
Cost-Aware Neural Network
Splitting and Dynamic
Rescheduling for Edge

Intelligence

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Business Informatics

by

Daniel Luger
Registration Number 11778903

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof.in Mag.a rer.soc.oec. Dr.in rer.soc.oec. Ivona Brandić
Assistance: Dott. mag. Dr. Atakan Aral

Vienna, 26th June, 2023
Daniel Luger Ivona Brandić

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Daniel Luger

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 26. June 2023
Daniel Luger

iii

Abstract

With the rise of IoT devices and the necessity of intelligent applications, inference tasks
are often offloaded to the cloud due to the computation limitation of the end devices. Yet,
requests to the cloud are costly in terms of latency. Therefore, a shift of the computation
from the cloud to the network’s edge is unavoidable for time-sensitive applications. This
shift is called edge intelligence and promises lower latency, among other advantages.
However, some algorithms, like deep neural networks, are computationally intensive,
even for local edge servers (ES). Such DNNs can be split into two parts to keep latency
low and distributed between the ES and the cloud. We present a dynamic scheduling
algorithm that considers real-time parameters like the clock speed of the ES, bandwidth,
and latency and predicts the optimal splitting point regarding latency. Furthermore, we
estimate the overall costs for the ES and cloud during run-time and integrate them into
our prediction and decision models. We present a cost-aware prediction of the splitting
point, which can be tuned with a parameter toward faster response or lower costs. We
tested our rescheduling algorithm on a test bed with a Raspberry Pi as edge and an AWS
instance as a cloud server. The results demonstrate that we achieved a 60.84% decrease
in cost compared to the optimal splitting point regarding latency with an increase in
latency of only 25.92% for the AlexNet CNN when the edge server is rented.

v

Contents

Abstract v

Contents vii

1 Introduction 1

2 Overview 5
2.1 Edge Computing . 5
2.2 Mobile Edge Computing . 7
2.3 Deep Learning . 7
2.4 Edge Intelligence . 11
2.5 Related Works . 13

3 System Model 15
3.1 Edge Server . 15
3.2 Stateless Cloud . 17
3.3 Communication . 17
3.4 Latency Measurement . 18

4 Prediction Models 21
4.1 Edge Computation Latency . 21
4.2 Cloud Computation Latency . 23
4.3 Communication Latency . 23
4.4 Resource Cost . 25
4.5 Combined Prediction Model . 26

5 Neural Network Splitting 29
5.1 Splitting . 29
5.2 Neural Networks . 31
5.3 Limitations . 33

6 Experimental Setup 35
6.1 SWAIN Project . 35
6.2 Use Case . 36

vii

6.3 Design Science as Methodological Approach [22] 36
6.4 Hardware Setup . 38
6.5 Web Server . 39
6.6 Performance Metrics . 39
6.7 Experimental Parameters . 40

7 Evaluation 43
7.1 Effectiveness of Predictions . 43
7.2 Strategies . 43
7.3 Weights . 44
7.4 Latency and Cost . 44
7.5 Pareto Front . 53

8 Conclusion 55

List of Figures 57

List of Tables 59

Acronyms 61

Bibliography 63

CHAPTER 1
Introduction

In the past several years, the number of IoT devices has increased enormously. According
to Cisco, 50% of the worldwide network devices will be IoT devices by 2023, reaching
14.7 billion devices [12]. At the same time, the complexity of the applications running on
IoT devices increases as well. Therefore, more and more IoT devices require Artificial
Intelligence (AI) to solve their tasks. AI is a broad term with a giant field of use cases
and implementations [18]. One prevalent form is Machine Learing (ML) which creates
a model trained on a data set and then used to predict or decide without explicitly
programmed to do so. Deep Learning (DL) is a ML subcategory consisting of multiple
connected layers [26]. DL has gained popularity in the last several years and is already
well integrated into our daily lives, from virtual assistants to autonomous driving.
Deep learning uses Deep Neural Network (DNN)s to solve problems similar to the
neurons in our brains [7]. The significant advantage of DNN is that some problems are of
such complexity that it would be impossible to describe them entirely in mathematical
notation. DNNs use a strategy to iterate to a solution without knowing a complete
function. Such networks run primarily in cloud data centers with nearly unlimited
computational resources. As applications on IoT devices get increasingly complex, the
usage of DNNs is required. Therefore those devices offload their tasks to data centers for
inference, and the outcome is returned to the IoT device. This makes sense for non-time-
sensitive applications because sending a task to the cloud and back costs substantial
time. However, many applications have stringent time requirements, such as autonomous
driving, distance surgery, and game streaming. Therefore, the computation of the NNs
can be shifted to a server in the user’s proximity, called an Edge Server (ES). This shift
of AI into an ES is called Edge Intelligence (EI) [40, 16], which can significantly reduce
the processing latency [32] and improve privacy [3].
However, the edge might not provide sufficient computation resources, so large DNNs could
not be computed at an acceptable time at the edge, rendering the shift ineffective. Different
methods, such as model pruning or quantization, exist that target the deployment of

1

1. Introduction

Figure 1.1: Splitting of a DNN over Edge and Cloud Servers [30].

DNNs on edge resources. Pruning is a compression technique that removes less important
weights or filters, whereas quantization deals with mapping the model parameters and
activations into low-precision quantized levels to avoid costly FLOPs. However, those two
approaches can suffer from accuracy loss [35]. Another possible solution, which preserves
accuracy, is to split the DNN into two parts, the first running at the edge and the second
in the cloud shown in Figure 1.1. By doing this, the edge has to compute less, and only
a small amount of inter-layer data is sent to the cloud compared to the raw input data.
However, environments change over time, and therefore, the best splitting point of the
DNN is not always the same [24]. Therefore, the splitting point might have to change
during runtime since the DNNs could continue executing for days or weeks.

This volatility also happens at the physical hardware of edge and cloud. Cloud servers
are usually rented; therefore, a virtual instance is provided. This instance has virtual
Central Processing Unit (CPU)s (vCPU) with a fixed clock speed. On the other hand,
ES can be bought and installed at the edge. Their hardware is not virtual but physical.
Due to this, the clock speed of the ES can change depending on various parameters such
as energy supply and load. Due to the changing clock speed, the computation time of
the edge server varies. As mentioned before, ES can be bought and installed by users
themselves. Meaning, they do not have to rent an ES and pay per usage. Therefore users
can save costs by running as much as possible on their own edge device instead offloading
to the cloud.

Previous proposals, such as Neurosurgeon [24], focus on finding the optimal splitting
point. By building prediction models to reduce energy consumption and latency with
layer-specific parameters, it is possible to infer the optimal splitting point. However, this
approach does not take costs into account. Lin et al. [28] consider the cost between an
end device, ES, and cloud. Yet, this algorithm neither co-optimizes cost and latency nor
is dynamic. On the other hand, Gao et al. [17] apply multi-optimization for cost, energy,
and latency and is dynamic but focuses on a mobile device rather than an edge server;
hence, no cost is calculated at the edge. Table 2.1 summarizes and compares the previous

2

work to ours. Furthermore, it does not consider clock speed or cover the strategy that
the ES can be owned. None of the previous papers included weight to optimize cost,
latency, or a trade-off.

Three research questions arise from the necessity of a cost-aware rescheduling algorithm
between edge and cloud, including the possibility of owning the ES. Furthermore, a
change in clock speed, bandwidth, and network latency is considered.

• i) What is the percentage optimization in cost and latency achieved
through a trade-off algorithm compared to strategies exclusively focused
on each parameter individually? This first research question examines the
potential efficiency of a trade-off algorithm aimed at striking a balance between
cost and latency. The focus of the investigation is to quantify the proportionate
reduction in latency and cost achieved when implementing this algorithm versus
the strategies singularly dedicated to either cost or latency optimization. The
relevance of this research is underscored by its potential implications for optimizing
resource utilization and bolstering operational performance through algorithmically
balanced decision-making processes.

• ii) How effective is live clock speed as a predictive variable in estimating
the execution time required for a Deep Neural Network (DNN) on an
Edge Server? This subsequent research question aims to explore the feasibility
and accuracy of integrating live clock speed into a predictive model for DNN
execution time on an ES. The ultimate goal of this research is to employ this
predictive model for identifying the most efficient splitting point of the DNN, thus
improving processing efficiency on the edge.

• iii) What might be the design and functional characteristics of a multi-
optimization algorithm incorporating cost, bandwidth, clock speed, and
network latency for the optimization? The third research question centers on
the conceptualization and potential features of a dynamically adjusted rescheduling
algorithm, which considers live operational parameters and cost factors. The
objective of this research is to uncover strategies that could potentially enhance
overall system efficiency through comprehensive, multi-factor optimization.

This research explores predictive models that integrate variables such as current clock
speed, bandwidth, latency, Edge Server (ES) cost, and cloud cost. We introduce a dynamic
rescheduler, designed to optimize system cost and latency parameters. The proposed
methodology incorporates a weighting mechanism that allows for a use-case-specific
algorithm adaptation. This means that users can modulate the relative importance of
cost or latency according to their specific operational requirements. For instance, a user
running a time-sensitive application with less emphasis on cost can increase the weight
attributed to latency, thereby minimizing system latency. The efficacy of this proposed
approach is assessed using an authentic testbed composed of a Raspberry Pi serving

3

1. Introduction

as the ES and an Amazon Web Services (AWS) instance as the Cloud Server (CS). A
limited number of results from this work were presented at the EdgeSys23 conference in
Rome, as documented in the referenced paper [30].

• Chapter 2 gives an overview of the state-of-the-art technologies used in this work.
Furthermore, it introduces DNN splitting and similar methods for fast inference
and summarizes the related works.

• Chapter 3 provides a detailed depiction of the system model integral to this thesis,
elaborating on each constituent component and their respective functionalities.
Consequently, the third research question regarding the design and functionalities
of the algorithm is solved in this chapter.

• Chapter 4 explains the prediction of different latencies (edge, cloud, communication,
and overall latency). Furthermore, it explains the cost model of edge and cloud and
describes the trade-off algorithm between edge and cost. Therefore, this chapter
further explains the third research question regarding the design implementation of
the prediction models and proposes a solution for using the clock speed as an edge
latency predictor, which explains the feasibility of research question three.

• Chapter 5 describes how a DNN model is split and briefly introduces used DNN
models.

• Chapter 6 shows the experimental setup of our test bed. Furthermore, it describes
the use case of this work and how everything is measured.

• Chapter 7 conducts an analysis of the collected measurements and presents the
resultant findings. Results of the achieved trade-off optimization are presented,
which solves the first research question.

• Chapter 8 offers a comprehensive conclusion to the thesis, encapsulating the key
findings and insights. The second research question is also solved, regarding the
effectiveness, in this chapter by providing results of the prediction models precision.

4

CHAPTER 2
Overview

2.1 Edge Computing
There is a significant degree of content overlap between the material presented in this
chapter and my bachelor’s thesis [29]. With the increasing number of IoT devices located
at the network’s edge, the data generated edge is enormous. Those IoT devices can be
very simplistic such as a light switch, although the edge devices get more intelligent, and
with this, the applications running on those devices get more complex. Due to the often
limited IoT devices regarding energy, memory, and computational power, the algorithms
often run in big cloud data centers. As a result of this, lots of data is sent to the cloud
for processing, which causes some shortcomings [8]:

• Real-time: Due to the growing amount of devices at the edge, combined with cloud
computing, where everything is sent to the cloud, lots of data is sent for processing.
This causes enormous traffic with intermediate data, which is not required in
the cloud. This limits the network bandwidth, and therefore applications suffer
from increased latency times. Those limitations are no problem for non-time-
critical applications like smart homes. Still, high latency times could be fatal for
time-critical applications such as autonomous driving or remote surgeries.

• Security and privacy: Due to the proximity of the IoT devices to the users,
security, and privacy are essential. Device security breaches are limited as long
as the data stays at the edge. Nevertheless, with the cloud computing approach,
sensitive and private user data is uploaded to the cloud and vulnerable to security
attacks. Energy consumption: The enormous cloud usage results in extreme energy
consumption at the data centers. Even strategies to run them more efficiently
cannot meet the increasing demand.

