
Signatory Tanja Zseby

Date/Time-UTC 2023-09-07T21:33:33+02:00

Verification Information about the verification of the
electronic signature can be found at:
https://www.signaturpruefung.gv.at

Note This document is signed with a qualified electronic
signature. According to Art. 25 para. 2 of the Regulation
(EU) No 910/2014 of 23. July 2014 ("eIDAS-Regulation") it
shall have the equivalent legal effect of a handwritten
signature.

ilJ
WIEN

TECHNISCHE
UNIVERSITÄT
WIEN
Vienna I Austria

Fast lnternal Relative Evaluation
of Outlier Solutions (Fast IREOS)

DIPLOMARBEIT

zur Erlangung des akademischen Grades

an der Fakultät für Informatik

der Technischen Universität Wien

Diplom-Ingenieur

im Rahmen des Studiums

Data Science

eingereicht von

Adrian Tobisch, BSc
Matrikelnummer 01227508

Betreuung : Univ.Prof. Dipl.-Ing. Dr.-lng. Tanja Zseby
Mitwirkung: Senior Scientist Dr.techn. Felix lglesias Vazquez

Wien, 31 . August 2023
Adrian Tabisch

Technische Universität Wien

9,t. INFo,,:

l ~ \ i

Tanja Zseby

A-1040 Wien • Karlsplatz 13 • Tel. +43-1-58801-0 • www.tuwien.ac.at

Fast Internal Relative Evaluation
of Outlier Solutions (Fast IREOS)

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Data Science

by

Adrian Tobisch, BSc
Registration Number 01227508

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dr.-Ing. Tanja Zseby
Assistance: Senior Scientist Dr.techn. Félix Iglesias Vázquez

Vienna, 31st August, 2023
Adrian Tobisch Tanja Zseby

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Adrian Tobisch, BSc

Hiermit erkläre ich, dass die vorliegende Arbeit gemäS dem Code of Conduct – Regeln
zur Sicherung guter wissenschaftlicher Praxis (in der aktuellen Fassung des jeweiligen
Mitteilungsblattes der TU Wien), insbesondere ohne unzulässige Hilfe Dritter und ohne
Benutzung anderer als der angegebenen Hilfsmittel, angefertigt wurde. Die aus anderen
Quellen direkt oder indirekt übernommenen Daten und Konzepte sind unter Angabe
der Quelle gekennzeichnet. Die Arbeit wurde bisher weder im In– noch im Ausland in
gleicher oder in ähnlicher Form in anderen Prüfungsverfahren vorgelegt.

Wien, 31. August 2023
Adrian Tobisch

v

Danksagung

Ich möchte die Gelegenheit nutzen und mich an dieser Stelle bei den Menschen bedanken,
die mich im Laufe meines Studiums unterstützt und auf diesem Weg begleitet haben.

In erster Linie möchte ich mich bei meinem Betreuer Dr.techn. Félix Iglesias bedanken,
der mir mit seiner fachlichen Expertise bei jeglicher Problemstellung stets zur Seite stand
und jederzeit ein offenes Ohr für Fragen hatte. Weiters möchte ich mich, insbesondere
bei meiner Supervisorin, Univ. Prof. Dr.-Ing. Tanja Zseby für die gute Zusammenarbeit
und das hilfreiche Feedback bedanken.

Besonderer Dank gebührt meinen Eltern Ilse und Franz und meiner Schwester Sarah,
die mich über die Zeit meines gesamten Studiums unterstützt haben. Weiters möchte
ich meiner Freundin Selina Brem für Ihre Ermutigung, Ihren Zuspruch und dass Sie
mir immer zugehört hat wenn ich über thesisrelevante Probleme klagte, danken. Nicht
zuletzt gilt mein Dank auch allen Freundinnen und Freunden, die mit mir den Weg durch
dieses Studium gegangen sind. Ohne Eure Hilfe wäre mir dieser Lebensabschnitt nicht so
gelungen, wie er mir gelungen ist.

vii

Acknowledgements

I would like to take this opportunity to thank the people who supported me during my
studies and accompanied me along the way.

First and foremost, I want to thank my supervisor, Dr.techn. Félix Iglesias, who supported
me with his professional expertise in any problem and was always available to answer my
questions. Furthermore, I would like to thank my professor and supervisor, Prof. Dr.-Ing.
Tanja Zseby, for the excellent cooperation and helpful feedback.

Special thanks go to my parents Ilse und Franz and my sister Sarah, who always supported
me throughout my studies. Furthermore, I would like to thank my girlfriend Selina Brem
for her encouragement and for always listening to me when talking about thesis-related
problems. Last but not least, I also want to thank all my friends who accompanied or
supported me during my studies. Without your help, I would not have been as successful
in this phase of my life as I have been.

ix

Kurzfassung

Die automatische Erkennung von AusreiSern ist ein wichtiger Schritt während der Daten-
aufbereitung und -verarbeitung von modernen Anwendungen, die maschinelles Lernen
und Data-Mining nutzen. Eine verlässliche Erkennung dieser Datenanomalien spielt eine
besonders wichtige Rolle bei Anwendungen in der Medizin, im Finanzwesen und in der
Industrie. Aus diesem Grund ist die Weiterentwicklung und Optimierung von effizienten
und effektiven Algorithmen zur AusreiSererkennung wünschenswert.

Die Hauptanwendungsfälle von unüberwachtem Lernen zur Extraktion von unbekannten
Informationen sind einerseits das Clustern, als auch die Erkennung von AusreiSern.
Jedoch sind sie oft fehleranfällig, da sie auf Kriterien und Parametern beruhen, die
Modelle vorgeben die den Daten nicht entsprechen. Dies macht eine Form von Validierung
notwendig, welche entweder extern (ground truth) oder intern (Struktur der Daten)
geschehen kann. Obwohl es in der Literatur einige Ressourcen zu interner Validierung für
Clustering gibt, so sind diese in der Domäne der AusreiSererkennung unterrepräsentiert.

Ursprünglich veröffentlicht im Jahr 2015, ist IREOS eine der wenigen existierenden,
internen Validierungsmethoden im Gebiet der AusreiSererkennung. Das Ziel dieser Di-
plomarbeit ist eine Untersuchung von IREOS bezüglich Performance, sowie Möglichkeiten,
um den Algorithmus weiter zu beschleunigen. Die Verwendung verschiedener Klassifika-
toren wie lineare und baumartige Klassifikatoren wurde in Bezug auf die ursprüngliche
Technik untersucht, indem mehrere Datensets auf einer alternativen Implementierung von
IREOS unter Verwendung der Programmiersprache Julia ausgeführt wurden. Neben dem
direkten Vergleich mit der Leistung von IREOS, ging es bei dieser Arbeit vor allem darum,
die Laufzeit zu verbessern und gleichzeitig die Qualität der Ergebnisse des Algorithmus
beizubehalten, indem sichergestellt wird, dass die resultierenden Zahlen innerhalb des
Bereichs der von IREOS erzielten Werte bleiben.

Einige der getesteten Klassifikatoren zeigten statistisch gesehen ähnliche Ergebnisse wie
die ursprüngliche Implementierung. Der schnellste Klassifikator konnte eine Berechnung
für die IREOS über 50 Minuten benötigte, auf etwa 1 Sekunde reduzieren. In unseren
Experimenten lieferten insbesondere baumartige Klassifikatoren und nicht-lineare SVMs
qualitativ sehr ähnliche und konsistente Ergebnisse, mit nur einem Bruchteil der Aus-
führungszeit von IREOS. Die Ergebnisse zeigen das Potenzial von weniger komplexen
Klassifikatoren, die intern für die Erkennung von Anomalien verwendet werden, und die
Einschränkungen in Bezug auf ihre Stabilität bei verschiedenen Parametereinstellungen.

xi

Abstract

Automatic outlier detection marks an important step in the process of data preparation
and processing for modern applications of machine learning and data mining. Accurately
identifying and eliminating anomalies within data plays an important role in real-world
applications found in medical, financial, and industrial fields. Thus, the development and
optimization of efficient and accurate implementations of outlier detection algorithms is
highly desired.

Unsupervised learning, either clustering or anomaly/outlier detection, are very common
tools to extract a priori unknown information about the data under analysis. However,
they often fail, as they are based on criteria or parameters that may impose models
that are not natural to the data. Validation is necessary, both externally (i.e., compared
with a ground truth) and internally (i.e., based on the inherent properties of data).
And, although there are many methods for internal validation of clustering, the internal
validation of outlier solutions is still underrepresented in the literature and remains a
challenge in the field of data mining.

Originally released in 2015, IREOS is one of the few existing internal validation methods
for anomaly detection algorithms. This thesis aims to investigate the behavior and
performance of the recently introduced technique IREOS and to find ways to speed up
the applied algorithm and implementation thereof. The use of different classifiers such as
linear and tree-based classifiers concerning the original technique was studied by running
multiple datasets on a self-written alternative implementation of IREOS using the Julia
Programming Language. In addition to the direct comparison to the performance of
IREOS, the primary focus of this work was to improve already existing evaluations of
outlier detection while retaining the quality of the algorithm’s output by ensuring the
resulting outlier scores remain within the range of those obtained by IREOS.

Under empirical evidence, some of those tested predictors showed statistically similar
results to the original implementation. The fastest predictor was able to speed up a
calculation IREOS needed over 50 minutes to around 1 second. In our experiments,
especially tree-based predictors and nonlinear support vector machines deliver highly
similar and consistent results with only a fraction of the execution time of IREOS. Results
show the potential of lightweight predictors being used internally for anomaly detection
and the limitations in regard to their stability over different parameter settings.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 3
1.3 Research Questions, Goals and Methodologies 5
1.4 Structure . 6

2 Background Knowledge 7
2.1 Outlier Detection . 7

2.1.1 Parametric models . 8
2.1.2 Non-parametric models . 8

2.2 Validation in Outlier Detection . 13
2.2.1 External Validation . 15
2.2.2 Internal Validation . 18
2.2.3 Adjustment for Chance . 20

2.3 Internal Relative Evaluation of Outlier Solutions: IREOS 22

3 Methodology and Experiments 29
3.1 Datasets . 29

3.1.1 MDCGen Datasets . 29
3.2 Data Preprocessing . 32

3.2.1 Training Data . 32
3.2.2 Outlier Scores . 33

3.3 Classification Algorithms and Models 36
3.3.1 Kernel Logistic Regression . 37
3.3.2 Support Vector Machines . 38
3.3.3 Tree-Based Approaches . 41
3.3.4 LibLINEAR . 44

3.4 Sampling Methods and Subsetting . 44

xv

3.4.1 Sliding Windows . 45
3.4.2 Coresets . 46
3.4.3 Microclustering . 47

3.5 FIREOS . 48
3.5.1 General Characteristics . 48
3.5.2 Normalization Interface . 51
3.5.3 FIREOS Implementation . 55
3.5.4 Caveats and Limitations . 59

3.6 Description of Experiments . 61
3.6.1 (S1) First Series of Experiments: FIREOS 62
3.6.2 (S2) Second Series of Experiments: IREOS 62
3.6.3 (S3) Third Series of Experiments: External Validation 62
3.6.4 Evaluation of the Experiments 63

3.7 Comparableness with IREOS . 64

4 Results and Discussion 67
4.1 Evaluation Performance . 67
4.2 Execution Time and Speedup . 80
4.3 Discussion . 86

5 Conclusions 89

A Appendix 93
A.1 FIREOS Results . 93

List of Figures 111

List of Tables 117

Bibliography 119

CHAPTER 1
Introduction

This chapter presents Fast Internal Relative Evaluation of Outlier Solutions (FIREOS),
an alternative approach for the internal validation of outlier detection performances. We
introduce the related technical background, explain the motivation of our research, and
outline the followed methodology and the targeted goals. The chapter finishes with a
depiction of the section structure used in this work as well as an outcome for possible
extensions in future works.

1.1 Background
The goal of outlier detection is to find data points in data that deviate from expected
behavior. It marks a crucial step during the preprocessing phase of the data science
process and is needed to handle noisy and faulty samples. Outliers can be classified
into different subtypes such as global outliers, contextual outliers, and local outliers
Figure 1.1. Global outliers or point anomalies are instances that diverge significantly
from the totality of the data [Mod16]. Different from global ones, local outliers only
show an uncommon deviation to their surrounding points or local group. If multiple
outlier instances group together into a collection where each individual sample is no
longer anomalous, but the accumulated cluster is, the literature [Agg17] [SU12] terms
them as collective outliers.

Detecting local outliers tends to be more difficult than global ones since the optimal
number of clusters for the underlying model of data partitioning is difficult to calculate
for an arbitrary dataset [NCZW18][DK22]. Besides outlier detection methods that seek
anomalies by comparing only data attributes and therefore being unconditional, the
literature differentiates between another type of detection that is conditional [Hon20].
Such methods rely on certain input conditions which provide further insight on how
different partitions sharing a common context behave. Conditional or contextual outliers
may be even harder to detect since an optimal weighting between unconditional and

1

1. Introduction

conditional must be known a priori in order to prevent misclassified inliers from being
contextual outliers and vice versa.

Figure 1.1: Different types of outliers. Contextual outliers are not represented in the
figure. Drawn based on [Kha21, Figure 2]

But why is the classification of anomalies that important? Besides their influence in
statistical models, anomalies transfer significant and often critical information in a wide
range of application domains that can be processed further [CBK09]. Anomaly detection
is not only a necessity for cleaning input data but rather the key appliance for many
big data applications in the modern world. Monitoring and fraud detection systems
mostly rely on the deviation of given instances in relation to common and known cases
to detect anomalies. According to PwC’s Global Economic Crime and Fraud Survey in
2020 over 42 billion dollars of losses over the time of 2 years were caused by fraudulent
incidents [PwC20]. The application area of fraud detection software spans from banking
and financial services (credit card fraud, money laundering), IT and telecommunication
(phone fraud, network monitoring) to E-Commerce and Retail (delivery fraud, payment
fraud, fake reviews) [Kan21]. It is estimated that the area of fraud detection and
prevention keeps expanding by an annual growth of 23.2% reaching 190 billion dollars by
2030, according to Straights Research [Res22].

These numbers on their own show the opportunities on how to use anomaly detection
directly for real-life use cases – not to mention that nearly every data cleaning process of
software utilizing machine learning should feature outlier handling at some point before
deployment. Fraud detection is only one of multiple applications where anomaly detection
is required. These aspects of handling outliers open various interpretation possibilities.
In order to take full advantage of projecting the data onto a model as effectively as

2

1.2. Motivation

possible, some domain context must be understood by the user. As stated in the previous
section the pure discovery of outliers might be the entire problem frame – once they are
classified the problem is solved. However, anomalies are often not desired, unintended
and lead to methods having less power - hence unreliable results [Val21]. If the outlier is
a faulty measurement and just adds disproportional noise, it is better dropped. Does the
outlier affect the assumption or just the results? How important is the preservation of a
statistical model based on certain assumptions like normality [oST]? Might a gathering
of deviating samples result in a new cluster and therefore being a novelty rather than
erroneous? In the end, the influence and consequences of anomalies are dependent on the
use case and cannot be decided by the method itself. Ruff et al. [RKV+20] address this
difficult task of differentiating between the terms "Anomaly", "Outlier" and "Novelty" by
distinguishing the objective or consequence in an application rather than the detection
method itself: Anomalies act as data points of special interest (e.g., long-term survivors
of a disease), outliers are treated as "measurement error" or "noise" that is recommended
to be removed during preprocessing as it does not serve any beneficial purpose by keeping
it, and novelties which act as the "new normal" existing models need to adapt.

Each outlier detection algorithm is constructed on a set of base assumptions that lead to
different pictures of what is classified as an anomaly and what is not. This work is aimed
to study and make feasible a measurement to evaluate outlier solutions that do not rely
on prelabelled samples and is solely based on intrinsical properties of data. Thus, the
evaluation is decoupled from application-dependent assumptions. Internal evaluation
is not intended to replace external evaluation (only if missing or not available), but
to complete it, enrich the interpretation and allow the generalization of the knowledge
obtained.

1.2 Motivation
Outlier detection has been a hot topic in the literature for some years and new methods
based on various outlier definitions were proposed and further refined over the course of
time. Nonetheless, an anomaly detection algorithm that is universally superior to the
others does not exist leading to the question of how to measure the "quality" of an outlier
solution.

A common validation method in the literature is external or supervised validation which
relies on labeled data emerging from empiric observations, that are evaluated against
different target models typically favoring the least deviating one. Despite being an
effective method for fair evaluation [FGK+10] this dependence on the gold standard
raises the following question:

Where do these labels come from, and can those be trusted?

Large amounts of labeled data are not available in all domains, which results in high
demand for methods that do not rely on them. Unsupervised or internal evaluation
focuses merely on the topological and spatial characteristics of the data to implement

3

1. Introduction

a translucent measure of “outlierness”, and thus does not need any external labeling.
While unsupervised learning has been widely adopted for clustering and classification, it
remains comparatively unnoticed in the area of anomaly detection, which results in a
non-negligible gap in the landscape of different evaluation metrics. Internal validation
methods such as IREOS should be paid more attention to and developed further to
strengthen the trust towards unsupervised learning and unlabelled data.

The second drawback of external validation is potential label bias originating from certain
assumptions of the underlying data that favor a specific algorithm. This risk is especially
present when the data is labeled by a specific algorithm. Although it remains clear that
the total exclusion of any assumption of a given dataset is not possible, a reduction to a
neutral baseline should be desired.

But why can eliminating external influence be beneficial in the first place?

Most events do not occur uniformly by nature. An empiric number of observations
or unequal probabilities for each outcome creates an uneven distribution of samples
for each event. Especially the field of outlier detection suffers from that phenomenon
since anomalies tend to be less frequent than inliers by definition. One major pitfall
for many machine learning applications is the problem of class representation bias
[DHP+11][JALK16][BDH+19]. Improperly treated, severe class imbalances lead to bad-
performing models and incorrect conclusions due to the distortions in the data. Both
supervised and unsupervised learning approaches are affected by class representation,
but differently. A supervised learning algorithm may not identify anomalies, noise or
novelties as something different to what has already been learned. On the other hand,
unsupervised learning also faces these issues when dealing with clusters of different density
and cardinality.

Besides technical aspects, the implementation of unsupervised learning models is also
beneficial to economic factors, such as monetary costs. Labeled data often has to be
acquired manually by asking a domain expert. Domain experts of important knowledge
tend to be expensive, not always available and moreover still transfer personal bias into
the data. In a supervised learning scenario, a possible method to mitigate the latter is
the involvement of multiple experts resulting in even more costs. Unsupervised learning
serves as a good addition to labeled data since it minimizes personal bias about the data
[Li17]. Furthermore, an unsupervised model can be helpful by creating ground truth and
an additional backbone to possible labels. In conclusion, internal validation provides
a vital contrast and complementary knowledge to the most commonly used external
validation and, therefore deserves particular attention.

Lastly, one of the main aims of this work is to speed up an internal evaluation algorithm
that is computationally expensive. As a computer scientist, I aim to simplify complex
problems and mitigate worst-case scenarios. Machine learning algorithms should be
optimized where possible to reduce environmental costs, such as energy consumption and
computational hardware, needed for operating big data applications as well as increasing
the incentive for people to participate and enrich the data science community by making

4

1.3. Research Questions, Goals and Methodologies

it possible to run algorithms on consumer machines. Since the “free lunch is over”
and major processing manufacturers lack the space for significantly boosting single-core
performance [Sut05], it should be in everyone’s interest to utilize multicore devices as
much as possible.

One groundbreaking reason why unsupervised learning is not adopted more frequently in
real-life applications is that it often results in a lack of control when evaluating procedures.
The absence of a ground truth related to the underlying input data often makes it seem
unreliable or prone to failure. In addition to the mere possibility of malfunctioning, we
may not even realize when and why errors happen, which casts an even more problematic
light on the situation. But all of this makes it so crucial to invest resources into improving
internal evaluation to make it more robust and expressive to pave the way for better
integration in real-world systems.

1.3 Research Questions, Goals and Methodologies
This thesis deals with setting up a more lightweight implementation by extending the
already established internal evaluation method IREOS and measuring its performance.
The main focus of this work is twofold.

The first goal that is aimed to be achieved is to reduce the computational complexity
of the algorithm and reach a faster implementation of the original IREOS (G1)
implementation by Marquez et al. [Mar20]. We want to provide an answer to our first
research question:

Which components of IREOS can be replaced by equivalent methods to obtain
faster performances and minimally affecting accuracy? (RQ1)

To reach this goal we: (1) change the programming language into a faster one and
provide both a sequential and parallel implementation; Furthermore, (2) we conduct
structural adjustments on the algorithm to accelerate the calculation with the main focus
on replacements of the internal predictor; Especially (3) less complex predictors such as
Support Vector Machines, which are particularly suggested in the original paper due to
their nonlinear and soft margin properties, tree-based approaches and linear classifiers
are tested during the experiments; Besides replacing the algorithm (4), we also leave out
adaptive quadrature for each element and reduce the input space by sliding windows,
which both promise a significant speedup because each separation relies on at least three
trained predictors; Finally, (5) we run both implementations on the same datasets in the
same environment and statistically compare their runtimes.

Furthermore, in order to ensure the quality of the new implementation, it should remain
consistent when compared to other evaluation metrics. The second goal is to evaluate
to which degree IREOS and FIREOS are consistent with existing external
validation metrics. (G2) In this respect, one of the main challenges is if different
predictors that do not feature nonlinear and soft margin properties are able to retain
the quality of assessing different solutions when compared to both the original IREOS

5

1. Introduction

and state-of-the-art external evaluation metrics. These external evaluation metrics are
mentioned in Section 2.2 and further explained in Section 2.2.1. All this amounts to
answering the following second research question:
How does IREOS/FIREOS align with external evaluation metrics and, conse-
quently, which type of outlierness definition is favored by IREOS based on
empirical evidence? (RQ2)
We reach this goal by: (1) a selection of classifiers that promise interesting results,
due to their ability of being fast, non-linear and stable when sampled into forests or
boosted; Apart from that (2), we do further finetuning by performing tests of different
hyperparameter settings that are (i) inspired by those from the original implementation
of (ii) recommended defaults by the underlying library itself; Ultimately, (3) we contrast
results coming from FIREOS against (i) the solutions of the original IREOS of the Java
implementation and (ii) existing external state-of-the-art metrics, to prove if there is a
certain amount of consensus between them.
Additionally, this work comes with a new software module called FIREOS (Fast-IREOS)
that contains all modifications and possible options tested in the experiments. To point
out the advantages and disadvantages of several estimators in terms of parallelization
in detail, a multithreaded implementation containing all features is delivered as well.
All parts of the program are targeted to be reproducible and clearly arranged, which
is the reason to include another layer of abstraction for possible usage in the form of a
command line interface.
In the end, FIREOS is aimed to be a public library that is simple, intuitive, and able to
be used out-of-the-box.

1.4 Structure
This work is organized into the following chapters.

• Chapter 1: Gives a brief introduction to the reader

• Chapter 2: Focuses on providing more in-depth knowledge to perform later ex-
periments. Furthermore, an introduction to outlier detection and state-of-the-art
algorithms and techniques are presented.

• Chapter 3: Serves as one of the main chapters describing the methodology and
composition of the experiments in more detail. Besides the setup of the overall
project, a detailed explanation of the new implementation is provided.

• Chapter 4: Summarizes the results of the experiments that were presented previ-
ously.

• Chapter 5: Draws a conclusion from the results and discusses possible further work
in the future.

6

CHAPTER 2
Background Knowledge

In this chapter, we want to make the reader familiar with the main outlier detection
algorithms that are later covered in the experiments as well as some other recent
approaches. We present different validation techniques in unsupervised learning and the
current state-of-the-art of outlier detection to prepare the reader for the experiments later
on. We finish this chapter with a more detailed elaboration of IREOS, which serves as
the foundation for all adjustments that ultimately lead to the development of FIREOS.

2.1 Outlier Detection

Outlier detection is a composition of different aspects spanning from anomaly detection,
novelty detection, noise detection, deviation detection and exception mining [HA04].
Since their usage is tightly interconnected to the context of the problem definition
and most of them differ only by their conclusions and post-processing, this work uses
exclusively the term “outlier detection” for simplification. According to Grubbs [Gru69]
“an outlying observation, or "outlier", is one that appears to deviate markedly from other
members of the sample in which it occurs.”

In a machine learning setting, outlier detection can be explained as a classification
problem, where an anomaly detection algorithm creates a model from input data to cast
predictions on new samples if they are an outlier or not. Since the categorization of
predictions consists of two possible outcomes, outlier detection is a binary classification
problem and its methods are procedures that are able to classify outlying observations
from a population. More complex models do not only predict those labels but also
provide the probability of being an outlier. Outlier detection algorithms can be broadly
divided between parametric (statistical) and non-parametric (model-free) methods that
are following different paradigms [WBH+02][BG05].

7

2. Background Knowledge

2.1.1 Parametric models

Parametric models consist of a finite set of parameters that are used to create a model
from a given population [Ayu21][Ani12]. They either assume the underlying distribution
of given observations or are based on statistical estimates of unknown distribution
parameters [BG05]. Since many distribution functions are univariant and only have a few
degrees of freedom they tend to be unsuited for multivariant as well as high-dimensional
datasets [PKGF03]. One of the most common parametric anomaly detection methods
is the usage of Z-scores. Z-scores are using the property that if X is distributed as
X ∼ N (µ, σ2), then Z = X−µ

σ is distributed as N(0, 1)[Hoa13]. The literature often
refers to 3 as the outlier threshold for Z-Scores. In other words, each value exceeding
a Z-Score of this threshold should be classified as an outlier. Although the general
intuition of Z-scores is effective, using the standard deviation as an outlier detection
method results in many false positives and should be replaced by the Median Absolute
Deviation (MAD) [Ley13]. As an estimator, the sample median provides high robustness
since it does not react as sensitive to data changes as the arithmetic mean. This adjusted
technique of using MAD as a modified Z-score recommends a threshold of 3▷5 for outliers
[Hoa13]. Figure 2.1 shows the differences of Z-scores and modified Z-scores of the same
underlying data.

2.1.2 Non-parametric models

Nonparametric models on the other hand are not specified a priori but instead directly
determined from the observed data [Sal17].

For example, Local Outlier Factor (LOF) [BKNS00] uses the local density of each point
to identify uncommon observations that diverge from the majority of the data. These
densities yield into the LOF of each point which is computed by their nearest neighbors.
Points having the lowest local densities are considered to be outliers. Since the calculation
of local densities for n points requires n · k-nearest neighbor searches its computation is
exceptionally expensive [YCR17][Tok22]. Figure 2.2 visualizes LOF for a two-dimensional
problem and provides example scores on some of the data points.

Differently from LOF, other outlier detection methods in the literature use measures of
distance Figure 2.3 to differentiate between similar and dissimilar. These techniques are
also referred to as distance-based methods and are also nonparametric [AP02]. As Knorr
et al. introduced them in 1998 [KN98], distance-based outliers are defined as follows:

“An object O in a dataset is a DB(p,D)-outlier if at least a fraction p of the other objects
in the dataset lies greater than distance D from O”.

Although being one of the more intuitive approaches, distance-based measures suffer
from finding a fitting distance metric for a given problem [RRS00]. Furthermore, it is
particularly strongly affected by “the curse of dimensionality” since the algorithm is
exponential in the number of dimensions [AP02].

8

2.1. Outlier Detection

Figure 2.1: Outlier detection by Z-Scores and modified Z-Scores. Each data point outside
the outermost blue ellipsis is considered an outlier. The underlying code is inspired by
[Mis23f]

Nearest-neighbor-based techniques combine both principles from above by comparing
the distances of the KNN. Ramaswamy et al. [RRS00] propose to compare the sums of
all nearest neighbor distances for each point and sort them descending to their distance.
The first N points are considered to be outliers. [HPN11]

An alternative approach has been made by introducing angle-based outlier detection
Figure 2.4 or ABOD respectively. Instead of using local densities or distances, the main
assumption is that the variance of angles between different pairs of points tends to be
less for outliers than for inliers [KSZ08][PP12].

Although the general concept of ABOD has a time-complexity of O(n3), which is consid-
erably worse than O(n2 +k) of LOF the original paper by Kriegel et al. [KSZ08] proposes
a faster approximation (FastABOD) that reduces its complexity to O(n2 + n · k2). The
robustness of ABOD in datasets that consist of a high number of features is especially
advantageous for high-dimensional data.

Although many of the previous algorithms were further enhanced for certain use cases:
Local outlier probabilities (LoOP) [KKSZ09], Local Density Factor (LDF) [LLP07],

9

2. Background Knowledge

Figure 2.2: Visualization of LOF outlier scores using ELKI. The dataset is artificially
generated to highlight LOF strengths. Some interesting LOF scores are printed for k=5.
[WC10]

Local Distance-based Outlier Factor (LDOF) [ZHJ09], Top-N local outliers (TOLF)
[YCR17], Connectivity Outlier Factor (COF) [TCFC02], Cluster-Based Local Out-
lier Factor (CBLOF) [HXD03], Local Density Cluster-Based Outlier Factor (LDCOF)
[AG12], Local Correlation Integral (LOCI) [PKGF03], Influenced Outlierness (INFLO)
[JTHW06], GRIDLOF [CF03], Outlier Detection using Indegree Number (ODIN) [HK04],
Dynamic-Window Outlier Factor (DWOF) [Mom13], Distributes LOF computing (DLC)
[BWXW15] and more mentioned in [WBH19] they particularly have a weakness in big
data and stream data applications since they are a lazy learner and computational costs
are usually quite expensive when new objects are evaluated. In contrast to them Iglesias
Vázquez et al. [IV18] propose the concept of Sparse Data Observers (SDO) which utilizes
eager learning to minimize computational costs after initially training the model. The
main concept is to randomly select a subset of points that are located in medium-to-high
density zones as observers, which are later used as anchor points to evaluate instances
based on proximity measures [MIVZ22]. The algorithm is particularly well suited for
large datasets and stream data environments due to its linear O(n) time complexity and
roots in principles of sampling theory [IV18]. Another unsupervised approach features

10

2.1. Outlier Detection

Figure 2.3: Principle of distance-based outlier detection. A datapoint x is classified as
an outlier if less than k points are within distance d from x. Drawn based on [KN22,
Slide 4].

Figure 2.4: The intuition of angle-based outlier detection. Samples that are further away
tend to construct smaller angles. [KSZ08, Figure 1].

the usage of histograms that have either static or dynamic bin widths [GD12]. The
Histogram-based Outlier Score (HBOS) is calculated by creating a univariant histogram
for each feature in the dataset and therefore assumes feature independence [PB19]. Higher
bins represent value ranges of denser areas and are weighted higher than bins covering a
larger interval [GD12]. The primary intuition behind HBOS can be observed in Figure 2.5.
Global outliers usually populate sparse areas so even when the histogram consists of a

11

2. Background Knowledge

small number of bins these instances belong to a bin with low height that is separated
from most of the data points. As can be observed in the figure, those low bin heights
tend to be mostly on the edge of the histogram.

HBOS is significantly faster than other density-based outlier detection methods offering
a linear time complexity of O(n) when using fixed bins and O(n · log(n)) for dynamically
sized bins and offering comparable reliability when it comes to detecting global outliers.
However, local outliers are often misclassified since histograms are not able to model
them properly.

Figure 2.5: The intuition of histogram-based outlier scores. High bin heights in the
histogram indicate low HBOS scores and inliers. Low bin heights are interpreted as
outliers.

With the increasing popularity of machine learning, classification and regression algo-
rithms were applied to anomaly detection problems. Artificial Neural Networks (ANNs)
[MS03][WBH+02][MJS02] were considered powerful tools to learn complicated non-linear
properties from underlying data. However, these approaches were not widespread in the
outlier detection community since computational costs became too expensive for large
datasets and small datasets were prone to overfitting [CSAT17]. Support Vector Machines
(SVMs) on the other hand [SSB18][WYT07][HLV03] are often applied on datasets with
a relatively small number of variables [BL10]. Although the majority of these learning
techniques rely on labeled data and are therefore supervised, the One-Class Support Vec-

12

2.2. Validation in Outlier Detection

tor Machine Figure 2.6 (OC-SVM or 1SVM) is a variant of the regular SVM that utilizes
unsupervised learning [AGA13][ERKL16]. In contrast to learning a decision boundary to
segregate between different labels, OC-SVMs achieve the maximum separation between
points and the origin [SWS+99].

Figure 2.6: Outlier detection intuition in one-class SVMs. The data is separated from
the origin with a maximum margin by applying a function f that returns +1 in "small"
regions capturing most of the data points and -1 elsewhere. [AbdO06, Figure 1]

A completely different approach was taken by Liu et al. [Liu08]. Since anomalies are
scarce and mostly deviate from the majority of data by definition, they are easier to
separate and more susceptible to isolation. Isolation forests Figure 2.7 are based on
building random binary decision trees to divide (“isolate”) the current sample from the
rest [Mah20][Mis20a]. An individual forest uses an ensemble of different isolation trees
to increase stability and performance [Die00][Sch90]. Each isolation tree is completed
when a leaf node exclusively contains the corresponding sample. If the datapoint tends
to be separated earlier (“short path”) on average, the probability of being an outlier is
higher than samples with a longer path [GZSL19].

2.2 Validation in Outlier Detection
Machine learning algorithms are powerful methods to generate knowledge from data and
can be broadly classified into supervised and unsupervised learning. In supervised learning,
models are trained on labeled data to make predictions on unknown and unlabeled data
[Dri21][SB98]. These labels can range from discreet binary yes/no labels to continuous
variables such as the price for a certain good and must be known beforehand.

13

2. Background Knowledge

Figure 2.7: Isolation trees for different data samples. Inliers tend to be harder separable
than outliers. [HCB18, Figure 5]

Different from supervised learning, unsupervised learning does not need this predefined
labeling for performing that task [Bar89]. It utilizes certain properties of the data to
identify and extract patterns automatically without the need for any external guidance
[Dri21]. The literature often refers to three main tasks where unsupervised learning can
be effectively applied on [IBM23]. These are clustering, association and dimensionality
reduction [Smo22]. Clustering is used to find specific hidden patterns in the data by
properties of similarity and dissimilarity and is the most common approach. Clustering
algorithms operate on unclassified data points in order to categorize and group them into
subsets referred to as clusters [IBM23]. The second procedure is the learning of association
rules [PS91]. Association rule learning uses data mining techniques to uncover different
relations between instances of a population that are frequently used together [KC14].
Lastly, unsupervised learning may also be used for dimensionality reduction. Although
taking more data into account generally yields more accurate results, especially high
dimensional datasets might lead to overfitting models. Dimensionality reduction promises
to mitigate these concerns since it transforms data to a lower dimensional subspace while
trying to retain the essence of the data as much as possible [Mur][Bro20][VdMPVDH09].

