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Kurzfassung

Prädikatenlogik erster Stufe galt lange als optimale Grundlage für automatisierte Theo-
rembeweiser in Bezug auf die Ausdrucksstärke im Verhältnis zum Automatisierungsgrad.
Führende Theorembeweiser verwenden den Superpositionskalkül, welcher kürzlich auf
Prädikatenlogik höherer Stufe, auch als einfache Typentheorie bezeichnet, erweitert wurde.
Diese Erweiterung erlaubt es großteils, dass Beweisführung höherer Stufe auch nur für
Probleme höherer Stufe verwendet wird. Die empirische Evaluierung dieses Kalküls durch
den Theorembeweiser Zipperposition hat die Konkurrenzfähigkeit gegenüber anderen
aktuellen Theorembeweisern für Logik höherer Stufe unter Beweis gestellt.

Obwohl der Superpositionskalkül für Logik höherer Stufe vielversprechend ist, gibt es
Möglichkeiten zur Verbesserung. Durch den Sprung von Prädikatenlogik erster Stufe
zu höheren Stufen wird das Unifikationsproblem unentscheidbar. Weil möglicherweise
unendlich viele Unifizierer enumeriert werden müssen, kann eine Explosion des Suchraums
erfolgen. G.P. Huet stellte fest, dass eine vollständige Unifikation für Kalküle höherer
Ordnung nicht notwendig ist, während gleichzeitig die Eigenschaft der Widerlegungs-
vollständigkeit erhalten werden kann. Er führte einen Resolutionskalkül für die einfache
Typentheorie ein, bei dem Constraints verwendet werden, um die Unifikation aufzuschie-
ben. Die Unifikationsprobleme können dann mit einem Ansatz namens Preunifizierung
gelöst werden, bei dem die Unifikation gestoppt werden kann, wenn es offensichtlich ist,
dass eine Lösung existiert.

In dieser Arbeit wird die Idee von Huet auf den Superpositionskalkül angewandt, was den
Namen Constraint-Superpositionskalkül ergibt. Dadurch ist es möglich, die Unifikation
hinauszuzögern und die entstehenden Unifikationsconstraints erst später zu lösen. Außer-
dem müssen bei diesem Ansatz einige Unifizierer während des Saturationsprozesses nicht
berücksichtigt werden, was zu einer Einschränkung des Suchraums führt. Aufbauend auf
früheren Arbeiten präsentieren wir eine Beweisskizze für Widerlegungsvollständigkeit.
Schließlich wird der in Zipperposition implementierte Ansatz erläutert und basierend auf
TPTP und Sledgehammer Benchmarks evaluiert.
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Abstract

For many years, first-order logic was considered the sweet spot for automated theorem
provers regarding expressiveness in relation to the degree of automation. The leading
theorem provers employ the superposition calculus. Recently, this calculus was successfully
extended to higher-order logic, which is also called simple type theory. The extension
is mostly graceful, in a sense that higher-order reasoning should exclusively be used for
higher-order problems. Its empirical evaluation in the theorem prover Zipperposition
proved the extension to be competitive with other current theorem provers for higher-order
logic.

While the superposition calculus for higher-order logic is promising, there are possibilities
for improvement. When going from first-order to higher-order logic, the unification
problem becomes undecidable. Since the calculus needs to eagerly enumerate unifiers, a
potential explosion in search space is possible. It was noted by G.P. Huet that full eager
unification is not necessary for higher-order calculi, while still enjoying the property of
refutational completeness. He introduced a resolution calculus for simple type theory,
where constraints are used to postpone unification. The unification problems can then
be solved using an approach called preunification, where the unification can be stopped
when it is apparent that the problem admits a solution.

In this thesis, the idea of Huet is applied to the superposition calculus, which gives the
name constraint superposition calculus. This makes it possible to postpone unification
and lazily solve the arising unification constraints. Moreover, with this approach some
unifiers need not be considered during saturation, which leads to a restriction of the
search space. Building upon previous work, we present a proof sketch for refutational
completeness. Finally, the implementation in Zipperposition is discussed and evaluated
on TPTP and Sledgehammer benchmarks.
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CHAPTER 1
Introduction

1.1 Motivation & Problem Statement
Nowadays, automated theorem provers are used extensively in academia and industry to
verify input problems formulated within some specific logic. For example, if the logic on
which a prover operates is classical propositional logic, then it is a SAT (i.e., satisfiability)
solver. Applications for SAT solvers include the verification of digital circuits, scheduling
problems and constraint satisfaction.

However, propositional logic is rather weak because only aspects about finite structures can
be encoded and one can only use propositional variables. First-order logic is an extension
of propositional logic, which solves many of these shortcomings. Using quantification,
equality and function symbols, many mathematical theorems can be formalized and then
be shown valid in a matter of seconds using a first-order automated theorem prover.
The calculus that is used in the leading first-order provers (e.g., Vampire1 or E2) is the
so-called superposition calculus [NR01; BG94].

While many properties can be expressed in first-order logic, there are theorems that cannot
be fed into a first-order prover as the needed list of axioms is infinite or quantification
over predicates or functions is needed. A simple example is the arithmetic of natural
numbers, which can be formalized using the well-known Peano axioms. If R is a unary
predicate and n′ denotes the successor of n, the induction axiom can be stated as follows:

R(0) ∧ ∀n.(n ∈ N ∧ R(n) ⇒ R(n′)) ⇒ ∀n.(n ∈ N ⇒ R(n))

Note that R can be any unary predicate and thus this axiom is actually an axiom schema,
i.e., for every possible unary predicate there is an instance of this axiom. Hence, a general

1https://vprover.github.io/
2http://www.eprover.org/
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1. Introduction

first-order prover cannot be given a finite axiomatization of the arithmetic of natural
numbers, as it is not possible to quantify over predicates in first-order logic.

This motivates the use of higher-order logic. As „higher-order“ already indicates, with
this logic it is possible to quantify also over predicates and functions and thus the theory
of arithmetic can be finitely axiomatized and used to automatically verify many theorems.
This is done by prepending a universal quantification over unary predicates R to the
beginning of the above logical sentence.

To further motivate the expressiveness of higher-order logic for formalized mathematics,
we consider the succinctness and automated proof of Cantor’s theorem as motivated in
[Ben+23a]. The theorem can be given in higher-order logic as shown below:

surjective = (λf. ∀y. ∃x.y = f(x)) ⇒ ¬(∃g : τ → (τ → bool). surjective(g))

The premise of the implication defines surjectivity of a function as a unary predicate
using a λ-abstraction, which would not be possible in first-order logic. The conclusion of
the implication states that there does not exist a surjective function that takes a value of
some type τ and maps it to a set of values of type τ , which is represented by a function
from the set of values of type τ to the Boolean type bool, which is defined to be {0, 1}.
That is, the existence of a surjective function from a set to its power set can be refuted.
While Cantor’s set theory caused a controversy back then, today Cantor’s theorem can
be simply verified by an automated prover for higher-order logic [Ben+23a].

Recently, the powerful superposition calculus for first-order logic was successfully gen-
eralized to higher-order logic in a series of successive milestones. First, the calculus
supported only λ-free higher-order logic [Ben+18]. Then, λ-expression were incorporated
[Ben+21]. Finally, support for a Boolean type was added [Ben+23b]. The calculus was
implemented in the Zipperposition3 theorem prover and it turned out to be very efficient,
as it won the CADE ATP System Competition4 in 2020, 2021, and 2022.

There are some obstacles when moving from first-order to higher-order logic. In first-order
logic, there is the notion of a unifier that rewrites variables into terms which makes two
terms syntactically equal. If this is possible for two first-order terms, there is always a
so-called most-general unifier and it is straightforward to compute one. For higher-order
logic, it is not decidable whether two terms have a unifier at all and also there can be an
infinite set of non-comparable unifiers. Therefore, during proof search, inferences have to
be interleaved with the computation of unifiers to guarantee that a proof can eventually
be found if the input problem is provable [Vuk+21].

The aim of my master thesis is to combat these issues by applying an approach that
was first developed for a resolution calculus for higher-order logic by Gérard Pierre Huet
in 1972 [Hue72]. In this calculus, eager higher-order unification is not needed. Instead,
unification constraints are postponed as constraints and can be solved on demand. This

3https://github.com/sneeuwballen/zipperposition
4https://www.tptp.org/CASC/
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1.2. Contributions

brings the advantage that for certain forms of unification problems it can be easily seen
that there has to be a solution without the need to enumerate every solution. Moreover,
the calculus remains refutational complete with respect to so-called Henkin semantics.
The goal is to exploit this idea for the higher-order superposition calculus.

1.2 Contributions
This thesis is based on unpublished5 work of Alexander Bentkamp, Jasmin Blanchette,
Uwe Waldmann, and myself. In this thesis, we present a novel superposition calculus for
higher-order logic that is called constraint superposition calculus. Because full higher-
order unification is not needed with this calculus, one can resort to the less explosive
approach of preunification.

Building on previous work on the promising superposition calculus, we provide a proof
sketch of refutational completeness of the calculus. In addition, we present and justify
the use of various simplification rules that can be used in implementations. Moreover, the
calculus was implemented in the state-of-the-art automated theorem prover Zipperposition
by myself. This implementation was then evaluated against problems of the TPTP
problem library as well as problems generated from Isabelle by Sledgehammer.

1.3 Structure of the Thesis
In Chapter 2 the necessary notions and concepts are introduced on which the rest of
this thesis builds. After mathematical preliminaries and rewrite systems, first-order logic
with interpreted Booleans, and higher-order logic using the simply typed λ-calculus are
presented.

Afterwards, saturation theorem proving is discussed in Chapter 3 in which a framework
is presented that allows to obtain completeness results for a calculus by instantiating the
framework. In Chapter 4 a superposition calculus for first-order logic with interpreted
Booleans, and a higher-order superposition calculus is discussed. The refutational
completeness proofs of the calculi are presented, which both employ the saturation
framework from Chapter 3. Saturation algorithms for the presented calculi are given and
explained.

The constraint superposition calculus is introduced in Chapter 5. In addition to the
inference rules, we provide a simple version of redundancy that allows to justify many
simplification rules, which are also presented in this chapter. Moreover, a proof sketch
for refutational completeness is given, and the saturation algorithm is discussed. Finally,
the implementation in Zipperposition is explained and evaluated.

5as of August 2023
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CHAPTER 2
Preliminaries

2.1 Mathematical Preliminaries
A tuple (a1, . . . , an) is also written as ān or ā if the length of the tuple is irrelevant. The
empty tuple is written as ε, and ā · b̄ denotes the concatentation of tuples. If an ∈ An

and f : A → B, the (slightly abusing) notation f(an) stands for elementwise application,
i.e., f(an) = (f(a1), . . . , f(an)). Also, if S ⊆ A, f(S) stands for U

a∈S f(a).

For a function f : A → B, the updated function f [a ꜗ→ b] denotes the function that
behaves as f on all inputs different from a and maps a to b. That is

f [a ꜗ→ b](x) =
{

b if x = a

f(x) otherwise.

The notation f [ān ꜗ→ b̄n] stands for (· · · ((f [a1 ꜗ→ b1])[a2 ꜗ→ b2]) · · · )[an ꜗ→ bn].

The composition of binary relations R1 ⊆ X × Y and R2 ⊆ Y × Z, denoted by R1 ◦ R2,
is defined as follows:

R1 ◦ R2 = {(x, z) | ∃y. ((x, y) ∈ R1 and (y, z) ∈ R2)}

Given a binary relation R, the notation xRy may be used to denote (x, y) ∈ R.

The power of R ⊆ S × S is recursively given by R1 = R and Rn+1 = R ◦ Rn. Moreover,
the transitive closure of R ⊆ S × S, denoted by R+, is defined by R+ = U∞

i=1 Ri, whereas
the reflexive closure of R is R ∪ {(s, s) | s ∈ S}. The reflexive transitive closure of R is
denoted by R∗ and is the union of transitive closure and reflexive closure of R.

Given a set S, the power set of S, denoted by P(S), is the set of all subsets of S, i.e.,
P(S) = {S′ | S′ ⊆ S}. A multiset is a generalization of regular sets. Formally, a multiset
M over set S is a function M : S → N that maps each element a of S to the count of
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2. Preliminaries

occurrences in M . We write multisets like ordinary sets. A set S′ ⊆ S can be seen as
a multiset over S with S′(a) = 1 if a ∈ S′ and S′(a) = 0 if a ̸∈ S′ for all a ∈ S. In the
following, let N and M be multisets over S. For example, {a, b, a} and {a, a, b} denote
the same multiset but {a, b} is a different multiset because the number of occurrences
of a has changed. We say that a is an element of M if a occurs at least once in M ,
i.e., M(a) > 0. Like the empty set, the empty multiset over S is denoted by ∅, i.e.,
∅(a) = 0 for all a ∈ S. N is included in M , written N ⊆ M , if N(a) ≤ M(a) for all
a ∈ S. The union of M, N , written M ∪ N , can simply be defined via their pointwise
sum, i.e., (M ∪ N)(a) = M(a) + N(a) for all a ∈ S. The multiset difference of M and N ,
written M − N , is defined by (M − N)(a) = max{0, M(a) − N(a)}.
Let ▷ be a binary relation over some set S, that is, ▷⊆ S × S. We write a ▷ b instead
of (a, b) ∈▷ and a ̸▷ b for (a, b) ̸∈▷. The reflexive closure of ▷, denoted by ⊵, is defined
as ▷ ∪ {(a, a) | a ∈ S}. The relation ▷ is irreflexive if a ̸▷ a for all a ∈ S. It is transitive
if a ▷ b and b ▷ c implies a ▷ c for all a, b, c ∈ S. If either a ▷ b or b ▷ a holds for all
a, b ∈ S, then ▷ is total. The relation ▷ is well-founded if there is no infinite sequence of
elements (ai)i≥0 in S such that a0 ▷ a1 ▷ . . . holds. A strict order is a binary relation that
is irreflexive and transitive.
Let ▷ be a strict order on S. The multiset order over finite multisets over S induced by ▷
is denoted by ▷mul and is defined as follows [BG01, Section 2.5]:

X ▷mul Y if and only if
(1.) X ̸= Y ;
(2.) for all a ∈ S, from Y (a) > X(a) must follow that

there is some b ∈ S such that b ▷ a and X(b) ▷ Y (b)

The order ▷mul is also called the multiset extension of ▷. The multiset extension of a
strict order is again a strict order. Moreover, It holds that if ▷ is total or well-founded,
then so is its multiset extension.
Let M be a multiset and ⊵ a reflexive binary relation. An element a of M is ⊵-maximal if
for all b ∈ M it holds that b ⊵ a implies that a = b. The element a is strictly ⊵-maximal
if it is ⊵-maximal and only occurs once in M .

2.2 First-order Logic with Interpreted Booleans
This section introduces first-order logic with an interpreted Boolean type. In this
logic, terms can contain Boolean connectives and quantifiers and thus a calculus for
this logic does not necessarily require preprocessing steps such as clausal normal form
transformation. Instead, such transformations can be performed by the calculus in a lazy
way.

2.2.1 Syntax
Let Σty be a set of types, usually denoted by τ, υ, with o ∈ Σty, where o is the type
of Booleans. A type declaration, specifies the types of the arguments as well as the

6



2.2. First-order Logic with Interpreted Booleans

result type. Formally, a type declaration with n arguments of type τ̄n and result type
υ is represented as the tuple (τ̄n, υ) ∈ Σn+1

ty . We use the more convenient notation
(τ1 × . . . × τn) → υ, or τ̄n → υ, instead of (τ̄n, υ) and write υ instead of () → υ for the
case of n = 0. We say that a type declaration τ̄n → υ is functional if n > 0, and it is
nonfunctional if n = 0.

Let Σ be a set of function symbols with associated type declarations. A function symbol f
with type declaration τ̄n → υ is written as f : τ̄n → υ, or just f when the type declaration
is irrelevant or can be inferred from the context. A function symbol is (non)functional if
its corresponding type declaration is. We say that a nonfunctional symbol is a constant.
A symbol with Boolean result type is a predicate and we also view variables of Boolean
type as predicates. It is required that Σ contains at least one constant for each type
τ ∈ Σty. It is assumed that the logical symbols ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ : o, ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬ : o → o, ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧, ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨, →→→→→→→→→→→→→→→→→→→→→→→→→: (o × o)
are contained in Σ. The logical symbols are interpreted, that is, their meaning is the
same in all interpretations. All other predicates, i.e., predicate symbols as well as
predicate variables, are uninterpreted predicates, i.e., their meaning is defined by an
interpretation. Additionally, for every type τ ∈ Σty the set Σ includes the logical symbols
≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈τ , ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈τ : (τ × τ) → o. With slight abuse of notation, the subscript τ is omitted from ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈
and ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈ because it can be inferred from the arguments. The logical symbols are typeset
in bold in order to emphasize that they are logical symbols and not confuse them with
regular connectives ∧, ∨, . . . of first-order logic. They are written in infix notation.

The set of variables is denoted by V . It is assumed to be infinite and consists of variables
with associated types, written as x : τ for τ ∈ Σty. Note that variables can have no
functional types because the logic is first-order and quantification over functions would
become possible.

A pair (Σty, Σ) is a signature. The set of first-order terms, usually denoted by t, r or s,
over the signature (Σty, Σ) and variables V is denoted by Tfo(Σty, Σ, V). A term always
has a corresponding type. We write t̄n : τ̄n if ti : τi for 1 ≤ i ≤ n.

The set Tfo(Σty, Σ, V) is inductively defined as follows, making sure all terms are well-
typed:

• If x : τ ∈ V , then x is a term of type τ , i.e., x : τ ∈ Tfo(Σty, Σ, V).

• If f : τ̄n → υ ∈ Σ and ti : τi ∈ Tfo(Σty, Σ, V) for 1 ≤ i ≤ n, then f(t̄n) is a term of
type υ. We simply write f when n = 0.

• If x : τ ∈ V and t : o ∈ Tfo(Σty, Σ, V), then ∀x. t and ∃x. t are quantified terms and
both are of Boolean type.

