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Kurzfassung

Im rasanten Bereich des Edge Computings sticht das Föderierte Lernen als bedeutende
Innovation hervor, um Datenanalytik in dezentralisierten Netzwerken durchzuführen.
Dieser Ansatz ermöglicht nicht nur eine unmittelbare Datenverarbeitung, sondern steigert
auch die Datenschutzanforderungen der beteiligten Daten. Die Nachhaltigkeit solcher
föderierten Systeme wird jedoch durch das wiederkehrende Problem unvollständiger
Daten gefährdet, insbesondere im Bereich tabellarischer Daten, die eine Mischung aus
kategorialen und numerischen Variablen sowie unausgeglichene Klassendistributionen auf-
weisen. Dies erschwert die Erzielung genauer und verlässlicher Ergebnisse mit föderierten
maschinellen Lernalgorithmen. Um die Nachhaltigkeit des Föderierten Edge-Analytics
zu stärken, untersucht diese Arbeit den Einsatz von Generative Adversarial Networks
(GANs), um die Leistung des föderierten Lernens in Umgebungen mit unvollständigen
Daten zu verbessern. Drei spezifische GAN-Techniken werden eingeführt, von denen
jede ihren eigenen Schwerpunkt hat. Das Federated Classwise Sampling GAN zielt auf
Ungleichgewichte in der Klassendistribution ab und trainiert separate GAN-Modelle für
jede Klassenbezeichnung. Das Federated Classwise Sampling with Client Grouping GAN
fügt dem Training eine zusätzliche Stabilitätsebene hinzu, indem es Clients aufgrund ähn-
licher Stichprobengrößen für bestimmte Klassenbezeichnungen gruppieret. Die von diesen
GANs generierten synthetischen Daten werden verwendet, um föderierte Lernmodelle zu
trainieren und ihre Effektivität bei der Milderung der Nachteile unvollständiger Daten zu
erforschen. Die Arbeit wird anhand von drei unterschiedlichen tabellarischen Datensät-
zen ausgewertet. Die Ergebnisse der Studie haben gezeigt, dass das Federated Classwise
Sampling GAN und das Federated Classwise Sampling with Client Grouping GAN die Mo-
dellgenauigkeit um 4% bzw. 17% für die Datensätze Ädultünd Ïntrusion"verbessert haben.
Bemerkenswert ist, dass unsere vorgeschlagene Technik des Federated Classwise Sampling
with Client Grouping GAN Stabilität in der Genauigkeit und weniger Ausführungszeit
gezeigt hat, was sie besonders für nachhaltiges Föderiertes Edge-Analytics in realen Sze-
narien, in denen Datenunvollständigkeit eine Herausforderung darstellt, geeignet macht.
Zusammenfassend hebt diese Arbeit das transformative Potenzial von GAN-Techniken
zur Verbesserung von föderierten Lernmodellen im Kontext unvollständiger Daten hervor.
Insbesondere zeigt unsere vorgeschlagene Methode des Federated Classwise Sampling
with Client Grouping GAN sowohl Stabilität als auch Effizienz und positioniert sie als
nachhaltige Lösung für reale Szenarien, in denen Datenunvollständigkeit eine Rolle spielt.
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Abstract

In the fast-paced world of edge computing, Federated Learning stands out as a key
innovation for performing data analytics across decentralized networks. This approach
not only allows for immediate data processing but also enhances the privacy of the data
involved. However, the sustainability of such federated systems is jeopardized by the
recurring issue of incomplete data, particularly in the realm of tabular data featuring
a mix of categorical and numerical variables, and imbalanced class distributions. This
makes it difficult to achieve accurate and dependable results with federated machine
learning algorithms. To fortify the sustainability of Federated Edge Analytics, this thesis
investigates the application of Generative Adversarial Networks (GANs) to improve
federated learning performance in environments characterized by incomplete data. Three
specific GAN techniques are introduced, each with its unique focus. Federated GAN serves
as a existing generalized approach without specialization, potentially less efficient for
complex, imbalanced datasets. Federated Classwise Sampling GAN targets imbalances
in class distribution, training separate GAN models for each class label. Federated
Classwise Sampling with Client Grouping GAN adds an extra layer of stability to
training by grouping clients based on similar sample counts for specific class labels. The
synthetic data generated by these GANs are used to train federated learning models,
exploring their effectiveness in mitigating the drawbacks of incomplete data. The thesis is
evaluated across three distinct tabular datasets. The study’s findings have revealed that,
while Federated Classwise Sampling GAN and Federated Classwise Sampling with Client
Grouping GAN improved model accuracy by 4% and 17% for the Adult and Intrusion
datasets, respectively, the simple Federated GAN actually led to decreased performance.
Remarkably, our proposed Federated Classwise Sampling with Client Grouping GAN
technique demonstrated stability in accuracy and less execution time, making it highly
suitable for sustainable Federated Edge Analytics in real-world scenarios where data
incompleteness is a challenge. In summary, this thesis highlights the transformative
potential of GAN techniques in enhancing federated learning models in the context
of incomplete data. Notably, our proposed Federated Classwise Sampling with Client
Grouping GAN demonstrates both stability and efficiency, positioning it as a sustainable
solution for real-world scenarios where data incompleteness is a concern.

Keywords: Federated Learning, Incomplete Data, Generative Adversarial Networks
(GANs), Federated Edge Analytics, Class Imbalance
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CHAPTER 1
Introduction

1.1 Background and motivation
Edge computing [1] has evolved as a promising approach for efficient and decentralized
data processing particularly in the field of Internet of Things (IoT) [2] applications. It
enables data to be processed and analyzed at the network edge that is closer to the data
sources therefore resulting in reduced latency and reduced burden on centralized servers.
This approach facilitates real time data analysis, quick response times and enhanced
privacy.

In this regard, federated learning [3] has drawn attention as a decentralized machine
learning strategy suitable for sustainable edge computing. It enables collaborative model
training without the need to share raw data. Multiple edge devices participate in the
training process by contributing their local data while preserving data privacy. This
collaborative approach facilitates the development of sustainable, robust and accurate
models without compromising sensitive user data.

However, a significant challenge in federated edge analytics is the presence of incomplete
data. In real-world edge environments, data incompleteness can arise due to network
connectivity issues, device failures or privacy constraints. There is also a specific case
where data samples are not enough for one or more labels in clients. This incomplete
data poses a significant hurdle for training sustainable, accurate and reliable models at
the edge.

In today’s data concentrated world,we encounter a wide range of data types, from textual
contents in linguistic projects for Natural Language Processing to images employed
in computer vision applications. Tabular data is particularly prevalent in this broad
domain and is found in industries including finance, retail, and e-commerce. This type of
structured data usually comprises of both discrete and continuous columns with potential
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1. Introduction

challenge of uneven distributions. Such complexities make it arduous to achieve sustained
model performance.

Training the models on incomplete or imbalanced data can lead to bad performance.
Due to privacy concerns, as seen in industries like healthcare or finance, it is frequently
impossible and even illegal to aggregate all the data on a single server for a more balanced
training. Therefore working with incomplete data is a necessity leading to compromise
in the model quality and sustainability.

Techniques like Random oversampling(ROS) [4] and SMOTE [5] are frequently used to
handle data incompleteness. This kind of methods are straighforward and often doesn’t
capture the underlying data distribution leading to biased results. Recognizing these
limitations of the sampling techniques the recent shift has been towards more sustainable
techniques. Generative Adversarial Networks (GANs) [6] are a promising alternative
which effectively look at these challenges. Despite generative models’ success in text and
image synthesis, there remains a glaring gap in federated generative models designed
for generative tabular data. When considering tabular data encountered for example
in hospital settings and other sectors, additional challenges arise. Tabular data often
consist of a mix of discrete and continuous columns with imbalanced distributions, which
complicates model training and generalization.

To address these challenges, this research focuses on leveraging Generative Adversarial
Networks (GANs) [6] to tackle the problem of incomplete data in federated edge analytics.
GANs are powerful generative models capable of learning the underlying data distribution
and generating synthetic instances that can closely resemble real data. The quality and
completeness of local datasets can be improved by using GANs to impute missing or
incomplete data at the edge in the federated learning framework.

The goal of this study is to look into and suggest new approaches for imputing missing
class labels and incomplete data in the context of federated edge analytics. This project
attempts to produce synthetic data samples that capture the intricate patterns contained
in the data by creating GAN-based imputation approaches. Then, more precise models
can be trained using these imputed datasets at the edge.

The motivation behind this research stems from the need to address the limitations of
traditional approaches that rely on sharing complete data for centralized training. In
edge analytics, sharing raw data jeopardizes user privacy and presents issues with data
security. By enabling edge devices to jointly train models without disclosing private
information, federated learning offers a privacy-preserving approach. However, the issues
with missing data in the context of tabular data analytics are not sufficiently addressed
by the federated learning techniques now in use.

The significance of this research lies in its potential to improve model training, decision
making and resource optimization in real-world edge computing scenarios by addressing
the challenges of incomplete data in federated edge analytics and leveraging GAN-
based imputation techniques. By effectively handling incomplete data, federated edge
analytics can leverage the collective knowledge of distributed edge devices to train
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1.2. Problem statement

accurate models thus leading to improved decision making, predictive capabilities and
resource optimization. Furthermore, the privacy-preserving nature of federated learning,
combined with GAN-based data imputation, ensures that sensitive data remains secure
and protected, making the system both effective and sustainable.

The findings of this study could have applications in a number of fields, such as healthcare,
banking, and IoT applications, where edge analytics is essential. The research findings
can help to address important sustainability issues in federated edge analytics by guiding
the creation of more effective and privacy-preserving federated learning systems.

1.2 Problem statement
The focus of this study is on the issue of incomplete data or missing data in the
realm of sustainable federated edge analytics. In practical edge computing environments,
incomplete data sets can emerge from a variety of factors like unstable network connections,
equipment malfunctions or data privacy limitations. Such gaps in the data substantially
hinder the ability to develop reliable and accurate machine learning models using federated
learning. Classical techniques such as Batch Gradient Descent [7], Support Vector
Machines [8] and k-Means Clustering [9], which depend on having full data sets for
training are not well-suited for edge analytics, primarily because of concerns over data
privacy and the necessity for localized data handling. In addition, structured data, often
found in sectors like healthcare, finance, and retail, typically includes a complicated mix
of both categorical and numerical variables along with skewed distributions. Due to
this complexity, it is considerably more difficult to train models that can comprehend
the data’s underlying intricacies and generalize them to different contexts. These issues
demand innovative solutions that can efficiently manage missing data while leveraging
the advantages of federated learning, all while respecting data privacy and making sure
the trained models are both strong and widely applicable. So, using a set of research
questions, we define the parameters of our study.

1.3 Research questions

• RQ1: How does the accuracy of a federated learning model change across
different levels of data incompleteness??
To explore the influence of data incompleteness/non-IIDness on the accuracy of
federated learning models: This research question delves into understanding the
variability in the accuracy of federated learning models under varying degrees of
data incompleteness or non-IIDness. Such conditions are simulated using different
alpha values within a Dirichlet distribution.

• RQ2: How will the accuracy of the federated learning model change with
the addition of GAN-generated synthetic data to the original incomplete
data??

3



1. Introduction

To assess the impact of GAN-generated data on the accuracy of federated learning
models: The focus of this inquiry is to gauge the changes in model accuracy
when GAN-generated synthetic data is introduced to the original dataset. This
investigation aims to discern the potential advantages or drawbacks of integrating
synthetic data into federated learning contexts.

• RQ3: What is the quality of the generated dataset compared to the
original dataset??
To evaluate the quality of GAN-generated datasets relative to original datasets:
This research seeks to provide a comparative analysis between original datasets and
their GAN-generated counterparts. By doing so, it intends to establish benchmarks
for dataset quality and to discern the practicality and viability of using GANs for
data generation in federated learning environments.

1.4 Overview of the Thesis Structure:
The thesis will be structured to address the research questions and achieve the research
objectives outlined above. The Chapter background 2 provides provides an overview
of problem domain, motivation behind the research, the problem statement, and the
research objectives. The introduction will also highlight the challenges associated with
handling incomplete data in the federated learning setting.

The Chapter literature survey 3 gives a comprehensive literature review, covering existing
methods for handling incomplete data in federated learning, learning-based approaches
for data imputation, and the challenges specific to tabular data with missing class labels.
This review will provide a foundation for the proposed research and identify gaps in the
existing literature.

The methodology chapter 4 will describe the approach taken to address the research
objectives, including the specific techniques and algorithms employed for data imputation
in the federated learning setting. This section will also outline the evaluation metrics and
experimental setup used to assess the effectiveness and fairness of the proposed method.

The results chapter 5 will present the findings of the research, including the performance
of the proposed approach compared to existing methods, the fairness of the imputed
dataset, and the relationship between effectiveness and efficiency in the federated learning
process.

Finally, the thesis will conclude 5 with a summary of the research findings, limitations of
the research, and suggestions for future work in this area.
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CHAPTER 2
Background

This chapter covers a comprehensive introduction to various concepts in machine learning,
including supervised learning, unsupervised learning, reinforcement learning, and semi-
supervised learning. It also introduces common machine learning models, such as linear
regression [10], logistic regression [11], decision trees [12], random forests [13], support
vector machines [14], k-nearest neighbors [15], naive Bayes [16], neural networks [17],
gradient boosting [18] , and k-means clustering [9].

The content dives into regression and classification, explaining how regression predicts
continuous output based on input features, while classification categorizes input data into
predefined classes. It introduces key classification algorithms like decision tree classifiers,
random forest classifiers, and support vector machines, along with visual examples of
how they work.