Regardless of the context and use case method mentioned, model validation remains a
crucial step in the process of finding the optimal algorithm. Machine learning validation
is needed to assess the quality of the learned model and its interpretability and can be
broadly categorized into internal and external validation [HPWG20].

Internal validation methods do not rely on any external information to evaluate the
clustering structure [PN19] since they focus on two properties where labeling is not
needed. First, there is cohesion, which is the proximity of different objects within the
same cluster. Higher cluster cohesion indicates better compactness and mostly a more

14

2.2. Validation in Outlier Detection

accurate clustering. Other than cohesion, the separation between objects describes the
level of detachment between different clusters and provides information about how well
they are partitioned [LLX+10]. Objects having a high separation from each other should
be in different clusters since high separation leads to large cluster diameters, which
opposes the principle of cohesion. An optimal clustering solution usually consists of
different tight clusters that are far away from each other.

External validation on the other hand uses a solution known in advance, which is empirical
evidence and known as "Ground Truth". A solution is considered to be better the higher
the statistical similarity against these true labels.

2.2.1 External Validation
This work deals with commonly used external evaluation algorithms such as:

• Area Under the ROC Curve

• Precision@n

• Average Precision

• Adjusted Average Precision

• Maximum F1 Score

• Adjusted Maximum F1 Score

following a similar procedure like Campos et al. [CZS+16][IV18]. All experiments are
conducted exclusively by indices that are adjusted for chance as well as AUC and Adjusted
Mutual Information. More details about the exact experimental setup and used external
evaluation metrics are provided in Section 3.6.

Before starting to look into these methods in more detail, it is crucial to define the basic
terminologies of binary classification. Binary classification tasks result in two possible
prediction outcomes on two different axes. The first axis is the classification outcome
from the model to be tested, different from the second which consists of the actual
result. Both outcomes and axes shape the so-called confusion matrix Figure 2.8 that
differentiates between four different cases for binary classification.

When referencing the confusion matrix these four different outcomes become important
in regard to its definition. First, there is the true positive (TP) rate that counts the
number of real positives that were identified by the model as such. Differently from
TP, a false positive (FP) is an outcome where the prediction is positive but the sample
is negative - therefore, a misclassification. Then there are true negatives (TN) which
are correctly classified negatives and lastly, false negatives (FN) which are incorrectly
classified positives. Depending on the use case and the desired outcome the model tries to

15

2. Background Knowledge

solve, different outcomes in the confusion matrix become more or less important for the
evaluation. In the field of outlier detection TP and FP refer to the correctly classified
outliers and inliers where FP and FN are wrongly classified outliers and inliers.

Figure 2.8: Confusion Matrix for Outlier Detection Problems. [WT20, Table 2]

Receiver Operating Characteristics (ROC) is a popular method to evaluate the discrimi-
nation ability of model predictions independently to their exact statistical characteristics
[HM82]. In information retrieval and applied machine learning for binary classification,
these curves are popular to measure the performance of different models. In ROC Curves
Figure 2.9, the rate of true positives FPR, sensitivity or recall

TPR = TP

TP + FN
(2.1)

is plotted against the false positives rate FPR or specificity

FPR = FP

FP + TN
(2.2)

at different classification thresholds [PDR16][Unk22]. Each threshold represents the
probability that predictions are separated into each target class and hold its own TPR
and FPR. Perfect classification is achieved when the curve goes through point (0, 1)
since the predictor provides a true-positive of 100% and a false-positive rate of 0%
[Faw06][HC18]. A diagonal line (y = x) on the other hand indicates a random guessing
model with no additional predictive power [Ste20]. In other words, the point (0▷5, 0▷5) in
ROC space represents a correct guessing of 50% for both positives and negatives. When
looking at a second point (0▷9, 0▷9) of the diagonal line although it can correctly guess
90% of the positive class, its FPR also rises to 90%, which is still not better than random
guessing.

Although the ROC is a two-dimensional representation of a predictor’s performance,
it is mainly used for visualization as any fixed point on the curve can be used for the

16

2.2. Validation in Outlier Detection

Figure 2.9: Different ROC Curves and their Interpretation. [cmg18]

evaluation resulting only in a snapshot of the entire curve [Bra96]. A popular choice of
a scalar value that estimates the whole curve is the area under it, commonly referred
to as Area Under the Curve (AUC) [Faw06]. Since the ROC space spans between zero
and one, its squared value remains in that interval as well. Furthermore, the ROC AUC
represents the probability that a randomly chosen positive example is correctly rated
with greater suspicion than a randomly chosen negative example and is equivalent to the
Wilcoxon test of ranks [PDR16][Bra96][HM82].

Besides ROC curves, using the precision of a classification model is another common
evaluation metric.

Precision = TP

TP + FP
(2.3)

Differently to recall, which is the number of correct predictions on real positives precision
is the proportion of positive classifications.

In the field of information retrieval, precision describes the number of relevant documents
divided by the number of retrieved ones [Cra09].

If r relevant documents have been retrieved at rank n, then:

Precision@n = r◁n (2.4)

17

2. Background Knowledge

In Precision@n or P@n top n predictions are retrieved and evaluated against the true
relevant ones. In outlier evaluation, a higher P@n indicates that the algorithm is better
at choosing the n most “outlierish” samples. However, this technique is highly sensitive
to the selection of n since correct predictions at later ranks still influence the precision
a lot at respective n [CZS+16][PDR16]. To mitigate inconsistent results for different n
during the evaluation, it is usually set to the true number of outliers which further means
that the user requires some knowledge about the ground truth.

Average Precision (AP) adds the characteristic of recall into the calculation to weight
true positives more when they are ranked higher for retrieved results [Zha09].

Average Precision =
∑

r P@r

R
(2.5)

where r is the rank of each retrieved sample and R is the total number of relevant samples.

Another widespread metric that takes the precision and recall of the confusion matrix
into account is the F1 score [CJ20][Pow08]. It is calculated by taking the harmonic mean
of both measures and is defined as follows:

F1 = 2 · Precision ·Recall

Precision + Recall
(2.6)

When indicating perfect precision and recall, the maximum possible value of the F1
score is 1, where on the other hand it becomes 0 when one of the values is 0. The F1
metric is a particular instance of the more generic Fβ score that considers an additional
factor β, which acts as a weight parameter for recall against precision [Sas07][SJS06].
The higher the parameter β the more important precision becomes. In the F1 measure
both precision and recall are equally balanced. However, there are some critical opinions
about the F1 score in the literature since their equal weights for precision and recall
as well as completely ignoring the true negatives may result in overoptimistic inflated
results, especially on datasets with large class imbalances [CJ20][Pow08].

2.2.2 Internal Validation
All discussed measures from before are external validation techniques that require some
ground truth. When it comes to anomaly detection validation, there are only a few
internal methods discussed in the literature.

Goix et al. [Goi16] introduced an alternative criteria to ROC and Precision-Recall curves
on how to compare the performance of unsupervised anomaly detection algorithms by
using Excessive-Mass (EM) and Mass-Volume (MV) curves. In their conclusion, they
state that the EM and MV criteria reach similar conclusions on finding the best outlier
solution in 80% of the cases by (almost) using no labeling at all. However, this method

18

2.2. Validation in Outlier Detection

requires those curves to be estimated by Monte-Carlo simulation, so they do not perform
well in high-dimensional space. The authors propose feature bagging to improve the
scaling capabilities of EM and MV.

Although there are some unsupervised approaches and metrics available in the field of
clustering that can in theory be applied to outlier evaluation as well, these additional
validity measurements are only used and useful for evaluating clustering. One of the first
metrics for evaluating clustering algorithms is the Dunn Index (DI) which was introduced
by J.C. Dunn [Dun74] in 1974. It uses the ratio of the minimum inter-cluster distance to
the maximum cluster diameter to evaluate the goodness of the number of clusters chosen
on the dataset [Sta17]. In the version proposed by Dunn, the diameter of a cluster A is
defined by the maximum distance of two data points x and y:

diam A
∆= max

x,y∈A
d(x, y) (2.7)

Under consideration of a dataset having m clusters the Dunn index is expressed by:

D = min
1≤i≤K

(
min

1≤j≤K,i̸=j

(
d(Ci, Cj)

max
1≤k≤K

(δ(Ck)

))
(2.8)

where d(Ci, Cj) denotes the smallest distance between two points belonging to different
clusters and δ(Ck) is the diameter. In an optimal setting of dense and well-separated
clusters, the maximum distance to the neighboring cluster tends to be high whereas on
the other hand, the highest distance within one cluster is low, which results in a higher
DI. Bad separation is indicated by smaller values. In the literature, maximizing the Dunn
Index is often used to obtain the optimal number of clusters for given data [Sta17].

Another prominent metric is the Silhouette coefficient that was originally proposed by
Rousseeuw [Rou87] in 1987. The main principle is that each cluster is based on the
comparison of its tightness and separation which forms a so-called silhouette. The
silhouette s(o) can be computed for any object o belonging to cluster A to which it has
been assigned. All objects O must satisfy the properties of metric spaces having some
kind of similarity function (Rousseeuw uses Euclidean distances in his work but in theory,
any function can be used). First, all average dissimilarities of an object o to all other
objects in each cluster C are computed.

Average Dissimilarity (AD) = 1
n

n∑
o=1

d(o, m(o)) (2.9)

where d(o, m(o)) is the dissimilarity of an object o to the nearest datapoint to o, denoted
by m(o).

19

2. Background Knowledge

Let’s assume that object o is assigned to cluster A. When considering a distance metric,
the average dissimilarity o to all other objects in A is denoted by a(o).

a(o) = AD(o,A) where A is the assigns cluster of o. Under the assumption that there is
at least one cluster besides A, b(o) denotes the smallest average dissimilarity of a different
cluster C to object o.

b(o) = min
C ̸=A

{AD(o,C)} where C is in X and X are all clusters except A.

Now the silhouette s(o) can be obtained by the combination of a(o) and b(o) as follows:

s(o) = b(o) − a(o)
max{a(o), b(o)} (2.10)

Taking that formula into account, it is clear that the silhouette ranges between −1
and 1. Rousseeuw differentiates between well-clustered cases where s(o) is close to 1,
misclassifications that are close to −1 and intermediate cases around 0. In general terms,
the silhouette tends to move away from 0 when the assignment to a specific cluster
becomes clearer where positive numbers indicate that the current clustering is correct
where negative numbers point to erroneous classification. Besides being one of the first
validation techniques that do not require external labeling and therefore only depend on
the actual partition of the data, Rousseeuw presents silhouette- moreover, as a visually
appealing graphical aid that improves the interpretability of cluster analysis results.
Silhouette plots are line plots where the silhouette value for each observation is presented
in descending order and grouped by each cluster. The structure’s (=one cluster) height
coincides with the number of objects where large and sharp structures indicate that
the clustering algorithm found distinct clustering structures. Figure 2.10 shows these
structural differences. In the scatterplot, the first (blue) cluster is the best separated,
which means that the distance to points belonging to other clusters is comparably high.
Hence the silhouettes are closer to 1 and in the plot more delimiting. Another finding is
the relative fluent course of cluster 0 (black) cluster that even turns negative for some
observations. As already stated, the higher number of objects results in a higher structure
in the diagram. However, since some of the instances that are assigned to cluster 2 are
negative, they spatially better fit to cluster 0.

Since silhouette only depends on the spatial properties of the data, it is not sensitive to
the underlying clustering algorithm and its parameters. That means for example that a
higher k for K-Means does not automatically lead to better silhouette scores but can be
used to effectively detect poor choices for k since many very small scores may hint at an
inadequate number of clusters.

2.2.3 Adjustment for Chance
While all the mentioned evaluation metrics deliver interpretable results for one dataset,
they are difficult to compare between different experiments. For instance, precision is

20

2.2. Validation in Outlier Detection

Figure 2.10: Silhouette Plot with corresponding data and clustering [Lea23].

dependent on the ratio of outliers to the number of instances since a smaller number of
true positives always leads to a lower score, which is not informative as such [CZS+16].
However, due to the fact that the proportion of outliers cannot be generally defined
for each use case, these inaccuracies might lead to misleading conclusions when looking
at direct relationships. To increase the comparability nevertheless, any index can be
adjusted for chance. Originally discussed by Hubert and Arabie [HA85], adjustment for
chance can also be applied on cluster validation to enable score comparison between
various experimental settings and is defined as follows:

Adjusted Index = Index− Expected Index

Maximum Index− Expected Index
(2.11)

In the literature, when applied to the Rand index, the adjusted index is referred to as
Adjusted Rand Index or ARI for short[VEB09][RBtvV14][LB21]. All experiments in this
work include scores of adjusted indices for Precision@n, Average Precision and Max F1
Score similar to definitions established in Campos et al. [CZS+16].

Adjusted P@n =
P@n− |O|

N

1 − |O|
N

(2.12)

Adjusted AP =
AP − |O|

N

1 − |O|
N

(2.13)

21

2. Background Knowledge

Adjusted Max F1 =
MaxF1 − |O|

N

1 − |O|
N

(2.14)

The last external evaluation metric that is considered for the experiments is Mutual Infor-
mation (MI) Mutual Information (MI) is a symmetrical, non-negative measure to quantify
the mutual dependence between two random variables [CT06][VEB09][RBtvV14][SG02].
In other words, MI describes the amount of information both variables are sharing. The
more of this information is known in one variable the more it reduces the uncertainty
in the other one [RLF+06]. Independent variables on the other hand share no common
information by definition and are therefore equal to zero [CT06]. The mutual information
between two random variables X and Y is defined by:

I(Y,X) =
∑
x∈X

∑
y∈Y

p(y, x)log p(y, x)
p(x)p(y) [VEB09] (2.15)

Since the comparison of all metrics used needs to be ensured during all experiments the
adjustment for chance is applied on the Mutual Information Index as well. Vinh et al.
define the resulting Adjusted Mutual Information (AMI) as:

AMI(U, V) = I(U, V) − E{I(M)|a, b}√
H(U)H(V) − E{I(M)|a, b} (2.16)

Where
√

(H(U)H(V)) is a valid upper bound and E{I(M)} is the expected value of
the Mutual Information I(M). A more detailed mathematical derivation is provided in
[VEB09].

2.3 Internal Relative Evaluation of Outlier Solutions:
IREOS

Internal Relative Evaluation of Outlier Solutions (IREOS) is an unsupervised evalu-
ation technique and the foundation of this work. Preliminarily proposed at the 27th
International Conference on Scientific and Statistical Database Management in 2015 by
Marques et al. [MCZS15] and further extended in 2020 by an additional publication
[MCSZ20], IREOS is the first internal validation index for unsupervised outlier detection
[CZS+16][MCZS15].

Its main intuition is to measure the quality of individual outlier solutions by calculating
the added value against the goodness of a random solution. Furthermore, evaluated

22

2.3. Internal Relative Evaluation of Outlier Solutions: IREOS

scorings on a set of different outlier solutions are comparable in relative terms to each
other to elaborate the best candidates on the one hand as well as to establish a ranking
[MCSZ20].

In more formal terms, an outlier detection solution consists of a subset S ⊂ X where X
is the input dataset having N samples. S includes all objects that are labelled as outliers
resulting in |S| = n where n ≪ N in most cases.

X = {x1, ▷ ▷ ▷ , xN}: X is an unlabelled dataset containing N objects.

S ⊂ X, |S| = n: S is a top-n outlier detection solution.

Similar to the principle of various other outlier detection algorithms, IREOS evaluates
an object’s separability Figure 2.12 to determine the amount of divergence, stating that
individual objects that are farther off tend to be better separable than instances in
tight clusters. The basic intuition is letting a trained classifier assess the separability of
each data instance. In the original work, the use of maximum soft margin classifiers as
estimators is encouraged since they possess three advantageous properties:

1. Margins of the decision boundary between instances belonging to different classes
are maximized

2. Distances of samples to the decision boundary are quantified into a measure of
separability

3. More control in the handling of contextual outliers

Since global and local outliers are clearly separated from the rest of the data, linear
separation is mostly applicable. However, complex structures of local outliers as well as
inliers are often not linearly separable and therefore don’t have a linear decision boundary.
In order to mitigate this problem and be more versatile, the paper suggests the use
of nonlinear predictors named Nonlinear Support Vector Machines or Kernel Logistic
Regression. Both methods take advantage of the “Kernel Trick” Figure 2.11 a technique
that transforms nonlinear data into a higher dimensional space where linear separation is
possible [Sch00]. The original authors use Kernel Logistic Regression (KLR) for all their
experiments and conclusions as well as for the implementation of IREOS in Java since it
brings additional properties to the table that are beneficial for getting a deeper insight
into (interim) results:

• Each logistic regression output p(xj) of a sample xj can be mathematically explained
as probability being an outlier

• Kernel Logistic Regression is known to be robust even in the presence of imbalanced
classes and small amounts of training data [MCZS15]

23

2. Background Knowledge

Figure 2.11: Visualization of the Kernel Trick. A kernel function projects the input
space into a higher dimensional space where both classes are linearly separable [GCP05,
Figure 1].

To narrow down the infinite number of learnable non-linear functions, several kernel
functions are introduced. Kernel functions are measures of similarity over all pairs of
data points computed by inner products. One of the most popular kernel functions that
are also used by IREOS is the Gaussian radial basis kernel (RBF) which is defined by:

K(x, x
′) = e−

∥x−x
′ ∥2

2σ2 (2.17)

where the value of the kernel K(x, x
′) of two samples x and x

′ is defined by the squared
euclidean distance ∥ x− x

′ ∥2 and a free parameter σ.

In the domain of machine learning [SSB+97][AL14][Mis20b] the RBF kernel is often
associated with an equivalent definition that involves a parameter γ = 1

2σ2 :

K(x, x
′) = e−γ∥xi−xj∥2 (2.18)

As can be observed in the first notation of the formula, the substituted γ parameter is
the inverse of the standard deviation of the Gaussian function. An increase of the γ
parameter (decrease of σ) defines a Gaussian function with a smaller standard deviation,
resulting in the kernel function being more sensitive to distances. Higher values for γ
only consider points that are very close to each other as similar because the range of
influence of individual samples is decreased, resulting in a more curved decision boundary
since it is only dependent on its closest points [Mis20b][VTS04]. A small value for γ on
the other hand leads to a more linear and smoother decision boundary since objects are
not discriminated as strictly.

24

2.3. Internal Relative Evaluation of Outlier Solutions: IREOS

Different from classification tasks, IREOS does not train the predictor on unseen data
but moreover uses it to quantify the degree of discrimination leading to the question of
how to obtain the optimal value for γ. In classic machine learning tasks, a grid search
measures the algorithm’s performance on a set of predefined parameters usually selecting
the best performing in the end. However, this is not applicable in unsupervised settings
since nothing exists to be evaluated against. To overcome the disadvantage of choosing a
random value for γ, the original paper suggests calculating the AUC from 0 to a specified
γmax for which all instances are labeled as outliers.

∫ γmax

γ=0
p(xj γ)▷[MCZS15] (2.19)

Since IREOS evaluates separabilities for each instance of a dataset rather than a single
point, the average curve considering all data objects of a given solution S is computed.

p̄(γ) = 1
n

∑
xj∈S

p(xj , γ) (2.20)

To normalize this value into the interval [0, 1] the result must be divided by γmax. Since
the amount of discrimination rises with gamma the AUC is a strictly monotonic function
reaching 1 at some point. The normalized index of the separability of a solution S in
relation to a collection of data objects is defined by:

I(S) = 1
γmax

∫ γmax

γ=0
p̄(γ) (2.21)

Since separability curves can only be computed for a finite set of gammas the exact
AUC value coming from a continuous range can only be approximated. To avoid
fixed calculations of arbitrary numbers for γ to approximate the separability curve,
the paper [MCSZ20] suggests adaptive quadrature (or adaptive numerical integration).
Adaptive quadrature splits the separability curve into n subintervals recursively until
some approximation criterion is met. In the original paper, each interval is subdivided
into two equal parts with the motive to prune those recursive trees of accurate sections
early. For the error estimate that approximates the divergence of the exact curve Iexact
and the summation of all subintervals, the original paper proposes the application of
Simpson’s rule.

E2nγ (I) :=
,,,Iexact − (

I(0, γmax

2) + (I(γmax

2 , γmax)
),,, (2.22)

E2nγ (I) ≈ 1
15

,,,(I(0, γmax

2) + I(γmax

2 , γmax)
)
− I(0, γmax)

,,, (2.23)

25

2. Background Knowledge

Figure 2.12: Separability curves for different points labeled as outliers. [MCZS15,
Figure 1]

As the definition 2▷23 shows, the amount of error is approximated by the fraction of
the absolute difference between the AUC of the entire interval and after the split into
two subintervals (bisection). Simpson’s rule uses the fraction of 1

15 in contrast to the
midpoint rule for numerical integration that is 1

3 , resulting in a much faster decay of
error after multiple splits.

Although the previously introduced baseline algorithm serves as the main foundation of
IREOS, it is still missing some crucial intuitions that are important for various outlier
detection applications. One of them covers a user-defined parameter that adds further
control on how to interpret unexpected tiny gatherings of points – namely clumps. As
already mentioned in Section 2.1 at least basic domain knowledge about the data must
be available to correctly decide if contextual outliers are more likely to be noise or
equally valid observations. Despite additional parameters being rather uncommon for
unsupervised evaluation, the authors included the maximum clump size parameter mcl,
where the soft margin classifier allows a certain amount of misclassification for building
an optimal decision boundary. This parameter is directly intertwined with the penalty
term Pt for both SVMs and KLR and controls separation. Usually, that error term is
defined by:

Pt = C
N∑
j=1

ξ(xj) (2.24)

26

2.3. Internal Relative Evaluation of Outlier Solutions: IREOS

where ξ(xj) is an error component associated with xj and C is a constant. To implement
the flexibility of allowing some misclassification for an increased margin mcl is part of
this term:

C(xj) = C · β (2.25)

β = 1
mcl

(2.26)

Since higher values for C increase the values from the penalty term and tell the predictor
to avoid misclassification when building a decision boundary, mcl acts as the inverse of
beta to indirectly adjust C. The higher mcl, the higher the fraction of the penalty term,
resulting in smaller costs for possible misclassifications when optimizing the hyperplane.
Furthermore, the application of soft margins solves a second, related intuition since
it reduces the influence of nearby objects of the same clump that otherwise severely
influences the decision boundary and margin as of hard margin scenarios.

The computational complexity of IREOS is dependent on the underlying classifier
which is executed for each parameter nγ . Considering the complexity O(f(N, d)) as
the complexity of the classifier where N is the overall number of samples and d the
dimensionality, the resulting complexity becomes O(n · nγ · f(N, d)) [MCZS15][Mah20].
Since KLR is computed in O(d ·N3), the total complexity is O(n · nγ · d ·N3). However,
since calculating IREOS for each sample is not dependent on each other, the total work
can be split into several subtasks that can be executed on distributed machines, which
makes the algorithm highly parallelizable.

In 2022 the authors of IREOS published a follow-up paper named Similarity-Based
Unsupervised Evaluation of Outlier Detection (SIREOS) [MZCS22] where the original
separability measure is replaced by a similarity metric. Similarity metrics tend to be
computationally less demanding in comparison to training classifiers for separability
measures. Although SIREOS does not show significantly better results when contrasted
to Mass-Volume curves or IREOS, it is faster to compute than the others. According to
the authors, this speedup reaches significance not only in regard to the number of data
points but also dimensionality. Despite both IREOS and SIREOS being closely related,
they do not always agree on the same solutions during the experiments, which makes
the existence of either of them justified as they are adding variation to the evaluation
portfolio.

27

CHAPTER 3
Methodology and Experiments

Now that the reader is equipped with the recent state of the art, this chapter continues
by explaining the structure of the experiments in detail. We start this section with a
brief overview of data gathering and datasets used as well as all the preprocessing that is
performed. Every classifier that is used in the experiments is introduced separately to the
reader and analyzed for its strengths and weaknesses followed by a brief excursion about
data sampling. After establishing all the new concepts that are considered for the new
algorithm in theory, we provide a complete technical description of the implementation
of the new FIREOS module in Section 3.5. We finish this chapter by going more into
detail on the execution of the experiments concerning runtime performance as it lays
additional focus on the original IREOS implementation and crucial adjustments that
keep experiments comparable.

3.1 Datasets
Since this work deals with the evaluation of outlier solutions, a thorough testing suite
of diverse data arrangements is needed to notice the benefits and drawbacks of each
technique and reach a proper conclusion. To have more control over the layout of the data,
all datasets are exclusively synthetic and generated by a tool named Multidimensional
Dataset Generator for Clustering (MDCGen) [IVZFZ19].

3.1.1 MDCGen Datasets
In the paper by Iglesias Vázquez et al. MDCGen is described as a tool that enables
the generation of multidimensional and synthetic data that can be used for testing,
evaluating and benchmarking unsupervised classification algorithms. It features several
mechanisms to control the number of clusters, their distribution, inter-cluster distances
and overlap as well as the addition of noise and outliers. In this thesis, a variety of 80

29

3. Methodology and Experiments

datasets generated by MDCGen are used for experiments featuring different properties
such as size and arrangement of the data. The input data consisting of n instances and d
features can be split into d− 1 columns of predictor variables and one target variable
which can be positive or negative. A positive class label represents the associated cluster
whereas a negative flags an outlier. These 80 datasets can be further divided into four
broad subcategories. Each category emphasizes certain structural characteristics and
phenomena that occur on a global or local scale.

Those categories are:

• complex

• high-noise

• low-noise

• basic2d

Figure 3.1: 2D representation of different problem instances for each category. Each
dataset was dimensionality reduced via T-SNE, which preserves the local structure and
clustering of the data. Instances in grey or ’-1’ correspond to outliers and from 0 to X to
different clusters of inliers. (but for the last figure, in which ’0’ means outliers)

Figure 3.1 and Figure 3.2 show different 2D representations of the structure of one
problem instance for each category. The former plot focuses on the preservation of

30

3.1. Datasets

Figure 3.2: 2D representation by using PCA of the same problem instances shown in
Figure 3.1. Different from T-SNE, PCA only preserves the global structure rather than
local similarities and is highly affected by outliers. Alike Figure 3.1 instances in grey
correspond to outliers.

clusters by applying T-SNE on each dataset. T-SNE is a non-linear dimensionality
reduction technique that embeds each data point into a lower dimension by preserving
local neighborhoods. In other words data points that share a low distance are still close to
each other after T-SNE is applied. In contrast to those local structures, the second plot
uses Principal Component Analysis (PCA) to highlight the global structure of the same
data. Differently to T-SNE, PCA retains the global structure of the data by reducing
the dimensionality of variables that have a high correlation. Moreover, PCA is a linear
dimensionality reduction method.

As both figures show, datasets belonging to the complex category consist of different
cluster-like structures that surround a cluster of outliers. When looking at the high-noise
plot, the central cloud of grouped outliers expresses that there are many outliers and
they show geometric characteristics that make them very similar to each other when
compared to inliers. In low-noise datasets, those outliers are less scattered and basic2d
sets feature only two dimensions of input data. In addition, they are far smaller than the

31

3. Methodology and Experiments

other three categories featuring only ∼ 250 samples in comparison to ∼ 5500 − 7000 for
the others.

Although datasets within the same category represent instances trying to cover similar
problem areas and align on certain macrocosmic properties, they are still rather diverse
and chaotic. Each dataset is associated with a prefix that indicates the category and a
number that defines the input instance (i.e.: complex_1). All experiments concerning
runtime as well as similarity measurements are conducted on these 80 datasets and use
this particular naming.

3.2 Data Preprocessing
Data preprocessing is one of the most crucial steps in the data mining process and
seriously affects the performance of the outcoming model. In its developer’s guide, IBM
describes data processing as an important control mechanism to ensure the accuracy,
completeness and consistency of the data [Mus19]. Generally, it can be split into four
stages:

1. Data cleaning

2. Data integration

3. Data reduction

4. Data transformation

As stated in the previous section, all datasets used are considered synthetic data, which
makes most of the data preprocessing process obsolete. Procedures such as dealing with
duplicates or missing data were already performed by MDCGen.

3.2.1 Training Data
Internal evaluation uses intrinsic patterns and partitions of the input data (training data)
to learn a model that is later evaluated against different candidate solutions (outlier
scores). Since IREOS and FIREOS are set up like every other machine learning problem,
they rely on consistent training data. As already mentioned in the previous Section 3.1, all
datasets that are used in the experiments are synthetic and generated via MDCGen. The
preparation usually involves cleaning the data first but one major advantage of MDCGen
is that all generated datasets do not contain any missing or inconsistent information that
needs to be dealt with. That even includes the application of feature scaling, which is
not necessary anymore because every feature is already normalized.

Since FIREOS features some predictors that are sensitive towards feature scaling such as
SVMs, it works more reliably for scaled training data. However, in theory, tree-based
settings such as decision trees or random forests might not lead to much degradation

32

3.2. Data Preprocessing

when they are trained on unscaled data [AMS+21]. More detailed information about
each predictor is provided in Section 3.3. In summary, each experiment is conducted on
normalized data already coming from MDCGen.

3.2.2 Outlier Scores
After training the algorithm on the input data, the second phase consists of the evaluation
against a set of candidate solutions - in this work referred to as "outlier scorings". In
theory, these candidate solutions can be any outlier detection algorithm that provides a
scoring for a given input. A well-performing evaluation metric is distinguished by two
properties.

Citing the original paper by Marques et al., IREOS is designed to "evaluate and compare
different candidate outlier detection solutions." [MCSZ20] Since the main purpose of
validation metrics is to be able to make a judgment on the performance of one or various
models, it is preferred to have a clear separation between solutions of different "goodness".

Secondly, the evaluation algorithm should be able to rate solutions having related
"goodness" similar to each other and provide some kind of pattern that is comprehensible.
The term "goodness" in this context is a bit critical and hard to grasp since the goodness
of a solution can not be postulated as something logical or easily definable especially
in the case of internal evaluation and its nature to be exclusively dependent on the
underlying data high dimensional structures goes beyond comprehension for us humans.
In order to assess the quality of an evaluation metric more accurately and get the big
picture on its performance, various scores should be evaluated by it. FIREOS as well as
IREOS is evaluated by the same seven different outlier detection algorithms namely:

• Sparse Data Observers (SDO) [IV18]

• Angle-Based Outlier Detection (ABOD) [KSZ08]

• Histogram-Based Outlier Score (HBOS) [GD12]

• Isolation Forest (IForest) [Liu08]

• K-Nearest Neighbor (KNN) [RRS00]

• Local Outlier Factor (LOF) [BKNS00]

• One-Class Support Vector Machine (OCSVM) [SWS+99]

More in-depth information about each outlier score can be found in Section 2.1. To
evaluate each solution equally, the outlier scoring requires to be inside a certain range
as well as similarly interpret inliers and outliers. IREOS expects outlier scorings within
the interval [0, 1] where smaller values represent inliers and values towards 1 are more

33

3. Methodology and Experiments

outlierish. In other words, anomaly scores that IREOS as well as FIREOS expect can be
interpreted as outlier probabilities.

Many outlier detection algorithms, however, do not output their solutions as probabilities,
which makes some kind of transformation necessary to get them usable as proper inputs for
FIREOS. Similar to the original paper, outlier solutions are transformed into probabilities
by the normalization framework by Kriegel et al. [KKSZ11] which provides methods to
transform different outlier scorings into probabilities. The second intention of the authors
is to unify different outlier detection scores of different scales into one uniform scale that
sufficiently contrasts an outlier from an inlier. Furthermore, the paper mentions that
this normalization framework and the goal of a unification of outlier scores is inspired by
Hawkins: "a sample containing outliers would show up such characteristics as large gaps
between ‘outlying’ and ‘inlying’ observations and the deviation between outliers and the
group of inliers, as measured on some suitably standardized scale". Depending on the
underlying score, the unification is performed in up to two steps.

First, the score is regularized, which means that all values have to fit into the interval
[0,∞]. A regularized value Reg(x) ≈ 0 translates as an inlier and Reg(x) ≫ 0 as an
outlier. The regularization is followed by a normalization method that finally transforms
a score into the interval [0, 1]. Multiple normalization methods such as min-max scaling,
Gaussian Scaling or Gamma Scaling is suggested in Kriegel’s work. All experiments
conducted in this thesis use min-max normalization for outlier scorings, although FIREOS
also features standardization (more details Section 3.5).

Table 3.1 shows inlier and outlier values before treatment as well as the proposed
regularization method for each outlier detection algorithm that is implemented in FIREOS.
As an important addition only ABOD, KNN, LOF and LDOF are transformed by Kriegel.
The other scores are adjusted following his scheme but were not directly mentioned in
the paper.

Table 3.1: Outlier scores used for the experiments and their scales and normalization
into probabilities

Outlier Score Inlier Value Outlier Value Regularization
SDO 0 ≫ 0 None

ABOD 80000 0 Logarithmic Inversion
HBOS 0 ≫ 0 None
IForest 0 1 None
KNN 0 ≫ 0 None
LOF 1 ≫ 1 Baseline Regularization

LDOF 1
2 ≫ 1

2 Baseline Regularization
OCSVM > 0 < 0 None

Every value for each score in the table is set after the definition from their original
paper. When looking at the scores used for the experiments, however, some scores show

34

3.2. Data Preprocessing

a different scale due to the output of PyOD [ZNL19], which was used to generate each
solution. PyOD uses the same interpretation for outliers as the original paper by Liu
et al. [Liu08] where an anomaly score very close to 1 points to an outlier. It uses the
inverse scores of the score function by SkLearn which defines them as "the lower, the more
abnormal. Negative scores represent outliers, positive scores represent inliers." [SkL23]

For the sake of completeness, differently to their description in [KKSZ11] outlier values
from ABOD are negative by PyOD. However, since the Angle-Based Outlier Factor,
which is then sorted and used by the ABOD algorithm, is defined as "the variance over
the angles between the difference vectors to all pairs of points, weighted by the distance
of the points" a positive value makes more sense. Therefore, the inverse logarithmic
regularization takes care of it by treating negative values as positive. Figure 3.3 shows
the distribution of raw ABOD scores over all datasets as well as after the normalization.