5

2. Overview

• Location: Due to the costs and sheer size of today’s data centers, they cannot
be located everywhere. Therefore, only a limited set of cloud servers are available.
This means that they are geographically often far away from the user, and a request
must travel hundreds of kilometers to reach the intended server. This results in
an increased latency time and, therefore, the cloud is hardly feasible for real-time
systems.

Those problems are just a few that result from the extensive usage of the cloud and
show the necessity of another solution. Edge computing (EC) is a promising enabler for
solving some of the problems in our current internet. EC follows the strategy to bring
the cloud data centers in closer proximity to the user where the data is produced. Figure
2.1 shows that the user equipment and the cloud are connected through the edge servers.
This brings a lot of advantages and opportunities for new technologies [8, 29]: Fast data
processing and analysis, real-time: Due to the location of the edge servers, which are
close to the user, the latency time to this server is lower than to the cloud. For example,
a hospital could have its edge server installed somewhere in the hospital. Health-specific
applications like computer vision for X-rays could run directly in the hospital without
requiring a request to the cloud. This is also very important for highly time-sensitive
applications like autonomous driving or augmented reality, where latencies of 10 ms or
less are required [37]. Furthermore, if the cloud is needed, nevertheless, the edge can
preprocess the data to minimize the data size. This helps to limit the traffic to the cloud
and enables, therefore, a lower latency. Security: When using CC, all the data is sent to
the cloud. This enables possible lack of security during the transmission or even when
stored in the cloud. By using EC, the data stays local, which makes it harder for an

Figure 2.1: The different layers in the cloud continuum [29].

6

2.2. Mobile Edge Computing

attacker. Furthermore, personal data like health data could stay at the hospital, and only
anonymized information is forwarded to the cloud. Low cost, low energy consumption,
low bandwidth cost: Because the data does not need to be uploaded to the cloud, it
occupies not too much network bandwidth. Therefore, the network bandwidth, as well
as the energy consumption of intelligence devices at the edge, is reduced. Companies,
furthermore, can reduce the costs of processing data with local equipment. To sum up,
edge computing improves computing efficiency, reduces the energy consumption of local
equipment and, therefore, prices, and reduces bandwidth pressure.

2.2 Mobile Edge Computing
Mobile Edge Computing (MEC) is a standard used for mobile devices. MEC primarily
operates in the Radio Access Network (RAN). RAN is the communication between a
user equipment UE and the core network located at the Base Station (BS). The idea
is to put an ES in between the UE and the core network to reduce costly requests
to the cloud. Therefore, when combining 5G with MEC, very low latencies can be
reached, which enables real-time applications. MEC was standardized in the European
Telecommunications Standards Institute (ETSI) Industry Specification Group (ISG) and
is characterized by [23, 29]:

• On-Premises. The MEC platforms run isolated from the rest of the network and
have access to local resources. For machine-to-machine communication dealing
with security systems, they need a high level of safety.

• Proximity. The MEC platform is near the UE and can gather essential informa-
tion for analytical purposes. This information can be used for business-specific
applications if the server can access the device and the applications.

• Lower Latency. Due to the good location, latency can be reduced because, in the
best case, a request needs only one hop to the ES, where the required information or
algorithm is stored. This enables new real-time applications where the traditional
network fails.

• Location Awareness. The MEC platform is aware of the location of the user. This
brings business-specific advantages like automatic language settings or frequent
search requests in a particular area. Network Context Information. Because the
MEC platform is aware of the bandwidth and the network conditions, companies
can use those to optimize their application. For example, depending on the network
conditions, a video streaming service could deliver the best video resolution.

2.3 Deep Learning
In the past years, the term AI got more prevalent in our society and daily use cases like
speech recognition through Apples Siri, image recognition like Apple’s search feature in

7

2. Overview

Figure 2.2: Gartner Hype Cycle for AI, 2022 [2]

Photos, or even temperature regulation like NEST learning thermostat. AI is ubiquitous
in our lives and helps us do our jobs better, faster, and more accurately. As an example,
speech recognition has already reached the plateau of productivity according to the
Gartner Hype Cycle from 2019 [1]. Deep learning is a subcategory of ML and allows
computational models to learn data representations with multiple levels of abstraction [26].
Deep learning models are composed of multiple processing layers which are connected.

Edge AI and Deep Learning will reach the plateau of productivity in two to five years,
according to the Gartner Hype Cycle from 2022 [2]. Figure 2.2 shows the Gartner
Hype Cycle from 2022 and describes which state a technology currently occupies. A
typical cycle starts with innovation, gains then much attention, and years after that, the
technology reaches the plateau of productivity where it is beneficial for our society. This
hype cycle is only for technologies in connection to AI. It can be seen that Edge AI,

8

2.3. Deep Learning

which will be discussed later, currently gets much attention and is predicted to reach in
2 to 5 years the plateau of productivity. On the other hand, artificial general intelligence
currently gets less attention and has more than ten years of innovation ahead.

One type of artificial intelligence (AI) is deep learning (DL). It is composed of Artificial
Neural Networks (ANN) and finds applications in various domains [40]. The primary
structure of a DL network resembles the organization of the human brain, comprising
interconnected layers. Each layer consists of neural nodes connected to nodes in the
preceding and succeeding layers, as depicted in Figure 2.3. A simple form of such a
network consists of three layers: 1) an input layer for data injection, 2) one or more
hidden layers capable of hosting functions, and 3) an output layer for presenting the
results. When data is received, the input layer forwards it to the hidden layers, where
each node aggregates the inputs from preceding nodes using defined functions. The
connections between nodes possess weights, and each node has a bias. Neural networks
operate through two main steps: the training step, where the model is trained, and the
inference step, where predictions are made using new data. Initially, the weights and
biases in the deep neural network (DNN) are randomly set [40]. Consequently, if data
is passed through the model, the output generated is random. To adjust the weights
and biases to yield accurate outputs, the network requires extensive training data. The
training data comprises input data paired with the corresponding correct results. This
data is fed into the model, and the output is compared against the correct result to
improve the model using the backpropagation algorithm [33].

Figure 2.3: Principal composition of a NN model. Left: Layers in a model. Right: Neuron
in more detail. [40, 29]

For instance, consider the task of handwriting recognition, specifically recognizing hand-
written digits. In this case, a training set would consist of images of handwritten numbers
along with their corresponding correct digits. The handwritten image is fed into the
input layer, and the generated output is compared to the expected result from the
training set. Through backpropagation, the weights and biases are adjusted iteratively,
gradually improving the model’s performance. Handwritten digit recognition serves as

9

2. Overview

a representative example and has received significant attention through datasets such
as MNIST, which comprises 60,000 training images and 10,000 testing images [27]. By
employing multilayer perceptrons (Multilayer Perceptron (MLP)), impressive error rates
as low as 0.35% can be achieved [11]. However, while MLP is suitable for handwritten
digit recognition, there exist numerous applications where other types of neural networks
may be more effective. Over time, different types of neural networks have been developed,
each specifically configured for its intended task. The following enumeration provides a
basic introduction to the functionalities and use cases of a few distinct neural network
types [21, 29].

1. Fully Connected Neural Network (FCNN). In an FCNN, each neuron, excluding
the input and output layers, is connected to every neuron in the preceding and
succeeding layers. Multilayer perceptrons (MLPs) represent a specific type of FCNN
and serve as the fundamental form of DNN, comprising a minimum of three layers:
input, hidden, and output. In Figure 2.3, the data flow is feed-forward, moving in
a unidirectional manner from left to right, i.e., from input to output. MLPs find
applications in tasks such as feature extraction and function approximation, yet they
are characterized by complexity, suboptimal performance, and slow convergence
rates [21].

2. Convolutional Neural Network (CNN). CNNs demonstrate high effectiveness in
image processing tasks, making them particularly valuable in computer vision
applications such as object detection. A CNN comprises three main layers: convo-
lutional layers, pooling layers, and fully connected layers. Each layer performs a
specific function within the network. The convolutional layers are responsible for
convolving the input image using diverse kernels, producing multiple feature maps.
This process is illustrated in Figure 2.4. Pooling layers play a role in reducing the
number of network parameters by aggregating neighboring pixels. This is crucial
since images typically consist of a large number of pixels, and without pooling, the
subsequent fully connected layers would become excessively large. In the context of
this work, a CNN is employed due to the objective of number detection in images
[19].

Figure 2.4: The operation of the convolutional layer. [19, 29]

10

2.4. Edge Intelligence

3. Recurrent Neural Network (RNN). RNN find significant applications in human
speech recognition tasks, such as with the home assistant Alexa developed by
Amazon. RNNs are specifically designed for processing sequential data, making
them well-suited for scenarios where the input length is variable, as is often the
case with language processing. Within an RNN, each neuron possesses an internal
memory that stores and utilizes previous samples during the training process.
Backpropagation is employed for training the network, allowing for the adjustment
of weights and biases based on error feedback [40].

A plethora of DNN architectures exist, catering to various use cases. Frameworks support-
ing multiple programming languages have been developed, simplifying the creation of new
DNN models. The DNN community continues to expand, with ongoing advancements
and innovations in this field. Furthermore, the implementation of these DNN models on
ES paves the way for a new field known as edge intelligence. The integration of DNNs
into ES opens up exciting possibilities for further exploration and development in this
emerging domain.

2.4 Edge Intelligence
Edge Intelligence is a term used to describe performing intelligent tasks, such as analyzing
data and making predictions, on devices located at the edge of a network. This contrasts
traditional methods, which rely on sending data to the cloud or a centralized data center
for processing. Edge intelligence allows for low latency and high-speed processing, as well
as improved security and privacy since sensitive data does not need to be transmitted over
the network. Applications of edge intelligence include autonomous vehicles, industrial
automation, and smart cities. The field of edge intelligence is rapidly evolving, and new
technologies such as edge computing, 5G networks, and machine learning enable a wide
range of new and exciting applications. With the fast-growing data from the Internet of
things, edge intelligence will be a key technology to analyze the data, make predictions
and perform real-time decision-making. Deep learning has gained enormous attention in
the last several years and has succeeded in various application domains, including natural
language processing, computer vision, and extensive data analysis. Although to meet the
computational requirements of deep learning, the cloud infrastructure is used. However,
data must be moved from the edge to the cloud when using the cloud infrastructure, for
example, from IoT sensors to a centralized location in the cloud. This solution, however,
brings several challenges [9, 29].

• Latency. For some applications, real-time inference is critical. For example, remote
surgery cannot suffer from long latencies. However, sending data to the cloud
for inference or training cannot satisfy the stringent latency requirements due
to network delays. For example, experiments with the Amazon Web Services
server have shown that offloading a computer vision task takes more than 200 ms
end-to-end [34].

11

2. Overview

• Scalability. Uploading all data from the edge to the cloud for inference introduces
scalability issues, as the cloud can become a bottleneck as the number of connected
devices increases.

• Privacy. The sensitive and private data generated at the edge is sent to the cloud
with this approach which risks privacy concerns from the user who owns the data.

Figure 2.5: Different inference acceleration methods [9].

EC, particularly EI, is a promising solution to those challenges. Different architectures
for performing quick inference are proposed, shown in Figure 2.5, to enable low-latency
applications that use deep learning. There are three general approaches to on-device
computation, edge server computation, and joint computation. They can be further
partitioned into different approaches shown in Figure 2.5 [9].

• On-device computation. The first approach focuses on reducing the computation
time on resource-constrained edge devices such as IoT devices or ES. Three major
efforts in efficient hardware and DNN model design i) Model Design tries to reduce
the computations in a NN to a minimum by designing the model lightweight;
ii) Model Compression focuses on compressing the DNN models with minimal
accuracy loss. Therefore DNNs could run on-device without the necessity of
offloading. Parameter quantization, parameter pruning, and knowledge distillation

12

2.5. Related Works

are a few popular model compression methods; iii) Hardware improvements are the
third possible approach for running DNNs on the device. It improves the hardware
at the edge by adding specialized hardware to the devices, such as DNN accelerators
like Google’s Coral for the TensorFlow framework.