Deep learning is introduced as a subset of machine learning, focusing on multi-layered
neural networks that can learn complex patterns. The content explains the basics of
neural networks, feedforward networks, and their training process.

The concept of federated learning is introduced, describing a decentralized approach
to machine learning where devices collaborate to train a global model without sharing
raw data. The federated learning process is explained using an example of next-word
prediction on mobile phones.

The challenges of federated learning are discussed, including expensive communication,
systems and statistical heterogeneity, and privacy concerns. The content also introduces
Generative Adversarial Networks (GANs), describing their architecture, training process,
and challenges like gradient vanishing and mode collapse.

The concept of Wasserstein GAN (WGAN) is introduced, explaining its use of the
Wasserstein distance for stable training and its application in addressing gradient vanishing
and mode collapse challenges. The WGAN with Gradient Penalty (WGAN-GP) variant
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2. Background

is discussed as an improvement over traditional WGAN, addressing weight clipping
challenges.

Finally, the content introduces the Dirichlet distribution and its relevance in modeling
proportions of categories in non-IID datasets within federated learning, emphasizing its
potential applications in preserving data privacy and improving model updates

2.1 Introduction to Machine Learning
Machine learning consists a wide range of techniques and algorithms that allow computers
to learn patterns and relationships from data. There are four different categories for
machine learning:

In supervised learning, algorithms undergo training through labeled datasets, where
each data point is linked to a known target or class label. Through this process, algorithms
internalize the connection between input attributes and output labels, enabling them to
predict outcomes for brand-new, unreported data occurrences.

Unsupervised learning pertains to identifying inherent patterns and structures within
unlabeled data. Unsupervised learning include activities like dimensionality reduction and
clustering, which use algorithms to find meaningful clusterings or reduce data complexity.

Semi-Supervised Learning learning combines elements of supervised and unsupervised
learning. A well-balanced use of the information is achieved by combining a small amount
of labeled data with a larger pool of unlabeled data, which improves the performance of
the model.

The goal of the specialized method known as Reinforcement learning is to teach
agents how to make decisions sequentially in a given environment in order to maximize
rewards. This tactic is useful in situations where agents interact with their surroundings
to learn new things, fine-tuning their activities in response to input received from the
environment.

2.2 Classification
The task of classifying input data points into preset groupings or categories is an example
of a supervised learning problem. Classification generates discrete output labels as
opposed to regression, which produces continuous output. Each data point associated
with a class label is used to train classification models on labeled data. Deep neural
networks, decision trees, logistic regression, and support vector machines are examples of
common categorization algorithms.
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2.2. Classification

Table 2.1: Common Machine Learning Models

Model Description
Linear Regression Predicts continuous target variable based on input features

Logistic Regression Classifies data into binary categories using logistic function
Decision Trees Constructs tree-like structure for decisions based on fea-

tures
Random Forest Ensemble of decision trees for improved accuracy

Support Vector Machines Finds hyperplane to separate data into classes
K-Nearest Neighbors Classifies data based on majority class of k-nearest neigh-

bors
Naive Bayes Applies Bayes’ theorem for probabilistic classification

Neural Networks Multi-layered networks that learn complex patterns
Gradient Boosting Iteratively builds models to correct errors

K-Means Clustering Divides data into clusters based on similarity

Figure 2.1: A simple example of how a classification algorithm classifies samples

2.2.1 Decision Tree Classifier

Consider yourself faced with a succession of decisions, each of which leads you down a
different road. A decision tree classifier is like a practical tool that enables machines to
make decisions similarly to human beings. It is frequently used in machine learning to
group items. The tree has a starting point, similar to how you make your first choice.
Then, it makes a decision after considering precise facts about the item you’re trying to
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2. Background

sort at each step. Until it decides where your stuff belongs, these options keep diverging.
This process helps the tree learn from examples so that it can make similar choices for
new things in the future. The figure 2.2 is an example of a decision tree which uses 3
features to classify.

Figure 2.2: An example of a decision tree which uses 3 features to classify.

2.2.2 Random Forest Classifier

Visualize a forest filled with unique trees, each with its own distinct perspective. Think of
a random forest classifier as a group of these trees collaborating to make more intelligent
predictions. Instead of depending solely on a single tree, a random forest generates
multiple trees. Every tree learns from different subsets of information and forms its
own interpretations. When a prediction is needed, each tree provides its input, and
the ultimate prediction reflects the majority consensus among the trees. This approach
prevents the classifier from relying excessively on patterns specific to its training examples,
enhancing its ability to make accurate predictions for novel, unseen scenarios.

2.2.3 Support Vector Machine (SVM)

Think about having two separate, obviously different sets of points. Imagine the task of
determining the best line to draw between these sets. A support vector machine (SVM)
achieves this exact goal. It’s a smart tool made to figure out the best line (or perhaps a
more complicated form) to use to maximize the distance between these point sets. The
chosen line is positioned so that it keeps a maximum distance from each set’s closest
spots. These specific places act as the line’s "support" from the ground up.
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2.3. Deep Learning

Even in situations where the points cannot be clearly separated by a simple line, SVMs
perform well. They accomplish this by changing how they view the issues, which is
akin to using a magnifying glass to have a clearer understanding. SVMs are capable of
handling situations where the goal is to divide elements into two groups or more, and
their efficiency is especially clear in complex circumstances when traditional patterns are
missing.The figure 2.3 is an example of a SVM that classifies samples into 2 groups.

Figure 2.3: Support Vector Machine

2.3 Deep Learning

Deep learning is a specific type of machine learning that uses multi-layered, complicated
neural networks to evaluate and comprehend complex data patterns. These networks,
often referred to as deep neural networks, are made up of interconnected layers that
process input data in a methodical manner via a sequence of operations. They can
capture complex properties and representations present in the data thanks to this
iterative approach. Deep learning research has achieved significant advances in a number
of sectors, including but not limited to speech and image recognition, natural language
processing, autonomous vehicles, and other areas.
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2. Background

2.3.1 Neural networks

In the field of machine learning, neural networks (NNs) are a powerful tool that are
widely used in a variety of disciplines. They are excellent at recognizing complex data
patterns, handling ambiguity, and accurately projecting multiple outcomes. However, a
disadvantage is that in some situations, their necessity for significant, high-quality data
makes it difficult to achieve exact learning. Although NNs are based on complex ideas,
their use has been made simpler by the availability of free tools and a larger pool of
experienced practitioners.

Feedforward Network

We use a feedforward network for our Federated classification tasks. These networks,
commonly referred to as neural networks, play a pivotal role in both machine learning and
deep learning. They are particularly adept at tasks such as classification and regression.
Operating as a one-way conduit, data progresses through these networks from input to
output, without any circular paths.There are three distinct layers in the network: input,
hidden, and output. Through weights, which are honed during training, neurons within
these layers link with one another. Intricacy is introduced by activation functions, which
direct data transformation as it moves through the network. The network adjusts these
weights throughout training using methods like gradient descent to improve predictions.
You can refer to Figure 2.4 for a basic depiction of a feedforward neural network’s
architecture.

Figure 2.4: A simple feed-forward neural network with dense layers
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2.4 Introduction to Federated Learning
Imagine an illustrative scenario where federated learning is applied to enhance next-word
prediction on mobile devices. The goal is to develop a predictive system that can provide
precise predictions for the next word a user might type in. Instead of sending raw data
to a central server, the technique trains the model decentralized to maintain data secrecy
and save network burden.

In this setup, remote devices or clients communicate with a central server on a regular
basis to jointly improve a global model. A selected group of mobile phones uses their
unique, non-uniformly distributed user data (in our instance, incomplete data) to conduct
localized training during each communication cycle. The server receives the model updates
from these remote devices, which reflect their local learning. The server incorporates
these adjustments and then sends the improved global model to an additional group of
devices.

This network-wide iterative training procedure continues until a convergence benchmark
is reached or a predetermined stopping point is reached. Federated learning enables the
development of an accurate next-word predictor by distributing the training process and
just sending model updates as opposed to raw data. This strategy protects user privacy
while reducing network load. The figure 2.5 is an example of a federated learning setup
with 3 clients.

Figure 2.5: A Federated Learning setup
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2.5 FL - Problem Formulation

Training a central model with data gathered from various client devices is the main
problem in federated learning. The fundamental issue is that the data produced by
these devices is localized to each of their specific locations, with sporadic updates
provided to a centralized server. When minimizing an objective function that includes
the comprehensive learning objective, inputs from each device’s unique localized data
are taken into account. This objective function embodies the need to accommodate the
decentralized nature of the data while training a coherent global model.

min
w

F (w), where F (w) :=
m

k=1
pkFk(w) (2.1)

In this context, let m denote the overall count of devices, where pk ≥ 0 and k pk = 1.
The variable Fk represents the local objective function for the k-th device. Typically, this
local objective function is defined as the empirical risk calculated over the device’s specific
data. In other words, Fk(w) is computed as 1

nk

nk
j=1 fj,k(w; xj,k, yj,k), where nk stands

for the number of locally available samples. The user-defined term pk serves to determine
the relative influence of each device, with common selections being pk = 1

n or pk = nk
n ,

where n = k nk signifies the total sample count. It’s important to recognize that while
the problem defined as (1) holds as the conventional formulation, other objectives or
modeling strategies might be appropriate depending on the specific application context.

2.6 FL - Incompleteness in Federated Learning

2.6.1 Defining Incompleteness

In federated learning, "data incompleteness" encapsulates two main aspects: uneven
distribution of data classes across devices and disparity in data volume among different
devices.

Uneven Distribution of Data Classes: Devices in federated networks often possess
data that reflects the unique behavior or characteristics of their users. This can lead to
scenarios where certain data classes are predominantly present on some devices while
scarcely available or entirely missing on others.

Data Volume Disparity: Beyond the type or class of data, there’s a disparity in the
sheer volume of data across devices. Some devices, due to more frequent usage or longer
operation times, might generate or collect larger volumes of data compared to others.

Both these facets of incompleteness present unique challenges in model training and can
significantly influence the generalizability and performance of federated models [19].
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2.6.2 Contrasting Incompleteness with Other FL Properties

Non-IID Data: Non-Identically and Independently Distributed (non-IID) data indicates
that the distribution of data on each device differs from the overall data distribution.
Although the uneven distribution of data classes (an element of inadequacy) can contribute
to non-IIDness, non-IIDness can also exist without data inadequacy. For example, even
if all devices contain instances of all classes, the nuances and specifics of the data can be
distinct enough to result in non-IID characteristics.

Data Skewness vs. Uneven Distribution: While both terms refer to irregularities in
data distribution, data skewness primarily addresses the balance among data classes on
a specific device. Conversely, uneven distribution, encompassed by inadequacy, pertains
to the complete absence or minimal occurrence of particular classes on devices.

Having dissected these concepts, it’s clear that data incompleteness, with its multifaceted
nature, is a critical aspect to consider in federated learning, distinct from other data-
related challenges.

2.7 Other FL Challenges

For federated learning to be successfully implemented, a number of issues must be resolved.
These difficulties include expensive communication, systems heterogeneity, statistical
heterogeneity, and privacy concerns [19].

Expensive Communication: In federated networks, communication is a significant
bottleneck, particularly when dealing with a high number of devices. The solution to
this problem is effective communication techniques. Instead of broadcasting the complete
dataset, these strategies concentrate on sending brief messages or model updates. The
number of communication rounds and the amount of transmitted messages should be
kept to a minimum.

Systems Heterogeneity: The range of storage capacities, computational abilities,
communication features, and reliability across devices in federated networks is wide. This
diversity creates challenges, particularly in dealing with slow participants, ensuring fault
tolerance, and adapting to fluctuating hardware and network conditions. It’s crucial for
federated learning approaches to manage disconnected devices, adapt to a multitude of
hardware configurations, and prepare for minimal device engagement.

Statistical Heterogeneity: The data contributed by devices in federated networks often
vary in distribution, completeness, and volume. This disrupts the common assumptions
of data being Independent and Identically Distributed (I.I.D.) or Incomplete often used in
distributed optimization methods. The complexity of modeling, analyzing, and evaluating
the system increases due to this type of variability. Techniques like multi-task learning
and meta-learning can be applied to manage this diversity, as they can either tailor
models to individual requirements or concurrently train multiple localized models.
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Privacy Concerns: Privacy is a significant concern in federated learning. Sharing
model updates rather than raw data offers some safety, but it still has the potential to
divulge sensitive data. Though they may have an influence on model performance and
system efficiency, techniques like differential privacy and secure multiparty computation
strive to improve privacy. In private federated learning systems, finding a good balance
between privacy and use is difficult.

2.8 Federated Averaging (FedAvg):
The Federated Averaging (FedAvg) method is the cornerstone of the Federated Learning
field. The significant study "Communication-Efficient Learning of Deep Networks from
Decentralized Data" by Google researchers introduced it. [20].

FedAvg’s main goal is to cooperatively train a global model using data dispersed among
a variety of clients, which could be devices or edge nodes, all the while avoiding sharing
raw data.

All participating customers are given access to the global model throughout each training
session. Without sending the data to a central server, each client does local model
training using its own local data. The clients send their modified model weights back to
the central server after local training. The acquired model weights are combined by the
central server using a weighted average technique, which improves the overall model. This
iterative process of local model training, client training, model aggregation, and global
model update continues until convergence is attained or a preset stopping condition is
satisfied.

