spatial abilities. For more details, please refer to the original paper [13]. 

3.3 Route Selection 
In this section, an average-based route in the source city and the most/least similar routes in 
the target city are selected. Our previously proposed route selection framework was used for 
these tasks [14]. 
As pre-emptive criteria [14], we set the route length between 550 m and 1000 m (see e.g., 
[18, 19]) and the number of decision points on a route to 12 (according to OSM) to avoid 
trivial route length. Only shortest paths were considered suitable for our experimental design. 
Given that the two navigation approaches depend on the geometry of the route and the net-
work (see Section 3.2), geometry-based routes features were selected [14]: average number 
of branches, number of n-way intersections (e.g., 3-way intersections), regularity of decision 
points [4], number of right, left and non-turns and length-related features (average, median 
and standard deviation of segment lengths and total route length). All features were equally 
weighted. To find all possible routes meeting the set criteria, we followed the original paper 
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[14] and used SageMath 9.1 with its SubgraphSearch function2. In Vienna, 11737 shortest 
paths meeting the above-mentioned criteria were found and 9064 in the experimental area in 
Djibouti City. 

3.3.1 Vienna 
For every route in Vienna, the weighted Euclidean distance (called score) to the hypothetical 
route, which shows closest to average values for all criteria, was calculated [14]. Four routes 
yielded a minimal score of 0.12 (0 would indicate a perfect match). Actually, there are only 
two distinct routes, since every route is present twice. Two distinct routes traversed from start 
to destination and vice versa result in four routes. All four routes are very similar, and they 
differ regarding the direction and a turn while entering a square (see Figure 3). Due to these 
similarities, no route could be defined as better than the others, and consequently, all four 
routes are considered suitable. 
For each of these routes, the five most and five least similar routes in Djibouti City were 
found using the framework. Five routes were chosen due to two reasons. First, arrival rates 
for five routes are more representative than considering one route only. Second, five seems 
a reasonable number in the route selection process because higher-ranked routes may not 
always be suitable for the experiment due to uncaptured characteristics in the route features 
(e.g., data not available). In this case, lower-ranked routes need to be considered too. The 
route selection framework is an assistance system, and local knowledge will always help to 
make the final decision, potentially excluding higher-ranked routes. This expert knowledge 
does not impede reproducibility, if the decision is well documented. 

Figure 3: Routes in Vienna. The four routes differ in direction and a turn while entering a square. 
Basemap © OpenStreetMap. 

3.3.2 Djibouti City 
While searching for the most and least similar routes in Djibouti City, two further features 
were added to increase the similarity to the source routes. Both features concentrate on the 
order of one of the above-mentioned features (see Section 3.3). The sequence of right, left 
and non-turns (e.g., ’rnrlrnl’) and the sequence of the cardinality of decision points (e.g., 
’3334343’) along the route were considered, as they potentially influence the simulation re-
sults (e.g., more branches lead to more difficult decisions). 
In Vienna, the Euclidean distance was calculated between every route and a hypothetical 
average route (hence the term average-based). In Djibouti City, the latter is substituted by the 
routes found in Vienna, respectively (see Section 3.3.1). As the two newly added features are 
strings, the Levenshtein distance was used to calculate the difference. 

2 https://doc.sagemath.org/html/en/reference/graphs/sage/graphs/generic_graph_pyx.html, 
last access March 4th, 2022 
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For each of the four considered routes coming from the source city, the five most and least 
similar routes in the experimental area in Djibouti City were calculated. The Euclidean dis-
tances for the most (M=0.903, SD=0.096, MIN=0.683, MAX=1.022) and least (M=3.334, 
SD=0.417, MIN=2.49, MAX=3.641) similar routes differ considerably. 

4. Simulation Results 
For each route, the whole simulation was run 100 times in order to counterbalance the influ-
ence of the weighted random choice function (see Section 3.2). Each route was walked by 
two (TBT and FCN) groups of 3000 agents. The presented numbers are the means of the 
corresponding route(s) for all 100 runs (different seeds). To ensure that the common ability 
of agents to interpret navigation instructions correctly did not influence the results, a Wil-
coxon Signed-Rank Test on these abilities of the agents was performed. No significant (α = 
.05) differences between both conditions were found n = 3000 (Z = .00, p = .99, r = .00). The 
general influence of the these abilities on the Free Choice Navigation approach was discussed 
in our previous paper [13]. For each city, the parametrization (FCN) with the best balance 
between arrival rate and freedom of choice was used [13]. 

Vienna Djibouti City

Most Similar Routes Least Similar Routes

Route TBT FCN Mean TBT Mean FCN Mean TBT Mean FCN

0 0.962 0.954 0.923 0.857 0.854 0.916

1 0.966 0.96 0.953 0.905 0.846 0.909

2 0.967 0.932 0.962 0.906 0.856 0.914

3 0.951 0.953 0.956 0.909 0.854 0.916
Table 1: Arrival rates for four equivalent (Euclidean distance score) routes in Vienna and their five 
most/least similar counterparts in Djibouti City. TBT - Turn-By-Turn, FCN - Free Choice Navigation, 
Mean - mean for 5 routes. The figures are rounded to three decimals. 

4.1 Vienna 
In the European city, both navigation systems reached a high arrival rate of around 0.95 (see 
Table 1). On three routes (0-2), TBT led more agents to the respective destination than FCN. 
On one route (3), FCN performed better than TBT. In general, the achieved arrival rates in 
Vienna are very similar for both navigation systems. 

4.2 Djibouti City - Turn-By-Turn 
For agents using the TBT navigation system, the most similar routes in Djibouti showed an 
arrival rate of around .95, which is close to the arrival rate in Vienna (see Table 1). The first 
route (0), however, is an exception, having a lower arrival rate of .923. The least similar 
routes in Djibouti showed an arrival rate of around .85, representing a considerable difference 
to both the most similar routes and the routes from the source city. For every route from the 
source city, the most similar routes in the target city yielded more similar results than the 
least similar routes. 

4.3 Djibouti City - Free Choice Navigation 
For agents using the FCN navigation system, the most similar routes in Djibouti showed an 
arrival rate of around .9, which is different from the arrival rate in Vienna (around 0.95, see 
Table 1). The first route (0), again, is an exception having a lower arrival rate of .857. The 
least similar routes showed an arrival rate of around 0.91, similar to the most similar routes. 
Moreover, the least similar routes in Djibouti yielded higher arrival rates than the most sim-
ilar routes.
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4.4 Djibouti City - TBT versus FCN 
Comparing both navigation systems on the five most similar routes in Djibouti City shows 
that more agents reached their destination with TBT than with FCN. The opposite is observed 
while considering the least similar routes. In this case, FCN is superior to TBT regarding the 
arrival rate (see Table 1). 

5. Discussion and Limitations 
This section will discuss the results by comparing the arrival rates between and within cities, 
navigation approaches and the most and least similar routes. Furthermore, we discuss the 
limitations of our work. 
The four selected routes in Vienna yielded similar arrival rates for both navigation systems 
(see Table 1). Only one route (2) led to a bigger difference of around 3%. This is not in line 
with the original work [13] in which TBT had, on average, a 5% higher arrival rate (100% 
vs. 95%). This indicates that route selection is crucial in experimental design because it can 
change the drawn conclusions and the outcome of a wayfinding study. For the TBT condition 
in Djibouti City, the route selection framework helped to find routes that yield, on average, 
a similar arrival rate as the corresponding source route. The least similar routes yielded con-
siderably worse results (around 85%) compared to both the source routes in Vienna and the 
most similar routes in Djibouti City. This indicates the suitability of the route selection frame-
work with the selected route features, as the lower-ranked routes yielded less similar results 
than higher-ranked routes. As Vienna and Djibouti City represent quite different layout types 
[22], we expect the framework to work as well in other geographic areas. 
The FCN condition in Djibouti City shows a different picture, in which both the most similar 
and the least similar routes yielded high arrival rates but not as high as the source routes (see 
Table 1). Moreover, the least similar routes yielded better results in terms of arrival rate than 
the most similar routes. This can be explained by the interplay between the chosen route 
features and the navigation approach. One of the ideas of Free Choice Navigation is to give 
more freedom to the wayfinder. This increases the chances of not taking the shortest path, 
which is supposed to be taken in the TBT approach. The simulation data support this hypoth-
esis (see Table 2). 

Vienna
Djibouti City

Most Similar Routes Least Similar Routes

Route TBT FCN Mean TBT Mean FCN Mean TBT Mean FCN

0 107 597 79 344 52 282

1 105 601 85 658 58 242

2 121 380 89 375 57 190

3 139 398 67 329 52 282
Table 2: Number of uniquely walked routes taken by successful agents for four equivalent (regarding 
the Euclidean distance score) routes in Vienna and their five most/least similar counterparts in Djibouti 
City. TBT - Turn-By-Turn, FCN - Free Choice Navigation, Mean - mean for 5 routes. The figures are 
rounded to integers. 

In the FCN condition, more unique routes are taken by successful agents in both Vienna and 
Djibouti City. With an increasing number of unique routes, the neighborhood around the 
route plays a more vital role. A route might be easy to navigate, but once a navigation error 
occurs, the wayfinder might find itself in a difficult to navigate area due to complex junctions, 
dead-ends or detours [1]. The selected properties (see Section 3.3), however, regard route 
properties only, without considering the neighborhood of the route itself. The route selection 
framework could be improved by including additional features, which capture the previously 
used characteristics but adapted for the neighborhood. Completely new features like central-
ity measures (graph theory) calculated for the route neighborhood could also help to improve 
the process of finding similar routes. This could be as well a first step to tackle the problem 
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of conducting the baseline condition over and over again in wayfinding experiments (see 
Section 2.2). Previously collected empirical data could be used as a proxy if the neighbor-
hoods and routes are highly similar. 
However, the definition of such a neighborhood is not a trivial task and depends on the nav-
igation system. Some routes are more likely to be taken with a given navigation system. We 
suggest incorporating features describing this neighborhood while considering the navigation 
system to define its spatial extent. One possibility to define the spatial extent of the route’s 
neighborhood is the Potential Route Area (PRA) [8]. However, the PRA is based on shortest 
paths only, which are not necessarily taken. 
The selected metric is important too. Regarding the number of unique routes (see Table 2), 
the results are as expected, more similar routes yielded more similar results than less similar 
routes. Regarding the arrival rate, the results are partially in line with our expectations (see 
Table 1). Therefore, the selected route features should consider the navigation system and 
the success metric. 
The achieved arrival rates in Djibouti City are not entirely in line with the previously con-
ducted simulation study [13]. Our study used 40 (Djibouti City) routes instead of the whole 
route population as in the original paper. A wayfinding study is usually conducted with a 
small-sized subsample of routes. The differences within the cities (see Table 1) and between 
our study and the original work [13] suggest that the selected route can impact study results 
(see Section 6). 

5.1 Limitations 
We could have added more complexity to the simulation with respect to the original study, 
but we wanted to keep our results comparable. In order to find similar routes, other similarity 
metrics could have been used. Toohey and Duckham [23] compare four different trajectory 
similarity measures, but all of them rely purely on route geometry. Han and colleagues used 
deep learning to calculate route similarity [7]. The authors, however, define the similarity 
based on node-wise distance over the underlying spatial network, although their architecture 
incorporates information about direct neighbors for a node, whose importance can be set by 
a parameter. In contrast to the selected route selection framework [14], however, the resulting 
similarity is not readily explainable. 

6. Conclusion and Future Work 
In our work, we wanted to verify if the proposed route selection framework can find similar 
routes in different geographic areas and, thus, make it suitable for replication studies. Our 
results reveal the suitability for the widespread Turn-By-Turn navigation approach and sug-
gest the incorporation of further neighborhood features into the framework in order to work 
with navigation approaches that cover more potential routes between start and destination 
like Free Choice Navigation. This work is a first step towards the replication of wayfinding 
studies in different geographic areas. 
For future work, there are several strands to follow. Further success metrics needs to be tested 
with our approach to see whether the results are applicable beyond the arrival rate and the 
number of uniquely walked routes. The definition of the neighborhood for a route is an open 
problem. We believe that it should depend on the tested navigation system. Furthermore, 
features describing this neighborhood are to be defined and verified. Our results suggested 
the importance of route selection on study results. We will scrutinize this hypothesis with a 
further simulation study in which we will run a wayfinding experiment on all suitable poten-
tial routes within the experimental area and compare the results. A further research direction 
is the prediction of the arrival rate or any relevant success metric based on the route and 
neighborhood features without running the simulation. One possibility would be the usage of 
deep learning. 
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Abstract
Route selection for a wayfinding experiment is not a trivial task and is often made in an undocumented
way. Only recently (2021), a systematic, reproducible and score-based approach for route selection
for wayfinding experiments was published. However, it is still unclear how robust study results are
across all potential routes in a particular experimental area. An important share of routes might lead
to different conclusions than most routes. This share would distort and/or invert the study outcome.
If so, the question of selecting routes that are unlikely to distort the results of our wayfinding
experiments remains unanswered. In order to answer these questions, an agent-based simulation
study with four different sample sizes (N = 15, 25, 50, 3000 agents) comparing Turn-by-Turn
and Free Choice Navigation approaches (between-subject design) regarding their arrival rates on
more than 11000 routes in the city center of Vienna, Austria, was run. The results of our study
indicate that with decreasing sample size, there is an increase in the share of routes which lead to
contradictory results regarding the arrival rate, i.e., the results become less robust. Therefore, based
on simulation results, we present an approach for selecting suitable routes even for small-scale in-situ
studies.

2012 ACM Subject Classification Information systems → Decision support systems; Computing
methodologies → Agent / discrete models; Information systems → Location based services

Keywords and phrases Route Selection, Route Features, Human Wayfinding, Navigation, Experi-
ments, Experimental Design

Digital Object Identifier 10.4230/LIPIcs.COSIT.2022.6

1 Introduction

Novel navigation system paradigms for wayfinders are still the subject of ongoing research.
Regardless of the target group, i.e., whether it would be pedestrians [5, 7, 12], cyclists [20, 16]
or car drivers [11] many decisions during experimental design must be made. While these
decisions may impact the study results, this impact is often neither evident nor easy to
estimate. One of these decisions relates to the selection of a route suitable for a particular
wayfinding study. Given a potential experimental area of non-trivial size, there are at least
thousands of potential routes researchers can select from (see Section 3). The potential
influence of different routes on study results, however, has not been scrutinized systematically.
Given the myriad of potential routes and the different characteristics they come with, there
might be an important share of routes that lead to study results deviating from the mean
calculated over all possible routes (population mean). By means of an agent-based simulation
study comparing two different navigation approaches for all potential routes in a selected
experimental area, we will provide evidence that with decreasing sample size, the share of
routes which lead to contradicting results increases. Given these differences in results, we
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propose a selection process of appropriate routes, i.e., routes that provide stable results across
sample sizes and lead to results congruent with the population mean. Hence, our approach
is useful for route selection in comparative wayfinding studies, even for smaller sample sizes.

We will provide evidence that route selection is a crucial step in experimental design, as
it shows the potential to turn around the study results. Therefore, more attention should be
given to this phase of experimental design. Our approach can be combined (see Section 5.3)
with route selection methods for wayfinding experiments (see e.g., [15]), which have been
proposed so far.

2 Related Work

In this section, two branches of related work will be discussed. First, we review systematic
approaches for route selection during experimental design and route justification. Second, we
will discuss comparative wayfinding studies which involve at least two routes and examine
whether the route itself was treated as an independent variable in the analysis.

2.1 Systematic Route Selection for Wayfinding Studies

In our previous work, we did an exhaustive search of ‘six major venues (conferences and
journals) in the broader area of geographic information science and related fields’ [15, p. 2]
between 2010 and early 2020 regarding route descriptions and/or justifications in studies
involving wayfinding tasks with a predefined route. In total, 32 papers fell into this category.
The conclusion was that, in general, route choice was poorly justified and that only half of the
selected publications mentioned the route length, which was considered a basic feature. This
leaves the impression that route selection in wayfinding experiments tends to lack appropriate
justification, given the potential impact a route may have on results. In very recent studies
(i.e. from 2020 onwards), examples of both missing and explicit route selection justification
can be found. Dong and colleagues [3] compared augmented reality (AR) and 2D navigation
electronic maps in pedestrian wayfinding. The selection of three experiment routes was not
explicitly justified. There are as well examples of explicit and elaborated route justifications.
Benelia compared paper maps with audiovisual Turn-by-Turn (TBT) instructions in the
context of spatial learning for car drivers [2]. While selecting the route, Benelia tried to
maximize personal safety, to avoid high levels of stress in participants and to have sufficient
stimuli along the route. Another example of explicit route justification can be found in [20]
comparing TBT and ACTF (As-The-Crow-Flies) navigation approaches for cyclists. Both
routes used in this publication were designed to contain a segment on which the participant
had to cycle contrary to the compass direction pointing to the destination. This feature was
crucial to the experimental design.

Although both examples present an explicit justification for route selection, they are not
necessarily reproducible because several routes with those characteristics are possible and
they might lead to different results. In order to tackle this problem, we previously proposed a
methodological average-based framework for systematic and reproducible route selection [15].
All possible routes are ranked according to criteria and corresponding weights, which the
researcher must set. This flexibility allows finding routes that exactly fit the requirements of
the study. However, our framework does not provide any information on how the routes may
impact the study results.
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2.2 Comparative Wayfinding Studies and the Importance of Route as
Independent Variable

This section will review comparative wayfinding studies and verify whether the route was
used as an independent variable, thereby providing examples for both cases.

It is not new to consider the route itself an important variable in comparative wayfinding
studies. Savino and colleagues [20] considered the potential influence of the two selected
routes in their comparative wayfinding study for cyclists and, in consequence, analyzed the
data for each route separately. For both routes, the authors came to the same conclusion
regarding differences in route length, task load and orientation. However, the number and
the type of errors committed differed. Dong et al. compared two navigation systems on three
different routes [3]. In their ANOVA analysis, the route was treated as a factor. For none of
the compared eye-tracking metrics, route yielded a significant effect. It was only significant
for the metric wayfinding duration, which is expected as route lengths differed and were not
normalized. Moreover, without justification, the authors do not include route as a predictor
(logistic regression) when analyzing the sketch maps. Richter et al. compared consistent and
inconsistent navigation instructions on eight routes in a desktop virtual environment [18].
The selected routes had a similar number of turns and a landmark at every intersection. In
the analysis, the potential influence of the route was not considered. Kuo and colleagues
compared four different navigation systems on four different roads in a virtual reality (VR)
environment [9]. Here, the route was also stated to be used as one of four predictors (linear
regression). However, this variable, as well as two further ones, were not mentioned in the
analysis. Therefore, it remains unclear if the route had an effect on the results, although this
expectation was made explicit. Another study conducted in VR compared three AR-based
navigation interfaces on three different routes [21]. The routes were designed to have the
same length, number of turning points and street crossings. To each interface, exactly one
route was assigned. The route was not treated as a factor, and in the end, it is unclear
whether the observed effects come from the navigation system, the route or a combination of
both.

Generally speaking, only a few routes are compared within a single wayfinding study,
which seems reasonable from a research economics perspective. Simulation studies, however,
are a notable exception. Amores and colleagues [1] proposed a novel navigation paradigm
most recoverable path. Their approach was tested by means of a simulation study in Quito,
Paris and Melbourne in which 13500 routes per city were selected. However, they analyzed
the influence of network topology on their approach but did not analyze the data on a route
level. Another example of a simulation study in which a novel navigation paradigm was
proposed is our previously published work [14]. We tested our approach with 100 routes in
Vienna, Djibouti City and Mexico City, respectively. Differences between those cities were
found, but route-wise differences were not analyzed.

Taken together, these examples give the impression that route selection is not always
given sufficient relevance, even though it might have an impact on study results. There is no
systematic approach, first, to show that different routes may lead to different results, and
second, how to select routes for a wayfinding study congruent with the population mean of
all routes. This paper aims to fill these gaps.
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3 Experimental Setup

In this section, the agent-based simulation study is described in detail. We will elaborate on
the experimental area and all potential routes with pre-defined features, such as route length.
Furthermore, the sample sizes and both navigation approaches, namely Turn-by-Turn (TBT)
and Free Choice Navigation (FCN), will be described. The study follows a between-subject
design comparing two navigation systems.

3.1 Experimental Area and Potential Routes
As the experimental area, the city center (surface area 2.5 km2) of Vienna, Austria is chosen
(see Figure 1). According to the classification by Thompson et al. [22], the network layout is of
type high transit. For this area, the raw network data were downloaded from OpenStreetMap
(OSM)1. The intersections and their characteristics were calculated using the Intersections
Framework [4], whereas street segments were extracted with a custom script. Taking these
pieces together, the city center is represented as a networkx graph having 1848 nodes and
2722 edges.

For every experimental design, several decisions regarding route choice have to be made
(e.g., route length, sequence of left, right and non-turns, number of decision points and
experimental area). In order to reduce the search space of potential routes, we will consider
only shortest path routes (see e.g., [19]) with 12 decision points [15] and a length between
550 m and 1000 m (see e.g., [17, 19]) in order to avoid trivial route length on the one hand
and, on the other hand, to ensure a reasonable duration for an in-situ study (1000 m would
result in a duration of 12.5 minutes based on an average walking speed of 4.85 km/h [10]).
In order to find all possible routes sharing these characteristics and comprising no loops,
SageMath 9.1 with its SubgraphSearch function2 was used, as in our previous work about the
route selection framework [15]. The resulting Nr = 11373 routes are the whole population
of routes being shortest paths and matching the mentioned lengths and number of decision
points and were used for the simulation, which was implemented in Python 3.6.

3.2 Sample Size
The simulation is run with four different samples sizes (n = 15, 25, 50, 3000 agents) following a
between-subject design. The first three sample sizes can be considered realistic in wayfinding
studies [21, 18, 20, 9, 6]. The largest sample size (n = 3000) is considered to be representative
for the whole population of participants of such studies. Different sample sizes are tested in
order to investigate whether the sample size impacts the results for both a single route and
the whole route population. Each group navigates each of the 11373 routes.

3.3 Navigation Systems
The presented simulation approach will work for any two navigation systems, as we want to
demonstrate that the comparison results may vary depending on the route choice. However,
we continue our previous simulation study [14] and compare Free Choice Navigation (FCN)
and Turn-by-Turn (TBT). While the particular figures will likely change for other navigation
approaches, the proposed route selection process (see Section 5.2) based on the results
remains unchanged.

1 https://www.openstreetmap.org, last access February 4th, 2022
2 https://doc.sagemath.org/html/en/reference/graphs/sage/graphs/generic_graph_pyx.html,

last access January 30th, 2022
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TBT = FCN

TBT > FCN

TBT < FCN

Experimental Area

Figure 1 The experimental area in Vienna, Austria and 9 sample routes on which one navigation
system performed better or they performed equally well across sample sizes. Basemap OpenStreet-
Map.

As the primary purpose of navigation systems is to assist wayfinders in reaching the
destination, we choose arrival rate as the success metric. However, any other suitable success
metric can be chosen by the researcher. As in our previous work [14], an agent is considered
successful if it reaches the destination within 150% of the shortest path length. In the same
work, we compared these two navigation systems in three different cities [14]. TBT lead
between 5% and 10% more agents to their destination in all cities. Now, the main features
and mechanics of both navigation approaches will be described.

3.3.1 Turn-by-Turn (TBT)
By analogy with commercial wayfinding assistance systems for pedestrians, the agent is
supposed to follow the shortest path between origin and destination and receives navigation
instructions at turning points only. If agents have to go straight ahead at a junction, then
no instruction is issued and the agent continues straight.Going straight ahead is considered
walking in a direction that does not deviate by more than 10 degrees to either side from
the current one. Every agent has a probability to interpret a generic navigation instruction
correctly. If an instruction is issued, the agent interprets it based on a weighted random
choice: The branch to follow, indicated in the instruction and following the shortest path
from the current junction, is assigned a weight equal to the agent’s probability to interpret
generic navigation instructions correctly. The remaining probability is split equally over all
remaining branches (excluding the one indicated in the navigation instruction and the one
the agent has come from). The trial ends when the agent reaches the destination.

3.3.2 Free Choice Navigation (FCN)
Free Choice Navigation is a novel navigation paradigm aiming for more freedom of choice
during navigation [14]. The system allows the agent for some exploration but, on the other
hand, tries to avoid costly mistakes by weighing the number of free choices, the number of
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given instructions and a maximum allowed route length. The working mechanism can be
seen in the following example: Alice, a good wayfinder, is navigating to a museum. Before
the navigation starts, the system gives her information about the beeline direction and
distance to the museum. At the first two junctions, the system does not issue any instructions
because it is assumed that the beeline direction is still clear to the user. In consequence,
Alice decides on her own which branch to take. The upcoming junction, however, is rather
complex as it has five branches. Alice is quite sure about the beeline direction, but there
are two branches that seem equally well suited to her. The system detects this difficulty
based on internal computations that take the environmental structure and spatial abilities
of the user into account and issues an instruction because one of the branches leads to a
considerable deviation from the allowed maximum route length. Alice interprets it correctly
and continues her walk.

This example shows that the navigation system issues an instruction based on environ-
mental spatial abilities of a user, the characteristics of the current junction and the already
walked route. If an instruction is issued, then the same procedure as above applies with
the difference that the branch the agent has come from is not excluded but has a lower
probability of being taken. Again, the probabilities of available branches to be taken depend
on the agent’s probability of interpreting generic navigation instructions correctly, which
in turn depends linearly on its environmental spatial abilities. Furthermore, FCN has six
parameters that steer when an instruction is given. We used the best parameter set for
Vienna, which is a trade-off between the percentage of successful trials and the number of
given instructions [14].

For every agent, regardless of the condition, the ability to interpret navigation instructions
correctly ranges between 0.8 and 1 and is fixed before the experiment. Please refer to
our previous work for further modeling details regarding the agents and their decision
mechanism [14].

4 Simulation Results

In this section, we, first, present descriptive statistics for each of the systems separately
and, second, discuss the differences originating from different routes. Differences between
both conditions are calculated using bootstrapping (B = 10000 runs) and 95% confidence
intervals (CIs) are reported in square brackets. As mentioned above, the arrival rate (each
agent walked each route) for both systems is compared (see Section 3.3). In order to ensure
that the common ability of agents to interpret navigation instructions correctly (co-domain
[.8; 1] [14]) did not influence the results, a Wilcoxon Signed-Rank Test was performed for
every sample size. No significant (α = .05) differences between both conditions were found
(n = 15 (Z = 1.14, p = .25, r = 0.29), n = 25 (Z = 1.17, p = .24, r = 0.23), n = 50 (Z = .05,
p = .96, r = 0.01), n = 3000 (Z = .00, p = .99, r = 0.00)). Furthermore, this ability defines
good and weak wayfinders. We assured that agents from both groups are present in every
sample size, which is a realistic scenario for real-world wayfinding studies. The presented
figures are computed based on all potential routes, which were walked by all agents of a
given sample size. There are 11 373 potential routes in the experimental area. This is an
exhaustive sample considering the selected route features (see Section 3.1).

4.1 Turn-by-Turn
In the case of the Turn-by-Turn condition, the simulation for all four sample sizes yields
similar results regarding the arrival rate (co-domain [0; 1])(see Table 1). The mean arrival
rate is around 0.97 across all four sample sizes. This is in contrast to the minimum arrival

73



B. Mazurkiewicz, M. Kattenbeck, and I. Giannopoulos 6:7

Table 1 Descriptive statistics of the arrival rate [0; 1] for the TBT condition for all four sample
sizes tested in the simulation. The figures are rounded to 3 decimals.

Sample
Size Mean SD Median Min Max

15 .976 [.975; .977] .048 [.047; .05] 1 [1;1] .66 [.66; .66] 1 [1; 1]
25 .975 [.974; .976] .043 [.042; .044] 1 [1;1] .68 [.68; .72] 1 [1; 1]
50 .973[.972; .973] .038 [.037; .039] .98 [.98; .98] .72 [.72; .74] 1 [1; 1]

3000 .97 [.97; .97] .033 [.032; .034] .982 [.982; .983] .788 [.788; .798] 1 [1; 1]

rate, which shows considerable variation between sample sizes: For sample size n = 15, the
minimum arrival rate for a route is 0.66 (only 2

3 of the agents reached the destination),
whereas for sample size n = 3000 it is 0.788. The range of the arrival rate decreases with
increasing sample size. In order to see whether there are route-wise differences between
sample sizes, the range (max − min) for every route is calculated (see Figure 2). Over 20%
of the routes have a range greater than or equal to 0.05. There is no difference across sample
sizes for 716 routes (6.2%), whereas the biggest difference encountered for a single route
across sample sizes is 0.25.
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Figure 2 Route-wise ranges (max − min) across all sample sizes for the condition FCN (left)
and TBT (right).

4.2 Free Choice Navigation
Analyzing all routes together, the four sample sizes yield, again, similar results (see Table 2).
The mean arrival rate is approx. 0.90; in contrast to the TBT condition, the range remains
almost identical across sample sizes. Route-wise ranges (max − min), however, reveal a
higher variance in the FCN condition (see Figure 2): More than 80% of the routes show a
difference greater than or equal to 0.05 and the biggest difference for a route across sample
sizes is 0.4. For 34 routes (0.3%), there is no difference across sample sizes.
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Table 2 Descriptive statistics of the arrival rate [0; 1] for the FCN condition for all four sample
sizes tested in the simulation. The figures are rounded to 3 decimals.