• Edge server-based architectures. Sometimes DNN algorithms are too computation-
ally intensive to run on the local device even with the before mentioned approaches.
Therefore the algorithm has to be offloaded. Since the cloud is far away and
unsuitable for real-time applications, the computation is offloaded to an ES in
close proximity with enough resources. There are two approaches for fast inference
with ES computation. i) Data preprocessing. Data preprocessing tries to reduce
as much data as possible, yet enough to fulfill the tasks. Through this, the data
transmitted to the ES is reduced, leading to faster decision-making. As an example,
Glimpse [10] uses change detection filters on the camera frames. Therefore, only
new images are uploaded for the processing which saves a lot of communication. ii)
Edge Resource Management deals with the problem of efficiently managing multiple
DNN tasks of different devices on shared compute resources. Some papers focus on
the tradeoffs between accuracy and latency and other performance measures.

• Joint computation. Although ES accelerates the prediction process and sometimes
even enables it, it is not always required to offload everything to the ES. Joint
computation deals with fast inference through intelligent offloading tasks to the
ES. i) binary offloading decides if a DNN is offloaded or not; ii) Partial offloading
deals with partitioning the DNN and offloading only parts of it to the cloud. For
example, the first part is computed locally, and the second part at the ES; iii)
hierarchical architectures deals with offloading across a combination of edge servers,
cloud, and edge devices; vi) Distributed computing describes the approach where
the DNN computation is distributed across multiple peer devices.

In this thesis, we focus on the third approach, joint computation, and there on the DNN
partitioning as a method for fast inference. However, the presented approaches can
be merged and used together. As an example, a model could be compressed and then
partitioned to gain an even faster inference.

2.5 Related Works
Table 2.1 summarizes the related works of this thesis. In this section, we will summarize
related works and how they differ from ours. [9] provides an introduction with to EI
and summarizes methods for fast inference at the edge. One of those methods is DNN
partitioning, used in this work. The Neurosurgeon framework from Kang et al. [24]
was one of the first to propose a dynamic prediction of the splitting point. Therefore,
it uses prediction models for the different layer types such as Fully-connected Layer,
Convolution & Local Layer, Pooling Layer, Activation Layer, and some others. Based on

13

2. Overview

Kang et al. [24] Lin et al. [28] Gao et al. [17] This work
Dynamic X X X
Energy Opt. PREDICTED PREDICTED
Cost Opt. X COULD-ONLY X

Latency Opt.
LAYER- TIME- LAYER- LINEAR,
BASED CONSTRAINT BASED CLOCK-

SPEED
Mobile Devices X X
Edge Nodes X X X
Cloud Nodes X X

Table 2.1: Comparison of Our Approach to Related Literature on DNN Splitting [30].

those layers Neurosurgeon predicts the latency in each layer and, together with the data
size in each layer, predicts the best splitting point. However, it furthermore not only
optimizes latency but also gives the possibility to optimize energy consumption. However,
in comparison to our work, Neurosurgeon does not include any cost optimization. Lin et
al. [28] propose a self-adaptive discrete particle swarm optimization (PSO) algorithm
using genetic algorithm (GA) operators is proposed to minimize system costs in hybrid
computing environments. The approach considers DNNs partitioning and layer off-loading
across cloud, edge, and end devices. By avoiding premature convergence of PSO through
the mutation and crossover operators of GA, the system cost is reduced by enhancing
population diversity. Comparative analysis against benchmark solutions demonstrates the
effectiveness of the proposed off-loading strategy in reducing system costs for DNN-based
applications across cloud, edge, and end devices. This work includes a detailed cost
model but does dynamically change the splitting point during run time nor include
clock speed. Gao et al. [17] present a joint task partitioning and offloading design for
a DNN-task-enabled mobile edge computing (MEC) network. The proposed approach
considers the characteristics of DNNs and involves a single server and multiple mobile
devices. Contributions include a layer-level computation partitioning strategy, a delay
prediction model, a slot model with dynamic pricing, and a joint optimization framework.
Two distributed algorithms based on aggregative game theory are proposed to solve the
optimization problem. Numerical results demonstrate the scalability and superiority of
the proposed scheme in terms of processing delay and energy consumption over baseline
schemes. However, this work distinguishes itself from ours in the following points: i)
It does not include a cloud node. ii) It uses layer-based prediction, and we use latency
prediction based on clock speed. iii) It is a simulation; we present a test bed. iv) The
cost optimization is cloud only.

14

CHAPTER 3
System Model

3.1 Edge Server
The ES is the central part of the proposed system. It hosts the scheduling algorithm,
the prediction models, and the DNN, as shown in Figure 3.1. The ES is located at the
network’s edge, where the data is generated. It can be the User Equipment (UE) itself, as
in voice assistance, or a server close to the UE, like a private hospital server that processes
local data. This server, however, should not be more than about one hop away from
the UE. The ESs often have limitations, such as energy, bandwidth, and computational
power. This leads to the necessity of offloading some of the decision-making to the cloud.
However, this depends on the resources of the ES itself. Depending on the location
of the server, requests to the cloud can be fast or slow. If installed directly at a base
station requests to the cloud could be very fast since the connection to the cloud is strong.
Although, if installed in unaffiliated regions like in the environmental monitoring, requests
to the cloud can be expensive. Furthermore, depending on the hardware resources of
the ES, more or fewer tasks can be computed by the server itself. With respect to
environmental monitoring, the ESs need to be small due to stringent energy limitations.
Therefore hardware resources are limited and computation-intensive tasks need to be
offloaded to the cloud. To operate ESs an organization or company has the option to
buy and maintain themselves. This has the advantage of a one-time purchase and allows
the organization running it, to be completely independent and flexible. Although, the
maintenance of the server can be quite difficult. A great advantage is that this server
can be placed directly where it is required, and provide therefore high-speed requests
to it. Although the request from the ES to the cloud can, again, be costly due to
the location. Another possibility is to rent ESs with very low latencies from a certain
area. Therefore the maintenance is done by the provider and it can be used directly.
Based on the requirements of the owner, it can be more expensive to rent than to own.
In our work, we have two objectives that have to be optimized. i) Cost. ESs can be

15

3. System Model

Figure 3.1: UML Component Diagram of the Proposed System [30].

rented or bought. When renting, ESs have a higher fee per hour than the cloud due to
the optimized location of the ESs [5]. However, ESs can be owned by the application
provided and used extensively at no further cost. In this case, computing locally on the
ES can be cheaper than offloading to the cloud. ii) Latency. Low bandwidths and long
latencies are the results of the utilized communication mediums due to the location of
the servers. This directly affects communication latency. Those limitations also vary over
time through environmental influences like the weather and flash crowds. Furthermore,
the computational capability of an ES impacts the latency, represented as clock speed in
our models.

Figure 3.1 holds five components, the Scheduling Algorithm, the Neural Network, the
Prediction Model, the IoT Sensors and the Cost Component. The cost component is
in our case a constant, delivering the prices for the edge server and cloud servers. In
future work, this could be replaced with a component gathering live prices from the cloud
providers. The IoT Sensors deliver the current Bandwidth, latency to the cloud, clock
speed, and the actual measurements. The measurements are the real raw data to be
investigated. The Prediction Models deliver the current optimal splitting point based
on the live conditions of the IoT sensors and the cost to the scheduling algorithm. The
component Neural Network holds the actual NN, prepared for splitting. In this work,
we investigate three different networks. The AlexNet model, a CNN with 19 layers, the
VGG16 model, also CNN with 37 layers, and a model a CNN model for the MNIST data
set with nine layers. When one of those NNs is called along with the splitting point,
the network runs until the splitting point and offloads the rest to the cloud. The last
component is the Scheduling Algorithm responsible for orchestrating all the components.

16

3.2. Stateless Cloud

3.2 Stateless Cloud
The cloud data center consists of servers with virtually unlimited resources regarding
energy, storage, and computational power. However, they are often geographically far
from the UE, which can result in high response times. The time required for data to
reach the cloud depends on the network bandwidth, latency, and data size. In most
DNNs, data size varies among the layers and therefore the latencies vary. In this work,
the cloud server is a web server with the above proposed NN models stored on it, shown
in Figure 3.1. The web server has a REST interface with only one endpoint listening to
an incoming request from an ES shown in Listing 2. To finish the NN at the CS, the
splitting point, the tensor, and the model name are required. Furthermore, the model
itself must already be stored on the server since only the tensor is offloaded and not the
model itself. The web server then calls the corresponding model with the tensor and the
splitting point. This can be seen in Figure 3.1, 3.2. All possible models have to be stored
along with all layers since the splitting point is unknown. If the splitting point would
be fixed, a possible efficiency increase could be to only store the required layers. After
calling the NN on the CS the output holds the prediction. This could then be used to
further cause actions, however, in our work, we stop at this point.

Because speed is crucial for a fast prediction, the cloud is implemented stateless. A
stateless cloud is an approach for service-oriented architecture (SOA) for cloud computing
environments. In traditional SOA, service providers maintain state information about
their clients, which can lead to performance and scalability issues. With the implementa-
tion of a stateless cloud, providers do not maintain the state information of the users.
This leads to better scalability and performance in cloud environments. This fits perfectly
with our approach since multiple servers send a huge number of requests, and there is no
need for storing client state information.

3.3 Communication
In general, ESs are in close proximity to where data is generated, enabling high-speed
communication between UE and ES. On the other hand, the cloud is far away, so
communication is slower. Nevertheless, ESs are often installed in environments where
the connection to the cloud is also fast. However, ESs have to be installed in rough
and rural areas, like in environmental use cases or in autonomous vehicles. Especially
under rough conditions, efficiency is crucial for fast decision-making. Since the data
size significantly impacts communication latency, scheduling the splitting point to a
layer where the data size is small might have a huge impact. Therefore, our goal is to
reduce bandwidth use and latency. Figure 3.2 illustrates the complete communication
sequence from the data generation to the predicted result in the cloud. The scheduling
algorithm orchestrates everything and holds a timer for triggering model calls. Based
on the requirements of the application, the predictions can be made in a certain time
interval or based on a threshold value of the raw data. This does not matter to our
proposed rescheduling algorithm and would just be an additional component. The same

17

3. System Model

holds for the splitting point prediction. It can be eighter time triggered, e.g. every two
minutes the best splitting point is predicted, or based on a threshold. This could be
triggered e.g. when the bandwidth or clock speed changed drastically. Once triggered,
the scheduling algorithm calls the prediction models with the current bandwidth, latency,
clock speed, and costs. Furthermore, a variable deciding either to optimize more cost or
latency has to be provided. The prediction models then return a predicted splitting point
on those life parameters. When a prediction is triggered, the DNN model is called with
the raw data and the splitting point. After finishing until the splitting point the tensor is
base64 encoded and sent to the web server via HTTP. For secure transmission, HTTPS
would be recommended, however, this is not implemented in this thesis. When the DNN
has reached the splitting point, the current tensor, intended as input for the next layer is
base64 encoded and sent via HTTP as JSON to the web server. An exemplary request
can be seen in Figure 3.2 between Neural Network and Webserver Cloud. A response is
not explicitly required, and therefore not drawn, however, it might be useful and makes
sense since in the case of a failure the data can be stored at the edge.

3.4 Latency Measurement
In this work, we consider three latency types as highlighted in Figure 3.2 with the red
boxes: i) edge latency is the time required by the edge to run the first part of the DNN.
ii) communication latency is the time required to send the data from the edge to the
cloud iii) Cloud latency is the time to finish the execution of the second part. The
ES receives the input data, runs it at the edge for a given amount of layers, and then
offloads the data to the cloud, where the DNN inference is finalized. The time spent
until offloading on the ES is called edge latency and depends on the computation power
of the ES. The overall end-to-end latency is the time between calling the DNN at the
edge and the predicted output. The time taken to finish the NN by the cloud is called

Figure 3.2: UML Sequence Diagram of the Proposed Cost-Aware Dynamic Scheduler
[30].