Clients’ actual raw data stays contained on their devices, protecting data integrity and
boosting privacy. The Communication Efficiency is a significant benefit because it reduces
communication costs because only model changes, which are often small in size, are sent
between clients and the central server. This method is flexible enough to support a wide
range of clients and data distribution patterns.

2.9 GAN - Generative adversarial networks
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Figure 2.6: A simple GAN Architecture

In a landmark study titled "Generative Adversarial Networks," published in 2014 [6],
Ian J. Goodfellow and colleagues established the idea of generative adversarial networks
(GANs). The ability of GANs to generate data that closely resembles a training dataset
has led to their significant rise in popularity in the deep learning community.

The essential idea underlying GANs entails training both the generator and discriminator
neural networks using game theory. While the discriminator tries to tell the difference
between created and real data, the generator aims to produce synthetic data instances
that closely resemble real data. These networks undergo adversarial training, where the
generator tries to trick the discriminator in order to improve its ability to create accurate
data. The discriminator simultaneously strives to improve its capacity to distinguish
created data from genuine data.

The generator gradually improves its capacity to produce data that appears authen-
tic, while the discriminator becomes better at identifying real samples from fake ones
throughout the training phase. The goal of this iterative procedure is to produce high-
quality synthetic samples by having the generator produce data that is difficult for the
discriminator to distinguish from actual data.

2.10 GAN - Training
The generator and discriminator networks are iteratively refined during the GAN training
process in order to produce synthetic data that closely mimics real data. Giving random
weights as starting points to the generator (G) and discriminator (D) networks constitutes
the initialization step. The benchmark that the GAN attempts to mimic is the training
data, which is made up of actual samples from a dataset.
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A batch of synthetic samples are created during the discriminator training phase by
running random noise (latent space vectors) through the generator G. The dataset’s
actual samples and these created fake samples are merged to form a batch that is used to
train the discriminator. The created fake samples are given a target value of 0 to indicate
their artificiality, while the real samples are given a target value of 1 to indicate their
authenticity. Aiming to minimize the binary cross-entropy loss between its predictions
and the related target values, the discriminator D is then trained on this batch. Here, the
goal is to improve the discriminator’s ability to tell authentic samples from false ones.

The generator’s training is the main goal of the next phase. Using random noise, a new
set of fake samples is created from G. All of the created fake samples are labeled with
the goal value of 1, in contrast to the discriminator training. This labeling strategy was
developed by the generator to deceive the discriminator into believing that the samples
were real. In order to reduce the binary cross-entropy loss between the discriminator’s
predictions on the generated samples and the desired value of 1, the generator G is then
trained on this batch. The goal of the generator is to provide samples that convincingly
resemble real data in order to trick the discriminator.

Repeat the sequence a predetermined number of times (e.g., epochs). The discriminator
and generator receive alternate training throughout each iteration, with the discriminator
improving its capacity to distinguish between real and fake data samples and the generator
enhancing its capacity to create realistic examples.

It’s important to note that training GANs can be challenging due to issues like mode
collapse (where the generator only learns to produce a limited variety of samples) and
instability. Researchers have proposed various techniques and architectural modifications
to address these challenges and improve GAN training stability and performance like
wasserstein GAN [21].

2.10.1 Wasserstein GAN (WGAN)
In a conventional Generative Adversarial Network (GAN), the generator aims to deceive
the discriminator by producing realistic-looking data. Meanwhile, the discriminator’s
job is to differentiate between real and artificially generated samples. To ensure effective
training and avoid issues like the disappearance of gradients and mode collapse, metrics
like Jensen-Shannonn [22] or Kullback-Leibler [23] divergence should be minimized.

Wasserstein GAN [21] introduces the Wasserstein distance as a metric for determining‚
the separation between the actual data distribution and the generated counterpart. The
training procedure is more stable because the Wasserstein distance provides a more
insightful measure of distribution dissimilarity.

The Wasserstein distance, also known as the Earth Mover’s distance, measures how
much "work" is required to transform one distribution into another. It provides a more
meaningful metric of distribution dissimilarity. In WGAN, the Wasserstein distance is
used to guide the training process.
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For two distributions P and Q, the Wasserstein distance is given by:

W (P, Q) = inf
γ∈Π(P,Q)

E(x,y)∼γ [∥x − y∥]

Where Π(P, Q) is the set of all joint distributions with marginals P and Q.

The discriminator (also known as the critic) in WGAN generates real-valued scores as
opposed to probabilities. Maximizing the mean score of genuine samples and lowering the
mean score of created samples are the critic’s training goals. The goal of the generator
is to increase the mean score of the results. Furthermore, WGAN guarantees Lipschitz
continuity by limiting the gradients of the critic, which is frequently accomplished using
weight clipping.

Discriminator Loss:

Lcritic = Ex∼Pdata [D(x)] − Ez∼Pz [D(G(z))]

Generator Loss:
Lgenerator = −Ez∼Pz [D(G(z))]

Here, D(x) represents the critic’s score for real data x, G(z) is the generated sample
from noise z, and Pz is the noise distribution.

The Wasserstein GAN uses the Wasserstein distance as a gradient-friendly metric and
adopts the critic-generator dynamic to promote smoother convergence in order to give
more stable training.

Gradient Vanishing Problem

When deep neural networks are trained using gradient-based optimization techniques like
gradient descent, the gradient vanishing problem presents a dilemma. These methods
modify the weights of the network based on the gradient with respect to the error function.
Gradients can, however, dramatically decline in some networks, particularly those that
use activation functions like the sigmoid function. The sigmoid function condenses the
input into a tiny range between 0 and 1, which frequently results in a derivative that is
less than 0.25. These modest gradients in deep networks are multiplied numerous times
as the error spreads backward through the network. As a result, the gradient gets less
exponentially as it advances backward through the layers.

Mode Collapse Phenomenon

The phenomenon called mode collapse specifically emerges during the training of Gen-
erative Adversarial Networks (GANs). GANs include two key parts: a generator, in
charge of creating fresh samples of data, and a discriminator, in charge of telling these
created samples from actual data. The generator should ideally generate a wide range of
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outputs that accurately reflect the training data. However, in real-world scenarios, the
generator might start outputting a small number of outputs (or even the same output
over and over again), which would only adequately capture a small number of modes
of the data distribution. Mode collapse is the phrase used for this event. The main
objective of the GAN is undermined when mode collapse takes place since the generator
no longer produces a wide variety of outputs. Effectively addressing mode collapse poses
a significant challenge in achieving robust and effective GAN training.

2.10.2 Wasserstein GAN with Gradient Penalty (WGAN-GP)
While Weighted Gradient Penalty (WGAN-GP) solves weight clipping’s restrictions in
WGAN to improve training stability, it also incorporates a gradient penalty term to get
around optimization difficulties and less-than-ideal results. [24].

The primary objective of the discriminator is still the same in the setting of WGAN-GP
as it is in WGAN. However, this strategy adds a gradient penalty into the discriminator’s
loss function rather than depending solely on weight clipping as a fix. Without the
use of weight clipping, this gradient penalty enforces Lipschitz continuity within the
discriminator. This method prevents gradient explosion or vanishing‚ during training by
ensuring that the discriminator’s gradients behave appropriately.

The discriminator’s output gradients are penalized by the gradient penalty term with
respect to random points sampled along the linear routes separating produced and
real samples. This method fosters a smoother and more reliable training trajectory by
inducing gradients to converge towards a value of 1.

By adopting the gradient penalty mechanism, WGAN-GP significantly enhances training
stability, leading to the generation of higher-quality samples when compared to traditional
WGAN approaches.

2.11 Dirichlet distribution
A Dirichlet distribution [25] is a type of multivariate probability distribution that is
often used in modeling the proportions of different categories in a given population. It is
mathematically defined as follows:

f(x; α) = 1
B(α)

k

i=1
xαi−1

i

Here, x = (x1, ..., xk) is a k-dimensional vector representing the proportions of the k
categories, α = (α1, ..., αk) is the vector of parameters of the distribution, and B(α) is
the multivariate Beta function.

The Dirichlet distribution can be used in the context of federated learning with non-
identically and independently distributed (non-IID) datasets to simulate the percentages
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of various classes in the dataset or data incompleteness as we defined it above. The
class proportions in each client’s local dataset can be modelled by a particular set of
parameters called α for each client. These local Dirichlet distributions can then be used
to estimate the global class proportions, which can give an idea of the general data
distribution throughout the federation while protecting data privacy.

Moreover, the Dirichlet distribution can be useful in updating models in federated learning.
Local updates can be calculated and combined in a manner weighted by the Dirichlet
distribution of data, potentially leading to more effective and robust models.
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CHAPTER 3
Literature survey

In our literature survey, we will commence by investigating Federated Learning (FL)
algorithms tailored to overcome challenges arising from incomplete data. Subsequently,
we will shift our focus to traditional methods for generating synthetic data, building a
foundation for our exploration. Progressing further, our survey will delve into the realm of
deep learning techniques, specifically exploring intricate methodologies that leverage deep
neural networks to address data incompleteness. Our survey will then pivot to Generative
Adversarial Networks (GANs), investigating their applications within the context of
tabular data—a common format in structured datasets. Lastly, our survey will culminate
in an exploration of existing comprehensive studies that tackle data incompleteness in
the realm of Federated Learning.

3.1 FL Algorithms for Solving Incomplete Data Problems
Federated Learning (FL) algorithms can be applied to solve incomplete data problems
where data is missing or incomplete across different clients or parties. Here’s some top
FL algorithms that can handle incomplete data settings.

3.1.1 FedProx
FedProx [26] is a prominent federated optimization algorithm designed to address the
difficulties of non-IID data distribution in the area of Federated Learning. It extends
the standard proximal gradient descent algorithm with the goal of improving model
convergence and also the robustness. FedProx makes use of a regularization term that
makes devices to update their local models towards a global model thus reducing the
impact of data heterogeneity. By adding this regularization term, FedProx aims to
balance the trade off between global and local model updates thus leading to improved
convergence and performance with non IID data distribution.
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The FedProx optimization problem can be given as below:

Given a global model w and a set of local models wi corresponding to different clients
and the goal is to minimize a loss function F (w) that captures the over all performance
of the model on the entire dataset:

min
w

F (w) = 1
N

N

i=1
Fi(w) + λϕ(w),

where N is the total number of devices, Fi(w) is the loss function for the ith client’s local
model, λ is a hyperparameter that controls the regularization, ϕ(w) is a regularization
term that makes the global model to be close to the local models.

The key insight of FedProx is in the regularization term ϕ(w) which can be defined as:

ϕ(w) = 1
2

N

i=1
∥w − wi∥2

2.

This regularization term makes or encourages each of the local model wi to be close to
the global model w thereby improving the consistency between local and global models.
The parameter λ calculates the trade off between fitting the local data and staying close
to the global model.

The optimization process in FedProx encompasses updating both the global model w and
the local models wi. In each round of training, the devices compute their local gradients
and update their models using the following formula:

w
(t+1)
i = arg min

wi


Fi(wi) + λ

2 ∥wi − w(t)∥2
2


,

where t denotes the iteration.

The global model w is then updated by averaging the local models updates weighted by
the number of data points on each device or the client:

w(t+1) = 1
N

N

i=1
niw

(t+1)
i ,

where ni is the number of data points on the ith device or the client.

3.1.2 FedNova
FedNova [27] is an approach that improves the Federated Averaging (FedAvg) algorithm
by addressing the challenges posed by varying numbers of local training steps taken by
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different parties in federated learning. These challenges can arise due to variations in
computational power, local dataset sizes and many other factors. Parties with more
local steps have larger local updates and this can affect the global model if directly
averaged. To counter this, FedNova introduces a normalization and scaling mechanism
for local updates. This ensures that parties contributions are weighted based on the
number of local steps they take and therefore preventing skewed influences on the global
model. Despite its notable enhancement,the alterations made to FedNova are lightweight
therefore leading to minimal computational burden during updates of the global model.

3.1.3 SCAFFOLD
SCAFFOLD [28] is an algorithm designed to address the challenges posed by non IID
(non identically distributed) data in federated learning. It acknowledges that in non
IID scenarios, the updates contributed by different parties can have high variance due
to diverse data distributions (non-IIDness). To mitigate this variance, SCAFFOLD
algorithms introduces the concept of control variates. These are auxiliary terms used to
reduce variance in statistical estimations.

In SCAFFOLD, the control variates are introduced both for the global model (server)
and for individual local models (clients). The algorithm estimates two update directions.
One for the server model and the other for each individual client model. These update
directions are found from the control variates. The update direction for the server model
acts as a "target" direction and it helps to counteract the drift introduced by local training
in non-IID settings.

By introducing control variates and estimating update directions of the local and global
model, the SCAFFOLD algorithm aims to correct the variance and drift caused by
non-IID data distributions. This approach enables more stable and efficient convergence
of the global model in federated learning and even when faced with non-IDDness across
different clients.

3.1.4 MOON
MOON (Model-Contrastive Federated Learning) [29] is a novel and effective federated
learning framework designed to address the challenge of handling non-IIDness in local
data distribution across multiple clients in the context of image datasets with deep
learning models. The main objective of MOON is to enable collaborative model training
without the need for parties to share their raw data.