Quantified terms are represented modulo α-equivalence, that is ∀x. t and ∀y. t′,
where all occurrences of x in t that are not bound by other quantifiers are replaced
by y, are considered as the same quantified term.
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A term of Boolean type is a formula. To reason about terms that occur in other terms
and the locations thereof, we need to define the notions of subterms and positions. A
position is represented as a finite sequence of natural numbers, where the empty tuple ε
denotes the empty position. Nonempty sequences are written as a1.a2. · · · .an. Moreover,
let · denote the concatentation of sequences and let |p| = n if p = a1.a2. · · · .an for n > 0
and |p| = 0 if p = ε.

Let t be a term. The empty position ε is a position of t and t is the subterm of t at
position ε. Assume that t is the subterm of ui at position p. Then, i.p is a position of
f(ū) and t is the subterm of f⟨τ̄n⟩(ū) at position i.p. If t is the subterm of u at position
p, then 1.p is a position of Qx. u and t is the subterm of Qx. u at position 1.p, where
Q ∈ {∀, ∃}. The subterm of t at position p is denoted by t|p and if the subterm u of
term t at position p needs to be emphasized we write this as t[u]p. We say that t[]p is
a context, where p can be omitted if it is not important. A context t[]p has a hole at
position p and filling the context with some term u is written as t[u]p. Thus, t[u] implies
that u is a subterm of t and it may be the case that u and t are equal because every term
is a subterm of itself. We say that u is a proper subterm of t if u is a subterm of t at
some position p that is not equal to ε.

A position p is a prefix of a position q, denoted by p ≤ q, if there exists a position t such
that q = p · t. Also, p is a proper prefix of q, denoted by p < q, if p ≤ q and |p| < |q|. If
p ≤ q, it is said that p is at or below q and if p < q it is said that p is below q. For a more
thorough treatment of positions and their properties we refer to [BN98]. The root of a
term t, written root(t), is x if t is a variable x; f if t is of the form f(t̄) for some f ∈ Σ;
or Q if t is of the form Qx. t′, where Q ∈ {∀, ∃}.

A variable position of a term t is a position p such that t|p is a variable. The variable
occurrences of a term t is the set of variable positions of t.

A variable occurrence in a term is called bound if it is in the scope of some quantifier that
binds the variable. More formally, if t[x]p is a variable position and there exists a position
q with q ≤ p such that t|q is of the form Qx. t′, where Q ∈ {∀, ∃}, we say that x occurs
bound in t. Otherwise, the occurrence is called free. We use the standard convention that
no variable occurs both bound by a quantifier as well as unbound. Moreover, we require
that no variable occurs bound by different quantifiers. This can always be ensured by
renaming bound variables. A term is called ground if it has no free variable occurrences.

A substitution is a function σ : V → Tfo(Σty, Σ, V) such that the set Dom(σ) := {x ∈
V | σ(x) ̸= x}, called the domain of σ, is finite and if x is of type τ , then σ(x) also has
to be of type τ . Substitutions are usually denoted by σ, θ, ρ. It is a usual convention
to write σ as {xi ꜗ→ σ(xi) | 1 ≤ i ≤ n} when Dom(σ) = {x1, . . . , xn}. Moreover,
{a1 ꜗ→ b1, . . . , an ꜗ→ bn} is written as {ān ꜗ→ b̄n}. When defining the application of
a substitution σ to a term t, written as tσ, one has to ensure that substitutions are
capture avoiding. We define the range of σ to be the set {σ(x) | x ∈ Dom(σ)}. This
means that quantified variables are not changed by substitutions. For example, if
t = (∀x. p(x, y)) ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ q(y), then the expected result of t{y ꜗ→ x} is (∀x′. p(x′, x)) ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ q(x) and
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not (∀x. p(x, x)) ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ q(x).

To this end, the application tσ is defined as follows. Let t′ be the term resulting from t
by replacing every subterm of the form Qx. u, with Q ∈ {∀, ∃}, in t by Qx′. u′, where x′

is a new fresh variable that does not occur in t nor in the domain or the range of σ and
u′ is the term resulting from u in which every occurrence of x that was bound by the
quantifier Q is replaced by x′. Since the only differences between t and t′ are the names
of the bound variables, we say that the terms are α-equivalent. Then, the result of the
substitution t′σ can be safely computed:

• If t′ is a variable x, then t′σ = σ(x).

• If t′ is of the form f(t1, . . . , tn), then t′σ = f(t1σ, . . . , tnσ).

• If t′ is of the form Qx. u where Q ∈ {∀, ∃}, then t′σ = Qx. uσ. Note that this is
safe, since the quantified variable x does not occur in the domain nor in the range
of σ, as we use t′ instead of t.

The composition of substitutions σ and θ, written σθ, first applies σ and then θ to the
resulting term, i.e., t(σθ) = (tσ)θ for all terms t. If tσ is a ground term, the substitution
σ is called grounding for term t. A substitution σ is more general than a substitution
θ if there exists a substitution ρ such that θ = ρσ. Additionally, a substitution σ is
idempotent if and only if σ = σσ. The identity substitution maps each variable to itself
is denoted by id.

As superposition calculi are employed for logics with equality, a literal has the form of
an equation s ≈ t or a disequation s ̸≈ t for terms s and t of the same type. A literal
is denoted by s ≈̇ t, where ≈̇ stands either for ≈ or ̸≈ and is unoriented, that is s ≈̇ t
and t ≈̇ s denote the same literal. Terms t of Boolean type are not literals by themselves,
and must be written as t ≈̇ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ or t ≈̇ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. Such literals are called predicate literals. An
equation literal s ≈ t is positive and a disequation literal s ̸≈ t is negative. Note that
(t ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ s) ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ is not the same as (s ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ t) ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, even though t ≈ s and s ≈ t are equivalent.
A clause is a finite multiset of literals {L1, . . . , Ln} and is denoted by L1 ∨ . . . ∨ Ln. If
n = 0, the clause is called empty and is written as ⊥ and if n = 1 the clause is called
unit. A clause C is subsumed by a clause D if there exists a substitution σ such that Dσ
is a submultiset of C. If C is subsumed by D but D is not subsumed by C, then C is
strictly subsumed by D.

The process of making two terms syntactically equal using a substitution is called
unification. If σ is a substitution such that tσ = uσ for some terms t and u, then σ
is called a unifier of t and u. If two terms have a unifier, they are called unifiable. A
most general unifier of two terms t and u, denoted by mgu(t, u), is a unifier σ that is
more general than any other unifier of t and u. For first-order logic it is the case that
there is exactly one most general unifier for two unifiable terms, and it can be computed
efficiently, that is, in almost linear time w.r.t. the term size [BN98].

9



2. Preliminaries

2.2.2 Semantics
The universe U is a mapping from each type τ ∈ Σty to its domain written Uτ . It must
hold that Uτ is non-empty for every τ ∈ Σty and also that Uo = {0, 1}. Moreover, let J be
an interpretation function that assigns every symbol f : τ → υ a function J(f) : Uτ → Uυ.
That is, J (f)(a) ∈ Uυ for all a ∈ Uτ . An interpretation I is a pair comprising a universe
U and an interpretation function J , i.e., I = (U , J ). It is assumed that the following
requirements are satisfied for every interpretation I, with a, b ∈ Uo and c, d ∈ Uτ for
τ ∈ Σty:

(I1) J (⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) = 1

(I2) J (⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) = 0

(I3) J (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬)(a) = 1 − a

(I4) J (∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧)(a, b) = min{a, b}
(I5) J (∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨)(a, b) = max{a, b}
(I6) J (→→→→→→→→→→→→→→→→→→→→→→→→→)(a, b) = max{1 − a, b}
(I7) J (≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈τ )(a, b) = 1 if a = b and 0 otherwise

(I8) J ( ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈τ )(a, b) = 1 − J (≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈τ )(a, b)

In order to deal with free variables we need a valuation ξ, which maps each variable
x : τ ∈ V to an element ξ(x) ∈ Uτ . Given an interpretation I and valuation ξ, a term
t : τ can be assigned a denotation, written [t]ξ

I ∈ Uτ . The denotation [t]ξ
I for t : τ is

defined inductively:

• If t is a variable x : τ , then [x]ξ
I = ξ(x).

• If t is of the form f(t) for f ∈ Σ, then [f(t)]ξ
I = J (f)([t]ξ

I).

• If t is of the form ∀x. t′ where x : τ ∈ V and t′ : o, then

[∀x. t′]ξ
I = min{[t′]ξ[x ꜗ→a]

I | a ∈ Uτ }.

• If t is of the form ∃x. t′ where x : τ ∈ V and t′ : o, then

[∃x. t′]ξ
I = max{[t′]ξ[x ꜗ→a]

I | a ∈ Uτ }.

If t is ground, the valuation cannot influence the denotation. Therefore we can write[t]I for a ground term t. A For an interpretation I and valuation ξ, an equation t ≈ s

is true, if and only if [t]ξ
I and [s]ξ

I are equal. Then, a disequation t ̸≈ s is true if and
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only if t ≈ s is false. A clause is true under I and ξ if one of the literals of the clause is
true. A set of clauses is true if every clause is true. A model of a set of clauses N is an
interpretation I such that N is true under I for every valuation ξ. If this is the case, we
write I |= N .

If every model of a set of claues M is also a model of a set of clauses N , we say that
M entails N and write M |= N . A formula t : o is a tautology if [t]ξ

I = 1 for all
interpretations I and valuations ξ.

2.3 Term Rewrite Systems
In this thesis, term rewrite systems are defined for first-order terms as defined in the
previous section. Formally, a term rewrite system, often denoted by R, is a set of pairs of
terms which are written as s −■→ t. Every such element of R is called a rewrite rule and
it must be the case that s is not a variable and FV(t) ⊆ FV(s). A term rewrite system
R induces a reduction relation −■→R between first-order terms, which is defined as follows.
That is, s −■→R t if there is a rule s′ −■→ t′ ∈ R, a position p in s, and a substition θ such
that s|p = s′θ and t = s[t′θ]p [Ben21].

2.4 Simply Typed λ-Calculus
I introduce the simply typed λ-calculus as defined and used in [Ben+23b]. Let Vty
be an infinite set of type variables, usually denoted by α, β, and Σty be a set of type
constructors with a corresponding arity which represents the number of arguments the
type constructor expects. It is assumed that Σty contains at least a binary function type
constructor →.

The set of types over Σty and Vty, denoted by Types(Σty, Vty), is inductively defined as
follows:

• Every type variable α ∈ Vty is a type, i.e., α ∈ Types(Σty, Vty).

• If κ ∈ Σty is an n-ary type constructor, and τ̄n are types, i.e., τi ∈ Types(Σty, Vty)
for 1 ≤ i ≤ n, then κ(τ̄n) ∈ Types(Σty, Vty).

If κ is a type constructor with arity 0, κ may be written instead of κ(). And as usual,
the type constructor → is written using infix notation and is right-associative. That
is, → (α, β) is written as α → β and α → β → γ denotes α → (β → γ). Moreover,
τ1 → · · · → τn → υ is abbreviated as τ̄n → υ. Since types can be seen as first-order
terms, where type variables represent variables, first-order substitutions are also defined
for types. Here, a type substitution maps type variables to types.

If τ be a type and let ᾱn be all the type variables that occur in τ in order of first
occurrrence, then Πᾱn. τ is a type declaration.

11
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Type variables are used for polymorphism, which allows to express functions that work
on all possible types instead of defining a function for every different type. Polymorphism
is demonstrated by the following example.

Example 1
Consider the popular map function used extensively in functional programming, which
constructs a new list by applying a mapping function to every element of the given list.
To model lists, we assume that a unary type constructor list is present. Furthermore,
we want to use a symbol nil to denote the empty list and cons to prepend an element
to a list, as used in languages like Lisp or Scheme. In order to support lists of every
possible type, we use type variables:

nil : Πα. list⟨α⟩
cons : Πα. α → list⟨α⟩ → list⟨α⟩
map : Πα, β. (α → β) → list⟨α⟩ → list⟨β⟩

Using this design, the functions can be used for every possible concrete type τ .

Since in type declarations type variables can only be introduced at the beginning, this
version of polymorphism is called rank-1 polymorphism.

To define terms, let V be a set of term variables with corresponding types. If x is a
term variable with type τ we write x : τ . It is required that there is an infinite amount
of variables for each type. Let Σ be a set of function symbols with a corresponding
type declaration. Σ is called a term signature and symbols of Σ are usually denoted by
a, b, c, f, g, h. The notation f : Πᾱn. τ denotes that function symbol f has type declaration
Πᾱn. τ . If n = 0, then f : τ is written instead.

Terms are defined using three layers of abstraction: raw λ-terms, λ-terms, and terms. The
bottom layer are raw λ-terms. Building on that, λ-terms will be defined as α-equivalence
classes of raw λ-terms. And moreover, terms will be βη-equivalence classes of λ-terms.

A raw λ-term t of type τ , written as t : τ , is inductively defined.

• Every variable x : τ ∈ V is a raw λ term of type τ .

• If f : Πᾱn. τ ∈ Σ and ῡn is a tuple of types, then f⟨ῡn⟩ is a raw λ-term of type
τ{ᾱn ꜗ→ ῡn}. The elements of ῡn are called the type arguments and if f expects no
type arguments, i.e., n = 0, then f is written instead of f⟨⟩.

• If x : τ is a term variable and t : υ is a raw λ-term, then the λ-expression λx. t is a
raw λ-term of type τ → υ. For nested λ-expressions, λx̄n. t is written instead of
λx1. . . . λxn. t.

• Let s : τ → υ and t : τ be raw λ-terms. The application s t is a raw λ-term of type
υ. Applications associate to the left, that is, s t u means (s t) u.

12
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Every raw λ-term can be written as t s1 . . . sn, where n ≥ 0, with a so-called head t that
is not an application using the spine notation [CP03]. Given raw λ-terms s and t, s is a
subterm of t, written as t[s] if

• t = s; or

• t = λx. u[s] for some raw λ-term u and term variable x; or

• t = (u[s]) v for some raw λ-terms u and v; or

• t = u (v[s]) for some raw λ-terms u and v.
We say that s is a proper subterm of t if s ̸= t. The set of free variables of a raw λ-term
t, denoted by FV(t), is given as follows:

FV(f⟨τ̄n⟩) = ∅ for some f ∈ Σ
FV(x) = {x} for some x ∈ V

FV(λx. t) = FV(t) \ {x}
FV(t u) = FV(t) ∪ FV(u)

If a raw λ-term t is constructed without type variables and FV (t) = ∅, then t is called
ground.
Two raw λ-terms are α-equivalent if the bound variables may be renamed in such a way
that the terms become syntactically equal. This notion is captured by the α-renmaing
rule, defined as (λx. t) −■→α (λy. t′), where y ̸∈ FV(t) and t′ results from t by replacing
every occurrence of a bound variable y : τ by a fresh variable y′ : τ , and repacing every
free occurrence of x in t by y. This avoids that y is captured by some λ-abstraction at
a deeper level. Also only free occurrences of x must be replaced and not occurrences
that are bound by another λ-abstraction that uses also x. Every raw λ-term induces
an equivalence class modulo α-renaming. These classes are called λ-terms. A term t is
called variable-headed if t is of the form u t̄n, where n > 0 and u is variable. A variable x
is said to occur applied in a term t if there exists a subterm x t̄n, where n > 0.
A substitution θ is a mapping from type variables to types and from term variables to
λ-terms such that only a finite amount of variables are not mapped to themselves. It is
required that a substitution results in a correctly typed term and therefore it has to be
the case that for each x : τ ∈ V , xθ is of type τθ. Moreover, since λ-terms are equivalence
classes of α-equivalent terms, bound variables have to be renamed before applying a
substitution to avoid variable capture. That is, (λx. y){y ꜗ→ x} must be equal to λx′. x
for some fresh variable x′ and not λx. x. A substitution θ is called grounding w.r.t. the
term t if tθ contains no free term variables and no type variables. Moreover, θ is called
monomorphizing w.r.t. t if tθ contains no type variables. The notions of generality and
idempotence are defined as for first-order terms.
The β-reduction rule is a rewrite rule defined for λ-terms as (λx. t) −■→β t{x ꜗ→ u}, where
bound variables of t are implicitly renamed in order to avoid variable capture. A λ-term
t is called β-normal if there exists no λ-term t′ such that t −■→β t′.

13



2. Preliminaries

The η-reduction rewrite rule is given by (λx. t x) −■→η t, where x ̸∈ FV(t). A λ-term
t is called η-short if there exists no λ-term t′ such that t −■→η t′. A λ-term t is called
η-long if every functional subterm is fully applied. That is, for f : τ → τ → τ , the term
f a is η-short and λx. f a x is η-long. Every λ-term induces an equivalence class modulo
βη-reduction. These classes are called terms.

Since terms of the simply typed λ-calculus are strongly normalizing [GTL89, section
6.3.3], the reduction rules −■→β and −■→η can be exhaustively applied to a λ-term t to find
a normal form, written t

|↓
βη

, which is used as the representative of the corresponding
βη-equivalence class.

Sometimes it is usefull to classify the exact order of a term. To this end, the order of
types is defined next, following Snyder and Gallier [SG89].

Definition 1 (Order of Types)
Let τ ∈ Types(Σty, Vty) be a type. The order of τ , denoted by ord (τ) is recursively
defined as

ord (τ) =
{

max{ord (υ) + 1, ord (γ)} if τ = υ → γ for some types υ and γ,
1 otherwise.

A term is of order n if the types of all occurring variables (free or bound) is at most n and
the type of all occurring function symbols is at most n + 1. Note that every functional
type has an order that is at least 2. Thus, to allow functions that take only individuals
as input, it is necessary to allow functions of order n + 1 above, since functions that take
individuals as arguments must be supported for first-order terms.

2.5 Higher-order Logic
Higher-order logic, also called simple type theory, is based on the simply typed lambda
calculus. Given a type signature Σty and a term signature Σ, as defined in Section 2.4,
the pair (Σty, Σ) is a higher-order signature. It is required that a nullary Boolean type
constructor o is present in Σty. Similar to Section 2.2, the following logical symbols have
to be included in Σ: ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ : o; ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬ : o → o; ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧, ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨, →→→→→→→→→→→→→→→→→→→→→→→→→: o → o → o; ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀, ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃ : Πα. (α → o) → o; and
≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈, ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈: Πα. α → α → o. Additionally, the Hilbert choice operator ε : Πα. (α → o) → α has
to be present in Σ. The binary logical symbols are usually written in infix notation, and
the type argument may be omitted if is irrelevant or deducible from the context.