18

3.4. Latency Measurement

cloud latency. Finally, the time consumed between offloading and receiving is called
communication latency. The workflow of the latency (Lat.) measurement in more detail

Figure 3.3: UML Sequence Diagram of the latency measurement.

is shown in Figure 3.3. When the DNN at the edge is called, we store that time as the
overall starting point and at the same time, the starting point of the edge latency is
called overall_lat_start. During the run of the DNN, we store the latency of every layer
for later evaluation. When the network at the edge reached its splitting point, and the
tensor is offloaded, right before sending the data, the edge latency stop time is stored.
We call it edge_lat_stop. Through this, we can calculate the time the DNN took to
run at the edge. When the offloaded tensor reaches the web server, this time is stored
as cloud_lat_start, since from here the cloud is running the DNN. We also store the
time in each layer of the cloud model. When the model is finished, we store this time as
cloud_lat_stop and send the two cloud latencies back to the edge. This is for reasons of
simplicity to measure. At the edge of the last latency, the overall stop latency is stored
as overall_lat_stop. Therefore the three different latencies shown in Figure 3.2 can be
calculated as followed: The latency at the edge is the subtraction of the time before
offloading and the overall starting point shown in Equation 3.1.

edge_lat = edge_lat_stop ≠ overall_lat_start (3.1)

The computation latency of the cloud is simply the subtraction of the start time from
the stop time, shown in Equation 3.2.

cloud_lat = cloud_lat_stop ≠ cloud_lat_start (3.2)

The last latency, the communication latency, is slightly more complicated to measure. Due
to the time differences between different devices, the measurements cannot be compared
directly. Therefore we calculate we subtract the edge latency and the cloud latency from
the overall latency. However, there is a failure because the response communication
latency should be excluded. This can be achieved by subtracting the latency taken from

19

3. System Model

the cloud to the edge, which can be measured, along with the duration of the transmission
which can be calculated with the transmission size and the bandwidth. However since
the response data is really small, the response communication latency is it as well. The
resulting formula is presented in Equation 3.3.

comm_lat = overall_lat ≠ cloud_lat ≠ edge_lat ≠ ping_lat

2 ≠ response_size

bandwidth
(3.3)

overall_lat = overall_lat_stop ≠ overall_lat_start (3.4)

20

CHAPTER 4
Prediction Models

We focus on two main objectives: cost and latency. Our goal is to predict the optimal
splitting point for minimizing the cost of the servers and the latency based on real-time
parameters. We investigate two different strategies i) the application provider owns the
ES; therefore, does not have to pay rent for the ES, and ii) they rent the ES as well as
the cloud. In the first scenario, it is cheaper to compute at the edge, whereas, in the
second, it is cheaper to offload since the ESs are more costly [15]. To find the optimal
splitting point, three prediction models are created. The first predicts the influence of a
change in the clock speed on the computation time, the second predicts the influence of
the bandwidth and latency change on the communication latency, and the third predicts
the cost of a task. Combining these models, a dynamic splitting point scheduler that
simultaneously minimizes latency and reduces cost is proposed. Substantial overlap exists
between the content presented in this chapter and our previously published workshop
paper [30].

4.1 Edge Computation Latency
Deploying ESs in unaffiliated environments with limited energy supply and relying on
batteries and solar power results in fluctuations and scarcity in computational resources.
Therefore a variety of edge nodes with different clock speed settings coexist. For this
reason, we included clock speed in our prediction models to predict the edge computation
latency.

The first step is the prediction of the latency in a specific layer independent of the clock
speed. Therefore we measure the final layer latency and assume that the edge latency
has a linear behavior. Since the edge latency is zero before the first layer, we can create
a linear equation. With this equation, the predicted latency in a specific layer can be
calculated, albeit only for this specific server, under the specific setting and the specific
DNN. The next step is to adapt the prediction model so that the calculation of the edge

21

4. Prediction Models

Figure 4.1: Normalized Slopes with Curve Fitting [30].

Instance Name Hourly Rate vCPU
Edge Server t3.xlarge $0.224 4
Cloud Server t3.xlarge $0.1664 4

Memory Storage Type Location
Edge Server 16 GiB EBS Only Wavelength Zone US East (Verizon) - NY
Cloud Server 16 GiB EBS Only Region US East (Ohio)

Table 4.1: Reference Configurations and On-Demand Prices for AWS EC2 [5, 30]

latency takes the clock speed into account. To that end, we investigate the relationship
between the latency and the clock speed on the specific server by running the DNN on
the server. We benchmark the execution time under various clock speed settings and
compute the latency slope, which estimates the latency in this layer when multiplied by
the layer number. Although, only the measurement for all-in-edge, meaning nothing is
offloaded, is required since only this value is required to calculate the slope of the edge
latency. Because each DNN has completely different layer latencies due to the different
numbers and types of layers, the data points cannot be combined directly and must be
normalized to the range [0, 1]. Figure 4.1 illustrates the plot of all data points of the
different DNNs. After normalizing the data points, Power Law can be used to generate a
fitting curve through all measurements. The resulting model to predict the edge latency
has to be de-normalized before being used for a specific DNN. This can only be done
with the upper and lower bounds. This is the reason why two measurements are required
for a new DNN. The all-in-edge latency of the highest and the all-in-edge latency of
the lowest clock speed. With those two bounds, the latencies for the other clock speed

22

4.2. Cloud Computation Latency

settings can be predicted. The resulting prediction function for the latency based on the
clock speed is given in Equations 4.1 and 4.2.

fedge(CS, SP, M) = fdenorm(a ú CSb, up_b(M), l_b(M)) ú SP (4.1)

fdenorm = slopenorm ú (up_b(M) ≠ l_b(M)) + l_b(M) (4.2)

a, b = Parameters from the curve fitting
CS = Clock speed

up_b = NN specific upper bound
l_b = NN specific lower bound
M = NN model

SP = Splitting Point

The prediction of the cloud computation latency works the same way as the prediction
for the edge computation latency but without the dependency on the clock speed. This
is because the cloud runs on virtual CPUs with a fixed clock speed. Therefore the com-
putation latency of the cloud can be measured once with the all-in-cloud strategy. With
this measurement and the knowledge that with the all-in-edge strategy the computation
latency in the cloud is zero, a linear equation can be created, with which the latency in
each layer can be determined.

4.2 Cloud Computation Latency
Since the cloud is running on an AWS instance and only virtual hardware is provided,
the CPUs are also virtual (vCPU). Therefore we do not have a change in clock speed
in the cloud and therefore no necessity to include the clock speed in our model. Figure
4.2 shows some measurements of the cloud latency of the Mnist model. It can be seen
that, except for two outliers, all the measurements lie very close. Due to this fact, and
that we try to keep the expenditure to add new models as low as possible, we measure
the all-in-cloud strategy. With the all-in-cloud measurement, meaning the raw data is
offloaded we get the first measure point. To then get the slope we assume the all-in-edge
measurement is zero. We are then able to predict the cloud latency, shown in gray in
Figure 4.2.

4.3 Communication Latency
ESs are usually installed in close proximity to the data generation to achieve low latencies.
However, when the ES sends data to the cloud, the communication latency can be
high, depending on where the ES and cloud data center are located. In this work, we
assume the ES is in a region with volatile internet connectivity. This can result from an
external condition such as weather or increased internet traffic. Furthermore, intermittent
connectivity can also appear when the ES is mobile, such as a car driving through regions

23

4. Prediction Models

Figure 4.2: Cloud Latency measurements for Mnist model.

with good or bad connectivity. Therefore, the connectivity must be considered when
offloading a DNN since the data size can be massive. Therefore, the splitting point needs
to be dynamically recalculated. To achieve this, we create a prediction model for the
splitting point based on the current bandwidth and latency. Since we know the current
bandwidth and latency and the data size in each layer, the communication latency can
be estimated. Equation 4.3 takes the bandwidth, latency, and splitting point as input
and calculates the communication latency.

Lcomm(BW, PL, SP, OS) = OS(SP) ú 8
1000 ú BW

+ PL

2 ú 1000 (4.3)

OS = Array of layers with offload sizes [Byte]
BW = Bandwidth [kbit/s]
PL = Ping Latency [ms]

Equation 4.3 shows that the communication latency depends on the bandwidth, ping
latency and the splitting point. The offload size of the offloaded data is fixed for a DNN
in each layer and can be gained through the splitting point. If a new NN is added to the
scheduling algorithm, the sizes in each layer must be stored.

With all the predicted latencies, edge, cloud, and communication, we can calculate the
overall latency through the sum of all. This predicted overall latency is then used to find
the optimal splitting point in terms of latency. Figure 4.3 shows the different predicted

24

4.4. Resource Cost

Figure 4.3: Predicted Latencies for the AlexNet model [30].

latencies, cloud in red, edge in orange, communication in purple and the overall in green.
It can be seen that the edge latency and the cloud latency are now linear. This results
from our prediction model for edge and cloud. The blue line represents the actual overall
latency and it should correspond with the predicted overall latency in green. If we would
just investigate the best prediction model in terms of latency, we would be finished here.
We could take the minimum layer (the red dot) and would split it there. However, we
also add costs to our rescheduling algorithm, which is discussed in the next section. It
has to be remarked that the blue dot shows the actual best splitting point, which is
slightly different from our prediction. This is the error therm in our model.

4.4 Resource Cost

To predict the costs arising during the computation of a task, we use the two strategies
presented at the beginning of this section, namely owned and rented ES. The two
strategies are given in Equation 4.4. In the first scenario, the ES is owned; therefore, we
do not calculate any costs for running tasks at the edge. In this case, it, therefore, makes
more sense to compute as much as possible at the edge to save costs. In the second
scenario, we rent the ES as well as the cloud and calculate the cost based on the time
running at the edge and the time running in the cloud. We use real-world AWS prices
for our calculation. AWS offers ESs with ultra-low latencies for 5G services at a higher
price than the cloud resources, as shown in Table 4.1 [5]. We choose the corresponding
price for the partitions that run on edge and cloud.

25

4. Prediction Models

fcost(RT) =
I

0 + Ccloud(RTcloud), if ES is owned.

Cedge(RTedge) + Ccloud(RT), if ES is rent.
(4.4)

4.5 Combined Prediction Model
To combine the prediction models to optimize latency as well as cost based on clock
speed, bandwidth, latency, and cost, an optimization function is presented in Algorithm
1. The optimization function can be weighted to optimize lower latency or cost. The
weight parameter w can take values from 0 to 1, with 0 to optimize only the latency
and 1 to optimize only the cost. First, the cost and the latency are calculated for each
layer, assuming it is the split point. The overall latency, including edge computation,
communication, and cloud computation, and overall cost, including edge and cloud, are
considered. The results are stored in two arrays and are sorted in decreasing order
of preference. Then based on the weight variable w, one array entry is compared
with the corresponding other table entry. Each item in one array is compared to
|entries|ú((w≠0.5)ú2) items in the other array. For example, if w is 0.5, precisely one new
entry of cost and latency are compared, along with the ones already compared. Although,
if a weight is added, not just one entry is taken into account, but percentage(w)ú|entries|.
If w is 0.6 one entry of cost is compared with |entries| ú ((0.6 ≠ 0.5) ú 2) + 1 of latency
entries along with the cost and latency entries before.