Sample
Size Mean SD Median Min Max

15 .919 [.917; .921] .104 [.099; .109] .933 [.933; .933] 0 [0; 0] 1 [1; 1]
25 .908 [.906; .91] .096 [.091; .101] .92 [.92; .92] 0 [0; 0] 1 [1; 1]
50 .896 [.894; .897] .091 [.086; .096] .92 [.92; .92] 0 [0; 0] 1 [1; 1]

3000 .902 [.901; .904] .08 [.074; .086] .918 [.917; .919] 0 [0; 0] .996 [.994; .996]

4.3 Differences within both Systems
In both approaches, of course, the ability to interpret navigation instructions plays a role,
but as it is constant for all routes, it is not mentioned as a factor. As indicated by the figures
in tables 1 and 2, arrival rates differ between both navigation systems. These differences
may stem from navigation system mechanics and street layout. In the TBT condition, routes
with less turning points likely lead to a higher arrival rate, as the agent has to make fewer
decisions and, in consequence, has lower chances to commit an error. On the other hand, in
the FCN approach, route features like junction complexity or junction skewness [4] are likely
to play a role. A detailed analysis of route features leading to differences is beyond the scope
of this paper (see Section 6).

4.4 Differences between both Systems
Based on the within-system results, both navigation systems will be compared regarding the
arrival rate. Again, first, the whole population is analyzed, and second, route-wise differences
will be inspected in order to investigate whether sample size impacts the share of routes
that lead to contradicting results. Across all sample sizes, the TBT approach leads, on
average, more agents to the destination (see Table 3). The sample size with the highest
mean difference in arrival rate across routes is n = 50, whereas the lowest value can be
observed for n = 15. Mean, standard deviation, median and maximum values are similar in
all simulation runs; however, there are differences in the minimum: All minimum values are
negative, meaning that there is at least one route on which the FCN approach performed
better than TBT. Therefore, we will inspect per route differences between both conditions
by subtracting FCN from TBT arrival rates for the respective sample size.

For every sample size, we count the number of routes which lead to a congruent result
with the population mean (TBT performs better), as well as routes on which FCN performed
better than or as good as TBT (see Table 4). For the sample size n = 3000, which is the
most representative one, there are around 8% of routes on which FCN performed better or
as good as TBT. For smaller sample sizes, this figure increases, reaching around 47% for
n = 15. Contrary to the within-system results (see Sections 4.1 and 4.2), here, considerable
differences between sample sizes can be observed.

5 Discussion and Limitations

This section will discuss the results, which suggest that route selection is an important part
of experimental design and should be given more importance. Furthermore, a methodology
that supports informed route selection is proposed. Finally, limitations that apply to our
work are addressed.
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Table 3 Descriptive statistics for the route-wise difference (T BT − F CN) in arrival rate [0; 1]
for all four sample sizes tested in the simulation. Positive values mean that the TBT condition
performed better and negative values indicate a better performance of the FCN navigation approach.
The figures are rounded to 3 decimals.

Sample
Size Mean SD Median Min Max

15 .057 [.055; .059] .111 [.107; .116] .067 [.067; .067] - .333 [- .333; - .333] 1 [1; 1]
25 .067 [.065; .069] .101 [.096; .105] .04 [.04; .04] - .28 [- .28; - .24] 1 [1; 1]
50 .077 [.075; .079] .094 [.089; .098] .06 [.06; .06] - .24 [- .24; - .18] 1 [1; 1]

3000 .067 [.066; .069] .081 [.075; .086] .057 [.056; .058] - .119 [- .119; - .104] 1 [.983; 1]

Table 4 Shares of routes on which TBT performed better than, as good as and worse than FCN
regarding the arrival rate. The figures are rounded to 1 decimal.

Sample
Size

TBT
Better TBT = FCN FCN

Better
15 53 % 35.6 % 11.5 %
25 70.4 % 19.3 % 10.3 %
50 84 % 7.5 % 8.5 %

3000 92.1 % 0.1 % 7.8 %

5.1 Discussion
Regardless of the sample size, the simulation, which considers all potential routes in the
experimental area, yields similar results, indicating the superiority of TBT over FCN regarding
the arrival rate (see Table 3). Looking at the results for the whole population, one might
think that route selection is not so critical because, independently of the sample size, the big
picture is preserved. This picture is, however, somewhat misleading as wayfinding studies,
of course, are conducted with a small-sized subsample of the whole population, considering
both routes and participants. By means of keeping the population of routes constant across
sample sizes, our simulation results indicate that different routes can lead to contradicting
results (see Table 4). In consequence, ad-hoc decisions on route selection can lead to contrary
results compared to the whole population of routes. This situation worsens with decreasing
sample size as the chance of selecting such a route increases (see Table 4). The results,
therefore, suggest that selecting a route is all the more important in the case of small numbers
of participants. For samples sizes (n = 15, 25, 50), which can be considered realistic for
comparative wayfinding experiments (see e.g. [21, 18, 20, 9, 6]), the probability to select
a route that will yield results incongruent with the population mean varies between 16%
and 47%. This means, if we planned an experiment with two groups, with 15 participants
each, and we randomly picked a route from our experimental area, we would have a 47%
chance to conclude that TBT is not superior regarding the arrival rate, although it actually
is (see Table 3). Almost every second route would lead to the contrary conclusion in the case
of n = 15, whereas, for sample sizes n = 25 and n = 50, it would be every third and sixth
route, respectively. Given this high share, we want to draw attention to the importance of
the route selection process as it can influence study results, in particular, given the relatively
small number of participants, which is quite common in the wayfinding domain.

Taken together, in the selected experimental area, the lower the number of agents, the
higher the probability of choosing a route which leads to results that are contradictory to the
population mean, i.e., the route becomes more crucial with decreasing sample size. This is a
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problem as routes often seem to be selected in an ad-hoc manner during experimental design
in wayfinding studies (see Section 2.1). Given that wayfinding studies are not conducted with
3000 participants, a method to select those routes which are likely to lead to a conclusion
corresponding to the whole population is proposed.

5.2 Route Selection
Depending on the sample size, the chance of selecting a route that leads to conclusions
that are not in line with the whole route population may be considerable. This section
suggests an approach that allows for an informed route selection. This process is based on
the simulation results, i.e., the simulation for the compared navigation systems needs to
be run beforehand. It is a two-step approach. First, routes without great variance across
all sample sizes are selected, and second, those which lead to results congruent with the
population mean (based on the simulation) are chosen. In both steps, the researcher needs
to select a filtering threshold depending on the selected performance metric and observed
differences. The underlying idea is to select routes that lead to similar results across all
sample sizes and are compatible with the population mean. In our example, two navigation
systems are compared. Therefore, their differences in arrival rate are used in the presented
filtering process. The same approach can be applied with one navigation system only by
using the arrival rates directly instead of the differences or any other success metric chosen
by the researcher.

5.2.1 Consistent Routes
In this step, routes will be selected which are consistent regarding differences in arrival rates,
i.e., they do not vary considerably in arrival rates across sample sizes. Given that there are
four values (one per sample size) for each route to consider, we refrain from calculating the
standard deviation and will consider the range as the measure of variability. The applied
measure with a corresponding threshold can be adapted according to the number of tested
sample sizes and the researcher’s needs. For every route, we calculate the range across all
four sample sizes and select those routes whose range is not greater than 0.03, which means
that the biggest allowed difference across sample sizes is 3%. This value can be set according
to the simulated data. The smaller the value, the more restrictive this filtering step will be.
In this case study, 618 (5.4%) routes have a range smaller than or equal to 0.03. By this
filtering step, routes with high variance across sample sizes are excluded. However, routes
that are not close to the population mean are still possible, or even routes on which the
drawn conclusion is contrary to the population mean. Therefore, a second filtering step is
necessary.

5.2.2 Routes in Concordance with the Population Mean
In order to find routes that are congruent with the most representative sample size (n =
3000), they are filtered by their mean across sample sizes. Routes whose means do not
differ considerably from the population mean (see Table 3) are selected for being considered
suitable routes. For this step, another threshold needs to be selected by the researcher. In
consequence, routes are selected whose means do not deviate by more than the selected
threshold from the population mean. Given that the population mean difference is 0.067, we
set this threshold to 0.02. Therefore, routes with an average between 0.047 and 0.087 are
considered in our case study as acceptable. With this second filtering step, 304 routes are
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left. This is 2.67% of the whole population. For this proof of concept, the exact threshold
values are of less relevance. The smaller both thresholds are set, the more restrictive the
filtering process is, i.e., less routes are considered suitable. This has to be decided based on
the simulation results at hand and the researcher’s needs.

5.3 Route Ranking
Our approach delivers a list of suitable routes with regard to the most representative sample
size but does not state explicitly which one to choose. Our approach can, however, be
combined with our route selection framework [15]. In doing so, potential route biases can
be further mitigated. First, the routes are ranked according to features selected by the
researcher [15], e.g., mean segment length, traffic, average number of branches or number of
left, right and non-turns along the route. Second, the ranked routes are filtered according
to our proposed approach. This results in routes that satisfy both the researcher’s needs
regarding route characteristics and being close to the global mean across sample sizes.

5.4 Limitations
Running a simulation implies simplifying certain aspects of the real world. In our simulation,
the street network and the agent’s spatial abilities are used to model the agent’s behavior.
Compared to our previous work [14], the agents, their reasoning mechanism and the envir-
onment could have been adapted regarding complexity (see e.g., [13, 8]). In addition to
that, there may be relationships that have not been yet discovered and, therefore, are not
considered in the simulation process. Given that randomness plays a role in our simulation,
running the simulation once is a limitation. However, several seeds were tested with a subset
of routes during a pretest and the results were quite consistent.

6 Conclusion and Future Work

By means of an agent-based simulation study, which was run on all potential routes in a
selected experimental area, it was shown that depending on the route selection, the study
results can be contradictory. Although the results for the whole population lead, on average,
to the same conclusion, there is an important share of routes that lead to contrary results.
Given that the route selection process usually does not receive much attention in wayfinding
studies, with this simulation, we direct researchers’ attention to the potentially harmful
effects of ad-hoc route selections. Therefore, we propose a selection method based on running
the same simulation with different sample sizes. The resulting selection of routes should lead
to results that are congruent with the population mean.

Furthermore, our proposed simulation approach with different sample sizes allows for
detecting weak points of a given navigation system. Researchers will find routes on which their
proposed navigation system does not perform as good as expected and their examinations
will lead to further improvements. Moreover, our simulation approach makes it possible to
identify spatial configurations (routes and their neighborhood) favorable or adverse to the
navigation system at hand by analyzing route features that cause differences in the selected
performance metric. This analysis would provide valuable feedback in order to improve the
tested navigation approach. The in-depth analysis of route properties and their influence on
the success metric is part of our future work. One could improve the navigation system until
it is robust on all routes, i.e., it performs equally well on the whole population of routes.
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A series of simulation studies in different geographic areas is planned in order to see
whether different network types [22] lead to the same results. Motor cities might be less
vulnerable to ad-hoc route selection. In addition, the route properties which caused differences
in arrival rates will be examined in depth. Moreover, we plan as well to increase the complexity
of the models to increase the validity of the simulation. Adding more complexity would
expand the search space for possible explanations because the differences in the selected
success metric could be explained by additionally modeled features like points of interest,
buildings or terrain slope.

We are aware that implementing a simulation is not a trivial task and not every researcher
has the resources to do it. Therefore, another research direction could be the prediction of
route suitability based on route features and the characteristics of the navigation approach
without running a simulation study.

Our approach still needs to be verified in real-world environments. Therefore, a series of
human subject experiments will be conducted. In these experiments, the results of several
routes selected with our approach will be compared with the population mean resulting from
a simulation study. Following our selection approach, we expect that those routes considered
suitable will lead to consistent and congruent with the population mean results and the
routes considered non-suitable will more likely lead to contrary conclusions. However, this
hypothesis needs to be verified in a real-world setting as the routes are selected based on
simulation results.
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Abstract
Using navigation assistance systems has become widespread and scholars have tried to mitigate
potentially adverse effects on spatial cognition these systems may have due to the division of attention
they require. In order to nudge the user to engage more with the environment, we propose a novel
navigation paradigm called Free Choice Navigation balancing the number of free choices, route length
and number of instructions given. We test the viability of this approach by means of an agent-based
simulation for three different cities. Environmental spatial abilities and spatial confidence are the two
most important modeled features of our agents. Our results are very promising: Agents could decide
freely at more than 50% of all junctions. More than 90% of the agents reached their destination
within an average distance of about 125% shortest path length.

2012 ACM Subject Classification Information systems → Decision support systems; Computing
methodologies → Agent / discrete models; Information systems → Location based services

Keywords and phrases Agent-based Simulation, Wayfinding, Free Choice Navigation

Digital Object Identifier 10.4230/LIPIcs.GIScience.2021.II.9

1 Introduction

Adaptive route instructions for pedestrian wayfinders have seen considerable research inter-
est [7]. At the same time, empirical evidence has been collected which suggests an adverse
impact of wayfinding assistance systems on spatial cognition and knowledge acquisition
(see e.g., [6]). Routing paradigms which allow wayfinders to make an increased number of
decisions and, therefore, reduce the number of instructions given as much as reasonable would
be one option to remedy this effect. We explore one possible solution to this problem and
propose a pedestrian navigation paradigm which balances the number of given instructions
and the freedom of choice left to the user at junctions. We explore the feasibility of this
paradigm by means of an agent-based simulation. At the start, an agent is provided with a
destination vector, similar to someone pointing to the destination when asked for instructions.
Once an agent started walking they do not need to stick to a predefined route, hence they
will not suffer from on-route uncertainty [22] but are free to make their own decisions at
junctions. However, a route instruction will be provided if odds are increased that an agent,
based on its current state, is likely to choose a not reasonably good branch at a given junction.
The presented paradigm aims for less instructions and more free choices along the route –
regardless the way instructions are phrased or the modality they are given in.

Based on a comparison of our routing paradigm (labelled free choice navigation – FCN )
to the turn-by-turn (TBT) technique, which is prevalent in commercial wayfinding assistance
systems, our contribution is threefold:
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9:2 Navigating Your Way! Increasing the Freedom of Choice During Wayfinding

1. We present a new navigation paradigm (free choice navigation);
2. We provide evidence that agents reach their destinations within a reasonable departure

from the length of the shortest path using our approach and
3. We quantify the number of instructions we save/add compared to the baseline (TBT).

Successfully testing of our approach has a potentially important implication: Reducing
the number of instructions would provide users of wayfinding systems with more time to
observe the environment while, simultaneously, forcing them to engage more with it as they
have to make their own decisions. Based on prior evidence (see e.g., [33]), this is expected to
result in increased spatial knowledge acquisition (see section 7 below). It is important to
note, though, that our approach is meant to be used in a leisure scenario, i.e. in situation in
which wayfinders do not feel any time pressure.

2 Related Work

Given our research goal, we discuss three different branches of related work. First, literature on
reducing the number of TBT navigation instructions or adapting their structure/presentation
is reviewed. Second, we discuss literature using the beeline/as-the-crow-flies navigation
approach. Lastly, we review agent-based simulations modeling pedestrian behavior. Taken
together, this review reveals important factors which need to be considered when modeling
agents and its accompanying mechanics (see also Section 4).

2.1 Enhancing TBT Instructions
In recent years, evidence has been collected which suggests that the use of navigation systems
may have an adverse impact on spatial cognition and orientation (see e.g., [6, 21]). This effect
is commonly explained by the need to divide the attention between the navigation system
and the environment when following a pre-determined route (see e.g., [13]). Possible remedies
regarding TBT navigation systems are enhancing instructions with additional information
(see e.g., [16, 36]), reducing the number of instructions [28], combining them with different
interaction techniques (see e.g., pointing [25]) or providing haptic or audio feedback (see
e.g., [12, 14]). All these approaches assume a predefined route. This is in contrast to our
paradigm according to which users can make their own spatial decisions to a large extent.

2.2 Beeline Navigation
There are alternatives to TBT navigation approaches, e.g., using the beeline to the destination.
One particularly important idea is the so-called least-angle strategy, which was for the first
time thoroughly studied by Hochmair and Frank [20] using a simulation study. According to
this strategy a user chooses the option with the least angle with respect to the (believed)
destination vector. The least-angle strategy has been studied with respect to various
implementations: [29] and [8] report on prototype navigation systems for pedestrians which use
vibro-tactile feedback devices to indicate the beeline. Either system guides users successfully
to their destination. Both systems allow for free exploration but none of them control for an
upper path length limit. This is in contrast to our approach: We try to find a compromise
between free exploration and maximum path length while determining the point in time at
which an instruction needs to be given. Savino and colleagues [30] compare TBT and two
different implementations of the beeline approach for cyclists, one of which provides visual
cues when the beeline differs from the shortest path branch. The latter approach enhances
user confidence. The beeline approach was preferred for leisure scenario. This is in line with
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prior evidence suggesting that it is important for pedestrians to optimize both, distance
and angle [31] and that the environmental complexity [15] has also a major impact on route
choice behavior. Our approach takes these findings into account (see Section 4) by providing
the beeline at the starting point and providing further wayfinding assistance as needed.

2.3 Simulation Studies and Models of Pedestrian Behavior
As mentioned above, the beeline approach was studied by Hochmair and Frank [20] using a
simulation study regarding perception errors. Based on this work, Hochmair [19] analyzed the
effectiveness of the least-angle strategy with a simulation study for different transportation
modes. The results suggest a limited usability of this approach in real life (human perception
and memory errors). Our simulation takes these findings into account by modeling human
errors and actively supporting the user if help is needed, moreover, it incorporates environ-
mental spatial abilities and spatial confidence (see Section 4). Other agent-based wayfinding
studies frequently focus on collision avoidance (see e.g., [35]), on evacuation (see e.g., [37]) or
on the interplay between navigational instructions, the environment and the agent (see e.g.,
[34, 22]), including research on route choice behavior based on different levels of cognitive
maps [10]. Generally speaking, the findings of these papers are based on the assumption that
a path a user should follow exists. Again, this is in contrast to our approach. Neither do
agents receive an instruction at every decision point, nor is there a predefined path. Our
agents are also not equipped with prior knowledge of the environment nor do they know the
true destination direction at every junction (which is in contrast to, e.g., the models used by
Kneidl [23]), i.e., they are considered to be unfamiliar and, hence, have no cognitive map.

3 Simulation Preparation and Baseline Condition

In order to test1 our hypotheses (see Section 5) we run an agent-based simulation (non
multi-agent) with two conditions. The main focus lies on whether agents do reach their
destination with our approach. Consequently, we will not model effects on spatial cognition,
e.g. spatial knowledge acquisition as this aspect will be scrutinized in a real-world study
(see Section 7). The simulation study was run in three cities with three different network
types [32], namely Djibouti City (Djibouti, type: irregular), Vienna (Austria, type: high
transit) and Mexico City (Mexico, type: checkerboard). For each city 100 random routes
with a length ranging between 500m and 5000m were chosen in order to test the approach
on shorter and longer routes. We tested two conditions (TBT vs. free choice navigation):
Each condition was tested with 3000 agents, i.e., there are 6000 different agents (between
subject design). The agents are constructed based on the the so-called BDI-framework [27]
for practical reasoning: The agents simulate pedestrians who have Beliefs about where their
destination is located; agents Desire to reach their destination; and, finally, they act based
on Intentions, i.e., at each intersection they reason about which decision they need to take
in order to reach their goal based on their beliefs.

3.1 Software and Data
Several agent-based modeling and simulation frameworks exist [1]. For our approach we
utilized python 3.8.8 using the package networkx (v2.5.) [17], avoiding frameworks providing
graphical interfaces since this was not relevant for the presented study. The raw network

1 The terms junction and intersection are used interchangeably, as well as option and branch are.
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data were downloaded from OpenStreetMap (OSM). The intersections were calculated with
the Intersections Framework [11], whereas street segments were extracted with a custom
script. With those components each city could be represented as a networkx graph.

3.2 Following Navigation Instructions
In this subsection the modeling aspect which is shared across both simulation conditions,
is explained: In either condition an agent has the ability to follow navigation instructions.
This ability (nav_instr) is modeled using a value in the range [0.8; 1.0] and represents the
probability of taking the branch indicated in the route instruction. This ability is expected
to be high because navigation instructions are followed on a daily basis by millions of users,
hence the interval between [0.8, 1.0]. We use a uniform distribution in case of the baseline,
whereas a normal distribution is assumed in case of our free choice navigation approach (see
Section 4).

3.3 Baseline
The baseline our approach is compared with is a TBT navigation system, i.e., agents receive
navigation instructions only at turning points. Agents in this condition have a single attribute
called nav_instr which represents their ability to follow a route instruction correctly. It is
represented as a value within [0.8; 1.0] drawn from a uniform distribution, because no figures
were found on how well people can follow turn-by-turn navigation instructions in general
(i.e., a mean value based on empirical grounds is not available).

(a) (b) (c)

Figure 1 The decision mechanism for the baseline condition. current node: yellow (in the
center); previous node: grey; given instruction: red arrow; excluded branches: red cross; annotations
represent the probability of a branch to be taken: (a) turn-around instruction (always performed
correctly); (b) Sample turn instr. 1 with two straight ahead options; (c) Sample turn instr. 2 with
only one straight ahead option.

There are three options for an agent at any junction: (1) no instruction means continue
straight ahead (within a 20° cone); (2) turn-around instruction which are always followed
correctly (see Fig. 1a); (3) turn instruction which is interpreted as a weighted random
choice (see Fig. 1b and 1c). The decision which segment is taken is modeled as a multi-step
process, which starts only if a turn instruction is given: First, all potential options to follow
are identified. This means, the option the agent is coming from is excluded because it
would have been otherwise a turn-around instruction. If there is only one straight ahead
option, it is also excluded too (see Fig. 1c) because no instruction would have been given if
continuing straight would have been the correct option. Next, probabilities are assigned to
each option: The agent’s ability to follow navigation instructions (nav_instr) is assigned as
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a probability to the option which is indicated as correct by the turn-instruction. All other
n remaining options have a probability of 1−nav_instr

n . Finally, given these probabilities a
weighted random choice is performed and the agent moves to the next junction and the
procedure is repeated until the agent reaches its destination.

4 Free Choice Navigation Approach

In this section, a detailed account of the free choice navigation approach will be given. We,
first, describe the properties of our agents and then, we move on to explain the decision
mechanism of our agents in detail. In order to mitigate potentially adverse effects on spatial
cognition by the usage of wayfinding assistance systems (see, e.g., [21]) we propose the free
choice navigation approach. This paradigm nudges users to engage with the environment by
balancing the number of free route choices against a given maximum distance threshold.

4.1 Agent Properties
Due to the nature of our approach, modeling the agents is more complex than in the baseline
condition. Agents have five different properties, each of which is detailed below:

Belief Vector (belief_vec) represents a subjective vector from the current junction to the
believed location of the destination which, in turn, depends on the agent’s current
orientation. In contrast, the true destination vector (true_dest_vec) is the beeline from
the current junction to the true destination location. These two vectors usually differ
(see [20] for this claim and Figure 3 for an example).

Environmental Spatial Abilities (env_sp_ab) follow a normal distribution (M = 0.5,
SD = 0.2; co-domain [0; 1]). They have an impact on the belief vector. They are
needed to “form a coherent mental representation” of the environment [39]. To the best
of our knowledge, there is no evidence about the distribution of Environmental Spatial
Abilities, therefore we assumed a normal distribution.

Spatial Confidence (conf ) refers to an agent’s confidence [39] about the destination di-
rection ([0.0; 1.0]). Prior evidence indicates (see, e.g., [26]) that self-reported tests on
spatial abilities have been a good performance predictor. We, therefore, model an agent’s
spatial confidence based on it’s environmental spatial abilities: It seems to be plausible to
assume that agents which are good wayfinders would indeed have a high self-confidence
in knowing the destination direction. Therefore, the maximum (max_conf ) and mini-
mum (min_conf ) confidence level of an agent are related to env_sp_ab and are set to
env_sp_ab ± 0.2 (co-domain [0; 1]).

Ability to Follow Navigation Instructions (nav_instr) represents the ability to follow a
navigation instruction (see [34]; see also baseline agents). For this condition it is equal to
env_sp_ab ∗ 0.2 + 0.8; in order to have the same range as for the baseline condition.

Memorized Dead Ends Agents are able to remember dead ends they have already taken in
order to avoid back and forth movement (see [19]).

4.2 Initializing Agents
Before an agent starts a trial, both, its environmental spatial abilities (env_sp_ab) and its
initial spatial confidence (conf ) value are randomly set according to the intervals described
above. Additionally, information about the destination direction is obtained, i.e., belief_vec
and true_dest_vec are pointing to the same direction. In each city the same population
of agents is used. A trial is considered successful if and only if an agent has reached the
destination deviating no more than a predefined threshold from the shortest path length.
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Figure 2 Overview of the decision mechanism
for the free choice navigation condition.

Figure 3 The agent will consider op-
tions 3/4 (branches intersect green solid
line polygon). The dashed polygon rep-
resents the alternative cone (see step 2).

4.3 Decision Mechanism
The key geometric object we use to implement the reasoning of an agent at each intersection is
a cone. This polygon represents where the agent believes the destination lies in (see Figure 3).
The width of the cone (cone_width) represents how certain an agent is about belief_vec.
It is, hence, influenced by nav_instr , conf and environmental complexity (env_comp, see
below) and ranges between 360°(total confusion) and 1°(very sure).

Figure 2 provides an overview of the reasoning steps an agent and the simulated navigation
system (only step 6) execute. It is important to note that this process will start if and only if
the current node is not the goal node nor the current traversed path length is equal or greater
than the maximum allowed path length. In both cases the trial would end immediately.

Having said this, the reasoning process starts with the update of the spatial confidence
(step 1), based on whether an instruction was issued at the previous junction. Step 2 focuses
on the update of its assumption about where the destination is located at. In Step 3 the
certainty about this belief vector is modeled. Steps 4 deals with determining the eligible
options, whereas a probability is assigned to each of these branches in step 5. Step 6
represents the most important part of this reasoning process, as is now determined whether
an instruction should be issued. In a final step, a branch is chosen by the agent (step 7).

The detailed behavior can be described as follows:

Step 1: Update Spatial Confidence

The spatial confidence (conf ) updates at every intersection2. The amount in change is
calculated according to equation 1 (as mentioned above, its co-domain is restricted to
[env_sp_ab ± 0.2]). If an agent received an instruction at the last intersection, the spatial
confidence decreases, otherwise it increases. The rationale behind this mechanism is that
wayfinders may perceive the fact that they received a route instruction as sign that they have
taken wrong decisions in the past. This is, of course, intertwined with spatial abilities and,
hence, agents with higher spatial abilities are less prone to loosing their spatial confidence.

conf_corr_term = 0.05 ∗ (1 − env_sp_ab) + 0.01 (1)

2 The spatial confidence will not be updated for the first and the second intersection as no instruction is
given at these junctions, see step 6.
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Step 2: Calculate Cone Direction

The cone bisector is calculated according to the belief vector (belief_vec, see eq. 2). In line
with prior evidence [18], the agent’s orientation deteriorates with distance (the number of
traversed junctions) but less so for agents with higher env_sp_ab. For each intersection, this
belief vector is rotated away from the true_dest_vec by random choice. The rationale for
this randomness is that there is no apriori knowledge about in which direction the erroneous
belief_vec is rotated (see Figure 3).

belief_vec = true_dest_vec ± (1 − 1
#traversed_junctions

) ∗ (1 − env_sp_ab) ∗ 180° (2)

Step 3: Calculate Cone Width

The width of the cone (cone_width) represents how confident an agent is regarding the
direction to the destination. It is influenced (see eq. 3) by the agent’s spatial confidence
and the environmental complexity of the current junction (env_comp) whose impact is
moderated by the agent’s spatial abilities (the lower the environmental spatial abilities the
higher the impact environmental complexity shows on the cone width). Before the whole
simulation starts each junction in a city will be assigned a normally distributed environmental
complexity (env_comp, M = 0.5, SD = 0.2) which will remain unchanged during all trials. A
node for which env_comp = 0.5 is, therefore, considered as decision point having an average
environmental complexity. Based on the cone_width and the belief_vec the actual cone
geometry is calculated (see Figure 3).

cone_width = 360° − (conf ∗ 360°) + (env_comp − 0.5) ∗ 360° ∗ (1 − env_sp_ab) (3)

Update Eligible Options (Step 4) and Calculate Probabilities for Eligible Options
(Step 5)

In order to find the set of eligible branches, agents exclude any already visited dead end
(memorized options) from the decision process (Step 4). Having done so, the cone is checked
for eligible options and angles with respect to the belief_vec are calculated for each branch
(Step 5). Three different cases are distinguished:

Option 1: No branch in cone All eligible options are taken into account and the angles
between them and the belief_vec are calculated (least-angle strategy [20]).

Option 2: Exactly one branch in cone This branch is assigned a probability of 1.0.
Option 3: More than one branch in cone As in this case an agent can choose from several

branches inside the cone, angles are found for these by analogy with option 1.
For options 1 and 3, these angles, denoted as opt_ang, need to be converted to probabilities
using three further steps.
1. All angles are inverted with respect to the maximum angle within the cone which is

given by cone_width
2 , thereby favoring angles which are closer to belief_vec: inv_angles =

cone_width
2 − opt_ang. Subsequently, each inverted angle will be normalized (division by

the sum of all inverted angles in the list) in order to ensure that the sum of all probabilities
equals one.

2. In order to avoid back and forth movement along the same branch (see [19]), a factor
called already visited penalty factor (vis_pen) is applied to the probability of any edge
which has already been visited. The lower the value the higher the penalty. Again, the
probabilities are normalized.
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3. A final selection step for branches is needed as several branches may show almost
the same angle to the bisector of the cone geometry, i.e., whose angles can hardly be
distinguished by humans. Therefore, only those branches with a probability greater than
max_probability − 0.1 are selected and then the remaining probabilities are normalized.