Given terms s and t, an equation s ≈ t or disequation s ̸≈ t is a literal. A literal s ≈̇ t is
either an equation or a disequation. A literal of the form s ≈ t is called positive, and a
literal of the form s ̸≈ t is called negative. For a literal L = s ≈̇ t, define the free variables
of L as FV(s) ∪ FV(t). As in first-order logic, a clause L1 ∨ . . . ∨ Ln is a finite multiset
of literals and the empty clause is written as ⊥. For a clause C = L1 ∨ . . . ∨ Ln, define
the free variables of C as FV(L1) ∪ . . . ∪ FV(Ln).
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2.5. Higher-order Logic

Because interpreted quantifiers impose some problems, a nonstandard normal form, called
βηQη-normal form, is used. The βηQη-normal form of a term t, denoted by t

|↓
βηQη

, is
defined by applying −■→β and −■→η as often as possible and finally applying the following
rewrite rule Qη exhaustively:

Q⟨τ⟩ t −■→Qη Q⟨τ⟩ (λx. t x)

where t is not a λ-expression and Q ∈ {∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀, ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃}. When not declared otherwise, the βηQη-
normal representative is used for analyzing the structure of terms.

2.5.1 Semantics
A universe U is a collection of nonempty sets, that are also called domains, such that
{0, 1} ∈ U . Let Jty be a mapping that assigns each n-ary type constructor κ a function
Jty(κ) : Un → U . It must be the case that Jty(o) = {0, 1} to correctly model Booleans.
Moreover, the set Jty(→)(D1, D1) has to be a subset of the function space from D1 to
D2 for all D1, D2 ∈ U . This definition is elaborated on in Section 4.2.

Together, a pair Ity = (U , Jty) is called a type interpretation. Let ξ be a type valuation
that assigns each type variable a domain, i.e., ξ : Vty → U . The denotation for a type
w.r.t. type interpretation Ity and type valuation ξ is defined as follows:

[α]ξ
Ity = ξ(α)

[κ(τ̄n)]ξ
Ity = Jty(κ)

([τ1]ξ
Ity , . . . , [τn]ξ

Ity

)
Given a type valuation ξ, it can be extended to a valuation that additionally maps each
term variable x : τ to an element of the denotation of its type τ , i.e., ξ(x) ∈ [τ]ξ

Ity . An
interpretation function J takes as input a symbol f : Πᾱn. τ and a tuple of domains
D̄n ∈ Un and assigns them a value of the denotation of the type τ using the type valuation
ξ to determine the types of the type variables. That is, I(f, D̄n) ∈ [τ]ξ

Ity .

As in Section 2.2, the interpretation has to obey several requirements regarding the
logical symbols. To this end, let a, b ∈ {0, 1}, D ∈ U , c, d ∈ D, and f ∈ Jty(→)(D, {0, 1}).
The following constraints have to be satisfied for every interpretation function J :

(J1) J (⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) = 1
(J2) J (⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) = 0
(J3) J (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬)(a) = 1 − a
(J4) J (∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧)(a, b) = min{a, b}
(J5) J (∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨)(a, b) = max{a, b}
(J6) J (→→→→→→→→→→→→→→→→→→→→→→→→→)(a, b) = max{1 − a, b}

(J7) J (≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈, D)(c, d) = 1 if c = d and 0 otherwise
(J8) J ( ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈, D)(c, d) = 1 − J (≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈, D)(c, d)
(J9) J (∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀, D)(f) = min{f(a) | a ∈ D}

(J10) J (∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃, D)(f) = max{f(a) | a ∈ D}
(J11) f(J (ε, D)(f)) = max{f(a) | a ∈ D}

Initially, it is allowed that λ-expressions designate arbitrary elements of the domain. Once
this is defined, the interpretation can be shown to be proper if λ-expressions are interpreted
as expected. To this end, a λ-designation function L w.r.t. a type interpretation Ity
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2. Preliminaries

is a mapping from valuations ξ and λ-expressions of type τ to elements of [τ]ξ
Ity . An

interpretation I = (Ity, J , L) comprises a type interpretation, an interpretation function,
and a λ-designation function. The denotation of a term is defined recursively as follows:

[x]ξ
I = ξ(x)[f⟨τ̄n⟩]ξ
I = J (f, [τ1]ξ

Ity , . . . , [τn]ξ
Ity)[s t]ξ

I = [s]ξ
I

([t]ξ
I

)
[λx. t]ξ

I = L(ξ, λx. t)

If t is ground, the denotation stays the same for all valuations ξ. Therefore, [t]I may be
written instead of [t]ξ

I for ground terms.

If it is the case that [λx. t]ξ
I(a) = [t]ξ[x ꜗ→a]

I for all λ-expressions λx. t and all valuations
ξ, then I is called a proper interpretation. When it is possible that a type interpretation
Ity and an interpretation function J can be made a proper interpretation using a
λ-designation function, then this designation function is unique [Fit02, Proposition 2.18].

An equation s ≈ t is true w.r.t. I and ξ if [s]ξ
I and [t]ξ

I are equal, and is false otherwise.
A disequation s ̸≈ t is true w.r.t. I and ξ if s ≈ t is false w.r.t. I and ξ. A clause is true
if at least a literal of the clause is true, and a set of clauses is true if all the clauses in
the set are true. If under the proper interpretation I the set of clauses N is true under
all valuations ξ, then I is a model of N , denoted by I |= N .

With the semantics defined, Example 1 can be continued by characterizing the behavior
of the map function.

Example 2
The behavior of the function map can be modelled in higher-order logic using the
following two clauses:

map⟨α, β⟩ x nil⟨α⟩ ≈ nil⟨β⟩
map⟨α, β⟩ x (cons⟨α⟩ y ys) ≈ cons⟨β⟩ (y x) (map⟨α, β⟩ x ys)

Note that x has type α → β, y has type α, and ys has type list⟨α⟩. It is not necessary
to add universal quantifiers because free variables can be understood to be implicitly
universally quantified. Moreover, note the changes of type arguments when comparing
the left-hand sides and the right-hand sides. For example, in the first clause, nil on
the left-hand side represents an empty list with type argument α, and an empty list
with type argument β on the right-hand side because of the type of map, to which it is
applied to. The same effect can be seen for cons in the second clause.

Sometimes inference rules need to introduce special terms, called Skolem terms, that
stand for objects whose existence is stated using existential quantification. To this end,
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2.6. Inference Systems

given a signature (Σ, Σty), a Skolem-extended signature (Σsk, Σty) is defined such that
Σ ⊆ Σsk. Moreover, Σsk contains a symbol skΠᾱ. ∀x̄. ∃z. t z : Πᾱ. τ̄ → υ for all types υ,
variables z : υ, and terms t : υ → o over the signature (Σsk, Σty), where ᾱ are the free
type variables occurring in t and x̄ : τ̄ are the free term variables occurring in t, in first
order of occurrence, respectively.

When Skolem-extended signatures are used, also the semantics need to be adapted because
employing interpretations as defined above with Skolem-extended signatures leads to
unsoundness. Consider, for example, the clause ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃⟨κ⟩ (λz. z ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ a) ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤. Clearly, this clause
is valid w.r.t. |=, because the variable z can be replaced by a and hence the result must be
⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ because of the semantics of ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃. Assume, that an inference produces (sk∃z. z≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈a ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ a) ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤
from the original clause using Skolemization. But not every interpretation I interprets
sk∃z. z≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈a as [a]I . Hence, the clause (sk∃z. z≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈a ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ a) ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ is not valid anymore w.r.t. |=
and we have an unsoundness issue.

To this end, Skolem-aware interpretations are defined. A proper interpretation I over a
Skolem-extended signature is called Skolem-aware if it holds that I |= (∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃⟨υ⟩ (λz. t z)) ≈
t (skΠᾱ. ∀x̄. ∃z. t z⟨ᾱ⟩ x̄), where ᾱ are the free type variables and x̄ are the free term
variables occurring in t in order of first occurrence, respectively. If I is a Skolem-aware
interpretation and I |= N for a clause set N , then I is called a Skolem-aware model of
N , denoted by I |≈ N .

2.6 Inference Systems
The main part of most calculi is an inference system. An inference system is a set of
inferences. I define these notions as in [Wal+22]. To this end, let F be a set of formulas.
The notation F-inference denotes an inference using the set F. Often F will be left
implicit. Formally, an F-inference is a tuple of formulas (Cn, . . . , C1, C0) ∈ Fn+1, where
n ≥ 0. Usually, an inference is denoted by ι. Let ι = (Cn, . . . , C1, C0) for some formulas
Ci. Formulas Cn, . . . , C1 are called the premises of ι, i.e., prems(ι) = (Cn, . . . , C1). The
formula C0 is the conclusion of ι, i.e., concl(ι) = C0. The rightmost premise C1 is
called main premise in case that n ≥ 1. Therefore, let mprem(ι) = C1 if n ≥ 1 and
mprem(ι) = undefined if n = 0. The side premises of ι are formulas Cn, . . . , C2. Thus,
sprems(ι) = (Cn, . . . , Cn) if n ≥ 2 and sprems(ι) = ε otherwise. If Inf is an F-inference
system and N ⊆ F, then Inf (N) denotes the set of inferences of Inf whose premises are
included in N .

Usually, the set of possible inferences of an inference system is infinite. A remedy is to
define a finite set of inference rules that have all the inferences of the inference system as
their instances. An inference rule with hypothetical name Rule, premises Cn, . . . C1 and
conclusion C0 is written as

Cn . . . C1
C0

Rule

Inference rules may also define a list of side conditions that must be fulfilled in order
that the resulting instantiation is a valid inference.
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2. Preliminaries

As an example, consider the resolution rule Res for first-order logic:

C ∨ A D ∨ ¬B

(C ∨ D)σ Res

Here, the side conditions are that A and B are atomic formulas, C and D are clauses,
and σ is the most general unifier of A and B. Note that A and B can be any atoms,
and C and D can be any arbitrary clauses. But it must be the case that σ is the most
general unifier of A and B, because otherwise the result would be nonsensical inferences.
Thus, the inference rule has a possibly infinite set of instances.

An inference rule is called sound w.r.t. |= if, for every inference ι that is an instance of
the rule, it holds that I |= prems(ι) implies I |= concl(ι) for any interpretation I. A
weaker property of inference than soundness is satisfiability preservation. An inference
rule preservers satisfiability if for every inference that is an instance of the rule, it is
the case that if there is an interpretation in which all the premises are true, there is
also a model of the conclusion. Note that the model of the conclusion can be another
interpretation than the one used for the premises, unlike in the soundness property.
Hence, soundness implies satisfied presented, but not vice versa.
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CHAPTER 3
Saturation Theorem Proving

In the context of automated theorem proving, the strategy of saturation became widely
successful since Robinson devised the resolution calculus [Rob65]. A saturation-based
prover typically uses some inference system to deduce new consequences of a current set
of formulas until all new consequences become redundant w.r.t. a specified criterion.

To be more specific, assume that one wants to automatically prove that a formula F is
valid. The formula F could be some mathematical theorem or a property of hardware or
software that needs to be verified. Denote with ⊥ a contradictory formula that admits
no satisfying interpretations. To show that F is valid, ¬F is used as the input for a
saturation-based theorem prover that tries to systematically derive ⊥ from ¬F . If a
contradiction is found, one can conclude that ¬F is refuted and therefore obtains the
validity of F . A prover is called refutationally complete if it always finds a contradiction
when the input problem is unsatisfiable.

Recently, a framework for saturation theorem proving was introduced by Waldmann et
al. [Wal+22] that allows users to obtain completeness proofs by applying the framework
to the concrete calculus. The framework imposes some constraints on the used logic and
the employed criterion that is used to decide when a formula is redundant w.r.t. a set of
formulas. Since this framework is used by all the calculi described in this thesis, I will
introduce the most important notions. In the following, let Inf be an inference system,
let F be a set of formulas, let N ⊆ F, and let |= be the entailment relation of the used
logic.

The entailment relation |=, also called consequence relation, must satisfy the following
properties for every N1, N2, N3 ⊆ F:

(C1) ⊥ |= N1; and

(C2) if N2 ⊆ N1, then N1 |= N2; and
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3. Saturation Theorem Proving

(C3) if N1 |= C for all C ∈ N2, then N1 |= N2; and

(C4) from N1 |= N2 and N2 |= N3 follows N1 |= N3.

A redundancy criterion for the inference system Inf is a pair Red = (RedI, RedC).
The first component RedI is mapping from sets of formulas to sets of inferences, i.e.,
RedI : P(F) : P(Inf ). Inferences in the set RedI(N) are said to be redundant w.r.t. N
and thus need not be carried out. The second component RedC is a mapping from sets of
formulas to sets of formulas, i.e., RedC : P(F) → P(F). Formulas in the set RedC(N) are
also said to be redundant w.r.t. N and can therefore be deleted. A redundancy criterion
has to fulfill some constraints, that are specified next. For all sets of formulas N and N ′

with N ∪ N ′ ⊆ F it must hold that

(R1) if N |= ⊥, then N \ RedC(N) |= ⊥; and

(R2) if N ⊆ N ′, then RedC(N) ⊆ RedC(N ′) and RedI(N) ⊆ RedI(N ′); and

(R3) if N ′ ⊆ RedC(N), then RedC(N) ⊆ RedC(N \ N ′) and RedI(N) ⊆ RedI(N \ N ′);
and

(R4) if ι ∈ Inf and concl(ι) ∈ N , then ι ∈ RedI(N).

Condition (R1) specifies that if a set of formulas is unsatisfiable, then it has also to
remain unsatisfiable when the redundant formulas are removed. Formulas or inferences
must stay redundant if other formulas or inferences are added, as stated by condition
(R2). Also, condition (R3) says that formulas and inferences stay redundant if redundant
formulas or inferences are deleted. Finally, condition (R4) asserts that an inference
becomes redundant when it has been carried out.

Having defined the notion of redundancy, it is now possible to actually specify when
a set of formulas is saturated. The set N ⊆ F is said to be saturated w.r.t. Inf and
(RedI, RedC) if Inf (N) ⊆ RedI(N). That is, N is saturated if all inferences of Inf whose
premises are in N are redundant w.r.t. RedI.

In the implementation of saturation-based automatic theorem provers, the redundancy
criterion is not directly applied, but rather to justify simplification rules. Simplification
rules are used to simplify formulas in the current set of formulas and to remove formulas
that got redundant by carrying out the simplification rule. A simplification rule is written
as

C1 · · · Cn

D1 · · · Dm

where C1, . . . , Cn are the premises and D1, . . . , Dm are the conclusions.

It is a proof obligation to show that {C1, . . . , Cn} ⊆ RedC({D1, . . . , Dm}) in order to
employ the simplification rule in a prover. Then, if the simplification rule is used in
an implementation, the premises can be deleted once the corresponding conclusions are
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added to the current set of formulas. In the following, I will refer to a pair (Inf , Red)
consisting of an inference system and a redundancy criterion thereof simply as a calculus.

After designing the inference system and the corresponding redundancy criterion, it is a
desirable goal to prove the refutational completeness of the calculus. There exist two
variants of refutational completeness: static and dynamic. Static completeness refers
only to sets of clauses that are saturated, while dynamic completeness uses the notion of
fair derivations, as defined below.

Definition 2 (Statical Completeness)
The inference system Inf is statically refutationally complete w.r.t. (RedI, RedC) and
|=, if for every saturated set of formulas N ⊆ F such that N |= ⊥, it follows that
⊥ ∈ N .

Definition 3 (Dynamical Completeness)
A sequence of formulas (Ni)i is a derivation if Ni \ Ni+1 ⊆ RedC(Ni+1) for every i.
The limit of (Ni)i is N∞ = U

i

∩
j≥i Nj . A formula that is a member of the limit

N∞ is called persistent, because it appears in some Ni and is never deleted in any
subsequent Nj with j > i. A derivation (Ni)i is fair if the set of Inf -inferences from
clauses in N∞ is a subset of U

i RedI(Ni). The inference system Inf is dynamically
refutationally complete w.r.t. (RedI, RedC) and |=, if for all fair derivations (Ni)i it
holds that N0 |= ⊥ implies that there exists an i with ⊥ ∈ Ni.

It can be shown that static completeness implies dynamic completeness and vice versa
[Wal+22, lemma 10 and 11]. Often it is easier to show the static completeness of a
version of a calculus that operates only on ground formulas. This result can then be
transferred to the nonground case using the framework as follows. Let G denote the
set of ground formulas. A grounding function G : F → P(G) maps a formula to its set
of ground instances. Let FInf be an inference system that operates on F and let GInf
be a G-inference system. Moreover, let Red = (RedI, RedC) be a redundancy criterion
for GInf . The grounding function G is extended to inferences of FInf by mapping an
F-inference of FInf either to undef or G-inference in GInf . A grounding function must
obey the following conditions:

(G1) G(⊥) = {⊥};

(G2) if ⊥ ∈ G(C), then C = ⊥ for every C ∈ F;

(G3) for every ι ∈ FInf , if G(ι) ̸= undef , then G(ι) ⊆ RedI(G(concl(ι))).

Condition (G3) ensures that all the ground instances of the conclusion of ι make the
set of ground inferences obtained by G(ι) redundant. In order to obtain a redundancy
criterion for FInf using Red of GInf , the so-called G-lifting of Red can be used.
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3. Saturation Theorem Proving

Given Red = (RedI, RedC), the G-lifting RedG = (RedG
I , RedG

C) is defined such that

• ι ∈ RedG
I if and only if

– G(ι) ̸= undef and G(ι) ⊆ RedI(G(N)); or
– G(ι) = undef and G(concl(ι)) ⊆ G(N) ∪ RedC(G(N)).

• F ∈ RedG
C(N) if and only if G(F ) ⊆ RedC(G(N)).

It can then be shown that RedG satisfies conditions (R1) to (R4) of redundancy criterions
if Red does.

Using a grounding function G the relation |=G is defined as N1 |=G N2 if and only if
G(N1) |= G(N2). That is, |=G is Herbrand entailment. If |= fulfills all requirements of
a consequence relation, so does |=G . If a result requires that |=G is replaced by Tarski
entailment, i.e., N1 |= N2 if and only if every model of N1 is also a model of N2, it needs
to be shown that N |=G ⊥ if and only if N |= ⊥ for the concrete logic used.

When using the saturation framework, the main proof obligation for dynamic completeness
of the nonground calculus is to show that every GInf -inference is either liftable to an
FInf -inference or redundant. A GInf -inference whose premises are in G(N) is liftable if
it is contained in G(FInf (N)).