RT = Runtime

Algorithm 1 Weighted cost latency optimization algorithm [30].
Require: w
Require: L = [pred_overall_lat]
Require: C = [pred_best_cost]

sort[C] Û Cheapest first
sort[L] Û Fastest first
visited_cost = []
visited_lat = []
for i in range(0, layer_length) do

visited_cost Ω add_visited(w, C, i)
visited_lat Ω add_visited(w, L, i)
if visited_cost in visited_lat ||

visited_lat in visited_cost then Û Check if a match
return match

end if
end for

To explain the algorithm more visually we created Figure 4.4. It shows how the algorithm
works with a weight of 0.55 and 20 layers, meaning, we slightly favour cost. First we
create two arrays which holds the best layers for eighter cost or latency. We sort them

26

4.5. Combined Prediction Model

Figure 4.4: Cost, Latency trade-off Algorithm with weight = 0.55.

both ascending meaning the fastest layer first and the cheapest layer first. Then, since
we have a weight of 0.55 we calculate the advantage of the cheapest array. The weight
gives us 10% advantage ((0.55 ≠ 0.5) ◊ 2 ◊ 100% = 10%) which results in a two layer
advantage (20 ◊ 10% = 2). We then iterate through the arrays and comparing them
(with an advantage of cheapest of 2) if there is a match. We also take into account
the already compared ones. In the second step it can be seen, that a match has been
found with layer 1. Through this, the first match of the two weighted arrays can be
found. Figure 4.5 shows the different latencies in our experiment (overall, cloud, and
edge latency). As well as the predicted edge latency in red and the predicted overall
latency in violet. It can be seen, by increasing the clock speed, the resulting edge latency
as well as the predicted edge latency decrease. This results in a different optimal splitting
point regarding latency. Furthermore, Figure 4.5 shows three different dots, representing
the best splitting point regarding cost, the best splitting point, regarding latency, and
the best splitting point if cost and latency are evenly weighted. In this scenario, we rent
the ES which makes it cheaper to offload directly making it cheaper the sooner to offload.
The red dot represents the best optimal splitting point regarding latency. It reschedules
dynamically if clock speed, ping latency, or bandwidth changes. It can be seen that e.g.
in the plot’s right bottom corner, with clock speed 1.5GHz the best-predicted splitting
point is layer 15 but it actually would be layer 13. This is because the optimal latency
splitting point is predicted and therefore holds some failure. The blue dot represents the
combination of latency and cost when both have the same weight.

27

4. Prediction Models

Figure 4.5: Dynamic Rescheduling of Splitting Points Under Different Clock Speeds [30].

28

CHAPTER 5
Neural Network Splitting

The majority of the content presented in this chapter exhibits substantial similarities
with our previously proposed workshop paper [30].

5.1 Splitting
In general, splitting a network requires a point at which the neural network is partitioned
and split into two parts. The first part runs at the first server, or the edge, and the second
part in the cloud. The point where the network is partitioned is called the splitting point
and is dynamically calculated in this work. Therefore the network must be able to offload
the second part of the network after each layer and before the first layer (this would be
the offloading of the raw data). However, the existing networks are usually not built for
splitting; therefore, the network must be prepared. This is a manual process in which
particular functions are implemented into an existing NN. Although, it is essential to
preserve all the existing layers and functions and ensure the prediction outcome stays
precisely the same. The following parts must be considered to make a network separable.
However, some can be reused for all networks, and some must be done specifically for
the network.

• Inspect network: The first step is to find out how many and types of layers are
used in a specific network. This can be done by manually searching through the
code or, if implemented, printing out a summary of the network. Depending on
the configuration, networks can consist of hundreds of layers, often created during
runtime. Furthermore, the layers themselves can contain again layers that must be
considered for splitting. If a network uses a layer that consists of multiple layers,
this work splits the layers of the layers until the elementary layers are reached.
Such elementary layers are the basic modules of the PyTorch framework found in

29

5. Neural Network Splitting

the “/nn/modules” directory, such as Linear, Conv2d, MaxPool2d, ReLu and many
more.

• Gather layers: In the next step, all layers are combined into an array that can
be iterated. Furthermore, the layers are made properties of a class “Layer” to add
additional properties to a specific layer, such as id (the id is equal to the layer’s
position in the network) or start and stop time for measurement purposes.

• Split the network at the edge: When a network is called, the forward method
is entered, and the network calls its layers. The content of this forward method is
completely deleted and replaced with a loop that iterates over all layers shown in
Algorithm 2. As long as the splittingpoint is greater than the layer id, the layer
should normally run at the edge. However, when the splittingpoint is equal to the
layer id, meaning that the network shall be partitioned after this layer, the network
runs this layer and offloads the hole tensor to the cloud via a REST request.

Algorithm 2 Iterate and Execute Layers at the Edge
Require: splitting_point, x (raw data as tensor), layers (dictionary of layers)

for k, v in layers do
if splitting_point >= k then

x = v.layer(x)
if splitting_point == k then

data = offload(splitting_point, x)
end if

end if
end for
return x Û Tensor at splitting point

• Offloading: The tensor, which has to be offloaded, is converted into a base 64
encoded string. This string is added to the body of a POST request to the cloud.
Furthermore, the splitting point has to be sent along to continue at the right point
in the cloud. If multiple models are used with the same cloud server, the model
must also be specified and sent along. The base 64 encoded tensor is when received
by the cloud decoded and transformed back into a tensor, which can be directly
used to call the model.

• Continue running in the cloud: The network model running in the cloud is
the same as at the edge, however, with a slightly different forward method. In
the cloud, the network is already partitioned and it just needs to finish it from
a given splitting point. The algorithm for finishing the network in the cloud is
shown in Algorithm 3. The line 3 shows that nothing has been done as long as the
splitting_point is smaller than the layer id. Although, after the splitting_point,
the network runs normally, and all layers are called.

30

5.2. Neural Networks

Algorithm 3 Iterate and Execute Layers in the Cloud
Require: splitting_point, x (tensor from edge server), layers (dict of layers)

for k, v in layers do
if splitting_point >= k then

continue
end if
x = v.layer(x)

end for
return x Û Final tensor

5.2 Neural Networks

5.2.1 AlexNet

The AlexNet model is a convolutional neural network designed by Alex Krizhevsky, Ilya
Sutskever, and Geoffrey Hinton. It was created to participate in the ImageNet Large Scale
Visual Recognition Challenge and outperformed the previously leading models in 2012.
The ImageNet dataset, used for training, is a comprehensive image database developed
by Standford University researchers in the early 2000s. It includes over 14 million images,
organized into 20,000 categories, representing a wide range of objects, scenes, and animals.
The original AlexNet network contained eight layers. First, five convolutional layers,
followed by three fully connected layers. Although, in the following years, the model was
improved. For this thesis, we use an implementation of the PyTorch community [13],
which again uses an improved version of AlexNet created by Alex Krizhevsky in 2014 [25].
Input. The input for the AlexNet is a random image with dimension 4625 ◊ 6938 and

Figure 5.1: Input image for our Alexnet model.

resolution 72 ◊ 72. The image used in this work is shown in Figure 5.1. The image stays

31

5. Neural Network Splitting

Layer Type
1 Conv2d(3, 64, kernel_size=11, stride=4, padding=2)
2 ReLU()
3 MaxPool2d(kernel_size=3, stride=2)
4 Conv2d(64, 192, kernel_size=5, padding=2)
5 ReLU()
...
16 ReLU()
17 Linear(4096, 4096)
18 ReLU()
19 Linear(4096, num_classes)

Table 5.1: Layers of the used AlexNet Model.

for all measurements the same to ensure the data and, therefore, the size always stays the
same. The figure is resized to 224 x 224 pixels and normalized before being transformed
to a tensor. Layers. The network implemented in Pytorch from the PyTorch community
consists of 21 Layers; however, two are Dropout layers which are only relevant for training.
Table 5.1 shows a list of the used layers along with their ids and features.

5.2.2 Mnist
The modified National Institute of Standards and Technology database (MNIST) is
a widely used dataset of handwritten digits that serves as a benchmark for image
classification tasks in computer vision. The database contains 60,000 training images and
10,000 testing images, each with a grayscale 28 ◊ 28 pixel image of a handwritten digit
ranging from 0 to 9. The MNIST dataset has been used to evaluate and train a range
of machine learning models, including linear classifiers, support vector machines, and
convolutional neural networks. Its small size and ease of use make it an ideal starting
point for exploring new developments in computer vision. Overall, MNIST remains a
standard benchmark dataset for image classification tasks in computer vision and has
been instrumental in the development of new algorithms and techniques in the field. It
was developed by Lecun et. al. out of the NIST dataset and was specially designed
to train CNNs [27]. We use images out of this dataset for inference and use a CNN
implementation from a paper that achieved up to 99.91% accuracy on this dataset [4].
We use the version with 5 ◊ 5 kernel size in convolution layers. Table 5.2 shows the nine
layers used for this model.

5.2.3 VGG
The Visual Geometry Group (VGG) model is a deep convolutional neural network
that was introduced in the paper "Very Deep Convolutional Networks for Large-Scale
Image Recognition" by Karen Simonyan and Andrew Zisserman, which was published

32

5.3. Limitations

Layer Type
1 Conv2d(1, 10, kernel_size=5)
2 MaxPool2d(kernel_size=2)
3 ReLU()
4 Conv2d(10, 20, kernel_size=5)
5 MaxPool2d(kernel_size=2)
6 Linear(320, 50)
7 ReLU()
8 Linear(50, 10)
9 Softmax(dim=1)

Table 5.2: Layers of the CNN for the MNIST Dataset.

in the Proceedings of the International Conference on Learning Representations (ICLR)
in 2015. This paper investigates the impact of increasing the depth of convolutional
neural networks on their accuracy in large-scale image recognition. The authors evaluate
networks with small convolutional filters and show that significant improvements over
prior state-of-the-art models can be achieved by increasing the depth to 16-19 weight
layers. The resulting models achieved first and second place in the 2014 ImageNet
Challenge for localization and classification respectively. The authors also demonstrate
that their models generalize well to other datasets and have made their best-performing
models publicly available for further research [36].

In this thesis, we use a PyTorch implementation of VGG16 by the Pytorch community
[14]. This model is built out of 37 layers and is therefore the biggest model in our tests
regarding the layer count. The input for our model is the same image as for the AlexNet
model shown in Figure 5.1. However before the model is called with this image, it is
resized to dimension 256 ◊ 256 and transformed into a tensor to fit the model.

5.3 Limitations
The first DNN we prepared for splitting was a Graph Neural Network (GNN) since a
GNN fitted best for the use cases of the SWAIN project. This results from the fact,
that a river with measurement stations can be mapped into a directed graph with the
measurement stations as nodes and the river as edges. The idea was, to gather the
data at the edges, run a part of the GNN at the edge, and offload the rest to the cloud.
However, this has proven not feasible since the measurement stations themselves are not
connected which stops the flow of the GNN. Therefore it only works if all the raw data is
offloaded to the cloud and there the GNN is called. Although, this means no acceleration
through partitioning. Future work could investigate if a connection between edge servers
could enable the partitioning of GNNs. If however, all data is already available at the
edge in case a local problem can be mapped to a graph, e.g. a smart home, our splitting
approach can be used. Further limitations of our approach are DNNs with non-chain

33

5. Neural Network Splitting

Layer Type
1 Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1))
2 ReLU()
3 Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1))
4 ReLU()
5 MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1)
6 Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1))
7 ReLU()
8 Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1))
...
30 ReLU()
31 MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1)
32 AdaptiveAvgPool2d((7, 7))
33 Linear(512 * 7 * 7, 4096)
34 ReLU(True)
35 Linear(4096, 4096)
36 ReLU(True)
37 Linear(4096, num_classes)

Table 5.3: VGG16 Model with 37 layers.

structures. In such DNNs layers can run in parallel which makes it hard to offload and
predict splitting points. However, this might be possible to overcome in future work and
would be very interesting to investigate.

34

CHAPTER 6
Experimental Setup

6.1 SWAIN Project
This thesis arises from a project called Sustainable Watershed Management Through
IoT-Driven Artificial Intelligence (SWAIN). The project aims to address the significant
threat of water resource contamination to the environment. The team proposes a
solution that focuses on the rapid identification of chemicals and their emission sources in
watersheds to ensure sustainable water resources management. Despite several studies on
micropollutant measurements in water resources across Europe, the efficient utilization
of collected data for informed decision-making to protect water resources from harmful
chemical pollution is currently lacking. To address this challenge, the project team is
exploring the potential of advanced Artificial Intelligence (AI) strategies and Internet
of Things (IoT) technologies, which offer faster and more efficient responses in both
real-time reactions and long-term planning.

The proposed solution is designed to improve understanding and provide near real-time
response to pollution incidents, predict pollution spread, and mitigate its long-term effects.
The project relies on data-driven AI lifelong learning and the evolution of the algorithm to
achieve its primary objective, which is to develop an integrated decision support system.
This system will utilize micropollutant measurements, along with real-time hydrodynamic
and meteorological data of a watershed, to manage water quality sustainably. Since
micropollutants are resistant to degradation and are linked to emission sources, they
provide an accurate indication of pollution and its sources.