The above procedure leads to the final set of branches FS with their final probabilities
assigned. These will subsequently be used to decide if an agent needs an instruction or not.

Step 6: Determine Whether an Instruction is Given

Given the probabilities and several additional parameters a decision is made whether an
instruction is given to the agent3. An instruction is provided for any of the following reasons,
i.e., the list of reasons is checked one-by-one in the order given below:
1. The shortest path from the current junction to the destination leads over a single segment,

i.e., the instruction is given in order to support destination recognition (see [9]).
2. Let sp_length denote the shortest path from the start to the destination; let further

dist_walked denote the distance an agent has walked from the start to the current junction.
Finally, let max_dist denote the constant factor which determines the allowed deviation
from sp_length still rendering a trial successful. Then, the current buffer (curr_buffer),
i.e., the distance an agent can walk from the current junction to the destination in order
to still successfully finish a trial is given by equation 4.

curr_buffer = max_dist ∗ sp_length − dist_walked (4)

Let, furthermore, buff_fact (co-domain: [0; 1]) denote a factor which is used to balance
the number of given instructions against the number of agents that will arrive (given
the presupposition that the probability of a successful trial increases for agents who
receive more instructions). This means, this factor is used to account for the risk that the
agent will exceed the available buffer: An instruction will be given if the current buffer
multiplied by the buffer factor is lower than the length of the shortest path from the
current junction (see eq. 5).

curr_buffer ∗ buff_fact < sp_length_curr_jct (5)

3. For the same reason other branches are examined (step 2 is introduced in order to save
computation time). We evaluate this case based on two steps. We, first, create the set of
acceptable branches AB which includes all branches which fulfill inequality 7 in which
sp_over_i denotes the sum of the length of the shortest path between the upcoming
intersection i and the destination and the length of the edge from the current junction to
i (see eq. 6).

sp_over_i = sp_lengthi + len(edge_to_i) (6)
sp_over_i <= curr_buffer ∗ buff_fact (7)

Subsequently, we sum the probabilities of all branches b ∈ AB. If this sum is smaller
than a predefined threshold called pos_sum, which is kept constant across trials, then an
instruction is given.

3 There is no instruction given at the first two nodes the agent traverses as it is reasonable to assume
that the direction of the destination is still evident.
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4. An instruction is, furthermore, given if an edge exists in the final selection FS (see step 5
above) for which the shortest path from the end node of this edge leads over the current
node. Let the current junction be denoted as ji−1; let the upcoming junction of a branch
bi which is part of the final selection set be denoted as ji. An instruction will be given
if the shortest path from ji would lead over ji−1 because this will save agents a loss of
curr_buffer due to avoidable detours.

5. Given the fact that the number of agents with a successful trial must be maximized, an
instruction is also provided if agents have a high probability of choosing a branch which
will be costly in terms of the consumed buffer while there would have been “cheaper”
alternatives. Let rem_len_buf (Remaining Length Buffer, RLB) denote the difference
(see eq. 8) between the curr_buffer and the sp_over_i (see eq. 6).

rem_len_buf = curr_buffer − sp_over_i (8)

Step 1: For all branches b ∈ FS the ratio between the RLB of the branch with the
highest probability and the RLBs of all other branches is checked. If this ratio is larger
than a threshold buff_diff , this branch will be included in set BS, because it offers a
better RLB. If |BS| = 0 no instruction is given.

Step 2: If |BS| ≥ 1: Let P (bk) denote the probability assigned to the k − th branch
and MAX(P (bk)) denote the highest probability of all branches in FS (note: FS is a
superset of BS and the probabilities of branches in both sets are the same). For each
branch in BS check whether inequality 9 holds in which prob_diff denotes a threshold
for the ratio of the highest probability of all branches among FS and a given branch
in BS.

MAX(P (bk))
P (bk) > prob_diff (9)

If this inequality holds, an instruction will be given, because chances are high that the
agent misses a better RLB.

If none of these cases holds for the current junction, then no instruction is given and and
the agent chooses an option (step 7) based on the probabilities (step 5) assigned to each
branch. With those conditions we try to predict costly mistakes rather than correct them
because some mistakes can be expensive and unrecoverable regarding the goal of reaching
the destination within a given distance threshold.

Step 7: Choose an Option

At any junction agents either choose an option by following an instruction or by making a
decision without having received an instruction. In the latter case, agents choose the branch
they will continue on from the final selection set FS based on a weighted random choice.
If an instruction was given, however, the same procedure as for the baseline applies (see
above), although one important differences applies: The edge on which an agent traveled
to the current junction is the only one which is excluded. Please note: Again, turn-around
instructions are as well followed error-free.
This decision mechanism of giving an instruction remains the same for the whole route.
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5 Results

In order to reduce the amount of combinations, a pre-test was done with 20 agents (out of
3000) and 15 routes (out of 100) using the following parameter values:

Maximum path length (max_dist) {1.2, 1.35, 1.5}
Buffer factor (buff_fact) {0.5, 0.6, 0.7, 0.8, 1.0}

Positive sum threshold (pos_sum) {0.5, 0.75}
Buffer difference threshold (buff_diff ) {1.05, 1.2, 1.5}

Probability difference threshold (prob_diff ) {1.05, 1.2, 1.5}
Already visited penalty factor (vis_pen) {0.1, 0.5, 0.75}

This yielded 810 different parameter combinations which were tried. Of those, for each city
two parameter sets were chosen for the experiment, resulting in 6 different sets in total:
best_perc is the parameter set which yielded the maximum percentage of successful trials,

thereby prioritizing the percentage of agents who arrive.
best_f_ch is the parameter set which represents a trade off (found by multiplication)

between the percentage of successful trials and the number of given instructions.

Each of the six parameter sets was used for each city (3000 agents and 100 routes) resulting
in 18 runs, overall. Of these, the two best performing runs for each city were selected for the
final analysis (see Table 1) applying again the best_perc and best_f_ch criteria. There are,
consequently, two datasets for every city for condition free choice navigation. Contrastingly,
the baseline has only one dataset for each city as no additional parameters except nav_instr
need to be set. An overview of the results is presented in Table 2. Generally speaking, more
people arrive with the baseline condition across all cities. The parameter set for best_f_ch
leads to a similar number of instructions per traversed node as for the baseline.

Table 1 The best parameter set for every city regarding best_perc (%) and best_f_ch (% * f_c).
D – Djibouti, M – Mexico, V – Vienna.

City Best at max dist buff fact pos sum buff diff prob diff vis pen
D % 1.5 0.5 0.75 1.2 1.2 0.5

M, V % 1.5 0.5 0.75 1.5 1.5 0.1
D, M, V % * f_c 1.5 0.7 0.75 1.5 1.05 0.5

Next, we will present the analysis regarding our hypotheses. In order to analyse differences
between both conditions bootstrapping (B = 10000 runs) was used and 95% percentile-based
confidence intervals (CIs) are reported in square brackets. We refrain from calculating
statistical tests due to the very large sample size. While there is a single dataset in the
baseline condition, for our free choice navigation approach the relevant dataset (best_perc or
best_f_ch) is chosen as appropriate.

In the following, we detail several hypotheses with respect to our approach and provide
the results of our analysis.
Reduced Number of Navigation Instructions (H1) As described above (see Section 1), free

choice navigation approach equips wayfinders with flexibility in terms of route choice.
We, therefore, hypothesize that people who reach the destination within a distance of
1.5 × sp_len using our approach will receive less route instructions as compared to the
baseline scenario.
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Table 2 Comparison of baseline (B) and free choice navigation (FCN) for agents who arrived
within a certain percentage (leftmost column) of the shortest path length being allowed to walk
150% of the shortest path. Parameter sets for condition free choice navigation are given in Table 1
(max_dist=1.5). base: dataset of baseline; best_perc/best_f_ch: datasets of free choice navigation;
%: percentage of people who arrived; ipn: mean no. of instructions per traversed junction (ipn).

City Djibouti Mexico Vienna
Con. B FCN B FCN B FCN
Dset base best_perc best_f_ch base best_perc best_f_ch base best_perc best_f_ch
Feat. % ipn % ipn % ipn % ipn % ipn % ipn % ipn % ipn % ipn
110% 0.74 0.37 0.13 0.66 0.04 0.27 0.81 0.32 0.13 0.62 0.06 0.30 0.77 0.39 0.12 0.61 0.03 0.20
120% 0.9 0.39 0.30 0.68 0.11 0.28 0.95 0.33 0.32 0.66 0.16 0.31 0.92 0.4 0.34 0.64 0.12 0.24
130% 0.96 0.39 0.51 0.7 0.24 0.31 0.98 0.33 0.55 0.69 0.30 0.33 0.97 0.40 0.59 0.67 0.25 0.28
140% 0.98 0.4 0.76 0.72 0.45 0.36 0.99 0.33 0.78 0.72 0.52 0.37 0.99 0.41 0.83 0.69 0.48 0.34
150% 0.99 0.4 0.91 0.74 0.81 0.43 1.0 0.33 0.9 0.74 0.81 0.43 1.0 0.41 0.95 0.71 0.85 0.41

Our figures do not support this hypothesis: For all cases, the mean difference in instructions
given per traversed junction4 between the baseline and our approach (best_f_ch) is
negative, i.e., less instructions were given in the baseline condition: For Djibouti (M =
−0.037, SD = 0.0004,[-0.0379; -0.0361]) our approach yielded on average one additional
instruction every 27 ( 1

mean ) junctions, whereas in Mexico (M = −0.103, SD = 0.0004,
[-0.104; -0.102]) this value increases to every 10 junctions. The smallest difference between
the two conditions was found for Vienna (M = −0.004, SD = 0.0004, [-0.005; -0.003])
where one additional instruction every 250 junctions is expected.

Longer Routes Enable More Free Choices (H2) Based on the fact that longer routes result
in an increased maximum absolute route length and in line with H1, we also assume
that successful agents will have made a higher number of free choices on longer routes.
Similar to H1, our results (best_f_ch) do not support this hypothesis. We found a
weak negative Spearman correlation between the number of junctions traversed and the
% of free choices of all decisions an agent made across cities. Djibouti (M = −0.168,
SD = 0.002, [-0.172; -0.164]) and Vienna (M = −0.179, SD = 0.002, [-0.183; -0.175])
showed a stronger correlation than Mexico (M = −0.119, SD = 0.002, [-0.123; -0.116]).

Percentage of People Reaching Destination (H3) The free choice navigation we suggest
imposes increased cognitive load on wayfinders: They have to make spatial decisions
based on path integration and their belief about the destination vector (see Section 2).
Therefore, we hypothesize that, within a given maximum distance threshold (150%),
more people will arrive at the destination with the baseline than with our free choice
navigation approach.
Our data is in line with this assumption. Again, the difference between the baseline and
free choice navigation (best_perc) is reported: In Djibouti (M = 0.085, SD = 0.0005,
[0.084; 0.086]) on average 8.5 percentage points less trials ended successfully. In Mexico
(M = 0.100, SD = 0.0005, [0.099; 0.102]) the figures show 10 percentage points. For
Vienna (M = 0.047, SD = 0.0004, [0.046; 0.048]), again, the smallest difference compared
to the baseline was found, showing an average difference of 4.7 percentage points.

Low Spatial Abilities of Failures (H4) Based on the need to make their own spatial deci-
sions (see also H2), we assume that the fraction of people, who is not able to arrive at the
destination within a threshold of 1.5 × sp_length, will be highest within those agents
who show low spatial abilities.

4 The number of obtained instructions was normalized by the number of traversed nodes as free choice
navigation agents walked on average more.
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Table 3 Numbers regarding failed trials: a) Share of failed trials per city and ability category. b)
Share of agents who failed at least once.

(a) The share of failed trials within a
150% distance threshold categorized
by city and env. spatial abilities.

City Low Medium High
Djibouti 25.95 6.95 1.34
Mexico 28.99 7.68 0.79
Vienna 16.47 3.46 0.23

(b) Share, mean (M) and standard deviation (SD) of agents for
a given category of env. spatial abilities who failed one or
more trials. low (521): [0; 0.3]; medium (2028): (0.3; 0.7]; high
(451): [0.7; 1]

City Low Medium High
Feat. % M SD % M SD % M SD

D 100% .2 .079 99% .50 .11 79% .79 .07
M 100% .2 .079 98% .50 .11 51% .77 .06
V 100% .2 .079 86% .49 .10 20% .75 .05

In order to investigate this hypothesis, agents are categorized, based on their env_sp_ab
and its standard deviation, into 3 groups: low ([0;0.3], Nlow = 521), medium ((0.3;0.7],
Nmed = 2028) and high ((0.7;1], Nhigh = 451). The data obtained by the simulation
(best_perc) supports our assumption: Across cities (best_perc) agents with low env_sp_ab
show the highest share of failed trials (see Table 3a). Moreover, each agent with low
spatial abilities failed at least on one trial (see Table 3b). In Vienna 20% of high-level
agents did not reach their destination at least once, whereas in Djibouti and Mexico this
share was 79% and 51%, respectively.

Higher Spatial Abilities Yield Shorter Routes (H5) Based on prior evidence on path inte-
gration (see e.g., [24]) we assume that wayfinders with high spatial abilities will be able
to take shorter routes, in terms of deviation from shortest path length.
There is a strong negative correlation between env_sp_ab and the path length (best_perc);
which supports this hypothesis. Both, Djibouti (M = −0.50, SD = 0.002, [-0.504; -0.498])
and Mexico (M = −0.507, SD = 0.002, :[-0.51; -0.504]) show similar correlations, whereas
Vienna (M = −0.566, SD = 0.001, [-0.568; -0.563]) shows a stronger correlation.

6 Discussion and Limitations

We will discuss the results of our agent-based simulation along two lines. First, we will
discuss our findings and contributions with respect to the idea of free choice navigation.
Second, we will continue with respect to the plausibility of the model and its limitations.

6.1 Discussion
Using TBT navigation systems, users are required to follow a predefined route including
predefined turns. This system behavior, however, results in a reduced interaction between
users and the spatial environment, ultimately leading to (potentially) adverse effects in terms
of spatial orientation. The primary goal of this paper is, therefore, to propose the concept of
free choice navigation and initially test this assistance approach by means of a simulation
study. Our approach has the potential to remedy these effects and is expected to foster
spatial knowledge acquisition as it aims to give user more freedom and, at the same time,
ensures reasonable route lengths.

Generally speaking, plausibility and validity are both important concepts in simulation
studies [5]. While the former can be be judged according to specific figures, the latter requires
empirical evidence. Checking validity must, hence, be left for future work (see Section 7);
our figures, however, indicate the plausibility of agent behavior. Our free choice navigation
approach is plausible as cities with different morphologies [32] yield different results (see
Tab. 2) which is also in line with prior evidence (see e.g., [4]). This difference is also reflected
in our results regarding H1: Our approach does not yield less navigation instructions per
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traversed node compared to the baseline system. While the effect can be neglected for Vienna
(average route length: 87.8 junctions, i.e., 0-1 instructions more than the baseline system)
and is of low relevance for Djibouti (mean length: 67.5 junctions, i.e,. 2-3 instructions more),
a considerable increase (mean length: 70.6 junctions, i.e., 7 instructions more) can be seen
for Mexico City, where 10% more instructions are needed than in the baseline condition. The
reasons as well as the impact on user experience leaves much room for further research.

The plausibility of our model is further supported by our results regarding H3, H4, H5:
Less people arrived with our approach than in the baseline condition (H3), agents with low
environmental spatial abilities fail more often (H4) and the higher these abilities the shorter
the path taken (H5). In addition to that, each agent which has low abilities does not reach its
destination at least once (see Table 3b). All of these results are in line with our expectations
and, taken together, suggest that environmental spatial abilities play a key role (see future
work below). Having said this, the simulation results for our free choice navigation approach
yield, moreover, promising results with respect to success rate (i.e., reaching the destination
within 1.5 × len(shortest_path)) and distance traveled: In each city more than 90% of all
agents arrive within this threshold. More importantly, on average this upper limit was not
reached at all (Djibouti: M = 1.26, SD = 0.13; Mexico: M = 1.25, SD = 0.127; Vienna:
M = 1.25, SD = 0.121). A mean detour of about 25% seems reasonable in a leisure scenario
and our approach yields shorter average distances than reported in other, vibro-tactile based,
beeline studies (see e.g., [29] in which mean distances greater than 1.5 × len(shortest_path)
are reported). While the number of route instructions issued is not less than for the baseline
system the free choice navigation approach proposed allows for a particularly high share of
free choices (Djibouti: 0.57, Mexico: 0.57, Vienna: 0.59) which results in a lot of engagement
with the spatial environment traversed. Having said this, however, our results do not support
hypothesis H2: We found a weak negative correlation between the number of traversed
intersections and the share of free choices along a route (i.e., the number of intersections at
which no route instruction is given): One possible reason for that can be that the parameter
set produces an artifact in the data, hence, further research is needed. Furthermore, the
higher overall success rate and the lower share of agents with medium and high environmental
spatial abilities which did not arrive at least once (see Table 3b) suggest Vienna to be easier
to navigate than Djibouti and Mexico City.

Taken together, this discussion reveals that the free choice navigation is reasonable. At
the same time, the chosen parameters are crucial for the figures achieved. Clearly, our model
is not optimal and can, therefore, act as a baseline other researchers can compete with. There
are several possibilities for improvement: For example, reducing the number of instructions
or increasing the percentage of arrived agents. As a consequence, the data will be published
at https://geoinfo.geo.tuwien.ac.at/resources/

6.2 Limitations
Despite the promising results, several limitations apply. On the one hand, the environment can
be modeled more complex considering for example junction geometry [11] or environmental
data like building footprints or points of interests. On the other hand, a more elaborate
modeling of agents is feasible, in particular with respect to interpretation of route instructions
(of different types) [34] or by considering further wayfinding preferences [3]. A further
limitation of our work is related to the application of the introduced cone (see Section 2) for
real scenarios. We assumed to know the approximate direction that agents would follow (i.e.,
the direction of the cone). To apply this to humans, it is necessary to know the direction they
will follow. Recent research in human activity recognition has shown very positive results
(e.g., [38, 2]), which can be used for our purpose to determine the direction of the cone.
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7 Conclusion and Future Work

We introduced free choice navigation, a novel approach with the intention to increase the
freedom of choice during navigation. This approach was evaluated by means of an agent-
based simulation study and compared against a TBT approach, serving as a baseline. The
agent-based model used for the simulations is a further contribution, introducing the concept
of the cone, which encodes the user’s spatial abilities and confidence. Our findings are in line
with our expectations concerning the proportion of free choices during navigation as well as
the impact of spatial abilities on the effectiveness of our approach. Furthermore, the results
confirm the plausibility of the introduced agent-based model.

Future human subject experiments in real-world environments are required in order to
address a series of open research questions. First, the validity of the presented agent-based
model could be investigated by comparing the simulated results with the ones obtained from
humans in a real environment. Furthermore, we expect that the free choice navigation will
foster spatial knowledge acquisition due to the increased engagement with the environment.
Along the same line, also aspects concerning user experience, cognitive load, or uncertainty
should be addressed in human subject experiments. The data and model will be made
available and can serve as a baseline for further development. The model and the results
can, thus, be used by the community as a benchmark for future iterations of the model.
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Abstract: In recent years, there has been collected evidence suggesting that increased usage of
navigation assistance systems has a harmful effect on spatial cognition, including spatial knowledge
acquisition. Previously, we proposed a potential remedy called Free Choice Navigation (simulation
study). This novel navigation approach aims to provide the user with more freedom while navigating,
and simultaneously give fewer navigation instructions. This approach also aims at increasing
engagement with the environment and fostering spatial knowledge acquisition. We conducted a
human-subject study with 48 participants comparing Free Choice Navigation with the widespread
Turn-by-Turn approach on the outskirts of Vienna, Austria. The study showed the viability of our
navigation system in real urban environments, providing fewer navigation instructions compared to
the Turn-by-Turn approach (relative to the number of traversed junctions). Fewer instructions and
forced engagement with the environment, however, did not result in differences concerning spatial
knowledge acquisition, but interestingly, Free Choice Navigation users (without a map) could extract
spatial configuration information similarly well as Turn-by-Turn users having a map. Moreover,
we provide evidence that people are interested in learning more about their environments and are
willing to walk longer routes to achieve it.

Keywords: wayfinding; free choice navigation; spatial knowledge acquisition; pedestrian navigation
system

1. Introduction

Navigation is an everyday task performed by billions of people. It is composed
of wayfinding (the cognitive aspect of planning the route towards the destination) and
locomotion (e.g., body movement while avoiding obstacles) [1]. Sometimes, this task has
to be conducted under time pressure (e.g., going to a meeting or catching a bus). On the
other hand, there are situations, such as going for a walk or visiting a city as a tourist, in
which the user would have time to pay attention to the environment. In both scenarios, a
smartphone device is commonly utilized as a wayfinding assistance system to reach the
desired destination. There is increasing empirical evidence suggesting an adverse impact
of these systems on spatial cognition. Mitigating this potentially adverse impact is the topic
of current research (e.g., [2–5]).

In a previous work [6], we proposed a navigation approach called Free Choice Navigation
(FCN) that, among other things, attempts to mitigate these adverse effects. The core idea of
FCN is to provide the user with more freedom while navigating compared to a predefined
route, as the user has to make own decisions at several junctions. By this, we expect more
engagement with the environment. Free Choice Navigation attempts to balance the number
of free choices, given instructions, and the route length. An agent-based simulation study
showed promising results regarding the number of free choices and the arrival rate for
our navigation approach [6]. At more than 50% of all junctions, agents could freely decide
which street segment to take. Depending on the city (Mexico City, Vienna, and Djibouti
City), between 90% and 95% of the agents found their destination successfully.
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Following up on these promising simulation results, we conducted a real-world study
in Vienna, Austria, comparing our navigation approach with the widespread Turn-by-Turn
(TBT) approach. This study allows for assessing the impact of FCN on spatial knowledge
acquisition (SKA), an aspect that was not part of the simulation study. Furthermore, it
allows for validating the simulation results obtained previously. The contribution of our
work is sixfold (order reflects importance):

1. We provide empirical evidence that participants can reach the destination successfully
with our novel system approach (FCN);

2. We show that FCN leads to less navigation instructions (relative to the number
of traversed junctions). This gives potentially more time for interaction with the
environment;

3. We provide empirical evidence that FCN in its current form does not impact spatial
knowledge acquisition in comparison to TBT;

4. We show that FCN users have high configuration knowledge, although no map
is provided.

5. We present data demonstrating that people are willing to take longer routes while
obtaining more freedom and/or spatial knowledge in return and;

6. We present the first application of the Route Selection Framework [7] in a real-world study.

We would like to stress that Free Choice Navigation is intended for use in situations
with no time pressure. As our approach is rather complex, we provide high-level informa-
tion about its mechanics (see Sections 2.2 and 4.3.2). For detailed algorithmic information,
we refer to the paper that introduces the technical details [6].

2. Related Work

We will discuss three strands of related work. First, we discuss the widely used TBT
approach with its potential negative impacts on spatial cognition. Second, we discuss
potential improvements of this approach to remedy these effects. Finally, we discuss other
navigation approaches that are not exclusively based on turn instructions, such as beeline
navigation or Free Choice Navigation. Where applicable, we report on the influence on
spatial knowledge acquisition.

2.1. Turn-by-Turn Navigation and Its Disadvantages

The Turn-By-Turn (TBT) navigation approach is based on instructions given at turning
points. It is widely used by pedestrians, cyclists, and car drivers (e.g., Google Maps
Navigation), and it comes in many shapes (e.g., [8–11]) such as annotated paper maps,
mobile maps indicating the route or augmented reality (AR) cues placed in the environment.
Besides auditory instructions played at turning points (e.g., [10]), there have also been
further non-visual approaches, trying to navigate users through the environment without
the need to refer to a display for instructions. Giannopoulos et al. [12] introduced GazeNav,
a gaze-based navigation approach providing vibrotactile feedback whenever the correct
street segment was gazed at. Although this navigation approach is efficient in reaching the
destination, there is empirical evidence supporting that the usage of navigation assistance
systems, mainly based on the TBT approach, may have an adverse effect on various aspects
of spatial cognition.

Hejtmánek and colleagues showed that participants who spend more time with a GPS-
like map acquire less accurate spatial knowledge in a virtual environment [13]. Furthermore,
participants with less time spent on a GPS-like map walked shorter routes without the
help of an assistance system. Ishikawa [14] concluded that users with increased usage
of navigation systems tend to travel less efficiently without GPS-based assistance, have
lower spatial abilities regarding mental rotation, and show inferior knowledge about the
structure of the walked routes. Ruginski and colleagues [15] found a detrimental indirect
influence of using GPS-based navigation aids on environmental learning by influencing
spatial transformation processes such as mental rotation [16] and perspective-taking [17].
Dahmani and Bohbot, like Ishikawa [14], assessed the frequency of use of GPS-based
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navigation systems [18]. Their results show that users with more experience have worse
spatial memory while navigating without such a device. Furthermore, their findings
suggest the decline of spatial memory with extensive use of navigation assistance systems.

Research suggests that these problems originate from the need to divide our attention
between the navigation system and the environment. Consequently, this permanent back
and forth movement impairs spatial memory [19]. Another influencing factor is the degree
of automation the system provides. If the human user does not need to pay attention and
only passively follows the instructions, it may not acquire as much spatial knowledge as
with a lower automation level [20].

While comparing the TBT approach with a paper map, which provides a holistic
overview of the area, researchers have found that users of digital aids learned less about
their environment than paper map users (e.g., [21,22]). Therefore, many researchers have
proposed modifications to the TBT approach to remedy the above-mentioned adverse
effects. One approach is to enhance the turning instructions with additional information
about landmarks [23] and, in turn, render them more engaging. Providing more contextual
information about the environment is another option [2]. Further improvement suggestions
include the enhancement with haptic feedback [24]. Instead of modifying the instructions,
the environment may be enriched with virtual global landmarks facilitating the orienta-
tion [25]. Besides trying to enhance the TBT navigation approach with further information,
there are navigation approaches aiming to reduce the overall number of turn-by-turn
instructions (e.g., [26]) or avoiding them.

2.2. Alternative Navigation Approaches

The TBT approach has, per definition, a completely predefined route, as turning
actions are imposed on the user. Alternatives to this approach give the user more freedom
regarding route selection by not using an entirely predefined route.

One of them is the so-called beeline navigation, which is based on the least-angle strat-
egy [27]. This strategy assumes that users favor options with the least angle with respect
to the (believed) destination. Robinson et al. and Dobbelstein et al. implemented this
approach by indicating the beeline with vibrotactile feedback [28,29]. Both implementations
led participants successfully to the destination while allowing for free movement to explore
the experiment area. Savino and colleagues compared TBT with two different variants
of beeline navigation for cyclists [30]. One provides only the beeline to the destination,
whereas the second provides additional visual cues if the beeline and the shortest path
street segment differ. The second approach made participants more confident. For a leisure
scenario, participants preferred the beeline approach over TBT.

Another alternative to the traditional TBT approach is the spatial augmentation sound
system proposed by Clemenson and colleagues [31]. It acts as an acoustic compass that
guides the user towards the destination without explicit instructions. For this reason,
audio beacons are employed, which adapt in sound as a function of distance and angle
to the user. In a user study, the users of this system pointed more accurately to different
destinations than TBT users. This approach was originally developed to help visually
impaired individuals. A similar approach was proposed by Albrecht et al. [32].

Haosheng and colleagues proposed Potential Route Area (PRA) navigation [33]. The
PRA is the area covered by routes no longer than a threshold leading from the current
position to the destination. Similarly to our approach, the already walked route is taken
into account, but, in contrast to our approach, the environmental spatial abilities are of
no importance for this approach. The user is equipped with a digital map highlighting
the PRA and landmarks. The idea of this approach is; as long as the user stays within
the highlighted area, the destination should be reached within the predefined distance
threshold. The area is updated frequently and no instructions are given. The study showed
that users of the PRA system draw better sketch maps in terms of route likeness and survey
likeness [34] compared to Google Maps participants. Regarding the pointing accuracy to
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the start point and the number of drawn points of interest in the sketch map, there was no
significant difference between both groups.

The Free Choice Navigation approach was proposed in our previous work [6]. It aims
for more freedom of choice and engagement with the environment while trying not to
exceed a maximum route length. The core idea is to provide the user with two pieces of
information at the beginning; the beeline direction and distance to the destination. No
further information is given to the user before the navigation task starts. As the user
moves, the accompanying system tries to predict whether the user needs assistance, i.e.,
any information that facilitates reaching the destination. This prediction is based on the
environmental spatial abilities of the user, the complexity of the upcoming junction and
the until now traversed route. The system estimates the user’s orientation and spatial
confidence based on the user’s environmental spatial abilities. With this information,
the system can assess whether the user will take a reasonable street segment, given the
already walked distance and the maximum allowed distance. If the probability of taking
a street segment resulting in a detour above a certain threshold is high or the user is one
street segment away from the destination, then a navigation instruction for the upcoming
junction is issued. The given assistance can be of any type: visual (screens), auditory
(earphones), haptic (vibration motor), etc. The assistance can also be a TBT instruction
but does not have to be one. Potentially, it is an indication of the destination, like in the
beeline approach. While there is no need for assistance, the user is confronted with the
environment, a situation that is expected to support spatial knowledge acquisition [35].
Furthermore, in this situation, the user has to decide which street segment to take. This
work presents the first implementation of this navigation approach in a real-world setting.
For more details, we refer to the paper that introduces the technical details [6].