The following theorem can be used to lift static refutational completeness from a ground
inference system GInf and redundancy criterion Red to FInf and RedG.

Theorem 1 ([Wal+22])
If (GInf , Red) is statically refutationally complete and GInf (G(N)) ⊆ G(FInf (N)) ∪
RedI(G(N)) for all N ⊆ F that are saturated w.r.t. FInf and RedG , then (FInf , RedG)
is statically refutationally complete w.r.t. |=G .

When proving the refutational completeness of the higher-order superposition calculus,
a more involved version of Theorem 1 is used. The concrete version is stated in the
respective section, with the specific inference system and redundancy criterion used.
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CHAPTER 4
Superposition Calculus

Superposition [BG94] is an effective calculus for first-order logic with equality. The leading
automated theorem provers, for example Vampire or E, implement variations of the
superposition calculus. Building on Knuth-Bendix completion and the resolution calculus,
a hypothesis F is proved from a set of axioms {A1, . . . , An} as follows. In order to prove
the formula (A1 ∧ · · · ∧ An) → F valid, one can also prove that ¬((A1 ∧ · · · ∧ An) → F )
is unsatisfiable. Pushing the negation inwards, one gets A1 ∧ · · · ∧ An ∧ ¬F . Since the
calculus operates on clauses, the formula A1 ∧ · · · ∧ An ∧ ¬F is translated to clausal
normal form, which then serves as the input problem. From this given set of clauses,
the superposition calculus derives new clauses using a set of inference rules. If the
hypothesis F follows from the axioms, then, with enough computational resources, the
empty clause can be inferred. This proves that A1 ∧ · · · ∧ An ∧ ¬F is unsatisfiable, and
hence (A1 ∧ · · · ∧ An) → F is valid.

Section 4.1 introduces a variant of the superposition calculus for first-order logic, which
adds support for an interpreted Boolean type. In Section 4.2, this calculus is extended to
higher-order logic. For both calculi, the respective proof of refutational completeness is
explained.

4.1 The First-order Case
In the standard superposition calculus [BG94], the input problem has to be transformed
into clausal normal form, which is called preprocessing clausification. The superposition
calculus [Num+21] presented in this section, allows that formulas can appear in clauses
using an interpreted Boolean type. Moreover, the calculus allows inprocessing clausifica-
tion, which means that rules in the calculus itself perform the clausification as needed.
This has the positive effect, that the effective simplification machinery of superposition is
able to operate on whole formulas. For example, subterms in the formula s ↔ t can be
rewritten, before the formula is transformed into s → t and t → s.
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The proof of refutational completeness of the calculus, discussed in Section 4.1.5, is later
on used to obtain refutational completeness of the higher-order superposition calculus.

4.1.1 Term Orders
Superposition calculi employ term orders that are used to compare terms in order to break
symmetries in the search space and therefore restrict the number of possible inferences
while preserving the completeness of the calculus.

Definition 4 (Term order)
A term order ≻ is a binary relation over terms. If t ≻ s for some term order ≻, the
intuition is that the term s should be in some sense simpler than t.

To this end, a term order needs to satisfy several conditions:

• The relation ≻ is a strict order.

• It is total and well-founded when restricted to ground terms.

• For all terms t ∈ Tfo(Σty, Σ, V) \ {⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥} it holds that t ≻ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≻ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤.

• Let u be a term whose only Boolean subterms are ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. Then, Qx.t ≻ t{x ꜗ→
u} for all terms t and with Q ∈ {⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥}.

• The order ≻ enjoys the subterm property. That is, for all terms t and u it holds
that t[u] ⪰ u.

• The order ≻ is compatible with contexts, i.e., t ≻ t′ implies u[t] ≻ u[t′] for all
terms t, t′ and u. The compatibility with contexts does not need to hold below
quantifiers.

• Stability under substitutions, i.e., s ⪰ t implies sσ ⪰ tσ for all terms s, t and
substitutions σ.

Concrete term orders that are often used in automated theorem provers are the lexico-
graphic path order (LPO) [BN98, Definition 5.4.12] and the Knuth-Bendix order (KBO)
[BN98, Definition 5.4.18]. KBO uses a weight function that maps a weight to symbols
of Σ, as well as a precedence on Σ to compare terms. Originally, nonnegative integers
are used for the weight function, but there are also variants that use ordinals [LW07;
KMV11]. In contrast to KBO, LPO relies entirely on a precedence on Σ to compare
terms.

Using an encoding of terms into untyped first-order logic, both LPO and transfinite KBO
are able to fulfill the presented conditions. The encoding represents quantifier-bound
variables by De Bruijn indices (see Section 5.3), which are implemented by fresh constant
symbols dbn, where n ∈ N is the value of the index. Function symbols and logical symbols
are just mapped to their untyped counterparts. Quantifiers are mapped to fresh unary
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4.1. The First-order Case

function symbols Q∀ and Q∃. The encoding can then be defined using the following
function enc that computes the resulting recursively depending on the structure of the
given term:

enc(t, σ, ℓ) = tσ if t is a variable
enc(f⟨τ̄n⟩(t̄), σ, ℓ) = f⟨τ̄n⟩(enc(t̄, σ, ℓ)) if f is a function symbol or a logical symbol

enc(∀x. t, σ, ℓ) = Q∀(enc(t, σ[x ꜗ→ db⟨τ̄n⟩ℓ], ℓ + 1))
enc(∃x. t, σ, ℓ) = Q∃(enc(t, σ[x ꜗ→ db⟨τ̄n⟩ℓ], ℓ + 1))

The function enc maintains a substitution σ that maps quantified variables to their De
Bruijn index and a level ℓ that must be used for the next deeper quantifiers. When
encoding a term t, the result of enc(t, id⟨τ̄n⟩, 0) needs to be computed. If the recursion
encounters a variable x the result of xσ is either a De Bruijn index because x is bound by
a quantifier, or it is not replaced by σ because it is a free variable of the given term. Note
that when updating the current substitution, no previous binding can be lost because it
is assumed that every quantifier binds a unique variable.

4.1.2 Selection Functions and Eligibility
Two selection functions are needed to parameterize the calculus.

Definition 5 (Selection Functions)
A literal selection function LSel is a mapping from clauses to a subset of the literals of
the clause and a Boolean subterm selection function BSel is a mapping from clauses to
a subset of positions of Boolean subterms in the clause. Literals LSel(C) and positions
BSel(C) are called selected in C. Both functions must obey the given restrictions:

• Only negative literals can be selected.

• A Boolean subterm may only be selected if it is not included in {⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥} and is
not a variable.

• A selected Boolean subterm does not occur below a quantifier.

The published version of the presented calculus contains a mistake that allows the
selection of positive literals if they are of the form s ≡ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ [Num+21] and was discovered
by Yicheng Qian. But the completeness theorem does not hold if this is allowed and thus
the selection of literals of the form s ≡ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ must not be possible, see also the errata of
Alexander Bentkamp’s PhD thesis [Ben23].

The notion of eligibility defines when inferences are possible using the literal and the
Boolean subterm selection function as well as the term order.
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Definition 6 (Eligibility)
A literal L is (strictly) ⪰-eligible w.r.t. a substitution σ in a clause C if it is selected
in C or there are no selected literals and no selected Boolean subterms in C and Lσ is
(strictly) ⪰-maximal in Cσ. The definition of the set of ⪰-eligible positions of a clause
C w.r.t. a substitution σ is given below:

• All selected positions are ⪰-eligible.

• If s ≈̇ t with sσ ̸⪯ tσ is either ⪰-eligible and negative or strictly ⪰-eligible and
positive, then L.s.ε is ⪰-eligible.

• If position p is eligible w.r.t. C and σ and the root of (C|p)σ is not included in
{≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈, ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈, ∀, ∃}, then the positions of all direct subterms are also eligible.

• If position p is eligible w.r.t. C and σ and (C|p)σ is of the form s ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ t or s ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈ t,
the position of s is eligible if sσ ̸⪯ tσ and the position of t is eligible if sσ ̸⪰ tσ.

4.1.3 Inference Rules

In the following, the inference rules of the calculus are defined. The set of inference rules
is subsequently denoted by FInf . A single rule is given in a box, where the top part
shows the inference rule and the bottom part specifies the corresponding side conditions.

D, ,, ,
D′ ∨ t ≈ t′ C[u]

(D′ ∨ C[t′])σ Sup

1. σ = mgu(t, u);
2. u is not a variable;
3. tσ ̸⪯ tσ′;
4. D ≺ C;
5. the position of u is ⪰-eligible in C w.r.t. σ;
6. t ≈ t′ is strictly ⪰-eligible in D with respect to σ;
7. the root of t is not a logical symbol;
8. if t′σ = ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, the subterm u is at the top lovel of a positive literal.
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C, ,, ,
C ′ ∨ u′ ≈ v′ ∨ u ≈ v

(C ′ ∨ v ̸≈ v′ ∨ u ≈ v′)σ Factor

1. σ = mgu(u, u′);
2. uσ ̸≈ t ̸∈ Cσ for any term t;
3. no Boolean subterm and no literal is selected in C;
4. uσ is a ⪰-maximal term in Cσ;
5. vσ is ⪰-maximal in {t | uσ ≈ t ∈ Cσ}.

C, ,, ,
C ′ ∨ u ̸≈ u′

C ′σ
Irrefl

1. σ = mgu(u, u′);
2. u ̸≈ u′ is ⪰-eligible in C with respect to σ.

C, ,, ,
C ′ ∨ u ̸≈ u′

C ′σ
⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥Elim

1. σ = mgu(s ≈ t, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤);
2. s ≈ t is strictly ⪰-eligible in C with respect to σ.

C[u]
C[t′]σ BoolRw

1. (t, t′) is one of the following pairs, where x is a fresh variable:

(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)
(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)
(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)
(⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)

(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)
(⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)
(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)
(⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)

(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)
(⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)
(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ →→→→→→→→→→→→→→→→→→→→→→→→→ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)
(⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ →→→→→→→→→→→→→→→→→→→→→→→→→ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)

(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ →→→→→→→→→→→→→→→→→→→→→→→→→ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)
(⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ →→→→→→→→→→→→→→→→→→→→→→→→→ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)
(x ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ x, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)
(x ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈ x, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)

2. σ = mgu(t, u);
3. u is not a variable;
4. the position of u is ⪰-eligible in C with respect to σ.
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C[∀z. v]
C[v{z ꜗ→ sk⟨τ̄n⟩∀ȳ.∃z.¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬v(ȳ)}] ∀Rw

1. ȳ are the free variables occurring in ∀z. v in order of first appearance;
2. the position of ∀z. v is ⪰-eligible in C;
3. C[⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤] is not a tautology.

C[∃z. v]
C[v{z ꜗ→ sk⟨τ̄n⟩∀ȳ.∃z.v(ȳ)}] ∃Rw

1. ȳ are the free variables occurring in ∃z. v in order of first appearance;
2. the position of ∃z. v is ⪰-eligible in C;
3. C[⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥] is not a tautology.

C[u]
C[⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥] ∨ u ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ BoolHoist

1. u is of Boolean type and root(u) is an uninterpreted predicate;
2. the position of u is ⪰-eligible in C;
3. u is not a variable;
4. u is not at the top level of a positive literal.

C[s ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ t]
C[⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥] ∨ s ≈ t

≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈Hoist

1. the position of s ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ t is ⪰-eligible in C.

C[s ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈ t]
C[⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤] ∨ s ≈ t

̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈Hoist

1. the position of s ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈ t is ⪰-eligible in C.

C[∀x. t]
C[⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥] ∨ t{x ꜗ→ y} ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∀Hoist

1. the position of ∀x. t is ⪰-eligible in C;
2. y is a fresh variable.
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4.1. The First-order Case

C[∃x. t]
C[⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤] ∨ t{x ꜗ→ y} ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∃Hoist

1. the position of ∃x. t is ⪰-eligible in C;
2. y is a fresh variable.

Most of the inferences of FInf are sound, but not all of them. Since the rules ∀Rw and
∃Rw introduce Skolem symbols, both of these rules are only satisfiability preserving
under the assumption that no Skolem symbols occur in the initial formula.
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4. Superposition Calculus

Example 3 (Drinker Paradox)
Using the Drinker Paradox, I will illustrate how to use some of these inference rules in
practice [Smu11]. The drinker paradox is a theorem in first-order logic whose natural
language representation says the following: „In a bar there is someone such that if
he or she is drinking, it follows that everyone in the bar is drinking“. In first-order
logic the statement is defined as ∃x. (drinks(x) →→→→→→→→→→→→→→→→→→→→→→→→→ ∀y. drinks(y)), which is a term of
Boolean type in the presented logic. This statement seems paradoxical because of the
use of natural language if-then statements for logical implications, which causes one to
think that there is a person who is the cause for the intoxication of every person in
the bar. To show that the formula is valid, the empty clause needs to be derived from
∃x. (drinks(x) →→→→→→→→→→→→→→→→→→→→→→→→→ ∀y. drinks(y)) ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥.

In the derivations for this example the selection functions and term order were left
implicit. First, from ∃x. (drinks(x) →→→→→→→→→→→→→→→→→→→→→→→→→ ∀y. drinks(y)) ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ the clause drinks(z) ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ can
be obtained by the following derivation:

∃x. (drinks(x) →→→→→→→→→→→→→→→→→→→→→→→→→ ∀y. drinks(y)) ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∃Hoist⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ drinks(z) →→→→→→→→→→→→→→→→→→→→→→→→→ ∀y. drinks(y) ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥Elim
drinks(z) →→→→→→→→→→→→→→→→→→→→→→→→→ ∀y. drinks(y) ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∀Hoist

drinks(z) →→→→→→→→→→→→→→→→→→→→→→→→→ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ drinks(y′) ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤
BoolHoist⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ →→→→→→→→→→→→→→→→→→→→→→→→→ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ drinks(y′) ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∨ drinks(z) ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤
BoolRw⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ drinks(y′) ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∨ drinks(z) ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥Elim

drinks(y′) ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∨ drinks(z) ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤
Irrefl

drinks(z) ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤

The unit clause drinks(z) ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ can then be used to superpose into the clause drinks(z) →→→→→→→→→→→→→→→→→→→→→→→→→
∀y. drinks(y) ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ resulting in ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ →→→→→→→→→→→→→→→→→→→→→→→→→ ∀y. drinks(y) ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥.

drinks(z) ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤

drinks(x) ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ drinks(z) →→→→→→→→→→→→→→→→→→→→→→→→→ ∀y. drinks(y) ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥
Sup*

⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ →→→→→→→→→→→→→→→→→→→→→→→→→ ∀y. drinks(y) ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∀Rw⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ →→→→→→→→→→→→→→→→→→→→→→→→→ drinks(sk⟨τ̄n⟩∃y. ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬drinks(y)) ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥
Sup⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ →→→→→→→→→→→→→→→→→→→→→→→→→ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ BoolRw⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥Elim⊥

In the Sup inference that is annotated with *, the unifier {x ꜗ→ z} is used, because the
clause drinks(z) ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ was changed into drinks(x) ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ to ensure that all premises of the
inference are variable disjoint. After the first Sup inference, the subterm ∀y. drinks(y)
needs to be rewritten using ∀Rw in order to be able to unify with drinks(z) such that the
second Sup inference is possible. Otherwise, the terms would not be unifiable because
of the leading quantifier. The application of ∀Rw was justified because ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ →→→→→→→→→→→→→→→→→→→→→→→→→ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ is
clearly not a tautology.
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4.1.4 The Redundancy Criterion
In superposition calculi, the redundancy criterion is a powerful tool that allows to remove
redundant clauses from a given clause set. As in [BG01] the redundancy criterion is
first developed for ground clauses and inferences and then lifted to their nonground
counterparts. This separation is also needed for the refutational completeness proof.
To this end, a ground inference system GInf is introduced, whose inferences operate
on ground clauses. Paramters of GInf are a literal selection function GLSel, a Boolean
subterm selection function GBSel, and a witness function w. The same restrictions are
in place for GLSel and GBSel as in Definition 5. The witness function w takes a ground
clause C and a subterm ∃x. v as input and produces a ground term w(C, ∃x. v). In the
inference rules concerned with quantifiers, this function will provide Skolem terms. Let
Q be the set of all triples (GLSel, GBSel, w) that fulfill the restrictions and let q ∈ Q
be a parameter triple. We write GInf q to specify that the inference system GInf is
parameterized with the parameter triple q. The term order is also a parameter of GInf ,
but the order stays the same on the ground level and is therefore not explicitly given.

GInf q consists of the inference rules Sup, Factor, Irrefl, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥Elim, BoolRw, ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈Hoist,
̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈Hoist, GforallRw, GexistsRw, G∀Hoist, and G∃Hoist on ground clauses. The
rules GforallRw, GexistsRw, G∀Hoist, and G∃Hoist are specific to the ground
calculus and specified below.

C[∀x. v]
C[v{x ꜗ→ w(C, ∃x. ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬v)}] GforallRw

C[∃x. v]
C[v{x ꜗ→ w(C, ∃x. v)}] GexistsRw

1. the position of the indicated subterm of C is ⪰-eligible in C;
2. C[t] is not a tautology, where

• t = ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ for GforallRw;
• t = ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ for GexistsRw.

C[∀x. v]
C[⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥] ∨ t{x ꜗ→ u} ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ G∀Hoist

C[∃x. v]
C[⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤] ∨ t{x ꜗ→ u} ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ G∃Hoist

1. u is a ground term whose Boolean subterms are a subset of {⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥};
2. the position of the indicated subterm of C is ⪰-eligible in C.

Let C be a ground clause and N be a ground clause set. The set of redundant clauses
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induced by N is denoted by GRedC(N). We define that C ∈ GRedC(N) if {D ∈
N | D ≺ C} |= C. The set of redundant inferences with respect to N is denoted by
GRedI(N). Let ι be an inference of GInf and define ι ∈ GRedI(N) if {D ∈ N | D ≺
mprem(ι)} ∪ sprems(ι) |= concl(ι).