The key idea behind MOON is to leverage the similarity between model representations to
improve the local training of individual parties. It achieves this by performing contrastive
learning at the model-level. In contrastive learning, the representations of similar data
points are encouraged to be close to each other in the feature space while those of
dissimilar data points are pushed apart. By applying this concept in a federated learning
setting, the MOON algorithm aims to enhance the model representations of individual
parties and improve the overall performance of the federated learning process.
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Federated Learning algorithms, while effective in many scenarios, encounter challenges
when addressing extreme non-IIDness in the data distribution. Extreme non-IIDness
refers to situations where devices have highly imbalanced or dissimilar data distributions,
in our case, data incompleteness. Traditional federated optimization algorithms like
FedProx, FedNova, and SCAFFOLD struggle to cope with such scenarios due to the
significant disparities in data characteristics across devices. They may fail to capture
the unique local data patterns and struggle with class and quantity skew. However,
data augmentation offers a promising solution. By generating synthetic data aligned
with local data characteristics of each device can address extreme non-IIdness/ data
incompleteness. They can introduce diversity, enhance data distribution balance and
accelerated convergence speed.

In the following sections, we will take a look at data generation techniques starting from
standard methods to deep learning methods.

3.2 Standard Methods for Generating Synthetic Data

In this section, the focus is on generating synthetic data for tabular data, and it excludes
methods used for image data, such as cropping, zooming, or inverting. The methods are
categorized based on their algorithmic sophistication. The following standard methods
are reviewed:

3.2.1 Random Oversampling (ROS)

ROS involves randomly sampling additional observations from the minority class with
replacement. It is a straightforward method to expand a dataset, but it can alter the
data distribution and only duplicates existing samples. Studies have shown that ROS
can be more effective than random undersampling for imbalanced datasets, as it does
not impact the majority class instances as much while improving the classification of the
minority class. However, its effectiveness can vary across different datasets, and in some
cases, it may not lead to significant changes in classification performance.

3.2.2 Synthetic Minority Oversampling Technique (SMOTE)

SMOTE [5] addresses the drawbacks of ROS by generating synthetic observations instead
of duplicating existing ones. The algorithm works by selecting a data point from the
minority class and its nearest neighbor from the same class. The distance between these
points is calculated, and synthetic samples are generated along the line segment connecting
them. SMOTE has been widely used in the literature and has shown promising results in
various applications. Studies have evaluated SMOTE’s performance in high-dimensional
data and combined it with other classifiers, demonstrating improved recognition and
classification performance for imbalanced datasets.
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3.2.3 Borderline-SMOTE

Borderline-SMOTE [30] is a variant of SMOTE that focuses on the minority class instances
near the decision boundary. It generates synthetic samples for these borderline instances
to improve classification performance. Studies have shown that Borderline-SMOTE can
outperform SMOTE and ROS in terms of true positive rate and F-value. It has been
used for data augmentation in various domains, such as EEG classification and neural
networks, yielding improved results.

3.2.4 Safe-Level-SMOTE

Safe-Level-SMOTE [31] improves upon SMOTE by defining safe regions to prevent
oversampling in noisy or overlapping areas. Each minority class instance is assigned a
safety level based on the number of minority neighbors it has. Synthetic samples are then
generated closer to instances with higher safety levels, ensuring that they are created only
in safe regions. Studies have shown that Safe-Level-SMOTE can outperform SMOTE
and Borderline-SMOTE in terms of accuracy and classification performance, especially
when certain improvements, such as moving synthetic instances away from majority class
examples, are applied.

3.2.5 ADASYN

ADASYN [32] is an oversampling algorithm that addresses the issue of classifier learning
difficulties for instances with fewer minority class neighbors. It uses a density distribution
to determine the number of synthetic samples to generate for each instance of the minority
class. ADASYN has been applied to various domains, such as telecommunications fraud
and financial datasets, demonstrating its ability to improve accuracy, recall, and F1-
measure compared to SMOTE.

3.2.6 K-Means SMOTE

K-Means SMOTE [33] combines K-means [34] clustering with SMOTE to avoid generating
noise and effectively balance datasets. The algorithm first clusters data points using
K-means and then applies SMOTE to each cluster. This approach has shown better
results than standard SMOTE in terms of average recall, F1-score, and geometric mean,
making it a useful method for dealing with imbalanced datasets.

3.2.7 Cluster-Based Oversampling

Cluster-Based Oversampling [35] addresses the presence of small disjuncts in the training
data, which can cause a loss of classifier performance. The algorithm involves clustering
the data for each class separately and then applying ROS to each cluster. It helps balance
datasets and overcome the issues caused by class imbalance.
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3.2.8 Gaussian Mixture Model (GMM)

GMM [36] is a probabilistic model that assumes data can be modeled as a weighted sum
of Gaussian distributions. It estimates parameters using an expectation-maximization
algorithm and generates synthetic data by drawing random samples from the model.
GMM has shown potential in addressing the lack of data in certain domains, such as
immersive virtual environments.

Standard synthetic data generation methods, including techniques like Random Oversam-
pling (ROS), Synthetic Minority Oversampling Technique (SMOTE), Borderline-SMOTE,
Safe-Level-SMOTE, ADASYN, K-Means SMOTE, Cluster-Based Oversampling, and
Gaussian Mixture Model (GMM), offer benefits but are also associated with limitations
that underscore the necessity of incorporating deep learning techniques for more effective
data augmentation. These limitations encompass challenges such as the inadequate
generation of complex patterns, oversight of correlations between features, difficulties
in handling multimodal data distributions, the potential for repetitive artifacts through
methods like ROS and SMOTE, and their restricted applicability to non-tabular data
types like images, audio, and text. In contrast, deep learning approaches provide solutions
to these limitations, offering the capacity to capture intricate relationships, generate
data at a feature level, handle multimodal distributions, avoid repetitive artifacts, and
accommodate diverse data formats, thus making them better suited for comprehensive
and sophisticated synthetic data generation.

3.3 Deep Learning Methods

In this section, the focus is on deep learning methods like Bayesian networks, Autoencoders,
and Generative Adversarial Networks (GANs) for synthetic data generation

3.3.1 Bayesian Networks

Bayesian Networks (BNs) [37] represent probabilistic graphical models that utilize
Bayesian inference to perform probability computations over a directed acyclic graph.
These models demonstrate the dependence between variables and can express a full joint
probability distribution succinctly. Each node in a Bayesian network corresponds to
a random variable and contains probability information quantifying the impact of its
parent nodes on itself.

As the layers in a Bayesian network increase, the model transitions into a deep Bayesian
network. These models were integral in the history of deep learning but are less common
in the present day. One application of Bayesian networks was shown in a study where
it was used to address the problem of private data sharing, significantly outperforming
other solutions in terms of accuracy.
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3.3.2 Autoencoders
Autoencoders (AEs) are specific types of feedforward neural networks composed of an
encoder and a decoder network. The encoder compresses high-dimensional data into a
low-dimensional representation, and the decoder decompresses this representation back
into the original domain [38].

Despite their usefulness, AEs have some limitations regarding synthetic sample generation.
Variational autoencoders (VAEs) [39] can help overcome these issues by mapping each
point in the original data to a multivariate normal distribution in the latent space and
adding the Kullback–Leibler (KL) divergence to the autoencoder reconstruction function.

3.3.3 Generative Adversarial Networks
Generative Adversarial Networks (GANs) consist of two networks: the generator and the
discriminator. These networks have been proven highly useful in generating synthetic
samples and are widely used across numerous applications. GAN architecture was
discussed in the previous section.

Few examples of the use of GANs include generating artificial EEG datasets [40], improv-
ing the accuracy of a CNN classifier in signal modulation classification, handling datasets
with multiple imbalanced classes [41] , and simulating urban morphology. Another
interesting development is the Quantum GAN [42], which leverages quantum circuits to
overcome some limitations of traditional GANs.

Generative Adversarial Networks (GANs) stand out as a superior technique for synthetic
data generation compared to methods like Bayesian networks and Autoencoders. GANs
directly generate diverse and intricate synthetic samples by learning the underlying data
distribution. These high-quality samples closely resemble real data, capturing complex
patterns and variations effectively. Unlike Bayesian networks, GANs don’t require explicit
probability modeling; they implicitly learn the data distribution through adversarial
training. Their versatility across data types, including images, audio, and text, makes
them applicable to a wide range of tasks, while their prowess in capturing complex
data relationships and reflecting real-world dataset complexities contributes to their
effectiveness. With a broad spectrum of successful applications, such as image synthesis,
style transfer, and data augmentation, GANs emerge as a versatile and potent solution
for comprehensive synthetic data generation.

3.4 Generative Adversarial Networks
GANs have been a powerful tool that has undergone continuous improvements and
modifications. Here is a chronological overview of GAN architectures showcasing their
evolution over the years.
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Table 3.1: Overview of GAN Architectures

GAN Key Features Applications
Conditional GAN
(CGAN)

Generates data conditioned
on class labels.

Image synthesis, data augmenta-
tion.

DCGAN Incorporates convolutional
layers for improved image
quality.

High-quality image generation.

InfoGAN Learns disentangled infor-
mation in the latent space.

Attribute control, data manipula-
tion.

CoGAN Uses two GANs to learn
joint distribution of multi-
domain images.

Multi-domain image generation.

AC-GAN Introduces an auxiliary
classifier in the discrimina-
tor.

Controlled data synthesis, class-
specific generation.

StackGAN Generates high-resolution
images from text descrip-
tions.

Text-to-image synthesis.

WGAN Addresses training instabil-
ity and mode collapse with
Wasserstein distance.

Stable training, improved sample
quality.

CycleGAN Translates images between
domains without paired
data.

Image-to-image translation, style
transfer.

MuseGAN Focuses on multi-track mu-
sic generation.

Music composition.

SAGAN (Self-
Attention GAN)

Incorporates self-attention
mechanisms for coherent
image generation.

High-quality image generation.

BigGAN Upscales GAN models for
large-scale image genera-
tion.

High-quality image synthesis.

StyleGAN Emphasizes control over
generated images using
style transfer.

Controlled and customizable im-
age generation.

GauGAN Converts sketches into de-
tailed images using seman-
tic layouts.

Photorealistic scene generation.

PiiGAN Focuses on large missing
area inpainting using multi-
ple results.

Image inpainting with varied and
higher-quality results.
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3.4.1 Conditional Generative Adversarial Network (CGAN)
CGAN [43], proposed in 2014, is a variant of GAN that allows users to control the
class label of the generated data. It addresses the limitation of vanilla GANs, where it’s
challenging to generate data of a specific class since there’s no control over the latent
space representation. CGAN conditions both the generator and the discriminator on
class labels, enabling the generation of samples belonging to a user-selected class. It
finds applications in generating labeled data for tasks such as image synthesis and data
augmentation.

The key advantage of CGAN is its ability to generate samples belonging to a user-selected
class. For example, if the training dataset contains images of various objects, such as
cars, planes, and bicycles, a CGAN can be trained with these images along with their
respective class labels. Once the CGAN is trained, a user can specify a desired class
label, such as "car", and the model will generate synthetic images of cars. This level of
control over the generated data is crucial in tasks requiring labeled data, such as image
synthesis and data augmentation.

CGAN has found applications in various domains, including computer vision and image
generation. By providing class labels as input, CGANs can produce targeted data, making
them valuable in scenarios where specific classes of data are required. Additionally,
CGAN’s ability to generate labeled data can be leveraged in tasks like image-to-image
translation, style transfer, and content generation with explicit control over desired
features.

3.4.2 Deep Convolutional Generative Adversarial Network (DCGAN)
Introduced in 2016, the DCGAN (Deep Convolutional Generative Adversarial Network)
[44] marks a significant milestone in image generation, notably enhancing the quality of
generated images when compared to previous GAN variations.

DCGAN innovatively merges convolutional layers with GANs for the purpose of image
generation, leading to a remarkable enhancement in the overall quality of generated
images as compared to earlier GAN iterations. This architecture harnesses the power of
convolutional layers, enabling the model to identify intricate local features and structures
within the data, thus rendering it especially well-suited for tasks in the realm of computer
vision. The incorporation of DCGAN has fundamentally transformed image generation
and laid a strong groundwork for subsequent architectures aimed at pushing the boundaries
of image quality even further.

3.4.3 Information Maximizing Generative Adversarial Network
(InfoGAN)

Also introduced in 2016, InfoGAN [45] extends GANs to learn disentangled information
in the latent space. It assigns semantic meaning to the latent features, enabling users to
control specific attributes of the generated data. For instance, in the MNIST dataset,
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InfoGAN can modify latent variables to change the digit’s style, rotation, or width. This
architecture’s focus on disentangling features provides greater interpretability and control
over the generated data.

3.4.4 Coupled Generative Adversarial Networks (CoGAN)
Proposed in 2016, CoGAN [46] uses two GANs together to learn the joint distribution of
multi-domain images. Unlike traditional GANs, CoGAN can generate images belonging
to different domains simultaneously. By sharing weights between the two GANs, it
reduces memory consumption and computational requirements, making it more efficient
for multi-domain image generation tasks.

3.4.5 Auxiliary Classifier Generative Adversarial Network (AC-GAN)
Also from 2016, AC-GAN [47] modifies the GAN architecture to be class-dependent.
It introduces an auxiliary model in the discriminator, which reconstructs class labels,
enabling class-specific image generation. AC-GAN can produce globally coherent samples
comparable to the ImageNet dataset in terms of diversity. This architecture’s ability to
condition the generator on class labels makes it useful for tasks requiring controlled data
synthesis and class-specific image generation.

3.4.6 Stacked Generative Adversarial Network (StackGAN)
Introduced in 2016, StackGAN [48] extends GANs to generate high-resolution images
from text descriptions. It divides the image generation process into two stages. The first
stage generates a primitive shape and colors based on the input text, while the second
stage refines the output using both the text description and the first stage’s result. This
two-stage approach allows for more detailed and realistic image generation based on
textual descriptions.