3. Research Questions and Hypotheses

In this section, we will present the research questions and justify our hypotheses
regarding the outcome of our study. Several research questions result from our previous
findings [6] in which we compared Turn-By-Turn (TBT) and Free Choice Navigation (FCN)
approaches through a simulation study. All research questions but one, consider the
differences between both navigation approaches. The last research question (RQ5) concerns
people’s willingness to take longer routes if knowledge about the environment or decision
freedom is gained. The answer to this question will contribute to the discussion of whether
navigation systems should focus on other functionalities than efficiently guiding from a to
b, e.g., enhancing spatial knowledge acquisition (e.g., [5]). With our study, we attempt to
address the following research questions:

• RQ1: Does the FCN approach lead fewer people (%) to their destination than TBT?
• RQ2: Does the FCN approach lead to fewer navigation instructions than TBT?
• RQ3: Does the FCN approach lead to better spatial knowledge acquisition than TBT?
• RQ4: Does the FCN approach yield longer routes or a higher number of route instruc-

tions for users with lower spatial abilities than for users with good spatial abilities?
• RQ5: Are people willing to take longer routes if they gain freedom of choice or learn

more about the environment?

The hypotheses and rationales behind the conducted statistical tests are found in
Table 1. The tested hypotheses are divided into six groups: effectiveness and efficiency
(RQ1 and RQ2), spatial knowledge acquisition (RQ3), spatial abilities in FCN (RQ4), user
experience (User Experience Questionnaire (UEQ) [36]), workload (NASA Task Load Index
(NASA TLX) Raw [37]), and usability (System Usability Scale (SUS) [38]). RQ5 is not specific
to any of the two navigation systems and is, therefore, not considered in Table 1. The tests
used to approximate spatial knowledge acquisition are described in Section 4.4.2.
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Table 1. An overview of the hypotheses analyzed; column HG refers to the group of hypotheses:
Eff2 = effectiveness and efficiency, SKA = spatial knowledge acquisition, SA-FCN = spatial abilities in
FCN, UEQ = User Experience Questionnaire, NASA = NASA TLX Raw and SUS = System Usability
Scale. Column DV presents the subdimension(s) tested. TBT refers to Turn-by-Turn, FCN to Free
Choice Navigation and HIGH and LOW to participants with high and low environmental spatial
abilities (median split).

HG DV Alter. Hypoth. Rationale

Eff2 Arrival Rate FCN < TBT Because of its first implementation and its novelty,
we expect a lower arrival rate for the FCN group (in
line with our simulation [6])

Eff2 # instructions FCN < TBT As FCN is meant to give the user more freedom, i.e.,
less instructions are expected.

SKA Judgment of relative
direction FCN < TBT As in the FCN condition, there is no need to divide

the user’s attention between a device and the envi-
ronment, we expect a smaller error.

SKA Distance
Estimation (error) FCN < TBT See Judgment of relative direction.

SKA Abstract
Route Drawing FCN < TBT The map is visible in the TBT condition map and

should help with memorizing turns.
SKA Route Drawing (Map) FCN < TBT We expect TBT users to draw more accurate routes,

because they see the route on a map in this condition.
SKA # Points of Interest FCN �= TBT On the one hand, FCN users need to actively look

around, and on the other, TBT users have a map with
POIs, therefore, we expected no difference.

SKA Points of Interest
Configuration Similarity FCN < TBT As TBT users see POIs on the map, we expect these

to have a higher configuration similarity (bidimen-
sional regression).

SA-FCN Route length and # instructions HIGH < LOW As FCN users have to use their environmental spatial
abilities, we expect participants with low self-report
sense of direction to perform worse.

UEQ Attractiveness FCN > TBT Due to the novelty of the navigation approach, we
expect FCN to be more likeable.

UEQ Depandability FCN < TBT As FCN participants have to partially depend on
their environmental spatial abilities, they are more
likely to feel uncertain.

UEQ Stimulation FCN > TBT See Attractiveness.
UEQ Novelty FCN > TBT See Attractiveness.

NASA Mental
Demand FCN > TBT We expect higher mental demand for FCN users,

as they need to rely on their environmental spatial
abilities.

NASA Physical
Demand FCN > TBT As FCN participants are expected to walk longer

routes, we expect higher physical demand for
FCN users.

NASA Temporal
Demand FCN �= TBT As participants in both conditions are instructed

to conduct the task at normal pace, we expect no
difference.

NASA Performance FCN > TBT See Mental Demand (higher performance score
means failure).

NASA Effort FCN > TBT See Mental Demand.
NASA Frustration FCN > TBT Due to the novelty of the wayfinding approach, we

expect FCN participants to show an increased level
of frustration.

NASA Overall FCN > TBT See Mental Demand.
SUS Overall FCN < TBT We expect the usability of the FCN system to be

lower, because of its first implementation and its
novelty.

4. Experimental Design

In this section, the experimental design is presented with all its decisions. These
include the selection of experiment routes, participants, navigation conditions and the
procedure description. The original experimental design was discussed with the Pilot
Research Ethics Committee of TU Wien and was improved accordingly. The participants
were acquired in two batches. First, friends and acquaintances were asked (snowball
sampling). Once this source dried up, more than 2000 emails were sent to PhD students
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and post-docs of several universities in Vienna. Through these two steps, 50 participants
were acquired in total. Two of them were excluded due to language problems (insufficient
knowledge of German to understand the experiment task). The participants were not paid,
but were offered to participate in a lottery (one prize of EUR 400). Initially, we planned an
equal distribution of 26 participants per group, but we had to stop the data collection earlier
due to re-emerging COVID-19 restrictions. This resulted in a slightly unequal distribution
(FCN = 26, TBT = 22). Assuming α = 0.05, effect size = 0.8 (i.e., a large effect), power = 0.8
and equal sample size in both groups, the a priori calculation with the software G*Power
resulted in a sample size of 21 participants per group. As we expected data loss, we decided
to collect a sample of 26 participants per group.

4.1. Data and Software

As the experiment area, the outskirts of Vienna were selected (district Liesing). The
outskirts were selected to assure unfamiliarity with the environment. The data needed
to build the graph of the experiment area were extracted from OpenStreetMap (OSM)
(https://www.openstreetmap.org, last accessed 20 June 2022). The OpenStreetMap data
were not completely up-to-date. In consequence, junctions and street segments were
added manually. The updated graph had 865 junctions and 1250 street segments and
formed the basis to find all possible routes for the experiment using SageMath 9.1 and its
SubgraphSearch function (https://doc.sagemath.org/html/en/reference/graphs/sage/
graphs/generic_graph_pyx.html, last accessed 30 January 2022). Several junction char-
acteristics (e.g., regularity) were calculated using the Intersections Framework [39]. The
remaining characteristics were implemented in Python 3.6.

4.2. Route Selection

We applied our previously developed route selection framework [7] to find suitable
routes within the experiment area. In total, three different routes were chosen to decrease
potential biases [40]. First, a route population needs to be defined. To limit the number of
potential routes, we considered shortest paths only, composed of 18 junctions (according
to OSM data) and between 550 and 750 m long. This allows for routes with a reasonable
length from a research economics perspective and a sufficient number of junctions, i.e.,
potential turning points. There were 23,296 potential routes in the experiment area meeting
these criteria. The above-mentioned framework finds representative routes for a given
area with specific characteristics. The framework ranks routes according to a score that
expresses the deviance from an average route given specific categories. The lower the
score, the better a route resembles a hypothetical average route in the experiment area. The
following five high-level categories with their features were used to calculate the score
value for each route [7]:

1. Segment-length-related features: (a) average segment length, (b) median segment
length, (c) standard deviation of segment lengths, (d) total route length

2. Cardinality of junctions: (a) average number of options at junctions, (b) number of
n-way junctions (e.g., 3-way and 4-way junctions) along the route

3. Frequency of turn types: number of right, left and non-turns along the route
4. Regularity of junctions: average angle for n-way-junctions (deviation from a regular

n-way junction, for more details see [39])
5. Point-of-Interest (POI)-related features: (a) average POI number at junctions, (b) stan-

dard deviation of POI number at junctions, (c) average POI uniqueness [41] at junc-
tions, (d) standard deviation of POI uniqueness at junctions, (e) POI per meter along
segments, (f) standard deviation of POI per meter along segments

The score calculation can be parameterized in order to reflect the relevance of categories
for a given study design. The weights for the five high-level categories were not equal,
as the study focuses on spatial knowledge acquisition. Therefore, the presence of points
of interest was the most important feature (weight = 0.4). Furthermore, the frequency of
turn types was important to avoid prevailing no-turns along the route (weight = 0.3). The
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remaining three high-level categories, segment-length-related features, cardinality of junctions
and regularity of junctions were considered equally important with a weight of 0.1. The
high-level category related to points of interest needs further explanation, as there is
no agreement about what a point of interest is, and many definitions exist (see [42] for
an overview).

4.2.1. Points of Interest

For our experiment, we initially considered every OSM object bearing the amenity
tag (e.g., bars, restaurants, churches) as a potential point of interest. After a preliminary
analysis and several in situ checks, a few values were excluded from this set because they
were not perceivable as points of interest (e.g., rubbish tips and benches). The following
values for the key amenity were excluded: waste_basket, waste_disposal, recycling, grit_bin
and bench. Furthermore, parking-related features were also excluded (“amenity” NOT
LIKE ’%parking%’) because parking places are barely noticeable (Google Street View and
in situ check) as fences or shrubs often cover them. The same filtering was applied to
polygonal POIs transformed into point features by calculating the polygon’s centroid.
Moreover, bus stops, downloaded from overpass-turbo (https://overpass-turbo.eu/, last
accessed 20 June 2022), were added as points of interest to the data set. Having the POI
dataset ready, every POI was snapped to the nearest street segment and to the nearest
junction. With this information, the features mentioned above can be calculated. A buffer
around junctions or street segments was not used in order to avoid counting POIs more
than once and having POIs not assigned to any street segment or junction.

4.2.2. Choosing Final Routes

The flexibility of the framework allows for defining a target route instead of the
average one [7]. Given our goals (e.g., having as many POIs as possible), we set certain
features of the target route to values different from the average. The number of right, left,
and non-turns should be balanced and equal for all three features. Furthermore, the three
POI-related features regarding the average (5 a, c and e) were set to the maximum available
in the data, as we are interested in having as many POIs as possible. Features regarding the
standard deviation (1c, 5 b, d and f) are set to the minimum to have POIs well distributed
over street segments/junctions on the route and to avoid very long segments. For all other
features, the data mean was used. Based on this target route, the weighted Euclidean
distance (aka score) between all 23,296 potential routes and this target route was calculated.
The smaller the score, the more similar the routes are. Having calculated the score for every
potential route, three routes were selected iteratively:

1. Choose the route with the lowest Euclidean distance to target route from the remaining
route population (Step 1)

2. Check if the route follows a main road only. If yes, exclude it and go to Step 1)
3. Check if the route has enough turning points. If not, exclude it and go to Step 1)
4. Check if the route has enough POIs (Google Street View and in situ checks). If not,

exclude it and go to Step 1)
5. Check if the route starts/ends in a dead-end. If yes, exclude it and go to Step 1)
6. Check if the route’s start or end point lies in an area accessible only through one

street segment, meaning participants will know a part of the route before the actual
experiment starts. If yes, exclude it and go to Step 1)

7. Check if the route crosses parking areas. If yes, exclude it and go to Step 1)
8. Check if the route leads through allotments gardens. If yes, exclude it and go to Step 1)
9. Check if the route leads through subways. If yes, exclude it and go to Step 1)
10. Add the route to the final route list
11. Generate two buffers (200 m and 800 m) around all routes in the final route list and

create the difference polygon between both buffers. The two buffers are employed to
avoid crossing routes and to keep the walking distance between two routes reasonable.
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12. Limit the route population to routes within the difference polygon and not intersecting
with the smaller buffer

13. Repeat until three routes are found.

The suitability of the three similar (according to the route selection framework) routes
was verified in situ before the experiment. One of the three experiment routes was assigned
randomly to each participant. The selected routes are presented in Figure 1.

Route 1

Route 2

Route 3

Figure 1. The three final routes in the experiment area located in Liesing (outskirts of Vienna, Austria).
The inset map shows the location of the experiment area within the administrative boundary of
Vienna. Background map OpenStreetMap.

4.3. Conditions

In this subsection, we describe the two navigation conditions (between-subject design),
namely Turn-by-Turn (TBT) and Free Choice Navigation (FCN). For safety reasons, all
participants were accompanied by the experimenter at all times. While walking, the
experimenter logged further data with a custom kotlin app on an Android tablet. In both
conditions, the participants received audio instructions via a single Bluetooth earbud (to not
block environmental sounds such as cars). The experimenter carried the second earbud. A
trial ended once the participant reached the destination within 150% length of the shortest
path (success), or it was interrupted if this was not possible anymore due to the walked
route so far (failure).

4.3.1. Turn-by-Turn and Application Choice

In the Turn-by-Turn (TBT) approach, an instruction is given at every turning point
along a predefined route. A very popular application offering TBT navigation, Google
Maps, could not be used because the underlying data are not freely available, and it
is different from our data basis in the FCN condition (OSM). Therefore, the navigation
systems would not be fully comparable. Several smartphone apps offer OSM-based Turn-
by-Turn navigation. However, we excluded many due to shortcomings such as no audio
instructions (https://maps.me/, last accessed 22 June 2022), aggressive map matching
(https://www.sygic.com/gps-navigation, last accessed 22 June 2022), and uncontrollable
intermediate navigation instructions (https://osmand.net/, last accessed 22 June 2022.
Finally, the app Organic Maps (https://organicmaps.app/, last accessed 22 June 2022) was
chosen, which is similar to MapsMe, but offers audio instructions.
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In our scenario, these instructions are issued by the application Organic maps via
earbuds. To ensure high positional accuracy, a Global Navigation Satellite System (GNSS)
receiver manufactured by PPM (model 10xx-38) was attached to the experiment smartphone
(OnePlus 5T) held by the participant. The map orientation changed according to the device
orientation (see Figure 2a). The task was to follow the indicated route using the application
and its audio instructions.

(a) (b)

Figure 2. Experiment setup: (a) Organic Maps interface with a track-up orientation and 2D buildings;
(b) Participant with mounted sensors. The laptop powers the IMU (inertial measurement unit) that
tracks the participant’s head movements. The eye-tracker is used to verify the map drawings of the
participants. The pictures do not show the experiment area (illustration purposes only).

4.3.2. Free Choice Navigation

In this condition, the Free Choice Navigation approach [6] was implemented through
a custom Android application operated by the experimenter. This approach aims for more
freedom while navigating, simultaneously assisting the wayfinder in difficult situations.
In the beginning, the participants received two pieces of information: the direction to
the destination, marked by a red arrow on the ground, and the beeline distance to the
destination. While the participant was walking, the FCN system decided at every junction
whether assistance was needed. This decision was based on environmental spatial abilities
(derived from the Santa Barbara Sense of Direction Scale (SBSOD) questionnaire), the
walked route so far, and the situation at the next junction (e.g., distance to destination,
number of options, possible detours).

The task was to find the unknown destination with the assistance of the Free Choice
Navigation system. As one of the aims of FCN is minimizing the information provided to
the user, the destination was kept unknown, as there was no graphical interface that would
have facilitated the communication of the destination. The experimenter stressed that the
destination could not be missed because the system would notify the participant on arrival.
Furthermore, the experimenter underlined that the destination is a junction and underlined
that it is not a point of interest (e.g., church, supermarket, bus stop). While the FCN
approach is not tied to any particular method of conveying route instructions, we selected
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auditory TBT instructions due to comparability with the TBT condition and widespread
use (e.g., “turn left!”). If the system supported the participant with an instruction, it was
valid only for the current junction and not for the upcoming ones (e.g., go straight ahead).
Additionally, the instruction “turn around” was explained as a 180◦ turn and a walk back to
the previous junction. The participants were asked to follow the issued instructions.

4.4. Procedure

This subsection describes the complete procedure with all its questionnaires and tasks.
It consists of an online and an in situ part. The entire experiment, including documents,
task descriptions and questionnaires, was conducted in German; however, as there is no
official translation of the NASA TLX questionnaire, the original was used, and if needed, an
unofficial translation was provided (https://www.keithv.com/software/nasatlx/nasatlx_
german.html, last accessed 20 June 2022).

4.4.1. Online Part

The online part started with the experiment description and the informed consent
regarding the recorded data. The participants then had to answer questions about demo-
graphics (sex and age), usage of navigation aids in unknown environments, spatial strate-
gies (in German Fragebogen Räumliche Strategien [43]), sense of direction (SBSOD) [44]
and psychological traits [45]. Furthermore, participants were asked to what degree they
would be willing to accept walking longer routes (0–100% longer) for each of the following
two reasons: (1) if they would gain more control over the walked route, compared to a
predefined route; (2) if they would gain more knowledge about the environment. The
completion of the online part took between 15 and 25 min.

4.4.2. In Situ Part

The in situ part took place on the outskirts of Vienna (Austria), in Liesing (see Figure 1).
Exclusively persons who visited Liesing no more than once throughout the last year were
allowed to participate in order to ensure unfamiliarity. None of the participants was a
resident of the experiment area. Before the experiment started, the informed consent
was signed, and the assigned condition was explained to the participant. The sensors
were then attached to the participant (see Figure 2b). The experimenter explained the
task again, and the first trial started if no further questions were left. Once the trial
ended (destination reached or not possible anymore to be reached within 150% of the
shortest path), the participant filled out three questionnaires regarding the workload
(NASA TLX [37]), the usability (System Usability Scale [38]) and the user experience
(User Experience Questionnaire [36]). Subsequently, a battery of four tests was used to
approximate spatial knowledge acquisition.

First, staying at the destination, the participant was asked to look in the direction
of the starting point (judgment of relative direction) and estimate the walked distance.
While pointing to the starting point, the experimenter stood 2 m behind the participant and
measured the direction with a digital compass app (https://play.google.com/store/apps/
details?id=com.vincentlee.compass, last accessed 17 October 2022). The next task was to
draw the walked route abstractly (abstract route drawing task). The experimenter stressed
that the order and number of turns were important, not metric or absolute information. In
this task, participants were also asked to indicate junctions at which they walked straight
ahead, i.e., a non-turn. The following two tasks consisted of drawing the walked route and
remembered points of interest (POIs) on a map with streets only. The start and end points
were also indicated on the map. The experimenter underlined that every remembered
detail of the environment could be a POI, e.g., the color or the architectural style of a
building, a bus stop or a pedestrian crossing. After the last spatial knowledge acquisition
task, the participant conducted an additional task about wayfinders’ orientation. These
data were collected in the same study to minimize the number of rides to the experimental
area and to reduce time effort considerably. As this additional task always took place after
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the navigation task with TBT or FCN, it did not influence the study results and is thus
irrelevant to this work.

After a short debriefing, participants were allowed to ask questions regarding the
experiment and the research questions. If no questions were left, the experiment ended at
this point. The completion of the in situ part took between 90 and 120 min.

5. POIs—Data Cleaning

The participants had to draw POIs on a map. In order to analyze them, data cleaning
was needed. While we excluded overly generic entries (e.g., “building”), POIs referring
to specific details (e.g., “yellow building”) were considered. Points, lines, and polygons
were valid shapes for a POI. We additionally excluded entities not located along the
route or visible from a distance, which participants likely knew due to their way to the
experiment. Furthermore, we considered non-permanent objects [46,47] such as a parked
yellow motorbike or temporary placed furniture on the sidewalk as valid POIs for the
analysis, since they represent a memorized detail of the environment. To obtain real-world
coordinates of the POIs, the paper map with the marked POIs was georeferenced with QGIS
3.14 [48] to match the OSM map. If the drawn POI was not present in the OSM map, the eye
tracking video was used to extract the position (potentially missing features in OSM). If the
POI was not present on the map and no video was available, then the location derived was
based on the experimenter’s memory. If the drawn POI was found neither on the map nor
in the video (or experimenter’s memory), it was excluded from the analysis. Polygon-like
features were only valid if delineated completely (e.g., park and public swimming pool).
To convert valid polygons and lines (e.g., railway lines) into point features, their centroid
was used.

6. Analysis and Results

In this section, we present the study results regarding our research questions and
hypotheses (see Section 3). If not stated otherwise, the number of participants equals
48 (FCN—26 (10 females), TBT—22 (10 Females)). Given that there are potentially large
individual differences [49,50] in spatial abilities, we compare the answers (SBSOD question-
naire) of both groups in order to ensure that any significant difference will not originate
from differences in environmental spatial abilities. A Wilcoxon–Mann–Whitney test did
not show a significant difference (Z = −1.37, p = 0.17) between the FCN (M = 0.58,
SD = 0.12) and the TBT (M = 0.64, SD = 0.17) groups regarding self-reported spatial
abilities (scaled to the interval [0;1]). As OSM was used as the underlying data, the walked
and drawn routes were snapped to the OSM network before the analysis. We analyzed
(Data analysis was conducted using GNU R v4.2.1 and its packages dplyr v1.0.9 [51], stringr
v1.4.0 [52], coin v1.4.2 [53], tidyr v1.2.0 [54], Cairo v1.6.0 [55], ggplot2 v3.3.6 [56], stringdist
v0.9.8 [57], SimilarityMeasures v1.4 [58], geojsonR v1.1.0 [59], BiDimRegression v2.0.1
[60].) the resulting dataset with respect to six groups of hypotheses (see Table 1). For all
statistical tests, we used Wilcoxon–Mann–Whitney tests due to the non-normality of the
data (Shapiro–Wilk tests and Q-Q plots). In order to avoid inflation of α-errors, we applied
corrections to the p-value according to Holm [61] (baseline α = 0.05).

Besides comparing the two navigation systems, we analyze people’s general will-
ingness to take longer routes. Finally, we scrutinize the impact of environmental spatial
abilities (SBSOD, median split) on route length and the number of received instructions in
the case of the FCN condition (see Section 3 and Table 1).

6.1. Arrival Rate and Number of Instructions

All participants (22) in the TBT condition reached the destination, whereas, in the FCN
condition, 23 out of 26 (88.46%) participants were successful. Next, we compare the relative
(normalized by the number of traversed junctions) and the absolute number of received
instructions. We consider the relative number of instructions because FCN users should
traverse more junctions, given their freedom. With the FCN (M = 0.4, SD = 0.15) approach,
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participants had significantly fewer (Z = −3.18, p < 0.001) instructions than the TBT group
(M = 0.56, SD = 0.11), relative to the number of traversed junctions. Regarding the
absolute number of instructions, there was no significant difference (Z = −2.15, p = 0.016—
Holm correction) between both groups (TBT: M = 6.95, SD = 1.29; FCN: M = 5.88,
SD = 2.36).

6.2. Spatial Knowledge Acquisition

In this subsection, we present the results regarding spatial knowledge acquisition:
judgment of relative direction (JRD), walked distance estimation, abstract route drawing,
route drawing on a map, and drawing points of interest on a map (see Section 4.4.2 for
details on tasks).

6.2.1. Pointing to Start Point and Distance Estimation

For both tasks, we calculated the absolute deviation of the estimation from the true
value (i.e., under- and overestimation were considered equally). There was no significant
difference (Z = 0.25, p = 0.803) between FCN (M = 24.5◦, SD = 27.88◦) and TBT
(M = 17.95◦, SD = 14.09◦) regarding the JRD task. For the distance estimation task,
the sample size is 44 (26 FCN, 18 TBT) because 4 participants in the TBT condition saw
the walking distance at the beginning of the navigation task. The rest was not aware
of the walking distance. Regarding the estimation of the walked distance, there was no
significant difference (Z = −2.13, p = 0.017—Holm correction) between both groups (TBT:
M = 252.67m, SD = 282.36m; FCN: M = 135.35m, SD = 121.53m).

6.2.2. Abstract Route Drawing

Having collected the data, we found that the concept of a junction varies considerably
among participants (see potential future work in Section 9). Therefore, we only analyze
turns but do not consider drawn junctions at which the route was continued (no turn).
First, we compare the number of turns drawn with the actual number of turning points
during the trial (absolute value). There was no significant difference (Z = 0.230, p = 0.815)
between the FCN (M = 1.28, SD = 1.43) and the TBT (M = 1.23, SD = 1.45) groups
regarding the number of drawn turns compared to these actually walked. Second, we
compare the sequence of turns (right, left, and turn around) with the walked sequence
using the Levenshtein distance, a widespread measure in natural language processing
successfully employed to compare route sequences in [62]. One drawing from the FCN
condition was excluded, because the turning points were not appropriately marked with
letters (R—right, L—left) (n = 47). Again, there was no significant difference (Z = −0.19,
p = 0.852) regarding the Levenshtein distance between the walked turn sequence and the
drawn one between FCN (M = 1.52, SD = 1.48) and TBT (M = 1.59, SD = 1.47).

6.2.3. Route Drawing on Map

A route similarity metric is needed to compare the walked route with the drawn
one on a map. As the drawn trajectories do not have a temporal component, we will not
consider similarity measures accounting for the temporal data dimension [63]. Toohey and
Duckham compared four similarity measures for routes and provided an R package for
the calculations [64]. The four compared measures are: Fréchet distance (FD), dynamic
time warping (DTW), longest common subsequence (LCSS) and edit distance on real
sequence (EDR). We exclude the Fréchet distance because back and forth movements
are not allowed in this similarity measure [64], but several participants walked a street
segment twice. From the four mentioned measures, Su and colleagues [63] found that
DTW and LCSS can handle different types of transformations, whereas EDR and FD do not.
According to Tao and colleagues [65], DTW and FD were more in line with their human
expectations while conducting a series of tests (e.g., bird routes). As we already mentioned,
we excluded FD and, in consequence, compared the walked routes with the drawn routes
on a map with DTW. The lower the DTW score, the more similar both trajectories are. There
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was no significant difference (Z = 2.67, p = 0.004—Holm correction) between the FCN
(M = 572.19, SD = 797.36) and the TBT (M = 375.32, SD = 1281.52) groups regarding
the DTW score between drawn and actually walked routes.

6.2.4. Points of Interest on Map

Regarding points of interest (POIs) drawn by participants, we analyze the absolute
number and the configuration similarity applying bidimensional regression. There was
no significant difference (Z = −1.25, p = 0.211) between the FCN (M = 5.88, SD = 1.83)
and the TBT (M = 7.59, SD = 3.69) groups regarding the number of drawn POIs on
the map. We applied bidimensional regression, proposed by Tobler [66], to assess the
configuration similarity between the drawn POIs and their true locations. We use the
R package bidimregression [67], which builds on Friedman’s work [68] and offers as well
significance tests proposed by Nakaya [69]. To calculate any statistics, at least 4 pairs of
coordinates are needed [69], therefore, we consider only participants with at least 4 valid
(see Section 5) drawn POIs, i.e., we base our analysis on n = 42 participants (FCN = 23,
TBT = 19). For each valid (at least four valid POIs) participant, the R2 coefficient was
calculated. The R2 coefficient expresses the configuration similarity between the drawn
POIs and their true locations. A Wilcoxon-Mann–Whitney test did not reveal a significant
difference (Z = −0.8, p = 0.426) regarding the configuration similarity between FCN
(M = 0.87, SD = 0.22) and TBT (M = 0.9, SD = 0.22).

6.3. Workload and User Experience

In this subsection, we will analyze the differences between FCN and TBT regarding
user experience (UEQ), workload (NASA TLX Raw) and usability (SUS) (see Table 1).

6.3.1. SUS

One missing value in the System Usability Scale questionnaire was replaced with the
most frequent answer (mode) for the affected question [70]. Between FCN (M = 83.94,
SD = 8.89) and TBT (M = 81.02, SD = 12.69) there was no significant difference found
(Z = 0.56, p = 0.574). Both navigation systems fall into the second-highest category “A” in
the Sauro–Lewis SUS curved grading scale [71].

6.3.2. UEQ

In total, two of the six subdimensions, perspicuity and efficiency, will not be analyzed
because questions 21 and 23 were not answered in the FCN condition, as no graphical
interface was present. In total, five values were missing, which were replaced by the mode
(see, again, [70]). We used the analysis tool [72] provided by the authors to assess the
hedonic quality (stimulation and novelty) of both systems. FCN has a very high hedonic
quality (excellent stimulation and good novelty), whereas the TBT approach provides a
below average hedonic quality (below average stimulation and bad novelty). A series
of Wilcoxon–Mann–Whitney tests showed significantly better results for FCN for the
subdimensions stimulation and novelty (see Table 2). The subdimensions attractiveness
and dependability did not show a significant difference.

Table 2. Inferential statistics for the User Experience Questionnaire. Significant results are boldfaced.
FCN refers to the Free Choice Navigation condition and TBT to the Turn-by-Turn condition. The
subdimensions perspicuity and efficiency are left out due to missing data.

Dimension p-Value Z-Value Alter. Hypoth.

Attractiveness 0.014 2.21 FCN > TBT
Dependability 0.301 −0.52 FCN < TBT
Stimulation 0.001 3.07 FCN > TBT

Novelty <0.001 4.66 FCN > TBT
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6.3.3. NASA TLX Raw

There was no significant difference (Z = 2.52, p = 0.006—Holm correction) in reported
mental demand between FCN participants (M = 8, SD = 4.35) and TBT users (M = 5.32,
SD = 3.24). The remaining subdimensions of the NASA TLX questionnaire did not reveal
significant results either (see Figure 3 and Table 3). Additionally, no significant difference
concerning the overall task load (sum) was found between both wayfinding methods.

Figure 3. Mean values for NASA TLX Raw items for FCN (blue) and TBT (brick), error bars represent
95% confidence intervals.