The ground instances of a nonground clause C is the set of all ground clauses of the form
Cθ, where the Boolean subterms of xθ are included in {⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥} for all free variables of C.
Let G(C) denote the set of ground instances of a clause C and if N is a clause set, let
G(N) denote U

C∈N G(C). The set of ground instances of an inference ι ∈ FInf are all
inferences ι′ ∈ GInf such that

• both inferences ι and ι′ are instances of the same inference rule, or from ∀Hoist
and G∀Hoist, or ∃Hoist and G∃Hoist, or ∀Rw and GforallRw, or ∃Rw and
GexistsRw, respectively; and

• for a grounding substitution θ it holds that prems(ι′) = prems(ι)θ and concl(ι′) =
concl(ι)θ; and

• the corresponding ground literals and ground Boolean subterms are selected in ι′

as in ι after applying θ.

As for clauses, let G(ι) denote the set of all ground instances of an inference ι.

Let C be a nonground clause and N be a nonground clause set. The set of redundant
clauses with respect to N is denoted by FRedC(N). Let C ∈ FRedC(N) if C is strictly
subsumed by a clause in N or G(C) ⊆ GRedC(G(N)). Let ι be a nonground inference of
FInf . The set of redundant inferences w.r.t. clause set N is denoted by FRedI(N) and
define ι ∈ FRedI(N) if G(ι) ⊆ GRedI(G(N)). Finally, let the redundancy criterion for the
nonground inference system FInf be FRed = (FRedC, FRedI).

4.1.5 Refutational Completeness

A usual approach for proving the dynamic completeness of saturation-based calculus
is to first prove static completeness of the ground calculus and then obtain dynamic
completeness for the non-ground calculus by lifting using the saturation framework, as
described in Chapter 3. The static completeness of the ground calculus is proved as by
Bachmair and Ganzinger [BG01]. The general proof idea is to construct a model for a
saturated set of clauses N with ⊥ ̸∈ N . From the clause set N a term rewrite system
is constructed which can be used as a model of N . To view a term rewrite system as
an interpretation for first-order logic with interpreted Booleans the next definition is
necessary.
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4.1. The First-order Case

Definition 7 (Interpretable Rewrite System)
A rewrite system R over ground terms is interpretable if the following conditions are
satisfied:

(1) t ↔∗
R ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ or t ↔∗

R ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ for all ground Boolean terms;

(2) for all ground Boolean terms t:

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ↔∗
R ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ↔∗

R ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤
⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ t ↔∗

R t t ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ↔∗
R t

⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ t ↔∗
R ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ t ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ↔∗

R ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥
⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ t ↔∗

R t t ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ↔∗
R t

⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ t ↔∗
R ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ t ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ↔∗

R ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤
⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ →→→→→→→→→→→→→→→→→→→→→→→→→ t ↔∗

R t t →→→→→→→→→→→→→→→→→→→→→→→→→ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ↔∗
R ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤

⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ →→→→→→→→→→→→→→→→→→→→→→→→→ t ↔∗
R ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ t →→→→→→→→→→→→→→→→→→→→→→→→→ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ↔∗

R ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬t

(3) t ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ t′ ↔∗
R ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ if and only if t ↔∗

R t′ for all ground Boolean terms t and t′;

(4) t ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈ t′ ↔∗
R ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ if and only if t ↔∗

R t′ for all ground Boolean terms t and t′;

(5) ∀x. t ↔∗
R ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ if and only if t{x ꜗ→ u} ↔∗

R ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ for every ground Boolean term u;

(6) ∃x. t ↔∗
R ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ if and only if t{x ꜗ→ u} ↔∗

R ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ for every ground Boolean term u.

Given an interpretable term rewrite system R an interpretation (U , J ) can be defined.
When an interpretation (U , J ) is constructed from a term rewrite system R it is common
to also write R when referring to the interpretation. For a type τ the universe Uτ

consists of the set of all equivalence classes of terms t of type τ modulo ↔∗
R. For a

term t, denote with [t] its equivalence class modulo ↔∗
R, i.e., [t] = {t′ | t′ ↔∗

R t}. Let
J (f⟨τ̄n⟩)(ā) = [f⟨τ̄n⟩(t̄)]. Here, every argument ai is an equivalence class of terms and
we let each ti be an arbitrary term of the equivalence class ai. It does not matter what
term ti is chosen, since if another term t′

i was chosen instead, it would still hold that
ti ↔∗

R t′
i and therefore also f⟨τ̄n⟩(t1, . . . , ti, . . . , tn) ↔∗

R f⟨τ̄n⟩(t1, . . . , t′
i, . . . , tn). The set

of terms [⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤] is identified with 1 and [⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥] is identified with 0. Because of requirement
(1) of Definition 7 it follows that Uo = {0, 1}, J (⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) = 1, and J (⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) = 0, as required by
(I1) and (I2). Requirements (2), (3), and (4) guarantee that conditions (I3) to (I8) for
interpretations are satisfied. The last requirements (5) and (6) ensure that quantified
terms are interpreted as expected.

Lemma 1 ([Num+21, Lemma 17])
For all ground terms t and interpretable term rewrite systems R it holds that [t]R = [t].

Lemma 1 shows the fact that R |= t ≡ t′ if and only if t ↔∗
R t′, or equivalently [t] = [t′].
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4. Superposition Calculus

Having constructed an interpretable term rewrite system RN from a saturated set of
clauses N with ⊥ ̸∈ N it remains to show that R is actually a model of N . This is done
using the Bachmair and Ganzinger’s general approach of reducing counterexamples [BG01,
Section 4.2]. R is called the candidate model and a clause C ∈ N such that R ̸|= C is a
counterexample. C is a minimal counterexample if there is no clause D ∈ N such that
C ≻ D and R ̸|= D. If a counterexample C is the main premise of an inference, the side
premises are true in R and the conclusion of the inference is a smaller counterexample
w.r.t. ≻, then the inference is said to reduce the counterexample C. If it holds that
for every set of clauses N with minimal counterexample C, there is an inference using
clauses in N that reduces C, the inference system enjoys the reduction property for
counterexamples. Having proven that an inference system has the reduction property for
counterexamples, in this case GInf , the static refutational completeness can be obtained
by using Theorem 4.9 of Bachmair and Ganzinger’s framework [BG01].

The result of static refutational completeness for the ground inference system can then
be used to show dynamic refutational completeness for the non-ground inference system
by lifting the inferences and employing the saturation framework by Waldman et al.
[Wal+22].

Theorem 2 ([Num+21])
The calculus (FInf , FRed) is dynamically refutationally complete.
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4.1. The First-order Case

4.1.6 Saturation Procedure
When implementing a saturation-based calculus in an automated theorem prover, a
saturation procedure is needed that infers new clauses from the input problem until either
the empty clause is encountered or no irredundant clauses can be inferred anymore. If
the calculus is proven to be refutationally complete, the concrete saturation procedure
must be able to derive the empty clause in a finite amount of time for unsatisfiable input
problems. Here, I will present the given clause saturation algorithm, which is used in
leading theorem provers such as Vampire [KV13] and E [SCV19]. The Zipperposition
theorem prover implements this procedure for first-order logic and uses a generalization
for higher-order logic, as will be discussed in sections 4.2.8 and 5.8.

Algorithm 1 shows how the given clause procedure operates in detail.

Algorithm 1 (First-Order Given Clause Algorithm)
Input: Initial set of clauses S
Output: Sat, Unsat, or Unknown

1 P ← S
2 A ← ∅
3 while time limit not exceeded
4 if P = ∅
5 return Sat
6 select a clause C from P
7 P ← P \ {C}
8 simplify C by clauses in A
9 if C is trivial or subsumed by A

10 continue
11 if C = ⊥
12 return Unsat
13 simplify clauses in A using C and transfer changed clauses into P
14 A ← A ∪ {C}
15 perform all inferences between C and A and put resulting clauses into P
16 return Unknown

Since the unsatisfiability problem for first-order logic is only semi-decidable, there exist
inputs for which the given clause algorithm does not terminate with a hypothetical infinite
time limit. This may happen, for example, if the saturated set of clauses is infinite. In
practice, a time limit is used that dictates when to stop the saturation procedure, as
used in line 3 of Algorithm 1.

The algorithm maintains two sets of clauses A and P , which are called active and passive,
respectively. Initially, the input clauses are put into the passive set and the active set is
the empty set. In each loop iteration, it is first checked if the passive set is empty. If
this is the case, the empty clause ⊥ was not derived and the result Sat can be returned,
which indicates that the input problem is satisfiable. Otherwise, a clause C is selected
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4. Superposition Calculus

from P using some heuristics such as the age of the clause, i.e., in which iteration the
clause was added to P , or a notion of weight depending on the syntactical size, the
number of variables, and various other properties of clauses. Clause C is also called
the given clause. Then, C is removed from P and is tried to be simplified using all the
clauses in the active set. In this step, various simplification rules such as subsumption,
demodulation, or deletion of trivial literals can be used. Employing strong simplification
rules is often crucial for restricting the search space. If C is either trivial or is subsumed
by a clause in the active set, the clause is simply discarded and the next iteration is
started. Next, it is checked whether C is the empty clause ⊥. If this is the case, the
result Unsat can be reported, which indicates that the input problem is unsatisfiable.
This can be justified by showing that all inference rules of the calculus are sound or at
least satisfiability preserving. If C is not the empty clause, all clauses in the active set are
tried to be simplified or deleted using C and all resulting clauses are transferred to the
passive set. The given clause is then added to the active set and all the resulting clauses
of all inferences between the given clause and the active set are put into the passive set.

Using the distinction of active and passive sets, the given clause algorithm maintains
the invariant that at the beginning of every iteration, all possible inferences between
clauses in A have been already performed. Thus, fairness is ensured, in the sense that
all possible inferences were carried out when a saturated set of clauses is encountered. If
this were not the case, the algorithm may report Sat even if there are still inferences
that could produce ⊥.

4.2 Extension to Higher-order Logic

The development of the presented superposition calculus for higher-order logic was split
into three milestones, where each milestone builds upon the results of the previous one.
The first milestone was to design a calculus for Boolean-free, λ-free higher-order logic
[Ben+18]. This logic supports partial application of function symbols, i.e., both g or g a
may be written for a binary function symbol g. Moreover, the type of variables may now
be functional and thus variables can occur applied, i.e., x a.

Afterwards, a calculus was proposed for Boolean-free higher-order logic with support
for λ-expressions [Ben+21]. In this logic, there is no native Boolean type. Instead, the
Boolean type needs to be axiomatized. For this, a nullary type constructor bool is added
to the signature together with symbols t, f : bool, not : bool → bool, and, or, impl, equiv :
bool → bool → bool, forall, exists : Πα. (α → bool) → bool, eq : Πα. α → α → bool, and
choice : Πα. (α → bool) → α. Using these symbols, the Boolean type is characterized
using the following axioms:
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t ≠ f impl f x ≈ t
x ≈ t ∨ x ≈ f x ̸≈ y ∨ eq⟨α⟩ x y ≈ t
not t ≈ f x ≈ y ∨ eq⟨α⟩ x y ≈ f
not f ≈ t equiv x y ≈ and (impl x y) (impl y x)
and t x ≈ x forall⟨α⟩ (λx. t) ≈ t
and x t ≈ x y ≈ (λx. t) ∨ forall⟨α⟩ y ≈ f
or t x ≈ t exists⟨α⟩ y ≈ not (forall⟨α⟩ (λx. not (y x)))
or f x ≈ x y x ≈ f ∨ y (choice⟨α⟩ y) ≈ t
impl t x ≈ x

Lastly, support for interpreted Booleans was added in order to define a refutationally
complete calculus for higher-order logic [Ben+23b], as introduced in Section 2.5. Because
the calculus uses dedicated inference and simplification rules to handle Booleans, the
axiomatization shown above is no longer necessary and the logical symbols ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧, ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨, etc.
replace the symbols and, or, etc.

For every milestone, the respective calculus was proven to be refutationally complete
w.r.t. the used logic and also implemented in the Zipperposition automated theorem
prover [Cru15]. Moreover, the overall goal was to take what works best for first-order
logic and try to extend this in a graceful way. Here, gracefulness means that a prover
should only use higher-order reasoning for problems that are actually higher-order. A
good and short overview of the milestones and the respective challenges is given in [Bla23].
For an in-depth treatment I refer to the PhD thesis of Alexander Bentkamp [Ben21].

Before introducing the calculus and sketching the completeness proof, I will comment
on the several difficulties that arise when moving from first-order to higher-order logic.
An interested reader may wonder how it is possible to have a refutationally complete
calculus for higher-order logic under the presence of Gödel’s first incompleteness theorem.
Since arithmetic can be fully formalized in higher-order logic using Peano arithmetic,
there must exist a formula F without free variables that can not be proven valid nor
proven unsatisfiable. But F must be either valid or unsatisfiable, which contradicts the
claim that the presented calculus is refutationally complete. To clear up this dilemma,
note how interpretations are defined for functions. That is, Jty(→)(D1, D1) has to be a
subset of the function space from D1 to D2 for all D1, D2 ∈ U , where U is the universe of
an interpretation.

Gödel’s first incompleteness assumes that in every interpretation the set Jty(→)(D1, D1)
is the full function space from D1 to D2. This kind of semantics is called standard.
Consider the axiom of induction of Peano arithmetic that can be formalized as follows in
higher-order logic, where the type of a unary predicate over natural numbers is simply a
function that takes a natural number and results in a Boolean value. Let ω be a 0-ary
type constructor for the set of natural numbers and let zero : ω be a constant representing
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0 and let succ : ω → ω be the successor function.

∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀⟨ω → o⟩ (λx. (x zero ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀⟨ω⟩(λn. x n →→→→→→→→→→→→→→→→→→→→→→→→→ x (succ n))) →→→→→→→→→→→→→→→→→→→→→→→→→ ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀⟨ω⟩(λn. x n))

In standard semantics, the outermost ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀ quantifies over all predicates on natural numbers.
To obtain a semantics that admits a complete proof system, the logician Leon Henkin
introduced the notion of what he called general models, but they are usually called
Henkin models [Fit02; Hen50]. The idea is that the function space must not be full, but
rather can be chosen by proper interpretations such that it is big enough in order that
λ-expressions are interpreted as expected.

Since it is the case that every standard model is also a Henkin model, if a formula is
proven to be valid in Henkin semantics the formula is also valid in standard semantics. A
downside to Henkin semantics is that one can not guarantee that quantifiers use the whole
function space. Thus, for example, properties for natural numbers are only provable in
standard semantics but not in Henkin semantics, since in the latter there are simply
more possible interpretations that can act as counterexamples.

To sum up, using nonstandard Henkin semantics it is possible to have a refutationally
complete calculus for higher-order logic all of whose derivable formulas are also valid
under standard semantics.

4.2.1 Higher-order Unification
As in first-order calculi like resolution or superposition, it is necessary to compute unifiers
in the presented higher-order superposition calculus. Unifiers are defined as usual, where
a substitution θ is a unifier for two terms s and t if sθ is equal to tθ. A unification problem
is a multiset of unordered term pairs of the same type, written as {s1

?= t1, . . . , sn
?= tn}.

An element s1
?= t1 is called unification constraint. A substitution is a solution of a

unification problem if it is a unifier of every contained unification constraint. More
formally, a substitution θ is a solution of {s1

?= t1, . . . , sn
?= tn} if and only if si

|↓
βη

and
ti

|↓
βη

are syntactically equal for every 1 ≤ i ≤ n.

Using a reduction from Hilbert’s tenth problem, it was proven by Goldfarb that already
second-order unification is undecidable [Gol81]. Hilbert’s tenth problem asks whether it is
possible to devise an algorithm that decides if a given polynomial with integer coefficients
has an integer solution. This problem was posed by Hilbert in 1900 and was proven to
be undecidable in 1970 [Coo03].

In n-th order unification, every term has to be of order at most n w.r.t. the notion of
order given in Definition 1. There are several outcomes of unification problems. Consider
the problem {f x

?= c}, which appropriate types. Clearly, there are no solutions, since x
is the only variable and no matter what term x is replaced with, the heads of the terms
remain different. Next, the problem {x c ?= y} has an infinite set of solutions of the form
{x ꜗ→ λz. t, y ꜗ→ t}, where t is a term with z ̸∈ FV(t). However, it admits a most general
unifier {x ꜗ→ λz. y}.
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4.2. Extension to Higher-order Logic

Lastly, we consider two problems from [Pre98]. The problem {x a ?= a} has exactly
two solutions that are incomparable w.r.t. generality: {x ꜗ→ λz. z} and {x ꜗ→ λz. a}.
The remaining case is a problem with an infinite number of incomparable solutions:
{x (fa) ?= f(x a)}. Every solution has the form {x ꜗ→ λz. fn a}, where n ≥ 0 and fn denotes
the n-fold application of f.

A complete set of unifiers, abbreviated as CSU, for two terms s and t on a set of variables
X, denoted by CSUX(s, t), is an arbitrary set of unifiers of s and t such that if θ is
a unifier of s and t there exists some σ ∈ CSUX(s, t) and a substitution ρ such that
xσρ = xθ for all variables x ∈ X. It can be assumed that every substitution of CSUX(s, t)
is idempotent. Usually, X will be left implicit and will be given by the set of free variables
of all the clauses in which the terms s and t occur. Note that a complete set of unifiers may
include redundant unifiers. Two terms s and t have a most general unifier if CSUX(s, t)
is a singleton set.

Although higher-order unification is undecidable, it is semi-decidable. That is, there exist
algorithms that enumerate a complete set of unifiers of the given terms. However, such
algorithms may not terminate in general, depending on the input.

A prominent algorithm for enumerating CSUs is Jensen and Pietrzykowski’s (JP) proce-
dure [JP76]. Recently, a refinement of the JP procedure was developed by Vukmirović,
Bentkamp and Nummelin that uses decision procedures for decidable fragments of higher-
order unification as well as restrictions of the search space to avoid enumerating many
redundant unifiers [VBN20]. Decidable fragments of higher-order unification are also
called oracles. In Zipperposition, a complete version of the algorithm, as well as a
pragmatic version was implemented, that limits the search space to obtain a terminating
but incomplete algorithm. Moreover, the JP procedure is implemented.

4.2.2 Preprocessing
In the higher-order superposition calculus, several inferences are restricted to subterms
that resemble first-order subterms. To this end, green subterms are introduced.

Definition 8 (Green subterms and positions)
A green position of a λ-term is a finite sequence of natural numbers that is inductively
defined as follows. The empty sequence ε is a green position of any λ-term. For every
symbol f ∈ Σ \ {∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀, ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃}, types τ̄ , and λ-terms ū, if p is a green position of ui, then i.p is
a green position of f ū.