3.4.7 Wasserstein Generative Adversarial Networks (WGAN)
Proposed in 2017, WGAN [21] modifies the training phase of traditional GANs to address
issues like mode collapse and training instability. WGAN introduces a new loss function
based on Wasserstein distance, which provides a meaningful metric for the generator’s
convergence and sample quality. This modification leads to more stable training and
helps prevent mode collapse, a common problem in GANs.

3.4.8 Cycle-Consistent Generative Adversarial Network (CycleGAN)
Introduced in 2017, CycleGAN [49] is designed for image-to-image translation without
paired data. It allows for style transfer between different domains by introducing two
generators and two discriminators. The generators learn to translate images from one
domain to another, while the discriminators verify the realism of the translated images.
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Additionally, a cycle consistency loss metric ensures that translating an image back and
forth between domains results in a similar image to the original.

3.4.9 Multi-track Sequential GAN (MuseGAN)
From 2019, MuseGAN [50] focuses on music generation, which poses unique challenges
due to its temporal nature and multiple instrument tracks. This GAN architecture
addresses these complexities and aims to generate multi-track music sequences. While
the generated music may not be on par with professional musicians, MuseGAN shows
promising results in generating music with some interesting properties.

3.4.10 Self-Attention Generative Adversarial Networks
Self-Attention Generative Adversarial Networks (SAGAN) [51] enhance GAN architec-
tures by incorporating self-attention mechanisms to maintain long-range relationships
within images. Zhang et al. introduced spectral normalization to stabilize training dy-
namics, leading to more robust and efficient generators. SAGANs demonstrate improved
performance on challenging ImageNet dataset, as evidenced by higher Inception Score
and Fréchet Inception Distance metrics, indicating high-quality image generation with
coherent long-range structures.

3.4.11 Big Generative Adversarial Network, BigGAN
Big Generative Adversarial Network (BigGAN) [52] is a GAN architecture proposed by
Brock et al. that upscales existing GAN models to generate high-quality images. It
introduced techniques to handle large-scale GAN training and demonstrated superior
performance compared to other state-of-the-art structures. Despite significant advance-
ments in image quality, understanding the image synthesis process remains challenging.
BigGAN represents a powerful approach to image generation, but further research is
needed to gain deeper insights into GANs’ inner workings.

3.4.12 Style-based Generative Adversarial Networks (StyleGAN)
Proposed in 2019, StyleGAN [53] explores an alternative generator architecture based
on style transfer. It emphasizes better control over the generated image rather than
realism alone. By untangling high-level features and stochastic variation in the latent
space, StyleGAN improves the quality metrics over previous architectures. It enables
users to control various aspects of the generated image, leading to more controlled and
customizable image generation.

3.4.13 GauGAN
Introduced in 2019 by NVIDIA Research, GauGAN [54] allows users to sketch an abstract
scene and convert it into a detailed image. By using a spatially-adaptive normalization
layer, GauGAN achieves photorealistic image generation based on semantic layouts
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provided as input. This approach finds applications in generating realistic scenes from
rough sketches or guiding artistic image synthesis.

3.4.14 Pluralistic Image Inpainting GAN (PiiGAN)
Also from 2019, PiiGAN [55] focuses on filling large missing areas in an image, providing
more varied and higher-quality results compared to other state-of-the-art architectures.
It uses a new style extractor to extract style features from the original images and
leverages multiple results rather than seeking a single optimal inpainting solution. This
approach enables PiiGAN to better match the context semantics of the original image
when completing incomplete parts.

3.5 GANs for tabular Data
Tabular data comes with unique challenges, including the presence of continuous and
categorical features, non-Gaussian and multimodal distributions, highly imbalanced
categorical variables, and sparsity in one-hot-encoded vectors. These properties make it
difficult for standard GANs to effectively generate synthetic tabular data.

3.5.1 TGAN
TGAN [56] is a specialized GAN architecture designed to generate synthetic tabular data
while addressing several challenges unique to this type of data. Its main goals are to
achieve effective machine learning performance and maintain the correlation between
columns in the generated data.

To overcome the challenges posed by tabular data, TGAN incorporates specific data
transformations prior to feeding it into the GAN. For numerical features, a mode-specific
normalization technique is applied, which involves fitting a Gaussian mixture model to
each numerical column. This allows the model to handle non-Gaussian and multimodal
distributions, ensuring accurate normalization within the range of [−0.99, 0.99]. The
probabilities obtained from the Gaussian mixture model are also utilized to encode the
original values for each row.

For categorical features, TGAN adopts one-hot encoding and introduces noise drawn
from a uniform distribution to each dimension of the one-hot-encoded vector. Afterward,
the vector is renormalized to ensure valid probability distributions.

The transformed data is then fed into the TGAN architecture, which consists of a
generator and a discriminator. The generator, implemented as an LSTM network,
generates numeric variables in two steps: first, it generates values vi, and then it
generates encoded probabilities ui. For categorical variables, the generation is done in a
single step. The discriminator, on the other hand, is a fully connected neural network.

TGAN’s performance was evaluated in terms of machine learning efficacy and correlation
preservation. Comparisons with other data synthesis models, using various machine
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learning algorithms, were conducted on different datasets. TGAN demonstrated promising
results, with only a 5.7% average performance difference between real and synthetic data,
indicating its ability to preserve machine learning efficacy and effectively capture the
correlation between different pairs of variables.

3.5.2 CTGAN

The CTGAN [57], proposed by Lei Xu and Kaylan Veeramachaneni et al. in 2019,
is an advanced GAN architecture designed for synthesizing tabular data. It shares
similar objectives with TGAN, aiming to achieve machine learning efficacy and preserve
correlation between columns. However, CTGAN goes a step further by striving to preserve
the joint distribution of all columns, making it more ambitious than its predecessor.

The data transformations applied by CTGAN are akin to those used in TGAN. For
numerical columns, CTGAN employs a variational Gaussian mixture model (VGM)
instead of a fixed Gaussian mixture model (GMM). The VGM estimates the number
of modes for each numerical column, allowing more flexibility. Each continuous value
is represented as a one-hot vector indicating the mode and a scalar indicating the
value within that mode. This allows CTGAN to handle non-Gaussian and multimodal
distributions effectively. Categorical features are still one-hot encoded, but without any
additional noise.

To address unbalanced discrete columns, CTGAN incorporates a conditional generator.
This generator can produce synthetic rows depending on specific discrete column values.
The authors introduced a technique called "training by sampling," ensuring the CTGAN
examines all possible discrete values uniformly. The integration of the conditional
generator involves using a conditional vector specifying the desired categorical column
values. The generator loss is modified to ensure it learns to map the conditional vector
into the correct one-hot-encoded values.

The evaluation of CTGAN was performed on seven simulated datasets and eight real
datasets. For simulated datasets, the likelihood fitness metric was used to evaluate perfor-
mance, given the known data distribution. In the case of real datasets, machine learning
efficacy served as the evaluation metric since the data distribution is unknown. CTGAN
was compared with other generative models and demonstrated superior performance in
terms of machine learning efficacy on real datasets. While it performed well in terms
of the likelihood fitness metric on simulated datasets, it did not outperform all other
models.

An ablation study was conducted to evaluate the utility of specific techniques introduced
in CTGAN. The results highlighted the importance of mode-specific normalization, the
conditional generator, and training by sampling. Mode-specific normalization significantly
contributed to performance improvement in real datasets, while the conditional generator
and training by sampling were crucial for generating high-quality tabular data.
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3.5.3 TabFairGAN

TabFairGAN [58], introduced by Amirarsalan Rajabi and Ozlem Ozmen Garibay in 2021,
is a WGAN with a gradient penalty designed for generating tabular data. Like TGAN
and CTGAN, its main goals are to ensure effective machine learning performance and
maintain correlation within the synthetic data.

To process the input data, TabFairGAN uses one-hot encoding for categorical features
and a quantile transformation for numerical features. The generator architecture involves
fully connected layers, utilizing Gumbel softmax for one-hot encoding of categorical
variables. On the other hand, the discriminator comprises fully connected layers with
leaky ReLU activation.

In the evaluation, TabFairGAN outperformed TGAN and CTGAN on various machine
learning models (decision trees, logistic regression, and MLP) using metrics like F1-score
and accuracy. The experiments showcased TabFairGAN’s superiority in terms of machine
learning efficacy, especially when applied to real-world datasets.

TabFairGAN’s main strength lies in its ability to generate high-quality tabular data while
preserving the joint distribution of all columns. This makes it a valuable and effective
method for synthetic data generation.

However, all the above techniques are suitable only for centralised setting.

3.6 Existing Studies for Solving Non-IID/Data
Incompleteness Problems in FL

3.6.1 Fed-TGAN

The paper discusses the difficulties of training a GAN on tabular data in a privacy
preserving decentralized setting and therefore proposes a new method which is Fed-
TGAN [59], which aims to effectively train a complex tabular GAN on non identical
clients by countering data skewness and preserving privacy into consideration.

The 2 main features of Fed-TGAN are "privacy preserving multi-source Feature encoding"
where for each categorical column the client computes and sends categorical frequency
distribution to the server to built an aggregated global frequency distribution for the
columns and also fro continuous columns the client fits and sends the parameters of a
variational Gaussian mixture model to the server and then fits a new global VGM models
for each column then uses it as final encoder and "Table similarity aware weighting
strategies" aim to pre compute weights for each client based on the divergence of their
local data from the global statistics to ensure smooth convergence in the presence of
skewed data across clients.
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3.6.2 HT-Fed-GAN: Federated Generative Model for Decentralized
Tabular Data Synthesis

HT-Fed-GAN [60], an innovative solution to the challenge of privacy-preserving decen-
tralized tabular data synthesis. In a landscape where digital technology has led to the
accumulation of horizontally partitioned tabular data with privacy concerns, HT-Fed-
GAN stands out as a pioneering approach. It aims to generate synthetic data while
upholding privacy and data ownership, particularly relevant in domains like healthcare
and finance. In contrast to existing methods focused on images and text, HT-Fed-GAN
is uniquely tailored for tabular data, addressing specific complexities like multimodal
distributions and imbalanced categorical columns. This approach’s strengths lie in its
pioneering concept, successful handling of multimodal distributions through Fed-VB-
GMM, and its capacity to ensure balanced categorical attributes via federated conditional
techniques. The proposed approach involves multiple steps, such as Fed-VB-GMM and
conditional sampling, which could introduce complexity to the implementation and
require careful parameter tuning.

Both Fed-TGAN and HT-Fed-GAN offer novel approaches to federated learning with
tabular data, but each comes with its own set of challenges. Fed-TGAN, which uses
Variational Gaussian Mixture Models (VGMM) for continuous columns, suffers from
computational overhead and concerns over data privacy. Its decentralized structure also
makes parameter tuning challenging and raises questions about scalability as the number
of clients increases. Transformation artifacts, where the original data distribution is
potentially distorted by VGMMs, are another concern. On the other hand, HT-Fed-GAN
introduces additional complexity through its use of Fed-VB-GMM and federated condi-
tional techniques, potentially slowing down deployment. This complexity also complicates
parameter tuning, particularly for handling multimodal distributions effectively. Both
models also share challenges in inference latency, data privacy, and dealing with data
skew or variable importance in feature columns. Overall, while both methods aim to
address the unique challenges of tabular data in federated learning environments, they
also introduce complexities and privacy concerns that need to be carefully managed.

So it becomes evident that there is a pressing need for a new method that bypasses the
use of GMMs altogether. This need serves as the foundational premise of my thesis.
My research aims to develop an innovative federated learning approach for tabular data
synthesis that circumvents the complexities and limitations associated with GMMs.
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CHAPTER 4
Methodology

We introduce a data-driven methodology that uses Generative Adversarial Networks
(GANs) to address data incompleteness in federated learning. Our approach employs
the Dirichlet distribution to generate incomplete data, focusing on its impact on model
performance. Special attention is given to handling categorical data by constructing a
global vocabulary for uniform encoding across clients. Our federated learning models
incorporate neural networks and leverage advanced GAN techniques, such as conditional
and Wasserstein GANs, to improve learning efficacy. The methodology is evaluated
across different levels of data incompleteness and compares synthetic data to real data
in terms of its learning efficacy. Unlike existing techniques that use Gaussian Mixture
Models (GMM) in GAN training, our approach does not rely on GMMs to convey data
distribution information to the central server. The figure 4.1 is an overview of the
methodology flow.
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Algorithm 1 Federated Learning with GAN Data Augmentation
Data: Full dataset, List of clients, Number of rounds R, Epochs E, Class Labels L
Output: Final federated classification model

22 Dataset ← SelectDataset()
44 IncompleteData ← GenerateDataUsingDirichlet(Dataset)
66 FederatedEncodedData ← FederatedEncoding(IncompleteData)
88 InitialModel ← FederatedClassification(FederatedEncodedData)

1010 for technique in [Federated GAN, Federated Class Sampling GAN, Federated Class
Sampling and Client Grouping GAN] do

1212 GeneratedData ← TrainAndGenerateData(technique, IncompleteData)
1414 AugmentedData ← StepwiseAddition(GeneratedData, IncompleteData)
1616 UpdatedModel ← FederatedClassification(AugmentedData)
1818 if Accuracy(UpdatedModel) improves then

/* Go back to step 15 */

19 Goto 15
20 end
21 else
2323 Stop
24 end
25 end

Figure 4.1: Methodology flowchart

4.1 Datasets
Adult Dataset:
The Adult dataset [61] is a widely-used resource for classifying income levels. Comprised
of 14 attributes, this dataset features both categorical and numerical variables. Attributes
like age, job type, educational background, and marital status are utilized to predict
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whether a person’s income is above or below $50,000 per annum. The labels for the
dataset are binary: either ">50K" or "<=50K".