Table 3. Inferential statistics for the NASA TLX Raw comparison. FCN refers to the Free Choice
Navigation condition and TBT to the Turn-by-Turn condition.

Dimension p-Value Z-Value Alter. Hypoth.

Mental Demand 0.006 2.52 FCN > TBT
Physical demand 0.853 −1.05 FCN > TBT

Temporal demand 0.427 0.79 FCN �= TBT
Effort 0.492 0.02 FCN > TBT

Performance 0.168 0.96 FCN > TBT
Frustration 0.074 1.44 FCN > TBT

Sum 0.075 1.44 FCN > TBT

6.4. A Wish for Freedom and Learning

In the online part of the study, all potential participants were asked about the increase
in route length (in %) they would accept if they (1) gain more control over the route (in
contrast to a predefined route) or (2) learn more about the environment. These answers will
shed light on whether subjects would value wayfinding assistance not based on shortest-
path guidance. As these are general questions, which are condition independent, they
were asked before the experiment to avoid potential bias. In total, 81 potential participants
finished the online part (48 signed up for and finished the in situ part) and replied to both
questions. The answers show an interest in having more freedom while navigating and/or
learning about the surrounding environment (see Figure 4). A paired Wilcoxon test showed
that participants have a preference for longer routes (V = 251, p < 0.001) in order to learn
more about the environment (M = 61.41%, SD = 30.23%) rather than accepting longer
routes to gain control over the route (M = 48.27%, SD = 30.65%).
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Figure 4. Boxplots with jittered data points of longer routes (%) participants are willing to take to
have more (1) control over the walked route or (2) knowledge about the environment.

6.5. Environmental Spatial Abilities and Performance in FCN

In this subsection, we scrutinize whether self-report environmental spatial abilities
(SBSOD) impacted the performance in the FCN condition. As a proxy for the performance,
we will consider route length, the absolute number of instructions and the relative number
of instructions (normalized by the number of traversed junctions). The arrival rate would
be a performance indicator, but there were not enough participants who did not finish the
trial successfully. As the three routes have different lengths, the walking distance of each
participant is normalized by the shortest path length of the corresponding route. The 23
successful participants in the condition FCN were split into two groups regarding their
environmental spatial abilities (median split into groups low and high). No significant
difference was found (Z = −0.28, p = 0.782) between participants with low (M = 1.18,
SD = 0.14, n = 12) and high (M = 1.21, SD = 0.19, n = 11) environmental spatial abilities.
Additionally, there was no difference found regarding the absolute (Z = 0.56, p = 0.58) nor
the relative (Z = −0.03, p = 0.98) number of instructions.

Taken together, our analyses reveal: (1) Participants assigned to the FCN condition
received fewer instructions (normalized by the number of traversed junctions) than those
using the TBT system; (2) There was no significant difference between both groups in terms
of spatial knowledge acquisition; (3) The FCN navigation system was rated higher in terms
of stimulation and novelty (UEQ); (4) As a reason for walking longer routes, learning more
about the environment is preferred over controlling the exact route.

7. Discussion

The rationale behind FCN is to provide users more freedom to make route decisions
while navigating. As the decision-making process about which street segment to take is not
fully outsourced to the navigation system (as in TBT), we expected more engagement and in-
teraction with the environment and, consequently, increased spatial knowledge acquisition.

The most important capability of a navigation system is to successfully guide users
to their destinations. Regarding the arrival rate (RQ1), the FCN approach (arrival rate
88.46%, 23/26 participants) is less effective than the TBT approach (arrival rate 100%).
The superiority of TBT over FCN, regarding the arrival rate, is in line with our previous
simulation study [6]. One participant did not interpret the given navigation instruction
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correctly and took a wrong turn. In the case of two further participants, our system did not
give any instruction at a junction because, according to our model [6], the participants were
still well oriented, but apparently they were not and took the wrong street segment, i.e., the
actual participant’s knowledge about the direction towards the destination (belief vector)
and the modeled one did not correspond, and an instruction should have been issued at
this junction. Although the modeled belief vector works reasonably well most of the time,
it requires further revision and improvement (discussed in Section 9).

On the other hand, FCN succeeded in giving more freedom to the user (RQ2). FCN
participants had to make their own decisions at more than 50% of the traversed junctions,
which is, again, in line with our previous work [6]. Not only did the users have to make their
own decisions at several junctions, they were also provided with fewer instructions relative
to the number of traversed junctions. Furthermore, less navigation system use favors
more forward and backward glances [73], and, therefore, the environment is potentially
observed more attentively. Parush and colleagues concluded that forcing participants to
engage with the environment can lead to better spatial knowledge [74]. In consequence,
we hypothesized that users would direct this attention to the environment and, in doing
so, enhance their spatial knowledge acquisition (RQ3). The collected data do not support
this hypothesis. We did not find a significant difference between the two systems for any
of the spatial knowledge acquisition tasks. Although there was no significant difference
regarding SKA, we want to highlight some tasks. FCN participants estimated the walked
distance on average better by ca. 115 m than TBT participants, which suggests the value
of FCN for proprioception. TBT users traced their route on a map more accurately than
FCN participants. This was expected because a map was always visible during the trial.
While we hypothesized that the presence of the map with the route (TBT) would facilitate
memorizing the turns, no difference between both conditions was found. Perhaps TBT
participants did not often look at the map. This can be answered with the eye-tracking data
collected but not yet analyzed (see Section 9). Regarding the number of drawn POIs, we
expected no difference as TBT users had a map with POIs, and the FCN users had to actively
look around and remain attentive while navigating. TBT participants drew on average
1.7 POIs more (insignificant difference like in [33]) suggesting that forced engagement with
the environment might be insufficient grounds to improve landmark memory, which is in
contrast to the work by Parush and colleagues [74] suggesting that keeping users attentive
may lead to better spatial knowledge. Both groups had a similarly high configuration
similarity of the drawn POIs. This was unexpected, as FCN users had no map to see the
POIs put into relation. This is of particular interest and suggests that people can compensate
for a missing map that provides this type of information. Regarding the JRD task, our
data did not reveal any difference between both systems. This is in line with [33], but in
contrast to [31], although in both works participants had the freedom to choose their own
routes. Therefore, more analysis is needed to understand where this difference potentially
originates from.

The missing improvement in spatial knowledge has several potential reasons: (1)
The users need more support, e.g., a map display on demand [74], although other results
suggest that audio-only instructions can lead to comparable spatial knowledge acquisition
such as smartphone or AR-based navigation [8]; (2) The users may also need information
between junctions to improve orientation and trust [75]; (3) The user needs more time to
familiarize with the FCN navigation approach to have more trust in the system; (4) Making
own decisions does not guarantee enhanced spatial knowledge acquisition, although it
has the potential to do so [33]; (5) Making own decisions does not mean full engagement
with the environment and looking around in all directions [73]. It is also possible that the
participants were only attentive around the junctions but not in between.

There was no significant difference regarding the workload (NASA TLX Raw). Con-
trary to our expectations, FCN participants did not report a significantly higher mental
demand than TBT participants. This would be in line with the work of Haosheng and
colleagues [33], in which participants also had to make their own decisions at junctions.
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According to the NASA TLX results, FCN participants did not feel an increased physical
demand—despite an average increase in route length of 19%. This suggests that moder-
ately increased walking distances (in the FCN condition on average 19%, compared to the
shortest path) can be used for further purposes without increasing the physical demand
considerably. This is in line with people’s willingness to take longer routes (see Section 6.4).
We also expected that FCN participants would experience increased levels of effort, frus-
tration, and performance (the higher, the greater the sense of failure), but the data did not
reveal significant differences with respect to TBT. In order to explain these results, further
work with interviews after the trial is needed to obtain more in-depth information about
the users’ perception of the system. According to our expectations (see Table 1), the FCN
system was rated higher regarding attractiveness, novelty, and stimulation (UEQ). A high
score in stimulation shows that our system is motivating. Although we predicted a lower
score for dependability in the FCN condition because of the uncertainty if an instruction
will be given at the next junction, the dependability of the two navigation systems did not
differ. This outcome suggests that, although FCN users did not know the exact mechanism
behind the system, they did not feel less secure than TBT users. On the other hand, the
dependability of Organic Maps is possibly lower than in the case of Google Maps, to which
most users are accustomed to. Regarding the usability (SUS), both systems did not show
any difference; however, both systems have potential for improvement as they fall into the
second-highest category “A” in the Sauro–Lewis SUS curved grading scale [71] and not
into the highest one. Therefore, we conclude that the FCN navigation system demonstrates
an acceptable performance regarding user experience and usability.

In our previous work [6], we hypothesized that FCN would be more difficult for users
with low environmental spatial abilities (RQ4). The arrival rate would be one indicator,
but there was not enough data, i.e., there were not enough participants that did not finish
the trial successfully. Another proxy can be the length of the walked route and the number
of received instructions. Longer routes would indicate more difficulties in reaching the
destination, and an increased number of instructions would indicate more assistance by
the system and less independent navigation. As no difference was identified regarding
these two features, we cannot conclude that people with low environmental spatial abilities
experience more difficulties than those with high environmental spatial abilities while
using Free Choice Navigation. This is not in line with our previous simulation results [6] in
which agents with lower environmental spatial abilities reached their destination less often.
One possible explanation is that our simulation did not model spatial cognition profoundly.

The online survey on the willingness to take longer routes (RQ5) showed that learning
about the environment is more desirable than gaining control over the route as a reason for
taking longer routes (see Figure 4). As the average answer to the question about learning
the environment was 61%, it suggests that people are interested in becoming more familiar
with and gaining more knowledge about their environments. This is an argument in favor
of works on navigation systems enhancing spatial knowledge acquisition, as long as this
aspect is an add-on to an acceptable arrival rate.

Taken together, we have seen the potential of Free Choice Navigation to provide
wayfinders more freedom while navigating. This might also increase serendipity effects
(e.g., they encounter new features in the environment). Based on informal post-experiment
conversations, we have the impression that our approach can be combined with gamifica-
tion: Several FCN participants expressed that they liked the approach because it felt akin
to a scavenger hunt. Similarly, creativity during wayfinding might be stimulated as one
participant claimed to have oriented herself based on a specific cloud, albeit the person had
no experience in orienteering sports.

8. Limitations

Several limitations apply to our work. The first aspect relates to the point in time at
which participants received the instruction to turn around. Having made a decision leading
to such a “go back” instruction, users are only informed about this wrong decision at the
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upcoming junction in the current implementation. An updated implementation could, for
example, notify users shortly after the junction at which such a decision was made. This
would save walking distance and probably increase the number of successful participants
in the FCN condition. We did not implement this improvement in order to keep the results
comparable with the simulation study [6]. The modeling of the environmental complexity
for a junction influences the FCN navigation approach, as a higher environmental complex-
ity leads, broadly speaking, to more difficulties in taking an appropriate street segment
according to our model [6]. Therefore, further modeling approaches (e.g., [76,77]) need to
be tested because we believe that a more realistic measure for environmental complexity
would improve the FCN approach, as difficult junctions could be identified better and the
system would assist the user more accurately. Regarding the analysis of the TBT approach,
one limitation is that we did not control which points of interest were visible at which
zoom level. This selection, determined by Organic Maps, may have had an impact on the
acquisition of spatial knowledge. Having said this, while participants could have changed
the zoom level, the majority of participants did not change it at all.

As people were unfamiliar with the concept of FCN and there was no graphical display,
their trust in the system was somewhat limited. Therefore, a longitudinal navigation study
seems to be a better choice to familiarize users with the FCN approach, potentially increase
their trust in the system [78] and meet pedestrian needs [79].

9. Conclusions and Future Work

In this study, we implemented a first prototype of the Free Choice Navigation (FCN)
approach and compared it with the widespread Turn-by-Turn (TBT) approach. The study
showed that participants can be guided successfully to their destinations and, at the same
time, receive fewer navigation instructions in comparison with the TBT approach (relative
to the number of traversed junctions). Fewer instructions and forced engagement with
the environment, however, did not result in differences with respect to spatial knowledge
acquisition, but it is worth mentioning that FCN users (without a map) can extract spatial
configuration information as well as TBT users equipped with a map. Moreover, we
provided evidence that people are interested in learning more about their environments
and are willing to walk longer routes to achieve it. Finally, we present the first real-world
use of the route selection framework [7], which can guide researchers having to select one
or more routes between several thousand ones. Regarding future work, there are several
potential directions to follow.

The FCN approach can be further improved by implementing turn-around instructions
to avoid unnecessary detours. The collected data allows for updating several assumptions
we made in the initial model [6], making the model more accurate. Notably, the additional
task in which participants had to conduct several pointing tasks is valuable for improving
the belief vector [6] in our model. In this study, auditory TBT instructions were used. In
further studies, other types such as smartphone-based instructions, augmented reality
cues [4,80] or vibrotactile feedback [28] could be used to convey useful information at
junctions if assistance is needed. The head-mounted augmented reality approach seems
to be the most promising one, as the user does not need to look at an additional screen.
Furthermore, the destination can be made always visible (beeline approach), as geographic
objects can be visualized quite accurately outdoors [81]. If auditory instructions are used
again, they can be altered by adding additional information [2,82]. Instead of dividing
the environment at junctions, spatial chunking [83] could further decrease the number
of instructions issued. Furthermore, the prediction mechanism behind FCN can be com-
bined with the conceptual framework of Jin and colleagues [84] to better model route
choice behavior.

Another interesting research question regards the perception of junctions by users,
as we observed different notions among participants. Not all junctions identified by the
underlying OSM data were perceived as such. Another example is a roundabout, which
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can be considered one 5-way junction or five 3-way junctions. Therefore, a human-subject
experiment will scrutinize the perception of junctions.
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Fig. 1. BeeAR Navigation overlays the destination with a digital landmark permanently visible to the user. While approaching the
destination, the digital landmark appears bigger. The participant is closer to the destination in the middle photo than in the left
photo. The participant wears a Microsoft Hololens 2.

Navigation assistance systems have become integral to our daily routines, helping us to find our way through unfamiliar environments.
However, their use may come at a price, as empirical evidence suggests a potentially harmful impact of these systems on our spatial
abilities, including the acquisition of spatial knowledge. This could be remedied by giving users more freedom and involving them in
the decision-making process. Therefore, we present a navigation system that combines augmented reality and Beeline Navigation
(BeeAR). Here, the location of the destination is overlaid with a digital landmark and permanently displayed to the user via a visual,
translucent AR display (without a map). Since the digital content is integrated into the real world, no mapping between the device and
reality is required, potentially lowering the workload. Making one’s own decisions along the route is expected to increase engagement
with the environment, leading to increased acquisition of spatial knowledge. We compare BeeAR with findings from a previous study
comparing Free Choice Navigation (FCN) and Turn-by-Turn (TBT) navigation conducted along the same routes on the outskirts of
Vienna, Austria. Although BeeAR and FCN do not provide users with a map, BeeAR users could better retrace the walked route and
remembered more points of interest along the route than FCN users. Participants of all three navigation conditions achieved a high
configuration similarity between drawn points of interest and their true locations, albeit only one navigation condition included a map.
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1 INTRODUCTION

Navigation is an everyday task and part of the daily routine of billions of people. Nowadays, an increasing number
of users use their smartphones to get to their desired destinations. Usually, the user receives a sequence of turning
instructions leading to the destination. This type of navigation is known as Turn-by-Turn (TBT) navigation, and
there is empirical evidence of a negative impact of this navigation approach on spatial cognition (e.g., [9, 24]). The
prevention and mitigation of these effects is the subject of current research (e.g., [30, 38]). Therefore, we propose a novel
navigation approach based on head-mounted augmented reality (AR). Our AR-based system displays the destination
at the exact geographic location and leaves all decisions along the route to the user. As own decisions must be made,
the user is expected to engage more with the environment as opposed to a predefined route provided by TBT-based
navigation systems. Unlike the classic beeline approach in which the user follows a compass, there is no need to map
any information from a device to the environment, as the relevant information, the destination, is displayed as part of
reality. This potentially lowers the mental workload [47]. Since there is no additional screen to look at, the user can
potentially walk without interruptions to retrieve relevant information.
The focus of this work is to present the strengths and weaknesses of our novel augmented reality-based navigation

system by comparing it with two navigation systems: (1) the popular TBT navigation; (2) the Free Choice Navigation
(FCN), which was actually the inspiration for the approach presented in this paper. In order to make this comparison,
we needed to conduct a further user study to collect data for BeeAR, as experimental results for the TBT and the
FCN approaches are already available [45]. We conducted a user study with 16 participants navigating with our novel
navigation system in a real-world environment, performing the exact same procedure in the same environment as the
other two systems being compared. In total, including the data from the previous study, 48 participants navigated with
one of the three navigation systems (BeeAR: 16, FCN: 16, TBT: 16). The differences between TBT and FCN will not be
discussed further, as they have already been published [45]. The contribution of this work is fourfold:

(1) We present data showing that BeeAR users have high configuration knowledge of the environment despite no
map being provided;

(2) We provide empirical evidence that BeeAR participants are better at retracing their walked routes than FCN
participants, despite no map being provided in either navigation condition;

(3) We show that BeeAR participants remember (and draw) more points of interest than FCN participants;
(4) We present data indicating very good usability (System Usability Scale [2]) of the BeeAR navigation system.

2 RELATEDWORK

This section discusses two strands of related work. First, we will discuss different navigation approaches and, if
applicable, their influence on spatial knowledge acquisition. Second, we will review navigation systems based on
augmented reality.
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2.1 Navigation Approaches

This subsection presents different approaches how to guide users to the desired destination. Differences can origi-
nate from the used modality (e.g., audio vs. vibrotactile) or the concept behind the navigation (communicating turn
instructions vs. indicating the destination direction).

2.1.1 Turn-by-Turn Navigation. The Turn-by-Turn (TBT) approach guides the user to the destination through a sequence
of turning instructions. Usually, this instruction is issued just before the turn maneuver takes place. The most prominent
navigation system implementing this approach is Google Maps, used by pedestrians, car drivers and cyclists. The
turning instruction can be provided in many forms, e.g., mobile maps [37], augmented reality cues [27] and audio
instructions [68]. Furthermore, the HCI community proposed systems using sensory channels other than our eyes and
ears. The system proposed by [19] vibrates if the user is looking at the right branch. The public infrastructure can also
be used to convey turning instructions (e.g., [6]). This navigation approach is effective in guiding users to their desired
destination, however, there is empirical evidence suggesting that this type of navigation is negatively affecting spatial
cognition.
Krüger and colleagues [32] investigated the influence of TBT instructions on spatial knowledge acquisition and

concluded that this navigation type helps to build up landmark knowledge but is not favorable to survey knowledge.
The experiment of Hejtmánek and colleagues [24] showed that increased map time usage lowers the accuracy of the
acquired knowledge in a virtual environment. A second trial (without an assistance system) showed that participants
spending more time with the map during the first trial walked longer routes. People with more accumulated experience
with navigation systems are more likely to stop more frequently, take longer routes [28], and miss landmarks in their
environment [9] while navigating without assistance. This last finding is in line with the work of Ruginski and colleagues
[56], who found an indirect negative effect of GPS usage on environmental learning. These potentially negative effects
on spatial cognition are attributed to not focusing on the environment, as the navigation system requires the user to
switch attention between the system and the environment [17, 40]. The automation level of these systems may also
play a role, as the user can passively follow the instructions while reaching the destination [3]. Given these potential
drawbacks, TBT modifications have been proposed. The turning instructions can be enriched with extra information
about the environment [60, 67] or their absolute number can be reduced by navigating simpler routes [12]. These
approaches still require the user to follow a predefined route.

2.1.2 Alternative Navigation Approaches. Involving the user in the path planning process (previous to navigation) can
improve survey knowledge and self-orientation [40]. Therefore, it is reasonable to give the user more freedom and
integrate it into the decision-making process along the route. In consequence, the discussed alternatives share the
property of not imposing a predefined route on the user.
The so-called beeline navigation is one alternative to the TBT approach. It uses the compass metaphor by conveying

the direction to the destination without indicating which branch to take next. The direction to the destination can be
encoded visually, auditory or vibrotactile, among others. Savino and colleagues [59] compared the beeline approach
with TBT in a user study involving cyclists. The direction to the destination was conveyed visually on a device attached
to the handlebar. No difference between both groups was determined regarding the pointing to the start point task.
However, TBT users took shorter routes, committed fewer navigation errors and reported a lower task load. The works
of [10, 55] are examples of encoding the destination direction in a vibrotactile manner. They were not compared to
the TBT approach, but the user studies showed that the shortest path is not necessarily taken with this navigation
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approach. Clemenson and colleagues [5] proposed an acoustic beeline approach in which audio beacons convey distance
and direction information. For participants new to the experimental area, this system led to better performance while
pointing to different places in comparison to TBT participants.
Another navigation system that leaves all navigation decisions to the user is the Potential Route Area (PRA) navigation

approach proposed by Huang and colleagues [26]. This highlighted area encompasses all possible routes from the
current location to the destination not longer than a predefined threshold. A user study comparing this approach with
Google Maps revealed that PRA users draw more accurate sketch maps considering survey likeness and route likeness
[33]. The number of drawn points of interest in the sketch map and the accuracy in the pointing task did not differ
significantly.
The Free Choice Navigation (FCN) approach was proposed in our previous work [45] and supports the user with

occasional turning instructions. Whether the navigation system issues a navigation instruction at the current junction
is decided based on the user’s environmental spatial abilities (approximated with the Santa Barbara Sense of Direction
Scale (SBSOD) [23]), the junction complexity and the already walked route. Based on this data, the system assesses the
orientation and spatial confidence of the user. Then, the system predicts whether the user would select a rational option
considering, among others, the maximum allowed walking distance [43]. If the resulting probability of committing
a grave navigation error is high, the system supports the user with an instruction. By making own decisions, the
user is expected to engage more with the environment and improve spatial knowledge acquisition. A user study
comparing this system with a TBT navigation system (Organic Map) demonstrated that the FCN approach can give
some decision-making freedom, significantly lowering the number of issued navigation instructions relative to the
number of traversed junctions. No significant differences between both systems regarding spatial knowledge acquisition
and workload (NASA TLX) were found. FCN was assessed as more stimulating and novel (UEQ) than TBT [45].

2.2 Augmented Reality Navigation

As the focus of this work lies on outdoor augmented reality (AR) navigation and given the differences between outdoor
and indoor navigation regarding scale, landmarks, and navigation agents [20, 69], among others, we will not discuss
AR-based indoor navigation (e.g., [18, 48]) . We will distinguish hand-held and head-mounted augmented reality
navigation systems. Where applicable, we will report on spatial knowledge acquisition. The first prototypes using AR
for pedestrian navigation date back to the 1990s [14, 63]. Given this era’s technical and graphical limitations, we will
consider only more recent research.

2.2.1 Handheld Augmented Reality Navigation. Handheld augmented reality systems require the user to hold a device,
usually a smartphone or a tablet, to see and interact with the holograms. The AR navigation can be used for daily
life, tourism [41], and disorientation [4] scenarios. Rehrl et al. [53] compared a handheld AR navigation system with
voice-only guidance and a digital map. The results showed a higher workload and lower usability for AR participants.
Dunser and colleagues [13] compared a handheld AR navigation system with a digital map (satellite view) and a
combination of both. This combination was most preferred by participants and was also considered the fastest and
leading to least errors. While using the AR-only interface, many users reported feeling lost. Dong and colleagues
[11] compared two instances of the TBT navigation approach: 2D map vs. AR. The wayfinding performance between
both groups did not differ. However, the eye-tracking data revealed differences between them, suggesting a lower
cognitive workload (contrary to [53]). The AR interface led to sketch maps of lower quality. This stands somewhat in
contrast to the work of [51] in which participants with an AR interface performed better regarding scene recognition,
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scene-sequencing and orientation judgment than those with a classical 2D map interface. Augmented reality can also
be used for parts of the entire navigation process (e.g., destination recognition [50]).

2.2.2 Head-Mounted Augmented Reality Navigation. We will not discuss simulated AR navigation (e.g., [38]). Reitmayr
and Schmalstieg [54] implemented an early version of augmented reality navigation with a head-mounted display.
In the solo mode, the user was requested to follow a series of waypoints towards the destination. No formal user
study was conducted. Cron and colleagues [8] implemented four different visualizations realizing an AR-based turn-by-
turn approach. This preliminary work focused on visualization and implementation. McKendrick and colleagues [47]
compared a head-mounted AR-based TBT navigation system with a classical smartphone-based approach and concluded
that AR lowers the mental load while navigating. Singh and colleagues [61] introduced the concept of virtual global
landmarks (VGL). These VGLs, representing landmarks like opera, become visible if the real counterpart (opera) is not
visible anymore. In this case, a virtual icon of the landmark is projected into the user’s field-of-view at a distance of one
meter to convey the right direction towards the landmark. The within-subject user study with 5 participants showed
that the VGL approach compared to directional arrows (also AR-based) has the potential to foster spatial knowledge
acquisition. In our study, we will not highlight landmarks like VGL, but we make the destination always visible to the
user. We convey the real location of the destination and not only the direction toward it.
There exist different visualization methods for AR-based navigation. Such methods usually highlight the route with

arrows, overlaid paths, or checkpoint icons [8, 36]. However, they assume a pre-defined route that is incompatible
with the beeline approach we are scrutinizing. Furthermore, they use the user position as a reference, whereas our
visualization is permanently part of the environment, independent of the user position. In summary, our BeeAR system
does not impose a predefined route to the user and displays the AR content embedded in the environment. To the best
of our knowledge, head-mounted augmented reality has not yet been combined with beeline navigation to scrutinize
spatial knowledge acquisition. Our paper aims to fill this gap.

3 EXPERIMENTAL DESIGN

The 16 participants of the BeeAR condition were acquired through emails sent to university employees in Vienna,
Austria. They were not paid but offered participation in a lottery (400 EUR). The participants of the other two conditions
were acquired with the same approach and, additionally, through snowball sampling (asking friends and acquaintances)
[45]. In the following the navigation conditions, routes, and the experimental procedure are delineated.

3.1 Navigation Conditions

In this subsection, the details of all navigation systems are presented together with the required hardware and software.

3.1.1 Beeline Augmented Reality Navigation. In the Beeline Augmented Reality (BeeAR) condition, we used a Microsoft
HoloLens 2 to display the destination’s geographic location as a magenta cuboid (width: 10 m; length: 10 m, height:
150 m). This is the only information provided by the system. Before the experiment started, the beeline distance to
the destination was communicated to the participant. The user should find her own way to the destination and make
all decisions along the route, which stands in contrast to FCN (partial support regarding instructions) and TBT (full
support). The closer the user gets to the destination, the bigger the magenta cuboid appears (see Figure 1). The user was
requested to notify the experimenter when standing in front of the magenta cuboid. The HoloLens itself cannot display
geographic coordinates, but we used a Helmert transformation to harmonize the HoloLens’ coordinate system with a
real-world reference system [15]. At the starting point, an accuracy of 5-10 cm is achieved, whereas an accuracy of

5

130



MobileHCI ’23, September 26–29, 2023, Athens, Greece Mazurkiewicz et al.

approx. 5 m is achieved at the destination. In contrast to the FCN navigation approach, the destination is constantly
visible to the user, therefore no user’s orientation estimation is needed as in FCN. By adding this feature, we hypothesize
to support spatial knowledge acquisition by giving participants an anchor point for orientation. Furthermore, the route
can be selected freely, whereas FCN supports the user occasionally with instructions, and TBT imposes a predefined
route on the user. Augmented reality was chosen as technology to liberate the user from the diffculty of matching
provided spatial information with the physical environment, as the information is directly embedded in the latter. We
deliberately selected a head-mounted display over a smartphone-based AR system to make the destination permanently
visible to the user and to provide a hands-free and head-up experience.

3.1.2 Comparison Navigation Systems. This subsection briefly describes the Turn-by-Turn (TBT) and Free Choice
Navigation (FCN) approaches [45]. In both conditions (TBT and FCN), the turn instructions were issued via a single
Bluetooth earbud. The BeeAR did not comprise any type of instructions.
As a representative of the TBT navigation approach, we have selected the Android application Organic Maps. It

provides a classical user interface with a map and a position indicator. While in navigation mode, the user receives
instructions at turning points along a predefined path visible on the map. Besides displaying the route, the instruction
is also conveyed in audio format. The application Organic Maps was running on a OnePlus 5T smartphone. A Global
Navigation Satellite System (GNSS) receiver manufactured by PPM (model 10xx-38) was attached to the smartphone
to increase the positional accuracy of the user location. The user was required to follow the highlighted route using
the map and the provided audio instructions from the application. No further instructions or information were given
along the route. Google Maps was deliberately not selected to assure comparability with the Free Choice Navigation
approach based on OpenStreetMap (OSM) data. As the data source would have been different, the routing could have
changed too. Therefore, we considered only navigation applications based on OSM.
In the FCN condition, before the navigation task started, the participant was provided two pieces of information:

first, the direction to the destination (an arrow marked on the ground), and second, the beeline distance (transmitted
orally, like in the BeeAR condition). The experimenter instructed the participant to find the unknown destination
and underlined that the destination could not be missed, as the system informs the user upon arrival [45]. It was also
explained that a junction and not a point of interest is the destination. Participants were not provided with turning
instructions at the first two junctions, as their orientation should still be reasonable at this stage. At the following
junctions, the system decided whether a turn instruction should be issued to help the participant (see Section 2.1.2 for
details). If no instruction was issued, the participants had to decide which branch to take. The underlying mechanics of
FCN were realized with a custom Kotlin application operated by the experimenter walking behind the participant.