Figure 3.3: Histograms of outlier scores for data points across all 80 datasets before
and after the normalization by Kriegel. All normalized scores are transformed into the
interval [0, 1] where values close to 0 represent inliers and 1 outliers. Each histogram
consists of 100 bins.

Contrary to ones expectation, OCSVM and IForest are both adjusted by normal min-
max normalization. Both measures consist of only a few samples having a very large

35

3. Methodology and Experiments

outlier score which would distort many samples toward being an outlier when inverted.
As the majority of scores would be close to 1 after normalizing inverted scores and
therefore problematic for a fair evaluation OCSVM and IForest are both adjusted by
normal min-max normalization instead of inverting. Figure 3.10 visualizes this process of
normalization for all algorithms that are not explicitly mentioned in [KKSZ11].

3.3 Classification Algorithms and Models
The internal classification algorithm is the centerpiece of both IREOS and FIREOS. It is
responsible for calculating the separability of each instance versus the entirety of the data,
which correlates with the main intuition of the IREOS baseline index, i.e., that outliers
tend to be discriminated more easily than other observations [MCSZ20]. Furthermore,
apart from being the main model for subsequent evaluations, this internal predictor is
part of the algorithm with the most computational complexity behind it.

The original paper suggests the use of nonlinear maximum margin classifiers to be able
to separate objects that are clear inliers or in other words which are not separable by a
linear decision boundary. Both in the paper and in the Java code this predictor is Kernel
Logistic Regression (KLR), which is already further explained in Section 3.3.1.

The original work also mentions Nonlinear Support Vector Machines (SVMs) being able
to fulfill these requirements. Both procedures are related since they both utilize kernel
functions to transform a non-linear problem into a linear separable one. SVMs are
explained in more detail in Section 3.3.2.

However, Marques et al. conclude in their final chapter that "different types of classifiers
could lead to indexes with different biases, which nevertheless would still follow the same
fundamental intuition behind IREOS" [MCSZ20], which is the status quo from where
FIREOS continues. Different from the main implementation, FIREOS is designed to
provide multiple classifiers that still work the same way. The key principle of having a
wide selection of possible algorithms is to cover different biases and behaviors, which are
later analyzed and compared during the experiments. Although KLR might be replaced
by any classification algorithm in theory, predictors returning output probabilities are
clearly advantageous due to the behavior of weighted scores by (F)IREOS.

Given these requirements, the following classifiers are featured by FIREOS:

• Logistic Regression

• Support Vector Machines

• Decision Trees

• Random Forest

• Boosted Trees

36

3.3. Classification Algorithms and Models

Tree-based predictors are particularly focused in this work, since they are nonlinear
and promise fast and stable results. The following sections aim to provide additional
information about each predictor that is used as well as the theoretical advantages and
disadvantages of the methods mentioned. Ultimately, important hyperparameter settings
as well as their origins and references for each predictor are addressed.

3.3.1 Kernel Logistic Regression
KLR is an extension to classical Logistic Regression, which is a statistical model, that
differently from other linear models such as basic Linear Regression, estimates the
probability of certain events occurring based on one or more independent variables.

Logistic Regression can be divided into three subtypes:

• Binary Logistic Regression

• Multinomial Logistic Regression

• Ordinal Logistic Regression

Binary Logistic Regression focuses on the categorical response between two possible
classes. IREOS by its KLR predictor as well as the ordinary Logistic Regression in
FIREOS utilize binary outputs to determine the probability of an arbitrary sample being
an inlier or outlier. Besides binary responses, it is also possible to include more than two
output classes, which is then referred to as multinomial Logistic Regression. Ordinal
Logistic Regression is applied if those categories indicate any kind of order.

Logistic regression belongs to the category of discriminative models, which stand out
by setting up decision boundaries through observed data. Different from generative
models, that learn the joint probability distribution, only the posterior probability of
each output class is taken into account by them [Men96]. Logistic Regression uses the
sigmoid function to map any input variable into the interval [0, 1]. Values > 0▷5 are then
labeled as positive class and predictions <= 0▷5 become negative.

However, classical Logistic regression is not able to separate nonlinear data accurately
[EZ19], which is the reason to include a similar technique on what nonlinear SVMs do,
that is to use a kernel function. Kernel functions are used so that linear classifiers are
able to solve problems that are otherwise linearly inseparable by mapping the feature
space into a higher dimensional space. The most commonly used kernel functions are
linear, radial basis function and polynomial kernel.

Classical logistic regression that uses a kernel function becomes KLR. KLR is often
compared to nonlinear SVMs, since they have a similar classification performance [Has03]
and are both powerful discriminative methods [KDSP02]. Different from SVMs, KLR
is suited for Bayesian design and features direct probabilistic interpretation, which is
especially beneficial as an internal predictor for IREOS, since output separabilities are also

37

3. Methodology and Experiments

based on probabilities. Furthermore, by design KLR features optimal margin properties
during data separation [Has03].

However, KLR has an algorithmic complexity of O(n3), which is computationally more
expensive than SVM which has O(n2m) where m is the number of support vectors. Since
one main goal of FIREOS is to be more lightweight than its predecessor, this O(n3)
remains a very crucial key figure for algorithmic choices. In other words, significant
speedup for FIREOS can only be achieved when

O(X) < O(n3) (3.1)

for each algorithm X, which is the reason why the new implementation does not feature
KLR but classical LR, which has a time complexity of O(nd) where d is the number of
dimensions [Ban20].

3.3.2 Support Vector Machines
Another widespread linear discriminative model is the SVM. Originally invented by
Vapnik and Chervonenkis in 1963 [V.N64], SVMs are popular predictors for classification
and regression. SVMs tend to be quite robust when it comes to new observations since
they calculate an optimal decision boundary between two classes.

But how do SVMs decide on an ideal solution when infinite solutions for them exist in
theory?

Same as other discriminative classifiers, SVMs try to find a hyperplane that separates both
classes as well as possible. Their main principle is to maximize the margin between the
two points closest to the decision boundary, which are named support vectors. Figure 3.4
shows the SVM decision boundary of a linearly separable problem. Samples that are on
the margin are called "Support Vectors".

Since the resulting learner is an optimization algorithm that tries to maximize the margins
of the decision boundary, SVMs are called maximum margin classifiers.

Margins in the context of classification can be subdivided into two subcategories.

First, there is hard margin classification, where the predictor does not allow any misclas-
sification when building the hyperplane, which only results in a unique solution when
the data is linearly separable. Furthermore, hard margins are generally very sensitive to
outliers and tend to be prone to overfitting.

On the other hand, there is soft margin classification, which allows some separation
violations for the decision boundary. Soft margins do not suffer from overfitting like hard
margins and further have the great advantage that linear kernels might still work for
not fully linearly separable data. The concept of different margins was transferred into
the model by the declaration of the cost hyperparameter C, which controls the amount

38

3.3. Classification Algorithms and Models

Figure 3.4: The main principle of SVMs. The predictor tries to find an optimal hyperplane
by maximizing the margin between the support vectors. [SO17, Figure 2]

of overlap [HRTZ04]. It acts as a penalization factor for erroneous classification, where
higher values force the predictor to favor smaller margins but fewer misclassifications
over larger margins however, some violations might occur. For the sake of completeness,
the parameter λ should be also mentioned as it is often mentioned in the literature
[EPP00, Pla00, HRTZ04] as a "regularization parameter" and directly related to C:

λ = 1
C

(3.2)

Although soft margins enable the solution of linear decision boundaries even when the
data is not linearly separable, there are problem instances where nonlinear decision
boundaries are clearly desired. Analogous to KLR in the last section, SVMs also utilize
kernel functions in order to separate data that is otherwise linear inseparable. One
prominent kernel function that is also implemented in FIREOS is the Gaussian Radial
Basis Function (RBF).

Kernel functions are continuous, symmetric functions that can be used as measures of
similarity between data objects [Sre07]. Kernels usually describe complex properties of
high-dimensional data that are hard to interpret or unintuitive. The RBF kernel on two
samples x ∈ Rk and x′ is defined as:

39

3. Methodology and Experiments

K(x, x′) = exp(−∥x− x′∥2
2σ2) (3.3)

The hyperparameter σ can be interpreted as the amount of influence each instance has
on its surroundings. A higher value for σ results in data points still influencing the
classification of new points that are farther away. In other words, the decision boundaries
radius from each data point is higher for an increased σ, which leads to an overall less
curved line since instances additional to the support vectors are influencing the optimal
hyperplane. Furthermore, chances of overfitting become higher for lower values since the
model strictly disallows misclassification and starts building up local islands of decision
boundaries [SAA20].

The parameter σ is often replaced by a different control parameter γ:

γ = 1
2σ2 (3.4)

which leads to the notion that is also mentioned in the original IREOS paper:

K(x, x′) = exp(−γ∥x− x′∥2) (3.5)

In conclusion, γ acts as the inverse of the radius of samples and is indirectly proportional
to σ.

Nonlinear SVMs using the radial basis function kernel are also featured in FIREOS by
the Scikit-Learn and LibSVM [CL11] libraries. Both implementations, however, have
slight differences when it comes to the assignment of parameters.

The SVM predictor that is delegated to the Scikit-Learn library is based on the original
paper and implementation where cost parameter C is fixed to 100, class weights are
balanced and unbounded iterations are used. Furthermore, a tolerance of 0▷0095 was
adopted from the tol parameter of the Java implementation [Mar20]. Besides the explicit
setting of probabilistic output, LibSVM always runs default parameter settings. Both
predictors still accept an arbitrary parameter for γ, primarily for the numerical integration
that is used. Further details are provided in Section 3.5 where the implementation is
explained.

There is still one question left unanswered and that is the calculation of probabilities.
Since SVMs do not directly provide class probabilities, their prediction cannot be directly
used as separability for instances in FIREOS. However, there are methods to transform
non-probabilistic outputs into [0, 1] such as Platt scaling, where the SVM trains an

40

3.3. Classification Algorithms and Models

additional parameter of a sigmoid function, that maps each output into a probability
[Pla00].

Since outlier detection evaluation problems only consider the probability for outliers (or
inliers respectively), they are equivalent to binary classification. Both Scikit-Learn and
LibSVM state in their official documentation that all probabilities of binary class problems
are calculated by Platt scaling [Lea23]. For the sake of completeness, it should also be
mentioned that multi-class probabilities are calculated by extensions of Platt scaling.
Scikit-Learn mentions [WLW04] in its documentation and LibSVM cites [LLW07].

3.3.3 Tree-Based Approaches
As already mentioned in Section 3.3 tree-based models are particularly interesting for
FIREOS. But what exactly are the characteristics of tree-based models and how are they
beneficial for the new software?

Tree-based algorithms are the collective term for a set of predictors that use a decision
tree as input data representation to predict target variables [Mis23h]. Decision trees are
with an algorithmic time complexity of O(ndlog(n)) [SLN18] less expensive than KLR
and show high accuracy and good separation even for categorical data. Furthermore,
they are comparatively easily interpreted and visualized and perform well on nonlinear
relationships as well, which makes them particularly well suited as a KLR replacement
predictor. Decision trees can both be used for classification (Classification Tree) and
regression (Regression Tree) problems.

In general decision trees are built by determining the feature to split on, which is also
called Attribute Selection Measure (ASM) and the optimal value division. Although
there are several goodness metrics on how to decide on the splitting, the more common
approaches are Gini Impurity, Information Gain and Log-Loss Scoring which are also
implemented by the Scikit-Learn library [Mis23g].

The Gini Index or Impurity represents the probability that a randomly chosen sample
gets misclassified. It is defined by:

Gini(X) = 1 −
k∑

i=1
p2i (3.6)

[DT14]

where i is the number of different class variables and p(i) the probability of an class i
being correctly classified. After calculating the Gini Impurity for each attribute, the
algorithm chooses the split with the lowest value. These two steps are repeated until
a termination criterion is reached. Decision tree algorithms that use the Gini Impurity
split each attribute into two sub-partitions resulting in a binary decision tree.

Although the construction of such a tree is relatively fast, a major drawback is a strong
tendency to overfit especially for fully-grown models. Even slight changes in the input

41

3. Methodology and Experiments

data may influence the sequence of splits and impact the decision boundaries of the final
model severely.

One effective measure to reduce the high variance of a fully trained predictor is pruning
the tree which prevents the model from overfitting. Esposito et al. [EMS97] published a
profound analysis as well as empirical studies of several top-down and bottom-up pruning
methods that aim for a simplification of decision trees.

Nevertheless, decision trees show the same challenges as SVMs as their results are non-
probabilistic. They are not intended to act as probabilistic models and lack well-founded
and uniform recommendations from publications. There are, however, some important
contributions that address this issue [ZE01, KJS17, MD03].

The FIREOS implementation features two different decision tree approaches. One is
using the common Scikit-Learn interface and the other is a native implementation in
Julia. The former uses the relative frequency of classes in the leaf nodes as a probability.
However, keeping the preset parameter settings for the classifier would result in a major
pitfall, since Scikit-Learn does not apply any pruning by default, which would always
lead to P = 1 since leave nodes are grown until they are pure.

To mitigate this problem, the maximum tree depth parameter is set to 2 and therefore
heavily pruned, which furthermore leads to faster execution due to fewer splits. The
native predictor calculates probabilities differently since the library is shipped with a
method that "calculates P (L = label|X) for each row in features. It returns a N_row x
n_labels matrix of probabilities, each row summing up to 1." [Mis23a]

To still cushion the problems of overfitting, FIREOS constructs 1000 independent trees
and takes the mean of their probabilities. As various independent trees can be composed
into a different classifier named random forest, the naming of this procedure remains
debatable. Due to the reason that we want to keep the naming of each classifier in
FIREOS as close as possible to those of the internal libraries we decided to retain the
naming as is.

Nonetheless, random forests are also included by FIREOS and similar to decision trees
two implementations are provided. As before FIREOS features a native implementation
and the classifier from Scikit-Learn.

But what is the difference between a random forest and a decision tree?

Random forest is an ensemble learning method that uses a combination of different tree
predictors at training time to make predictions by unifying their outputs for instance by
majority vote [Bre01]. The intention of using randomized simple trees is to make the
predictor more robust by reducing the noise of an individual model. Breiman further
states that the generalization error converges against a certain value when the number of
independent trees is high enough.

Similar to decision trees, finding the optimal splits and sampling techniques was the
subject of much discussion in the literature varying from bagging [Bre96] as an early

42

3.3. Classification Algorithms and Models

approach to random splits [Die00], randomized training sets [Bre99] and random selection
of features [Ho98]. Both implementations use the default parameter setting of the native
library, which applies random splits on all features, a sample size of 70% of the input
instances and 10 trees.

Furthermore, like for normal decision trees random forest outputs need to be transformed
into probabilities. Since both libraries provide their implementation for it, these functions
are used.

Besides decision trees and random forests, FIREOS features an additional tree-based
classifier that is XgBoost [CG16]. Boosting which is similar to Bagging in a random
forest is an ensemble learning method of weak predictors but instead of training them in
parallel, boosting learns from the mistakes of the previous model.

Figure 3.5: Principles of decision trees and ensemble models. Random forests use parallel
bagging to improve the predictive performance of decision trees. In gradient-boosted
trees, multiple weak learners are sequentially combined into a stronger model. [Sil20,
Figure 1]

After training a base learner, another weak predictor is trained on the residuals which
are calculated from the loss function (i.e.: log-loss, MAE) of the first tree [Sim22]. These
steps are repeated until there is no predictive gain or a maximum number of trees are fit.
Figure 3.5 visualizes the principle of bagging and boosting in comparison to a singular
decision tree.

One prominent technique is the principle of Gradient Boosting which uses gradients to
minimize the loss function. XgBoost uses the principle of gradient boosting with some
slight modifications discussed in [CG16]. In summary, these adjustments make the base
Gradient Boosting more flexible by adding an objective function instead of a loss function
as well as second-order gradients and penalty terms.

FIREOS uses three different XgBoost models consisting of different boosters:

• Tree Booster

43

3. Methodology and Experiments

• DART Booster

• Linear Booster

Although two of them use tree-based boosters (Tree and DART) and one a linear model,
all three models use logistic regression for binary classification as a learning task, since
that is the only way to produce output probabilities.

The setting for the Tree Booster is inspired by the docs [Mis22] and acts as a standalone
random forest with boosting. The other two classifiers use hardly any different parameter
settings than default, except similar to before the maximum depth for each tree is limited
by 2 for each case.

3.3.4 LibLINEAR
The last classifier that is added to the new implementation belongs to "LibLINEAR
- A Library for Large Linear Classification" [FCH+08]. LibLINEAR provides several
lightweight linear predictors that promise fast results even for large datasets. Although
the original IREOS paper explicitly recommends nonlinear classifiers, best yet with a
soft margin, the intuition for adding a predictor from LibLINEAR is primarily to test
the tradeoffs between very fast results and stability. When looking further, LibLINEAR
has some similarities with LibSVM which also provides SVM implementations.

The main differences between those two packages lie in the details of each implementation.
The SVM solver in LibSVM is intended to work both for linear and kernelized operations,
which comes at a cost. Bottou et al. [BL07] estimate in their work about SVM solvers,
that the asymptotic number of support vectors grows linearly alongside the number of
instances leading to the computational costs of an algorithm capable of solving an SVM
problem with an arbitrary kernel between O(n2) and O(n3). The latter for models with
a high cost-parameter C.

Since LibSVM tends to be a more versatile library with kernelized SVM implementa-
tions, it is a decent choice for the predictor in Section 3.3.2. Nevertheless, for linear
SVMs, LibLINEAR should be preferred due to its near-linear training time [Joa06].
Unfortunately, LibLINEAR currently does not feature probability estimates for its SVM
implementations [Mis23e] which makes them unusable for FIREOS. However, there is
also an implementation for L2-regularized logistic regression which features a parameter
for probability outputs. This algorithm setting with a dual-based solver and all its default
parameters is the predictor that is finally used in the FIREOS implementation.

3.4 Sampling Methods and Subsetting
Besides the reduction of computational expense by using a more lightweight predictor,
another dimension of adjustments is the reduction of input data. The core intention with
respect to FIREOS is obvious.

44

3.4. Sampling Methods and Subsetting

Since FIREOS trains at least n predictors of an input space of n×d samples, a significant
reduction would result in a major speedup. This section aims to provide different sampling
and subsetting techniques that reduce the number of observations for training the classifier.
Although there are feature selection algorithms for dimensionality reduction that also
decrease the input space, this chapter is dedicated to horizontal downscaling. Apart from
the idea of sliding windows, which is characterized in the next subsection and integrated
into FIREOS, other approaches that were not included in the final implementation are
covered in theory.

3.4.1 Sliding Windows
The concept of sliding windows is one of the simplest but most effective measures to
control the number of instances used for the predictors. While it is easily integrated as
an additional tuning parameter for FIREOS and provides a decent amount of control,
sliding windows enable the processing of large datasets that would otherwise be infeasible
for internal evaluation.

Initially originated from streaming data environments where huge volumes of data need
to be processed in a reasonable time, the use of a window keeps a managed subset of
instances in memory [KGP+11]. All samples within the sliding window are termed as
active objects and relevant for the calculation, differently from the rest that is ignored.
If a new data point enters a saturated window, the oldest object becomes inactive and is
therefore no longer managed. Although the extension of stream data analysis is possible
for FIREOS in theory, its main focus, for now, is to operate on normal outlier solution
evaluation. Therefore, the concept of a time-based window is changed to a count-based
approach where top-n samples from the current sample that is calculated are kept.

The main advantage of using a sliding window of size W << n is to reduce the complexity
of predictors from n · n · d to n ·W · d. Furthermore, since the separabilities from IREOS
and FIREOS are calculated sample after sample, the sliding window changes only by one
instance in each iteration. After the separability of sample xi ∈ N in a sliding window
scenario of W << n is calculated, xi is removed from the active collection of samples,
xi+W is set to active and calculated. The last W samples always use the instances
x(n−W),(n−W+1),▷▷▷n to prevent underpopulated windows. Figure 3.6 shows the intuition
of sliding windows in FIREOS. An additional optional parameter that can be configured
for FIREOS is the size of the sliding window. A lower value leads to faster training time
but inaccurate and fluctuating results.

One major advantage of this approach is the absence of any data shuffling or random
sampling step, which saves execution time. However, the lack of shuffling might also lead
to unrepresentative subsets and an unfair number of occurrences especially when the
arrangement of data points is in order.

Particularly the last W data samples are over-represented since they are included in W
predictors where the first instance is only featured once and that is when the separability
of itself is calculated. Still, it is arguable if random sampling results in a significantly

45

3. Methodology and Experiments

Figure 3.6: Sliding windows in FIREOS. The smaller the ratio the smaller the window
frame. A window ratio of 1.0 equals the full dataset.

better solution here, since as long as the arbitrary picking is not stratified, samples might
suffer from under-representation nonetheless. Although theoretical considerations of
other approaches were pursued and presented in subsequent chapters the application of
sliding windows following the example of Figure 3.6 is the only subsampling feature we
included in the final version of FIREOS of this thesis.

3.4.2 Coresets
A statistically and in the context of outlier detection more sophisticated method is the
usage of coresets instead of sliding windows. Coresets or originally Core-Sets [BHPI02]
have their origins in the field of clustering, where they are defined as smaller subsets
of points from a dataset that still preserve the structural properties and clusters of the
data. Bādoiu et al. prove that an (1 + ϵ) approximation exists for k-centering and
median-centering in Euclidean space when applied on the coreset.

According to Ding et al., [DYW19] the main flaw of the original idea is a high complexity

46

3.4. Sampling Methods and Subsetting

due to the large number of possible coresets. So a different approach is introduced by
using a greedy algorithm inspired by the k-means clustering algorithm from Gonzales
[Gon]. This greedy approach is aimed to be a "quality guaranteed algorithm with low
complexity" [DYW19] that further works reliably with outliers in the data.

Besides an alternative approach for k-centering, this greedy algorithm is able to construct
coresets for clustering problems with outliers. Since executing algorithms on a small
coreset significantly reduces time complexity in comparison to the whole dataset, they
are very well suited for large, high-dimensional datasets. According to Bādoiu et al., the
size and dimensionality of the underlying data are not decisive for the coreset.

Although coresets were initially perceived as a technique for clustering, their concept
might be applicable in different areas as well. Especially their property to preserve the
structural occurrences and layout of outliers makes coresets an interesting choice for
FIREOS, which relies on the existence of outliers. However, the number of libraries
featuring a fast implementation of coresets is quite limited.

A particularly promising implementation named "Minicore: Fast Generic Coresets"
[Bak23] was field tested prior in combination with PyIREOS [Tob22], an early prototype
and predecessor of FIREOS in Python also written by the author of this work. Minicore
features many concepts that were discussed before such as Gonzales algorithm or greedy
coreset construction, which resulted in fast subsets of the data. However, a stable
integration into the Julia code of the current FIREOS implementation became problematic
due to limitations, which ultimately led to the discarding of this idea. Especially technical
limitations in regard to multithreading and Pycall which will be further addressed in
Section 3.5.4 in more detail are largely to blame for this.

Nevertheless, coresets are still a promising extension to further reduce the computational
costs of internal evaluation indices like (F)IREOS and should be considered for large
datasets.

3.4.3 Microclustering
Another method that should not be left unmentioned is the concept of micro-clusters.
Similar to coresets, it is often associated in the literature as a clustering technique,
since it primarily acts nowadays as a structure for stream clustering [MNPT18]. The
reason nowadays is that the concept of micro-clusters originates from Cluster Feature
(CF), which was introduced in the BIRCH algorithm [ZRL96] but deals with static data
[AWS14, MNPT18]. Aggarwal et al. [AHW+03] extended this original approach by
the addition of a time window that tracks and maintains important information, since
revisiting former objects in data streams is not possible.

Different from the classic sliding window approach, statistical information about data
locality is kept by micro-clustering. This is achieved by storing it in a specific data
structure called pyramidal time frame. Its main intuition is assigning incoming data
samples in a stream to the closest existing clusters. If no cluster is suited well enough for

47

3. Methodology and Experiments

a merge (since the maximum boundary is lower than the distance from the new data point
to the corresponding cluster), a new cluster must be created for that sample. However,
since the initial number of micro-clusters must not be exceeded, an existing cluster must
be removed or two clusters combined into one. In case of removal, the algorithm favors
deleting clusters containing outliers with an old timestamp. More details about the exact
calculation and storage can be found in [AHW+03].

Continuing this procedure over large data streams results in clusters that span over
regions that contain exclusively inliers [KGP+11]. Since micro-clusters can be constructed
in a fast fashion even for large volumes of data, their output can be used as a structurally
similar approximation of the input dataset as well as for data streams. This problem
simplification was also considered as a possible speedup opportunity for FIREOS but
lack of adoption in official implementations leaves this extension to future work.

3.5 FIREOS

Fast Internal Relative Evaluation of Outlier Solutions or FIREOS for short is a software
implementation and extension of IREOS. It is the centerpiece of this work as it is
used for most of the experiments later on and embeds most of the theoretical concepts
introduced in Section 3.3 and Section 3.4. This chapter is dedicated to giving detailed
information about the implementation of FIREOS and its features such as different
predictors, sampling techniques and other settings and parameters.

The first subsection provides some non-technical general information about the imple-
mentation by explaining core decisions on the architecture. Moreover, a high-level view
of the software interface of FIREOS is given. Followed by Section 3.5.2 which is the first
chapter that explains the actual code of the new implementation by discussing the part
of FIREOS that deals with the normalization framework introduced in Section 3.2.2.
Section 3.5.3 continues with an in-depth discussion about technical features and im-
plementation details of the main FIREOS functions. The following subsection aims
to provide some closing words and thoughts about various milestones and events that
occurred during the engineering. Furthermore, it provides explanations about difficulties
that lead to the omission of several features mentioned in previous sections as well as
different technical challenges that lead to various refactorings and changes throughout
the development. Ultimately, the last section provides insights into how benchmarks
against the original IREOS implementation are performed.

3.5.1 General Characteristics

The main intuition of FIREOS is to provide a fast library for internal validation of outlier
solutions which starts with the decision of a suited programming language. The key
requirements for this language are high performance, flexibility and good multi-threading
capabilities.

48

3.5. FIREOS

The Julia Programming Language is a relatively new, fast and dynamically typed
programming language that "is designed for parallelism, and provides built-in primitives
for parallel computing at every level". [Mis23b] Furthermore, it provides various packages
for machine learning models and data visualization tools. Promising the performance
near low-level languages, the decision fell on Julia as the programming language for
FIREOS [Joh17].

Figure 3.7 shows benchmarks of different programming languages performing different
operations. As can be observed, Julia is not only fast but also quite consistent with
various problems.

Figure 3.7: Performance comparison of different programming languages for different
computations. [GMP+20, Figure 2]

FIREOS is organized as a software module that provides three different services:

• fireos

• normalize_solutions!

• evaluate_solutions

which can be called separately and on-demand from outside. They do not have any
dependencies on each other but represent the three main steps that needed to be performed
to conduct the experiments.

49

3. Methodology and Experiments

Figure 3.8: Service diagram and workflow of the three main functions of the FIREOS
module. 1) fireos: Main implementation of the algorithm that calculates the separabilities
of a given problem instance and defined predictor. 2) normalize_solutions!: Loads
raw solution scores from disk and transforms them into normalized solutions that can
be interpreted by FIREOS. 3) evaluate_solutions: Calculates and persists the final
FIREOS scorings from given solutions and a trained model.

Figure 3.8 shows the interrelationships between those three functions as well as a
conceptualization of the process from input data and raw solutions to final FIREOS

50

Memory

bas,c _1 ,
basic2d_2,
complex_1 ,
complex_2,

high_noise_ 1,
low-n oise_1,

Raw Solutions

ABOD,
HBOS,

IFOREST,
KNN,
LOF,

OCSVM,
SDO

Nonnalized Solutions

Nonna Ize -ABOD,
Nonnalized-HBOS,

Nonnalized-lFOREST,
Nonnalized-KNN,
Nonnalized-LOF,

Nonnalized-OCSVM,
Nonnalized-SDO

FIRE - BOD,
FIREOS-HBOS,

FIREOS-IFOREST,
FIREOS-KNN,
FIREOS-LOF,

FIREOS-OCSVM,
FIREOS-SDO

Workflow of FI REOS

FIREOS Software Environment

• juliä • hmtn dmlc
XGBoost

fireos
is loaded

- Decision Tree Native/Sklearn
- Random Forest Native/Sklearn
- libllNEAR
- libSVM
- XgBoost Tree/DART/Unear
- SVC
- LOGREG
- KLR

calculates separabilities

is loaded

\ normalize_solutions!

- standardization
persists- - normalization ©

Trained Model

is passed
is loaded

evaluate_solutions

14f-+------n,ersis1s-- --1 - gamma

3.5. FIREOS

scorings.

The function "fireos" is pretty self-explanatory as it trains the data with the FIREOS
algorithm and parameters and returns the object’s separabilities. To prevent misunder-
standings "FIREOS" refers to the name of the technique and the main software module
"fireos" is the training function of FIREOS. "normalize_solutions!" is called to transform
an array of solutions into interval [0, 1].

Different from other functions that will be explained later, this function ends with an
exclamation mark (!). This notation is adopted as a property of the Julia Programming
Language, where by convention functions with an exclamation mark indicate in-place
alteration. In other words, instead of creating a new tuple and returning it, the scaled
values are stored inside the tuple that is passed [Mis23d]. This leads to a reduction of
memory allocations which is crucial for good performance [Mis23c].

Lastly, the function "evaluate_solutions" assesses specified solutions against a trained
FIREOS model.

This interface with all its mentioned functions is implemented by two different libraries
called "fireos_lib and "fireos_lib_par". As the name already implies the FIREOS module
consists of a sequential and parallel implementation. Both types possess the exact same
feature set and workflow, except the parallel uses multithreaded constructs such as
parallel loops and synchronization. Similar to this naming strategy, each function that
has a "_par" suffix is part of the parallel implementation which further means that the
functions "evaluate_solutions_par" and "normalize_solutions_par" exist.

Common business logic that is executed in both implementations equally is separated
into a third file called "fireos_common". A graphical overview of the FIREOS ecosystem
and the relationship between its components is provided in Figure 3.9.

The FIREOS module imports several Julia helper packages such as distance functions,
libraries for threading and machine-learning algorithm implementations. Besides those
native packages, FIREOS features further additions from the ScikitLearn.jl library which
provides an interface to the popular Python library Scikit-Learn for Logistic Regression
and SVMs. Furthermore, most of the global constants and parameters used during the
calculation are defined here. These variables include values for in and outlier classes,
maximum recursion depth and some more that are explained in more detail during the
following chapters. All experiments for FIREOS were conducted under version 1▷0▷3.

3.5.2 Normalization Interface
This section is dedicated to the normalization subcomponent of the FIREOS interface:
the normalize_solutions! or normalize_solutions_par! function respectively. In theory,
this normalization framework is not directly associated with the original algorithm,
since IREOS and therefore FIREOS assume solutions being probabilistic beforehand.
The reason why this relatively small feature is discussed separately is its importance
concerning the experiments.

51

3. Methodology and Experiments

Figure 3.9: Technical conceptualization and relationships between components of FIREOS.
Both helper APIs that access the FIREOS module interface can be called from outside.
"fireos_utils" provides additional functions to call fireos "out-of-the-box" and "fireos_cli"
provides a basic command line interface. All components below the interface definition
can be summed up as the backend of the module.

When looking back at the discussion from Section 3.2.1 and Section 3.2.2, the initial
situation of the experiments are normalized training data but outlier scores at different
scales that need to be unified first. As already mentioned, the initial approach of ensuring
that is the unification of outlier scores by a normalization framework [KKSZ11]. However,
not every score that is used for the experiments is described in that work. When
looking at the original paper, LOF, LDOF, ABOD and KNN are integrated into the

52

Helper APls
fireos _ utils

+ execute_sequential_experiment
+ execute_parallel_experiment

<<Interface>>
FIREOS

- --------1 + VERSION: " 1.0.3"
+ INLIER_CLASS: -1

+ fireos

+ OUTLIER_CLASS: 1
+ MAX_RECURSION_DEPTH: 3
+ SEEO: 123

+ fireos
+ 1reos_par
+ evaluate_solutions
+ evaluate_solutions_par
+ normalize_solutions!
+ normalize_solutions_par!

A
sequential implementation

fireos_lib.jl

uses uses
+ normalize_solutions!
+ evaluate_solutions

------------~ -----------

fireos_common.j l {]

Interna!

fireos cli

fireos_lib_par.j l {]

+ fireos_par
+ normalize_solutions_par!
+ evaluate_solutions_par

3.5. FIREOS

normalization framework. Therefore, for the experiments, those scores are transformed
with the corresponding regularisation metrics mentioned in the paper.

SDO, OCSVM, HBOS and IForest, however, are outlier scoring techniques that provide
non-probabilistic scorings but are not covered by the initial approach. In order to solve
this problem nonetheless, the original framework is extended by the missing predictors
under consideration of initial principles which are:

1. Transforming the score into the interval [0, 1]

2. Normalized scores can be interpreted as the probability of being an outlier

3. The distribution of scores should favor inliers rather than outliers

Since there is no specific treatment mentioned in the original paper as well as no scientific
evidence directing to a logarithmic scaling when looking at the histograms of each score,
all measures are transformed by basic linear regularization.

As Section 3.10 shows, only HBOS possesses this specific characteristic that a large number
of mediocre scores exist. On the other hand, for all the other scores the histograms look
similar. There is a rather high number of scores that are close to zero and therefore
inliers where only a few values reach one.

As already explained in Section 3.2.2, the regularization step is followed by another
scaling method that ultimately transforms the result into [0, 1]. The original framework
suggests multiple scaling techniques for this second step. The FIREOS module can
handle two of them:

• normalization

• standardization

Normalization or min-max normalization applies a linear transformation where the
smallest value of the data is mapped to 0 and the highest to 1 [KKSZ11]. This technique
does not assume any underlying distributions and therefore does not add any contrast.

Standardization or Gaussian Scaling on the other hand does exactly that. The underlying
data is assumed to occur in a normal distribution having two degrees of freedom (the
mean µ and the standard deviation σ). After fitting the input data into this statistic, it
is transformed into X ∼ N (0, 1). Different from normalization, standardized values are
able to exceed 1 or be less than 0.