Intrusion Detection Dataset:
The Intrusion Detection dataset [62] is particularly useful for identifying cybersecurity
risks. It contains a robust set of 41 attributes that describe network traffic behavior. The
objective is to identify unusual activities that might signify security threats. Labels in
the dataset are categorized as either "normal" or "anomaly".

Bank Marketing Dataset:
The Bank Marketing dataset [63] is specialized for applications in marketing analytics,
focusing on the prediction of term deposit subscriptions. The dataset encompasses
17 attributes including demographic information, previous banking transactions, and
economic metrics. The output variable is binary, labeled either as "yes" (indicating
subscription) or "no" (indicating no subscription).

Dataset # Features # Categorical
Features

# Continuous
Features # Instances Target

Classes
Class

Distribution

Adult 14 9 5 48842 2 Class 0: 37155
Class 1: 11687

Intrusion Detection 41 4 37 25191 2 Class 0: 13449
Class 1: 11742

Bank Marketing 17 10 6 45211 2 Class 0: 39922
Class 1: 5289

Table 4.1: Dataset Characteristics and Class Distribution

4.2 Generating Incomplete data settings
In the domain of distributed data and machine learning, the consideration of non-
identically and non-independently distributed (non-IID) settings holds a crucial position.
This research focuses on assessing federated learning within various scenarios of incom-
plete data, which requires the creation of such scenarios. The Dirichlet distribution, a
continuous multivariate probability distribution parametrized by a vector of positive real
numbers, plays a pivotal role in this endeavor.

The Dirichlet distribution proves particularly advantageous for generating non-IID or
incomplete data due to its capacity to offer controlled and adaptable measures of concen-
tration. By adjusting the parameters, one can manipulate the equilibrium or disparity in
the generated data. In this research, we harness the Dirichlet distribution by incrementing
alpha values—specifically 0.05, 1.0, 1.5, 2.0, and 100—to construct a diverse range of
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non-IID or incomplete data scenarios for each dataset. Each alpha value corresponds to
a unique non-IID setting, resulting in a total of five distinct scenarios per dataset.

When alpha values are small, the Dirichlet distribution yields sparse distributions char-
acterized by pronounced imbalance. This makes it probable that only a limited set
of classes will be present in the local dataset. Conversely, larger alpha values lead to
more balanced data distributions, where local datasets tend to encompass a more evenly
spread mixture of classes. The variation in alpha values enables us to replicate a broad
spectrum of incomplete data scenarios, ranging from extreme class imbalance to more
representative distributions.

The importance of generating these incomplete data scenarios lies in their potential to
provide a wide array of testing scenarios for the assessment of federated learning. By
evaluating the performance of federated learning across these incomplete data setups,
our objective is to gain insights into the influence of data distribution on learning
outcomes. Additionally, we seek to identify strategies to mitigate negative impacts,
thereby enhancing the robustness and sustainability of federated learning models.

It’s important to note that we partitioned the dataset into training and test subsets. The
incomplete settings are specifically introduced in the training dataset. Also, each client
uses the same test dataset for evaluation.

4.3 Federated Encoding of Categorical Columns
Federated learning presents a unique machine learning paradigm where training occurs
across multiple devices or servers, each equipped with its localized data. This decentralized
approach carries advantages such as privacy preservation and data efficiency. However, it
introduces challenges, particularly in the treatment of categorical variables within this
federated context.

Categorical data requires transformation into numerical representations suitable for
machine learning models. Traditional encoding techniques include label, one-hot, and
binary encoding. Yet, these conventional methods encounter issues within federated
learning, as different clients may possess dissimilar categories within a column. Such
discrepancies can yield inconsistent encoding, leading to inaccuracies during model
training.

Addressing this challenge necessitates the development of a federated encoding strategy.
This entails the creation of a global vocabulary that amalgamates all variable categories
from all clients. The dissemination of this global vocabulary among clients ensures
uniform encoding methods across the entire setting.

Constructing the global vocabulary involves an initial step where each client transmits
its variable categories as a dictionary to the server. The server subsequently compiles
these categories to formulate the global vocabulary. This vocabulary is then transmitted
back to clients, enabling them to encode their categories consistently across devices.
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Figure 4.2: Federated encoding of categorical columns

Even with a global vocabulary, a client’s data might lack certain categories, potentially
leading to incomplete encoding when new data featuring unseen categories arises. This
aspect should be considered in the thesis’s future scope.

It is crucial to recognize that categorical variable encoding stands as a pivotal prepro-
cessing step in machine learning, and its complexity is accentuated within the federated
learning landscape. By embracing federated encoding, uniform encoding practices across
all devices can be assured, thereby facilitating more efficient model training in the
federated domain [59].

4.4 Federated Classification
Federated learning stands as a machine learning framework where a decentralized set
of clients collaboratively trains a model using their respective local data, without the
necessity of sharing raw data. This approach not only preserves privacy but also diminishes
the need for centralizing data

Commencing with a predefined cluster of clients, the system initializes a central clas-
sification model denoted as M . The training unfolds over a sequence of R rounds. In

41



4. Methodology

Figure 4.3: A example of general FL architecture. The same architecture is followed for
our case. The image was take from the following paper [64]

Algorithm 2 Federated Learning Classification Algorithm
Data: List of clients, Number of rounds R, Epochs E
Output: Trained Classification Model M

1 SelectedClients ← SelectClients()
2 Initialize Classification Model M
3 for each round r = 1 to R do
4 for each client c in SelectedC lients do
5 Load local data: LocalDatac LocalModelc ← Copy of M
6 for epoch = 1 to E do
7 Train LocalModelc on batch of LocalDatac

8 end
9 Send LocalModelc weights to server

10 end
11 M ← AggregateWeightsFromClients()

12 end

each round, each chosen client loads its exclusive data and commences training a local
version of model M for E epochs. Instead of transmitting raw data, the client transmits
its local model’s weight updates to a central server. This methodology safeguards privacy
by confining raw data to individual clients. After collecting all weight updates, the server
amalgamates them to refine and update the central model M . The ultimate result of this
iterative process is a well-refined classification model, harnessing diverse data sources
while upholding data privacy on an individual level.

In our thesis, the client data exhibits incompleteness, as we have previously defined.
The employed machine learning model for classification is a simple feed-forward neural
network, responsible for predicting binary response probabilities based on one or more
predictor variables.
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Figure 4.4: Architecture of the feedforward neural network used of classification

We utilize the Adam optimizer and cross-entropy loss to train the model, making it
well-suited for tasks involving multi-class classification. The training process spans several
epochs, during which the model processes data in mini-batches, generates predictions,
calculates loss, and updates its parameters. Model accuracy is assessed using an accuracy
metric to determine the correctness of predictions. After the training phase, the model’s
parameters remain unchanged, and we evaluate its performance on test data using batch
processing. This evaluation yields the average loss and accuracy for the test dataset.
Communication between clients and the server takes place over multiple rounds, with a
maximum of 6 rounds.

4.5 GAN Data Generation Techniques
GANs consists of 2 parts namely a generator and discriminator. The generator is used
to create data instances and the discriminator checks for authenticity means it decides
whether each instance of data belongs to the actual training set or not. The GAN
architecture used for the thesis was inspired from TabFairGAN [58]

We use three techniques to train the GANs in the federated setting.

1. Federated GAN

2. Federated class sampling GAN

3. Federated class sampling and client grouping GAN
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Figure 4.5: A plot for both Federated conditional GAN technique and Federated Class
sampling GAN. Federated conditional GAN use full dataset available to train the GAN
whereas federated Class sampling GAN use the samples of a particular class label to
train the GAN in each round.

Federated GAN:

This is a direct adaptation of GAN to federated settings. Each client trains a GAN
consisting of a generator and a discriminator on its local data. The parameters of the
GAN models both generator and discriminator are then sent to the central server.The
central server averages these parameters to produce a global model. This global model
parameters are then sent back to each client for the next round of training. This same
process is repeated for several communication rounds. The generator of the trained global
GAN model is then used to generate synthetic data.

We use wasserstein conditional GAN with gradient penalty for training the generator
and discriminator inspired from WGAN-GP [26] and CGAN [43]. A WCGAN (short
form for wasserstein conditional GAN ) with GP (Gradient penalty) is a GAN variant
that uses conditioning information to control the generated output and the Wasserstein
distance for stable gradients and a gradient penalty to enforce Lipschitz continuity and
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Algorithm 3 Federated GAN Training Algorithm
Data: List of clients, Number of rounds R, Epochs E
Output: Global GAN Models: Generator Gglobal, Discriminator Dglobal

1 Initialize global models: Gglobal, Dglobal

2 for each round r = 1 to R do
3 for each client c in clients do

/* Train local GAN on each client */

4 Load local data: LocalDatac

5 Initialize local models: Glocalc , Dlocalc with Gglobal, Dglobal

6 for epoch = 1 to E do
7 Train Glocalc and Dlocalc on batch of LocalDatac

8 end
9 Send Glocalc and Dlocalc weights to server

10 end
/* Aggregate weights at the server */

11 Gglobal ← AverageWeights(Glocal from all clients) Dglobal ← AverageWeights(Dlocal

from all clients)
/* Distribute the global model weights back to clients */

12 Send Gglobal, Dglobal to all clients
13 end

prevent the critics gradients from exploding which may cause unstable training.

The significant drawback of applying traditional federated GAN techniques to tabular
data arises from the inherent diversity in feature types (categorical, continuous), data
distributions, and other characteristics within such datasets. The standard training
approach in federated GANs may prove inadequate for effectively handling this wide
array of data heterogeneity. Consequently, challenges such as convergence issues or the
generation of suboptimal synthetic data can emerge. To address this limitation, the
development of a novel training methodology becomes imperative that is tailored to the
unique demands of incomplete tabular data scenarios. This novel approach is known as
"Federated Classwise Sampling GAN."

Federated Classwise sampling GAN

This technique utilizes classwise sampling of data samples to facilitate GAN training.
In a manner akin to the approach described above, we employ Wasserstein GAN with
a gradient penalty for training. However, a distinction emerges: we refrain from using
the complete dataset to train the local model. Instead, our focus centers on selecting
samples associated with a singular class label for training.

Commencing the process, every client transmits its class distribution of local data to
the server. Subsequently, the server undertakes dual tasks: first, it selects the clients for
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local model training (with the aggregation transpiring on the server in each round), and
second, it determines the initial class label for GAN training rounds.

Following an initial phase of GAN training for a specific class label spanning several
rounds, the clients conserve the generated model for future application. Once stored,
the server shifts its focus to selecting the subsequent class label for GAN training. This
iterative progression repeats, encompassing the selection of both the class label and the
clients containing relevant class samples. By adhering to this approach, the final outcome
encompasses a set of generators equal in number to the classes present, a testament to
their collective training process.

However, this technique can still be affected by data incompleteness during model training.
This is because the data distribution can vary greatly across clients, even when they
have the same class label. To address this challenge and enhance training stability, we
developed a method to group clients based on the number of samples for each class
label. This grouping ensures that clients with similar characteristics are trained together,
promoting stability and ultimately improving the quality of generated data. Thus, we
introduce the next technique known as ’Federated Class Sampling and Client Grouping
GAN’.

Federated class sampling and client grouping GAN

This technique employs classwise sampling of data samples and client grouping to train
the GAN. The concept of client grouping was inspired by the paper [65]; however, the
grouping technique used in this work differs from that described in the paper. Similar
to the Federated class sampling GAN technique, we use wasserstein GAN with gradient
penalty for training. In this technique, we diverge from using the entire dataset for local
model training, a characteristic differentiating it from Federated GAN. Instead, we opt to
select samples of a single class label for training. However, an important distinction lies
in our approach to grouping clients based on their sample counts. To initiate the process,
each client transmits the class distribution of its local data to the server. During the
initial rounds, the server determines the class label for training, subsequently clustering
clients with comparable sample counts of the selected class label. This data-driven
grouping is performed in a descending order based on the number of samples.

For instance, consider a scenario where the class label is ’0’. Clients possessing similar
quantities of class ’0’ samples are consolidated into groups. In the initial rounds, the
first group is selected to train the GAN model, followed by the subsequent groups in
successive rounds. This sequential procedure continues until all client groups complete
their training. As the process advances, the number of training epochs is gradually
reduced to prevent potential overfitting to a small number of samples.

After the initial training rounds for the first class label, the generated model is preserved
by the clients for future utilization. Subsequently, the server selects the next class label
for GAN training, along with the corresponding client group possessing samples of that

46



4.6. Step-wise Addition of GAN Data

Algorithm 4 Federated class sampling GAN
Data: List of clients, Number of rounds R, Epochs E, Class Labels L
Output: Set of Generators: {Glabel}label∈L

1 for each client c in clients do
2 Send class distribution of LocalDatac to server
3 end
4 Initialize global GAN models: Gglobal, Dglobal

5 for each class label label in L do
/* Server selects which clients and class labels to use */

6 SelectedClients ← SelectClientsForClass(label)
7 for each round r = 1 to R do
8 for each client c in SelectedClients do
9 Load local data of class label: LocalDatac,label

10 Initialize local models: Glocalc , Dlocalc with Gglobal, Dglobal

11 for epoch = 1 to E do
12 Train Glocalc and Dlocalc using WGAN-GP on batch of LocalDatac,label

13 end
14 Send Glocalc and Dlocalc weights to server
15 end

/* Aggregate weights at the server */

16 Gglobal ← AverageWeights(Glocal from all SelectedClients) Dglobal ←
AverageWeights(Dlocal from all SelectedClients)

17 end
/* After training for the class label, save the generator model */

18 Glabel ← Gglobal

19 Distribute Glabel to all clients
20 end

class. This iterative approach results in the creation of generators for each class, providing
a tailored generator for every class label by the end of the training process.