3.2 Routes

To make the results comparable to the previous study [45], a subset of those routes was selected for the current study
scrutinizing BeeAR. Route 1 (612 m) and Route 2 (738 m) (see Figure 2) were selected for the study, as for these routes
the previous study yielded the least data loss. All participants were unfamiliar with the experiment area.

3.3 Procedure

The experiment consisted of two parts (online and in-situ). In the online part participants gave their informed consent,
filled in a demographics questionnaire and reported if they are familiar with the experiment area.
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Route 1

Route 2

Fig. 2. Routes 1 and 2 were navigated by participants of all three navigation conditions. The experiment area is located on the
outskirts of Vienna, Austria (see inset map). Background map OpenStreetMap.

In the in-situ part, participants were assigned to navigate on one of the two tested routes. The trial started after
the informed consent was signed, the condition was explained and no questions were left. After the arrival at the
destination, the participant had to fill out three questionnaires regarding workload (NASA TLX [22]), usability (System
Usability Scale [2]), and user experience (User Experience Questionnaire [35]). Next, participants had to conduct five
tasks assessing their acquired spatial knowledge: (1) Pointing to the start point; (2) Estimation of the walked distance
(meters); (3) Abstract route drawing - drawing the sequence of turns and crossed junctions (i.e., non-turns); (4) Retracing
the walked route on a map (called also route drawing task); (5) Draw recalled points of interest (POI) on the same
map. The map contained the street network, the starting, and end points. Concerning the third task, the experimenter
stressed that metric and absolute information are irrelevant in the drawing. Only the number and the sequence of turns
were relevant. Before the fifth task, the experimenter provided categories of potential POIs (e.g., shop, restaurant, color
of a building).

4 RESEARCH QUESTIONS AND HYPOTHESES

This subsection presents the research questions and justifications for our hypotheses.

• RQ1: Does the BeeAR approach lead to better spatial knowledge acquisition than FCN and TBT?
• RQ2: Does the BeeAR approach lead to longer routes (relative to shortest path) than FCN and TBT?

Regarding RQ1, we expected that BeeAR will improve spatial knowledge acquisition in comparison to FCN, because
the destination is always visible and can serve an as anchor point [7]. Compared to TBT, we believe that BeeAR
participants will remember more details of the environment (POIs) as they need to actively make decisions, whereas
TBT users follow a predefined path. Regarding RQ2, we expect comparable relative route lengths (normalized by
shortest path length) across navigation conditions as every navigation condition provides assistance, although of a
different kind.
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Table 1. Inferential statistics for the navigation conditions. Pairwise Wilcoxon-Mann-Whitney tests were performed if the Kruskal-
Wallis (KW) test yielded p < 0.05. FCN - Free Choice Navigation, TBT - Turn-by-Turn, BeeAR - Beeline Augmented Reality. Significant
results (Holm correction) are bold-faced. The numbers are rounded to three decimal digits.

Dimension 𝜒2 p-value KW FCN != BeeAR FCN != TBT BeeAR != TBT
Relative Walking Distance 20.679 <0.001 0.038 <0.001 0.004
Pointing Error (JRD) 0.953 0.621 - - -

Distance Estimation Error 5.922 0.052 - - -
Abstract Route Drawing - # Turns 0.420 0.811 - - -
Abstract Route Drawing - Lev. Dist. 0.443 0.801 - - -

Route Drawing on Map 17.379 <0.001 <0.001 0.002 0.551
# Point of Interests 10.378 0.006 <0.001 0.246 0.110

Point of Interests - 2D regression 1.571 0.456 - - -
NASA TLX - Mental Demand 4.687 0.096 - - -
NASA TLX - Physical demand 9.635 0.008 0.113 0.09 0.003
NASA TLX - Temporal demand 3.179 0.204 - - -

NASA TLX - Effort 6.068 0.048 0.065 0.69 0.019
NASA TLX - Performance 2.439 0.295 - - -
NASA TLX - Frustration 2.657 0.265 - - -
NASA TLX - Sum 8.335 0.015 0.007 0.571 0.029

SUS 1.414 0.493 - - -
UEQ - Attractiveness 3.813 0.149 - - -
UEQ - Novelty 18.179 <0.001 0.985 <0.001 <0.001
UEQ - Stimulation 7.594 0.022 0.776 0.015 0.021
UEQ - Dependability 0.555 0.758 - - -

5 RESULTS

Due to the non-normality of the data (Shapiro-Wilk tests and Q-Q plots), the Kruskal-Wallis test was employed for the
comparison of all three groups and the Wilcoxon-Mann-Whitney test for pairwise comparisons. Given that a route can
have a substantial influence on study results [44], a series of Wilcoxon-Mann-Whitney tests comparing two routes
with their corresponding environments was calculated (similar to [62]). As both routes are similar according to the
Route Selection Framework [45, 46], we expect no differences. The independent variables tested include: normalized

walking distance, pointing error, distance estimation error, abstract route drawing – number of turns, abstract route drawing

- Levenshtein distance, route drawing on map, number of drawn POIs, drawn POIs - 2D regression, NASA, SUS and UEQ.
None of these tests reached significance (Holm correction [25]). This result allowed us to compare the navigation
conditions independently of the two routes/environments (similar to [62]), having 16 samples for each condition. Only
successful participants (destination reached with less than 1.5 * shortest path length) were analyzed. Therefore, one
participant was excluded from the FCN condition, resulting in 16 participants per navigation condition (𝑁𝑡𝑜𝑡𝑎𝑙 = 48).
If a Kruskal-Wallis test yielded p < 0.05, pairwise Wilcoxon-Mann-Whitney tests were conducted (see Table 1 for a
summary). In order to avoid inflation of 𝛼-errors, corrections to the 𝑝-value according to Holm [25] were applied
(baseline 𝛼 = 0.05).

5.1 Relative Walking Distance

As Route 2 (738 m) is longer than route 1 (612 m), we compared the walked distances normalized by the shortest path
length. There was a significant difference (𝜒2 = 32.966, 𝑝 < .001) between the navigation conditions. FCN (𝑀 = 1.177,
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𝑆𝐷 = .118) users walked significantly (𝑍 = −4.349, 𝑝 < .001) longer routes than TBT users (𝑀 = 1.018, 𝑆𝐷 = .037).
There was no significant difference (𝑍 = 2.888, 𝑝 = .004) between BeeAR users (𝑀 = 1.082, 𝑆𝐷 = .092) and TBT. There
was also no significant difference (𝑍 = −2.074, 𝑝 = .038) between BeeAR and FCN.

5.2 Spatial Knowledge Acquisition

This subsection presents the results regarding spatial knowledge acquisition: pointing to start point, walked distance
estimation, abstract route drawing, route drawing on a map, and drawing points of interest on a map (see Section 3.3
for detailed task descriptions).

5.2.1 Pointing to Start Point and Distance Estimation. There was no significant (𝜒2 = .953, 𝑝 = .621) difference between
FCN (𝑀 = 25.125°, 𝑆𝐷 = 34.517°), BeeAR (𝑀 = 17.625°, 𝑆𝐷 = 30.7°) and TBT (𝑀 = 18.25°, 𝑆𝐷 = 15.442°) regarding the
pointing to start point task. There was also no significant (𝜒2 = 5.922, 𝑝 = .052) difference in the distance estimation
task. FCN users over- or underestimated the walked distance on average by 95.465 m (𝑆𝐷 = 79.872 m), whereas BeeAR
users by 168.324 m (𝑆𝐷 = 290.9 m) and TBT users by 263.885 m (𝑆𝐷 = 321.278 m).

5.2.2 Abstract Route Drawing. In the abstract route drawing task, two features were compared. First, the difference
between the drawn turns with respect to the number of actual turns made along the route (absolute value). Second, the
difference between the drawn turning sequence and the walked one measured with the Levenshtein distance. There
was no significant difference found between the groups for both features (see Table 1).

5.2.3 Route Drawing on Map. The similarity between the drawn and walked routes was calculated based on the
dynamic time warping metric (DTW) [66]. A DTW distance of 0 indicates a perfect match between two sequences.
Five FCN participants could retrace their walked route perfectly on the map. The same applies to 14 TBT and 15
BeeAR participants. There was a significant difference between the groups (𝜒2 = 17.379, 𝑝 < .001). BeeAR participants
(𝑀 = 45.36, 𝑆𝐷 = 181.439) retraced their walked routes significantly more accurate (𝑍 = 3.45, 𝑝 < .001) than FCN users
(𝑀 = 541.933, 𝑆𝐷 = 677.562). The differences between TBT (𝑀 = 69.407, 𝑆𝐷 = 253.31) and FCN (𝑍 = 3.094, 𝑝 = 0.002)
and BeeAR (𝑍 = −0.596, 𝑝 = .551) were not significant (Holm correction).

5.2.4 Points of Interest on Map. The drawn points of interest (POI) were analyzed along two dimensions. First, the
number of actually existing POIs that were drawn on the map was counted. The Kruskal-Wallis test for the number of
drawn POIs did not reveal a significant difference between the groups (𝜒2 = 10.378, 𝑝 = .006 - Holm correction), but a
post hoc test showed a significant difference (𝑍 = 3.424, 𝑝 < .001) between BeeAR (𝑀 = 8.875, 𝑆𝐷 = 2.553) and FCN
(𝑀 = 5.25, 𝑆𝐷 = 2.176). There was no significant difference between TBT (𝑀 = 7.25, 𝑆𝐷 = 3.624) and BeeAR (𝑍 = 1.598,
𝑝 = .11) and FCN (𝑍 = 1.161, 𝑝 = 0.246) regarding the number of drawn POIs.
Second, the configuration similarity between the drawn POIs and the actual locations of these POIs was assessed by

applying bidimensional regression [65]. The R package bidimregression, which builds on Friedman’s work [16], was
used for this analysis. To calculate the 𝑅2 coefficient, at least four pairs of coordinates are needed [49], therefore, only
participants with more than three existing POIs are analyzed (𝑛 = 43, BeeAR = 16, FCN = 14, TBT = 13). Regarding the
configuration similarity, there was no significant (𝜒2 = 1.571, 𝑝 = .456) difference between BeeAR (𝑀 = 0.9, 𝑆𝐷 = 0.156),
FCN (𝑀 = 0.822, 𝑆𝐷 = 0.267) and TBT (𝑀 = 0.879, 𝑆𝐷 = 0.256).
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5.3 Workload and User Experience

This subsection presents the results regarding the subjective workload and user experience each navigation system
excited.

5.3.1 SUS. There was no significant difference (𝜒2 = 1.414, 𝑝 = .493) regarding the System Usability Scale (SUS)
between BeeAR (𝑀 = 82.031, 𝑆𝐷 = 9.047), FCN (𝑀 = 84.844, 𝑆𝐷 = 7.878), TBT (𝑀 = 80.156, 𝑆𝐷 = 12.957). The FCN
navigation system falls into the highest category “A+” in the Sauro–Lewis SUS curved grading scale [57], whereas
BeeAR falls into the second-highest category “A” and TBT falls into the third-highest category “A-”.

5.3.2 UEQ. Two out of six subdimensions of the UEQ questionnaire could not be compared across all three navigation
systems. As FCN has no graphical user interface, two questions (21 and 23) contributing to the excluded subdimensions
perspicuity and efficiency were not asked. These subdimensions were compared only between BeeAR and TBT. Neither
for efficiency (𝑍 = .495, 𝑝 = .621) nor for perspicuity (𝑍 = −1.041, 𝑝 = .332) a significant difference was found. For the
subdimensions attractiveness (𝜒2 = 3.813, 𝑝 = .149), dependability (𝜒2 = 555, 𝑝 = .758) and stimulation (𝜒2 = 7.594,
𝑝 = 0.022 - Holm correction) no significant differences between the three navigation systems were found (see Table 1).
The test for the subdimension novelty yielded a significant difference (𝜒2 = 18.179, 𝑝 < .001) between the groups. TBT
participants (𝑀 = −0.516, 𝑆𝐷 = 1.321) indicated the novelty of the system as lower than BeeAR (𝑀 = 1.453, 𝑆𝐷 = 1.166,
𝑍 = 3.624, 𝑝 < .001) and FCN (𝑀 = 1.484, 𝑆𝐷 = .964, 𝑍 = 3.72, 𝑝 < .001) participants. Between the latter two groups,
there was no significant difference (𝑍 = .019, 𝑝 = .985) regarding novelty. BeeAR and FCN have very high hedonic
quality (excellent stimulation and good novelty), whereas the TBT navigation system has a below average hedonic
quality (below average stimulation and bad novelty). The pragmatic quality of BeeAR (excellent perspicuity, good
efficiency and good dependability) is higher than in case of TBT (good perspicuity, above average efficiency and above
average dependability).

5.3.3 NASA TLX. Although differences could be observed in all subdimensions and the overall sum (see Figure 3), none
of the Kruskal-Wallis tests nor the post-hoc tests yielded significant results (see Table 1).

6 DISCUSSION

This section discusses the findings of this real-world user study and compares the outcomes with previous literature.
The discussion highlights the advantages and disadvantages of the BeeAR approach compared to FCN and TBT.
First, we want to clarifiy the term engagement with the environment. By this we mean a higher level of attention paid

the to environment. FCN and BeeAR have no second display to distract the user and should support this engagement.
However, BeeAR users remebered more POIs and could retrace their routes better than FCN users. We believe, that this
is the consequence of the permanently visible destination rather than the employed augmented reality (AR) technology.
AR-based navigation on its own does not necessarily improve spatial knowledge acquisition [11]. However further
studies, comparing BeeAR with AR-based TBT navigation [36] might help to shed light on this topic. Similar to our
previous work [45], the proposed novel navigation approach (BeeAR) did not lead to statistically significant differences
concerning spatial knowledge acquisition compared to TBT (RQ1).
Although BeeAR leaves all decisions to the user (partially true for FCN), the walked routes are not considerably

longer compared to routes walked by TBT users following the shortest path (RQ2). This finding suggests that having
the destination in line of sight might be sufficient for successful navigation. Given that TBT users see a digital map while
navigating, it is not surprising that 14 out of 16 TBT participants could retrace their route perfectly on a map. Although
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Fig. 3. Box plots of nasa TLX raw scores by navigation condition. None of the observed differences was statistically significant (see
Table 1).

there was no map in the FCN and the BeeAR conditions, BeeAR users retraced their walked routes significantly better
than FCN participants. Notably, all but one user in the BeeAR condition retraced the walked route perfectly, although
no map was provided. This might be due to the destination always being visible in the BeeAR condition, serving as an
anchor point to orient [7]. Another possible explanation is that BeeAR users had the comfort of looking around while
knowing exactly where the destination is. In contrast, FCN users were required to orient themselves along the route.
This extra effort might explain the slightly higher mental demand and frustration in the FCN condition. In this group,
the interquartile ranges are also larger (see Figure 3). The TBT system not having a negative influence on the ability to
retrace a route is in line with [31], although, in our experiment, the route drawing task on a map cannot be considered a
pure route knowledge task as the route needed to be integrated into the environment. The comparable results of BeeAR
and TBT are particularly interesting, as they suggest that a map is not necessarily needed to build up survey knowledge
[64]. BeeAR participants draw significantly more points of interest (POI) on a map than FCN users. Maybe, the lower
level of effort, mental demand, and physical demand experienced by BeeAR users could have contributed to this positive
effect in recalling POIs. BeeAR participants were not confronted with the “being lost” feeling, whereas FCN users have
potentially experienced it, as they were provided the direction to the destination only once at the beginning of the
route. As a navigation approach that combines own decisions with confidence about the destination location, BeeAR
could have led to increased engagement with the environment and, consequently, to a higher number of remembered
details thereof. This conclusion stands somewhat in contrast to the work of [40] in which the redirection of the user’s
attention to the environment improves route and landmark knowledge. In our experiment, both systems required the
user to engage with the environment. However, given the observed differences in the number of drawn POIs, this alone
was insufficient to acquire more accurate spatial knowledge. There is a tendency for BeeAR users to draw more POIs
than TBT participants despite not having access to a map. Although this difference is not statistically significant, BeeAR
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can be considered a valuable alternative to TBT for users interested in learning more about their environment, as they
can entirely focus on their surroundings without looking at a screen.
Although the observed differences in physical demand were not statistically significant, we want to briefly discuss

their potential origin. In contrast to TBT, BeeAR and FCN participants navigated hands-free. This circumstance might
explain the reported lower physical demand, although our results are in line with [52]. The main difference between
BeeAR and FCN users was that for the former the target was always visible. This may have caused fewer head rotation
movements compared to FCN. Furthermore, the technology of the BeeAR approach may have caused participants’
excitment and make them forget about the head-mounted display they were wearing.
Participants of all three navigation conditions achieved a high configuration similarity, expressing the similarity

between the drawn POIs and their actual locations. Considering that two navigation conditions did not make use of
maps and therefore can be comparable to a “direct experience” approach, this result contrasts the work of [29]. Different
from our findings, in [29], participants with direct experience (following the experimenter) drew topologically more
accurate sketch maps than participants with a mobile map-based TBT navigation. Although not significantly, BeeAR
users estimated their walking distance worse than FCN but better than TBT, suggesting that own decisions along the
route may contribute to a better sense of walking distance. Contrary to our results, in the work of Kuo and colleagues
[34], participants using an AR-based beeline navigation approach paid little attention to the environment because being
heavily focused on the arrow pointing towards the destination. This difference may have its origin in the different use of
AR between the two systems. BeeAR is a head-mounted system displaying the exact location of the destination (while
the user is looking in the direction of the destination) rather than constantly showing the direction to the destination
(in form of an arrow) on a hand-held device.
The novelty (UEQ) of both BeeAR and FCN was rated higher than in the case of TBT, which is not a surprise as this

type of navigation is part of daily life for many people. The same applies to stimulation (UEQ). This can result from the
necessity of making own decisions and engaging with the environment. The pragmatic quality of BeeAR was higher
than for TBT, indicating that BeeAR users felt safe, in control, and experienced the system as easy to learn. Regarding
usability (SUS), no significant difference was found between the systems. However, it has to be noted that the used TBT
application was not Google Maps. The usability of that navigation application is potentially higher than this of Organic
Maps [26]. In [59], cyclists reported a higher workload in the beeline navigation condition (similar to a compass) than
with a TBT navigation system. This is not in line with our experiment. Our BeeAR approach combines the beeline
approach with the exact location of the destination. The second part may have led to a decreased overall workload
compared to [59]. In the work of [26], Google Maps was compared with the PRA navigation approach in which users
are also required to make own decisions, similar to the BeeAR approach. The PRA approach caused significantly higher
mental demand than the usage of Google Maps. This stands in contrast to our results. The two routes did not yield
differences regarding the compared metrics , which indicates the usefulness of the route selection framework [46].
In summary, it can be said that BeeAR performs comparable to TBT regarding spatial knowledge acquisition and

workload, although no map is provided in this condition. Regarding the hedonic and pragmatic quality (UEQ), BeeAR
outperfroms TBT. BeeAR users remembered more POIs and retraced their walking route better than FCN participants.
In addition, the presented navigation approach opens new research directions, especially when wayfinders become
familiar with the employed AR technology.
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7 CONCLUSION, LIMITATIONS, AND FUTUREWORK

We presented a novel navigation system combining augmented reality and beeline navigation (BeeAR). In contrast to
previous works (e.g. [39]), our system displays the proper destination location and not only the direction toward it. We
compared BeeAR with findings from a previous study comparing Free Choice Navigation (FCN) and Turn-by-Turn
(TBT) navigation conducted along the same routes on the outskirts of Vienna, Austria. Fifteen out of 16 BeeAR users
retraced their walked routes perfectly, although no map was provided. Although statistically not significant, they
remembered more environmental details along the route than TBT users. This could be because BeeAR combines own
decisions along the route with confidence in reaching the destination, which implies a high level of engagement with
the environment.
Although the study results are encouraging, several limitations apply to our work. The destination is always displayed

but only visible if the user is looking toward it. If the user faces another direction, an off-screen indication [21] could
have helped the user to improve orientation. As BeeAR is a hands-free and visual navigation approach, it is inadequate
for users with visual impairment. Non-visual alternatives (e.g., vibrotactile and voice-based) have been discussed in
Section 2. The graphical user interface of BeeAR is currently displaying only the destination as a magenta cuboid.
Further information or feedback regarding the performance could help the user to build more trust. We deliberately
decided to make the destination always visible while facing it and not to hide it behind urban infrastructure to maintain
orientation. However, this circumstance is not favorable to augmented reality’s known depth perception problem (e.g.,
[1]). Adding visual cues can mitigate this problem, e.g., occlusion by buildings, vegetation, and cars. We are aware that
our BeeAR approach may be less effective in environments with dead ends [58].
Regarding future work, there are several strands to follow. Enriching the graphical user interface with further

information (e.g., [42]) may help the user to orient better (e.g., highlighting points of interest). The destination can be
made visible on demand. This would probably increase the mental demand slightly, but also increase the involvement
with the environment. One participant proposed that the distance to the destination can be reflected in its color (e.g., far
away - blue, very close - red). In order to address this new research questions, further user studies are planned. Another
future research direction is the virtual character of landmarks and its influence on spatial knowledge acquisition. In our
study, it was only the destination, which was not expected to be memorized, but maybe placing further virtual landmarks
in the environment would increase the retention of spatial relationships. Furthermore, the effect of highlighting global
and local landmarks on spatial knowledge acquisition can be investigated with our AR approach.
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CHAPTER 9
Discussion

This section will discuss the results of the presented articles, mainly those not already
addressed in the articles. Several already discussed issues will be deepened in this section.
First, the results concerning route selection will be discussed. Second, the influence of
making own decisions along the route on spatial knowledge acquisition will be thematized.

As the route selection process receives little attention in the literature (see Chapter 2), a
route selection framework was proposed. It aims for systematic and reproducible route
selection for wayfinding studies and helps to make the considered route features explicit
(RQ2). The framework’s flexibility is shown by the readily substitution of features
describing the routes according to research needs and data availability. The proposed
framework is meant as an assistance and recommendation tool. The final suitability
of the route for a given experiment can only be assessed with expert knowledge and
in-situ checks, as not every detail of the environment is captured in available data and
may, therefore, be unperceivable during the route selection process. The viability of this
approach was shown through simulation and real-world studies.

Another aspect contributing to the flexibility of the framework is the specification of
the target route. It can be an average-based route reflecting the whole route population
regarding all relevant route features. The target route can also be any real or hypothetical
route selected by the researcher. This enables finding similar routes in different geographic
areas and can be seen as a first step to facilitate study replications in different environments
(RQ3). A simulation study (see Chapter 4) showed that the framework is valuable for
replication studies using navigation approaches sticking to a predefined route (e.g., TBT)
but needs further improvement for navigation approaches giving the user more freedom
(e.g., FCN and BeeAR). The route selection framework can be used for any transportation
mode: walking, cycling, driving, etc. It does not select routes completely autonomously
since the researcher is responsible for several input variables (e.g., the length of the route
and the number of decision points).
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9. Discussion

The first application of this framework in a real-world wayfinding study showed a further
important input of the researcher: in-situ checks. According to the data, several routes
were suitable regarding points of interest (POI). However, in-situ screenings revealed
that several POIs are barely visible along the route, as they were covered by vegetation,
for example. Based on this observation, a checklist accompanying the route selection
process originated (see Chapter 7). This checklist is not appropriate for every wayfinding
experiment, as the underlying research questions impact potentially available routes and
features describing them. The current version of the route selection framework uses
the weighted Euclidean distance to express the similarity between routes. Although
the framework’s usefulness for route selection was shown in simulation and real-world
studies, the meaning of the selected distance metric concerning wayfinding studies is
still a subject of future research, i.e., it is unclear which difference in terms of weighted
Euclidean distance needs to be reached to yield different study results.

The research regarding the potential influence of routes on the results of wayfinding
studies and the proposition of the route selection framework originated from the lacking
knowledge about the first aspect. As there was no systematic knowledge about this
potential influence, it could have been that the selected routes for the wayfinding studies
induced an unknown bias. The selected routes may have been advantageous for the
tested navigation system, but at the same time, there may have been a route on which
the navigation system does not perform well. Both cases are problematic if unnoticed,
as results might not be generalizable. I do not claim that all previously conducted
wayfinding studies are of no value, but the results should be interpreted with caution, as
the selected route, by chance, might have disadvantaged/favored the expected results.
This work is supposed to spark a discussion about whether route selection in wayfinding
studies is a problem, and how to approach this potential difficulty. This thesis contributed
to the discussion by running an agent-based simulation study in the city center of Vienna,
Austria. As calculating all possible routes (varying length and number of decision points)
is an NP-complete problem, the population was limited to all shortest paths having
12 decision points and a length between 550 m and 1000 m. Considering not only the
shortest paths between two points is a reasonable option for further research (e.g., Zhu
and Levinson, 2015). The simulation showed that depending on the route, one or the
other navigation system is superior, although, on average, one system is better (RQ1).

This result indicates that route selection is a crucial step in experimental design and has
the potential to influence, if not steer, the outcomes of a wayfinding study. Therefore, a
discussion in the community conducting navigation experiments is needed to determine
how to deal with this potential bias. An additional finding of this study is that the turn-
over of the results is even more likely if the sample size (the number of agents) decreases
(RQ4). The results are valid for the city center of Vienna and likely generalizable for
cities with a similar network structure (Strano et al., 2013; Thompson et al., 2020). The
verification in cities with different network types (similar to Savino et al., 2022) and a
real-world study are the next steps in order to consolidate the understanding of the route
selection problem.
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A potential remedy to the turn-over problem of the results was proposed (see Chapter 5).
This route selection approach is based on an agent-based simulation with all potential
routes and different sample sizes. The idea is to select routes along two criteria. First,
routes with consistent results across sample sizes are selected. Second, routes in line with
the global trend are found (e.g., average across all routes). This two filtering steps result
in a list of potentially suitable experiment routes. They can be further ranked with the
above-mentioned route selection framework, as the list possibly contains hundreds or
more routes. The requirement for this approach is to run an agent-based simulation. In
consequence, this route recommendation procedure is only as good as the underlying
simulation. Further solutions could deal without running an agent-based simulation
study, e.g., predicting the success metric based on route features. A database with
data from all over the world regarding the same navigation system (e.g., Google Maps)
could be established to provide training data. This step, however, would require further
harmonization steps as instructions for participants are likely to vary across studies.
Given the substantial influence routes can have on study results, a discussion about how
to deal with this problem should take place. The proposed remedy is only one possibility
for coping with this problem. Different approaches may be more efficient and easier to
follow. These discussions should also address the generalizability of study results, e.g.,
this aspect becomes especially important if the selected routes are very short.

The second part of this section discusses the findings of the real-world study that
scrutinized the influence of own decisions on spatial knowledge acquisition (RQ5). The
inspiration for this study was the ongoing discussion about whether navigation assistance
systems negatively affect our spatial cognition (e.g., Ishikawa, 2019; Ruginski et al.,
2019). The work of Lu et al. (2021) suggests that redirecting the user’s attention
to the environment and involving the user in the path planning procedure supports
spatial knowledge acquisition and self-orientation. Therefore, it is reasonable to research
navigation systems that let the user engage with the environment and leave, at least
partially, navigation decisions to the user. Two such navigation systems were proposed
and tested in a real-world urban environment: Free Choice Navigation (FCN, see Chapter
7) and Beeline Augmented Reality navigation (BeeAR, see Chapter 8).

The viability of the FCN concept was first tested by means of an agent-based simulation
study. More than 90% of the agents reached their destination in the three test environ-
ments. These encouraging results led to a real-world prototype of this system. First, the
results comparing FCN and TBT are discussed and later, the observed differences between
BeeAR and FCN and TBT, respectively, as this reflects the development chronology.
Twenty-three FCN participants (out of 26) reached their destination successfully. This
share is in line with the simulation study conducted previously. One participant misun-
derstood a turn instruction. Instead of having pure turn instructions, one might consider
incorporating landmark information into the instructions (Tom and Denis, 2003). Simple
turn instructions were used to maintain comparability with the tested TBT system. Two
participants did not receive an instruction at a crucial junction (in retrospect). A future
feature that needs to be considered is the junction’s importance for a given route (e.g.,
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Teimouri and Richter, 2022).

The FCN system issued less navigation instructions than TBT, relative to the number
of traversed junctions. Compared to the TBT approach, FCN users would receive one
instruction less every six junctions they traverse. For the experiment, it meant that FCN
users had to make own decisions at 60% of the junctions, whereas TBT users at 44%.
Making own decisions requires the examination of the environment. Although the FCN
approach incorporates independent navigation with own decisions, FCN users did not
show improved spatial knowledge acquisition compared to TBT (in line with Chrastil and
Warren (2013), in contrast to Bakdash et al., 2008). This stands somewhat in contrast
to the work of Lu et al. (2021) in which the redirection of the user’s attention to the
environment can lead to increased landmark and route knowledge. Persuading the user
to engage with the environment is, on its own, not enough to foster spatial knowledge
acquisition (in contrast to Parush et al., 2007). Although no significant differences
were observed, tendencies will be discussed in the following. Regarding the pointing
task, the results are in line with Huang et al. (2022) (no significant difference between
both systems). This result contrasts with the work of Clemenson et al. (2021) in which
participants who were new to the experimental area were more accurately pointing to
other locations after navigating with a system that leaves decisions to the user. FCN users
estimated the walking distance by 115 m more accurately than TBT users, suggesting
that FCN supports proprioception. On average, TBT participants retraced the walking
route more accurately and remembered more points of interest than FCN users. This
tendency does not surprise, as TBT users were supported with a mobile map indicating
landmarks. However, the high configurational similarity of FCN participants is notable,
as these users had no map showing the entire area including landmarks. This result differs
from findings of Münzer et al. (2006) in which participants with a (paper) map acquired
better survey knowledge than participants not supported with a map. In the presented
study, FCN users could acquire accurate survey knowledge without being provided with
a map. The reported mental demand (NASA TLX) of FCN participants was, on average,
higher than that of TBT users. The same applies to frustration. This may stem from
the need to stay oriented and not knowing exactly where the destination is located. The
higher mental demand could also be caused by making own decisions, which would be in
line with Huang et al. (2022).