Then green subterm of a λ-term at a green position is defined inductively as follows.
For all λ-terms t and green position ε, t is the greeun subterm of t at green position ε.
For all symbols f ∈ Σ \ {∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀, ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃}, types τ̄ , and λ-terms ū, if t is a green subterm of ui at
some green position p for some i, then t is the green subterm of f ū at green position
i.p.
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To refer to green positions in clauses and literals, a sequence of natural numbers cannot
be used since clauses and literals are unordered. To this end, a green position in a
clause C is defined to be a tuple of the form L.s.p, where L = s ≈̇ t is a literal in C
and p is a green position in s. The green subterm of C at green position L.s.p is the
green subterm of s at green position p. A green position L.s.p is top level if p = ε. If p
is a green position of s, we denote the green subterm at position p in s with s|p. The
notions of at or below and below are defined as in Section 2.2.1.

Consider the term t = f (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬a) (∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀⟨τ⟩ (λx. p x)) (z b) (λx. c d). The list of green subterms
of t are enumerated as follows. First of all, t itself is a green subterm of t at position ε.
because f ̸∈ {∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀, ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃}, the arguments of f are checked. Thus, ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬a is a subterm of t at position
1, ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀⟨τ⟩ (λx. p x) is a subterm of t at position 2, z b is a subterm of t at position 3, and
λx. c d is a subterm of t at position 4. Continuing the recursive definition, it follows that
a is a green subterm of t at position 1.1 because ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬a is a green subterm of t at position 1
and ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬ ̸∈ {∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀, ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃}. Since the term ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀⟨τ⟩ (λx. p x) is headed by a quantifier, no proper green
subterms of this term can be green subterms. For z b there are also no proper green
subterms, because the term is headed by a variable. Lastly, for λx. c d there are also
no proper green subterms because the term is a λ-abstraction. Hence, a green subterm
cannot occur in a lambda-abstraction, applied to a variable, or inside a quantifier ∀ or ∃.

Definition 9 (Green contexts)
Let s u p denote a λ-term s with the green subterm u at position p. s p is called a
green context, where p may be omitted. Moreover, let C u p denote a clause C with
the green subterm u at position p = L.s.q for L = s ≈̇ t, L ∈ C, and s u q.

Green positions, subterms, and contexts are lifted to βη-equivalence classes via the
βηQη-normal representative.
The addition of interpreted quantifiers introduced some difficulties because quantified
variables that appear in higher-order contexts cannot be translated to first-order logic as
in previous milestones. However, a preprocessing step can be used to eliminate all such
problematic occurrences of variables.

Definition 10 (Preprocessing via rewrite rules ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀≈ and ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃≈)
The rewrite rules ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀≈ and ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃≈ are given by

∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀⟨τ⟩ −■→∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀≈ λy. y ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ (λx. ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)
∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃⟨τ⟩ −■→∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃≈ λy. y ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈ (λx. ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)

where the rewritten occurrence Q⟨τ⟩ is either unapplied, has an argument that is
not a λ-expression, or has an argument of the form λx. v such that x occurs free in
a nongreen position of v. Both rewrite rules ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀≈ and ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃≈ are collectively denoted by
Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈. If one of these rules can be applied to a term, the term is called Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-reducible.
Otherwise, it is called Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal. A clause set is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal if all terms occurring in
the set are Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal.
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The initial clause set can be preprocessed to yield a Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal clause set. This procedure
does terminate, because the number of quantifiers is reduced by every application of a
rewrite rule of Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈.

4.2.3 Term Orders
The term orders for the calculus have to obey several restrictions, which are defined next.

Definition 11 (Strict Ground Term Order)
Let ≻ be a well-founded strict total order on ground terms. It is a strict ground term
order if the following conditions are satisfied:

(O1) compatibility with green contexts: s′ ≻ s implies t s′ ≻ t s ;

(O2) green subterm property: t s ⪰ s;

(O3) u ≻ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≻ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ for every term u ̸∈ {⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥};

(O4) Q⟨τ⟩ t ≻ t u for every type t, term t and u such that Q⟨τ⟩ t and u are Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal
and the only Boolean green subterms of u are ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥.

A strict ground term order is extended to literals and clauses using the multiset order, as
explained in Section 2.1. The condition (O4) cannot be stated for terms t and u without
the restrictions. If t and u were allowed to be regular terms, it would be the case that
Q⟨τ⟩ (λx. x) ≻ ((λx. x) Q⟨τ⟩ (λx. x)), where the term λx. x is used for t and u. Applying
a β-reduction to the right-hand side yields ((λx. x) Q⟨τ⟩ (λx. x)) = Q⟨τ⟩ (λx. x), which
would imply that Q⟨τ⟩ (λx. x) ≻ Q⟨τ⟩ (λx. x). But this contradicts the assumption that
the strict ≻ is irreflexive. This issue is fixed by letting the Boolean green subterms of t
and u to only be among {⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥}. But there is also a further issue:

Q⟨τ⟩ (λy. y a) ≻ (λy. y a) (λx. Q⟨τ⟩ (λy. y a)) = Q⟨τ⟩ (λy. y a)

This again contradicts the assumptions on ≻ and the restrictions regarding Boolean green
subterms does not solve this issue. To circumvent this problem, Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normality is needed.

Definition 12 (Strict and Nonstrict Term Orders)
A binary relation ≻ on terms, literals and clauses is a strict term order if it is a strict
ground term order when restricted to ground terms and it is stable under grounding
substitutions, that is t ≻ s implies that tθ ≻ sθ for all substitutions θ that ground s
and t.

Let ≻ be a strict term order. A nonstrict term order is a binary relation ≿ on terms,
literals and clauses such that t ≿ s implies tθ ⪰ sθ for all substitutions θ that ground
s and t.

A reason to use a nonstrict term order ≿ instead of the reflexive closure ⪰ of a strict
term order ≻ is that using ≿ more terms can be compared. Consider again the terms x a
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and x b. It cannot be the case that x a ⪰ x b because the terms are not syntactically
equal and if θ = {x ꜗ→ λy. c} it cannot hold that x a ≻ x b by stability w.r.t. grounding
substitutions. But using ≿ it is possible to have that x a ≿ x b when a ≻ b.
In [Ben+23b, section 3.9] a concrete term order fulfilling properties of a strict term
order is constructed via a translation into untyped first-order logic and the transfinite
Knuth-Bendix order [LW07].

4.2.4 Selection Functions and Eligibility
As in the first-order case, the calculus is parameterized by two selection functions and
needs a notion of eligibility to specify the possible positions, where inferences are allowed
to happen. The corresponding definitions are given below.

Definition 13 (Selection Functions)
A literal selection function is a mapping from a clause to a subset of its negative literals
with the restriction that a literal L y must not be selected if y t̄n, where n ≥ 1, is a
⪰-maximal term of the respective clause.

A boolean subterm selection function maps a clause C to a subset of its green positions
with Boolean subterms. These positions and subterms at these positions are called
selected in C. A subterm s must not be selected if

• a variable y is a green subterm of s and y t̄n, where n ≥ 1, is a ⪰-maximal term
of the respective clause; or

• s ∈ {⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥} or it is variable-headed; or

• s is at the top-level position on either side of a positive literal.

Definition 14 (Eligibility)
A literal L is (strictly) ⊵-eligible w.r.t. a substitution θ in clause C for some binary
relation ⊵ if it is selected in C or there are no selected literals and no selected Boolean
subterms in C and Lθ is (strictly) ⊵-maximal in Cθ.

The ⊵-eligible positions of a clause C w.r.t. a substitution θ are defined as follows:

• All selected positions are ⊵-eligible.

• If a literal L = s ≈̇ t with sθ ̸⊴ tθ is either ⊵-eligible and negative or strictly
⊵-eligible and positive, then L.s.ε is ▷-eligible.

• If position p is ⊵-eligible and the head of C|p is not ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ or ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈, the positions of all
direct green subterms are ⊵-eligible.

• If position p is ⊵-eligible and C|p is of the form s ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ t or s ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈ t, then the position
of s is ⊵-eligible if sθ ̸⊴ tθ and the position of t is ⊵-eligible if sθ ̸⊵ tθ.
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4.2.5 Inference Rules
The inference rules of the calculus depend on the notions of deep occurences of variables
and fluid terms, that are defined next.

Definition 15 (Deep Occurrences)
A variable is said to occur deeply in a clause C if it occurs as a subterm of an argument
of a variable or as a subterm of a λ-expression that is not directly below a quantifier.

The notion of deep variable occurrences is needed to characterize variables in a clause
C with an occurrence at a position inside a λ-expression in ground instances of C. In
several inference rules it is forbidden to rewrite a deeply occurring variable or a fluid
term.

Definition 16 (Fluid Terms)
A term t is fluid if one of the following is true:

• t
|↓

βηQη
is of the form x t̄n with n ≥ 1; or

• t
|↓

βηQη
is a λ-expression and there exists a substitution θ such that tθ

|↓
βηQη

is
not a λ-expression because of η-reduction.

Fluid terms can change their form fundamentally under substitutions. Hence, the
FluidSup rule introduced below is needed to deal with variables occurring deeply and
with fluid terms.

D, ,, ,
D′ ∨ t ≈ t′ C u

(D′ ∨ C t′ )σ Sup

1. u is not fluid;
2. u is not a variable occurring deeply in C;
3. variable condition: if u is a variable x, there must exist a grounding substi-

tution θ such that tσθ ≻ t′σθ and Cσθ ≺ (C{x ꜗ→ t′})σθ;
4. σ ∈ CSU(t, u);
5. tσ ̸≾ t′σ;
6. the position of u is ≿-eligible in C w.r.t. σ;
7. Cσ ̸≾ Dσ;
8. t ≈ t′ is strictly ≿-eligible in D w.r.t. σ;
9. tσ is not a fully applied logical symbol;

10. if t′σ = ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, the position of the subterm u is at the top level of a positive
literal.
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D, ,, ,
D′ ∨ t ≈ t′ C u

(D′ ∨ C z t′ )σ FluidSup

1. u is a variable occurring deeply in C or u is a fluid term;
2. z is a fresh variable;
3. σ ∈ CSU(z t, u);
4. (z t′)σ ̸= (z t)σ;

5. - 10. conditions 5 to 10 from Sup.

C, ,, ,
C ′ ∨ u ̸≈ u′

C ′σ
ERes

1. σ ∈ CSU(u, u′);
2. u ̸≈ u′ is ≿-eligible in C w.r.t.. σ.

C, ,, ,
C ′ ∨ u′ ≈ v′ ∨ u ≈ v

(C ′ ∨ v ̸≈ v′ ∨ u ̸≈ v′)σ EFact

1. σ ∈ CSU(u, u′);
2. uσ ̸≾ vσ;
3. (u ≈ v)σ is ≿-maximal in Cσ;
4. nothing is selected in C.

C, ,, ,
C ′ ∨ s ≈ s′

C ′σ ∨ sσ x̄n ≈ s′σ x̄n
ArgCong

1. n > 0;
2. σ is the most general type substitution that ensures well-typedness of the

conclusion;
3. s ≈ s′ is strictly ≿-eligible in C w.r.t. σ;
4. x̄n is a tuple of distinct fresh variables.
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C u

(C ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ u ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)σ BoolHoist

1. the type of u is either the Boolean type o or Πα. α for some type variable α;
2. if u is of Boolean type, then σ = id, otherwise σ = {α ꜗ→ o};
3. u is neither variable-headed nor a fully applied logical symbol;
4. the position of u is ≿-eligible in C w.r.t. σ;
5. the occurrence of u is not at the top level of a positive literal.

C, ,, ,
C ′ ∨ s ≈ s′

C ′σ
FalseElim

1. σ ∈ CSU(s ≈ s′, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤);
2. s ≈ s′ is strictly ≿-eligible in C w.r.t. σ.

C u

(C ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ x ≈ y)σ EqHoist C u

(C ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∨ x ≈ y)σ NeqHoist

C u

(C ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ y x ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)σ ForallHoist C u

(C ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∨ y x ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)σ ExistsHoist

1. σ ∈ CSU(u, t), where t is
• x ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ y for EqHoist;
• x ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈ y for NeqHoist;
• ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀⟨α⟩ y for ForallHoist;
• ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃⟨α⟩ y for ExistsHoist.

2. x, y are fresh term variables and α is a fresh type variable;
3. the position of u is ≿-eligible in C w.r.t. σ;
4. if the head of u is a variable, it must be applied and the affected literal must

be of the form u ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, u ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, or u ≈ v, where v is a variable-headed term.
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C u

C t′ σ
BoolRw

1. σ ∈ CSU(t, u);
2. (t, t′) is one of the following pairs, where x is a fresh variable:

(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)
(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)
(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)
(⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)

(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)
(⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)
(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)
(⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)

(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)
(⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)
(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ →→→→→→→→→→→→→→→→→→→→→→→→→ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)
(⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ →→→→→→→→→→→→→→→→→→→→→→→→→ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)

(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ →→→→→→→→→→→→→→→→→→→→→→→→→ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)
(⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ →→→→→→→→→→→→→→→→→→→→→→→→→ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)
(x ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ x, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)
(x ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈ x, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)

3. u is not a variable;
4. the position of u is ≿-eligible in C w.r.t. σ;
5. if the head of u is a variable, it must be applied and the affected literal must

be of the form u ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, u ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, or u ≈ v, where v is a variable-headed term.

C u

C y (skΠᾱ. ∀x̄. ∃z. ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬(yσ) z ⟨ᾱ⟩ x̄) σ
ForallRw

C u

C y (skΠᾱ. ∀x̄. ∃z. (yσ) z ⟨ᾱ⟩ x̄) σ
ExistsRw

1. σ ∈ CSU(Q⟨β⟩ y, u), where Q is ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀ for ForallRw and is ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃ for ExistsRw,
β is a fresh type variable, y is a fresh term variable, ᾱ are the free type
variables and x̄ are the free term variables occurring in yσ in order of first
occurrence;

2. u is not a variable;
3. the position of u is ≿-eligible in C w.r.t. σ;
4. if the head of u is a variable, it must be applied and the affected literal mus

tbe of the form u ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, u ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, or u ≈ v, where v is a variable-headed term;
5. the indicated occurrence of u is not in a literal u ≈ t, where t is ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ for

ForallRw and t is ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ for ExistsRw.
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C u

(C z ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ x ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)σ FluidBoolHoist

1. u is fluid;
2. z and x are fresh variables;
3. σ ∈ CSU(z x, u);
4. xσ ̸∈ {⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥};
5. the position of u is ≿-eligible in C w.r.t. σ;
6. (z ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)σ ̸= (z x)σ.

C u

(C z ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∨ x ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)σ FluidLoobHoist

1. - 5. conditions 1 to 5 from FluidBoolHoist;
6. (z ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)σ ̸= (z x)σ.

Besides the inference rules, two axioms are part of the calculus, which are given below.

z (diff⟨α, β⟩ z y) ̸≈ y (diff⟨α, β⟩ z y) ∨ z ≈ y (Ext)

y x ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ y (ε⟨α⟩ y) ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ (Choice)

Axiom Ext ensures functional extensionality, i.e., the property that two functions are
equal if they agree on all inputs. Therein, the types of z and y are Πα, β. α → β. The
function symbol diff⟨α, β⟩ is an abbreviation for skΠα,β. ∀z.∀y. ∃x. z x̸≈y x⟨α, β⟩ Axiom Ext
can be seen as a skolemized form of (∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀⟨α⟩ (λx. z x ≈ z y)) →→→→→→→→→→→→→→→→→→→→→→→→→ z ≈ y. Correct semantics of
the Hilbert choice operator ε is ensured through axiom Choice.

All of the presented inference rules and axioms are sound w.r.t. |≈. Moreover, every
rule that does not introduce Skolem symbols is sound w.r.t. |= and the preprocessing
is sound w.r.t. |= and |≈. Additionally, every derivation using the inference rules and
axioms is satisfiability-preserving w.r.t. |= and |≈ if the initial clause set does not contain
any Skolem symbols.

4.2.6 Redundancy Criterion
The redundancy criterion and the completeness proof of the presented first-level calculus
use a ground level to lift redundancy and completeness to the nonground level. In
the higher-order calculus we do the same but with three levels: a higher-order level
H, a Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal ground higher-order level GH and a ground first-order level GF with
interpreted Booleans. The logic of the first-order level is the same as the one used in
Section 2.2. Let CH, CGH, and CGF denote the sets of clauses of levels H, GH, and GF,
respectively. Likewise, the sets TH, TGH, TGF denote the respective sets of terms.
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Let (Σty, Σ) be the signature of level H. Level GH has the same signature, but the terms
and clauses of this level are Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal and ground. The signature of GF (Σty, ΣGF) is
constructed using the signature of level H (Σty, Σ). The set of type constructors Σty are
the same with the caveat that → is an uninterpreted type constructor for GF that must
not be equated with the arrow used for type declarations in the logic.

The set of constant and function symbols ΣGF is defined as follows. For every instance
f⟨ῡ⟩ : τ̄n → τ of a symbol f ∈ Σ, where no type variables occur in ῡ, a set of first-
order symbols is introduced in the following way. For every 0 ≤ j ≤ n, a first-order
symbol f ῡ

j ∈ ΣGF is introduced with argument types τ1 × · · · × τj and result type
τj+1 → · · · → τn → τ . This procedure is executed for logical and nonlogical symbols. If f
takes no type arguments fj is written instead of fε

j .

For example, if g is of type κ → γ → ϱ, three first-order symbols will be introduced because
g takes no type parameters. The corresponding first-order symbols are g0 : κ → γ → ϱ,
g1 : γ → ϱ, and g2 : ϱ. This mechanism is used in the first-order encoding for partial
application of function symbols. That is, an occurrence of g that is applied to n arguments
will be represented by gn on the first-order level GF. The symbols ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥0, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤0, ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧2, ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨2, →→→→→→→→→→→→→→→→→→→→→→→→→2,
≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈2, ≉̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈2 are identified with their corresponding logical symbols on the GF level. The
higher-order quantifiers ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀ and ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃ are not included in this procedure, since they will be
translated to ordinary first-order quantifiers ∀ and ∃. In order to represent λ-expressions,
for each ground term λx. t, a symbol lamλx. t ∈ ΣGF is introduced of the same type.

The levels H, GH, GF are connected via a grounding function G and an encoding function
F , which looks as follows:

H
higher-order level

GH
ground Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal
higher-order level

GF
ground first-order level

with interpreted Booleans

G F

The functions G and F are defined as follows.