The client grouping function clusters clients based on their sample counts using the DB-
SCAN algorithm [66]. Input contains client identifiers and sample counts. The algorithm
extracts sample counts, applies DBSCAN clustering, and groups clients accordingly,
excluding noise points. It sorts the groups based on maximum sample count, resulting in
a list of sublists representing clients grouped by similar sample counts. This function
facilitates organized analysis of clients with similar data volume.

4.6 Step-wise Addition of GAN Data
When integrating GAN-generated data into incomplete real datasets, a cautious and
gradual approach is paramount to prevent overfitting or biasing the model. Here’s a
high-level strategy to consider. Start by training a GAN model on your non-IID real
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Figure 4.6: Federated class sampling and client grouping GAN

datasets, aiming to generate synthetic data that aligns closely with the distribution of
your actual data. Initiate the process by introducing a small fraction of GAN-generated
data to the training set, such as 10% of the size of the largest label samples across all
clients. Proceed to retrain your model using this combined dataset.

Incrementally escalate the proportion of GAN data within the training set. In each
training iteration, progressively increase the percentage of GAN data by an additional
10%. After each incremental step, assess the model’s performance on a validation
set comprising only real data. The process should halt when the performance on the
validation set plateaus or even regresses. This indicates that further inclusion of synthetic
data is no longer contributing to improved generalization to unseen real data.

Keep in mind that the outlined process is a general guideline. The specific percentage
increments and stopping criteria should be adapted based on the unique attributes of
your dataset and the problem at hand. For instance, if real data is scarce, introducing
a larger proportion of synthetic data could be beneficial. Always remember that the
primary objective is to enhance the model’s real-world task performance, so thorough
evaluation on a validation set of real data is essential.
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Algorithm 5 Federated Class Sampling and Client Grouping GAN Algorithm
Data: List of clients, Number of rounds R, Epochs E, Class Labels L
Output: Set of Generators: {Glabel}label∈L

1 for each client c in clients do
2 Send class distribution of LocalDatac to server
3 end
4 Initialize global GAN models: Gglobal, Dglobal

5 for each class label label in L do
/* Server selects the class label and groups clients */

6 ClientGroups ← GroupClientsBySampleCount(label)
7 for each group in ClientGroups do
8 for each round r = 1 to R do
9 for each client c in group do

10 Load local data of class label: LocalDatac,label Initialize local models:
Glocalc , Dlocalc with Gglobal, Dglobal

11 for epoch = 1 to E do
12 Train Glocalc and Dlocalc using WGAN-GP on batch of LocalDatac,label

13 end
14 Send Glocalc and Dlocalc weights to server
15 end

/* Aggregate weights at the server */

16 Gglobal ← AverageWeights(Glocal from all clients in group) Dglobal ←
AverageWeights(Dlocal from all clients in group)

17 end
18 end

/* After training for the class label, save the generator model */

19 Glabel ← Gglobal

20 Distribute Glabel to all clients
21 end

4.7 Research Questions
RQ1: How does the accuracy of a federated learning model change across
different levels of data incompleteness??

Our methodology is explicitly designed to address this question. By simulating different
levels of incompleteness/non-IIDness using a Dirichlet distribution and observing the
performance of the federated learning model, we aim to understand the trade-off between
data completeness/non-IIDness and model accuracy. This approach allows us to system-
atically investigate how increasing data incompleteness affects the accuracy of a federated
learning model and how can we mitigate this drawback after GAN data imputation .

This procedure supports our research objective to improve federated learning models by
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better understanding the role of data distribution in their performance. Furthermore, it
provides insights on how to effectively use GAN-generated data to compensate for data
incompleteness, guiding the development of more robust federated learning models.

Table 4.2: Experimental Setup for Research Question 1

Aspect Details
# of Clients 8
# of Federated Settings 5 different settings (4 incomplete, 1 ideal)
α values for Dirichlet distribution 0.05, 0.1, 0.15, 0.20, 100
# of Rounds 6

RQ2: How will the accuracy of the federated learning model change with the
addition of GAN-generated synthetic data to the original incomplete data

To address this question, our methodology involves a systematic investigation of the
impact of GAN-generated data on the accuracy of the federated learning model. This is
done through a controlled study, which includes:

In the experimental phase of our study, we undertake a systematic approach to evaluate
the impact and effectiveness of GAN-generated data on enhancing federated learning
models. Our experimentation process involves establishing a baseline accuracy (RQ1)
by training federated models solely on original data. We then train GANs using the
techniques described earlier, generating data for varying non-IIDness levels. Using an
incremental approach, we integrate GAN data into the real dataset, training federated
models iteratively and recording accuracy. This process continues until additional data
fails to significantly improve accuracy. To analyze the influence of synthetic data (RQ2),
we rigorously compare model performance against baseline on a validation set of real
data. We visualize these findings by plotting model accuracies against corresponding
Dirichlet distribution alpha values, providing insights into GAN-generated data’s impact
across non-IIDness levels. This comprehensive approach answers our research questions
and validates the efficacy of our proposed methodology.

This question deepens our understanding of the utilization of GAN-generated data in
federated learning contexts. By directly evaluating the impact of synthetic data on model
accuracy, this approach contributes to the broader goal of enhancing federated learning
model performance, especially when real data may be imbalanced or incomplete.

Table 4.3: Experimental Setup for Research Question 2

Aspect Details
# of of Clients 8
# of federated fettings 4 types of incomplete settings
α values for Dirichlet distribution 0.05, 0.1, 0.15, 0.20
# of rounds after new data added 6
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RQ3: What is the quality of the generated dataset compared to the original
dataset??
We use the machine learning efficacy method to compare the quality of data. This
technique is used in papers like [56] and [57] to compare the quality of GAN generated
data with the Real data. There are 6 major steps involved here, which are described
below:

1. Data Preparation: Here, we split the original dataset into two subsets: Training
and Test. The Training set will be used to train the models, while the Test set will serve
as an unbiased evaluation. We also split the synthetic dataset in the same ratio (or same
number of instances) as the original dataset to maintain consistency in the evaluations.
2. Model Selection: This phase foucuses on specifically choosing machine learning
models. We choose Decision Tree, Random Forest, and SVM. Then ensure that the
chosen models are suitable for the data’s nature and complexity.
3. Training and Validation: Here, we train each model on the training subset of the
original dataset. Also train the same models (with the same initial configurations) on
the training subset of the synthetic dataset.
4. Performance Evaluation: In this phase, we test the models trained on the original
dataset and those trained on the synthetic dataset using the Test set from the original
dataset. Document the performance metrics (e.g., accuracy) for both sets of models.
5. Comparison: In this phase, compare the performance metrics of models trained
on the original dataset with those trained on the synthetic dataset. Also identify any
significant disparities in performance.

Machine learning efficacy plays a pivotal role in validating the authenticity of the synthetic
dataset, ensuring that it embodies meaningful insights rather than arbitrary information.
Through the utilization of established machine learning models and the comparison of
their performances on both the original and synthetic datasets, we establish an empirical
and quantitative assessment of the generated data’s credibility. Figure 4.7 provides a
visual representation of this process.

A primary aim of our research is to establish the dependability and practicality of
synthetic datasets. By evaluating the performance of models trained on synthetic data,
particularly in contrast to models trained on original data, we gain valuable insights into
the dataset’s quality and its potential relevance in real-world applications.

Let us now delve into the results to further explore these aspects.
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Figure 4.7: Machine learning efficacy technique.
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CHAPTER 5
Results and Analysis

In this section, we offer a thorough explanation of the findings from our research, focusing
on the key questions that frame our study. Our goal is to shed light on the intricate
relationship between incomplete data, the inclusion of synthetic data generated by GANs,
and the quality assessment of datasets. We explore three central research questions that
form the foundation of our work.

For RQ1, we investigate how the accuracy of federated learning models fluctuates when
faced with different levels of data incompleteness. We systematically vary these conditions
by adjusting the alpha values in the Dirichlet distribution. Through careful analysis,
we reveal detailed observations about how well the models adapt to various non-IID
conditions.

In RQ2, we examine the effects of adding GAN-generated synthetic data to the original
dataset. By stringently evaluating the subsequent changes in model accuracy, we gain
valuable insights into the benefits offered by the inclusion of synthetic data. This question
serves as the cornerstone of our innovative approach, highlighting its potential to improve
federated learning outcomes.

Lastly, for RQ3, we compare the quality of the synthetic dataset against the original
dataset. Using advanced evaluation methods in machine learning, we measure the
reliability and usefulness of the GAN-generated data quantitatively. This analysis
provides empirical data on the effectiveness and credibility of using synthetic data as an
augmentation approach.

5.1 Experimental Setup
In this section we describe the experimetal setup including hardware, software and
metrics used. The hardware table outlines key system details, such as the operating
system , RAM capacity , and processor attributes. The library table introduces four vital
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tools: "flwr", a Federated Learning framework; "matplotlib", a data visualization library;
"torch," a deep learning framework; and "scikit-learn," a versatile machine learning library.
These components collectively form the foundation for the project’s development and
exploration within the chosen computational environment. The evaluation metric used
for all the research question is ’Accuracy’.

Table 5.1: Hardware used

Specification Value
OS MacOS Ventura 13.3.1
RAM 8 GB 2133 MHz LPDDR3
Processor Name Quad-Core Intel Core i5
Processor Speed 1.4 GHz

Library Description
flwr==1.4.0 Federated Learning framework
matplotlib==3.5.3 Data visualization library
torch==1.13.1 Deep learning framework
scikit-learn==1.0.2 Machine learning library

Table 5.2: Important Libraries

Research Question Evaluation Metric
RQ 1 Accuracy
RQ 2 Accuracy
RQ 3 Accuracy

Table 5.3: Evaluation Metrics for Research Questions (RQs)

5.2 Research Question - 1
How does the accuracy of a federated learning model change across different
levels of data incompleteness??
As elaborated in the Methodology section, we employed a simple Classification model for
our Federated learning task. The model is trained using the FedAvg algorithm over six
rounds.
We will use accuracy as the key performance indicator to evaluate the federated learning
model’s efficacy under different settings.
Our results for Research Question 1 revealed a clear impact of data incompleteness, as
simulated through various alpha values in a Dirichlet distribution, on the accuracy of
the federated learning model. As the alpha value decreased, indicating a higher degree
of data incompleteness, the model’s accuracy consistently declined. This underlines the
inherent challenge posed by data distribution in federated learning contexts.
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The following are our findings for each of the four datasets we examined:

5.2.1 Dataset 1: Adult dataset

Figure 5.1: The plot displays the data distribution for each label within the Adult dataset
across various incomplete data settings. Correspondingly, the alpha values for these
settings are 0.05, 0.1, 0.15, 0.2, and 100

Referring to Figure 5.1, we illustrate the data distribution across various incomplete
data settings generated using the Dirichlet distribution. Specifically, we generated four
incomplete data settings and one ideal setting using the alpha values previously mentioned.
As can be seen in Figure 5.1, the first four plots represent settings with extreme data
incompleteness, while the last plot depicts a balanced, or ideal, setting.

Turning to Figure 5.2, we present the relationship between model accuracy and alpha
values, which serves to showcase the performance of our Federated Classification model
on the Adult dataset. For alpha values ranging from 0.05 to 0.20, the model achieves an
accuracy of approximately 76%. Additionally, we display the accuracy achieved in the
ideal federated setting, which is created with an alpha value of 100. Notably, there is an
8% difference in accuracy between the incomplete data settings and the ideal setting.
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Figure 5.2: The plot depicts the accuracy of the Federated Classification model on the
Adult dataset across various incomplete data settings and the ideal federated setting
where alpha = 100

5.2.2 Dataset 2: Intrusion dataset
Referring to Figure 5.3, we display the data distribution across various incomplete data
settings that were generated using the Dirichlet distribution. As with the Intrusion
dataset, we created multiple incomplete data settings along with one ideal setting, using
specified alpha values. As can be observed in Figure 5.3, the impact of varying levels of
data incompleteness is visually represented.

Turning to Figure 5.4, we discuss the correlation between alpha values and the accuracy
of the Federated Classification model, focusing on its performance with the Intrusion
dataset. A noticeable decline in accuracy is observed specifically at an alpha value of
0.05. For the remaining alpha values, the model’s accuracy closely aligns with that of
a ideal setting. Notably, there is an 19% difference in accuracy between the extreme
incomplete data setting and the ideal setting.
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Figure 5.3: The plot displays the data distribution for each label within the Intrusion
dataset across various incomplete data settings. Correspondingly, the alpha values for
these settings are 0.05, 0.1, 0.15, 0.2, and 100
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Figure 5.4: The plot depicts the accuracy of the Federated Classification model on the
Intrusion dataset across various incomplete data settings and ideal federated setting
where alpha = 100
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5.2.3 Dataset 3: Bank marketing dataset

Figure 5.5: The plot displays the data distribution for each label within the Bank
marketing dataset across various incomplete data settings. Correspondingly, the alpha
values for these settings are 0.05, 0.1, 0.15, 0.2, and 100
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Figure 5.6: The plot depicts the accuracy of the Federated Classification model on the
Bank marketing dataset across various incomplete data settings

In Figure 5.5, we exhibit how data is distributed across a range of incomplete data,
generated through the Dirichlet distribution. For the bank dataset, we crafted several
settings with data incompleteness, in addition to a single optimal or ideal setting, based
on predetermined alpha values. As evident in Figure 5.5, the various degrees of data
incompleteness are clearly illustrated.