These properties, however, are problematic, since input scores for FIREOS should be
interpretable as probabilities and therefore between 0 and 1. Although standardization is
added as a feature to the FIREOS implementation, exclusively normalization is applied

53

3. Methodology and Experiments

Figure 3.10: This figure serves as an extension to Figure 3.3 as it shows all the remaining
outlier scores that are not mentioned in [KKSZ11] but are treated in this work. The
column on the left shows histograms of raw unprocessed scores differently from the right
column which shows the same scores but normalized. Each histogram consists of 100
bins.

to the scores for each experiment. When looking from a more technical perspective, both
the sequential and parallel implementations share a common function definition:

normalize_solutions!:

• Inputs:

54

3.5. FIREOS

– solutions: A tuple of the solution matrix and list of
scoring algorithm names

– norm_method: A scaling method

• Output: A tuple of the scaled solution matrix and list of
scoring algorithm names

The only differentiation can be observed as the parallel solution is able to normalize
multiple algorithms at once. Since this work features seven different outlier scores, the
optimal speedup would be achieved with seven cores.

3.5.3 FIREOS Implementation
As preliminaries about the FIREOS interface were provided in the previous section,
this chapter concludes with an in-depth explanation of the technical context of the
implementation. After normalizing all outlier scores, the FIREOS predictor is ready to
be trained. To initiate the training phase, the second function "fireos" is called, which is
also the most complex of them. "fireos" is defined by:

fireos:

• Inputs:

– X: A matrix that represents input data

– clf: A name of the internal predictor

– kwargs: A dictionary of further hyperparameters

• Output: A numerical vector of separabilities

The signature of this function is inspired by the "fit" function from the popular Scikit-
Learn library as it performs all calculations on the input data and returns the fitted
model. In the case of internal evaluation, this fitted model is an array having the same
size as the number of training samples. Intuitively, it stands for the separability of each
instance in relation to the rest of the data and acts as weights for the outlier scores it is
going to evaluate. Furthermore, it can be directly processed further as it also comes in
the same format as the input of "evaluate_solution" which can be associated with the
"transform" function in Scikit-Learn.

One major advantage of this architecture is that outlier scores can be saved as a comma-
separated file on the disk and reloaded at any time. Moreover, a fully trained model
can be evaluated on multiple solutions without any retraining. The downside of fitting
the entire model regardless of the scores that are evaluated afterward is, that especially
for outlier detection many scores might be zero. For these instances, training could be
skipped in theory since they always remain zero and therefore, do not contribute to the

55

3. Methodology and Experiments

final score. However, since FIREOS is evaluated on a set of scoring algorithms that
mostly return non-zero results in the first place, an on-demand training approach was
discarded. Nonetheless, the original IREOS implementation in Java trains the algorithm
only for non-zero instances as well as for each solution independently.
Besides passing the training data, the "fireos" function requires another mandatory
parameter, which is the classifier. Table 3.2 shows all possible classifiers that are available
in both implementations as well as their underlying model and characteristics.

Table 3.2: Different classifier options in FIREOS and their characteristics

Classifier Parameter Underlying Model Characteristics
svc SVM SVM and RBF Kernel in SkLearn

libsvm SVM Linear SVM using LibSVM
logreg Logistic Regression LR in Scikit-Learn

klr Logistic Regression Same as above using RBF Kernel
liblinear Logistic Regression LR using LibLINEAR

decision_tree_native Decision Tree Native DT
decision_tree_sklearn Decision Tree DT using Scikit-Learn
random_forest_native Random Forest Native RF
random_forest_sklearn Random Forest RF using Scikit-Learn

xgboost_tree XgBoost XgBoost with Random Forest
xgboost_dart XgBoost XgBoost with DART Booster

xgboost_linear XgBoost XgBoost with Linear Booster

Besides these technical differences, each classifier has different hyperparameter settings
and intuitions which are already discussed in prior sections. More information in regard
to predictors based on Logistic Regression and SVMs can be obtained in Section 3.3.1 and
Section 3.3.2 respectively. Tree-based classifiers were already discussed in Section 3.3.3
and LibLINEAR in Section 3.3.4.
Before the training starts, the specified classifier parameter is mapped into a function,
which provides the predictor’s implementation as well as the transformation into prob-
abilities. Since each predictor has its own way of providing results (probabilistic vs.
non-probabilistic, non-uniform output) this function must also contain corresponding
methods to convert each output into a common form. Passing a function as a parameter
that is dynamically executed is a key language feature of Julia. Using this extra level of
abstraction enables simple maintenance of hyperparameters as well as the implementation
of additional predictors in the future.
Besides the specification of the internal predictor and its hyperparameters, FIREOS
features its own parameters as well. Some of them were already established for IREOS as
some are additional tuning parameters for complexity reduction. Except for one value, all
of these parameters are optional arguments, that in case of absence have default values
as can be observed in Table 3.3.

56

3.5. FIREOS

Table 3.3: Additional tuning parameters of FIREOS

Name of Parameter Mandatory Datatype Default Value
adaptive_quads_enabled Yes Boolean nothing

window_size No Integer n

gamma_min No Float 0▷0
gamma_max No Float Varies by Predictor

tol No Float 0▷005

"adaptive_quads_enabled" is mandatory since it acts as a crucial tuning parameter that
makes a big impact on the training of FIREOS as it controls how separabilities are
calculated.

The original IREOS paper uses adaptive quadrature as a numerical integration method
to estimate the area under the curve of the separability over different gammas. One main
advantage of this method is that the γ hyperparameter for the RBF Kernel of the KLR
does not have to be randomly guessed or set beforehand, which leads to more precise
calculations and expressive results.

However, the major downside is that the number of predictors that need to be trained rises
exponentially for estimations that do not fulfill the tolerance criterion as the recursion of
adaptive quadrature continues. In the worst case, the number of trained predictors rises:

#ofPredictors = O(2n) (3.7)

where n is the depth of the recursive tree.

In order to prevent memory overflows as well as unknown runtimes for non-converging
problems, the global constant MAXIMUM_RECURSION_DEPTH = 3 is defined.
Although some curves might not reach sufficient approximation goodness, the trade
between a higher recursive depth and performance loss does not pay off. Even after
further optimizing the algorithm so that separabilities of each γ are calculated exactly
once, setting a static recursion limit to prevent theoretic endless calculations is necessary.

Besides performance reasons, the mechanism of numerical integration became prob-
lematic for a different reason too, which concerns predictors that do not consist of a
hyperparameter γ. Closely considered, the γ parameter is a remainder of nonlinear
predictors featuring an RBF kernel function and originates from the idea of KLR in
the original work. Tree-based and linear predictors, however, do not accept such value
and therefore do not benefit from this adaptive quadrature, which ultimately is the
reason to include the FIREOS parameter "adaptive_quads_enabled". In order to prevent
any unnecessary calculations, the user is able to enable or disable the mechanism of
numeric integration by setting adaptive_quads_enabled. If this value is set to true,
adaptive quadrature following the example of IREOS [MCSZ20] is performed. When

57

3. Methodology and Experiments

"adaptive_quads_enabled" is false, no numerical integration is made leading to the
separability of only one predictor being calculated.

The meaning of the remaining parameters "gamma_min", "gamma_max" and "tol" which
originated from IREOS, are therefore also quite intuitive as they enable the user to pass
custom values for the boundaries for the adaptive quadrature. The original intention of
retaining these parameters in FIREOS is to create an implementation that is as close as
possible to the initial Java implementation to ensure equal conditions for the experiments.

Furthermore, "gamma_min" is set to 0▷0 by default in the original implementation, which
would lead to crashes in FIREOS when using the SVM predictor of Scikit-Learn [Lea23].
To prevent this problem, FIREOS intercepts these cases by changing the value from 0▷0
to 0▷0001.

"gamma_max" describes the maximum gamma of the RBF kernel and "tol" sets the
tolerance for an estimated approximation error.

The last hyperparameter that can be passed is "window_size". Differently from those
that were explained before, "window_size" works the same regardless of any other setting.
It serves as an additional control parameter for featuring sliding windows, which was
already introduced in Section 3.4.1. The main purpose of this parameter is to compare
the influence between non-sophisticated subsets and the entire training data in:

• Execution time during training

• Quality of evaluated solutions

The passed argument represents the size of the sliding window. If training should be
performed on the entire dataset nonetheless, the user can leave out the argument or pass
the total number of samples manually. Finally, after fitting the FIREOS model, the
second part of the interface is invoked:

evaluate_solutions:

• Inputs:

– fireos: A trained FIREOS model

– solutions: A tuple of the scaled solution matrix and
list of scoring algorithm names

– gamma_min: "gamma_min" or 0.0

– gamma_max: "gamma_max" or 1.0

• Output: A dictionary of scoring algorithms and evaluation

58

3.5. FIREOS

"evaluate_solutions" calculates the goodness of each outlier score by multiplying each
scoring vector against the vector of separabilities from FIREOS. Calling this function
marks the last step of the FIREOS pipeline as the output consists of the evaluated scores
normalized into [0,1]. From a technical point of view, this function is similarly built like
the normalization function except it does not change values in place, which encourages
the reuse of the separabilities or scoring vectors.

3.5.4 Caveats and Limitations
Although most of the important implementation details were already explained in Sec-
tion 3.5.3 and Section 3.5.2, this section is purely dedicated to complications and technical
limitations that occurred during the implementation. Since some of these problems are
the cause of several unique results that are shown in Chapter 4, it is important to mention
and explain those.

Figure 3.11: Excerpt of the SVM predictor function in parallelized FIREOS. To pre-
vent PyCall from crashing all Scikit-Learn functions are outsourced into the function
"sk_svm_par" and called sequentially.

As explained previously and indicated by the names of the internal predictors, FIREOS
consists of native and foreign libraries. However, the Scikit-Learn implementations of
Logistic Regression and SVM are imported by the custom macro "@sk_import" which
loads the original Python version of the model directly. When the Julia wrapper of
Scikit-Learn calls the underlying model implementation during training, the library uses
a package called "PyCall" in the background which can "directly call and fully interoperate
with Python from the Julia Programming Language" [Joh23].

During the experiments training the classifiers for SVM and Logistic Regression resulted
in unstable behavior as well as multiple crashes due to memory access violations inside
PyCall. Especially when called by multiple threads at the same time, PyCall crashes
most of the time. After some research, it became clear that the PyCall package is not

59

3. Methodology and Experiments

threadsafe since it does not release the Global Interpreter Lock (GIL), which is a mutex
that allows only one thread to hold control of the Python interpreter at a time. In
other words, Python allows only one thread to be in a state of execution at any time
[Aji23]. When the second thread enters the PyCall interface and tries to acquire the GIL,
SIGSEGV is returned and Julia crashes.

This behavior is very bad for the performance of those predictors since multithreaded
access is not possible. In order to still be able to run the algorithm in Julia, a lock is
added around the critical section. Figure 3.11 shows the location of the critical section
for the SVM classifier in the code.

This, on the other hand, creates a severe bottleneck since a function that takes up to 99%
of the execution time needs to be accessed sequentially. It can be observed that most of
the execution time of FIREOS takes place inside the PyCall package. The consequence of
this measure is a massive reduction in performance for the multithreaded implementation
possibly leading to zero speedup in comparison to the sequential solution.

Furthermore, although PyCall is strictly synchronized in version 1▷0▷3 of FIREOS, random
crashes do still occur occasionally during the training of larger datasets. The sequential
implementation, however, does not suffer from these failures and is clearly recommended
for the classifiers concerned.

Another important fact that should not be left unmentioned in case of reproducing
runtimes is the startup behavior of Julia. Since Julia is a dynamic language it is prone
to the invalidation of external code [Hol21]. In order to mitigate this issue and stay as
flexible as possible, every time a new Julia prompt is started, packages are recompiled
(precompiled) before the actual code can be executed. This precompilation is far from
trivial since packages and functions are precompiled on demand. Especially for small
problems these precompilation tasks may take a large amount of time and distort the
actual performance of the code.

Figure 3.12: Excerpt of different runtimes in seconds for smaller datasets. Outliers in
the first row of the table show the impact of precompilation tasks in Julia.

60

3.6. Description of Experiments

Figure 3.12 shows this phenomenon and its extent on recorded runtimes for small datasets.
It can be clearly observed that both sequential and parallel runs for the 0.1 window of
the first row show significantly higher runtimes than any other run. The column-wise
IDE coloring visualizes this effect even stronger as it paints high runtimes in blue and
smaller more reddish. This is due to the batch execution of all 20 basic2d datasets.
The execution starts with each algorithm having a window size of 0.1 of all "basic2d_1"
datasets. All of the following measures do not need any precompilation and make them
appear more consistent than the first one. As shown in the table, the omission of these
tasks results in a speedup of more than 300 in some cases. For fairness reasons, this
precompilation time is kept for the first basic2d dataset. Experiments featuring datasets
of the complex, high-noise or low-noise series are not affected as much since training the
algorithm takes up most of the time.

3.6 Description of Experiments
Now that every step of the FIREOS evaluation pipeline is explained in theory and a
more technical context, this section is dedicated to the specific setup of the experiments.
As already mentioned, all experiments are run on 80 different datasets of various sizes
and conducted on a series of methodology steps (S):

(S1): FIREOS with nine (LibSVM, Decision Tree Native, Decision Tree SkLearn, Lib-
LINEAR, Random Forest Native, Random Forest SkLearn, XgBoost Tree, XgBoost
DART and XgBoost Linear) out of its twelve classifiers is run on each dataset
and evaluates the solutions of seven outlier detection algorithms (ABOD,
IFOREST, HBOS, KNN, LOF, OCSVM and SDO). The three remaining predictors
(SVC, LOGREG and KLR) are not considered since their runtimes are infeasible
for the problem sizes tested.

(S2): The exact same solutions and datasets are evaluated with the original IREOS
implementation in Java [Mar20].

(S3): A third series of experiments is conducted by assessing the same outlier solutions
by five external evaluation metrics. (Adjusted P@n, Adjusted Max F1 Score,
Adjusted Average Precision, Area Under the ROC Curve and Adjusted Mutual
Information)

(S4): Finally the quality of results and runtimes from FIREOS (S1) are compared
against:

a) IREOS (S2)
b) External metrics from (S3)

All experiments are executed on an AMD Ryzen 9 7950X, 16C/32T, 4.50-5.70GHz and
64Gb DDR5 RAM.

61

3. Methodology and Experiments

3.6.1 (S1) First Series of Experiments: FIREOS
The first series of experiments focuses on benchmarking the novel implementation. Each
problem instance (dataset) comes with the corresponding solutions of seven outlier
detection algorithms. (ABOD, IFOREST, HBOS, KNN, LOF, OCSVM and SDO)
FIREOS is individually trained on each dataset and assesses those seven solutions by
first creating a scoring between 0 and 1 as well as ranking of these scorings. A FIREOS
score close to 1 indicates high agreement on the outlying data points by both FIREOS
and the corresponding anomaly detection algorithm. A score close to 0 means that most
of the detected outliers by the algorithm are considered inliers by FIREOS and therefore
not a favorable solution. FIREOS uses all its underlying predictors except "svc", "logreg"
and "klr" as they are too slow to be considered effective contenders.

Besides assessing the result’s quality, FIREOS furthermore tracks the overall execution
time of each run during training and evaluation. These numbers are aggregated for both
the sequential and parallel implementation and exactly reproducible for most of the
classifiers due to a fixed seed. Most of the classifiers since both LibSVM and LibLINEAR
do not feature a mechanism that ensures entirely equal results when executed with the
same seed. To still gather the exact runtimes, each experiment is conducted multiple
times on the same machine.

Section 3.7 provides a more detailed explanation of how exactly this execution time is
measured for each implementation.

3.6.2 (S2) Second Series of Experiments: IREOS
In the second series of experiments, the same 80 datasets from before are run by the
original IREOS algorithm. The procedure is very similar to the previous setting. As
before the identical outlier solutions are loaded and assessed but this time by the original
IREOS implementation in Java [Mar20]. Like before, all the runtimes are measured for
each run. However, in order to keep both procedures comparable, some adjustments to
the Java code had to be made and are documented and explained in Section 3.7.

Different from the FIREOS module, the IREOS code is optimized for parallel processing
and does not feature a sequential implementation.

3.6.3 (S3) Third Series of Experiments: External Validation
After performing internal evaluation of 80 instances by FIREOS and IREOS this final
series of experiments is conducted by the assessment of external validation indices.
As already mentioned in Section 2.2.1 this work uses a common methodology for the
evaluation of scores to [CZS+16]. Differently to the previous two series of experiments,
all seven outlier solutions are now evaluated by five state-of-the-art external evaluation
metrics, which consist of:

• Adjusted P@n

62

3.6. Description of Experiments

• Adjusted Max F1 Score

• Adjusted Average Precision

• Area Under the ROC Curve

• Adjusted Mutual Information

Same as before each validation metric assesses each solution by an evaluation ranking
and scoring.

3.6.4 Evaluation of the Experiments
After performing the experiments from before, all the gathered data can be summarized
as three batches of results:

1. Internal validation results by FIREOS

2. Internal validation results by IREOS

3. External validation results by state-of-the-art algorithms

When going back to the original research questions, the main goal of this work is to show
the improvements of FIREOS in regard to the runtime as well as the goodness
of solutions. Now that all the important data to answer those questions are collected,
the methodology for the evaluation of those experiments can be presented before the
results are published in Chapter 4.

First, there is the assessment of quality. In order to gain a better understanding of
the nature of each predictor in FIREOS, we have to compare it against a ground truth.
If no ground truth is available for the datasets to be evaluated against we have to
define it. In this work, we approach this by the creation of a metric originating from
empirical evidence which is an averaged score from all five external evaluation algorithms
and named "consensus" in further results. In other terms "consensus" is a metric that
summarizes collective agreement from common algorithms. Since both FIREOS as well
as IREOS provide assessments on the same seven outlier detection solutions of each
dataset, we can finally evaluate these scores against each other as well as against this
novel performance index.

Then there is the assessment on speed. Similar to the first evaluation criteria, the speed is
also compared between different implementations. However, we do not have a consensus
value for the runtime of each problem instance. Therefore, we compare the difference
in runtime between the original IREOS implementation and FIREOS. Since IREOS
is utilizing multithreading, the runtime of the parallel FIREOS implementation is a
fair comparison. Furthermore, we examine the speedup of different internal predictors
between the sequential and parallel FIREOS.

63

3. Methodology and Experiments

Since both, evaluation quality and speed are important benchmark criteria, an optimal
predictor for FIREOS is found by taking the results from the correlation matrix as well
as runtimes into account.

3.7 Comparableness with IREOS
This chapter deals with the technical differences between the IREOS and FIREOS
implementation. Although both algorithms are closely related to each other both
implementations were developed with certain intentions that also lead to fundamental
differences.

Figure 3.13: Workflows for IREOS and FIREOS. The main difference between them is
that FIREOS trains the predictor independent from any solution. Since FIREOS always
calculates the separability of all data samples, no solution has to be known during the
training phase of the algorithms. After the training, an arbitrary number of solutions
can be evaluated at the same time. IREOS on the other hand trains and evaluates once
for each solution. In terms of performance, this is a disadvantage when evaluating a large
set of different solutions. However, IREOS ignores the separability calculation for data
points that are rated as 0 in the solutions, since they do not contribute to the final score.
This accelerates the algorithm, especially for sparse solutions.

64

3.7. Comparableness with IREOS

From the beginning, the architectural design of FIREOS was customized for the ex-
periments, in other words, it is meant to be optimized for the evaluation of multiple
large outlier scoring vectors at once. A FIREOS predictor is trained exactly once for all
samples and is then able to evaluate an arbitrary number of different candidate solutions.

Differently to this approach, the original IREOS implementation is trained for each
solution which would be infeasible here since the classifier would be retrained seven times
for each dataset. Nonetheless, as already discussed earlier, this behavior is beneficial for
on-demand evaluation. Figure 3.13 shows the similarities and differences between the
workflows of both IREOS and FIREOS.

Figure 3.14: Examples of separability calculations between FIREOS and IREOS. Although
the same data and solution matrix are used, FIREOS always outputs exactly one
separability vector but IREOS one for each solution. Furthermore, the separability
matrix of IREOS contains zero for any zero in the solution vector, since IREOS ignores
those instances. In order to modify IREOS to behave similarly to FIREOS, we instead
of passing the solution matrix, provide an artificial solution vector of ones to ensure the
calculation of all samples and force IREOS to calculate a separability vector rather than
a matrix.

Since these limitations exist, a direct comparison of both implementations would result in
unfair conditions. To still solve this problem, the original implementation is extended by

65

3. Methodology and Experiments

a client wrapper (IREOSCli), which changes the course of processing to fit the workflow
of FIREOS. Instead of directly passing each solution beforehand, integrating it into the
training phase and evaluating one solution at a time, a different approach is implemented.
Rather than training and evaluating sequentially, which is the default behavior, we use an
artificial solution vector of ones instead. Since IREOS ignores the separability calculation
for samples rated as 0 in the solution vector, our artificial solution forces IREOS to train
on all the data samples once, which is equivalent to the behavior of FIREOS. Figure 3.14
visualizes the differences of FIREOS and IREOS calculations and shows the application
of this artificial solution vector.

After the training phase, IREOS evaluates the calculated separabilities on an arbitrary
number of solutions, just as FIREOS. The domestic multithreaded structure and syn-
chronization as well as the integration of the internal KLR library remains unchanged
from any adjustment.

Figure 3.15: Outline of timeline and runtime measuring during the experiments.

Since the modus operandi of both methods are finally aligned now, a more precise
explanation about how the timings are measured is provided. Although I/O costs might
be noticeable, especially for larger datasets, the timings in Chapter 4 do not include any
load and save operations. This is due to the main intention of providing an accurate
analysis of the algorithmic complexity in real-life applications as well as possible random
variations for runtimes. In other words, all timing and speedup measurements are started
right before the model is trained and stopped when all seven outlier scores are properly
evaluated. Figure 3.15 shows a simplification of the evaluation process and the start and
end time of all runtime measures during the experiments.

66

CHAPTER 4
Results and Discussion

In this chapter, we present and visualize all the results obtained from the experiments
to the reader. Furthermore, we discuss and interpret the research questions defined in
Section 1.3. The structure of the experiments is twofold. We lay our primary focus on
the quality of evaluation and how well each FIREOS predictor performs when compared
to other evaluation techniques. Then, we contrast these outcomes with their associated
execution time and elaborate on what time each predictor is able to evaluate an arbitrary
solution on a given problem of a certain size. Finally, we clarify the amount of speedup
of each predictor when executed on a multicore machine.

4.1 Evaluation Performance
As already established in Chapter 3.6 we lay our focus on the evaluation of seven different
outlier detection algorithms. (ABOD, IFOREST, HBOS, KNN, LOF, OCSVM and SDO)
Each dataset presented in Section 3.1 comes with a total of seven outlier solutions - one
for each algorithm. We now run our novel FIREOS implementation on those datasets one
by one and evaluate the quality of each outlier solution. The resulting FIREOS scores
range between 0 and 1 and describe the amount of consensus with the corresponding
outlier detection solution. A higher score is an indication that FIREOS agrees more with
the corresponding solution and a lower score means less agreement. In the end, we gather
9 different evaluations of 7 solutions for each instance by FIREOS since the former is the
number of predictors considered in our experiments. (LibSVM, Decision Tree Native,
Decision Tree SkLearn, LibLINEAR, Random Forest Native, Random Forest SkLearn,
XgBoost Tree, XgBoost DART and XgBoost Linear)

Besides the scorings by FIREOS, we let the original IREOS algorithm evaluate each
solution as well and collect the resulting IREOS scores. Ultimately since MDCGen
provides labels for both inliers and outliers for each dataset we can utilize this labelling
to calculate scores of outlier solutions by external validation methods. As already stated,

67

4. Results and Discussion

we consider 5 external evaluation methods as a comparison in our experiments. (Adjusted
P@n, Adjusted Max F1 Score, Adjusted Average Precision, Area Under the ROC Curve
and Adjusted Mutual Information)

Although we already unified the outlierness scores of each algorithm by Kriegel’s frame-
work to ensure fair evaluation by (F)IREOS, we again face the problem that not all
validation outputs are on the same scale which prevents us from comparing their similarity
and distribution. Therefore, we require performance metrics that lie on a common scale,
are comparable and preserve the order of evaluated scores.

In this work, we introduce two different performance indicators that are used to assess
the quality of different evaluation methods:

• Z-Scores

• Ranks

Z-Scores are statistical measures that describe the relationship of a value to the mean of
a series of data points. The value 0 indicates that the examined score is equivalent to the
arithmetic mean, a value of 1 means one standard deviation above the mean. Z-Scores
might be negative as well, representing scores below the mean. Furthermore, they have
the property to be a comparable metric although the underlying accumulations of data
points may consist of different sizes or scales. In our experiments, one series of data
points consists of the 7 evaluated outlierness scores by one evaluation method.

The second performance indicator that is used for the experiments is ranks. We create
our ranking by using the Z-Scores from before and ordering their values. Higher scores
result in higher ranks where equivalent scores share the same rank.

From both scores and ranks we compute pairwise distances of each series and summa-
rize them as distance matrices. These distance matrices share the same properties as
correlation matrices being symmetrical and positive semidefinite. Its diagonal equals 0
since the distance of a point to its identity is always 0 by definition. Distance matrices of
Z-Scores can be compared with correlation matrices, however, their intuition is more
or less the opposite. A higher correlation usually results in data points being linearly
more similar, which is closely related to small distances. Higher distances, on the other
hand, indicate high dissimilarity and point to disassociation. In summary, those distance
matrices describe the mean absolute error between normalized validation results of 7
outlier detection algorithms.

Figure 4.1 shows this calculation pipeline for a simplified problem. An example instance
"Dataset 1" consists of two independent variables or features and one target variable
which is the labeling. As already mentioned each data point that is assigned to a positive
number belongs to a cluster and is therefore an inlier. Outliers on the other hand are
outlined with the "-1" label. In order to obtain the final distance matrix of Z-scores a
series of steps and calculations are performed:

68

4.1. Evaluation Performance

1. We run several outlier detection algorithms on this dataset, which create multiple
vectors of different solutions. (During the experiments we use seven algorithms but
for the visualization due to lack of space and simplicity only three.)

2. We calculate the evaluation for each of the three solutions (seven for the experiments)
with four evaluation methods (For the experiments we use 16) belonging to three
different validation categories:

• One FIREOS variant (9 for experiments)
• One IREOS variant
• Two external validations (6 for experiments)

3. We use Z-Score standardization for the three solutions (7 for experiments) so that
they are in the same range for all evaluation methods. In the visualization, each
evaluation method is bordered on the same color.

4. We then calculate the differences of the evaluation scores for each of the three
solutions (7 for experiments). So for each evaluation method, you get three (7 for
experiments) values and then calculate the difference of evaluations. e.g.

• Difference between P@n and ROC (for outlier detection method detection
method ABOD) = P@n(ABOD) - ROC(ABOD)

• Difference between P@n and ROC (for outlier detection method detection
method HBOS) = P@n(HBOS) - ROC(HBOS)

• Difference between P@n and ROC (for outlier detection method detection
method KNN) = P@n(KNN) - ROC(KNN)

• For the experiments differences are also calculated for IFOREST, LOF,
OCSVM, and SDO.

With these calculations, we get three (7 for experiments) differences for each
evaluation comparison pair (e.g. AUC, P@n, IREOS,..)

5. We then average those three (7 for experiments) differences to get the difference
between evaluation methods. Figure 4.1 shows each of the calculations and describes
the average as "mean" function.

6. For the experiments, we take the mean of those average differences over the 80 data
sets which is the value that is put in the matrix. (This step is not shown in the
figure since we only consider one dataset for the example.) Nonetheless, for the
corresponding dataset, each pair of average distances is presented in red.

The calculation of the rank matrices is very similar to those of the Z-Scores. Instead of
calculating evaluation scorings in step 2, we rank the three (7 for experiments) values
from the solutions. If we take P@n from Figure 4.1 we can observe the scores: 1.0 ABOD,

69

4. Results and Discussion

0.87 HBOS, 0.6 KNN. In other words, P@n finds that ABOD is the best solution (highest
score) and therefore ranks it first. The second rank would be HBOS with a score of 0.87
and the third KNN with 0.6. In the experiments, we rank each solution from 1-7 since 7
outlier detection algorithms instead of three are considered. Those ranks are then used
for the difference calculation in step 4 as we consider differences over ranks instead of
differences over Z-Scores.

Although the general intuition of distance matrices is comprehensible, an in-depth
interpretation and elaboration of such values remains delicate. First, there is the nonlinear
nature of Z-Score distances. A distance of 0▷2 is not twice as similar or "accurate" as
a distance of 0▷4. In general terms one can agree that lower scores are more similar
to a certain degree, however, the expressiveness of each scoring is limited to unknown
dynamics which depend on each instance. This phenomenon can also be projected on
rank distances as perfect similarity between ranks does not automatically mean equivalent
quality of scoring. Figure 4.2 shows some examples where similar ranks and scorings
might lead to wrong conclusions.

To interpret matrices of Z-scores, we need to consider that the value of a cell represents
an average difference between two evaluation methods (e.g., IREOS and AUC) when
validating the solution of an outlier detection algorithm (e.g., LOF). As already mentioned
before, these evaluated scores are comparable due to normalization on variance (i.e.,
Z-weighted) which further means that cell-values must be directly interpreted as "times
of standard deviations". (in their respective scales) Different from matrices of scores,
cell-values of rank matrices show the average difference in positions of the same solution
given by two different evaluation methods.

The interpretation of cell-values of rank matrices is considerably more intuitive. For
instance, a cell-value equals 1 means that two evaluation methods (e.g., IREOS and
AUC again) on average disagree in one position when evaluating the quality of a random
solution among the compared algorithms. That is, if IREOS finds LOF as the second-
best algorithm, AUC will tend to place in the first or third position. In contrast, the
interpretation of Z-scores is more complicated since the original scores given by an
evaluation method can be very unevenly distributed. For instance, it can happen that
a given evaluation method scores algorithms like in case A: 0▷100, 0▷101, 0▷102, 0▷103,
0▷104, 0▷105, 1▷000, case B: 0▷100, 0▷100, 0▷100, 0▷100, 0▷100, 0▷100, 0▷200, case C: 0▷100,
0▷200, 0▷300, 0▷400, 0▷500, 0▷600, 0▷700, etc. where each case entirely different distributed.
This behavior leads to the assumption that one should exclusively consider matrices of
ranks as an accurate benchmark. However, as shown in Figure 4.2 rank matrices tend to
be misleading and inaccurate in certain cases as well. Given the nature of the task, the
scores of case C would seem rather unusual, since case A and B are quite close to each
other in terms of scores. When considering ranks case C entirely agrees with case A and
case B would be the stranger. On the other hand, strong discrepancies might also be
quite possible (for example, perhaps the specific type of studied anomaly is only visible
for one algorithm in the comparison, or the other way round and even more common,
perhaps most algorithms solve properly the task, but one failed completely). Thus,

70

4.1. Evaluation Performance

average distances about 1 standard deviation in matrices of Z-scores and/or average
distances about 2 ranks in matrices of ranks are significant, but we might get an inflated
perspective of the difference if we forget the context of the comparison and the type of
data that we are analyzing.

Therefore, we always include both score and rank distances for each evaluation of the
same 7 outlier detection algorithms in all experiments. Furthermore, as described in
Section 3.6.4, the additional metric "consensus" describes the average external validation
score. Besides absolute scorings, also the distance between the ranked results is calculated.
Figure 4.3 and Figure 4.4 show these distances for basic2d and Figure 4.5 as well as
Figure 4.6 for the remaining datasets. Figure 4.7 shows the variance of the distance
matrix between complex, high-noise and low-noise datasets. Until now we only considered
outlier evaluation with the whole data for our quality study. Figure 4.8 shows the effect
of different sliding windows for the most important predictors. In this experiment, we
consider window sizes of:

1. 10%

2. 50%

3. All samples

71

4. Results and Discussion

Figure 4.1: Visualization of all the steps we perform to obtain distance matrices of
Z-Scores from an example dataset.