Definition 17 (Grounding function G)
The grounding function G : CH → P(CGH) maps a clause C ∈ CH to its set of ground
instances G(C), where every element of G(C) is of the form Cθ for some grounding
substitution θ with the additional property that for all variables x occurring in C the
only Boolean green subterms of xθ are ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥.
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4.2. Extension to Higher-order Logic

Definition 18 (Encoding function F)
The function F : TGH → TGF is called an encoding function because it encodes
properties like amount of argument and type arguments of higher-order terms on the
first-order level. The function is recursively defined:

F(f⟨ῡ⟩ t̄j) = f ῡ
j (F(s1), . . . , F(sj))

F(x) = x

F(∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀⟨τ⟩ (λx. t)) = ∀x. F(t)
F(∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃⟨τ⟩ (λx. t)) = ∃x. F(t)

F(λx. t) = lamλx. t

For every term, the
|↓

βηQη
representative is used. The encoding F is extended to also

map clauses in CGH to CGF by translating each literal and each side of each literal
separately.

Because F is bijective, the order ≻ can be transferred from TGH to TGF and from CGH
to CGF by defining t ≻ s as F−1(t) ≻ F−1(s) for t, s ∈ TGF. In the following, ≻ is used
both for the term-orders of the higher levels and the first-order level. It holds that ≻ on
TGF satisfies all constraints as required by Definition 4.
Now the sets of redundant clauses can be defined. In the following, for a clause set
N let N≺C denote the set of all clauses in N that are smaller w.r.t. ≺ than C, i.e.,
N≺C = {D ∈ N | D ≺ C}.

Definition 19 (Clause redundancy)
The set of redundant clauses w.r.t. a given set of clauses is defined for each level, where
every level builds up on the one that comes before it:

• Let GFRedC : P(CGF) → P(CGF) be the clause redundancy criterion for level
GF, where

GFRedC(N) = {C | N≺C |= C}}.

• Let GHRedC : P(CGH) → P(CGH) be the clause redundancy criterion for level
GH, where

GHRedC(N) = {C | F(C) ∈ GFRedC(F(N))}.

• Let HRedC : P(CH) → P(CH) be the clause redundancy criterion for level H,
where

HRedC(N) = {C | for all D ∈ G(C) we have D ∈ GHRedC(G(N));
or there exists C ′ ∈ N such that C ⊐ C ′ and D ∈ G(C ′)}

The binary relation ⊐ is called a tiebraker and can be chosen to be an arbitrary
well-founded partial order on CH.
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4. Superposition Calculus

Each of the three levels has a corresponding inference system, which are denoted by HInf ,
GHInf , and GFInf for the levels H, GH, and GF, respectively. The system HInf consists
of the inference rules presented in Section 4.2.5. The selection functions HLitSel and
HBoolSel, with which HInf is parameterized, are fixed globally. From these functions,
the parameters for GHInf are derived as described next.

Definition 20 (Selection functions for level GH)
The literal selection function for the GH level, denoted by GHLitSel, maps each clause
C ∈ CGH to a subset of the literals occurring in C. The Boolean subterm selection
function for the GH level, denoted by GHBoolSel, maps each clause C ∈ CGH to a
subset of the green positions with Boolean subterms of C. Both functions are required
to satisfy the condition that for all C ∈ CGH, there is a D ∈ CH with C ∈ G(D)
such that the selections HLitSel(D), HBoolSel(D) and the selections GHLitSel(C),
GHBoolSel(C) correspond.

Similar to the first-order calculus, the GH level is parameterized by a witness function.

Definition 21 (Witness function)
A witness function GHWit maps a clause C ∈ CGH and a green position of a quantifier-
hreaded term in C to a term GHWit(C, p) ∈ TGH such that Q⟨τ⟩ t ≻ t GHWit(C, p) if
C|p = Q⟨τ⟩ t.

The responsibility of the witness function is to provide appropriate Skolem terms that
serve as witnesses for the existence of terms that fulfill the concrete predicate. It is not
possible to also fix the selection and witness functions for the GH level globally, because
they depend on the saturated clause set in the limit of the derivation. Thus, all possible
parameters of the GH-level calculus are given as follows.

Definition 22 (Set of parameter triples Q)
A parameter triple is a 3-tuple (GHLitSel, GHBoolSel, GHWit) consisting of a GH-level
literal selection function GHLitSel, a GH-level Boolean subterm selection function
GHBoolSel and a witness function GHWit. Let Q denote the set of all parameter
triples.
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4.2. Extension to Higher-order Logic

The notation GHInf q, where q = (GHLitSel, GHBoolSel, GHWit) stands for the inference
system GHInf with parameters q. The inference rules of GHInf q are:

• Sup

• ERes

• EFact

• BoolHoist

• FalseElim

• EqHoist

• NeqHoist

• BoolRw

• GForallHoist

• GExistsHoist

• GArgCong

• GExt

• GChoice

• GForallRw

• GExistsRw

In the above rules, all references to ≿ are replaced by ⪰.
Instead of ForallHoist, ExistsHoist, ArgCong, Ext, Choice, ForallRw, and
ExistsRw, the inference system GHInf q uses the following rules, which are going to be
introduced below, because the former rules and axioms use free variables, which is not
possible in the ground level GH:

• GForallHoist

• GExistsHoist

• GArgCong

• GExt

• GForallRw

• GExistsRw

Instead, the latter rules need to enumerate ground terms in the conclusions rather than
using fresh variables. That is, let T ⋆

GH denote the set of all terms t ∈ TGH such that the
set of Boolean green subterms of t is a subset of {⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥}. Then, the rules GForallHoist
and GExistsHoist are given by:

C ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀⟨τ⟩ t p

C ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ t u ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ GForallHoist

C ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃⟨τ⟩ t p

C ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∨ t u ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ GExistsHoist

1. p is ⪰-eligible in C and t ∈ T ⋆
GH.

The inference rule for argument congruence on the GH level looks as follows:

C ∨ t ≈ s

C ∨ t ū ≈ s ū
GArgCong

1. t ≈ s is strictly ⪰-eligible in C ∨ t ≈ s;;
2. ū is a tuple of appropriatly typed terms of T ⋆

GH..
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4. Superposition Calculus

The rules GExt and GChoice are premise-free inference rules and their conclusions are
all the instances obtained by applying the grounding function G to the axioms (Ext)
and (Choice), respectively.

The rules GForallRw and GExistsRw replace ForallRw and ExistsRw, respec-
tively, and use the witness function GHWit:

C ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀⟨τ⟩ t p

C t GHWit(C, p) GForallRw

C ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃⟨τ⟩ t p

C t GHWit(C, p) GExistsRw

1. p is ⪰-eligible in C
2a. for GForallRw: F(C ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ) is not a tautology
2b. for GExistsRw: F(C ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ) is not a tautology.

The inference system GFInf is, like GHInf , parameterized by a triple q, where

q = (GFLitSel, GFBoolSel, GFWit).

Via the bijection F , the parameter triple q of GHInf can be translated to a parameter
triple F(q) for GFInf . The inference system GFInf F(q) is obtained by mapping every
inference rule using the encoding F , except the rules GArgCong, GExt, and GChoice.
Because GFInf F(q) and GHInf q are connected via the bijection F , they are isomorphic
for all rules except GArgCong, GExt, and GChoice. Note that GFInf F(q) identical
to the inference system defined in Section 4.1.3.

The functions F and G are extended to inferences:

Definition 23 (Extension of F and G to inferences)
Let q ∈ Q be a parameter triple and let ι ∈ GHInf q be an inference that stems not
from the rules GArgCong, GExt, or GChoice. Then, Fq(ι) ∈ GFInf F(q) denotes
the inference obtained by prems(F(ι)) = F(prems(ι)) and concl(F(ι)) = F(concl(ι)).
Given an inference ι ∈ HInf , the set Gq(ι) of ground instances of ι w.r.t. to q
is defined to be all inferences ι′ ∈ GHInf q such that prems(ι′) = prems(ι)θ and
concl(ι′) = concl(ι)θ for an arbitrary grounding substitution θ.

52



4.2. Extension to Higher-order Logic

With the above definition the grounding function G performs the following mappings,
where a pair (Inf 1, Inf 2) denotes the fact, that inference rule Inf 1 is mapped to Inf 2 by
G:

• (FluidSup, Sup)

• (FluidBoolHoist, BoolHoist)

• (ForallRw, GForallRw)

• (ExistsRw, GExistsRw)

• (ForallHoist, GForallHoist)

• (ExistsHoist, GExistsHoist)

• (ArgCong, GArgCong)

• (Ext, GExt)

• (Choice, GChoice)

Inferences of other rules of HInf are mapped to the identical named counterparts in GHInf .
The rule FluidLoobHoist needs not to be grounded for refutational completeness.
Thus, let Gq(ι) = undef for inferences ι of the rule FluidLoobHoist. Now, the sets of
redundant inferences w.r.t. a given set of clauses can be given.

Definition 24 (Inference Redundancy)
As for clause redundancy, the sets of redundant inferences w.r.t. a given set of clauses
is defined for each level, where each level builds up on the one that comes before it:

• Let GFRedq
I : P(CGF) → P(GFInf q) be the inference redundancy criterion for

level GF, where

GFRedq
I (N) = {ι ∈ GFInf q | prems(ι) ∩ GFRedC(N) ̸= ∅;

or N≺mprem(ι) |= concl(ι)}.

• Let GHRedq
I : P(CGH) → P(GHInf q) be the inference redundancy criterion for

level GH, where

GHRedq
I (N) = {ι ∈ GHInf q | ι is a GArgCong, GExt, or GChoice inference

and concl(ι) ∈ N ∪ GHRedC(N);
or ι is any other inference and

Fq(ι) ∈ GFRedF(q)
I (F(N))}.

• Let HRedI : P(CH) → P(HInf q) be the inference redundancy criterion for level
H, where

HRedI(N) = {ι ∈ HInf | ι is a FluidLoobHoist inference and
G(concl(ι)) ∈ G(N) ∪ GHRedC(G(N));
or ι is any other inference and
Gq(ι) ⊆ GHRedI(G(N)) for all q ∈ Q}.
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4.2.7 Refutational Completeness
Like the completeness proof outlined in Section 4.1.5, the proof is divided into three
steps:

1. First, static refutational completeness is proved for GFInf .

2. By transforming the first-order model obtained by the previous step to a higher-order
model, the static refutational completeness of GHInf is obtained.

3. The result from step 2 is lifted to HInf by instantiating the saturation framework
described in Chapter 3.

In the following I will give a proof sketch of each step.

Ground First-Order Level

The result of static refutational completeness is already sketched in Section 4.1.5. However,
the theorem can be adapted to the context of the higher-order completeness proof, such
that it can be used in the subsequent step. In the following, let R∗

M be the term rewriting
system induced by the first-order clause set M as defined in [Num+21].

Theorem 3 (Ground first-order static refutational completeness
[Ben+23b, Theorem 52])

Let q ∈ F(Q) be a first-order parameter-triple and let N ⊆ CGF be a clause set
saturated w.r.t. GFInf q and GFRedq

I such that ⊥ ̸∈ N . Then, the interpretation
(U , J ) induced by the interpretable rewrite system R∗

N\GFRedC(N) is a model of N ,
i.e., the inference system GFInf q is statically refutationally complete w.r.t. |= and
(GFRedI, GFRedC).

Ground Higher-Order Level

Let q = (GHLitSel, GHBoolSel, GHWit) ∈ Q be a parameter triple and let N ⊆ CGH.
By definition, all terms of TGH are Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal, and thus N is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal. To show
static refutational completeness of GHInf q, N is assumed to be saturated w.r.t. GHInf q

and GHRedq
I and moreover ⊥ ∈ N . By construction, F(N) is also saturated w.r.t.

GFInf F(q) and GFRedF(q)
I . By Theorem 3, the interpretation R = (U , J ) obtained from

the interpretable rewrite system R∗
F(N)\GFRedC(F(N)) is a model of F(N).

Now, the first-order model (U , J ) needs to be transformed into a higher-order model that
satisfies N . To this end, a higher-order interpretation IGH = (UGH, J GH

ty , J GH, (L)GH)
is derived from R∗

F(N)\GFRedC(F(N)). First, the universe UGH needs to be defined. It
must be the case that J GH

ty (→)(D1, D2) is a subset of the function space from D1 to D2
for D1, D2 ∈ UGH. But all the first-order universes Uτ are equivalence classes of terms
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4.2. Extension to Higher-order Logic

modulo R∗
F(N)\GFRedC(F(N)). To repair this issue, two families of functions Eτ and Dτ

are defined by mutual recursion. The function Dτ defines the higher-order domain for
type τ . The type-indexed function Eτ takes as input an element of a first-order universe
Uτ and produces a corresponding element of Dτ . Dτ is defined for each ground type and
UGH is the set of all domains Dτ for ground τ . If τ is a nonfunctional type, let Dτ = Uτ

and E : Uτ → Dτ is the identity. For functional types, the definition is as follows:

Dτ→υ = {φ : Dτ → Dυ | ∃s : τ → υ. ∀u : τ. φ (Eτ ([F(u)]R)) = E ([F(s u)]R)}
Eτ→υ : Uτ→υ → Dτ→υ

Eτ→υ([F(s)]R) (E([F(u)]R)) = Eυ ([F(s u)]F )

To show well-definedness of Eτ→υ and Dτ→υ the following proof obligations have to be
discharged:

• Eτ→υ is bijective.

• Every element of Uτ→υ is of the from [F(s)]R for some s ∈ TGH.

• Every element of Dτ is of the form Eτ ([F(u)]R) for some u ∈ TGH.

• The definition does not depend on the choice of s and u.

• It holds that Eτ→υ ([F(s)]R) ∈ Dτ→υ for every s ∈ TGH.

In [Ben+23b] this is accomplished with a rather complex proof using the computability
path order [BJR15], Kőnig’s lemma [Kőn27], and well-founded induction on terms and
substitutions using the left-to-right lexicographic order composed of three different notions
of size of λ-terms.

With the well-behaved definition of Eτ and Dτ in place, the higher-order universe is
defined as UGH = {Dτ | τ is ground}. Since [⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤0] is identified with 1 and [⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥0] is identified
with 0, it follows that Do = {0, 1} ∈ UGH as required in Section 2.5.1. The definition
of the type interpretation is completed by J GH

ty (κ)(Dτ̄ ) = Uκ(τ̄) for all κ ∈ Σty. The
interpretation function J GH is defined as follows. For nonquantifier symbols f : Πᾱm. τ
let J GH(f, Dῡm) = E(J (f ῡm

0 )). For quantifiers the definitions are

J GH(∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀, Dτ )(f) = min{f(a) | a ∈ Dτ }
J GH(∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃, Dτ )(f) = max{f(a) | a ∈ Dτ }

where f ∈ J GH
ty (→)(Dτ , {0, 1}).

Then, it can be shown that these definitions fulfill all requirements (J1) to (J11). Finally,
the designation function L needs to be defined in a way that the interpretation IGH is
proper. A designation function receives as input a valuation ξ and a λ-expression λx. t.
From these arguments, a grounding substitution θ is chosen that satisfies Dαθ = ξ(α)
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and E ([F(yθ)]R) = ξ(y) for all type variables α and all term variables y in λx. t.
The first equation can be fulfilled because in the definition of IGH there is a none-
to-one correspondence between ground types and domains. The second equation can
be obtained by choosing a ground first-order term s such that [s]ξ

R = E−1(ξ(y)) and
defining yθ = F−1(s). The designation function is then defined as LGH(ξ, (λx. t)) =
E

([F(((λx. t)
|↓

Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈)θ)]R

)
.

Subsequently, it is shown that IGH is proper and is moreover a model of N . Because it
was assumed that N is saturated and also ⊥ ̸∈ N , the static refutational completeness
follows.

Theorem 4 (Ground static completeness [Ben+23b, Theorem 62])
GHInf q is statically refutationally complete w.r.t. |= and (GHRedq

I , GHRedC) for every
parameter triple q ∈ Q.

Nonground Higher-Order Level

In the last step of the completeness proof, the static refutational completeness of GHInf
is lifted using the saturation framework and the dynamic refutational completeness of
HInf can be obtained. To make this possible, several proof obligations have to be taken
care of:

• The relation |= is a consequence relation, i.e., conditions (C1) to (C4) must be
shown.

• The pair (GHRedq
I , GHRedC) is a valid redundancy criterion, i.e., properties (R1)

to (R4) must hold.

• The function Gq is a valid grounding function for every q ∈ Q, i.e., requirements
(G1) to (G3) must be fulfilled.

Theorem 50 of [Wal+22] can be instantiated for the current context in order to lift the
completeness result.

Theorem 5 (Lifting theorem [Ben+23b, Theorem 66])
Assume that GHInf q is statically refutationally complete w.r.t. (GHRedq

I , GHRedC)
for every parameter triple q ∈ Q. If for every N ⊆ CH that is saturated w.r.t. HInf and
HRedI there exists a q ∈ Q such that GHInf q(G(N)) ⊆ Gq(HInf (N))∪GHRedq

I (G(N)),
then also HInf is statically refutationally complete w.r.t. (HRedI, HRedC) and |=G .

In the following, let N ⊆ CH be a set of clauses that is saturated w.r.t. HInf . In order to
use the above theorem, a q ∈ Q needs to be constructed with the property that every
inference ι ∈ GHInf q with prems(ι) ∈ G(N) is either liftable or redundant. More formally,
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ι is liftable if ι is a Gq-ground instance of an HInf -inference from N , and ι is redundant
if ι ∈ GHRedq

I (G(N)). The parameter triple q = (GHLitSel, GHBoolSel, GHWit) ∈ Q
is defined in the following way. Every ground clause C ∈ G(N) must have at least one
corresponding clause D ∈ N such that C = Dθ for some grounding substitution θ. For
every C such a clause D is chosen, which is denoted by G−1(C). The functions GHLitSel
and GHBoolSel are then chosen such that the selections in C correspond to the selections
in G−1(C) according to Definition 20.