The project team’s approach involves introducing and combining novel technologies to
improve water pollution management in various critical phases. They rely on an advanced,
scalable IoT technology that adapts to specific problem requirements through a novel
mechanism called dynamic rescheduling. This approach allows the team to obtain the
desired data from optimal locations and times for further data analysis. The team also

35

6. Experimental Setup

introduces a novel methodology to create a more accurate hybrid model that integrates
expert-based physical environment models and data-driven evidence-based techniques.
To achieve this, they introduce a novel graph-based functional representation of data
that captures affinities and dependencies among data streams more efficiently. This
thesis focuses on the dynamic rescheduling part of the proposed project to ensure fast
prediction-making in rough environments. This can be due to limited energy resources,
unstable internet connection, long latencies, or limited computational resources.

6.2 Use Case

The use case of this proposed cost-aware scheduling algorithm is for ESs installed in
unaffiliated areas with low internet connection. Especially under such conditions, efficiency
is very important. To accelerate inference we measure current network conditions and
clock speed and provide a latency-optimized splitting point. Furthermore, if multiple ESs
are required, similar to the SWAIN project, the price can also be important. Therefore
our approach considers if the user rents or owns the ES and integrates it into the proposed
splitting point. Some use cases might require fast predictions, e.g. if an autonomous
vehicle is driving in a region with low connection, prediction is still required fast. In
this case, the cost might not be that important, and more weight can be added to the
latency. On the other hand, for the SWAIN project, the price is highly relevant, and
therefore the weight can be adjusted more in the direction of cost. To sum up, our
proposed rescheduling algorithm accelerates the inference of a DNN on edge devices
that are installed in regions where resources are limited or unstable. In the case of
autonomous driving, if a vehicle drives back into a well-connected region, our algorithm
adapts automatically to the new circumstances.

6.3 Design Science as Methodological Approach [22]

Design Science (DS) has been chosen as the methodological approach for this thesis.
Figure 6.1 shows the structure of DS in information systems (IS) and how it is used.
On the left side, we see the Environment in which the artifact is built. We have people,
organizations, and technologies that create an environment the artifact must fit. From
there, the business need for the artifact arises and should be continuous input during
construction. On the opposite side, we can see the Knowledge Base, which consists
of foundations (theories, frameworks, instruments..) and methodologies (data analysis
techniques, formalisms, Measures..) to create and validate the artifact or the theories.
The IS Research is occupied between the environment and the knowledge base. This
describes developing/building and justifying/evaluating the artifact. This loop of building
and validation requires the knowledgebase’s tools and ensures the artifact fits the business
needs. Furthermore, [22] describes seven guidelines to be followed when using the DS
approach for ISs. The DS approach is applied to this work in the following three sections.

36

6.3. Design Science as Methodological Approach [22]

6.3.1 Environment

The object of interest and the problem space is occupied in the environment. Everything
the artifact faces on the business side, like management, business decisions, used/planned
technologies, or people, are stored in the environment. This would be the area or the use
case in which the proposed rescheduling algorithm is installed. The original intention
of our work is environmental monitoring, where DNNs run for days, months, or even
years. Furthermore, infrastructure is suffering from long latencies and low energy supply.
Due to that, the algorithm is specifically designed for such unaffiliated regions. The
design science environment faces the used technology like infrastructure, applications,
and communication but also in which people and organizations are involved.

6.3.2 Knowledge Base

The knowledge base provides raw materials from and through which IS research is
accomplished. The knowledge base consists of foundations and methodologies. Theories,
frameworks, instruments, constructs, models, methods, and instantiations are gathered
and used in the develop/ build phase, methodologies are used in the justify/evaluate
phase. Table 3 in [22] shows possible methods to test and justify the artifact. To
select an appropriate evaluation method, artifacts can be subdivided into Ex Ante, Ex
Post, Naturalistic, and Artificial [39]. This work is Ex Post and Artificial, which means
that the preferred methodologies are: Mathematical or Logical Proof, Lab Experiment,
Role Playing Simulation, Computer Simulation, and Field Experiment. To ensure our
algorithm works as intentioned also in a real edge cloud environment, we conducted a
lab experiment.

6.3.3 IS Research

Literature Review [38]

A literature review is the ground on which modern research is built. Therefore it is
essential to do the literature review detailed and precise. Due to the increasing speed at
which research is done, a literature review is getting more complex. Therefore Literature
Review as a research method is increasingly important. There are different approaches
to doing a literature review, to mention a few: Typical purpose, Research question,
and Sample characteristics. Choosing the appropriate one for the thesis ensures a well-
designed literature review. We have research questions and use a systematic literature
review (Quantitative articles). Several steps must be taken to create a literature review
regardless of the chosen methods. The review itself can be split into four phases: (1)
designing the review, (2) conducting the review, (3) analyzing, and (4) writing up the
review. Those steps should be executed as described in the paper. If finished, the quality
of the literature review should be checked. Therefore, Table 4 in [38] presents guidelines
to assess the quality of the literature review.

37

6. Experimental Setup

Figure 6.1: Information Systems Research Framework [22].

Laboratory Experiment [20]

Since the actual settings of an existing and running edge server and cloud server with all
the parameters are too complex and volatile, a real test bed is built to simulate the actual
behavior. Therefore, we have variable parameters, and everything from the bandwidth
to clock speed is controlled. The client is a Raspberry Pi, and the server is an AWS
EC2 instance. Four parameters, clock speed, network latency, bandwidth, and cost, are
considered for the evaluation. Furthermore, three different DNNs are used to show the
effect of the rescheduling algorithm regarding different DNNs. Ultimately, all latency
measurements of the new proposed trade-off analysis are compared to the best splitting
point regarding latency and cost.

6.4 Hardware Setup
In our test bed, the ES is a Raspberry Pi 4 with 4 GB of RAM, installed directly
where the data is generated. This has the advantage that no time is lost from the data
generation to the ES. The ES hosts three software components; the scheduling algorithm,
the prediction models, and the neural networks themselves. Each part is implemented in
Python, and the DNNs use PyTorch as the framework. We evaluated our approach with
the AlexNet CNN, Mnist classification CNN, and VGG16 CNN. The test data are images
with the dimension 28 ◊ 28 for the Mnist model, dimension 1546 ◊ 1213 and resolution
72 ◊ 72 for the VGG16 model, and dimension 4625 ◊ 6938 and resolution 72 ◊ 72 for

38

6.5. Web Server

the Alexnet model. The images for Alexnet and VGG16 are resized to the dimensions
224 ◊ 224 and 256 ◊ 256 to fit the model. The cloud server runs in an Amazon EC2
instance using a Linux Server, with four virtual CPUs at a clock speed of 1,5 GHz and
with 32 GB of RAM.

6.5 Web Server
The cloud server is implemented as a web server using Python with a REST interface.
The web server has only one endpoint responsible for receiving the offloaded data. The
endpoint is presented in Listing 2. It is a POST request and requires the splitting point,
the tensor base 64 encoded, and the name of the DNN as input parameters. This input
data is exemplarily shown in Listing 1.

"input_data" : {
"tensor": "ABD23BSD...X2S",
"splitting_point": 15,
"model": "alexnet"

}

Listing 1: Data transferred from ES to the web server.

@app.route('/offload', methods=['POST'])
def offload():

input_data = request.get_json()
model(input_data)

return "successful"

Listing 2: Endpoint at webserver to receive the split NN.

6.6 Performance Metrics

• Bandwidth: To measure the latency with a certain bandwidth setting, it must
be possible to set the bandwidth. Therefore, we use Wondershaper, which allows
limiting the bandwidth of one or more network adapters during runtime [6].

• Latency: Since all parts of this work are implemented in Python, measuring the
execution times is consistent through all components. To measure the execution
times, Python function time.time() is used, which performs on Unix systems
with a precision of 1 microsecond. Since the counter is only valid for one system,
we calculate the communication latency by subtracting computation latencies from
the total end-to-end latency.

39

6. Experimental Setup

• Ping Latency: To measure the exact response latency between the ES and the CS
we ping the server with its IP address and store the latency. This latency is later
required for calculating the actual communication latency.

• Storing Measurements: All measurements are stored at the edge in a CSV file.
Those files are later read by an evaluation program written by us in Python. An
exemplary entrance of the stored measurements is shown in Table 6.1. There we
log the start and stop time of the edge, cloud and overall latency. Furthermore, we
log the start and stop time of every layer called, the tensor size transferred to the
cloud, the time and the splitting point. We must also store the current bandwidth
and clock speed for later evaluation.

id datetime start stop size SP BW CS
gen 4 5213 0.8748994 725 0.8115118 4000 1200000
1 datetime 0.5619493 0.5623462 0 4 0 0
2 datetime 0.562349 0.5624564 0 4 0 0
3 datetime 0.5624578 0.562519 0 4 0 0
4 datetime 0.5625205 0.5627294 0 4 0 0
5 datetime 0.5627317 0.56282 0 4 0 0
6 datetime 0.5628376 0.5629485 0 4 0 0
7 datetime 0.5629501 0.5630035 0 4 0 0
8 datetime 0.5630052 0.5630724 0 4 0 0
9 datetime 0.563074 0.5631313 0 4 0 0
finish 0.8125186 0.8746827 0.5615163 0.5631423 19.917 0 0

Table 6.1: Exemplarly CSV of stored Measurements.

6.7 Experimental Parameters

For the final measurements, where we compare the three approaches, best cost, best
latency, and our trade-off, we used a pool of generated clock speed and bandwidth
settings. From there, we randomly selected 15 settings and measured them on our test
bed. For the bandwidth, we used a Poisson distribution, and for the clock speed, a
normal distribution. We conducted each measurement for all the models three times and
used their mean. This is to ensure that the measurements are correct.

6.7.1 Bandwidth

We chose a mean of 7.2Mb/s for the bandwidth and used a Poisson distribution to
generate 30 bandwidth settings. From these 30 settings, we randomly selected 15 and
used them for our measurements. Figure 6.2a shows the histogram of the Poisson
distribution used for our measurements with a mean of 7.2Mb/s.

40

6.7. Experimental Parameters

(a) Poisson Distribution of Bandwidth
Mean = 7.2Mb/s.

(b) Normal Distribution of Clock Speed
Mean = 1.5GHz.

Figure 6.2: Distributions for Bandwidth and Clock Speed.

6.7.2 Clock Speed
For the clock speed, we used the maximal setting in our case, 1.5GHz, as the mean.
This is because we assume in a default mode that the CPU is on load and has enough
power to run at full clock speed. We then use a normal distribution with a mean of
1.5GHz. We also generate a pool of 30 clock speed settings and randomly choose for
each bandwidth setting one clock speed setting out of this pool.

41

CHAPTER 7
Evaluation

7.1 Effectiveness of Predictions

In the quest to estimate edge latency, this study advocates the adoption of live clock speed
as a predictive metric, given its dynamic nature during runtime. In the context of cloud
latency, a rudimentary linear model is proposed, while the calculation of communication
latency is direct. The efficacy of our predictive strategies is evaluated by juxtaposing the
predicted DNN splitting point against the actual optimal solution. This is achieved by
deducting the latency at the optimal splitting point from that at the worst splitting point,
thereby ascertaining the relative performance deficit of our approach. The empirical
results indicate that for the Mnist model, our approach performs, on average, 30.34%
worse than the optimal splitting point. For Alexnet, this figure stands at 20.91%, while
for the VGG16 model, the deviation is only 5.36%. Additionally, for the VGG16 and
Alexnet models, all proposed splitting points reside within the top 5 potential splitting
points. However, for the Mnist model, only 76.47% of proposed points fall within this
top 5 range.