One of the limitations of the FCN approach is the estimated user orientation. In order to
overcome this potential drawback, a second navigation system called BeeAR was proposed.
There, the destination is permanently visible and consequently facilitates orientation.
Furthermore, the displayed digital landmark may serve as an anchor point for orientation
(Couclelis et al., 1987). BeeAR participants retraced their walked routes better than FCN
participants. This is likely to be caused by the permanently visible destination, as BeeAR
users did not need to orient themselves with respect to the destination. The discussed
differences regarding the NASA TLX questionnaire were statistically insignificant, but
the observed tendencies may explain other results. The destination information was
readily available to BeeAR users, whereas FCN participants had to reorient themselves
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frequently, also causing slightly increased levels of mental demand and frustration. BeeAR
users rated their performance, on average, higher than FCN and TBT users. As the
destination was given in the BeeAR approach, participants potentially could focus on the
environment as other potentially distracting objects were missing. Interestingly, 15 out
of 16 BeeAR users retraced their walked route perfectly, given that no map was present
in this navigation condition. The same applies to 5 FCN and 14 TBT users. In line with
Kelly et al. (2022), the TBT system did not negatively impact the ability to retrace the
walked route. However, the employed route drawing task cannot be considered a pure
route knowledge task because the route needed to be integrated into the environment.
This result suggests that the acquisition of survey knowledge (as the route needed to
be integrated into the street network) can be supported by other means than maps
(Thorndyke and Hayes-Roth, 1982). Another interesting finding of this study is that
BeeAR users drew more points of interest than FCN users, although none of them had a
map. The certainty of BeeAR participants of knowing where to go could explain this
result.

The time FCN users spent on reorientation (causing increased mental demand), BeeAR
users could observe the environment to decide which branch to take next. These differences
between BeeAR and FCN suggest that redirecting the user’s attention to the environment
is not enough to foster spatial knowledge acquisition (Lu et al., 2021). BeeAR users
recalled, on average, more POIs than TBT users. The combination of own decisions, i.e.,
keeping the user active (Parush et al., 2007; Lu et al., 2021), and spatial confidence (seeing
the destination permanently) may have led to this positive effect. The configuration
similarity between recalled POIs and their true locations was high in all three navigation
conditions. Why users of two navigation systems without any map performed as good as
users having a map will be the subject of future research, as currently, survey knowledge
support is mainly attributed to interactions with overviews (e.g., maps) of the experiment
area (e.g., Thorndyke and Hayes-Roth, 1982; Golledge et al., 1995; Münzer et al., 2006;
Löwen et al., 2019). Given these positive results in the BeeAR group, a further advantage
compared to hand-held devices can be derived. As the user does not need to map
information presented on a screen to the environment, the user can focus entirely on
the environment and, consequently, acquire more spatial knowledge (in contrast to Kuo
et al., 2020).

The results of the conducted real-world user study somewhat contrast with certain
empirical evidence suggesting an adverse effect of TBT-based navigation systems on
spatial knowledge acquisition (see Section 1.2.2). In the work of Hejtmánek et al. (2018),
increased map use led to increased pointing errors and worse performance during location
placement and naming on a blank map. BeeAR and FCN participants were not supported
with a map, whereas TBT users had constant access to a mobile map. Nevertheless,
TBT participants did not perform significantly worse in any tasks approximating spatial
knowledge acquisition. The direct experience navigation condition in Ishikawa et al.
(2008) is comparable to BeeAR and FCN because the user is encouraged to engage with
the environment. Results show that participants using a GPS-based TBT navigation
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system traveled longer distances, committed larger pointing errors, and drew sketch maps
of lower topological quality compared to direct experience participants. In our study,
TBT users had the shortest walking distances (on average), performed comparably to
BeeAR and FCN in the pointing to start point task, and achieved a high configuration
similarity between the drawn POIs and their true locations. The differences reported in
Ishikawa et al. (2008) may also originate from an early stage of commercial pedestrian
navigation systems. Krüger et al. (2004) compared two modalities for turn-by-turn
navigation (PDA vs. head-mounted clip-on display). They conclude that TBT favors
landmark knowledge but not survey knowledge. The second part contrasts with the
presented results, as TBT participants could retrace walking routes very well and achieved
a high configuration similarity of drawn POIs. Fenech et al. (2010) compared audio-
based turn-by-turn navigation with self-guided navigation regarding scene recognition.
Participants guided by the TBT system performed worse in the scene recognition task,
suggesting that it causes inattentional blindness. In the presented study, TBT participants
remembered a comparable number of POIs. This study focused on short-term implications
of own decisions and engagement with the environment for spatial knowledge acquisition.
Therefore, studies considering the lifetime experience with TBT-based navigation systems
are not further discussed (e.g., Ishikawa, 2019; Dahmani and Bohbot, 2020). Nevertheless,
on a short-term scale (navigating one route), no negative effect of TBT navigation on
spatial knowledge acquisition was observed during this study (in line with Sönmez and
Önder (2019) and Kelly et al., 2022). Even if TBT has no adverse effect on spatial
cognition, research on navigation systems supporting spatial knowledge is still relevant
as users expressed a strong interest in learning more about their environment, even for
the price of walking longer routes (RQ6, see Chapter 7).

Above, this section provides several potential explanations about why different study
results regarding spatial knowledge acquisition were observed. The contrast between
this work and previous research could also originate from using different routes and
environments since route selection can substantially impact study results (see Chapter
5). Potential differences between routes across experiments are landmarks, route length,
turning sequence, and environmental type, among others. These differences can lead
to different results, even if the experimental setup is similar. One possibility to make
the results more comparable is to rerun an experiment either on the same route as the
comparing experiment or on a similar route identified by the presented route selection
framework. Finally, we shall not forget about the human factor here, as cultural and
personal differences may influence study results too (e.g., Ishikawa and Montello, 2006;
Montello and Xiao, 2011).

148



CHAPTER 10
Conclusions, Limitations, and

Future Work

10.1 Conclusions
This thesis presented a framework for systematic and reproducible route selection for
wayfinding studies (RQ2). It aims to find average routes reflecting the given experiment
area, and by this, increasing the generalizability of the findings. Routes are described
with features (e.g., mean segment length, the number of right turns) that can be flexibly
selected by the researcher according to her needs and data availability. The framework’s
practical value was shown in a real-world user study by recommending routes in the
experiment area. The final decision always needs to be made by the researcher, as certain
aspects might not have been captured in the route features (e.g., missing data). The
same framework allows for finding similar routes in different geographic areas, and in
consequence, facilitates the replication of wayfinding studies (RQ3). Furthermore, it
helps to make route selection choices and considerations explicit. In conclusion, the
framework can be applied in any scenario involving route selection (e.g., wayfinding
studies and urban computing).

The potential influence of routes on study results was investigated by means of an
agent-based simulation study (RQ1). The results suggest that routes can greatly impact
study results, and depending on the selected route, the study outcome may be inverted.
It was the first systematic work in this area, directing the community’s attention to
the potential problem of ad-hoc decisions for route selection in wayfinding experiments.
The results also indicated an aggravation of this problem with decreasing sample size
(RQ4). Given this problem, an approach to select suitable routes incorporating the route
selection framework was proposed.

Two novel navigation approaches (FCN and BeeAR), increasing decision freedom and
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engagement with the environment, were proposed to improve spatial knowledge acquisition
(RQ5). They were tested in a real-world urban environment on the outskirts of Vienna.
The widespread TBT approach acted as baseline condition. FCN and BeeAR participants
did not perform significantly differently from TBT users in tasks approximating spatial
knowledge acquisition. However, BeeAR users retraced the walking route better than
FCN users, although both navigation conditions did not include a map. BeeAR users
also recalled more points of interest compared to FCN participants. These differences
indicate that making own decisions along the route is, on its own, insufficient grounds for
improving spatial knowledge acquisition. Interestingly, participants in all three navigation
conditions achieved a high configuration similarity between drawn points of interest and
their true locations (bidimensional regression). This result suggests that a map is not
necessarily needed to build topologically accurate survey knowledge. A survey showed
that learning about the environment incentivizes walking longer routes (RQ6). This
reason was preferred over being in control of the walked route, indicating that everyday
users appreciate research on navigation assistance systems supporting spatial knowledge
acquisition. The results of the conducted user study did not provide empirical evidence for
TBT navigation being harmful to spatial knowledge acquisition in pedestrian wayfinding.

10.2 Limitations and Future Work
This subsection will discuss limitations and strands of future work together, as future
work partially results from the limitations of the current work. As in every research,
several research questions have been answered, but on the other hand, new research
questions have arisen, pointing to different research directions. First, further research
challenges considering the route selection framework together with route importance in
wayfinding experiments are discussed, and second, new research questions are highlighted
regarding decision freedom along the route (mainly Free Choice Navigation and Beeline
Augmented Reality navigation) and spatial knowledge acquisition.
The route selection framework is very flexible, as every available data describing routes
can be used to find representative average-based routes. Until now, mostly geometric
features were used, e.g., segment length and the average number of branches at junctions.
Adding points of interest and land cover data was a first step to incorporate semantic
information, and by this, increase the similarity between routes. In order to make this
distance measure more intuitive to humans, further semantic and visual measures could
be added to find representative/similar routes. Several measures such as perceived scene
complexity (Guan et al., 2022), street-view greenery (X. Li et al., 2015), building age
(Sun et al., 2021), and visual enclosure (Yin and Wang, 2016) can be extracted from
street view imagery (see He and G. Li (2021) for an overview) and integrated into the
framework. Furthermore, data considering architectural style and safety can enrich the
route selection framework and extend it beyond the geometrical dimension. The temporal
dimension can be integrated by using the perceived travel time (Parthasarathi et al.,
2013). Additional features describing the route can target health (pollution), crime, and
cognitive effort (see Siriaraya et al. (2020) for an overview). Most of the considered and
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mentioned features are symmetric. The route from A to B would get the same score as
the route from B to A. One asymmetrical feature is the terrain slope, making one of the
routes potentially more physically demanding. Another argument for having asymmetric
scores is the preference of wayfinders to long legs at the beginning of a route (Brunyé et al.,
2015), or significant route differences if start and end points are swapped (Bongiorno
et al., 2021). The route selection framework depends on data availability. Some features
describing routes would be available worldwide, whereas other data, such as digital
elevation models, are either available in different resolutions or only on a regional/local
scale. Even potentially near global-coverage data needs to be computed first (e.g., mean
segment length based on OpenStreetMap). This step might represent an obstacle to using
the framework, particularly for users without a programming background. Therefore, it
would be of great benefit to have a database with several pre-computed features, ideally
for the whole world (Fogliaroni et al., 2018). In an ideal world, different stakeholders
would contribute their data to this database. This would lower the entry barrier to start
using the route selection framework across different disciplines.

As shown in Chapter 4, the route selection framework can be used to increase the
comparability of wayfinding studies. By making the route describing features robust
and covering human perception, wayfinding results may be compared without using
the same navigation system over and over again. This might be of particular interest,
considering that in many wayfinding studies the turn-by-turn navigation approach acts as
a baseline. With an appropriate distance metric, one could estimate the performance of
TBT in a given area without actually conducting this condition, as much data regarding
TBT navigation has been collected. As of now, the weighted Euclidean distance is
used in the route selection framework, allowing for prioritizing one feature over the
other. Besides the weighting, the selected distance measure impacts the outcome of
the framework. The cosine similarity measure was excluded (see Section 2), however,
different distance metrics, such as the Manhattan or the Minkowski distance, should be
scrutinized for suitability. The interpretability of the score every route obtains is still
under investigation and currently presents a limitation of the framework. Therefore,
real-world user studies need to be conducted to shed light on the interpretation of this
score. In the current implementation, the user of the route selection framework needs to
specify the route length in terms of junctions. This design decision was made because
calculating all possible routes between n and m junctions was time-wise not practical,
even in middle-sized cities. This is known as the subgraph isomorphism problem that is
NP-complete. However, if certain constraints apply to the graph and the street network
is modeled as a planar (Buhl et al., 2006) and simple (without loops and multiedges)
graph, the problem can be solved in linear time using graph partitioning and dynamic
programming (Eppstein, 2002). For several areas, the assumption of planarity is met,
whereas in areas with bridges, overpasses, and tunnels this approach is problematic and
does not reflect reality. Therefore, a more practical solution needs to be developed. The
solution could also be an approximation of all possible routes with a specific number of
decision points instead of an exhaustive list thereof.
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A route to be followed never exists on its own. It is always embedded in a street network.
If the planned path is not followed (due to navigation errors, for example), the route’s
surroundings are also experienced. Several navigation approaches favor exploring the
environment surrounding the shortest path (e.g., FCN and BeeAR). Therefore, it is
also essential to describe this neighborhood reliably to select an appropriate route for a
wayfinding experiment. However, how to define this neighborhood exactly is still unclear,
and it depends on the navigation system at hand (Canestrini, 2023). The importance of
the route’s neighborhood becomes clearer with the following example. The user follows
the shortest path but misinterprets one turning instruction and ends up in a dead-end.
This situation may increase the uncertainty of the user and make further navigation
errors more likely. In consequence, the surrounding area of the route should be considered
to describe a route, as the route itself may not be complex, but the surroundings might
be. This aspect also needs to be added to the route selection framework as a further
improvement.

It was shown that route selection has the potential to invert study results and is all the
more critical with decreasing sample size (see Section 5). As this simulation study was
conducted in the city center of Vienna, further studies in cities with a different street
network layout (Thompson et al., 2020) are needed to confirm the results. Depending on
the navigation approach (e.g., TBT, FCN and BeeAR), different features of the street
network will impact the navigation experience. Savino and colleagues (Savino et al.,
2022), for example, showed that a grid-like structure and few dead-ends, among others,
are network properties favorable to beeline navigation. The most important feature of
any navigation system is to guide users successfully to their destination. Nevertheless, the
work on route importance may be extended by using success metrics other than arrival
rate. Depending on the experimental design, detour length, spatial knowledge acquisition,
or the number of erroneous decisions might be of interest. Therefore, for studies measuring
not only the arrival rate, further research is needed on how other performance metrics are
affected by route selection. As a simulation is always a simplification of the real world, a
wayfinding experiment in real-world settings is needed. A possible experimental design
could look as follows: (1) take all potential routes and divide them into categories, e.g.,
according to their score (route selection framework) or the arrival rate from a previous
simulation study; (2) for each of these groups, select one route that best represents the
group; (3) compare different navigation systems regarding various performance metrics
on these routes; (4) verify if different routes lead to differences in performance metrics.

In its current form, the Free Choice Navigation system has certain limitations. Some
improvements can be implemented immediately, whereas others need further research.
The point in time at which a "go-back" instruction is issued can be optimized. It can be
communicated shortly after the junction at which, probably, a non-optimal decision was
made. This change would save evitable walking distance and improve the arrival rate
in the FCN navigation approach. The Free Choice Navigation mechanism depends on
a series of parameters, such as the maximum allowed path length and a penalty factor
for already visited junctions, that directly impact the support given by the system. A
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parametrization resulting from the previous simulation study was used in the in-situ
study. Depending on the street network, this parametrization may vary. Therefore,
a real-time adaptation given the current area is a possible extension of the presented
work, e.g., going from one city district to another that differs considerably regarding
street layout. It is unlikely to have one parameter set that works well on a global scale
because the street network characteristics directly influence the working mechanics of
FCN. Whether the system assists the user depends as well on the complexity of the
current junction. There are different approaches to assessing a junction’s complexity. In
the in-situ study, the complexity of a junction depended on the number of branches. The
more branches, the more complex the junction was (O’Neill, 1991). Further complexity
measures must be tested, as they potentially improve the navigation system. A more
accurate junction complexity measure allows for assisting the user more accurately and
helps to provide assistance when actually needed. Therefore, further studies with other
modeling approaches concerning junction complexity (Giannopoulos et al., 2014; Guan
et al., 2022) are needed.

Before assessing a junction’s complexity, there arises the question of what a junction is. In
the in-situ part of the presented experiment, in the additional task condition, participants
were stopped at every junction and asked about the direction toward the destination. A
junction was defined based on OSM data at which at least three branches meet. Several
times participants were surprised to be stopped again. They would have passed the
junction because, in their perception, it was none, or they did not notice that there were
other branches to take. In consequence, a real-world study in which participants are not
told explicitly to stay at a junction (Cock et al., 2021) is needed. By running such a study,
spatial configurations that favor missing a junction could be identified. This insight
would help to give better instructions by directing the user’s attention to the junction
that otherwise would have been missed without assistance. Although the modeled belief
vector (the direction in which the user believes the destination is located) worked well
for the most part, improvements are now possible as data on the belief vector at each
intersection was collected during the experiment (additional task). This improvement
will provide more accurate support to users, as the system can better estimate where the
user thinks the target is located. This would also decrease the probability of omitting a
navigation instruction when actually needed (like in the in-situ study). The knowledge
about the belief vector would also improve future simulation studies using FCN.

In the FCN condition, two participants did not arrive because the system estimated the
user’s current orientation as good enough to leave the user to decide which branch to
take. The junction at which this decision was made turned out to be crucial because
this was the last junction at which the participant could select which branch to follow
before the trial was interrupted and considered a failure. This problem can be avoided
by identifying crucial junctions at which assistance is always given, independently of the
actual orientation of the user. One possibility would be to use route-defining locations as
proposed by Teimouri and Richter (2022). These locations define the route and represent
important changes in direction, salient landmarks, and relevant streets along the route.
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A further step toward personalizing the FCN approach (currently using the sense of
direction) is incorporating the user’s familiarity with the environment. Analyzing the
eye-tracking videos recorded for the TBT and FCN conditions will allow further insights
into map use, map interactions, object fixations and visual search behavior. Although
the TBT approach has not negatively impacted spatial knowledge acquisition, the map
use time may have done so (contrasting results of Stefanucci et al. (2022) and Hejtmánek
et al., 2018). Furthermore, less instructions per traversed junction in the FCN condition
could have favored forward and backward glances (Brügger et al., 2018).

The presented BeeAR navigation approach is a prototype and comes with a limited
graphical user interface. In future work, it can be enriched with additional information
(e.g., Matviienko et al., 2022) supporting spatial knowledge acquisition (e.g., highlighting
points of interest or minimap - Qiu et al., 2023). Additional information displayed on
demand may enhance the user experience and stimulate curiosity (Kota et al., 2010). On
the other hand, further visualizations of the destination can be tested. One participant
proposed a color-encoded distance indicator to transmit a better understanding of
the remaining distance to the destination. Besides displaying the destination, further
navigational cues (e.g., compass or current street information) can be added to the AR
interface to aid spatial knowledge acquisition (Stefanucci et al., 2022). Another potential
enhancement could be achieved by using occlusion for the holograms, i.e., buildings, trees,
advertisements, etc., located between the user and the hologram would render parts
of the hologram invisible to the user. This cue would address the augmented reality’s
depth perception problem (e.g., Bodenheimer et al., 2022). The data needed to enable
occlusion can be extracted from a digital elevation model. While not looking toward
the destination, no information is currently displayed. Off-screen indicators (Gruenefeld
et al., 2017) could help the user to improve orientation. The BeeAR approach should
be tested in other real-world settings, as this navigation approach might perform worse
in areas of different network types (Savino et al., 2022). Although own decisions paired
with permanently knowing and seeing the destination location may have led to excellent
performance in route retracing and recalling POIs, further research is needed to examine
how this knowledge was formed without any map. Furthermore, the learning perspective
(egocentric vs. allocentric) should be considered in further analysis (Kuil et al., 2021).
Given the novelty of both navigation approaches (FCN and BeeAR), a longitudinal study
would probably be more informative, as potential effects of a navigation system may be
observable only after the second usage (Kuo et al., 2020).

Combining augmented reality (AR) glasses with a global navigation satellite system
(GNSS) receiver allows for a reasonable positional accuracy of the displayed holograms
outdoors. Although AR glasses are a valuable research tool, several potential issues
regarding their outdoor functionality will be thematized. The weather is probably the
most important factor. Of course, it is not possible to run experiments in rainy conditions.
On the other hand, perfect weather with sunshine is not good either because the cameras
of the AR glasses may get blinded. In consequence, the AR glasses lose their orientation.
This causes the previously placed holograms to move in the environment, rendering them
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useless and requiring a recalibration of the AR glasses. Further potential challenges for
AR glasses are fast and natural head movements, as researchers handle the glasses more
carefully, avoiding fast head movements. Environments with no salient points may cause
orientation loss too. Similar structures can cause the same effect, as the glasses cannot
always distinguish well between them. As we can see, there are still many challenges to
make AR glasses work robustly outdoors. Solutions to some of them need to be proposed,
whereas other challenges can be addressed by custom solutions suitable for wayfinding
research (e.g., using sun shades to mitigate direct sunlight). On the other hand, the
potential and value of using AR outdoors for wayfinding studies have been shown in
Chapter 8.

As discussed, certain limitations apply to this work. Some of these can be overcome
by incorporating existing literature, while others require novel approaches and research.
Nonetheless, contributions to several ongoing discussions were presented. These discus-
sions include but are not limited to whether pedestrian navigation assistance systems
negatively impact spatial knowledge acquisition and whether active users acquire more
spatial knowledge than passive users who only follow instructions. Furthermore, I hope
this work will initiate a discussion about the importance of route selection in wayfinding
experiments and beyond. Finally, the potential of this work to open up new research
directions was highlighted, suggesting that impactful research building on this work will
be conducted in the future.

155





References

Albrecht, Robert, Riitta Väänänen, and Tapio Lokki (2016). „Guided by music: pedestrian
and cyclist navigation with route and beacon guidance“. In: Personal and Ubiquitous
Computing 20.1, pp. 121–145. issn: 16174909. doi: 10.1007/s00779-016-0906-
z.

Amores, David, Egemen Tanin, and Maria Vasardani (2021). „A proactive route planning
approach to navigation errors“. In: International Journal of Geographical Information
Science 35.6, pp. 1094–1130. issn: 13623087. doi: 10.1080/13658816.2020.
1820508. url: https://doi.org/10.1080/13658816.2020.1820508.

Anacta, Vanessa Joy A. (2020). „Learning Unfamiliar Routes with Relative and Absolute
Instructions: Analyzing Human Wayfinding Performance and Sketch Maps“. In: Jour-
nal of Geography 119.6, pp. 226–237. doi: 10.1080/00221341.2020.1821242.
url: https://doi.org/10.1080/00221341.2020.1821242.

Anastasiou, Christopher, Oliver Baumann, and Naohide Yamamoto (Nov. 2022). „Does
path integration contribute to human navigation in large-scale space?“ In: Psycho-
nomic Bulletin & Review. issn: 1531-5320. doi: 10.3758/s13423-022-02216-8.
url: https://doi.org/10.3758/s13423-022-02216-8.

Bakdash, Jonathan Z, Sally A Linkenauger, and Dennis Proffitt (2008). „Compar-
ing Decision-Making and Control for Learning a Virtual Environment: Backseat
Drivers Learn Where They are Going“. In: Proceedings of the Human Factors
and Ergonomics Society Annual Meeting 52.27, pp. 2117–2121. doi: 10.1177/
154193120805202707.

Bock, Jelle De and Steven Verstockt (2021). „SmarterROUTES-A Data-driven Context-
aware Solution for Personalized Dynamic Routing and Navigation“. In: ACM Trans-
actions on Spatial Algorithms and Systems 7.1, pp. 1–25. issn: 23740361. doi: 10.
1145/3402125.

Bodenheimer, Bobby, Haley Adams Adams, Jeanine Stefanucci, and Sarah Creem-Regehr
(2022). „Judging Distances to Virtual Objects Generated by Optical and Video
See-Through Augmented Reality“. In: Journal of Vision 22.14, pp. 4407–4407.

Bongiorno, Christian, Yulun Zhou, Marta Kryven, David Theurel, Alessandro Rizzo,
Paolo Santi, Joshua Tenenbaum, and Carlo Ratti (2021). „Vector-based pedestrian
navigation in cities“. In: Nature Computational Science 1.10, pp. 678–685. issn:
26628457. doi: 10.1038/s43588-021-00130-y. arXiv: 2103.07104.

157

https://doi.org/10.1007/s00779-016-0906-z
https://doi.org/10.1007/s00779-016-0906-z
https://doi.org/10.1080/13658816.2020.1820508
https://doi.org/10.1080/13658816.2020.1820508
https://doi.org/10.1080/13658816.2020.1820508
https://doi.org/10.1080/00221341.2020.1821242
https://doi.org/10.1080/00221341.2020.1821242
https://doi.org/10.3758/s13423-022-02216-8
https://doi.org/10.3758/s13423-022-02216-8
https://doi.org/10.1177/154193120805202707
https://doi.org/10.1177/154193120805202707
https://doi.org/10.1145/3402125
https://doi.org/10.1145/3402125
https://doi.org/10.1038/s43588-021-00130-y
https://arxiv.org/abs/2103.07104


Brooke, John (1996). „SUS – A Quick and Dirty Usability Scale“. In: Usability Evaluation
in Industry 189.3.

Brügger, Annina, Kai-Florian Richter, and Sara Irina Fabrikant (2018). „Which ego-
centric direction suffers from visual attention during aided wayfinding?“ en. In: Eye
Tracking for Spatial Research, Proceedings of the 3rd International Workshop. Ed. by
Peter Kiefer, Ioannis Giannopoulos, Fabian Göbel, Martin Raubal, and Andrew T.
Duchowski. 3rd International Workshop on Eye Tracking for Spatial Research; Con-
ference Location: Zurich, Switzerland; Conference Date: January 14, 2018. Zurich:
ETH Zurich. doi: 10.3929/ethz-b-000222472.

Brügger, Annina, Kai-Florian Richter, and Sara Irina Fabrikant (Feb. 2019). „How
does navigation system behavior influence human behavior?“ In: Cognitive Research:
Principles and Implications 4.1, p. 5. issn: 2365-7464. doi: 10.1186/s41235-019-
0156-5. url: https://doi.org/10.1186/s41235-019-0156-5.

Brunyé, Tad T, Zachary A Collier, Julie Cantelon, Amanda Holmes, Matthew D Wood,
Igor Linkov, and Holly A Taylor (2015). „Strategies for Selecting Routes through
Real-World Environments: Relative Topography, Initial Route Straightness, and
Cardinal Direction“. In: PLOS ONE 10.5, pp. 1–16. doi: 10.1371/journal.pone.
0124404. url: https://doi.org/10.1371/journal.pone.0124404.

Buhl, J., J. Gautrais, N. Reeves, R. V. Solé, S. Valverde, P. Kuntz, and G. Theraulaz (Feb.
2006). „Topological patterns in street networks ofself-organized urban settlements“.
In: The European Physical Journal B - Condensed Matter and Complex Systems
49.4, pp. 513–522. issn: 1434-6036. doi: 10.1140/epjb/e2006-00085-1. url:
https://doi.org/10.1140/epjb/e2006-00085-1.

Camboim, Silvana Philippi, João Vitor Meza Bravo, and Claudia Robbi Sluter (2015).
„An Investigation into the Completeness of, and the Updates to, OpenStreetMap
Data in a Heterogeneous Area in Brazil“. In: ISPRS International Journal of Geo-
Information 4.3, pp. 1366–1388. issn: 2220-9964. doi: 10.3390/ijgi4031366.
url: https://www.mdpi.com/2220-9964/4/3/1366.

Canestrini, Manuela (2023). „Is your city easy to navigate? Street network properties
and their impact on navigation success“. MA thesis. Technische Universität Wien.
url: https://doi.org/10.34726/hss.2023.83309.

Chakraborty, B, T Maeda, and G Chakraborty (2005). „Multiobjective route selection
for car navigation system using genetic algorithm“. In: Proceedings of the 2005 IEEE
Midnight-Summer Workshop on Soft Computing in Industrial Applications, 2005.
SMCia/05. Pp. 190–195. doi: 10.1109/SMCIA.2005.1466971.

Chrastil, Elizabeth R and William H Warren (2013). „Active and passive spatial learning
in human navigation: acquisition of survey knowledge.“ In: Journal of experimental
psychology: learning, memory, and cognition 39.5, p. 1520.

Clemenson, Gregory D., Antonella Maselli, Alexander J. Fiannaca, Amos Miller, and
Mar Gonzalez-Franco (Apr. 2021). „Rethinking GPS navigation: creating cognitive
maps through auditory clues“. In: Scientific Reports 11.1, p. 7764. issn: 2045-2322.
doi: 10.1038/s41598-021-87148-4. url: https://doi.org/10.1038/
s41598-021-87148-4.

158

https://doi.org/10.3929/ethz-b-000222472
https://doi.org/10.1186/s41235-019-0156-5
https://doi.org/10.1186/s41235-019-0156-5
https://doi.org/10.1186/s41235-019-0156-5
https://doi.org/10.1371/journal.pone.0124404
https://doi.org/10.1371/journal.pone.0124404
https://doi.org/10.1371/journal.pone.0124404
https://doi.org/10.1140/epjb/e2006-00085-1
https://doi.org/10.1140/epjb/e2006-00085-1
https://doi.org/10.3390/ijgi4031366
https://www.mdpi.com/2220-9964/4/3/1366
https://doi.org/10.34726/hss.2023.83309
https://doi.org/10.1109/SMCIA.2005.1466971
https://doi.org/10.1038/s41598-021-87148-4
https://doi.org/10.1038/s41598-021-87148-4
https://doi.org/10.1038/s41598-021-87148-4


Cock, Laure De, Kristien Ooms, Nico Van de Weghe, Nina Vanhaeren, Pieter Pauwels,
and Philippe De Maeyer (2021). „Identifying what constitutes complexity perception
of decision points during indoor route guidance“. In: International Journal of Geo-
graphical Information Science 35.6, pp. 1232–1250. doi: 10.1080/13658816.2020.
1719109. url: https://doi.org/10.1080/13658816.2020.1719109.