72

Dataset 1 Outl ier Solutions

Sample Fea~ure Fea~ure Sample ABOD HBOS KNN

0.6 1.4 -68901 0.68 0.04

0.3 0.7 2 -83911 0.68 0.091

0 25 09 I calculate solutiony
va uate out1ons -

4 0.7 0.42 \ 2 4 -91140 0.68 0.031

590161 12 0 002 E 1 S 1 •

5 0.05 0.01 (i' 5 -0.0006 6.77 0.97

D '\
Outliers

6 1.25 0.1 6 -0.0031 8.11 1.2

1 Cluster 2
1 1

Evaluate Solutions

external validators ,!, +
use labels (0/lnlier, External Scores

-1 /0utlier) P@n P@n I P@n ROC ROC ROC
Interna! validators 'ABOD HBOS KNN ABOD HBOS KNN

use independent variables IC1 0.87 1 o e>I .57 0.15 oQZ) l l
1 1

IREOS/FIREOS Weights

Sample IREOS FIREOS FIREOS FIREOS
LibSVM XgBoost Tree LIBLINEAR • .. Z-Score Standardization

for each Validator
1 0.12 0.22 0.31 0.5001

1 1
2 0.15 0.19 0.33 0.5001 IREOS/FIREOS Scores

Use Weights for IREQS;IIREOS: IIIREQS;I FIREOS ,1, FIREOS FIREOS
3 0.07 0.13 0.32 0.5003 each Solution ABOD HBOS KNN LibSVM ABOD LibSVM HBOS LibSVM KNN

4 0.08 0.10 0.33 0.5002 ~0.78 1 0.81 1 0.69~ 0 .68 1 0.61 0.73-=:> -
5 0.89 0.84 0.37 0.5241

1 1
6 0.91 0.95 0.38 0.5306 Z-Score Standardization

' for each Val idator

Z-Scores for each Evaluation Method

P@n P@n I P@n I ROC I ROC I ROC IREOS IREOS IIREOS I FIREOS I FIREOS I FIREOS
ABOD HBOS KNN ABOD HBOS KNN ABOD HBOS KNN LibSVM ABOD LibSVM HBOS LibSVM KNN

Ic:ro6 0.20 1 -1 .B:>I<3 -4 1 -0.52 1 -0 ~ I <lf39 0.98 1 -1 .~ 1 C 0.14 1 -1 .27 1 1.15-=:>

Construct oi;tance Matrix
of Z-Scores

Distance Matrix

P@n ROC IREOS FIREOS LibSVM

-

mean((l1.4-1 .061) mean(((IO 39 - 1.061) mean((I0.14 - 1.061)

P@n 0 + (1-0.52 - 0.281) + (10.98 - 0 281) + (1-1.27 - 0.281)
+ (1-0.88 - (-1.34)1)) + (l-1 .37 - (-1 .34)1))) + (1 1.15- (- 1.34)1))

= 0.53 = 0.47 = 1.66 -
mean((l1 .06 - 1.41) mean((I0.39 - 1.41) mean((I0.14 - 1.41)

ROC + (10.28 - (0.52)1) 0 + (10.98 - (-0.52)1) + (1 -1 .27 - (-0.52)1)
+ (l-1 34 - (-0.88)1)) + (l-1 37 - (-0.88)1)) + (1 115 - (-0 88)1))

= 0.53 = 1.0 = 1.36 -
mean((l1.06 - 0.391) mean((l1.4 - 0.391) mean((I0.14 - 0.391)

IREOS + (10.28 - 0.981) + (1-0.52 - 0.981) 0 + (1-1.27 - 0.981)
+ (1-1 .34 - (-1 .37)1)) + (1 -0 88 - (-1 37)1)) + (1 1.15 - (-137)1))

= 0.47 = 1.0 = 1 68
mean((l1.06- 0.141) mean((l1.4 - 0.141) mean((I0.39 - 0.141)

FIREOS LibSVM + (10.28- (-1.27)1) + (1-052 - (-1.27)1) + (1098-(-1 .271) 0 + (1-1.34 - 1151)) + (1088- 1.151)) + (1-1.37 -1151))
= 1.66 = 1.36 = 1.68

4.1. Evaluation Performance

Figure 4.2: Examples of different validation scorings where the consideration of only one
distance matrix (scores or ranks) would lead to an incomplete picture: Given are six
scoring results of six fictional problem instances where we consider score1 as the gold
standard. Score1 and score2 are very similar due to their distance matrices although their
initial scorings are very different. Score3 looks very similar to score2 but shows strong
deviations when looking at ranks. The distance between score4 and score1 is larger than
to score3 and score1, however, the distance between the ranks is completely different.
Lastly, score5 and score6 show another ranking problem. Although both predictors
"misclassify" exactly one rank (score5 misclassifies row 1 and score6 misclassifies row 5)
the outcome of the distance matrix is very different considering the distance of score6
the second highest. The misclassification of higher ranks is penalized more than lower
ranks because the error is propagating further.

73

4. Results and Discussion

Figure 4.3: Distance matrix of different evaluation metrics that are executed on the seven
outlier solutions for each basic2d dataset. Since FIREOS predictors return values on
different scales, Z-Scores are used. Lower values in red represent more similar scorings
and high values are more distinctive. It can be observed that most of the scorings
performed by FIREOS predictors are closer to IREOS scorings than external validation.
Obviously, external scorings show a high degree of similarity to the "consensus" metric.
Lastly, LibLINEAR is shown to be the method that evaluates most differently among
the compared predictors. Although many distances are colored in blue, there are no
signs of strong deviations between any algorithm since the maximum number of standard
deviations is 1▷01.

74

4.1. Evaluation Performance

Figure 4.4: Distance matrix of different evaluation rankings executed on seven outlier
solutions for each basic2d dataset. Lower values in red represent a lower distance between
ranks, hence lower MAE. Most FIREOS predictors show similar distances to the
consensus metric indicating common agreement of ranks. Only decision_tree_sklearn,
random_forest_native and liblinear show strong deviations to consensus. When looking
at other pairs they still show larger distances than any other FIREOS predictor leading
to the assumption that one joint deviating prediction is the reason. Different from the
distance matrix between Z-Scores, the MAE between predictors tends to be generally
higher. However, as already stated before rank-similarity is especially sensitive to small
misclassifications.

75

4. Results and Discussion

Figure 4.5: Z-Score distance matrix of different evaluation metrics executed on seven
outlier solutions for each of the larger complex/high-noise/low-noise datasets. Lower
values in red represent more similar scorings and high values are more distinctive. As
shown most of the scorings performed by FIREOS predictors are closer to IREOS scorings
than external validation. Although many distances are colored in blue, there are no signs
of strong differences between any algorithm of FIREOS and the consensus metric since
the maximum number of standard deviations is 1▷17. However, random_forest_native
clearly acts as a special case here since it shows large and consistent deviations from all
other FIREOS predictors. The difference to any external validation method as well as
consensus is lower but still aligned with the other FIREOS predictors which again shows
the complex dynamics when comparing different outlierness metrics.

76

4.1. Evaluation Performance

Figure 4.6: Distance matrix of different evaluation rankings executed on seven outlier
solutions for each of the complex/high-noise/low-noise datasets. Lower values in red
represent a lower distance between ranks, hence lower MAE. It can be observed that
most of the scorings performed by FIREOS predictors are closer to IREOS scorings than
external validation. The random_forest_native predictor provides rankings that are
close to the opposite of any other method. This plot shows the extreme sensitivity of
rank distances in comparison to Z-score distances which can be observed in Figure 4.5.

77

4. Results and Discussion

Figure 4.7: Standard deviations of Z-Score distance matrices between complex/high-
noise/low-noise datasets. External measures tend to have a slightly higher variance
toward internal validation. One explanation for that might be that external validation
depends on predefined labels which are not known by internal indices. These labels,
however, agree sometimes more and sometimes less with the topological properties of the
data depending on the instance and therefore appear "less stable" in terms of variance.

78

4.1. Evaluation Performance

Figure 4.8: Distance matrix of different evaluation methods that are executed on seven
outlier solutions for each of the complex/high-noise/low-noise datasets. This chart focuses
on the quality of solutions when using sliding windows of different sizes. Suffixes of
0▷1 mean 10%, 0▷5 represents 50% and 1▷0 means that all data samples are considered.
Solutions from tree-based classifiers such as decision trees or XgBoost Tree show heavy
degradation in quality when applied with sliding windows resulting in less agreement
with IREOS as well as other FIREOS predictors for smaller window sizes. Results from
linear predictors show a similar picture. Nonlinear support vector machines on the other
hand seem to be not affected by this phenomenon as LibSVM results remain very stable
over different settings.

79

4. Results and Discussion

4.2 Execution Time and Speedup
Besides the display of scores, each experiment also features the duration of the calculation.
Table 4.1 shows the detailed breakdown of runtimes for each dataset measured for each
predictor. The abbreviations of the columns stand for:

• LS: LibSVM

• DT-N: Decision Tree Native

• DT-S: Decision Tree SkLearn

• RF-N: Random Forest Native

• RF-S: Random Forest SkLearn

• LL: LibLINEAR

• XTree: XgBoost Tree

• XDart: XgBoost DART

• XLin: XgBoost Linear

• Ireos: Original IREOS

The execution times of the original IREOS are on the farmost right column. Table 4.2
focuses on the speedup potential of FIREOS predictors. Figure 4.9 shows the runtime
distribution across smaller problem instances of basic2d. Figure 4.10 and Table 4.2 show
the potential of speedup for each FIREOS predictor on larger problems. In Figure 4.11
and Figure 4.12 the impact of sliding windows in or without the context of IREOS
runtimes are visualized. Finally Figure 4.13 shows the runtime behavior of the best
performing FIREOS predictors LibSVM, Decision Tree Native and XgBoost Tree in
contrast to the original IREOS implementation for different problem instance dimensions.

High-Noise Datasets
LS DT-N DT-S RF-N RF-S LL XTree XDart XLin Ireos
1 108.7 4.7 1.7 32.7 49.7 2.7 10.4 26.0 10.6 3098.3
2 224.8 8.2 2.1 72.2 66.1 4.0 24.1 41.9 15.3 3074.1
3 283.5 6.8 2.8 26.0 30.0 2.8 17.2 31.5 16.0 4902.6
4 140.5 4.8 1.0 64.4 79.5 3.6 8.2 16.2 5.4 1739.7
5 554.5 7.9 2.9 27.5 47.3 3.6 35.8 88.7 14.4 8678.9
6 103.2 5.1 2.0 28.0 36.6 2.6 11.9 21.6 7.9 2710.3
7 114.0 4.5 1.2 47.7 66.0 3.2 15.1 42.4 6.8 2539.6
8 795.4 7.5 3.2 24.8 37.2 3.9 42.9 105.7 16.5 9394.9
9 150.5 6.7 2.0 57.7 80.1 5.3 16.2 27.6 6.8 2816.8

80

4.2. Execution Time and Speedup

LS DT-N DT-S RF-N RF-S LL XTree XDart XLin Ireos
10 115.7 5.5 1.1 42.0 54.7 3.1 14.2 32.2 8.3 2609.8
11 122.2 6.1 2.3 40.1 56.1 3.5 16.9 38.2 7.9 3727.1
12 634.8 6.4 2.6 19.0 27.2 2.7 29.9 84.4 8.7 5767.3
13 258.3 7.9 2.4 45.1 65.4 4.6 25.7 53.9 14.2 6740.5
14 262.0 8.9 3.4 48.0 62.8 3.7 24.6 49.8 23.8 7628.7
15 166.5 6.0 2.1 46.8 58.3 3.8 18.0 37.8 10.6 3102.9
16 119.1 6.3 1.8 29.7 33.0 2.7 14.2 29.6 14.3 2562.5
17 117.3 5.4 2.0 41.9 62.7 3.3 18.4 24.1 5.8 3814.0
18 526.7 6.6 2.4 19.4 30.6 2.8 36.9 101.2 12.0 6763.0
19 139.0 6.1 1.1 60.9 86.5 5.6 11.2 36.3 16.7 2806.7
20 508.9 6.5 2.6 19.7 29.6 2.9 29.2 68.1 10.4 5919.1

Low-Noise Datasets
1 99.5 4.2 0.8 31.3 36.6 2.3 11.3 19.2 7.1 1529.5
2 484.3 5.3 2.0 18.7 20.4 2.3 8.8 14.5 7.7 2380.0
3 90.9 4.4 1.0 25.0 27.5 2.0 10.9 19.5 9.8 1868.2
4 92.3 4.5 0.8 37.6 46.6 2.4 7.0 14.4 4.1 1539.1
5 446.7 5.4 2.2 23.5 29.3 2.1 10.1 13.9 8.1 3196.8
6 244.3 5.2 1.9 20.1 26.2 2.0 9.8 12.6 7.7 2337.7
7 236.7 5.0 1.8 23.7 30.8 2.2 11.6 20.6 12.0 2113.0
8 127.8 3.7 1.8 16.8 19.3 1.8 7.0 11.7 5.6 1626.2
9 95.4 3.7 1.3 26.7 41.4 2.0 6.8 13.6 12.3 1830.3
10 93.0 4.3 1.1 21.2 22.6 1.8 10.4 18.0 9.0 2152.4
11 308.2 4.3 2.0 19.3 28.7 2.0 7.6 12.8 4.0 1808.4
12 117.9 3.5 1.4 19.9 24.2 1.9 6.8 9.7 4.8 1720.2
13 105.6 5.0 0.8 46.9 60.3 2.6 13.0 22.5 12.4 1723.0
14 97.6 4.9 2.0 34.5 40.9 2.7 8.0 15.5 4.0 1714.4
15 87.8 4.0 1.5 26.2 36.1 1.9 9.3 20.8 8.6 1879.8
16 102.0 4.3 1.7 37.6 44.6 2.6 9.0 20.6 4.0 1740.3
17 90.1 3.9 1.2 21.2 24.3 2.1 7.8 13.8 5.7 1895.1
18 118.5 4.1 1.3 15.7 16.7 1.9 7.0 10.6 8.3 2140.6
19 105.1 5.0 0.9 48.0 63.9 3.7 9.5 17.3 4.1 1589.0
20 94.6 3.1 1.2 17.4 30.1 1.8 17.5 40.0 5.6 1569.5

Complex Datasets
1 97.7 3.5 1.8 42.0 58.8 3.7 7.1 15.0 13.4 1630.0
2 87.9 3.6 0.6 36.4 53.1 2.0 6.3 12.0 3.6 1561.0
3 564.8 6.1 2.1 28.5 37.7 2.5 12.1 17.6 11.6 5839.7
4 484.2 5.6 2.0 23.1 27.5 2.3 10.9 16.4 8.7 5044.9
5 199.9 3.7 1.6 22.2 32.5 1.8 5.8 9.9 3.5 2211.4
6 112.8 3.9 1.9 18.8 23.4 1.9 8.5 16.6 10.3 2635.7
7 97.5 3.3 1.1 26.3 33.7 2.2 10.3 19.3 11.9 1870.2
8 348.6 5.4 2.0 22.2 22.2 4.3 8.7 12.5 7.0 3028.8

81

4. Results and Discussion

LS DT-N DT-S RF-N RF-S LL XTree XDart XLin Ireos
9 130.3 3.4 1.4 48.9 67.1 3.1 9.1 17.2 3.0 1554.8
10 221.2 5.0 1.8 25.0 31.9 2.0 11.2 17.5 12.9 4078.8
11 103.2 3.5 1.0 30.7 41.9 2.2 5.8 11.8 6.2 3265.7
12 98.0 3.4 1.2 35.6 49.3 2.4 6.8 13.4 3.2 1863.5
13 217.5 5.0 2.2 25.3 36.7 2.4 12.7 20.1 7.3 4596.4
14 272.1 4.4 1.5 19.4 24.0 2.0 7.8 11.1 6.3 3868.4
15 103.1 4.2 1.6 24.8 28.8 2.3 11.9 23.4 7.6 1900.8
16 167.2 4.5 1.6 19.0 26.4 1.9 9.2 15.7 6.7 3133.9
17 130.5 4.7 1.1 31.4 47.4 2.1 10.4 14.4 3.4 2370.6
18 255.7 6.0 2.1 25.7 35.2 2.3 11.1 15.5 10.0 6200.5
19 99.9 4.3 1.3 29.2 35.6 2.8 8.6 20.7 10.8 2821.5
20 294.8 5.0 2.3 18.9 20.5 2.1 8.5 12.9 6.0 3816.8

Table 4.1: Runtimes of different FIREOS predictors and IREOS. All results are measured
in seconds, use the parallel implementation and are run on 32 threads.

Figure 4.9: Average runtime in seconds of different predictors on basic2d datasets. All
results are conducted by using the parallel implementation on 32 threads. As shown in
the chart LibSVM is slower than IREOS for smaller problem instances like datasets of
the basic2d category.

82

4.2. Execution Time and Speedup

Figure 4.10: Average runtime in seconds between the sequential and parallel implementa-
tion of different FIREOS predictors on complex, high-noise and low-noise datasets.

Speedup of different Predictors
Classifier Sequential Runtime Parallel Runtime Speedup
LibSVM 1485.06 212.85 6.97
Decision Tree Native 58.21 5.07 11.48
Decision Tree SkLearn 26.81 1.74 15.45
Random Forest Native 18.77 31.30 0.6
Random Forest SkLearn 23.04 41.06 0.56
LibLINEAR 35.82 2.71 13.21
XgBoost Tree 80.02 13.22 6.05
XgBoost DART 123.94 26.86 4.61
XgBoost Linear 35.36 8.85 4.0

Table 4.2: Runtime in seconds of different predictors using sequential and parallel
FIREOS as well as the corresponding speedup. Presented numbers are averages across all
complex/high-noise/low-noise datasets and parallel results were conducted on 32 threads.

83

4. Results and Discussion

Figure 4.11: Average runtime in seconds of FIREOS classifiers and different window
ratios. Values of 0▷1 mean 10%, 0▷5 represents 50% and 1▷0 means that all data samples
are considered.

Figure 4.12: Same chart as Figure 4.11 chart with IREOS runtime as a comparison. Since
IREOS does not feature a mechanism for sliding windows, only one bar is displayed.

84

4.2. Execution Time and Speedup

Figure 4.13: Runtime experiment on a subset of predictors for different key figures.
Those KPIs are rows, columns/features and both. Each chart shows the runtime curves
measured in seconds of three FIREOS predictors (LibSVM, Decision Tree Native and
XgBoost Tree) as well as the original IREOS over some increasing key figure. For example,
the top plot shows the course of execution time when exponentially increasing the total
number of rows of a random dataset. The steeper the curve the more computationally
expensive the corresponding predictor. All datasets used for this experiment are randomly
generated matrices of normally distributed variables. The top plot shows the course of
runtime for a variable number of rows (x-axis) and a fixed number of features which is
10. The middle chart shows the runtime behavior for 10 rows but a variable number of
features. Finally, the bottom plot shows the course of execution time for both variable
rows and features. The x-axis in the last chart represents both rows and features which
means that all datasets are quadratic matrices. As shown all three FIREOS predictors
are faster than the original IREOS for either KPI except libsvm for very small problems.
This chart demonstrates that IREOS is computationally more complex than FIREOS.

85

4. Results and Discussion

4.3 Discussion
Looking at the results, both scores and ranks of the FIREOS evaluation show a high
similarity to the existing implementation for most of the predictors. As already forecasted
by the authors of the original paper, especially nonlinear classifiers such as LibSVM,
XgBoost DART, XgBoost Tree and Decision Tree Native are similar to IREOS. Most linear
predictors such as LibLINEAR and XgBoost Linear on the other hand show remarkable
deviations from all existing measures. A possible explanation for that might be the
frequent occurrence of instances that are not linear separable resulting in unexpected
behavior during the classification phase. A major outlier when it comes to the results
of the evaluation is the Random Forest Native classifier, which does not apply any tree
pruning. The resulting problem of not limiting the maximum depth of a tree is already
described in Section 3.3.3. When properly pruned, random forests still provide decent
results as Random Forest SkLearn shows.

During our experiments, we observed certain differences between FIREOS, IREOS and
external scorings in all matrices:

• External validation scorings show smaller distances to each other, therefore also to
consensus, than against FIREOS or IREOS.

• Scores from internal evaluation such as IREOS and most FIREOS scores are more
similar to each other than external validation methods.

These observations lead to the impression that internal and external validation are entirely
different perspectives on outlierness and do not fit together. However, each series of
experiments points out that most of the observed methods provide consistent results
and clearly indicate relationships between them. Furthermore, results show that both
internal and external evaluation methods share a baseline agreement when it comes to
scores and we are not able to prove a statistically significant deviation or even strong
divergence between them. Although some of the distances of the rank matrices point to
large deviations, we must be careful due to the fact that they are very sensitive to minor
changes and difficult to interpret. The experiments show behavior that leads to the
assumption that FIREOS is more similar to IREOS than external validation. However,
despite all those differences we still do not know how much in terms of real accuracy or
even real distance.

When it comes to runtimes, FIREOS is more lightweight than its predecessor. As already
smaller datasets like basic2d show, most of the FIREOS predictors evaluate the same
instance in a fraction of the time. Furthermore, IREOS runs over 50 minutes on average
to evaluate an instance coming from complex, high-noise or low-noise. In comparison,
the fastest FIREOS classifier "Decision Tree SkLearn" never exceeds 4 seconds on each
instance, which represents a speedup of 750. Decision trees are not the only quick
alternative as most of the evaluations do not take longer than one minute. However, the

86

4.3. Discussion

slowest alternative by far is the support vector machine (LibSVM) which is still over 10
times faster than the original KLR. There are several reasons for that behavior:

1. First, there is of course the base costs of each estimator. As already mentioned in
Section 3 the algorithmic complexity of KLR is O(n3) which is worse to support
vector machines O(n2m) which is again worse than decision trees with O(nd·log(n)).

2. Adaptive quadrature is disabled on all predictors except LibSVM and of course
IREOS. This numerical integration method is computationally very expensive as it
triggers the re-execution of training separabilities until an error criterion is met.
FIREOS has a general fail-save that prevents the algorithm from getting stuck
in an endless loop if this criterion is never met. However, in the worst case, 14
more predictors still need to be trained for each sample resulting in a multitude
of internal classifiers. Numerical integration is a remainder of the original IREOS
and is designed to estimate the separability function of each γ instead of randomly
guessing it. This γ parameter, however, is only required for predictors utilizing the
radial basis kernel. As tree-based and linear predictors do not need kernel functions,
this feature is disabled for all classifiers except LibSVM which is the reason why
they are significantly faster.

3. The FIREOS module utilizes multithreading in its parallel implementation. How-
ever, the largest chunk of the speedup is dependent on the parallelization capabilities
of the underlying library. As Table 4.1 shows, the highest speedup between single
and multithreaded implementation is achieved by decision trees and LibLINEAR.
When, for instance, compared to LibSVM, those predictors accelerate by twice as
much.

Another major accelerator of FIREOS is the application of sliding windows. In most cases,
the "window_ratio" parameter does not only correlate with the input space rather than
controlling the runtime. However, as results show, this loss of information comes with a
price. Results from instances evaluated with only a subset of samples show noticeable
deviations in comparison to the whole set. This variance diverges even further the smaller
the window size and therefore fewer instances are considered. In our experiments, only
nonlinear support vector machines were not prone to this behavior.

Looking at the speedup table, we can observe major differences when it comes to the
scalability of different estimators. As all of our experiments are executed on a 16 core
CPU, we would expect a significant reduction in runtime. However, measures show that
especially the performance of random forests suffers when executed in parallel, being
over 40% slower than the sequential algorithm. All three XgBoost implementations as
well as LibSVM show mediocre speedup where LibLINEAR and decision trees scale the
best with the latter almost reaching the ideal speedup. These insights are particularly
beneficial when considering a time-critical predictor for systems with many CPU cores.

87

4. Results and Discussion

Although decision trees already being the fastest predictor, this trend will be further
reinforced as the core count increases.

In conclusion, experiments show that the recommended options for FIREOS are:

1. XgBoost DART

2. Decision Tree Native

3. LibSVM

As shown in the experiments, XgBoost DART provides the results closest to the original
IREOS with still decent speedup. In cases where the most lightweight predictor is desired,
we recommend the Decision Tree Native, which offers results close to XgBoost and
near-optimal multicore capabilities. Finally, we must not forget to mention the LibSVM
predictor that provides the second-best but most stable results even with smaller sliding
windows which is especially advantageous for datasets with lots of instances.

88

CHAPTER 5
Conclusions

In this chapter, we summarize our findings and insights from the previous sections
to draw a conclusion and answer the research questions. We proposed an alternative
implementation to the existing IREOS algorithm by modifying several components of
the algorithm to make it more lightweight.

We also introduced 12 additional classifiers following different principles with different
strengths and weaknesses. Furthermore, our novel implementation features a sampling
option as well as additional parameters to control the overall complexity of the algorithm.
We included interfaces for preliminary tasks such as data normalization by Kriegel’s
outlier scoring unification framework in our implementation and used fixed seeds to
ensure reproducibility. In addition to a sequential as well as parallel FIREOS module,
we also adjusted the workflow of the existing Java implementation.

We used 80 synthetic datasets with different characteristics for training each algorithm
and evaluated 7 different outlier detection solutions coming from algorithms namely
ABOD, HBOS, KNN, LOF, IFOREST, OCSVM and SDO. In addition to the resulting
seven scorings evaluated each by IREOS and FIREOS, the exact same solutions are
assessed by Adjusted P@n, Adjusted Max F1 Score, Adjusted Average Precision, Area
Under the ROC Curve and Adjusted Mutual Information which are popular algorithms
that use external validation.

While retaining the original intuition and structure of the algorithm, the proposed
software shows a considerable performance increase when compared to the original
implementation. We showed in our experiments that most predictors of FIREOS indicate
a high similarity towards the base implementation. Especially tree-based approaches as
well as nonlinear support vector machines have a large amount of agreement with IREOS
in our experiments. We further showed in our study that outlier detection algorithms
evaluated by FIREOS might differ from other external validation methods but very
similarly to how IREOS does it.

89

5. Conclusions

When it comes to performance comparison, our runtime benchmark showed significantly
faster results for most of the FIREOS predictors. In our experiments decision trees and
LibLINEAR are the fastest alternatives to the KLR of the original algorithm. Especially
the runtime analysis plot in the previous chapter shows the impact of those less complex
estimators when increasing the number of samples and/or dimensions.

We then showed that the use of sliding windows further decreases the complexity and
leads to significant performance gains. However, we also noted that this loss of input
data decreases the overall quality and stability of the results. Finally, we provided some
recommendations about the ideal FIREOS predictor for various scenarios.

Considering this gained knowledge, we are finally able to make statements about our
goals and answer the research questions formulated in Section 1.3.

The first goal that is aimed to be achieved is to reduce the computational
complexity of the algorithm and reach a faster implementation of the original
IREOS (G1)

We reached that goal by introducing FIREOS, a modified version of IREOS that uses
computationally less complex predictors than its predecessor to evaluate outlier solutions.
Furthermore, we proposed and integrated a sampling method into FIREOS that enables
the option to further reduce computational costs by reducing the number of samples
during the separability calculation.

As shown, FIREOS finishes each evaluation of the 80 datasets in significantly less time
than the original implementation.

Which components of IREOS can be replaced by equivalent methods in order
to obtain faster performances and minimally affect accuracy? (RQ1)

In this thesis, we performed several adjustments to the original algorithm to make it
faster:

1. Replacing the internal predictor: Discarding the KLR predictor as the central
element of the algorithm in order to use classifiers close to linear complexity is
the most crucial step as it not only makes the implementation faster when we test
its performance empirically but also reduces the real algorithmic complexity. The
results coming from most FIREOS predictors are quite similar to those coming
from IREOS indicating strong accuracy.

2. Leave out numerical integration: The omission of the numerical integration
mechanism for most predictors leads to faster results and less allocated memory
due to recursion.

3. Sliding windows: The application of sliding windows in FIREOS is a double-edged
sword. On the one hand, we were able to observe significant performance gains for
smaller subsets when it comes to speed, however, the accuracy of the algorithm
is severely affected when the sliding window gets too small. Furthermore, this

90

accuracy degradation is very dependent on the underlying instance and cannot be
reliably predicted beforehand.

The second goal is to evaluate to which degree IREOS and FIREOS are
consistent with existing external validation metrics. (G2)

In this thesis, we compared evaluations by 9 predictors from FIREOS and the original
IREOS against 5 external validation metrics by contrasting the evaluated solutions of
seven outlier detection algorithms of overall 80 problem instances. We presented in our
results that neither FIREOS nor the original IREOS algorithm shows strong deviations
from any external validation measure. Our experiments concluded that scores from
FIREOS and the external consensus metric have an average score difference of 0▷76 - 1▷18
standard deviations. IREOS for comparison provides a Z-score difference of 0▷98.

The reasons for the discrepancy between internal validation (IREOS/FIREOS) and
external validation are to be studied carefully in future work. We hypothesize that the
main reasons might have to do with the mechanisms to generate and label the synthetic
data used in combination with the different dynamics of the tested outlier detection
algorithms when establishing outlierness. External validation matches better the binary
set of the synthetic ground truth (0/1), whereas the principles behind internal validation
are more fine and consistent with non-crisp (gradual, gradient, variable) assessments of
outlierness. This causes some biases on both sides when comparing the performances of
algorithms.

How does IREOS/FIREOS align with external evaluation metrics and, conse-
quently, which type of outlierness definition is favored by IREOS based on
empirical evidence? (RQ2)

As already stated in the answer of (G2), the interpretation of distance values regarding
outlierness is delicate. In our experiments, we were able to present that for those
seven outlier detection algorithms considered most FIREOS predictors are very similar
to IREOS but both IREOS and FIREOS show some deviation to external validation.
However, those differences are still in ranges to be not considered significantly diverging
from FIREOS.

Tree-based predictors specifically show high similarities with the original implementation
with Random Forest SkLearn and XgBoost DART being the most alike. Non-linearity is
an important property of a versatile classifier since linear methods such as LibLINEAR
are less stable.

In summary, our empiric study of 80 datasets shows that tree-based methods are a viable
and lightweight replacement for the KLR of the original algorithm and also similar in
terms of quality to the nonlinear support vector machine, which is also recommended by
the authors of IREOS.

91

APPENDIX A
Appendix

A.1 FIREOS Results

Score LS DT LL Xtree Ireos P@n F1 AP AUC AMI
basic2d_1

sdo 0.008 0.601 0.049 0.175 0.077 0.93 0.966 0.995 1.000 0.826
abod 0.007 0.539 0.060 0.141 0.020 0.93 0.934 0.949 0.998 0.768
hbos 0.008 0.551 0.062 0.147 0.028 0.37 0.550 0.735 0.938 0.351
iforest 0.007 0.563 0.067 0.156 0.033 0.86 0.898 0.934 0.997 0.700
knn 0.008 0.600 0.049 0.174 0.075 0.93 0.966 0.995 1.000 0.826
lof 0.008 0.600 0.036 0.161 0.053 0.65 0.790 0.922 0.962 0.522
ocsvm 0.008 0.563 0.051 0.154 0.043 0.65 0.790 0.922 0.955 0.414

basic2d_2
sdo 0.008 0.615 0.061 0.192 0.079 1.00 1.000 1.000 1.000 1.000
abod 0.007 0.546 0.029 0.145 0.023 0.86 0.934 0.975 0.999 0.639
hbos 0.007 0.543 0.037 0.145 0.024 0.65 0.674 0.786 0.949 0.445
iforest 0.007 0.561 0.036 0.155 0.030 0.93 0.966 0.979 0.999 0.826
knn 0.008 0.610 0.058 0.189 0.073 1.00 1.000 1.000 1.000 1.000
lof 0.009 0.630 0.076 0.202 0.101 1.00 1.000 1.000 1.000 1.000
ocsvm 0.008 0.576 0.046 0.164 0.045 0.79 0.850 0.951 0.957 0.593

basic2d_3
sdo 0.007 0.552 0.046 0.152 0.037 0.93 0.966 0.990 1.000 0.826
abod 0.007 0.539 0.051 0.141 0.014 0.72 0.841 0.867 0.993 0.388
hbos 0.007 0.532 0.036 0.137 0.014 0.09 0.163 0.128 0.729 0.010
iforest 0.007 0.555 0.044 0.151 0.019 0.58 0.596 0.809 0.978 0.339

Continued on next page

93

A. Appendix

Score LS DT LL Xtree Ireos P@n F1 AP AUC AMI
knn 0.007 0.552 0.044 0.151 0.032 0.93 0.966 0.990 1.000 0.758
lof 0.007 0.550 0.055 0.151 0.046 0.86 0.860 0.964 0.996 0.700
ocsvm 0.007 0.550 0.045 0.148 0.026 0.58 0.737 0.888 0.813 0.339

basic2d_4
sdo 0.008 0.599 0.058 0.177 0.082 0.93 0.930 0.990 0.997 0.826
abod 0.007 0.549 0.031 0.146 0.027 0.79 0.850 0.788 0.993 0.593
hbos 0.007 0.554 0.034 0.150 0.032 0.65 0.745 0.737 0.942 0.414
iforest 0.008 0.570 0.037 0.161 0.043 0.86 0.860 0.945 0.996 0.700
knn 0.008 0.607 0.061 0.181 0.088 0.93 0.930 0.990 0.998 0.826
lof 0.008 0.625 0.054 0.207 0.100 0.72 0.747 0.850 0.957 0.499
ocsvm 0.008 0.570 0.045 0.159 0.052 0.93 0.930 0.990 0.935 0.826

basic2d_5
sdo 0.007 0.587 0.049 0.170 0.053 1.00 1.000 1.000 1.000 1.000
abod 0.006 0.537 0.026 0.139 0.015 0.79 0.819 0.924 0.962 0.555
hbos 0.007 0.557 0.033 0.152 0.028 0.58 0.650 0.621 0.979 0.393
iforest 0.007 0.570 0.035 0.158 0.034 1.00 1.000 1.000 1.000 1.000
knn 0.007 0.610 0.051 0.177 0.074 1.00 1.000 1.000 1.000 1.000
lof 0.007 0.614 0.054 0.182 0.076 1.00 1.000 1.000 1.000 1.000
ocsvm 0.007 0.588 0.047 0.167 0.056 1.00 1.000 1.000 1.000 1.000

basic2d_6
sdo 0.007 0.615 0.031 0.182 0.062 1.00 1.000 1.000 1.000 1.000
abod 0.007 0.538 0.046 0.140 0.015 0.93 0.930 0.939 0.998 0.826
hbos 0.008 0.550 0.031 0.147 0.019 0.58 0.737 0.888 0.876 0.469
iforest 0.007 0.568 0.042 0.158 0.027 1.00 1.000 1.000 1.000 1.000
knn 0.007 0.615 0.030 0.180 0.061 1.00 1.000 1.000 1.000 1.000
lof 0.008 0.650 0.028 0.209 0.089 1.00 1.000 1.000 1.000 1.000
ocsvm 0.007 0.576 0.043 0.161 0.037 1.00 1.000 1.000 1.000 1.000

basic2d_7
sdo 0.009 0.650 0.032 0.215 0.089 0.93 0.966 0.995 1.000 0.826
abod 0.007 0.540 0.040 0.142 0.016 0.93 0.930 0.985 0.998 0.639
hbos 0.007 0.573 0.041 0.161 0.031 0.65 0.695 0.866 0.980 0.414
iforest 0.008 0.590 0.038 0.174 0.041 0.93 0.964 0.995 0.999 0.826
knn 0.009 0.638 0.034 0.209 0.080 0.93 0.964 0.995 1.000 0.911
lof 0.009 0.622 0.034 0.199 0.070 1.00 1.000 1.000 1.000 1.000
ocsvm 0.008 0.589 0.038 0.173 0.039 0.93 0.966 0.995 1.000 0.826

basic2d_8
sdo 0.008 0.591 0.035 0.177 0.075 1.00 1.000 1.000 1.000 1.000
abod 0.007 0.538 0.038 0.141 0.016 1.00 1.000 1.000 1.000 0.915
hbos 0.007 0.541 0.034 0.144 0.019 0.51 0.560 0.678 0.759 0.182