Shifting our attention to Figure 5.6, we explore the relationship between the model’s
accuracy and different alpha values, with a particular focus on its efficacy on the Bank
dataset. A small dip in accuracy is marked, particularly when the alpha values are set at
0.05, 0.1, 0.15 . For 0.2 alpha, the achieved accuracy closely resembles that of an ideal or
balanced scenario. Importantly, there is only 2% gap in accuracy between the settings
with data incompleteness and the ideal setting.

5.3 Research Question - 2
RQ2: How will the accuracy of the federated learning model change with the
addition of GAN-generated synthetic data to the original incomplete data??

Our research also sought to understand how the addition of GAN-generated data can
alleviate this drop in accuracy due to data incompleteness. We found that the model’s
accuracy significantly improved when we added GAN-generated data, thereby compen-
sating for the initial data incompleteness. This suggests that GAN-generated data can
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Table 5.4: Summary of GAN Training Techniques

Technique Description
Federated GAN GAN is trained in the same fed-

erated manner as the classification
model.

Classwise Sampling GAN GAN is trained using classwise sam-
pling.

Classwise Sampling and Client Grouping GAN GAN is trained using a combina-
tion of classwise sampling and client
grouping.

be effectively used to boost the performance of federated learning models in the face of
data incompleteness.

In this analysis, we use three distinct GAN training techniques to generate fake data.
First, we consider the Federated GAN, where the GAN is trained in the same manner as
the classification model. Next, we explore the GAN trained using Classwise sampling.
Lastly, we use the GAN trained via a combination of classwise sampling and client
grouping.

5.3.1 Dataset 1: Adult dataset
Figure 5.7 illustrates the relationship between model accuracy and alpha values after
the incorporation of GAN-generated data. As indicated in the legend, four data lines
are presented: the red line represents the findings from RQ1, while the other three
lines depict the model’s accuracy after the addition of data generated through three
different GAN techniques. Notably, the Federated GAN displays inconsistent and poor
performance, exhibiting fluctuating increases and decreases in accuracy across various
incomplete settings, in contrast to the other two techniques.
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Figure 5.7: The plot illustrates the accuracy achieved by the Federated classification
model after incorporating synthetic data produced by the Federated GAN (Adult dataset).

5.3.2 Dataset 2: Intrusion dataset
Figure 5.8 elucidates the relationship between model accuracy and Alpha values after
the inclusion of GAN-generated data. As depicted in the figure, there is a marked
improvement in accuracy specifically in the setting with an alpha value of 0.05, following
the introduction of synthetic data. However, the Federated GAN demonstrates erratic
and underwhelming performance, as its accuracy fluctuates inconsistently across different
incomplete settings, unlike the other two techniques. It’s worth noting that, as shown
by the red line representing the results from RQ1, the original model had low accuracy
in the setting where the alpha value was 0.05. The addition of GAN-generated data,
through various techniques, leads to a significant increase in model accuracy.
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Figure 5.8: The plot illustrates the accuracy achieved by the Federated classification
model after incorporating synthetic data produced by the Federated GAN (Intrusion
dataset).

5.3.3 Dataset 3: Bank marketing dataset
Figure 5.9 clarifies the relationship between accuracy and Alpha values following the
incorporation of GAN-generated data. As illustrated in the figure, the overall model
accuracy declines after adding synthetic data from the GAN. Notably, the blue line
representing the Federated GAN exhibits the poorest performance relative to the other
techniques. The accuracy difference between the incomplete data settings and the ideal
setting is a mere 2 percent. This drop in performance could be attributed to the poor
quality of the GAN-generated data. One potential cause of this poor quality could be
significant class imbalance in the centralized dataset.
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Figure 5.9: The plot illustrates the accuracy achieved by the Federated classification model
after incorporating synthetic data produced by the Federated GAN (Bank marketing
dataset)

5.3.4 RQ2: Time analysis

The time analysis reveals noteworthy insights into the computational efficiency of various
GAN techniques. Federated GAN is the most time-efficient, with an average real-time of
407.07 seconds. This makes it approximately 1.6 times faster than Classwise Sampling
and Client Grouping GAN, which has an average real-time of 627.29 seconds, and about
1.6 times faster than Classwise Sampling GAN, with an average real-time of 664.31
seconds.

The Classwise Sampling GAN and Classwise Sampling and Client Grouping GAN tech-
niques appear to be more time-consuming, potentially due to the additional computational
overhead introduced by classwise sampling and client grouping mechanisms.

Thus, if time efficiency is a crucial factor, Federated GAN could be considered the most
suitable choice among these techniques. However, it’s essential to weigh this against
other factors like model performance and stability to make an informed decision.

Script Name Average Real Time (seconds)
Federated GAN 407.07

Classwise Sampling GAN 664.31
Classwise Sampling and Client Grouping GAN 627.29

Table 5.5: Average Real Time for Various GAN Techniques
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5.4 Research Question - 3

RQ3: What is the quality of the generated dataset compared to the orginal
dataset??

We make use of three different machine learning models—Decision Tree, Random Forest,
and SVM—to assess data quality through the machine learning efficacy technique.
However, all three models exhibit similar trends in their performance. As such, we will
present results exclusively using the Random Forest Classifier for the sake of brevity and
clarity.

To assess accuracy, we train classification model(Random Forest) on multiple datasets
and conduct evaluations on the real dataset. These training datasets consist of the actual
data and synthetic data produced by various GAN techniques, including Centralized
GAN, Federated GAN, Federated Classwise Sampling GAN, and Federated Classwise
Sampling with Client Grouping GAN.

5.4.1 Dataset 1: Adult dataset

Figure 5.10 depicts the relationship between accuracy and the Alpha values generated
through the Dirichlet distribution.

Our examination primarily focuses on comparing the data quality generated by the three
Federated GAN techniques. It’s important to note that, in general, the Federated GAN
technique produces data of lesser quality compared to the other two methods, except for
cases involving an Alpha value of 0.15.

Figure 5.10: This graph illustrates the behavior of both accuracy and F1 score in relation
to the alpha values from the Dirichlet distribution for the Random Forest classifier model.
(Adult dataset)
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5.4.2 Dataset 2: Intrusion dataset
Figures 5.11 illustrate the interplay between accuracy and F1 score in relation to the
Alpha values derived from the Dirichlet distribution.

Our primary focus is the comparison of the three Federated techniques used in GAN
data generation. Notably, the Federated GAN produces inferior and unstable quality
data compared to the other two methods.

Figure 5.11: This graph illustrates the behavior of both accuracy and F1 score in relation
to the alpha values from the Dirichlet distribution for the Random Forest classifier
model.(intrusion dataset)

5.4.3 Dataset 3: Bank marketing dataset
Figures 5.12 illustrate the interplay between accuracy and the Alpha values of the Dirichlet
distribution. As you can see from the figure 5.12, the 3 techniques almost follow the
similar trend except the Federated GAN data which is unstable.
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Figure 5.12: This graph illustrates the behavior of accuracy in relation to the alpha values
from the Dirichlet distribution for the Random Forest classifier model.(bank marketing
dataset)

5.4.4 RQ3: Stability Analysis
Federated GAN is generally the least stable across all three datasets. Class sampling and
Client grouping is the most stable in the Adult and Intrusion datasets. For the Bank
Marketing dataset, Federated GAN turns out to be the most stable.

In summary, if stability across different data sets is a significant concern, Classwise
sampling and Client grouping would likely be the most reliable choice based on these
results. Federated GAN appears to be more stable for the Bank Marketing dataset but
the accuracy of generated data is low compare to other techniques. Thus, the “best
stable” technique is Classwise sampling and Client grouping GAN.

Table 5.6: Standard Deviations of Accuracy of GAN Techniques - Adult dataset

Technique Standard Deviation
Federated GAN 0.1091

Classwise samping GAN 0.0102
Classwise sampling and Client grouping 0.0098

Table 5.7: Standard Deviations of Accuracy of GAN Techniques - Intrusion dataset

Technique Standard Deviation
Federated GAN 0.1506

Classwise samping GAN 0.0083
Classwise sampling and Client grouping 0.0029
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Table 5.8: Standard Deviations of Accuracy of GAN Techniques - Bank Marketing dataset

Technique Standard Deviation
Federated GAN 0.0498

Classwise samping GAN 0.0653
Classwise sampling and Client grouping 0.0556
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CHAPTER 6
Conclusion

In this chapter, we go over our main findings and limitations of our proposed system.
We finish by pointing out possible next steps for future research, especially focusing on
using GAN methods for federated learning in edge computing with the incomplete data.

6.1 Summary
The primary objective of this thesis was to enhance the accuracy of Federated classification
models in the context of incomplete data settings. To achieve this, we formulated three
research questions.

In our first research question, we examined how the accuracy of a Federated learning
model varies across different levels of data incompleteness. Our findings indicate that
for the Adult and Intrusion datasets, accuracy substantially decreased in extremely
incomplete data conditions. In contrast, the Bank Marketing dataset experienced only a
modest 2% decline in accuracy under similar conditions.

For the second research question, we explored the changes in the accuracy of the Federated
learning model after augmenting the original data with GAN-generated data. We
compared three different Federated GAN techniques for this purpose. Notably, the
Adult and Intrusion datasets exhibited encouraging results. The accuracy for the Adult
dataset improved by approximately 4% using both the Classwise Sampling GAN and the
Classwise Sampling and Client Grouping GAN methods. However, the Federated GAN
technique underperformed. For the Intrusion dataset, we observed an impressive 17%
increase in accuracy when using the Classwise Sampling GAN and the Classwise Sampling
and Client Grouping GAN techniques. In contrast, the Bank Marketing dataset presented
challenges due to the extreme imbalance in the centralized dataset. Consequently, the
quality of the generated data was subpar. The disproportionately small number of
samples for specific class labels may have contributed to these poor results. Moreover,
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the difference in accuracy between the ideal federated settings and the incomplete data
settings was a mere 2%. As a result, adding GAN-generated data to the mix actually led
to a decrease in overall accuracy.

In our third research question, we assessed the quality of the generated datasets in
comparison to the original datasets. For this analysis, we employed a Random Forest
classifier and examined the machine learning efficacy metrics. We observed that the
Classwise Sampling and Client Grouping GAN exhibited consistent stability across data
points.

6.2 Limitations
Although our methodology effectively tackles numerous challenges related to data incom-
pleteness in federated learning, it does have certain limitations. The following sub-sections
provide further details on these constraints.

Sharing of categories of categorical columns and data distribution to the
server

In this thesis, we address a critical limitation related to privacy in Federated Learning.
Specifically, the categories of categorical columns and data distributions are shared with
the server during the federated encoding step and client grouping process without the
use of encryption. In traditional Federated Learning scenarios, the primary focus is on
preserving data privacy by keeping sensitive data localized on the client’s device. However,
in our approach, certain meta-information about the data—namely the categories of
categorical variables and the distribution of data—is transferred to the server in plaintext.

This disclosure could potentially expose sensitive attributes of the dataset and compromise
the overall goal of data privacy inherent in Federated Learning frameworks. While our
method may improve the performance and efficiency of federated encoding and client
grouping, it does so at the expense of fully secure data handling.

Training time

The time required to adequately train a Generative Adversarial Network (GAN) model
can fluctuate significantly based on various factors. This is especially true for specialized
federated GAN techniques such as ’Classwise Sampling’ and ’Classwise Sampling and
Client Grouping’. In this context, two key variables that largely influence the training
time are the number of classes and the number of samples within those classes. In this
thesis, we only use binary class datasets for the evaluations.

Continuous Columns

In this work, we opted not to perform transformations on continuous columns, a decision
that diverged from several recent papers on similar topics. Those studies often utilize
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techniques such as Gaussian Mixture Models (GMMs) to transform continuous columns.
The rationale for not employing GMMs in our approach was twofold. Firstly, using GMMs
could necessitate additional processing to forward the data distribution, particularly
for continuous columns. More importantly, the primary objective of this research was
to develop techniques that minimally alter the original data distribution. Preserving
the integrity and authenticity of the data was paramount, and for this reason, we
decided against using transformation techniques like GMMs. Secondly, we examined the
performance of our models on the Adult and Intrusion datasets, both of which, after
encoding, had a large number of categorical columns. Specifically, there were around
100 encoded categorical columns as opposed to just 4 or 5 continuous columns. This
imbalance led to interesting observations.

We found that the Federated Classwise Sampling GAN and Federated Classwise Sampling
with Client Grouping GAN exhibited superior performance on these datasets. The large
number of encoded categorical columns seemed to mitigate the challenge of modeling
the distribution of the fewer continuous columns. This suggests that our approach was
effective even without transformations for continuous variables, particularly when the
dataset is predominantly categorical in nature.

6.3 Future work
In future work, we plan to use Gaussian Mixture Models (GMM) to make transformations
to continuous columns, allowing for a comparative analysis of performance metrics.
Techniques such as differential privacy or homomorphic encryption can also be leveraged
to preserve the privacy-centric focus of Federated Learning, especially during the federated
encoding of categorical columns and the sharing of data distribution.
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