Couclelis, H., R.G. Golledge, N. Gale, and W. Tobler (1987). „Exploring the anchor-
point hypothesis of spatial cognition“. In: Journal of Environmental Psychology
7.2, pp. 99–122. issn: 0272-4944. doi: https://doi.org/10.1016/S0272-
4944(87)80020-8. url: https://www.sciencedirect.com/science/
article/pii/S0272494487800208.

Dahmani, Louisa and Véronique D. Bohbot (Apr. 2020). „Habitual use of GPS negatively
impacts spatial memory during self-guided navigation“. In: Scientific Reports 10.1,
p. 6310. issn: 2045-2322. doi: 10.1038/s41598-020-62877-0. url: https:
//doi.org/10.1038/s41598-020-62877-0.

Dalton, Ruth Conroy (2003). „The Secret Is To Follow Your Nose: Route Path Selection
and Angularity“. In: Environment and Behavior 35.1, pp. 107–131. doi: 10.1177/
0013916502238867. url: https://doi.org/10.1177/0013916502238867.

De Cock, Laure, Pepijn Viaene, Kristien Ooms, Ralph Michels, Alain De Wulf, Nina
Vanhaeren, Nico Van de Weghe, and Philippe De Maeyer (2019). „Comparing written
and photo-based indoor wayfinding instructions through eye fixation measures and
user ratings as mental effort assessments“. In: Journal of Eye Movement Research
12.1, pp. 1–14. issn: 19958692. doi: 10.16910/jemr.12.1.1.

Deitz, Shiloh, Amy Lobben, and Arielle Alferez (2021). „Squeaky wheels: Missing data, dis-
ability, and power in the smart city“. In: Big Data & Society 8.2, p. 20539517211047735.
doi: 10.1177/20539517211047735. url: https://doi.org/10.1177/
20539517211047735.

Dickmann, Frank (2012). „City Maps Versus Map-Based Navigation Systems – An
Empirical Approach to Building Mental Representations“. In: The Cartographic
Journal 49.1, pp. 62–69. doi: 10.1179/1743277411Y.0000000018. url: https:
//doi.org/10.1179/1743277411Y.0000000018.

Dobbelstein, David, Philipp Henzler, and Enrico Rukzio (2016). „Unconstrained Pedes-
trian Navigation Based on Vibro-Tactile Feedback around the Wristband of a Smart-
watch“. In: Proceedings of the 2016 CHI Conference Extended Abstracts on Human
Factors in Computing Systems. CHI EA ’16. San Jose, California, USA: Association
for Computing Machinery, pp. 2439–2445. isbn: 9781450340823. doi: 10.1145/
2851581.2892292. url: https://doi.org/10.1145/2851581.2892292.

Dong, Weihua, Tong Qin, Tianyu Yang, Hua Liao, Bing Liu, Liqiu Meng, and Yu Liu
(2022). „Wayfinding Behavior and Spatial Knowledge Acquisition: Are They the Same
in Virtual Reality and in Real-World Environments?“ In: Annals of the American
Association of Geographers 112.1, pp. 226–246. issn: 24694460. doi: 10.1080/
24694452.2021.1894088. url: https://doi.org/10.1080/24694452.
2021.1894088.

159

https://doi.org/10.1080/13658816.2020.1719109
https://doi.org/10.1080/13658816.2020.1719109
https://doi.org/10.1080/13658816.2020.1719109
https://doi.org/https://doi.org/10.1016/S0272-4944(87)80020-8
https://doi.org/https://doi.org/10.1016/S0272-4944(87)80020-8
https://www.sciencedirect.com/science/article/pii/S0272494487800208
https://www.sciencedirect.com/science/article/pii/S0272494487800208
https://doi.org/10.1038/s41598-020-62877-0
https://doi.org/10.1038/s41598-020-62877-0
https://doi.org/10.1038/s41598-020-62877-0
https://doi.org/10.1177/0013916502238867
https://doi.org/10.1177/0013916502238867
https://doi.org/10.1177/0013916502238867
https://doi.org/10.16910/jemr.12.1.1
https://doi.org/10.1177/20539517211047735
https://doi.org/10.1177/20539517211047735
https://doi.org/10.1177/20539517211047735
https://doi.org/10.1179/1743277411Y.0000000018
https://doi.org/10.1179/1743277411Y.0000000018
https://doi.org/10.1179/1743277411Y.0000000018
https://doi.org/10.1145/2851581.2892292
https://doi.org/10.1145/2851581.2892292
https://doi.org/10.1145/2851581.2892292
https://doi.org/10.1080/24694452.2021.1894088
https://doi.org/10.1080/24694452.2021.1894088
https://doi.org/10.1080/24694452.2021.1894088
https://doi.org/10.1080/24694452.2021.1894088


Dong, Weihua, Yulin Wu, Tong Qin, Xinran Bian, Yan Zhao, Yanrou He, Yawei Xu, and
Cheng Yu (2021). „What is the difference between augmented reality and 2D naviga-
tion electronic maps in pedestrian wayfinding?“ In: Cartography and Geographic Infor-
mation Science 48.3, pp. 225–240. issn: 15450465. doi: 10.1080/15230406.2021.
1871646. url: https://doi.org/10.1080/15230406.2021.1871646.

Duckham, Matt and Lars Kulik (2003). „"Simplest" paths: Automated route selection
for navigation“. In: COSIT 2003. Vol. 2825, pp. 169–185. isbn: 3540201483. doi:
10.1007/978-3-540-39923-0_12.

Eppstein, David (2002). „Subgraph isomorphism in planar graphs and related problems“.
In: Graph Algorithms and Applications I. World Scientific, pp. 283–309.

Erp, Jan B. F. Van, Hendrik A. H. C. Van Veen, Chris Jansen, and Trevor Dobbins (Apr.
2005). „Waypoint Navigation with a Vibrotactile Waist Belt“. In: ACM Trans. Appl.
Percept. 2.2, pp. 106–117. issn: 1544-3558. doi: 10.1145/1060581.1060585. url:
https://doi.org/10.1145/1060581.1060585.

Fenech, Elliot P, Frank A Drews, and Jonathan Z Bakdash (2010). „The Effects of
Acoustic Turn-by-turn Navigation on Wayfinding“. In: Proceedings of the Human
Factors and Ergonomics Society Annual Meeting 54.23, pp. 1926–1930. doi: 10.
1177/154193121005402305.

Filomena, Gabriele and Judith A. Verstegen (2021). „Modelling the effect of land-
marks on pedestrian dynamics in urban environments“. In: Computers, Environment
and Urban Systems 86.February 2020, p. 101573. issn: 01989715. doi: 10.1016/
j.compenvurbsys.2020.101573. url: https://doi.org/10.1016/j.
compenvurbsys.2020.101573.

Fogliaroni, Paolo, Dominik Bucher, Nikola Jankovic, and Ioannis Giannopoulos (2018).
„Intersections of Our World“. In: 10th International Conference on Geographic In-
formation Science (GIScience 2018). Ed. by Stephan Winter, Amy Griffin, and
Monika Sester. Vol. 114. Leibniz International Proceedings in Informatics (LIPIcs).
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 3:1–3:15.
isbn: 978-3-95977-083-5. doi: 10.4230/LIPIcs.GISCIENCE.2018.3. url:
http://drops.dagstuhl.de/opus/volltexte/2018/9331.

Galvao, Marcelo de Lima, Jakub Krukar, Martin Nöllenburg, and Angela Schwering
(2020). „Route schematization with landmarks“. In: Journal of Spatial Information
Science 2020.21, pp. 99–136. doi: 10.5311/JOSIS.2020.21.589.

Gardony, Aaron, Tad Brunyé, Caroline Mahoney, and Holly Taylor (2013). „How Naviga-
tional Aids Impair Spatial Memory: Evidence for Divided Attention“. In: Spatial Cog-
nition & Computation 13.4, pp. 319–350. doi: 10.1080/13875868.2013.792821.
eprint: https://doi.org/10.1080/13875868.2013.792821. url: https:
//doi.org/10.1080/13875868.2013.792821.

Gardony, Aaron, Tad Brunyé, and Holly Taylor (2015). „Navigational Aids and Spa-
tial Memory Impairment: The Role of Divided Attention“. In: Spatial Cognition &
Computation 15.4, pp. 246–284. issn: 15427633. doi: 10.1080/13875868.2015.
1059432.

160

https://doi.org/10.1080/15230406.2021.1871646
https://doi.org/10.1080/15230406.2021.1871646
https://doi.org/10.1080/15230406.2021.1871646
https://doi.org/10.1007/978-3-540-39923-0_12
https://doi.org/10.1145/1060581.1060585
https://doi.org/10.1145/1060581.1060585
https://doi.org/10.1177/154193121005402305
https://doi.org/10.1177/154193121005402305
https://doi.org/10.1016/j.compenvurbsys.2020.101573
https://doi.org/10.1016/j.compenvurbsys.2020.101573
https://doi.org/10.1016/j.compenvurbsys.2020.101573
https://doi.org/10.1016/j.compenvurbsys.2020.101573
https://doi.org/10.4230/LIPIcs.GISCIENCE.2018.3
http://drops.dagstuhl.de/opus/volltexte/2018/9331
https://doi.org/10.5311/JOSIS.2020.21.589
https://doi.org/10.1080/13875868.2013.792821
https://doi.org/10.1080/13875868.2013.792821
https://doi.org/10.1080/13875868.2013.792821
https://doi.org/10.1080/13875868.2013.792821
https://doi.org/10.1080/13875868.2015.1059432
https://doi.org/10.1080/13875868.2015.1059432


Gath-Morad, Michal, Tyler Thrash, Julia Schicker, Christoph Hölscher, Dirk Helbing, and
Leonel Enrique Aguilar Melgar (Sept. 2021). „Visibility matters during wayfinding in
the vertical“. In: Scientific Reports 11.1, p. 18980. issn: 2045-2322. doi: 10.1038/
s41598-021-98439-1. url: https://doi.org/10.1038/s41598-021-
98439-1.

Gavalas, Damianos, Vlasios Kasapakis, Charalampos Konstantopoulos, Grammati Pantziou,
and Nikolaos Vathis (Feb. 2017). „Scenic route planning for tourists“. In: Personal and
Ubiquitous Computing 21.1, pp. 137–155. issn: 1617-4917. doi: 10.1007/s00779-
016-0971-3. url: https://doi.org/10.1007/s00779-016-0971-3.

Gerstweiler, Georg, Karl Platzer, and Hannes Kaufmann (2018). „DARGS: Dynamic AR
guiding system for indoor environments“. In: Computers 7.1. issn: 2073431X. doi:
10.3390/computers7010005.

Giannopoulos, Ioannis, Peter Kiefer, and Martin Raubal (2015). „GazeNav: Gaze-Based
Pedestrian Navigation“. In: Proceedings of the 17th International Conference on
Human-Computer Interaction with Mobile Devices and Services. MobileHCI ’15.
Copenhagen, Denmark: Association for Computing Machinery, pp. 337–346. isbn:
9781450336529. doi: 10.1145/2785830.2785873. url: https://doi.org/
10.1145/2785830.2785873.

Giannopoulos, Ioannis, Peter Kiefer, Martin Raubal, Kai-Florian Richter, and Tyler
Thrash (2014). „Wayfinding decision situations: A conceptual model and evaluation“.
In: International Conference on Geographic Information Science. Springer, pp. 221–
234. doi: 10.1007/978-3-319-11593-1_15.

Golab, Antonia, Markus Kattenbeck, Georgios Sarlas, and Ioannis Giannopoulos (2022).
„It’s also about timing! When do pedestrians want to receive navigation instructions“.
In: Spatial Cognition and Computation 22.1-2, pp. 74–106. issn: 15427633. doi:
10.1080/13875868.2021.1942474. url: https://doi.org/10.1080/
13875868.2021.1942474.

Golledge, Reginald G., Valerie Dougherty, and Scott Bell (1995). „Acquiring Spatial
Knowledge: Survey Versus Route-Based Knowledge in Unfamiliar Environments“. In:
Annals of the Association of American Geographers 85.1, pp. 134–158. issn: 14678306.
doi: 10.1111/j.1467-8306.1995.tb01798.xa.

Gonzalez, Hector, Jiawei Han, Xiaolei Li, Margaret Myslinska, and John Paul Sondag
(2007). „Adaptive fastest path computation on a road network: a traffic mining
approach“. In: Proceedings of the 33rd international conference on Very large data
bases, pp. 794–805.

Gruenefeld, Uwe, Abdallah El Ali, Wilko Heuten, and Susanne Boll (2017). „Visualizing
Out-of-View Objects in Head-Mounted Augmented Reality“. In: Proceedings of the
19th International Conference on Human-Computer Interaction with Mobile Devices
and Services. MobileHCI ’17. Vienna, Austria: Association for Computing Machinery.
isbn: 9781450350754. doi: 10.1145/3098279.3122124. url: https://doi.
org/10.1145/3098279.3122124.

Guan, Fangli, Zhixiang Fang, Lubin Wang, Xucai Zhang, Haoyu Zhong, and Haosheng
Huang (2022). „Modelling people’s perceived scene complexity of real-world en-

161

https://doi.org/10.1038/s41598-021-98439-1
https://doi.org/10.1038/s41598-021-98439-1
https://doi.org/10.1038/s41598-021-98439-1
https://doi.org/10.1038/s41598-021-98439-1
https://doi.org/10.1007/s00779-016-0971-3
https://doi.org/10.1007/s00779-016-0971-3
https://doi.org/10.1007/s00779-016-0971-3
https://doi.org/10.3390/computers7010005
https://doi.org/10.1145/2785830.2785873
https://doi.org/10.1145/2785830.2785873
https://doi.org/10.1145/2785830.2785873
https://doi.org/10.1007/978-3-319-11593-1_15
https://doi.org/10.1080/13875868.2021.1942474
https://doi.org/10.1080/13875868.2021.1942474
https://doi.org/10.1080/13875868.2021.1942474
https://doi.org/10.1111/j.1467-8306.1995.tb01798.xa
https://doi.org/10.1145/3098279.3122124
https://doi.org/10.1145/3098279.3122124
https://doi.org/10.1145/3098279.3122124


vironments using street-view panoramas and open geodata“. In: ISPRS Journal
of Photogrammetry and Remote Sensing 186, pp. 315–331. issn: 0924-2716. doi:
10.1016/j.isprsjprs.2022.02.012. url: https://www.sciencedirect.
com/science/article/pii/S0924271622000545.

Hajibabai, L., M. R. Delavar, M. R. Malek, and A. U. Frank (2007). „Agent-based
simulation of spatial cognition and way finding in building fire emergency evacuation“.
In: Lecture Notes in Geoinformation and Cartography, pp. 255–270. issn: 18632351.
doi: 10.1007/978-3-540-72108-6_17.

Haque, Shazia, Lars Kulik, and Alexander Klippel (2007). „Algorithms for Reliable
Navigation and Wayfinding“. In: Spatial Cognition V Reasoning, Action, Interaction.
Ed. by Thomas Barkowsky, Markus Knauff, Gérard Ligozat, and Daniel R Montello.
Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 308–326. isbn: 978-3-540-75666-8.

Hart, Sandra G. and Lowell E. Staveland (1988). „Development of NASA-TLX (Task
Load Index): Results of Empirical and Theoretical Research“. In: Human Mental
Workload. Ed. by Peter A. Hancock and Najmedin Meshkati. Vol. 52. Advances
in Psychology. North-Holland, pp. 139–183. doi: 10.1016/S0166-4115(08)
62386-9. url: https://www.sciencedirect.com/science/article/
pii/S0166411508623869.

Hátlová, Kateřina and Martin Hanus (2020). „A Systematic Review into Factors Influenc-
ing Sketch Map Quality“. In: ISPRS International Journal of Geo-Information 9.4.
issn: 2220-9964. doi: 10.3390/ijgi9040271. url: https://www.mdpi.com/
2220-9964/9/4/271.

He, Nan and Guanghao Li (2021). „Urban neighbourhood environment assessment based
on street view image processing: A review of research trends“. In: Environmental
Challenges 4, p. 100090. issn: 2667-0100. doi: 10.1016/j.envc.2021.100090.

Hegarty, Mary, Chuanxiuyue He, Alexander P. Boone, Shuying Yu, Emily G. Jacobs, and
Elizabeth R. Chrastil (2023). „Understanding Differences in Wayfinding Strategies“.
In: Topics in Cognitive Science 15.1, pp. 102–119. doi: https://doi.org/10.
1111/tops.12592. url: https://onlinelibrary.wiley.com/doi/abs/
10.1111/tops.12592.

Hegarty, Mary, Anthony E Richardson, Daniel R Montello, Kristin Lovelace, and Ilavanil
Subbiah (2002). „Development of a self-report measure of environmental spatial
ability“. In: Intelligence 30.5, pp. 425–447. issn: 0160-2896. doi: 10.1016/S0160-
2896(02)00116-2.

Hejtmánek, Lukáš, Ivana Oravcová, Jiří Motýl, Jiří Horáček, and Iveta Fajnerová (2018).
„Spatial knowledge impairment after GPS guided navigation: Eye-tracking study in a
virtual town“. In: International Journal of Human Computer Studies 116.May 2017,
pp. 15–24. issn: 10959300. doi: 10.1016/j.ijhcs.2018.04.006.

Hochmair, Hartwig and Andrew Frank (2002). „Influence of estimation errors on wayfinding-
decisions in unknown street networks – analyzing the least-angle strategy“. In: SCC
2.4, pp. 283–313. issn: 1387-5868.

162

https://doi.org/10.1016/j.isprsjprs.2022.02.012
https://www.sciencedirect.com/science/article/pii/S0924271622000545
https://www.sciencedirect.com/science/article/pii/S0924271622000545
https://doi.org/10.1007/978-3-540-72108-6_17
https://doi.org/10.1016/S0166-4115(08)62386-9
https://doi.org/10.1016/S0166-4115(08)62386-9
https://www.sciencedirect.com/science/article/pii/S0166411508623869
https://www.sciencedirect.com/science/article/pii/S0166411508623869
https://doi.org/10.3390/ijgi9040271
https://www.mdpi.com/2220-9964/9/4/271
https://www.mdpi.com/2220-9964/9/4/271
https://doi.org/10.1016/j.envc.2021.100090
https://doi.org/https://doi.org/10.1111/tops.12592
https://doi.org/https://doi.org/10.1111/tops.12592
https://onlinelibrary.wiley.com/doi/abs/10.1111/tops.12592
https://onlinelibrary.wiley.com/doi/abs/10.1111/tops.12592
https://doi.org/10.1016/S0160-2896(02)00116-2
https://doi.org/10.1016/S0160-2896(02)00116-2
https://doi.org/10.1016/j.ijhcs.2018.04.006


Hochmair, Hartwig and Gerhard Navratil (2008). „Computation of scenic routes in street
networks“. In: Geospatial Crossroads@ GI_Forum’08: Proceedings of the Geoinfor-
matics Forum Salzburg. Wichmann, pp. 124–133.

Huang, Haosheng, Thomas Mathis, and Robert Weibel (2022). „Choose your own
route–supporting pedestrian navigation without restricting the user to a prede-
fined route“. In: Cartography and Geographic Information Science 49.2, pp. 95–
114. issn: 15450465. doi: 10.1080/15230406.2021.1983731. url: https:
//doi.org/10.1080/15230406.2021.1983731.

Huang, Haosheng, Manuela Schmidt, and Georg Gartner (2012). „Spatial knowledge ac-
quisition with mobile maps, augmented reality and voice in the context of GPS-based
pedestrian navigation: Results from a field test“. In: Cartography and Geographic Infor-
mation Science 39.2, pp. 107–116. issn: 15230406. doi: 10.1559/15230406392107.

Iftikhar, Hassan and Yan Luximon (2023). „Wayfinding Information Syntheses: A Study of
Wayfinding Efficiency and Behavior in Complex Outdoor Institutional Environment“.
In: HERD: Health Environments Research & Design Journal 16.2. PMID: 36317834,
pp. 250–267. doi: 10.1177/19375867221134590.

Ishikawa, Toru (2019). „Satellite Navigation and Geospatial Awareness: Long-Term Effects
of Using Navigation Tools on Wayfinding and Spatial Orientation“. In: The Profes-
sional Geographer 71.2, pp. 197–209. doi: 10.1080/00330124.2018.1479970.

Ishikawa, Toru, Hiromichi Fujiwara, Osamu Imai, and Atsuyuki Okabe (2008). „Wayfind-
ing with a GPS-based mobile navigation system: A comparison with maps and direct
experience“. In: Journal of Environmental Psychology 28.1, pp. 74–82. issn: 0272-4944.
doi: 10.1016/j.jenvp.2007.09.002. url: https://www.sciencedirect.
com/science/article/pii/S0272494407000734.

Ishikawa, Toru and Daniel R. Montello (2006). „Spatial knowledge acquisition from
direct experience in the environment: Individual differences in the development of
metric knowledge and the integration of separately learned places“. In: Cognitive
Psychology 52.2, pp. 93–129. issn: 0010-0285. doi: https://doi.org/10.1016/
j.cogpsych.2005.08.003. url: https://www.sciencedirect.com/
science/article/pii/S0010028505000733.

Ishikawa, Toru and Kazunori Takahashi (2014). „Relationships between Methods for
Presenting Information on Navigation Tools and Users’ Wayfinding Behavior“. In:
Cartographic Perspectives 75, pp. 17–28. issn: 1048-9053. doi: 10.14714/cp75.82.

Jonietz, David and Peter Kiefer (2017). „Uncertainty in wayfinding: A conceptual frame-
work and agent-based model“. In: Leibniz International Proceedings in Informatics,
LIPIcs 86.15, pp. 1–14. issn: 18688969. doi: 10.4230/LIPIcs.COSIT.2017.15.

Kapaj, Armand, Enru Lin, and Sara Lanini-Maggi (2022). „The Effect of Abstract vs.
Realistic 3D Visualization on Landmark and Route Knowledge Acquisition“. In: 15th
International Conference on Spatial Information Theory (COSIT 2022). Ed. by Toru
Ishikawa, Sara Irina Fabrikant, and Stephan Winter. Vol. 240. Leibniz International
Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 15:1–15:8. isbn: 978-3-95977-257-0. doi: 10.4230/LIPIcs.

163

https://doi.org/10.1080/15230406.2021.1983731
https://doi.org/10.1080/15230406.2021.1983731
https://doi.org/10.1080/15230406.2021.1983731
https://doi.org/10.1559/15230406392107
https://doi.org/10.1177/19375867221134590
https://doi.org/10.1080/00330124.2018.1479970
https://doi.org/10.1016/j.jenvp.2007.09.002
https://www.sciencedirect.com/science/article/pii/S0272494407000734
https://www.sciencedirect.com/science/article/pii/S0272494407000734
https://doi.org/https://doi.org/10.1016/j.cogpsych.2005.08.003
https://doi.org/https://doi.org/10.1016/j.cogpsych.2005.08.003
https://www.sciencedirect.com/science/article/pii/S0010028505000733
https://www.sciencedirect.com/science/article/pii/S0010028505000733
https://doi.org/10.14714/cp75.82
https://doi.org/10.4230/LIPIcs.COSIT.2017.15
https://doi.org/10.4230/LIPIcs.COSIT.2022.15
https://doi.org/10.4230/LIPIcs.COSIT.2022.15
https://doi.org/10.4230/LIPIcs.COSIT.2022.15


COSIT.2022.15. url: https://drops.dagstuhl.de/opus/volltexte/
2022/16900.

Karmakharm, Twin, Paul Richmond, and Daniela M. Romano (2010). „Agent-based
large scale simulation of pedestrians with adaptive realistic navigation vector fields“.
In: Theory and Practice of Computer Graphics 2010, TPCG 2010 - Eurographics UK
Chapter Proceedings 10, pp. 67–74. doi: 10.2312/LocalChapterEvents/TPCG/
TPCG10/067-074.

Kelly, Jonathan W., Alex F. Lim, and Shana K. Carpenter (2022). „Turn-by-turn route
guidance does not impair route learning.“ In: Journal of Applied Research in Memory
and Cognition 11, pp. 76–84. doi: 10.1016/j.jarmac.2021.06.001.

Kielar, Peter M., Daniel H. Biedermann, Angelika Kneidl, and André Borrmann (2016).
„A Unified Pedestrian Routing Model Combining Multiple Graph-Based Navigation
Methods“. In: Traffic and Granular Flow ’15, pp. 241–248. doi: 10.1007/978-3-
319-33482-0_31.

Kim, Kyungwan and Otmar Bock (July 2021). „Acquisition of landmark, route, and survey
knowledge in a wayfinding task: in stages or in parallel?“ In: Psychological Research
85.5, pp. 2098–2106. issn: 1430-2772. doi: 10.1007/s00426-020-01384-3. url:
https://doi.org/10.1007/s00426-020-01384-3.

Klippel, Alexander, Heike Tappe, and Christopher Habel (2003). „Pictorial Represen-
tations of Routes: Chunking Route Segments during Comprehension“. In: Spatial
Cognition III. Ed. by Christian Freksa, Wilfried Brauer, Christopher Habel, and
Karl F. Wender. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 11–33.

Kota, Dheeraj, Neha Laumas, Urmila Shinde, Saurabh Sonalkar, Karthik Dantu, Sameera
Poduri, and Gaurav S Sukhatme (2010). „deSCribe: A Personalized Tour Guide and
Navigational Assistant“. In: Mobile Computing, Applications, and Services. Ed. by
Thomas Phan, Rebecca Montanari, and Petros Zerfos. Berlin, Heidelberg: Springer
Berlin Heidelberg, pp. 393–403. isbn: 978-3-642-12607-9.

Kozhevnikov, Maria and Mary Hegarty (2001). „A dissociation between object manipu-
lation spatial ability and spatial orientation ability“. In: Memory & cognition 29.5,
pp. 745–756.

Kriegel, Hans-Peter, Matthias Renz, and Matthias Schubert (2010). „Route skyline
queries: A multi-preference path planning approach“. In: 2010 IEEE 26th International
Conference on Data Engineering (ICDE 2010), pp. 261–272. doi: 10.1109/ICDE.
2010.5447845.

Krisp, Jukka M and Andreas Keler (2015). „Car navigation – computing routes that
avoid complicated crossings“. In: International Journal of Geographical Information
Science 29.11, pp. 1988–2000. doi: 10.1080/13658816.2015.1053485. url:
https://doi.org/10.1080/13658816.2015.1053485.

Krüger, Antonio, Ilhan Aslan, and Hubert Zimmer (2004). „The effects of mobile pedes-
trian navigation systems on the concurrent acquisition of route and survey knowl-
edge“. In: International Conference on Mobile Human-Computer Interaction. Springer,
pp. 446–450.

164

https://doi.org/10.4230/LIPIcs.COSIT.2022.15
https://doi.org/10.4230/LIPIcs.COSIT.2022.15
https://doi.org/10.4230/LIPIcs.COSIT.2022.15
https://doi.org/10.4230/LIPIcs.COSIT.2022.15
https://drops.dagstuhl.de/opus/volltexte/2022/16900
https://drops.dagstuhl.de/opus/volltexte/2022/16900
https://doi.org/10.2312/LocalChapterEvents/TPCG/TPCG10/067-074
https://doi.org/10.2312/LocalChapterEvents/TPCG/TPCG10/067-074
https://doi.org/10.1016/j.jarmac.2021.06.001
https://doi.org/10.1007/978-3-319-33482-0_31
https://doi.org/10.1007/978-3-319-33482-0_31
https://doi.org/10.1007/s00426-020-01384-3
https://doi.org/10.1007/s00426-020-01384-3
https://doi.org/10.1109/ICDE.2010.5447845
https://doi.org/10.1109/ICDE.2010.5447845
https://doi.org/10.1080/13658816.2015.1053485
https://doi.org/10.1080/13658816.2015.1053485


Krukar, Jakub, Stefan Münzer, Lucas Lörch, Vanessa Joy Anacta, Stefan Fuest, and
Angela Schwering (2018). „Distinguishing Sketch Map Types: A Flexible Feature-
Based Classification“. In: Spatial Cognition XI. Ed. by Sarah Creem-Regehr, Johannes
Schöning, and Alexander Klippel. Cham: Springer International Publishing, pp. 279–
292. isbn: 978-3-319-96385-3.

Kuil, M N A van der, A W M Evers, J M A Visser-Meily, and I J M van der Ham (2021).
„Spatial knowledge acquired from first-person and dynamic map perspectives“. In:
Psychological Research 85.6, pp. 2137–2150. issn: 1430-2772. doi: 10.1007/s00426-
020-01389-y. url: https://doi.org/10.1007/s00426-020-01389-y.

Kuipers, Benjamin (1982). „The "Map in the Head" Metaphor“. In: Environment and
Behavior 14.2, pp. 202–220. doi: 10.1177/0013916584142005.

Kuliga, Saskia, James Charlton, Hilal Fitri Rohaidi, Lu Qian Qi Isaac, Christoph
Hoelscher, and Michael Joos (2020). „Developing a Replication of a Wayfinding
Study. From a Large-Scale Real Building to a Virtual Reality Simulation“. In: Spa-
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