Continued on next page

94

A.1. FIREOS Results

Score LS DT LL Xtree Ireos P@n F1 AP AUC AMI
iforest 0.007 0.561 0.036 0.155 0.028 0.93 0.964 0.995 0.999 0.826
knn 0.008 0.584 0.035 0.172 0.072 1.00 1.000 1.000 1.000 1.000
lof 0.008 0.598 0.033 0.181 0.074 1.00 1.000 1.000 1.000 1.000
ocsvm 0.007 0.566 0.036 0.160 0.047 0.93 0.964 0.995 0.996 0.826

basic2d_9
sdo 0.009 0.648 0.057 0.215 0.120 0.93 0.966 0.995 1.000 0.826
abod 0.007 0.542 0.024 0.143 0.021 0.86 0.905 0.886 0.996 0.654
hbos 0.007 0.574 0.026 0.163 0.040 0.58 0.714 0.820 0.982 0.339
iforest 0.007 0.581 0.029 0.167 0.045 0.86 0.905 0.862 0.996 0.700
knn 0.009 0.629 0.047 0.200 0.095 0.93 0.966 0.995 1.000 0.826
lof 0.009 0.644 0.058 0.211 0.101 1.00 1.000 1.000 1.000 1.000
ocsvm 0.008 0.604 0.036 0.183 0.061 0.93 0.934 0.990 0.999 0.826

basic2d_10
sdo 0.008 0.629 0.051 0.199 0.065 1.00 1.000 1.000 1.000 1.000
abod 0.007 0.541 0.036 0.143 0.016 0.86 0.891 0.945 0.997 0.700
hbos 0.007 0.575 0.033 0.165 0.028 0.51 0.650 0.827 0.963 0.270
iforest 0.007 0.573 0.038 0.163 0.029 0.93 0.966 0.995 1.000 0.826
knn 0.008 0.624 0.047 0.190 0.069 1.00 1.000 1.000 1.000 1.000
lof 0.009 0.641 0.060 0.200 0.074 0.93 0.930 0.985 0.998 0.826
ocsvm 0.007 0.593 0.039 0.175 0.043 0.79 0.883 0.971 0.801 0.593

basic2d_11
sdo 0.008 0.604 0.047 0.188 0.078 1.00 1.000 1.000 1.000 1.000
abod 0.007 0.547 0.031 0.146 0.025 0.86 0.891 0.909 0.995 0.695
hbos 0.007 0.555 0.040 0.150 0.031 0.51 0.560 0.713 0.910 0.270
iforest 0.008 0.572 0.041 0.162 0.041 0.86 0.934 0.975 0.999 0.700
knn 0.008 0.612 0.048 0.192 0.083 1.00 1.000 1.000 1.000 1.000
lof 0.009 0.602 0.075 0.196 0.100 0.65 0.677 0.874 0.951 0.445
ocsvm 0.008 0.570 0.043 0.161 0.045 0.93 0.930 0.979 0.999 0.826

basic2d_12
sdo 0.009 0.678 0.041 0.231 0.068 0.93 0.966 0.990 1.000 0.826
abod 0.007 0.546 0.040 0.146 0.014 0.93 0.966 0.973 0.999 0.758
hbos 0.007 0.577 0.046 0.164 0.022 0.79 0.819 0.953 0.977 0.639
iforest 0.007 0.581 0.042 0.167 0.024 1.00 1.000 1.000 1.000 1.000
knn 0.008 0.656 0.043 0.215 0.056 1.00 1.000 1.000 1.000 1.000
lof 0.008 0.694 0.038 0.234 0.066 1.00 1.000 1.000 1.000 1.000
ocsvm 0.008 0.601 0.041 0.180 0.035 0.86 0.925 0.986 0.908 0.700

basic2d3
sdo 0.008 0.604 0.043 0.194 0.076 0.93 0.966 0.990 1.000 0.826
abod 0.007 0.543 0.031 0.145 0.018 0.72 0.777 0.627 0.984 0.439

Continued on next page

95

A. Appendix

Score LS DT LL Xtree Ireos P@n F1 AP AUC AMI
hbos 0.008 0.557 0.028 0.156 0.026 0.37 0.506 0.713 0.926 0.198
iforest 0.007 0.571 0.032 0.163 0.030 0.86 0.860 0.726 0.992 0.700
knn 0.008 0.600 0.042 0.187 0.065 0.93 0.966 0.990 1.000 0.826
lof 0.008 0.609 0.061 0.192 0.088 0.93 0.966 0.995 1.000 0.826
ocsvm 0.008 0.588 0.044 0.177 0.054 0.72 0.790 0.932 0.984 0.499

basic2d_14
sdo 0.009 0.638 0.051 0.205 0.126 1.00 1.000 1.000 1.000 1.000
abod 0.007 0.540 0.029 0.141 0.023 0.79 0.905 0.797 0.994 0.536
hbos 0.008 0.573 0.033 0.159 0.044 0.65 0.758 0.822 0.977 0.414
iforest 0.008 0.586 0.034 0.168 0.056 0.79 0.876 0.876 0.996 0.593
knn 0.009 0.628 0.048 0.197 0.112 1.00 1.000 1.000 1.000 1.000
lof 0.009 0.610 0.045 0.187 0.094 0.93 0.966 0.995 1.000 0.826
ocsvm 0.008 0.595 0.036 0.173 0.064 1.00 1.000 1.000 1.000 1.000

basic2d_15
sdo 0.008 0.548 0.053 0.145 0.052 0.93 0.966 0.995 1.000 0.826
abod 0.007 0.537 0.058 0.141 0.016 0.93 0.966 0.979 0.999 0.758
hbos 0.007 0.530 0.059 0.136 0.019 0.44 0.758 0.795 0.984 0.244
iforest 0.007 0.550 0.061 0.148 0.020 0.86 0.925 0.986 0.997 0.700
knn 0.008 0.550 0.054 0.146 0.045 0.93 0.966 0.995 1.000 0.826
lof 0.007 0.569 0.052 0.158 0.039 0.51 0.680 0.846 0.963 0.547
ocsvm 0.007 0.545 0.059 0.146 0.043 0.51 0.680 0.846 0.888 0.270

basic2d_16
sdo 0.015 0.709 0.035 0.253 0.121 1.00 1.000 1.000 1.000 1.000
abod 0.009 0.548 0.039 0.147 0.018 1.00 1.000 1.000 1.000 0.915
hbos 0.010 0.611 0.035 0.185 0.055 0.79 0.883 0.971 0.995 0.779
iforest 0.010 0.595 0.040 0.177 0.041 1.00 1.000 1.000 1.000 1.000
knn 0.016 0.708 0.036 0.254 0.116 1.00 1.000 1.000 1.000 1.000
lof 0.017 0.728 0.034 0.269 0.128 1.00 1.000 1.000 1.000 1.000
ocsvm 0.012 0.628 0.038 0.203 0.060 1.00 1.000 1.000 1.000 1.000

basic2d_17
sdo 0.007 0.601 0.063 0.181 0.057 0.93 0.966 0.990 1.000 0.826
abod 0.007 0.546 0.037 0.145 0.016 0.65 0.753 0.719 0.964 0.266
hbos 0.007 0.551 0.047 0.146 0.019 0.23 0.392 0.296 0.887 0.065
iforest 0.007 0.570 0.048 0.161 0.027 0.79 0.831 0.948 0.996 0.593
knn 0.007 0.600 0.062 0.178 0.051 0.93 0.966 0.995 1.000 0.826
lof 0.007 0.599 0.055 0.181 0.054 0.93 0.966 0.995 1.000 0.826
ocsvm 0.007 0.570 0.048 0.161 0.036 0.86 0.891 0.980 0.927 0.700

basic2d_18
sdo 0.009 0.588 0.046 0.171 0.083 1.00 1.000 1.000 1.000 1.000

Continued on next page

96

A.1. FIREOS Results

Score LS DT LL Xtree Ireos P@n F1 AP AUC AMI
abod 0.007 0.538 0.043 0.140 0.019 0.72 0.730 0.827 0.985 0.439
hbos 0.007 0.555 0.051 0.148 0.027 0.58 0.706 0.795 0.958 0.522
iforest 0.007 0.568 0.052 0.158 0.036 0.65 0.758 0.915 0.991 0.414
knn 0.009 0.596 0.048 0.171 0.082 0.93 0.966 0.995 1.000 0.911
lof 0.008 0.640 0.044 0.188 0.113 0.65 0.706 0.885 0.872 0.364
ocsvm 0.007 0.574 0.061 0.159 0.049 0.58 0.737 0.888 0.965 0.339

basic2d_19
sdo 0.008 0.604 0.041 0.176 0.075 0.86 0.934 0.975 0.999 0.700
abod 0.007 0.540 0.030 0.141 0.021 0.72 0.737 0.674 0.986 0.414
hbos 0.007 0.551 0.031 0.146 0.028 0.44 0.440 0.529 0.861 0.209
iforest 0.008 0.569 0.035 0.157 0.040 0.72 0.803 0.718 0.990 0.499
knn 0.008 0.605 0.040 0.178 0.079 0.86 0.934 0.939 0.997 0.639
lof 0.009 0.627 0.039 0.188 0.107 0.79 0.876 0.861 0.994 0.593
ocsvm 0.008 0.576 0.038 0.161 0.050 0.79 0.841 0.953 0.989 0.593

basic2d_20
sdo 0.009 0.566 0.047 0.163 0.088 1.00 1.000 1.000 1.000 1.000
abod 0.007 0.538 0.065 0.141 0.016 1.00 1.000 1.000 1.000 1.000
hbos 0.007 0.542 0.085 0.145 0.022 0.72 0.745 0.824 0.953 0.499
iforest 0.007 0.560 0.056 0.156 0.028 1.00 1.000 1.000 1.000 1.000
knn 0.009 0.564 0.047 0.160 0.075 1.00 1.000 1.000 1.000 1.000
lof 0.009 0.603 0.018 0.186 0.105 1.00 1.000 1.000 1.000 1.000
ocsvm 0.009 0.571 0.042 0.165 0.095 1.00 1.000 1.000 1.000 1.000

Score LS DT LL Xtree Ireos P@n F1 AP AUC AMI
complex_1

sdo 0.001 0.532 0.008 0.136 0.155 1.000 1.000 1.000 1.000 1.000
abod 0.001 0.508 0.004 0.124 0.040 0.995 0.997 1.000 1.000 0.981
hbos 0.001 0.512 0.006 0.125 0.057 0.885 0.938 0.994 0.983 0.854
iforest 0.001 0.516 0.006 0.127 0.073 0.986 0.992 1.000 1.000 0.952
knn 0.001 0.533 0.009 0.135 0.156 1.000 1.000 1.000 1.000 1.000
lof 0.001 0.547 0.002 0.139 0.120 0.322 0.445 0.693 0.746 0.118
ocsvm 0.001 0.510 0.004 0.125 0.053 0.977 0.986 1.000 0.984 0.926

complex_2
sdo 0.552 0.555 0.003 0.148 0.812 0.998 0.998 1.000 1.000 0.992
abod 0.153 0.517 0.001 0.128 0.254 0.987 0.990 0.997 1.000 0.949
hbos 0.192 0.524 0.002 0.130 0.319 0.797 0.834 0.958 0.977 0.570
iforest 0.263 0.530 0.002 0.134 0.412 0.984 0.987 0.999 1.000 0.941
knn 0.543 0.554 0.003 0.147 0.800 1.000 1.000 1.000 1.000 1.000

Continued on next page

97

A. Appendix

Score LS DT LL Xtree Ireos P@n F1 AP AUC AMI
lof 0.523 0.548 0.002 0.145 0.770 0.528 0.655 0.874 0.851 0.273
ocsvm 0.253 0.527 0.002 0.134 0.378 0.972 0.973 0.999 0.998 0.909

complex_3
sdo 0.170 0.526 0.002 0.131 0.504 0.702 0.767 0.591 0.984 0.470
abod 0.059 0.510 0.002 0.123 0.251 0.608 0.723 0.477 0.978 0.376
hbos 0.102 0.517 0.002 0.127 0.363 0.362 0.430 0.276 0.916 0.148
iforest 0.124 0.520 0.002 0.128 0.417 0.469 0.566 0.353 0.956 0.231
knn 0.176 0.527 0.002 0.132 0.515 0.721 0.801 0.544 0.986 0.446
lof 0.070 0.513 0.002 0.125 0.273 0.261 0.286 0.474 0.655 0.095
ocsvm 0.119 0.519 0.002 0.128 0.387 0.482 0.562 0.396 0.956 0.242

complex_4
sdo 0.002 0.529 0.004 0.132 0.385 1.000 1.000 1.000 1.000 1.000
abod 0.001 0.509 0.002 0.124 0.117 0.998 0.999 1.000 1.000 0.984
hbos 0.001 0.515 0.003 0.126 0.193 0.838 0.851 0.971 0.989 0.664
iforest 0.001 0.518 0.003 0.127 0.223 0.985 0.987 1.000 1.000 0.946
knn 0.002 0.528 0.004 0.132 0.387 1.000 1.000 1.000 1.000 1.000
lof 0.001 0.512 0.002 0.123 0.152 0.116 0.197 0.439 0.573 0.017
ocsvm 0.001 0.515 0.003 0.126 0.213 0.989 0.991 1.000 0.996 0.958

complex_5
sdo 0.412 0.535 0.003 0.135 0.731 0.923 0.936 0.874 0.995 0.793
abod 0.133 0.512 0.002 0.125 0.296 0.902 0.928 0.879 0.993 0.721
hbos 0.197 0.519 0.002 0.128 0.416 0.630 0.651 0.620 0.948 0.357
iforest 0.280 0.526 0.002 0.131 0.552 0.833 0.847 0.815 0.987 0.627
knn 0.423 0.535 0.003 0.136 0.739 0.938 0.958 0.869 0.995 0.797
lof 0.301 0.532 0.002 0.132 0.509 0.143 0.240 0.494 0.529 0.030
ocsvm 0.244 0.523 0.002 0.131 0.455 0.787 0.801 0.739 0.975 0.556

complex_6
sdo 0.481 0.538 0.006 0.136 0.754 0.655 0.764 0.477 0.977 0.403
abod 0.175 0.513 0.002 0.124 0.384 0.593 0.723 0.434 0.971 0.324
hbos 0.298 0.524 0.004 0.129 0.548 0.312 0.390 0.216 0.893 0.108
iforest 0.318 0.525 0.004 0.130 0.558 0.543 0.682 0.401 0.965 0.287
knn 0.478 0.538 0.006 0.136 0.751 0.682 0.798 0.458 0.978 0.371
lof 0.187 0.513 0.002 0.126 0.377 0.198 0.272 0.505 0.545 0.060
ocsvm 0.349 0.529 0.004 0.132 0.557 0.488 0.638 0.263 0.949 0.237

complex_7
sdo 0.020 0.533 0.002 0.135 0.654 1.000 1.000 1.000 1.000 1.000
abod 0.005 0.506 0.002 0.124 0.162 1.000 1.000 1.000 1.000 0.989
hbos 0.007 0.516 0.005 0.126 0.256 0.771 0.869 0.973 0.975 0.735
iforest 0.010 0.519 0.004 0.128 0.339 0.998 0.999 1.000 1.000 0.992

Continued on next page

98

A.1. FIREOS Results

Score LS DT LL Xtree Ireos P@n F1 AP AUC AMI
knn 0.019 0.532 0.002 0.134 0.641 1.000 1.000 1.000 1.000 1.000
lof 0.012 0.512 0.001 0.124 0.368 0.121 0.256 0.483 0.457 0.020
ocsvm 0.012 0.522 0.005 0.130 0.393 0.907 0.950 0.996 0.990 0.761

complex_8
sdo 0.290 0.546 0.003 0.144 0.601 0.961 0.964 0.990 0.999 0.893
abod 0.105 0.522 0.001 0.130 0.375 0.899 0.915 0.943 0.998 0.783
hbos 0.161 0.532 0.002 0.135 0.485 0.756 0.767 0.830 0.990 0.547
iforest 0.223 0.539 0.002 0.140 0.546 0.903 0.921 0.971 0.998 0.775
knn 0.298 0.547 0.003 0.145 0.614 0.973 0.979 0.990 1.000 0.920
lof 0.227 0.533 0.002 0.135 0.545 0.566 0.649 0.860 0.828 0.338
ocsvm 0.254 0.543 0.002 0.142 0.563 0.915 0.938 0.979 0.999 0.797

complex_9
sdo 0.306 0.537 0.003 0.138 0.725 0.909 0.923 0.885 0.996 0.775
abod 0.082 0.507 0.002 0.125 0.244 0.828 0.863 0.828 0.992 0.624
hbos 0.125 0.520 0.003 0.129 0.386 0.360 0.508 0.299 0.920 0.138
iforest 0.163 0.522 0.003 0.130 0.448 0.712 0.733 0.749 0.982 0.471
knn 0.307 0.537 0.003 0.138 0.723 0.926 0.944 0.885 0.996 0.776
lof 0.161 0.516 0.001 0.129 0.383 0.109 0.207 0.419 0.608 0.021
ocsvm 0.171 0.522 0.002 0.133 0.435 0.643 0.671 0.653 0.965 0.389

complex_10
sdo 0.637 0.545 0.004 0.142 0.841 0.904 0.934 0.884 0.994 0.754
abod 0.244 0.517 0.002 0.127 0.431 0.780 0.823 0.694 0.980 0.524
hbos 0.331 0.526 0.002 0.131 0.517 0.644 0.645 0.606 0.942 0.373
iforest 0.404 0.530 0.003 0.134 0.579 0.803 0.853 0.765 0.984 0.581
knn 0.634 0.545 0.004 0.142 0.838 0.906 0.938 0.844 0.993 0.726
lof 0.308 0.518 0.002 0.127 0.520 0.079 0.162 0.392 0.524 0.013
ocsvm 0.341 0.527 0.003 0.133 0.484 0.759 0.811 0.650 0.974 0.516

complex_11
sdo 0.114 0.528 0.002 0.131 0.655 0.943 0.950 0.974 0.998 0.835
abod 0.032 0.510 0.002 0.123 0.242 0.842 0.886 0.851 0.989 0.610
hbos 0.062 0.518 0.002 0.127 0.412 0.654 0.666 0.752 0.951 0.381
iforest 0.088 0.524 0.002 0.129 0.535 0.874 0.879 0.932 0.992 0.695
knn 0.109 0.527 0.002 0.131 0.640 0.949 0.958 0.965 0.998 0.808
lof 0.044 0.512 0.002 0.124 0.326 0.120 0.187 0.450 0.515 0.023
ocsvm 0.061 0.516 0.002 0.126 0.358 0.857 0.861 0.930 0.984 0.665

complex_12
sdo 0.003 0.527 0.004 0.132 0.260 0.916 0.921 0.984 0.997 0.790
abod 0.001 0.508 0.002 0.123 0.072 0.937 0.943 0.980 0.998 0.806
hbos 0.002 0.518 0.002 0.128 0.155 0.589 0.599 0.753 0.961 0.336

Continued on next page

99

A. Appendix

Score LS DT LL Xtree Ireos P@n F1 AP AUC AMI
iforest 0.002 0.519 0.003 0.128 0.173 0.810 0.814 0.945 0.990 0.610
knn 0.003 0.527 0.004 0.132 0.264 0.956 0.960 0.993 0.999 0.883
lof 0.004 0.519 0.002 0.126 0.256 0.331 0.424 0.690 0.713 0.132
ocsvm 0.002 0.513 0.002 0.125 0.121 0.807 0.827 0.958 0.978 0.606

complex_13
sdo 0.525 0.553 0.005 0.147 0.807 0.905 0.926 0.872 0.995 0.765
abod 0.162 0.516 0.002 0.127 0.329 0.828 0.869 0.778 0.990 0.617
hbos 0.358 0.537 0.003 0.138 0.630 0.700 0.736 0.667 0.978 0.452
iforest 0.386 0.539 0.004 0.139 0.620 0.833 0.864 0.827 0.991 0.639
knn 0.530 0.553 0.005 0.147 0.813 0.919 0.947 0.864 0.996 0.766
lof 0.284 0.529 0.008 0.135 0.468 0.212 0.269 0.525 0.579 0.061
ocsvm 0.369 0.537 0.004 0.138 0.564 0.851 0.876 0.820 0.992 0.668

complex_14
sdo 0.481 0.548 0.003 0.144 0.760 0.998 0.998 1.000 1.000 0.992
abod 0.199 0.524 0.002 0.131 0.492 0.977 0.981 0.998 1.000 0.907
hbos 0.240 0.527 0.002 0.132 0.489 0.892 0.895 0.975 0.995 0.729
iforest 0.338 0.535 0.002 0.137 0.596 0.983 0.984 0.999 1.000 0.938
knn 0.485 0.548 0.003 0.144 0.763 0.998 0.999 1.000 1.000 0.992
lof 0.461 0.548 0.002 0.141 0.780 0.461 0.530 0.805 0.794 0.194
ocsvm 0.400 0.541 0.002 0.141 0.641 0.983 0.984 0.999 1.000 0.938

complex_15
sdo 0.404 0.549 0.003 0.144 0.801 0.980 0.986 0.988 1.000 0.932
abod 0.150 0.521 0.002 0.129 0.394 0.940 0.941 0.973 0.998 0.803
hbos 0.238 0.532 0.002 0.134 0.580 0.604 0.631 0.723 0.956 0.334
iforest 0.286 0.537 0.003 0.137 0.624 0.901 0.909 0.964 0.996 0.750
knn 0.412 0.549 0.003 0.144 0.803 0.991 0.992 0.988 1.000 0.965
lof 0.331 0.530 0.002 0.135 0.578 0.188 0.301 0.465 0.764 0.039
ocsvm 0.241 0.534 0.002 0.136 0.487 0.863 0.875 0.907 0.989 0.681

complex_16
sdo 0.392 0.553 0.003 0.147 0.645 0.851 0.863 0.868 0.995 0.682
abod 0.096 0.514 0.001 0.126 0.196 0.813 0.851 0.823 0.993 0.621
hbos 0.198 0.528 0.002 0.133 0.405 0.490 0.568 0.449 0.965 0.252
iforest 0.258 0.536 0.002 0.138 0.476 0.743 0.785 0.765 0.989 0.526
knn 0.387 0.552 0.003 0.146 0.636 0.903 0.926 0.861 0.997 0.719
lof 0.409 0.551 0.002 0.146 0.619 0.327 0.421 0.668 0.749 0.134
ocsvm 0.343 0.547 0.003 0.143 0.612 0.785 0.808 0.806 0.992 0.583

complex_17
sdo 0.326 0.537 0.002 0.137 0.712 0.982 0.983 0.998 1.000 0.935
abod 0.089 0.513 0.001 0.125 0.229 0.970 0.977 0.980 0.999 0.884

Continued on next page

100

A.1. FIREOS Results

Score LS DT LL Xtree Ireos P@n F1 AP AUC AMI
hbos 0.143 0.521 0.002 0.129 0.369 0.576 0.628 0.647 0.945 0.301
iforest 0.178 0.524 0.002 0.130 0.431 0.861 0.867 0.949 0.993 0.676
knn 0.335 0.537 0.002 0.137 0.720 0.995 0.996 0.999 1.000 0.979
lof 0.189 0.518 0.002 0.126 0.397 0.255 0.352 0.629 0.689 0.072
ocsvm 0.132 0.519 0.001 0.128 0.306 0.820 0.822 0.936 0.979 0.606

complex_18
sdo 0.055 0.534 0.002 0.135 0.577 0.988 0.991 1.000 1.000 0.956
abod 0.012 0.511 0.002 0.124 0.142 0.974 0.978 0.980 0.999 0.891
hbos 0.022 0.516 0.002 0.127 0.254 0.862 0.866 0.962 0.990 0.682
iforest 0.028 0.520 0.002 0.128 0.302 0.955 0.958 0.996 0.999 0.867
knn 0.056 0.534 0.002 0.135 0.584 0.992 0.993 1.000 1.000 0.969
lof 0.021 0.518 0.002 0.128 0.295 0.302 0.407 0.672 0.615 0.103
ocsvm 0.029 0.519 0.002 0.128 0.293 0.939 0.939 0.995 0.988 0.831

complex_19
sdo 0.568 0.570 0.004 0.158 0.766 1.000 1.000 1.000 1.000 1.000
abod 0.119 0.516 0.002 0.128 0.214 0.985 0.986 0.997 1.000 0.929
hbos 0.256 0.536 0.002 0.138 0.408 0.864 0.867 0.971 0.994 0.689
iforest 0.295 0.540 0.003 0.141 0.440 0.989 0.991 0.999 1.000 0.960
knn 0.567 0.569 0.004 0.158 0.767 1.000 1.000 1.000 1.000 1.000
lof 0.302 0.532 0.002 0.144 0.428 0.220 0.335 0.591 0.561 0.068
ocsvm 0.406 0.551 0.003 0.148 0.543 0.989 0.990 1.000 1.000 0.960

complex_20
sdo 0.001 0.518 0.011 0.128 0.038 0.982 0.985 1.000 1.000 0.938
abod 0.000 0.502 0.004 0.121 0.008 0.970 0.975 0.994 0.999 0.881
hbos 0.001 0.510 0.006 0.124 0.019 0.848 0.859 0.979 0.981 0.666
iforest 0.001 0.510 0.007 0.124 0.020 0.970 0.974 0.999 1.000 0.904
knn 0.001 0.519 0.010 0.129 0.039 0.991 0.993 1.000 1.000 0.968
lof 0.000 0.508 0.002 0.122 0.016 0.079 0.143 0.372 0.478 0.010
ocsvm 0.001 0.510 0.009 0.124 0.024 0.910 0.925 0.993 0.986 0.768

Score LS DT LL Xtree Ireos P@n F1 AP AUC AMI
high-noise_1

sdo 0.312 0.545 0.003 0.141 0.917 1.000 1.000 1.000 1.000 1.000
abod 0.175 0.522 0.002 0.131 0.531 1.000 1.000 1.000 1.000 1.000
hbos 0.166 0.524 0.002 0.131 0.502 0.826 0.906 0.987 0.989 0.791
iforest 0.198 0.528 0.002 0.133 0.581 1.000 1.000 1.000 1.000 1.000
knn 0.311 0.546 0.003 0.141 0.915 1.000 1.000 1.000 1.000 1.000
lof 0.230 0.531 0.001 0.141 0.838 0.036 0.162 0.391 0.513 0.001

Continued on next page

101

A. Appendix

Score LS DT LL Xtree Ireos P@n F1 AP AUC AMI
ocsvm 0.273 0.539 0.003 0.138 0.777 0.982 0.990 1.000 0.999 0.932

high-noise_2
sdo 0.016 0.529 0.003 0.132 0.730 1.000 1.000 1.000 1.000 1.000
abod 0.009 0.512 0.002 0.127 0.453 1.000 1.000 1.000 1.000 0.997
hbos 0.008 0.510 0.002 0.126 0.410 0.929 0.958 0.997 0.998 0.794
iforest 0.011 0.517 0.003 0.128 0.517 1.000 1.000 1.000 1.000 1.000
knn 0.017 0.530 0.003 0.132 0.732 1.000 1.000 1.000 1.000 1.000
lof 0.006 0.531 0.002 0.130 0.648 0.002 0.184 0.336 0.496 -0.00
ocsvm 0.008 0.505 0.002 0.126 0.337 0.969 0.984 1.000 0.985 0.892

high-noise_3
sdo 0.046 0.528 0.002 0.131 0.840 1.000 1.000 1.000 1.000 1.000
abod 0.029 0.516 0.002 0.127 0.582 1.000 1.000 1.000 1.000 1.000
hbos 0.028 0.515 0.002 0.127 0.568 0.973 0.986 1.000 0.997 0.951
iforest 0.034 0.519 0.002 0.128 0.613 1.000 1.000 1.000 1.000 1.000
knn 0.047 0.528 0.002 0.131 0.839 1.000 1.000 1.000 1.000 1.000
lof 0.032 0.516 0.002 0.126 0.738 -0.04 0.204 0.224 0.493 0.001
ocsvm 0.021 0.507 0.001 0.125 0.334 0.912 0.954 0.997 0.936 0.753

high-noise_4
sdo 0.385 0.569 0.004 0.154 0.970 1.000 1.000 1.000 1.000 1.000
abod 0.256 0.543 0.003 0.142 0.640 1.000 1.000 1.000 1.000 1.000
hbos 0.243 0.541 0.003 0.141 0.607 1.000 1.000 1.000 1.000 1.000
iforest 0.264 0.546 0.003 0.143 0.666 1.000 1.000 1.000 1.000 1.000
knn 0.386 0.569 0.004 0.154 0.973 1.000 1.000 1.000 1.000 1.000
lof 0.369 0.557 0.002 0.147 0.939 0.082 0.224 0.468 0.576 0.007
ocsvm 0.365 0.568 0.004 0.154 0.929 1.000 1.000 1.000 1.000 1.000

high-noise_5
sdo 0.619 0.539 0.003 0.137 0.961 1.000 1.000 1.000 1.000 1.000
abod 0.468 0.523 0.002 0.132 0.729 1.000 1.000 1.000 1.000 1.000
hbos 0.510 0.531 0.003 0.134 0.795 0.998 0.999 1.000 1.000 0.993
iforest 0.516 0.530 0.003 0.134 0.801 1.000 1.000 1.000 1.000 1.000
knn 0.620 0.539 0.003 0.137 0.963 1.000 1.000 1.000 1.000 1.000
lof 0.513 0.534 0.001 0.132 0.883 -0.19 0.219 -0.01 0.377 0.036
ocsvm 0.616 0.539 0.003 0.137 0.949 1.000 1.000 1.000 1.000 1.000

high-noise_6
sdo 0.631 0.536 0.003 0.136 0.960 1.000 1.000 1.000 1.000 1.000
abod 0.485 0.524 0.002 0.131 0.742 1.000 1.000 1.000 1.000 0.998
hbos 0.409 0.518 0.002 0.130 0.627 0.988 0.994 1.000 1.000 0.975
iforest 0.475 0.525 0.002 0.132 0.722 1.000 1.000 1.000 1.000 1.000
knn 0.631 0.537 0.003 0.136 0.961 1.000 1.000 1.000 1.000 1.000

Continued on next page

102

A.1. FIREOS Results

Score LS DT LL Xtree Ireos P@n F1 AP AUC AMI
lof 0.580 0.538 0.001 0.134 0.932 -0.07 0.239 0.211 0.496 0.004
ocsvm 0.616 0.537 0.003 0.136 0.929 1.000 1.000 1.000 1.000 1.000

high-noise_7
sdo 0.001 0.513 0.004 0.125 0.066 1.000 1.000 1.000 1.000 1.000
abod 0.000 0.504 0.003 0.122 0.033 1.000 1.000 1.000 1.000 0.996
hbos 0.000 0.503 0.003 0.122 0.032 0.854 0.923 0.992 0.958 0.812
iforest 0.001 0.506 0.004 0.123 0.045 0.999 1.000 1.000 1.000 0.995
knn 0.001 0.513 0.004 0.125 0.065 1.000 1.000 1.000 1.000 1.000
lof 0.000 0.503 0.003 0.120 0.014 -0.04 0.246 0.242 0.499 0.002
ocsvm 0.000 0.502 0.003 0.122 0.028 0.636 0.786 0.946 0.766 0.330

high-noise_8
sdo 0.004 0.526 0.002 0.130 0.620 1.000 1.000 1.000 1.000 1.000
abod 0.002 0.507 0.002 0.125 0.337 1.000 1.000 1.000 1.000 1.000
hbos 0.002 0.510 0.002 0.125 0.327 0.925 0.961 0.998 0.992 0.890
iforest 0.003 0.513 0.002 0.126 0.383 0.998 0.999 1.000 1.000 0.990
knn 0.004 0.526 0.002 0.130 0.617 1.000 1.000 1.000 1.000 1.000
lof 0.002 0.522 0.003 0.136 0.427 -0.05 0.178 0.219 0.482 0.002
ocsvm 0.003 0.514 0.002 0.127 0.451 0.991 0.996 1.000 0.997 0.962

high-noise_9
sdo 0.401 0.541 0.002 0.138 0.931 1.000 1.000 1.000 1.000 1.000
abod 0.252 0.525 0.002 0.131 0.597 1.000 1.000 1.000 1.000 0.990
hbos 0.227 0.523 0.002 0.130 0.538 0.928 0.951 0.996 0.996 0.793
iforest 0.254 0.526 0.002 0.131 0.589 0.997 0.998 1.000 1.000 0.984
knn 0.402 0.542 0.002 0.138 0.933 1.000 1.000 1.000 1.000 1.000
lof 0.331 0.554 0.001 0.145 0.879 0.085 0.231 0.480 0.588 0.008
ocsvm 0.148 0.515 0.002 0.127 0.333 0.768 0.864 0.975 0.978 0.511

high-noise_10
sdo 0.373 0.568 0.004 0.155 0.968 1.000 1.000 1.000 1.000 1.000
abod 0.248 0.543 0.003 0.142 0.640 1.000 1.000 1.000 1.000 0.972
hbos 0.225 0.540 0.003 0.140 0.581 1.000 1.000 1.000 1.000 1.000
iforest 0.234 0.543 0.003 0.142 0.609 1.000 1.000 1.000 1.000 1.000
knn 0.374 0.568 0.004 0.155 0.972 1.000 1.000 1.000 1.000 1.000
lof 0.337 0.566 0.002 0.154 0.911 0.001 0.167 0.332 0.485 -0.00
ocsvm 0.349 0.567 0.004 0.155 0.921 1.000 1.000 1.000 1.000 1.000

high-noise_11
sdo 0.001 0.520 0.004 0.128 0.342 1.000 1.000 1.000 1.000 1.000
abod 0.001 0.499 0.003 0.124 0.199 1.000 1.000 1.000 1.000 1.000
hbos 0.001 0.500 0.002 0.124 0.181 0.845 0.918 0.990 0.986 0.804
iforest 0.001 0.506 0.003 0.125 0.234 1.000 1.000 1.000 1.000 1.000