7.2 Strategies

Figure 4.5 illustrates the different offloading strategies when latency, cost, or both
(w = 0.5) are optimized under various clock speeds and fixed bandwidth. It can be
seen that latency optimization and the proposed cost/latency optimization are dynamic,
whereas the cost is static. In this scenario, the ES is rented; therefore, the cheapest
solution is always to offload immediately. It can be observed that the proposed approach
identifies a good trade-off solution with only 13.73% higher latency or 35.28% more cost
than the two single-objective solutions on average.

43

7. Evaluation

7.3 Weights
Figure 7.1 shows the different latencies along with the different offloading strategies when
the weight changes. To generate this Figure, we started with a weight of 0.0 in the left
top corner and increased the weight by 0.33. The strategy is rent, meaning it is cheaper
to offload directly since the ES is more expensive. This is represented by the green dot.
The red dot represents the predicted optimal splitting point for the best latency, and the
blue one is the novel approach where cost and latency strategy are combined. It can be
seen that when the weight is 0.0, the presented best splitting point merges with the best
latency strategy since we tell our algorithm to optimize latency fully. The same holds
when the weight is 1.0, but only here is the cost fully optimized. The weights between
0.33 and 0.67 optimize slightly more for latency or cost. This results in the provided
splitting point in blue moving slightly more to the right and left.

Figure 7.1: Different Strategies for Different Weights, Model: AlexNet [30].

7.4 Latency and Cost
The following two subsections present the numerical results for the three investigated
DNNs. We implemented two different cost strategies for the ES, renting and owning.
When the ES is rented, the optimal splitting point is to offload immediately since the ES
is more expensive than the CS. Although, when the ES is owned, running more layers at

44

7.4. Latency and Cost

the edge is cheaper since we assume there are no costs. Therefore not only the cost of
the ES is prevented, but also the costs when running at the CS. For all the following
measurements, we use a weight of 0.5, meaning we try to find the best balance between
price and latency without a preference for one. For the following measurements, we chose
15 samples from a pool with Poisson-distributed bandwidths and normally distributed
clock speeds. Each measurement is run three times, and the median of the runs has
been taken. The selection of the measurements is described in detail in Section 6.7.
The following Figures 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8 compare the costs of the different
offloading strategies, best cost, best latency, or the proposed combination. The green bar
represents the splitting point for the optimal price, the green bar shows the best-predicted
splitting point regarding latency, and the red bar is our proposed trade-off between both.

7.4.1 Rent
The first strategy is renting the ES. Therefore we take real-life prices from AWS wavelength
edge servers and cloud servers shown in Table 4.1. To calculate the fee charged, we
multiply the different latencies by the time per hour in seconds. As an example, the
AlexNet model has 19 layers. If the splitting point is predicted at layer ten, e.g., then we
charge the time it took to run the ten layers at the edge with the edge price. The lasting
layers are computed in the cloud, and we multiply the cloud price by the time it takes
to finish the model. The following results are exemplarily explained for the AlexNet
model, although it reads the same for VGG16 and Mnist models. Figures 7.2 and 7.3
show the two measurements when renting the edge server. On the x-axis, we have the
bandwidth in Mb/s and a clock speed setting in GHz. On the y-axis, we have costs in
dollars and latency in seconds. The corresponding data is shown in Table 7.1a. The table
is divided into two columns, the Optimal Cost (OC) and the Optimal Latency (OL). The
rows, then, show the increase or decrease in eighter cost or latency. For example, for

Figure 7.2: Latency Measurement for: Model: AlexNet, Strategy: Rent, Weight: 0.5 [30]

45

7. Evaluation

Figure 7.3: Cost Measurement for: Model: AlexNet, Strategy: Rent, Weight: 0.5 [30]

latency and renting, our new trade-off approach Cost/Latency (CL) decreases latency by
68.93% compared to the best cost approach while at the same time only increases the
cost by 25.92% in comparison to the best cost approach. If the optimal cost approach is
selected, this will result in a latency increase of 76.48% compared to the best latency
approach. Figure 7.2 shows the latencies for the different bandwidth and clock speed
settings when renting the ES. In blue, we have the optimal cost strategy; in green, the
optimal latency strategy; and in red, our proposed trade-off. Figure 7.3 shows the cost for
the measurements. The same table shows that our trade-off strategy is 60.84% cheaper
than the optimal latency approach and only 39.77% more expensive than the optimal cost
approach. In comparison, if the OC approach had been used, this would have resulted in
a 74.93% decrease in latency.

7.4.2 Own
The second strategy is owning the ES. This is the case in the SWAIN project, where
multiple servers are purchased and privately installed. Therefore we assume no further
costs when running tasks on the ES. Thus running at the edge does not only reduce
costs at the edge but also reduces the overall costs since the time running in the cloud is
reduced. Exemplary, we explain the tables and figures for the Mnist model when the ES
is owned. In Table 7.1c, we can see that, regarding the cost, we have with CL a decrease
in the cost of 24.78% while at the same time no increase in comparison to the OC. This
is because the CL merges with the OC in this scenario. Regarding latency, however,
we have an increase of 1.11% and no improvement compared to OC since OC and CL
propose the same splitting point. The results for the other measurements can be read
the same way.

46

7.4. Latency and Cost

7.4.3 Results

Optimal Cost (OC) Optimal Latency (OL)
Own
Cost CL -57.02% 50.32%

OC 86.44%
Latency CL 8.05% -14.22%

OL 21.43%
Rent
Cost CL -39.77% 60.84%

OC 74.93%
Latency CL 68.93% -25.92%

OL 76.48%
(a) AlexNet Results

Optimal Cost (OC) Optimal Latency (OL)
Own
Cost CL -76.18% 94.85%

OC 98.22%
Latency CL 1.47% -42.18%

OL 42.85%
Rent
Cost CL 0.00% 7.77%

OC 7.77%
Latency CL 0.00% 0.61%

OL -0.61%
(b) VGG16 Results

Optimal Cost (OC) Optimal Latency (OL)
Own
Cost CL 0.00% 24.78%

OC 24.78%
Latency CL 0.00% -1.11%

OL 1.11%
Rent
Cost CL 0.00% 26.78%

OC 26.78%
Latency CL 0.00% -3.29%

OL 3.29%
(c) MNIST CNN Results

47

7. Evaluation

(a) Latency Measurement for: Model: AlexNet, Strategy: Own, Weight: 0.5

(b) Cost Measurement for: Model: AlexNet, Strategy: Own, Weight: 0.5

Figure 7.4: Alexnet Cost and Latency Optimization (w=0.5).

48

7.4. Latency and Cost

(a) Latency Measurement for: Model: VGG16, Strategy: Rent, Weight: 0.5

(b) Cost Measurement for: Model: VGG16, Strategy: Rent, Weight: 0.5

Figure 7.5: VGG16 Cost and Latency Optimization.

49

7. Evaluation

(a) Latency Measurement for: Model: VGG16, Strategy: Own, Weight: 0.5

(b) Cost Measurement for: Model: VGG16, Strategy: Own, Weight: 0.5

Figure 7.6: VGG16 Cost and Latency Optimization.

50

7.4. Latency and Cost

(a) Latency Measurement for: Model: MNIST CNN, Strategy: Rent, Weight: 0.5

(b) Cost Measurement for: Model: MNIST CNN, Strategy: Rent, Weight: 0.5

Figure 7.7: MNIST CNN Cost and Latency Optimization.

51

7. Evaluation

(a) Latency Measurement for: Model: MNIST CNN, Strategy: Own, Weight: 0.5

(b) Cost Measurement for: Model: MNIST CNN, Strategy: Own, Weight: 0.5

Figure 7.8: MNIST CNN Cost and Latency Optimization.

52

7.5. Pareto Front

7.5 Pareto Front
The Pareto front is a concept in multi-objective optimization that represents the optimal
trade-off between two or more conflicting objectives. It consists of a set of solutions
that are not dominated by any other solution, meaning that improving one objective
would necessarily require a compromise on another. The Pareto front is used to help
decision-makers identify the best solution based on their preferences and priorities. It is
named after Vilfredo Pareto, an Italian economist and sociologist who introduced the
concept in the context of income distribution in the early 20th century [31]. In the case
of a trade-off between latency and cost, the Pareto front can help identify the set of
solutions that are optimal in terms of both criteria. By considering different combinations
of latency and cost, the Pareto front can help decision-makers visualize the trade-offs
between these criteria and select the most appropriate solution based on their priorities.
This is shown in Figure 7.9 with latency in seconds on the x and cost in dollars on
the y-axis. The red dots represent all possible splitting points for all measurements
with all the different weights from the AlexNet model. It can be seen that the red dots
are approximately shaped like a Pareto front. In the following section, we present the
numerical results of the different DNNs with different strategies.

Figure 7.9: Pareto Front of Latency and Cost [30].

53

CHAPTER 8
Conclusion

Deep neural networks (DNNs) have revolutionized mobile applications, such as Apple
Siri and Google Assistant, by delivering exceptional artificial intelligence capabilities
in computer vision, natural language processing, and big data analysis. However, the
computational demands of DNN tasks can overwhelm UEs with their limited energy
and computing capacities. To address this challenge, edge computing has emerged as a
promising solution. Edge servers, equipped with ample computation resources, deployed
in close proximity to UE. This allows UEs to offload portions of their computationally
intensive tasks to the edge servers, effectively alleviating the burden on the UEs. Task
partitioning and offloading play pivotal roles in the practical implementation of MEC,
enabling efficient utilization of computation and communication resources [17]. However,
even ES can struggle to compute complex algorithms if their capabilities are limited.
This holds especially for environmental monitoring where they are installed in unaffiliated
regions with limited resources. For those use cases, DNN splitting brings an advantage
as well. However, not only latency should be taken into account. For some use cases,
where latency plays not a key role, the cost can be a driving factor. ESs are especially
expensive when rented, therefor computing as little as possible at the edge reduces costs.
However, organizations often invest in local ESs. Therefore computing at the edge has a
cost advantage, and the cloud becomes the key cost factor. The tackle those challenges,
we created a dynamic rescheduler that takes the real-time clock speed, bandwidth, and
latency into account and predicts, through prediction models, the best splitting point for
offloading regarding cost and latency. This is crucial for edge servers, which run DNNs
in a volatile environment such as environmental monitoring or autonomous driving. The
results show that our algorithm combines cost and latency optimization and can reduce
cost as well as latency. A Pareto Front is presented, which allows a user of this rescheduler
the focus on either cost or latency or a weighted combination. The answers to the research
questions can be described as follows. i) The reduction of latency compared to the best
cost strategy and vice versa is solved in Section 7.4.3. The results demonstrate that we

55

8. Conclusion

achieved a 60.84% decrease in cost compared to the optimal splitting point regarding
latency with an increase in latency of only 25.92% for the AlexNet CNN when the edge
server is rented. ii) In Section 4.1 we proposed a prediction model which uses the cloud
speed to predict the edge latency for a specific model. It has to be mentioned that for
the usage of this prediction model, two measurements for de-normalization are required.
Section 7.1 evaluates the precision of the proposed prediction model. The empirical data
suggest a differential in performance between our approach and the optimal splitting
point for various models. Specifically, our method exhibits an average of 30.34% higher
latency for the Mnist model. In the case of Alexnet, this relative performance deficit is
20.91%. Conversely, for the VGG16 model, the observed discrepancy is only 5.36%. iii)
We proposed a multi-optimization algorithm that includes cost, bandwidth, and network
latency and finds a trade-off between cost and latency. This algorithm is explained in
Section 4.5. The next open challenge will be to improve this rescheduling algorithm
to include other parameters like CPU Type, RAM, or kernels, which might enable this
scheduling algorithm to work on different types of edge resources. Furthermore, to
improve the prediction of the best splitting point in terms of latency, the Neurosurgeon
approach could be used where the prediction happens based on the layer types. Another
interesting topic could be to combine this cost model and dynamic rescheduling with the
early exit approach to further reduce cost and latency.

Acknowledgments
This work was supported by the CHIST-ERA grant CHIST-ERA-19-CES-005, by the
Austrian Science Fund (FWF): I 5201-N and Y904-N31 START-Programm 2015, and by
the FFG Flagship Project High Performance Integrated Quantum Computing (HPQC):
#45285029.

56

List of Figures

1.1 Splitting of a DNN over Edge and Cloud Servers [30]. 2

2.1 The different layers in the cloud continuum [29]. 6
2.2 Gartner Hype Cycle for AI, 2022 [2] . 8
2.3 Principal composition of a NN model. Left: Layers in a model. Right: Neuron

in more detail. [40, 29] . 9
2.4 The operation of the convolutional layer. [19, 29] 10
2.5 Different inference acceleration methods [9]. 12

3.1 UML Component Diagram of the Proposed System [30]. 16
3.2 UML Sequence Diagram of the Proposed Cost-Aware Dynamic Scheduler [30]. 18
3.3 UML Sequence Diagram of the latency measurement. 19

4.1 Normalized Slopes with Curve Fitting [30]. 22
4.2 Cloud Latency measurements for Mnist model. 24
4.3 Predicted Latencies for the AlexNet model [30]. 25
4.4 Cost, Latency trade-off Algorithm with weight = 0.55. 27
4.5 Dynamic Rescheduling of Splitting Points Under Different Clock Speeds [30]. 28

5.1 Input image for our Alexnet model. 31

6.1 Information Systems Research Framework [22]. 38
6.2 Distributions for Bandwidth and Clock Speed. 41

7.1 Different Strategies for Different Weights, Model: AlexNet [30]. 44
7.2 Latency Measurement for: Model: AlexNet, Strategy: Rent, Weight: 0.5 [30] 45
7.3 Cost Measurement for: Model: AlexNet, Strategy: Rent, Weight: 0.5 [30] 46
7.4 Alexnet Cost and Latency Optimization (w=0.5). 48
7.5 VGG16 Cost and Latency Optimization. 49
7.6 VGG16 Cost and Latency Optimization. 50
7.7 MNIST CNN Cost and Latency Optimization. 51
7.8 MNIST CNN Cost and Latency Optimization. 52
7.9 Pareto Front of Latency and Cost [30]. 53

57

List of Tables

2.1 Comparison of Our Approach to Related Literature on DNN Splitting [30]. 14

4.1 Reference Configurations and On-Demand Prices for AWS EC2 [5, 30] . . 22

5.1 Layers of the used AlexNet Model. 32
5.2 Layers of the CNN for the MNIST Dataset. 33
5.3 VGG16 Model with 37 layers. 34

6.1 Exemplarly CSV of stored Measurements. 40

59

Acronyms

AI Artificial Intelligence. 1, 7, 8

ANN Artificial Neural Networks. 9

CNN Convolutional Neural Network. 10

CPU Central Processing Unit. 2

DL Deep Learning. 1, 9

DNN Deep Neural Network. 1, 9, 10

EI Edge Intelligence. 1

ES Edge Server. 1

FCNN Fully Connected Neural Network. 10

ML Machine Learing. 1

MLP Multilayer Perceptron. 10

RNN Recurrent Neural Network. 11

UE User Equipment. 15

61

Bibliography

[1] Gartner hype cycle for ai 2019. https://www.gartner.com/
smarterwithgartner/top-trends-on-the-gartner-hype-cycle-for-artificial-intelligence-2019/,
2019. Accessed: 2023-04-03.

[2] Gartner hype cycle for ai 2022. https://www.gartner.com/en/articles/
what-s-new-in-artificial-intelligence-from-the-2022-gartner-hype-cycle,
2022. Accessed: 2023-04-03.

[3] Ahmad, S., and Aral, A. FedCD: Personalized federated learning via collabora-
tive distillation. In Workshop on Distributed Machine Learning for the Intelligent
Computing Continuum (DML-ICC) (Vancouver, WA, 2022), IEEE.

[4] An, S., Lee, M., Park, S., Yang, H., and So, J. An ensemble of simple convolutional
neural network models for mnist digit recognition, 2020.

[5] AWS. On-demand plans for amazon ec2. https://aws.amazon.com/ec2/
pricing/on-demand/, 2023. Accessed: 2023-02-22.

[6] Bert Hubert, Jacco Geul, S. S. The wonder shaper. https://github.com/
magnific0/wondershaper, 2021. Accessed: 2023-02-22.

[7] Bouwmans, T., Javed, S., Sultana, M., and Jung, S. K. Deep neural network concepts
for background subtraction: A systematic review and comparative evaluation. Neural
Networks 117 (2019), 8–66.

[8] Cao, K., Liu, Y., Meng, G., and Sun, Q. An overview on edge computing research.
IEEE Access 8 (2020), 85714–85728.

[9] Chen, J., and Ran, X. Deep learning with edge computing: A review. Proceedings
of the IEEE 107, 8 (2019), 1655–1674.

[10] Chen, T. Y.-H., Ravindranath, L., Deng, S., Bahl, P., and Balakrishnan, H. Glimpse:
Continuous, real-time object recognition on mobile devices. In Proceedings of the
13th ACM Conference on Embedded Networked Sensor Systems (New York, NY,
USA, 2015), SenSys ’15, Association for Computing Machinery, p. 155–168.

63

https://www.gartner.com/smarterwithgartner/top-trends-on-the-gartner-hype-cycle-for-artificial-intelligence-2019/
https://www.gartner.com/smarterwithgartner/top-trends-on-the-gartner-hype-cycle-for-artificial-intelligence-2019/
https://www.gartner.com/en/articles/what-s-new-in-artificial-intelligence-from-the-2022-gartner-hype-cycle
https://www.gartner.com/en/articles/what-s-new-in-artificial-intelligence-from-the-2022-gartner-hype-cycle
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
https://github.com/magnific0/wondershaper
https://github.com/magnific0/wondershaper

[11] Ciresan, D. C., Meier, U., Gambardella, L., and Schmidhuber, J. Deep, big, simple
neural nets for handwritten digit recognition. Neural Computation 22 (2010),
3207–3220.

[12] Cisco. Cisco annual internet report (2018–2023) white paper, 2020.

[13] Contributors, T. Alexnet. https://pytorch.org/vision/main/models/
generated/torchvision.models.alexnet.html, 2017. Accessed: 2023-04-
03.

[14] Contributors, T. Vgg16. https://pytorch.org/vision/main/models/
generated/torchvision.models.vgg16.html, 2017. Accessed: 2023-04-03.

[15] De Maio, V., and Brandic, I. First hop mobile offloading of dag computations.
In 2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID) (Washington, DC, USA, 2018), IEEE, pp. 83–92.

[16] Ding, A. Y., Peltonen, E., Meuser, T., Aral, A., Becker, C., et al. Roadmap for edge
ai: a dagstuhl perspective. ACM SIGCOMM Computer Communication Review 52,
1 (2022), 28–33.

[17] Gao, M., Shen, R., Shi, L., Qi, W., Li, J., and Li, Y. Task partitioning and offloading
in dnn-task enabled mobile edge computing networks. IEEE Transactions on Mobile
Computing 22, 4 (2021), 2435–2445.

[18] Gill, S. S., Xu, M., Ottaviani, C., Patros, P., Bahsoon, R., et al. Ai for next
generation computing: Emerging trends and future directions. Internet of Things
19 (2022), 100514.

[19] Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., and Lew, M. S. Deep learning
for visual understanding: A review. Neurocomputing 187 (2016), 27–48. Recent
Developments on Deep Big Vision.

[20] Haki, K., Beese, J., Aier, S., and Winter, R. The evolution of information systems
architecture: An agent-based simulation model. MIS Quarterly 44, 1 (2020).

[21] Han, Y., Wang, X., Leung, V. C. M., Niyato, D., Yan, X., and Chen, X. Con-
vergence of edge computing and deep learning: A comprehensive survey. CoRR
abs/1907.08349 (2019).

[22] Hevner, A. R., March, S. T., Park, J., and Ram, S. Design science in information
systems research. MIS Quarterly 28, 1 (2004), 75–105.

[23] Hu, Y. C., Patel, M., Sabella, D., Sprecher, N., and Young, V. Mobile edge
computing—a key technology towards 5g. ETSI white paper 11, 11 (2015), 1–16.

[24] Kang, Y., Hauswald, J., Gao, C., Rovinski, A., Mudge, T., et al. Neurosurgeon:
Collaborative intelligence between the cloud and mobile edge. ACM SIGARCH
Computer Architecture News 45, 1 (2017), 615–629.

64

https://pytorch.org/vision/main/models/generated/torchvision.models.alexnet.html
https://pytorch.org/vision/main/models/generated/torchvision.models.alexnet.html
https://pytorch.org/vision/main/models/generated/torchvision.models.vgg16.html
https://pytorch.org/vision/main/models/generated/torchvision.models.vgg16.html

[25] Krizhevsky, A. One weird trick for parallelizing convolutional neural networks. arXiv
preprint arXiv:1404.5997 (2014).

[26] LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. nature 521, 7553 (2015),
436–444.

[27] Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied
to document recognition. Proceedings of the IEEE 86, 11 (1998), 2278–2324.

[28] Lin, B., Huang, Y., Zhang, J., Hu, J., Chen, X., and Li, J. Cost-driven off-loading
for dnn-based applications over cloud, edge, and end devices. IEEE Transactions on
Industrial Informatics 16, 8 (2020), 5456–5466.

[29] Luger, D. A latency evaluation for edge intelligence, 2021.

[30] Luger, D., Aral, A., and Brandic, I. Cost-aware neural network splitting and dynamic
rescheduling for edge intelligence. In Proceedings of the 6th International Workshop
on Edge Systems, Analytics and Networking (New York, NY, USA, 2023), EdgeSys
’23, Association for Computing Machinery, p. 42–47.

[31] Pareto, V. Cours d’économie politique, vol. 1. Librairie Droz, 1964.

[32] Peltonen, E., Ahmad, I., Aral, A., Capobianco, M., Ding, A. Y., et al. The many
faces of edge intelligence. IEEE Access 10 (2022), 104769–104782.

[33] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning representations by
back-propagating errors. nature 323, 6088 (1986), 533–536.

[34] Satyanarayanan, M. The emergence of edge computing. Computer 50, 1 (2017),
30–39.

[35] Shuvo, M. M. H., Islam, S. K., Cheng, J., and Morshed, B. I. Efficient acceleration of
deep learning inference on resource-constrained edge devices: A review. Proceedings
of the IEEE 111, 1 (2023), 42–91.

[36] Simonyan, K., and Zisserman, A. Very deep convolutional networks for large-scale
image recognition, 2015.

[37] Simsek, M., Aijaz, A., Dohler, M., Sachs, J., and Fettweis, G. 5g-enabled tactile
internet. IEEE Journal on Selected Areas in Communications 34, 3 (2016), 460–473.

[38] Snyder, H. Literature review as a research methodology: An overview and guidelines.
Journal of Business Research 104 (2019), 333–339.

[39] Venable, J., Pries-Heje, J., and Baskerville, R. A comprehensive framework for
evaluation in design science research. In Design Science Research in Information
Systems. Advances in Theory and Practice: 7th International Conference, DESRIST
2012, Las Vegas, NV, USA, May 14-15, 2012. Proceedings 7 (2012), Springer,
pp. 423–438.

65

[40] Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., and Zhang, J. Edge intelligence:
Paving the last mile of artificial intelligence with edge computing. Proceedings of
the IEEE 107, 8 (2019), 1738–1762.

66

	Abstract
	Contents
	Introduction
	Overview
	Edge Computing
	Mobile Edge Computing
	Deep Learning
	Edge Intelligence
	Related Works

	System Model
	Edge Server
	Stateless Cloud
	Communication
	Latency Measurement

	Prediction Models
	Edge Computation Latency
	Cloud Computation Latency
	Communication Latency
	Resource Cost
	Combined Prediction Model

	Neural Network Splitting
	Splitting
	Neural Networks
	Limitations

	Experimental Setup
	SWAIN Project
	Use Case
	Design Science as Methodological Approach designscience
	Hardware Setup
	Web Server
	Performance Metrics
	Experimental Parameters

	Evaluation
	Effectiveness of Predictions
	Strategies
	Weights
	Latency and Cost
	Pareto Front

	Conclusion
	List of Figures
	List of Tables
	Acronyms
	Bibliography