Continued on next page

103

A. Appendix

Score LS DT LL Xtree Ireos P@n F1 AP AUC AMI
knn 0.001 0.521 0.004 0.128 0.341 1.000 1.000 1.000 1.000 1.000
lof 0.001 0.518 0.001 0.130 0.247 -0.11 0.201 0.112 0.421 0.012
ocsvm 0.001 0.493 0.003 0.124 0.185 0.971 0.985 1.000 0.979 0.897

high-noise_12
sdo 0.000 0.511 0.007 0.124 0.023 1.000 1.000 1.000 1.000 1.000
abod 0.000 0.495 0.005 0.121 0.009 0.999 1.000 1.000 1.000 0.994
hbos 0.000 0.504 0.006 0.121 0.010 0.677 0.787 0.808 0.930 0.448
iforest 0.000 0.505 0.007 0.122 0.015 0.824 0.893 0.979 0.990 0.583
knn 0.000 0.512 0.006 0.125 0.024 1.000 1.000 1.000 1.000 1.000
lof 0.000 0.506 0.003 0.123 0.007 -0.08 0.221 0.190 0.464 0.005
ocsvm 0.000 0.497 0.006 0.122 0.013 0.798 0.810 0.782 0.863 0.541

high-noise_13
sdo 0.447 0.552 0.003 0.144 0.970 1.000 1.000 1.000 1.000 1.000
abod 0.328 0.535 0.002 0.137 0.708 1.000 1.000 1.000 1.000 0.982
hbos 0.250 0.529 0.002 0.133 0.538 0.967 0.983 1.000 0.997 0.940
iforest 0.272 0.532 0.002 0.135 0.590 1.000 1.000 1.000 1.000 1.000
knn 0.448 0.552 0.003 0.145 0.972 1.000 1.000 1.000 1.000 1.000
lof 0.417 0.548 0.002 0.145 0.933 -0.07 0.204 0.236 0.476 0.004
ocsvm 0.314 0.538 0.002 0.139 0.697 0.993 0.996 1.000 0.997 0.968

high-noise_14
sdo 0.631 0.549 0.002 0.142 0.963 1.000 1.000 1.000 1.000 1.000
abod 0.423 0.530 0.002 0.134 0.646 1.000 1.000 1.000 1.000 0.987
hbos 0.454 0.533 0.002 0.136 0.695 0.999 1.000 1.000 1.000 0.997
iforest 0.465 0.535 0.002 0.136 0.710 1.000 1.000 1.000 1.000 1.000
knn 0.633 0.549 0.002 0.142 0.965 1.000 1.000 1.000 1.000 1.000
lof 0.584 0.538 0.002 0.139 0.921 -0.02 0.196 0.302 0.506 0.000
ocsvm 0.357 0.526 0.002 0.133 0.542 0.995 0.998 1.000 0.997 0.978

high-noise_15
sdo 0.001 0.518 0.005 0.128 0.030 1.000 1.000 1.000 1.000 1.000
abod 0.000 0.499 0.004 0.122 0.010 1.000 1.000 1.000 1.000 0.993
hbos 0.001 0.504 0.003 0.123 0.013 0.904 0.950 0.996 0.977 0.871
iforest 0.001 0.506 0.004 0.123 0.014 0.993 0.995 1.000 1.000 0.971
knn 0.001 0.520 0.005 0.129 0.033 1.000 1.000 1.000 1.000 1.000
lof 0.000 0.522 0.004 0.132 0.018 0.058 0.144 0.371 0.518 0.004
ocsvm 0.000 0.501 0.004 0.123 0.014 0.416 0.689 0.816 0.874 0.157

high-noise_16
sdo 0.545 0.546 0.003 0.141 0.974 1.000 1.000 1.000 1.000 1.000
abod 0.422 0.531 0.003 0.135 0.752 1.000 1.000 1.000 1.000 0.996
hbos 0.364 0.527 0.002 0.134 0.650 0.999 1.000 1.000 1.000 0.998

Continued on next page

104

A.1. FIREOS Results

Score LS DT LL Xtree Ireos P@n F1 AP AUC AMI
iforest 0.404 0.531 0.003 0.135 0.724 1.000 1.000 1.000 1.000 1.000
knn 0.546 0.546 0.003 0.141 0.976 1.000 1.000 1.000 1.000 1.000
lof 0.535 0.548 0.002 0.140 0.947 -0.05 0.239 0.276 0.520 0.002
ocsvm 0.527 0.547 0.003 0.142 0.954 0.999 1.000 1.000 1.000 0.995

high-noise_17
sdo 0.118 0.540 0.004 0.139 0.873 1.000 1.000 1.000 1.000 1.000
abod 0.067 0.520 0.003 0.130 0.532 1.000 1.000 1.000 1.000 0.987
hbos 0.050 0.514 0.003 0.128 0.393 0.845 0.906 0.987 0.989 0.636
iforest 0.064 0.519 0.003 0.129 0.472 0.987 0.993 1.000 1.000 0.949
knn 0.118 0.541 0.004 0.138 0.877 1.000 1.000 1.000 1.000 1.000
lof 0.082 0.539 0.001 0.133 0.802 0.070 0.206 0.441 0.548 0.005
ocsvm 0.064 0.518 0.003 0.130 0.447 0.817 0.895 0.985 0.988 0.589

high-noise_18
sdo 0.018 0.529 0.003 0.132 0.788 1.000 1.000 1.000 1.000 1.000
abod 0.010 0.515 0.002 0.126 0.468 1.000 1.000 1.000 1.000 0.997
hbos 0.008 0.513 0.002 0.126 0.398 0.755 0.863 0.973 0.985 0.725
iforest 0.010 0.516 0.002 0.127 0.472 0.996 0.997 1.000 1.000 0.980
knn 0.018 0.529 0.003 0.132 0.790 1.000 1.000 1.000 1.000 1.000
lof 0.010 0.519 0.001 0.125 0.686 0.030 0.175 0.376 0.523 0.001
ocsvm 0.006 0.507 0.002 0.124 0.237 0.699 0.792 0.936 0.885 0.419

high-noise_19
sdo 0.404 0.546 0.003 0.141 0.977 1.000 1.000 1.000 1.000 1.000
abod 0.297 0.532 0.002 0.135 0.713 1.000 1.000 1.000 1.000 0.998
hbos 0.294 0.532 0.002 0.135 0.708 0.965 0.982 1.000 0.999 0.937
iforest 0.308 0.534 0.002 0.136 0.747 1.000 1.000 1.000 1.000 1.000
knn 0.404 0.546 0.003 0.141 0.979 1.000 1.000 1.000 1.000 1.000
lof 0.382 0.542 0.002 0.133 0.952 -0.08 0.235 0.225 0.486 0.005
ocsvm 0.222 0.526 0.002 0.132 0.549 0.994 0.997 1.000 0.997 0.973

high-noise_20
sdo 0.001 0.516 0.003 0.126 0.169 1.000 1.000 1.000 1.000 1.000
abod 0.001 0.506 0.003 0.123 0.098 1.000 1.000 1.000 1.000 0.998
hbos 0.001 0.504 0.003 0.123 0.090 0.804 0.885 0.981 0.968 0.729
iforest 0.001 0.507 0.003 0.124 0.107 0.977 0.981 1.000 0.999 0.914
knn 0.001 0.517 0.003 0.126 0.167 1.000 1.000 1.000 1.000 1.000
lof 0.001 0.519 0.004 0.131 0.087 -0.08 0.215 0.204 0.452 0.005
ocsvm 0.001 0.499 0.002 0.122 0.071 0.779 0.796 0.925 0.856 0.514

105

A. Appendix

Score LS DT LL Xtree Ireos P@n F1 AP AUC AMI
low-noise_1

sdo 0.001 0.532 0.005 0.134 0.120 1.000 1.000 1.000 1.000 1.000
abod 0.001 0.508 0.003 0.124 0.036 1.000 1.000 1.000 1.000 1.000
hbos 0.001 0.508 0.003 0.124 0.038 0.894 0.923 0.990 0.973 0.763
iforest 0.001 0.513 0.003 0.125 0.050 0.972 0.986 1.000 0.999 0.912
knn 0.001 0.533 0.004 0.135 0.120 1.000 1.000 1.000 1.000 1.000
lof 0.001 0.531 0.005 0.132 0.082 0.364 0.526 0.752 0.717 0.144
ocsvm 0.001 0.505 0.003 0.123 0.030 0.813 0.881 0.981 0.891 0.605

low-noise_2
sdo 0.337 0.557 0.002 0.148 0.894 1.000 1.000 1.000 1.000 1.000
abod 0.162 0.528 0.002 0.133 0.438 1.000 1.000 1.000 1.000 0.992
hbos 0.124 0.522 0.002 0.130 0.336 0.976 0.983 1.000 0.999 0.930
iforest 0.155 0.527 0.002 0.132 0.412 1.000 1.000 1.000 1.000 1.000
knn 0.339 0.558 0.002 0.149 0.895 1.000 1.000 1.000 1.000 1.000
lof 0.302 0.560 0.002 0.149 0.837 0.222 0.394 0.623 0.608 0.057
ocsvm 0.142 0.524 0.002 0.132 0.364 0.988 0.993 1.000 0.996 0.955

low-noise_3
sdo 0.570 0.623 0.004 0.193 0.857 1.000 1.000 1.000 1.000 1.000
abod 0.201 0.546 0.002 0.145 0.296 1.000 1.000 1.000 1.000 0.987
hbos 0.183 0.545 0.002 0.143 0.271 0.946 0.955 0.997 0.999 0.858
iforest 0.174 0.542 0.002 0.142 0.258 1.000 1.000 1.000 1.000 1.000
knn 0.576 0.623 0.004 0.193 0.856 1.000 1.000 1.000 1.000 1.000
lof 0.655 0.625 0.003 0.194 0.835 0.604 0.756 0.914 0.845 0.366
ocsvm 0.327 0.576 0.003 0.163 0.489 0.993 0.996 1.000 1.000 0.974

low-noise_4
sdo 0.558 0.612 0.004 0.187 0.809 1.000 1.000 1.000 1.000 1.000
abod 0.177 0.538 0.002 0.141 0.256 1.000 1.000 1.000 1.000 0.968
hbos 0.137 0.531 0.002 0.136 0.199 0.983 0.992 1.000 0.999 0.953
iforest 0.156 0.535 0.002 0.138 0.227 1.000 1.000 1.000 1.000 1.000
knn 0.559 0.611 0.004 0.187 0.809 1.000 1.000 1.000 1.000 1.000
lof 0.526 0.606 0.002 0.180 0.734 0.416 0.596 0.794 0.699 0.207
ocsvm 0.332 0.570 0.004 0.160 0.483 1.000 1.000 1.000 1.000 1.000

low-noise_5
sdo 0.001 0.525 0.003 0.131 0.119 1.000 1.000 1.000 1.000 1.000
abod 0.001 0.505 0.003 0.123 0.038 1.000 1.000 1.000 1.000 0.996
hbos 0.001 0.507 0.004 0.123 0.042 0.733 0.840 0.963 0.967 0.586
iforest 0.001 0.511 0.004 0.125 0.055 0.972 0.978 0.999 0.999 0.907
knn 0.001 0.526 0.003 0.131 0.121 1.000 1.000 1.000 1.000 1.000
lof 0.001 0.518 0.007 0.126 0.060 0.225 0.372 0.615 0.636 0.054

Continued on next page

106

A.1. FIREOS Results

Score LS DT LL Xtree Ireos P@n F1 AP AUC AMI
ocsvm 0.001 0.504 0.004 0.123 0.034 0.563 0.621 0.831 0.907 0.286

low-noise_6
sdo 0.002 0.536 0.004 0.136 0.458 1.000 1.000 1.000 1.000 1.000
abod 0.001 0.508 0.002 0.126 0.188 1.000 1.000 1.000 1.000 0.993
hbos 0.002 0.521 0.003 0.130 0.297 0.986 0.993 1.000 0.999 0.966
iforest 0.002 0.520 0.003 0.130 0.292 1.000 1.000 1.000 1.000 1.000
knn 0.002 0.537 0.004 0.137 0.458 1.000 1.000 1.000 1.000 1.000
lof 0.001 0.531 0.002 0.135 0.278 0.063 0.179 0.391 0.537 0.006
ocsvm 0.002 0.532 0.004 0.135 0.425 1.000 1.000 1.000 1.000 1.000

low-noise_7
sdo 0.365 0.572 0.002 0.157 0.856 1.000 1.000 1.000 1.000 1.000
abod 0.137 0.527 0.002 0.134 0.329 1.000 1.000 1.000 1.000 0.995
hbos 0.109 0.523 0.001 0.131 0.261 0.899 0.942 0.994 0.992 0.755
iforest 0.130 0.527 0.001 0.133 0.306 1.000 1.000 1.000 1.000 1.000
knn 0.370 0.573 0.002 0.158 0.870 1.000 1.000 1.000 1.000 1.000
lof 0.309 0.553 0.002 0.144 0.817 0.422 0.598 0.806 0.777 0.191
ocsvm 0.255 0.552 0.002 0.147 0.573 0.958 0.979 0.999 0.998 0.877

low-noise_8
sdo 0.001 0.530 0.005 0.134 0.278 1.000 1.000 1.000 1.000 1.000
abod 0.001 0.508 0.003 0.125 0.113 1.000 1.000 1.000 1.000 1.000
hbos 0.001 0.509 0.004 0.124 0.090 0.610 0.765 0.924 0.946 0.617
iforest 0.001 0.511 0.004 0.125 0.119 0.992 0.995 1.000 1.000 0.969
knn 0.001 0.531 0.005 0.134 0.277 1.000 1.000 1.000 1.000 1.000
lof 0.001 0.523 0.003 0.129 0.160 0.201 0.356 0.592 0.655 0.046
ocsvm 0.001 0.502 0.003 0.124 0.080 0.817 0.892 0.984 0.921 0.599

low-noise_9
sdo 0.157 0.556 0.003 0.147 0.843 1.000 1.000 1.000 1.000 1.000
abod 0.068 0.524 0.002 0.131 0.378 1.000 1.000 1.000 1.000 0.995
hbos 0.053 0.520 0.002 0.129 0.296 0.723 0.771 0.938 0.978 0.549
iforest 0.070 0.525 0.002 0.132 0.381 1.000 1.000 1.000 1.000 1.000
knn 0.161 0.557 0.003 0.148 0.856 1.000 1.000 1.000 1.000 1.000
lof 0.143 0.552 0.002 0.147 0.782 0.266 0.444 0.666 0.658 0.077
ocsvm 0.127 0.545 0.003 0.142 0.664 0.990 0.995 1.000 0.998 0.963

low-noise_10
sdo 0.579 0.586 0.004 0.165 0.896 1.000 1.000 1.000 1.000 1.000
abod 0.241 0.536 0.002 0.138 0.376 1.000 1.000 1.000 1.000 0.980
hbos 0.206 0.533 0.003 0.136 0.322 0.903 0.941 0.995 0.991 0.776
iforest 0.213 0.534 0.003 0.136 0.331 1.000 1.000 1.000 1.000 1.000
knn 0.581 0.586 0.004 0.166 0.900 1.000 1.000 1.000 1.000 1.000

Continued on next page

107

A. Appendix

Score LS DT LL Xtree Ireos P@n F1 AP AUC AMI
lof 0.554 0.572 0.002 0.162 0.885 0.493 0.670 0.858 0.812 0.251
ocsvm 0.401 0.562 0.004 0.153 0.616 0.993 0.997 1.000 0.999 0.974

low-noise_11
sdo 0.001 0.526 0.012 0.132 0.117 1.000 1.000 1.000 1.000 1.000
abod 0.001 0.490 0.004 0.123 0.038 1.000 1.000 1.000 1.000 1.000
hbos 0.001 0.509 0.006 0.125 0.050 0.961 0.978 0.999 0.995 0.929
iforest 0.001 0.504 0.007 0.125 0.056 1.000 1.000 1.000 1.000 1.000
knn 0.001 0.528 0.011 0.133 0.116 1.000 1.000 1.000 1.000 1.000
lof 0.001 0.533 0.001 0.141 0.072 0.062 0.187 0.398 0.478 0.007
ocsvm 0.001 0.496 0.007 0.125 0.056 0.976 0.988 1.000 0.981 0.921

low-noise_12
sdo 0.492 0.612 0.005 0.186 0.924 1.000 1.000 1.000 1.000 1.000
abod 0.224 0.550 0.003 0.149 0.413 1.000 1.000 1.000 1.000 0.995
hbos 0.180 0.541 0.002 0.143 0.335 0.998 0.998 1.000 1.000 0.990
iforest 0.216 0.549 0.003 0.148 0.401 1.000 1.000 1.000 1.000 1.000
knn 0.500 0.612 0.005 0.186 0.930 1.000 1.000 1.000 1.000 1.000
lof 0.583 0.601 0.003 0.179 0.895 0.477 0.654 0.847 0.806 0.233
ocsvm 0.373 0.585 0.004 0.169 0.698 1.000 1.000 1.000 1.000 1.000

low-noise_13
sdo 0.410 0.596 0.003 0.176 0.771 1.000 1.000 1.000 1.000 1.000
abod 0.130 0.532 0.002 0.138 0.248 1.000 1.000 1.000 1.000 0.951
hbos 0.171 0.541 0.002 0.143 0.325 1.000 1.000 1.000 1.000 1.000
iforest 0.139 0.534 0.002 0.139 0.264 1.000 1.000 1.000 1.000 1.000
knn 0.424 0.599 0.003 0.178 0.800 1.000 1.000 1.000 1.000 1.000
lof 0.407 0.594 0.002 0.180 0.803 0.599 0.753 0.911 0.852 0.374
ocsvm 0.291 0.569 0.002 0.160 0.548 1.000 1.000 1.000 1.000 1.000

low-noise_14
sdo 0.052 0.553 0.003 0.145 0.808 1.000 1.000 1.000 1.000 1.000
abod 0.022 0.520 0.002 0.130 0.372 1.000 1.000 1.000 1.000 0.992
hbos 0.019 0.518 0.002 0.129 0.309 1.000 1.000 1.000 1.000 1.000
iforest 0.024 0.522 0.002 0.131 0.381 1.000 1.000 1.000 1.000 1.000
knn 0.052 0.553 0.003 0.145 0.813 1.000 1.000 1.000 1.000 1.000
lof 0.031 0.549 0.002 0.143 0.695 0.245 0.422 0.649 0.697 0.068
ocsvm 0.027 0.524 0.002 0.132 0.419 0.998 0.999 1.000 0.998 0.991

low-noise_15
sdo 0.002 0.549 0.004 0.143 0.485 1.000 1.000 1.000 1.000 1.000
abod 0.001 0.514 0.002 0.127 0.156 1.000 1.000 1.000 1.000 0.990
hbos 0.001 0.520 0.002 0.129 0.213 0.947 0.961 0.996 0.996 0.854
iforest 0.001 0.518 0.002 0.128 0.192 1.000 1.000 1.000 1.000 1.000

Continued on next page

108

A.1. FIREOS Results

Score LS DT LL Xtree Ireos P@n F1 AP AUC AMI
knn 0.002 0.549 0.004 0.143 0.482 1.000 1.000 1.000 1.000 1.000
lof 0.001 0.535 0.003 0.135 0.334 0.362 0.544 0.756 0.739 0.144
ocsvm 0.001 0.524 0.003 0.132 0.257 0.976 0.986 1.000 0.994 0.923

low-noise_16
sdo 0.545 0.589 0.004 0.170 0.943 1.000 1.000 1.000 1.000 1.000
abod 0.283 0.546 0.003 0.145 0.484 1.000 1.000 1.000 1.000 0.940
hbos 0.190 0.533 0.002 0.137 0.327 0.931 0.948 0.997 0.998 0.816
iforest 0.218 0.537 0.002 0.140 0.376 1.000 1.000 1.000 1.000 1.000
knn 0.548 0.590 0.004 0.170 0.942 1.000 1.000 1.000 1.000 1.000
lof 0.609 0.600 0.003 0.174 0.923 0.340 0.526 0.744 0.727 0.122
ocsvm 0.427 0.574 0.004 0.162 0.743 1.000 1.000 1.000 1.000 1.000

low-noise_17
sdo 0.560 0.648 0.005 0.209 0.862 1.000 1.000 1.000 1.000 1.000
abod 0.178 0.549 0.002 0.147 0.264 1.000 1.000 1.000 1.000 0.971
hbos 0.118 0.535 0.002 0.138 0.175 0.993 0.994 1.000 1.000 0.980
iforest 0.140 0.540 0.002 0.141 0.208 1.000 1.000 1.000 1.000 1.000
knn 0.569 0.647 0.005 0.209 0.862 1.000 1.000 1.000 1.000 1.000
lof 0.704 0.649 0.003 0.209 0.856 0.468 0.644 0.834 0.742 0.237
ocsvm 0.378 0.602 0.004 0.180 0.583 0.996 0.998 1.000 1.000 0.986

low-noise_18
sdo 0.605 0.595 0.005 0.173 0.914 1.000 1.000 1.000 1.000 1.000
abod 0.259 0.541 0.002 0.142 0.390 1.000 1.000 1.000 1.000 0.969
hbos 0.235 0.539 0.003 0.140 0.356 0.998 0.999 1.000 1.000 0.990
iforest 0.255 0.542 0.003 0.142 0.385 1.000 1.000 1.000 1.000 1.000
knn 0.609 0.596 0.004 0.173 0.917 1.000 1.000 1.000 1.000 1.000
lof 0.598 0.594 0.002 0.175 0.854 0.363 0.546 0.758 0.750 0.136
ocsvm 0.479 0.576 0.004 0.162 0.724 1.000 1.000 1.000 1.000 1.000

low-noise_19
sdo 0.536 0.601 0.003 0.179 0.817 1.000 1.000 1.000 1.000 1.000
abod 0.176 0.536 0.002 0.139 0.268 1.000 1.000 1.000 1.000 0.981
hbos 0.128 0.528 0.002 0.134 0.197 0.873 0.918 0.988 0.997 0.811
iforest 0.150 0.532 0.002 0.136 0.229 1.000 1.000 1.000 1.000 1.000
knn 0.546 0.601 0.003 0.180 0.829 1.000 1.000 1.000 1.000 1.000
lof 0.545 0.585 0.002 0.177 0.818 0.572 0.732 0.898 0.825 0.337
ocsvm 0.298 0.561 0.002 0.154 0.450 0.964 0.982 0.999 0.999 0.898

low-noise_20
sdo 0.462 0.588 0.005 0.171 0.839 1.000 1.000 1.000 1.000 1.000
abod 0.167 0.532 0.002 0.137 0.305 1.000 1.000 1.000 1.000 0.994
hbos 0.158 0.533 0.002 0.137 0.291 0.832 0.885 0.981 0.984 0.736

Continued on next page

109

A. Appendix

Score LS DT LL Xtree Ireos P@n F1 AP AUC AMI
iforest 0.163 0.533 0.002 0.137 0.297 0.997 0.999 1.000 1.000 0.988
knn 0.467 0.589 0.005 0.172 0.847 1.000 1.000 1.000 1.000 1.000
lof 0.444 0.598 0.002 0.177 0.790 0.322 0.501 0.713 0.659 0.125
ocsvm 0.224 0.545 0.003 0.144 0.407 0.976 0.988 1.000 0.997 0.926

110

List of Figures

1.1 Different types of outliers. Contextual outliers are not represented in the
figure. Drawn based on [Kha21, Figure 2] 2

2.1 Outlier detection by Z-Scores and modified Z-Scores. Each data point outside
the outermost blue ellipsis is considered an outlier. The underlying code is
inspired by [Mis23f] . 9

2.2 Visualization of LOF outlier scores using ELKI. The dataset is artificially
generated to highlight LOF strengths. Some interesting LOF scores are printed
for k=5. [WC10] . 10

2.3 Principle of distance-based outlier detection. A datapoint x is classified as an
outlier if less than k points are within distance d from x. Drawn based on
[KN22, Slide 4]. 11

2.4 The intuition of angle-based outlier detection. Samples that are further away
tend to construct smaller angles. [KSZ08, Figure 1]. 11

2.5 The intuition of histogram-based outlier scores. High bin heights in the his-
togram indicate low HBOS scores and inliers. Low bin heights are interpreted
as outliers. 12

2.6 Outlier detection intuition in one-class SVMs. The data is separated from the
origin with a maximum margin by applying a function f that returns +1 in
"small" regions capturing most of the data points and -1 elsewhere. [AbdO06,
Figure 1] . 13

2.7 Isolation trees for different data samples. Inliers tend to be harder separable
than outliers. [HCB18, Figure 5] . 14

2.8 Confusion Matrix for Outlier Detection Problems. [WT20, Table 2] 16
2.9 Different ROC Curves and their Interpretation. [cmg18] 17
2.10 Silhouette Plot with corresponding data and clustering [Lea23]. 21
2.11 Visualization of the Kernel Trick. A kernel function projects the input space

into a higher dimensional space where both classes are linearly separable
[GCP05, Figure 1]. 24

2.12 Separability curves for different points labeled as outliers. [MCZS15, Figure 1] 26

111

3.1 2D representation of different problem instances for each category. Each
dataset was dimensionality reduced via T-SNE, which preserves the local
structure and clustering of the data. Instances in grey or ’-1’ correspond to
outliers and from 0 to X to different clusters of inliers. (but for the last figure,
in which ’0’ means outliers) . 30

3.2 2D representation by using PCA of the same problem instances shown in
Figure 3.1. Different from T-SNE, PCA only preserves the global structure
rather than local similarities and is highly affected by outliers. Alike Figure 3.1
instances in grey correspond to outliers. 31

3.3 Histograms of outlier scores for data points across all 80 datasets before and
after the normalization by Kriegel. All normalized scores are transformed into
the interval [0, 1] where values close to 0 represent inliers and 1 outliers. Each
histogram consists of 100 bins. 35

3.4 The main principle of SVMs. The predictor tries to find an optimal hyperplane
by maximizing the margin between the support vectors. [SO17, Figure 2] 39

3.5 Principles of decision trees and ensemble models. Random forests use parallel
bagging to improve the predictive performance of decision trees. In gradient-
boosted trees, multiple weak learners are sequentially combined into a stronger
model. [Sil20, Figure 1] . 43

3.6 Sliding windows in FIREOS. The smaller the ratio the smaller the window
frame. A window ratio of 1.0 equals the full dataset. 46

3.7 Performance comparison of different programming languages for different
computations. [GMP+20, Figure 2] . 49

3.8 Service diagram and workflow of the three main functions of the FIREOS
module. 1) fireos: Main implementation of the algorithm that calculates
the separabilities of a given problem instance and defined predictor. 2) nor-
malize_solutions!: Loads raw solution scores from disk and transforms
them into normalized solutions that can be interpreted by FIREOS. 3) eval-
uate_solutions: Calculates and persists the final FIREOS scorings from
given solutions and a trained model. 50

3.9 Technical conceptualization and relationships between components of FIREOS.
Both helper APIs that access the FIREOS module interface can be called
from outside. "fireos_utils" provides additional functions to call fireos "out-
of-the-box" and "fireos_cli" provides a basic command line interface. All
components below the interface definition can be summed up as the backend
of the module. 52

3.10 This figure serves as an extension to Figure 3.3 as it shows all the remaining
outlier scores that are not mentioned in [KKSZ11] but are treated in this
work. The column on the left shows histograms of raw unprocessed scores
differently from the right column which shows the same scores but normalized.
Each histogram consists of 100 bins. 54

112

3.11 Excerpt of the SVM predictor function in parallelized FIREOS. To prevent
PyCall from crashing all Scikit-Learn functions are outsourced into the function
"sk_svm_par" and called sequentially. 59

3.12 Excerpt of different runtimes in seconds for smaller datasets. Outliers in the
first row of the table show the impact of precompilation tasks in Julia. . . 60

3.13 Workflows for IREOS and FIREOS. The main difference between them is that
FIREOS trains the predictor independent from any solution. Since FIREOS
always calculates the separability of all data samples, no solution has to be
known during the training phase of the algorithms. After the training, an
arbitrary number of solutions can be evaluated at the same time. IREOS
on the other hand trains and evaluates once for each solution. In terms of
performance, this is a disadvantage when evaluating a large set of different
solutions. However, IREOS ignores the separability calculation for data points
that are rated as 0 in the solutions, since they do not contribute to the final
score. This accelerates the algorithm, especially for sparse solutions. . . . 64

3.14 Examples of separability calculations between FIREOS and IREOS. Although
the same data and solution matrix are used, FIREOS always outputs exactly
one separability vector but IREOS one for each solution. Furthermore, the
separability matrix of IREOS contains zero for any zero in the solution vector,
since IREOS ignores those instances. In order to modify IREOS to behave
similarly to FIREOS, we instead of passing the solution matrix, provide an
artificial solution vector of ones to ensure the calculation of all samples and
force IREOS to calculate a separability vector rather than a matrix. . . . 65

3.15 Outline of timeline and runtime measuring during the experiments. 66

4.1 Visualization of all the steps we perform to obtain distance matrices of Z-
Scores from an example dataset. 72

4.2 Examples of different validation scorings where the consideration of only one
distance matrix (scores or ranks) would lead to an incomplete picture: Given
are six scoring results of six fictional problem instances where we consider
score1 as the gold standard. Score1 and score2 are very similar due to their
distance matrices although their initial scorings are very different. Score3 looks
very similar to score2 but shows strong deviations when looking at ranks. The
distance between score4 and score1 is larger than to score3 and score1, however,
the distance between the ranks is completely different. Lastly, score5 and
score6 show another ranking problem. Although both predictors "misclassify"
exactly one rank (score5 misclassifies row 1 and score6 misclassifies row 5) the
outcome of the distance matrix is very different considering the distance of
score6 the second highest. The misclassification of higher ranks is penalized
more than lower ranks because the error is propagating further. 73

113

4.3 Distance matrix of different evaluation metrics that are executed on the seven
outlier solutions for each basic2d dataset. Since FIREOS predictors return
values on different scales, Z-Scores are used. Lower values in red represent
more similar scorings and high values are more distinctive. It can be observed
that most of the scorings performed by FIREOS predictors are closer to
IREOS scorings than external validation. Obviously, external scorings show
a high degree of similarity to the "consensus" metric. Lastly, LibLINEAR is
shown to be the method that evaluates most differently among the compared
predictors. Although many distances are colored in blue, there are no signs
of strong deviations between any algorithm since the maximum number of
standard deviations is 1▷01. 74

4.4 Distance matrix of different evaluation rankings executed on seven outlier
solutions for each basic2d dataset. Lower values in red represent a lower
distance between ranks, hence lower MAE. Most FIREOS predictors show
similar distances to the consensus metric indicating common agreement of
ranks. Only decision_tree_sklearn, random_forest_native and liblinear show
strong deviations to consensus. When looking at other pairs they still show
larger distances than any other FIREOS predictor leading to the assumption
that one joint deviating prediction is the reason. Different from the distance
matrix between Z-Scores, the MAE between predictors tends to be generally
higher. However, as already stated before rank-similarity is especially sensitive
to small misclassifications. 75

4.5 Z-Score distance matrix of different evaluation metrics executed on seven
outlier solutions for each of the larger complex/high-noise/low-noise datasets.
Lower values in red represent more similar scorings and high values are more
distinctive. As shown most of the scorings performed by FIREOS predictors
are closer to IREOS scorings than external validation. Although many dis-
tances are colored in blue, there are no signs of strong differences between any
algorithm of FIREOS and the consensus metric since the maximum number
of standard deviations is 1▷17. However, random_forest_native clearly acts
as a special case here since it shows large and consistent deviations from all
other FIREOS predictors. The difference to any external validation method as
well as consensus is lower but still aligned with the other FIREOS predictors
which again shows the complex dynamics when comparing different outlierness
metrics. 76

4.6 Distance matrix of different evaluation rankings executed on seven outlier
solutions for each of the complex/high-noise/low-noise datasets. Lower values
in red represent a lower distance between ranks, hence lower MAE. It can
be observed that most of the scorings performed by FIREOS predictors are
closer to IREOS scorings than external validation. The random_forest_native
predictor provides rankings that are close to the opposite of any other method.
This plot shows the extreme sensitivity of rank distances in comparison to
Z-score distances which can be observed in Figure 4.5. 77

114

4.7 Standard deviations of Z-Score distance matrices between complex/high-
noise/low-noise datasets. External measures tend to have a slightly higher
variance toward internal validation. One explanation for that might be that
external validation depends on predefined labels which are not known by
internal indices. These labels, however, agree sometimes more and sometimes
less with the topological properties of the data depending on the instance and
therefore appear "less stable" in terms of variance. 78

4.8 Distance matrix of different evaluation methods that are executed on seven
outlier solutions for each of the complex/high-noise/low-noise datasets. This
chart focuses on the quality of solutions when using sliding windows of different
sizes. Suffixes of 0▷1 mean 10%, 0▷5 represents 50% and 1▷0 means that all data
samples are considered. Solutions from tree-based classifiers such as decision
trees or XgBoost Tree show heavy degradation in quality when applied with
sliding windows resulting in less agreement with IREOS as well as other
FIREOS predictors for smaller window sizes. Results from linear predictors
show a similar picture. Nonlinear support vector machines on the other hand
seem to be not affected by this phenomenon as LibSVM results remain very
stable over different settings. 79

4.9 Average runtime in seconds of different predictors on basic2d datasets. All
results are conducted by using the parallel implementation on 32 threads.
As shown in the chart LibSVM is slower than IREOS for smaller problem
instances like datasets of the basic2d category. 82

4.10 Average runtime in seconds between the sequential and parallel implementation
of different FIREOS predictors on complex, high-noise and low-noise datasets. 83

4.11 Average runtime in seconds of FIREOS classifiers and different window ratios.
Values of 0▷1 mean 10%, 0▷5 represents 50% and 1▷0 means that all data
samples are considered. 84

4.12 Same chart as Figure 4.11 chart with IREOS runtime as a comparison. Since
IREOS does not feature a mechanism for sliding windows, only one bar is
displayed. 84

115

4.13 Runtime experiment on a subset of predictors for different key figures. Those
KPIs are rows, columns/features and both. Each chart shows the runtime
curves measured in seconds of three FIREOS predictors (LibSVM, Decision
Tree Native and XgBoost Tree) as well as the original IREOS over some
increasing key figure. For example, the top plot shows the course of execution
time when exponentially increasing the total number of rows of a random
dataset. The steeper the curve the more computationally expensive the
corresponding predictor. All datasets used for this experiment are randomly
generated matrices of normally distributed variables. The top plot shows the
course of runtime for a variable number of rows (x-axis) and a fixed number
of features which is 10. The middle chart shows the runtime behavior for 10
rows but a variable number of features. Finally, the bottom plot shows the
course of execution time for both variable rows and features. The x-axis in
the last chart represents both rows and features which means that all datasets
are quadratic matrices. As shown all three FIREOS predictors are faster than
the original IREOS for either KPI except libsvm for very small problems.
This chart demonstrates that IREOS is computationally more complex than
FIREOS. 85

116

List of Tables

3.1 Outlier scores used for the experiments and their scales and normalization
into probabilities . 34

3.2 Different classifier options in FIREOS and their characteristics 56
3.3 Additional tuning parameters of FIREOS 57

4.1 Runtimes of different FIREOS predictors and IREOS. All results are measured
in seconds, use the parallel implementation and are run on 32 threads. . . 82

4.2 Runtime in seconds of different predictors using sequential and parallel
FIREOS as well as the corresponding speedup. Presented numbers are
averages across all complex/high-noise/low-noise datasets and parallel results
were conducted on 32 threads. 83

117

Bibliography

[AbdO06] Hany Alashwal, Safaai bin deris, and Razib Othman. One-class support
vector machines for protein protein interactions prediction. Int J Biomed
Sci, 1, 01 2006.

[AG12] Mennatallah Amer and Markus Goldstein. Nearest-neighbor and cluster-
ing based anomaly detection algorithms for rapidminer. 08 2012.

[AGA13] Mennatallah Amer, Markus Goldstein, and Slim Abdennadher. En-
hancing one-class support vector machines for unsupervised anomaly
detection. pages 8–15, 08 2013.

[Agg17] Charu C. Aggarwal. An Introduction to Outlier Analysis, pages 1–34.
Springer International Publishing, 2017.

[AHW+03] Charu Aggarwal, Jiawei Han, Jianyong Wang, Philip Yu, T. Watson,
and Resch Ctr. A framework for clustering evolving data streams. 06
2003.

[Aji23] Abhinav Ajitsaria. What is the python global interpreter lock (gil)?, 2023.
https://realpython.com/python-gil/ [Accessed: 25-04-2023].

[AL14] Rami Albatal and Suzanne Little. Empirical exploration of extreme
svm-rbf parameter values for visual object classification. In MultiMedia
Modeling, pages 299–306. Springer International Publishing, 01 2014.

[AMS+21] Md Manjurul Ahsan, M. Mahmud, Pritom Saha, Kishor Datta Gupta,
and Zahed Siddique. Effect of data scaling methods on machine learning
algorithms and model performance. Technologies, 9:52, 07 2021.

[Ani12] Maria Anisimova. Parametric models of codon evolution. 02 2012.

[AP02] Fabrizio Angiulli and Clara Pizzuti. Fast outlier detection in high
dimensional spaces. volume 2431, pages 15–26, 08 2002.

[AWS14] Amineh Amini, Teh Wah, and Hadi Saboohi. On density-based data
streams clustering algorithms: A survey. Journal of Computer Science
and Technology, 29:116–141, 01 2014.

119

[Ayu21] Collins Ayuya. Parametric versus non-parametric models,
2021. https://www.section.io/engineering-education/
parametric-vs-nonparametric/ [Accessed: 15-02-2023].

[Bak23] Daniel Baker. Minicore: Fast generic coresets, 2023. https://github.
com/dnbaker/minicore [Accessed: 22-04-2023].

[Ban20] Writuparna Banerjee. Train/test complexity and space complexity of
logistic regression, 2020. https://levelup.gitconnected.com/
train-test-complexity-and-space-complexity-of-logistic-regress
[Accessed: 15-04-2023].

[Bar89] H.B. Barlow. Unsupervised learning. Neural Computation, 1(3):295–311,
09 1989.

[BDH+19] Rachel K. E. Bellamy, Kuntal Dey, Michael Hind, Samuel C. Hoffman,
Stephanie Houde, Kalapriya Kannan, Pranay Lohia, Jacquelyn Martino,
Sameep Mehta, Aleksandra Mojsilovic, Seema Nagar, Karthikeyan Nate-
san Ramamurthy, John Richards, Diptikalyan Saha, Prasanna Sattigeri,
Moninder Singh, Kush R. Varshney, and Yunfeng Zhang. Ai fairness
360: An extensible toolkit for detecting and mitigating algorithmic bias.
IBM Journal of Research and Development, PP, 09 2019.

[BG05] Irad Ben-Gal. Outlier Detection, pages 131–146. 01 2005.

[BHPI02] Mihai Bādoiu, Sariel Har-Peled, and Piotr Indyk. Approximate clustering
via core-sets. page 250–257, New York, NY, USA, 2002. Association for
Computing Machinery.

[BKNS00] Markus Breunig, Peer Kröger, Raymond Ng, and Joerg Sander. Lof:
Identifying density-based local outliers. volume 29, pages 93–104, 06
2000.

[BL07] Léon Bottou and Chih-Jen Lin. Support Vector Machine Solvers, pages
301–320. 01 2007.

[BL10] Richard G. Brereton and Gavin R. Lloyd. Support vector machines for
classification and regression. Analyst, 135:230–267, 2010.

[Bra96] Andrew Bradley. The use of the area under the roc curve in the evaluation
of machine learning algorithms. Pattern Recognition, 30:1145 – 1159, 11
1996.

[Bre96] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140,
1996.

[Bre99] Leo Breiman. Using adaptive bagging to debias regressions. 1999.

120

[Bre01] Leo Breiman. Random forests. Machine Learning, 45:5–32, 10 2001.

[Bro20] Jason Brownlee. Introduction to dimensionality reduction for
machine learning, 2020. https://machinelearningmastery.
com/dimensionality-reduction-for-machine-learning/
[Accessed: 18-02-2023].

[BWXW15] Mei Bai, Xite Wang, Junchang Xin, and Guoren Wang. An efficient
algorithm for distributed density-based outlier detection on big data.
Neurocomputing, 181, 12 2015.

[CBK09] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detec-
tion: A survey. ACM Comput. Surv., 41, 07 2009.

[CF03] A.L.M. Chiu and Ada Fu. Enhancements on local outlier detection.
pages 298–307, 08 2003.

[CG16] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting
system. In Proceedings of the 22nd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, KDD ’16, page 785–794,
New York, NY, USA, 2016. Association for Computing Machinery.

[CJ20] Davide Chicco and Giuseppe Jurman. The advantages of the matthews
correlation coefficient (mcc) over f1 score and accuracy in binary classifi-
cation evaluation. BMC Genomics, 21, 01 2020.

[CL11] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support
vector machines. ACM Transactions on Intelligent Systems and Tech-
nology, 2:27:1–27:27, 2011. Software available at http://www.csie.
ntu.edu.tw/~cjlin/libsvm.

[cmg18] MartinThoma (Wikimedia Commons) cmglee. Roc curve, 2018.
https://upload.wikimedia.org/wikipedia/commons/1/
13/Roc_curve.svg [Accessed: 18-02-2023].

[Cra09] Nick Craswell. Precision at n, pages 2127–2128. Springer US, Boston,
MA, 2009.

[CSAT17] Jinghui Chen, Saket Sathe, Charu Aggarwal, and Deepak Turaga. Outlier
Detection with Autoencoder Ensembles, pages 90–98. 06 2017.

[CT06] T. Cover and J. Thomas. Elements of information theory 2nd edition.
01 2006.

[CZS+16] Guilherme Campos, Arthur Zimek, Joerg Sander, Ricardo Campello,
Barbora Micenková, Erich Schubert, Ira Assent, and Michael Houle. On
the evaluation of unsupervised outlier detection: measures, datasets, and
an empirical study. Data Mining and Knowledge Discovery, 30, 07 2016.

121

[DHP+11] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and
Rich Zemel. Fairness through awareness. CoRR, abs/1104.3913, 04 2011.

[Die00] TG Dietterich. Ensemble methods in machine learning. pages 1–15, 01
2000.

[DK22] Ali Degirmenci and Omer Karal. Efficient density and cluster based
incremental outlier detection in data streams. Information Sciences,
607:901–920, 2022.

[Dri21] Salim Dridi. Unsupervised learning - a systematic literature review, 12
2021.

[DT14] Sharda Ramesh Dursun Delen and Efraim Turban. Business Intelligence
and Analytics : Systems for Decision Support. Tenth edition. Global ed.
Boston: Pearson, 2014.

[Dun74] J. C. Dunn. Well-separated clusters and optimal fuzzy partitions. Journal
of Cybernetics, 4(1):95–104, 1974.

[DYW19] Hu Ding, Haikuo Yu, and Zixiu Wang. Greedy strategy works for k-
center clustering with outliers and coreset construction. In Embedded
Systems and Applications, 2019.

[EMS97] Floriana Esposito, Donato Malerba, and Giovanni Semeraro. A com-
parative analysis of methods for pruning decision trees. IEEE Trans.
Pattern Anal. Mach. Intell., 19:476–491, 1997.

[EPP00] Theodoros Evgeniou, Massimiliano Pontil, and Tomaso Poggio. Regu-
larization networks and support vector machines. Adv. Comput. Math.,
13:1–50, 04 2000.

[ERKL16] Sarah Erfani, Sutharshan Rajasegarar, Shanika Karunasekera, and
Christopher Leckie. High-dimensional and large-scale anomaly detection
using a linear one-class svm with deep learning. Pattern Recognition, 58,
04 2016.

[EZ19] Kenneth Ezukwoke and Samaneh Zareian. Logistic regression and kernel
logistic regression a comparative study of logistic regression and kernel
logistic regression for binary classification, 12 2019.

[Faw06] Tom Fawcett. Introduction to roc analysis. Pattern Recognition Letters,
27:861–874, 06 2006.

[FCH+08] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and
Chih-Jen Lin. Liblinear: a library for large linear classification. Journal
of Machine Learning Research, 9:1871–1874, 08 2008.

122

[FGK+10] Ines Färber, Stephan Günnemann, Hans-Peter Kriegel, Peer Kröger,
Emmanuel Müller, Erich Schubert, Thomas Seidl, and Arthur Zimek.
On using class-labels in evaluation of clusterings. 01 2010.

[GCP05] Wu Gang, Edward Y. Chang, and Navneet Panda. Formulating distance
functions via the kernel trick. In Knowledge Discovery and Data Mining,
2005.

[GD12] Markus Goldstein and Andreas Dengel. Histogram-based outlier score
(hbos): A fast unsupervised anomaly detection algorithm. 09 2012.

[GMP+20] Kaifeng Gao, Gang Mei, Francesco Piccialli, Salvatore Cuomo, Jingzhi
Tu, and Zenan Huo. Julia language in machine learning: Algorithms,
applications, and open issues, 03 2020.

[Goi16] Nicolas Goix. How to evaluate the quality of unsupervised anomaly
detection algorithms?, 2016.

[Gon] Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster
distance.

[Gru69] Frank E. Grubbs. Procedures for detecting outlying observations in
samples. Technometrics, 11(1):1–21, 1969.

[GZSL19] Rongfang Gao, Tiantian Zhang, Shaohua Sun, and Zhanyu Liu. Research
and improvement of isolation forest in detection of local anomaly points.
Journal of Physics: Conference Series, 06 2019.

[HA85] Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of
Classification, 2:193–218, 02 1985.

[HA04] Victoria Hodge and Jim Austin. A survey of outlier detection method-
ologies. Artificial Intelligence Review, 22:85–126, 10 2004.

[Has03] Trevor Hastie. Support vector machines,kernel logistic regression, and
boosting, 2003. https://hastie.su.domains/Papers/svmtalk.
pdf [Accessed: 15-04-2023].

[HC18] David Hand and Peter Christen. A note on using the f-measure for
evaluating record linkage algorithms. Statistics and Computing, 28:539–
547, 05 2018.

[HCB18] Sahand Hariri, Matias Carrasco, and Robert J. Brunner. Extended
isolation forest. CoRR, abs/1811.02141, 2018.

[HK04] Ville Hautamäki and Ismo Kärkkäinen. Outlier detection using k-nearest
neighbour graph. 01 2004.

123

[HLV03] Wenjie Hu, Yihua Liao, and Rao Vemuri. Robust anomaly detection using
support vector machines. Proceedings of the International Conference
on Machine Learning, 06 2003.

[HM82] J.A. Hanley and Barbara Mcneil. The meaning and use of the area under
a receiver operating characteristic (roc) curve. Radiology, 143:29–36, 05
1982.

[Ho98] Tin Kam Ho. The random subspace method for constructing decision
forests. IEEE Transactions on Pattern Analysis and Machine Intelligence,
20(8):832–844, 1998.

[Hoa13] David C. Hoaglin. Volume 16: How to detect and handle outliers. pages
9–12, 2013.

[Hol21] Tim Holy. Tutorial on precompilation, 2021. https://julialang.
org/blog/2021/01/precompile_tutorial/ [Accessed: 20-05-
2023].

[Hon20] Charmgil Hong. Identification of incorrect data labels using conditional
outlier detection. Journal of Korea Multimedia Society, 23:915–926, 2020.

[HPN11] Neminath Hubballi, Bidyut Patra, and Sukumar Nandi. Ndot: Nearest
neighbor distance based outlier detection technique. volume 6744, pages
36–42, 06 2011.

[HPWG20] Sung Ho, Kimberly Phua, Limsoon Wong, and Wilson Goh. Extensions
of the external validation for checking learned model interpretability and
generalizability. Patterns, 1:100–129, 11 2020.

[HRTZ04] Trevor Hastie, Saharon Rosset, Robert Tibshirani, and Ji Zhu. The
entire regularization path for the support vector machine. Journal of
Machine Learning Research, 5:1391–1415, 10 2004.

[HXD03] Zengyou He, Xiaofei Xu, and Shengchun Deng. Discovering cluster based
local outliers. Pattern Recognition Letters, 24:1641–1650, 06 2003.

[IBM23] IBM. What is unsupervised learning?, 2023. https://www.ibm.com/
topics/unsupervised-learning [Accessed: 18-02-2023].

[IV18] Tanja Zimek Arthur Iglesias Vázquez, Félix Zseby. Outlier detection
based on low density models. 2018 IEEE International Conference on
Data Mining Workshops (ICDMW), pages 970–979, 2018.

[IVZFZ19] Félix Iglesias Vázquez, Tanja Zseby, Daniel Ferreira, and Arthur Zimek.
Mdcgen: Multidimensional dataset generator for clustering. Journal of
Classification, 36:599–618, 04 2019.

124

[JALK16] Surya Mattu Julia Angwin, Jeff Larson and ProPublica Lauren Kirchner.
Machine bias, 2016. https://www.propublica.org/article/
machine-bias-risk-assessments-in-criminal-sentencing
[Accessed: 12-02-2023].

[Joa06] Thorsten Joachims. Training linear svms in linear time. volume 2006,
pages 217–226, 08 2006.

[Joh17] Steven G. Johnson. Introduction to julia: Why are we doing this
to you?, 2017. https://web.mit.edu/18.06/www/Spring17/
Julia-intro.pdf [Accessed: 22-04-2023].

[Joh23] Steven G. Johnson. Pycall github repository, 2023. https://github.
com/JuliaPy/PyCall.jl [Accessed: 25-04-2023].

[JTHW06] Wen Jin, Anthony Tung, Jiawei Han, and Wei Wang. Ranking outliers
using symmetric neighborhood relationship. pages 577–593, 04 2006.

[Kan21] Vijay Kanade. What is fraud detection? definition, types, appli-
cations, and best practices, 2021. https://www.spiceworks.
com/it-security/vulnerability-management/articles/
what-is-fraud-detection/ [Accessed: 12-02-2023].

[KC14] Trupti A. Kumbhare and Santosh V. Chobe. An overview of association
rule mining algorithms. International Journal of Computer Science and
Information Technologies, 3(1):927–930, 2014.

[KDSP02] S. Sathiya Keerthi, Kaibo Duan, Shirish K. Shevade, and Aun Neow Poo.
A fast dual algorithm for kernel logistic regression. Machine Learning,
61:151–165, 2002.

[KGP+11] Maria Kontaki, Anastasios Gounaris, Apostolos N. Papadopoulos, Kostas
Tsichlas, and Yannis Manolopoulos. Continuous monitoring of distance-
based outliers over data streams. In 2011 IEEE 27th International
Conference on Data Engineering, pages 135–146, 2011.

[Kha21] Renu Khandelwal. Anomaly detection using local out-
lier factor, 2021. https://arshren.medium.com/
anomaly-detection-using-local-outlier-factor-4e52f16894f
[Accessed: 12-02-2023].

[KJS17] Bogumił Kamiński, Michał Jakubczyk, and Przemysław Szufel. A frame-
work for sensitivity analysis of decision trees. Central European Journal
of Operations Research, 26:135 – 159, 2017.

[KKSZ09] Hans-Peter Kriegel, Peer Kröger, Erich Schubert, and Arthur Zimek.
Loop: Local outlier probabilities. pages 1649–1652, 11 2009.

125

[KKSZ11] Hans-Peter Kriegel, Peer Kröger, Erich Schubert, and Arthur Zimek.
Interpreting and unifying outlier scores. pages 13–24, 04 2011.

[KN98] Edwin Knorr and Raymond Ng. Algorithms for mining distance-based
outliers in large datasets. VLDB, 06 1998.

[KN22] Edwin Knorr and Raymond Ng. Distance-based method, 2022. https:
//slideplayer.com/slide/14006457/ [Accessed: 15-02-2023].

[KSZ08] Hans-Peter Kriegel, Matthias Schubert, and Arthur Zimek. Angle-based
outlier detection in high-dimensional data. In Proceedings of the 14th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’08, page 444–452, New York, NY, USA, 2008.
Association for Computing Machinery.

[LB21] Denys Lazarenko and Thomas Bonald. Pairwise adjusted mutual infor-
mation, 03 2021.

[Lea23] Scikit Learn. Selecting the number of clusters with silhouette analysis on
kmeans clustering, 2023. https://scikit-learn.org/stable/
_images/sphx_glr_plot_kmeans_silhouette_analysis_
002.png [Accessed: 18-02-2023].

[Ley13] Christophe Klein Olivier Bernard Philippe Licata Laurent Leys,
Christophe Ley. Detecting outliers: Do not use standard deviation
around the mean, use absolute deviation around the median. Journal of
Experimental Social Psychology, 49(4):764–766, 2013.

[Li17] Danielle Li. Expertise versus bias in evaluation: Evidence from the nih.
American Economic Journal: Applied Economics, 9:60–92, 04 2017.

[Liu08] Kai Zhou Zhi-Hua Liu, Fei Tony Ting. Isolation forest. 2008 Eighth
IEEE International Conference on Data Mining, pages 413–422, 2008.

[LLP07] Longin Jan Latecki, Aleksandar Lazarevic, and David Pokrajac. Outlier
detection with kernel density functions. pages 61–75, 07 2007.

[LLW07] Hsuan-Tien Lin, Chih-Jen Lin, and Ruby Chiu-Hsing Weng. A note
on platt’s probabilistic outputs for support vector machines. Machine
Learning, 68:267–276, 2007.

[LLX+10] Yanchi Liu, Zhongmou Li, Hui Xiong, Xuedong Gao, and Junjie Wu.
Understanding of internal clustering validation measures. pages 911–916,
12 2010.

[Mah20] K Mahajan Mahajan. Anomaly detection using isolation for-
est in python, 2020. https://blog.paperspace.com/
anomaly-detection-isolation-forest/ [Accessed: 15-02-
2023].

126

[Mar20] Henrique Oliveira Marques. ireos-extension. https://github.com/
homarques/ireos-extension [Accessed: 18-02-2023], 2020.

[MCSZ20] Henrique Marques, Ricardo Campello, Jürg Sander, and Arthur Zimek.
Internal evaluation of unsupervised outlier detection. ACM Transactions
on Knowledge Discovery from Data, 14:1–42, 06 2020.

[MCZS15] Henrique Marques, Ricardo Campello, Arthur Zimek, and Jörg Sander.
On the internal evaluation of unsupervised outlier detection. pages 1–12,
06 2015.

[MD03] Dragos D. Margineantu and Thomas G. Dietterich. Improved Class
Probability Estimates from Decision Tree Models. 2003.

[Men96] Scott Menard. Applied logistic regression analysis. 1996.

[Mis20a] Misc. Scikit-learn documentation, 2020. https://scikit-learn.
org/stable/modules/generated/sklearn.ensemble.
IsolationForest.html [Accessed: 15-02-2023].

[Mis20b] Misc. Scikit-learn documentation, 2020. https://scikit-learn.
org/stable/modules/generated/sklearn.metrics.
pairwise.rbf_kernel.html [Accessed: 18-02-2023].

[Mis22] Misc. Random forests(tm) in xgboost, 2022. https://xgboost.
readthedocs.io/en/stable/tutorials/rf.html [Accessed:
18-04-2023].

[Mis23a] Misc. Decisiontree.jl docstrings, 2023. https://docs.juliahub.
com/DecisionTree/pEDeB/0.10.8/autodocs/ [Accessed: 18-04-
2023].

[Mis23b] Misc. The julia programming language, 2023. https://julialang.
org/ [Accessed: 22-04-2023].

[Mis23c] Misc. The julia programming language: Performance tips, 2023. https:
//docs.julialang.org/en/v1/manual/performance-tips/
[Accessed: 24-04-2023].

[Mis23d] Misc. The julia programming language: Style guide, 2023. https:
//docs.julialang.org/en/v1/manual/style-guide/
#bang-convention [Accessed: 24-04-2023].

[Mis23e] Misc. Liblinear github repository, 2023. https://github.com/
cjlin1/liblinear [Accessed: 18-04-2023].

[Mis23f] Misc. Plot a confidence ellipse of a two-dimensional dataset, 2023.
https://matplotlib.org/stable/gallery/statistics/
confidence_ellipse.html [Accessed: 23-05-2023].

127

[Mis23g] Misc. Scikit learn svm documentation: 1.10 decision trees, 2023. https:
//scikit-learn.org/stable/modules/tree.html [Accessed:
17-04-2023].

[Mis23h] Misc. Tree-based models, 2023. https://c3.ai/glossary/
data-science/tree-based-models/ [Accessed: 17-04-2023].

[MIVZ22] Fares Meghdouri, Félix Iglesias Vázquez, and Tanja Zseby. Modeling
data with observers. Intelligent Data Analysis, 26:785–803, 04 2022.

[MJS02] Srinivas Mukkamala, Guadalupe Janoski, and Andrew Sung. Intrusion
detection using neural networks and support vector machines. volume 2,
pages 1702 – 1707, 02 2002.

[MNPT18] Stratos Mansalis, Eirini Ntoutsi, Nikos Pelekis, and Yannis Theodoridis.
An evaluation of data stream clustering algorithms. Statistical Analysis
and Data Mining: The ASA Data Science Journal, 11, 06 2018.

[Mod16] Krishna Modi. Outlier analysis approaches in data mining. International
Journal of Innovative Research in Technology, 3, 12 2016.

[Mom13] Mohssen N. Gowayyed Mohammad A. Momtaz, R. Dwof: A robust
density-based outlier detection approach. In Pattern Recognition and
Image Analysis, pages 517–525, 2013.

[MS03] Markos Markou and Sameer Singh. Novelty detection: A review - part
2:: Neural network based approaches. Signal Processing, 83:2499–2521,
12 2003.

[Mur] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective.

[Mus19] Sana Mushtaq. Data preprocessing in detail,
2019. https://developer.ibm.com/articles/
data-preprocessing-in-detail/ [Accessed: 05-04-2023].

[MZCS22] Henrique O. Marques, Arthur Zimek, Ricardo J. G. B. Campello, and
Jörg Sander. Similarity-based unsupervised evaluation of outlier detec-
tion. In Similarity Search and Applications, pages 234–248. Springer
International Publishing, 2022.

[NCZW18] Jin Ning, Leiting Chen, Chuan Zhou, and Yang Wen. Parameter k search
strategy in outlier detection. Pattern Recognition Letters, 112:56–62,
2018.

[oST] US National Institute of Standards and Technology. Detection of
outliers. https://www.itl.nist.gov/div898/handbook/eda/
section3/eda35h.htm [Accessed: 12-02-2023].

128

[PB19] Nerijus Paulauskas and Algirdas Baskys. Application of histogram-based
outlier scores to detect computer network anomalies. Electronics, 8:1251,
11 2019.

[PDR16] José Pasillas-Díaz and Sylvie Ratté. An unsupervised approach for
combining scores of outlier detection techniques, based on similarity
measures. Electronic Notes in Theoretical Computer Science, 329:61–77,
12 2016.

[PKGF03] Spiros Papadimitriou, Hiroyuki Kitagawa, Phillip Gibbons, and Christos
Faloutsos. Loci: Fast outlier detection using the local correlation integral.
pages 315–326, 01 2003.

[Pla00] John Platt. Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods. Adv. Large Margin
Classif., 10, 06 2000.

[PN19] Julio Palacio Nino. Evaluation metrics for unsupervised learning algo-
rithms, 05 2019.

[Pow08] David Powers. Evaluation: From precision, recall and f-factor to roc,
informedness, markedness correlation. 2:37–63, 01 2008.

[PP12] Ninh Pham and Rasmus Pagh. A near-linear time approximation algo-
rithm for angle-based outlier detection in high-dimensional data. Pro-
ceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 08 2012.

[PS91] Gregory Piatetsky-Shapiro. Discovery, Analysis, and Presentation of
Strong Rules, pages 229–248. 01 1991.

[PwC20] PwC. Fighting fraud: A never-ending battle, 2020. https:
//www.global-screeningsolutions.com/industries/
global-economic-crime-and-fraud-survey-2020-1.pdf
[Accessed: 12-02-2023].

[RBtvV14] S. Romano, J. Bailey, Nguyen the vinh, and Karin Verspoor. Standard-
ized mutual information for clustering comparisons: One step further
in adjustment for chance. 31st International Conference on Machine
Learning, ICML 2014, 4:2873–2882, 01 2014.

[Res22] Straits Research. Fraud detection and prevention market
size is projected to reach usd 190 billion by 2030, growing
at a cagr of 23.2%, 2022. https://www.globenewswire.
com/news-release/2022/07/25/2485302/0/en/
Fraud-Detection-and-Prevention-Market-Size-is-projected-to-reach-USD
html [Accessed: 12-02-2023].

129

[RKV+20] Lukas Ruff, Jacob R. Kauffmann, Robert A. Vandermeulen, Grégoire
Montavon, Wojciech Samek, Marius Kloft, Thomas G. Dietterich, and
Klaus-Robert Muller. A unifying review of deep and shallow anomaly
detection. Proceedings of the IEEE, 109:756–795, 2020.

[RLF+06] Fabrice Rossi, Amaury Lendasse, Damien François, Vincent Wertz,
and Michel Verleysen. Mutual information for the selection of relevant
variables in spectrometric nonlinear modelling. 80(2):215–226, 2006.

[Rou87] Peter Rousseeuw. Rousseeuw, p.j.: Silhouettes: A graphical aid to the
interpretation and validation of cluster analysis. comput. appl. math. 20,
53-65. Journal of Computational and Applied Mathematics, 20:53–65, 11
1987.

[RRS00] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. Efficient
algorithms for mining outliers from large data sets. volume 29, pages
427–438, 06 2000.

[SAA20] Intisar Shadeed, Jwan Alwan, and Dhafar Abd. The effect of gamma
value on support vector machine performance with different kernels.
International Journal of Electrical and Computer Engineering (IJECE),
10:5497, 10 2020.

[Sal17] Chapter 2 - a taxonomy of example-based super resolution. In Example-
Based Super Resolution, pages 15–29. Academic Press, 2017.

[Sas07] Yutaka Sasaki. The truth of the f-measure. Teach Tutor Mater, 01 2007.

[SB98] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. MIT Press, 1998.

[Sch90] Robert E. Schapire. The strength of weak learnability. Machine Learning,
5(2):197–227, 1990.

[Sch00] Bernhard Schölkopf. The kernel trick for distances. In T. Leen, T. Diet-
terich, and V. Tresp, editors, Advances in Neural Information Processing
Systems, volume 13, page 283–289. MIT Press, 2000.

[SG02] Alexander Strehl and Joydeep Ghosh. Cluster ensembles - a knowledge
reuse framework for combining multiple partitions. Journal of Machine
Learning Research, 3:583–617, 01 2002.

[Sil20] Rosaria Silipo. Ensemble models: Bagging boost-
ing, 2020. https://medium.com/analytics-vidhya/
ensemble-models-bagging-boosting-c33706db0b0b [Ac-
cessed: 25-04-2023].

130

[Sim22] Milos Simic. Decisiontree.jl docstrings,
2022. https://www.baeldung.com/cs/
gradient-boosting-trees-vs-random-forests [Accessed:
18-04-2023].

[SJS06] Marina Sokolova, Nathalie Japkowicz, and Stan Szpakowicz. Beyond
accuracy, f-score and roc: A family of discriminant measures for perfor-
mance evaluation. volume Vol. 4304, pages 1015–1021, 01 2006.

[SkL23] SkLearn. Isolationforest documentation, 2023. https:
//scikit-learn.org/stable/modules/generated/sklearn.
ensemble.IsolationForest.html#sklearn.ensemble.
IsolationForest [Accessed: 10-04-2023].

[SLN18] Habiba Sani, Ci Lei, and Daniel Neagu. Computational Complexity Anal-
ysis of Decision Tree Algorithms: 38th SGAI International Conference
on Artificial Intelligence, AI 2018, Cambridge, UK, December 11–13,
2018, Proceedings, pages 191–197. 11 2018.

[Smo22] Hrvoje Smolic. What is unsupervised learn-
ing?, 2022. https://graphite-note.com/
machine-learning-unsupervised-3-main-tasks [Accessed:
18-02-2023].

[SO17] Gulcan Sarp and Mehmet Ozcelik. Water body extraction and change
detection using time series: A case study of lake burdur, turkey. Journal
of Taibah University for Science, 11(3):381–391, 2017.

[Sre07] Nathan Srebro. How good is a kernel when used as a similarity measure?
pages 323–335, 06 2007.

[SSB+97] B. Schölkopf, Kah-Kay Sung, Christopher Burges, Federico Girosi,
Partha Niyogi, Tomaso Poggio, and Vladimir Vapnik. Comparing support
vector machines with gaussian kernels to radial basis function classifiers.
Signal Processing, IEEE Transactions on, 45:2758 – 2765, 12 1997.

[SSB18] Bernhard Schölkopf, Alexander J. Smola, and Francis Bach. Learning
with Kernels: Support Vector Machines, Regularization, Optimization,
and Beyond. The MIT Press, 2018.

[Sta17] Artur Starczewski. A new validity index for crisp clusters. Pattern
Analysis and Applications, 20:687–700, 08 2017.

[Ste20] Doug Steen. Understanding the roc curve and
auc, 2020. https://towardsdatascience.com/
understanding-the-roc-curve-and-auc-dd4f9a192ecb
[Accessed: 18-02-2023].

131

[SU12] Karanjit Singh and Shuchita Upadhyaya. Outlier detection: Applications
and techniques. International Journal of Computer Science Issues, 9, 01
2012.

[Sut05] Herb Sutter. The free lunch is over: A fundamental turn toward concur-
rency in software. Dr. Dobb’s Journal, 30(3):202–210, 2005.

[SWS+99] Bernhard Schölkopf, Robert Williamson, Alex Smola, John Shawe-Taylor,
and John Platt. Support vector method for novelty detection. Cambridge,
MA, USA, 1999. MIT Press.

[TCFC02] Jian Tang, Zhixiang Chen, Ada Fu, and David Cheung. Enhancing
effectiveness of outlier detections for low density patterns. pages 535–
548, 05 2002.

[Tob22] Adrian Tobisch. pyireos: An implementation of ireos in python, 2022.
https://github.com/ExoFlare/pyIREOS [Accessed: 22-04-2023].

[Tok22] A. Aylin Tokuç. k-nearest neighbors and high dimensional data,
2022. https://www.baeldung.com/cs/k-nearest-neighbors
[Accessed: 15-02-2023].

[Unk22] Unknown. Roc curves and auc for models used for binary clas-
sification, 2022. https://data.library.virginia.edu/
roc-curves-and-auc-for-models-used-for-binary-classification/
[Accessed: 18-02-2023].

[Val21] Dilip Valeti. Detect and remove the outliers in a
dataset, 2021. https://medium.com/@dilip.voleti/
detect-and-remove-the-outliers-in-a-dataset-1398f4cc7b44
[Accessed: 12-02-2023].

[VdMPVDH09] L. J. P. Van der Maaten, E. O. Postma, and H. J. Van Den Herik.
Dimensionality reduction: A comparative review. Journal of Machine
Learning Research, pages 1–41, 2009.

[VEB09] Nguyen Vinh, Julien Epps, and James Bailey. Information theoretic
measures for clusterings comparison: Is a correction for chance necessary?
page 135, 06 2009.

[V.N64] A.Ya. Chervonenkis V.N.Vapnik. A class of algorithms for pattern
recognition learning. Avtomat. i Telemekh., 25, 1964.

[VTS04] J.P. Vert, Koji Tsuda, and Bernhard Schölkopf. A primer on kernel
methods. Kernel Methods in Computational Biology, 35-70 (2004), pages
35–70, 01 2004.

132

[WBH+02] Graham Williams, Rohan Baxter, Hongxing He, Simon Hawkins, and
Lifang Gu. A comparative study of rnn for outlier detection in data
mining. pages 709 – 712, 02 2002.

[WBH19] Hongzhi Wang, Mohamed Bah, and Mohamed Hammad. Progress in
outlier detection techniques: A survey. IEEE Access, 7, 08 2019.

[WC10] the free media repository Wikimedia Commons. Lof, 2010. https:
//commons.wikimedia.org/wiki/File:LOF.svg [Accessed: 25-
05-2023].

[WLW04] Ting-fan Wu, Chih-Jen Lin, and Ruby Weng. Probability estimates
for multi-class classification by pairwise coupling. Journal of Machine
Learning Research, pages 975–1005, 02 2004.

[WT20] Duo Wang and Toshihisa Tanaka. Robust kernel principal component
analysis with 2,1-regularized loss minimization. IEEE Access, 8:81864–
81875, 2020.

[WYT07] Defeng Wang, Daniel Yeung, and E.C.C. Tsang. Structured one-class
classification. IEEE transactions on systems, man, and cybernetics.
Part B, Cybernetics : a publication of the IEEE Systems, Man, and
Cybernetics Society, 36:1283–95, 01 2007.

[YCR17] Yizhou Yan, Lei Cao, and Elke Rundensteiner. Scalable top-n local
outlier detection. pages 1235–1244, 08 2017.

[ZE01] Bianca Zadrozny and Charles Elkan. Obtaining calibrated probability
estimates from decision trees and naive bayesian classifiers. ICML,
1:609–616, 05 2001.

[Zha09] Ethan Zhang. Average Precision, pages 192–193. Springer US, Boston,
MA, 2009.

[ZHJ09] Ke Zhang, Marcus Hutter, and Huidong Jin. A new local distance-based
outlier detection approach for scattered real-world data. volume 5476,
03 2009.

[ZNL19] Yue Zhao, Zain Nasrullah, and Zheng Li. Pyod: A python toolbox for
scalable outlier detection, 2019.

[ZRL96] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: An efficient
data clustering method for very large databases. 25(2):103–114, 1996.

133