It remains to define the witness function GHWit. To this end, let C ∈ CGH and let
p be a green position of a quantifier-headed term C|p = Q⟨τ⟩ t, let D = G−1(C) and
let θ be a grounding substitution, where Dθ = C. Denote with p′ the green position
corresponding to p in D. If there is no such position p′, GHWit(C, p) is defined as an
arbitrary term that fulfills the order requirements. Otherwise, let α and x be fresh
variables and θ is extended to θ′ by defining αθ′ = τ and xθ′ = t. Then, θ′ is a unifier of
Q⟨α⟩ x and D|p′ and thus there exists an idempotent σ ∈ CSU(Q⟨α⟩ x, D|p′) such that
for some ρ and all free variables x in FV(D) ∪ {x, α} it holds that xσρ = xθ′. If Q = ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀,
let GHWit(C, p) = skΠᾱ. ∀x̄. ∃z. ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬(xσ z)⟨ᾱ⟩ x̄θ. For the case Q = ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃, let GHWit(C, p) =
skΠᾱ. ∀x̄. ∃z. (xσ z)⟨ᾱ⟩ x̄θ, where ᾱ are the free type variables and x̄ are the free variables
occurring in D|p′ , respectively, in order of first occurrence.

Having defined the parameter triple q, it can be shown that all inferences from G(N) are
either liftable or redundant. The following lemma demonstrates a crucial property of the
constructed parameter triple q = (GHLitSel, GHBoolSel, GHWit).

Lemma 2 ([Ben+23b, Lemma 67])
Let Cθ ∈ CGH with C = G−1(Cθ) and let σ and ρ be substitutions, where xσρ = xθ
for all x ∈ FV(C). If a literal in Cθ is (strictly) ⪰-eligible w.r.t. GHLitSel, then
the corresponding literal in C is (strictly) ≿-eligible w.r.t. σ and HLitSel. If a green
position in Cθ is ⪰-eligible w.r.t. GHBoolSel and there exists a corresponding green
position in C, then the corresponding position in C is ≿-eligible w.r.t. σ and HBoolSel.

I will not retrace in detail the lifting of every inference in the calculus, as this is beyond
the scope of this thesis. Nonetheless, I show how the lifting is done by going through
the proof that shows how Sup inferences from GHInf are either lifted to a Sup or a
FluidSup inference on HInf or are shown to be redundant. Note that this proof is
not given in [Ben+23b] but in [Ben+21] because only the definition of deeply occurring
variables has changed, which does not alter the validity of the proofs.
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Lemma 3 (Lifting of Sup inferences ([Ben+21, Lemma 52]))
Let ι ∈ GHInf be a Sup inference. The inference ι has to look as follows

Dθ, ,, ,
D′θ ∨ tθ ≈ t′θ

Cθ, ,, ,
C ′θ ∨ sθ tθ p ≈̇ s′θ

D′θ ∨ C ′θ ∨ sθ t′θ p ≈̇ s′θ
Sup

with G−1(Dθ) = D = D′∨t ≈ t′ ∈ N , sθ = sθ tθ p, and G−1(Cθ) = C = C ′∨s≈̇s′ ∈ N .
Denote with p′ the longest prefix of p that is a green position of s, which always exists
because ε is a green position of every term, and let u = s|p′ . Then, it holds that ι is
liftable if one of the following conditions is satisfied:

(i) u is a deeply occurring variable in C; or

(ii) p = p′ and the variable condition holds for D and C; or

(iii) p ̸= p′ and u is not a variable.

The proof goes as follows, assuming that every term is represented by its η-short β-normal
representative. The inference conditions of Sup for ι are that tθ ̸⪯ t′θ, p is ⪰-eligible in
Cθ, Cθ ̸⪯ Dθ, tθ ≈ t′θ is strictly ⪰-eligible in Dθ, tθ is not a fully applied logical symbol,
and if t′θ = ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, the position p is at the top level of a positive literal.

We have that uθ = sθ|p′ from lemma 51 of [Ben+21], which shows that (t|p)σ
|↓

βη
=

(tσ
|↓

βη
)|p for all terms t, substitutions σ and green positions p of both t and tσ

|↓
βη

. We
proceed by a case split on whether p = p′, u is not fluid, and u is not a variable deeply
occurring in C. In the first case, it will be shown that ι is liftable to a Sup inference of
HInf . The second case assumes that either p ≠ p′, u is fluid, or u is a variable deeply
occurring in C and concludes that ι is liftable to a FluidSup inference of HInf .

Case 1: Assume that p = p′, u is not fluid, and u is not a variable deeply occurring in C.
It follows that uθ = sθ|p′ = sθ|p = tθ. Because θ is a unifier of u and t, there exists some
idempotent σ ∈ CSU(t, u) such that there is some substitution ρ with the property that
for every x ∈ FV(D) ∪ FV(C) it holds that xσρ = xθ. The inference ι will be lifted to
the following Sup inference ι′ ∈ HInf , which is given by

D′ ∨ t ≈ t′ C ′ ∨ s u p ≈̇ s′

(D′ ∨ C ′ ∨ s t′
p ≈̇ s′)σ Sup

It is the case that ι is the σρ-ground instance of ι′. It remains to show that the inference
conditions of are liftable, as described next.

• Condition 1: Since u is not fluid, condition 1 is satisfied.

• Condition 2: Also, since u is not a variable deeply occurring in C, condition 2 is
satisfied, too.
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• Condition 3: In this case, since p = p′, condition (iii) cannot hold. Moreover,
because of u is not a variable occurring deeply in C, it follows that condition (i)
cannot hold either. Thus, it must be the case that the variable condition holds for
D and C and hence condition 3 of Sup is satisfied.

• Condition 4: By definition, σ ∈ CSU(t, u).

• Condition 5: From tθ ̸⪯ t′θ follows that tθ ̸≾ t′θ.

• Condition 6: Since position p is ⪰-eligible in Cθ it follows that p is ≿-eligible in C
w.r.t. σ by Lemma 2.

• Condition 7: From Cθ ̸⪯ Dθ follows that Cθ ̸≾ Dθ.

• Condition 8: Since tθ ≈ t′θ is strictly ⪰-eligible in Dθ it follows that t ≈ t′ is
strictly ≿-eligible in D w.r.t. θ by Lemma 2.

• Condition 9: Because tθ is not a fully applied logical symbol it follows that tσ is
not a fully applied logical symbol, either.

• Condition 10: Assume that t′σ = ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. This implies that t′σρ = t′θ = ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, which in
turn gives that p is at the top level of a positive literal.

Case 2: Assume that (a) p ̸= p′, (b) u is fluid, or (c) u is a variable deeply occurring in
C. First, it is shown that (a) implies (b) or (c). To this end, suppose that (a) is true
but neither (b) nor (c) holds. Thus, condition (iii) must hold, that is, u is not variable.
Additionally, because (b) does not hold, u cannot be of the form y ūn for some variable y
and n ≥ 1. If u = f⟨τ̄⟩ s1 . . . sn with n ≥ 1, then uθ = f⟨τ̄ θ⟩ s1θ . . . snθ. It cannot be the
case that n = 0, since this would imply that p = p′, contradicting (a). Hence, n ≥ 1 and
there must be some 1 ≤ i ≤ n such that p′.i is a prefix of p and s|p′.i is a green subterm
of s, which contradicts the definition of p′. Thus, u must be a λ-expression. But because
tθ is a proper green subterm of uθ, it follows that uθ is also not a λ-expression, which
leads to the desired contradiction. Hence, we can assume that (b) or (c) holds.

Let p = p′.p′′, let z be a fresh term variable, and let θ′ = θ ⊎ {z ꜗ→ λy. (sθ|p′) y p′′}.
Then, (z t)θ′ = (sθ|p′) tθ p′′ = sθ|p′ = uθ = uθ′. Because θ′ is a unifier of u and z t, there
exists an idempotent σ ∈ CSU(z t, u) such that for some substitution ρ, it holds that
xσρ = xθ′ for x ∈ FV(C) ∪ FV(D) ∪ {z}. The inference ι will be lifted to the following
FluidSup inference ι′ ∈ HInf , which is given by

D′ ∨ t ≈ t′ C ′ ∨ s u p′ ≈̇ s′

(D′ ∨ C ′ ∨ s z t′
p′ ≈̇ s′)σ FluidSup

It is the case that ι is the σρ-ground instance of ι′. It remains to show that the inference
conditions of are liftable, as described next.

• Condition 1: Since either (b) or (c) holds, the condition is satisfied.
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• Condition 2: It holds that z is a fresh variable.

• Condition 3: By construction, σ ∈ CSU(z t, u).

• Condition 4: Assume that (z t)σ = (z t′)σ. It follows that (z t)σρ = (z t′)σρ,
which implies that (z t)θ′ = (z t′)θ′. But since tθ′ = tθ ̸= t′θ = t′θ′, we have that
(z t)θ′ ̸= (z t′)θ′, obtaining a contradiction. Thus, (z t)σ ̸= (z t′)σ.

• Conditions 5 to 10: As in case 1.

This concludes the proof of Lemma 3. It can then be shown that every Sup inference that
is not captured by this lemma is redundant. This fact is given in the following lemma.

Lemma 4 ([Ben+21, Lemma 53])
Let ι ∈ GHInf be a Sup inference such that prems(ι) ⊆ G(N) which is not captured
by Lemma 3. Then ι is redundant, i.e., ι ∈ GHRedq

I (G(N)).

At this point, every inference of GHInf is either liftable or redundant. Thus, Theo-
rem 5 can be applied to obtain static refutational completeness of HInf w.r.t. |=G and
(HRedI, HRedC). Using the saturation framework [Wal+22], the dynamic refutational
completeness of HInf w.r.t.|=G and (HRedI, HRedC) is derived.

Since, the goal is to have refutational completeness w.r.t. Tarski entailment |= instead of
Herbrand entailment |=G , it can be shown that N |= ⊥ if and only if N |=G ⊥ for every
Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal set of clauses N ⊆ CH. Thus, dynamic refutational completeness for HInf
w.r.t. |= and (HRedI, HRedC) is obtained, with the condition that the initial clause set
must be Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal. Moreover, this result can be used to show dynamic refutational
completeness also for the Skolem-aware entailment |≈, provided that the initial clause set
does not contain any Skolem symbols.

4.2.8 Saturation Procedure
In this section, the fundamental mechanism of Zipperposition’s saturation procedure is
given, as described in [Vuk+21]. As in the first-order case, it is a given clause procedure
but due to the complications regarding higher-order unification it is more involved.
That is, an inference rule no longer has a single conclusion but a potentially infinite
number of conclusions if the unification problem yields an infinite stream of incomparable
unifiers. Thus, it is not possible to exhaustively enumerate these unifiers for a single
inference rule because one can get stuck without getting a refutation because another
inference rule needed to be applied. Some provers, for example Leo-III and Vampire 4.4,
choose to enumerate only a subset of all possible conclusions of inferences. This leads to
incompleteness and also the right size of the subset is very hard to choose. If the size is
too big, the prover may spend too much time trying to solve unification constraints and
if the size is too small, the unifiers may not be found that are needed for a successful
proof.
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To circumvent this issue, Zipperposition uses a modification of a given clause procedure,
where the computation of unifiers and the application of inferences are interleaved. This
modification alone does not solve the problem described above. The enumeration of
elements of CSUs needs to be fair, in the sense that the prover tries to compute new
elements for all given CSUs and does not get stuck indefinitely at a single unification
problem. In Zipperposition, this is achieved by representing the set CSU(t, u) as a lazily
computed stream [Oka99, Section 4.2]. Each element of the stream is either the empty
set ∅ or a set consisting of a single unifier of t and u. This design is used because the
unification procedure needs to return the empty set after a given amount of computation
steps if no new unifier has been found.

Algorithm 2 (Higher-order given clause procedure)
function ExtractClause(Q, stream)

maybe clause ← pop and compute first element of stream
if stream is not empty then

add stream to Q with an increased weight
return maybe clause

function HeuristicProbe(Q)
(collected clauses, i) ← (∅, 0)
while i < Kbest and Q is not empty do

(maybe clause, j) ← (∅, 0)
while J < Kretry,Q is not empty, and maybe clause = ∅ do

stream ← pop the lowest weight stream in Q
maybe clause ← ExtractClause(Q, stream)
j ← j + 1

collected clauses ← collected clauses ∪ maybe clause
i ← i + 1

return collected clauses

function FairProbe(Q, num oldest)
collected clauses ← ∅
oldest streams ← pop num oldest oldest streams from Q
for stream in oldest streams do

collected clauses ← collected clauses ∪ ExtractClause(Q, stream)
return collected clauses
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function ForceProbe(Q)
collected clauses ← ∅
while Q is not empty and collected clauses = ∅ do

collected clauses ← FairProbe(Q, |Q|)
if Q and collected clauses are empty then status ← Satisfiable
else status ← Unknown
return (status, collected clauses)

function GivenClause(P )
A ← ∅
Q ← empty priority queue
status ← Unknown
i ← 0
while status = Unknown do

if P is not empty then
given ← pop chosen clause from P and simplify it using A
if given = ⊥ then status ← Unsatisfiable
else

A ← A ∪ {given}
for stream in streams of inferences between given and clauses in A do

if stream is not empty then P ← P ∪ ExtractClause(Q, stream)
i ← i + 1
if i mod Kfair = 0 then P ← P ∪ FairProbe (Q, ⌊i/Kfair⌋)
else P ← P ∪ HeuristicProbe(Q)

else // P is empty
(status, forced clauses) ← ForceProbe(Q)
P ← P ∪ forcedClauses

return status

There is much information to unpack in Algorithm 2. First of all, as in Algorithm 1, the
variables P and A contain the set of passive and active clauses, respectively. The given
clause procedure is invoked by calling GivenClause, where parameter P is the initial
clause set. This function operates as follows. First, the active set A is initialized to be
empty and Q is an empty priority queue that will contain streams of clauses with some
corresponding weight. In a loop, a clause is chosen from P and simplified. If it is the
empty clause, the status gets set to Unsatisfiable, which is subsequently returned as the
result. Otherwise, the given clause is added to A. Then, for every stream which is a result
of an inference between given and a clause of A, the result of ExtractClause(Q, stream)
is added to P . The function ExtractClause computes the first element of stream,
adds the stream to Q and returns the computed element of the stream. Note that this
element may either be the empty set or a singleton set {C} containing a clause C, which
is a result of the inference that stream represents.

Back in GivenClause, the loop counter is incremented and then checked if FairProbe
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should be called. How often FairProbe is called is determined by the parameter Kfair,
which is 70 by default. In FairProbe, the num oldest streams are removed from Q and
for every such stream ExtractClause is called. This is essential to achieve fairness,
because otherwise the oldest streams may never be accessed. If FairProbe is not called
in the current iteration, the result of HeuristicProbe is added to P . This function
tries to extract up to Kbest clauses from the streams that are most promising w.r.t. to
the assigned weight. If the first element of the most promising stream is ∅, the stream
is inserted again into Q and the next stream is chosen. This procedure is iterated until
either Kretry times the ∅ has been encountered or a stream produced a new clause.

If P is empty, the function ForceProbe is called to eagerly search for a new clause. If
no new clauses were found and Q is the empty queue, the status can be set to Satisfiable.
Otherwise, if Q is not empty or new clauses could be produced, the status Unknown is
returned along with the newly produced clauses.

If the employed unification procedure coincides with standard first-order unification on
first-order terms, this given clause procedure behaves as Algorithm 1 when invoked on a
first-order problem.
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CHAPTER 5
Constraint Superposition Calculus

One weakness of the presented superposition calculus for higher-order logic is the need
to enumerate elements of CSUs. In particular, the unification of terms that are variable-
headed, called flex-flex pairs due to the flexibility in structure permitted by the variable
heads, are a source of explosiveness w.r.t. the search space. Even the unification problem
{x y

?= z a}, where x, y, and z are variables and a is a constant symbol, has infinitely
many unifiers that are pairwise incomparable. Due to restrictions regarding ordering and
fairness, it is necessary to also enumerate solutions to such unification problems.
But it is not always necessary to compute all solutions to such problems. Consider a
unification problem {s1

?= t1, . . . , si
?= ti} where every term si and ti is of the form λx̄. y ū

such that y is a free variable. For every base type υ, let zυ be a fresh variable of type υ
that does not occur in the unification problem. A solution to this unification problem is
a substitution θ that maps every variable y : τ̄n → υ, where υ is a base type, occurring
as a head, to a term of the form λx̄n. zυ. It is easy to see that this is indeed a unifier of
every pair si

?= ti. Using η-long form, let si = λx̄m. y ūn and let ti = λx̄m. z r̄k. Because
of the use of η-long, the number of leading λ-binders has to match. Then, applying θ
yields the following result:

(
si, ,, ,

λx̄m. y ūn )θ ?= (
ti, ,, ,

λx̄m. z r̄k )θ
λx̄m. yθ,,,,
apply definition of θ

ūnθ
?= λx̄m. zθ,,,,

apply definition of θ

r̄kθ

λx̄m. (λx̄n. zυ) ūnθ, ,, ,
β-reduce

?= λx̄m. (λx̄k. zυ) r̄kθ, ,, ,
β-reduce

λx̄m. zυ
?= λx̄m. zυ

Since both terms si and ti were arbitrary, it follows that θ is a solution to the unification
problem. Huet developed an algorithm that solves unification problems until only flex-flex
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pairs remain [Hue75], which is called Huet’s preunification algorithm. He then used this
approach for a constrained resolution calculus for higher-order logic [Hue72], which is
refutationally complete w.r.t. Henkin semantics if infinitely many extensionality axioms
are given [Ben02, Theorem 9]. In this calculus higher-order unification can be postponed
such that when deriving the empty clause with a set of unification constraints it is tested
if the constraints permit a solution. Because of this the enumeration of unifiers for
flex-flex pairs is no longer necessary. The goal of this work is to use this approach for
the presented superposition calculus for higher-order logic, which gives rise to the name
constraint superposition calculus.

This chapter is based on unpublished work of Alexander Bentkamp, Jasmin Blanchette,
Uwe Waldmann, and myself. It is structured as follows. The first two chapters discuss
Huet’s preunification algorithm and its optimized variant, which is implemented in
Zipperposition. Another notable change is a switch to the locally nameless representation
for λ-terms [Cha11], which is discussed in Section 5.3. The following section defines
parameters of the constraint superposition calculus such as term order and selection
functions. Afterwards, the inference rules are given and the redundancy criterion is defined.
In Section 5.7 a proof sketch of refutational completeness is given. The last two sections
describe the employed saturation algorithm and the corresponding implementation in
Zipperposition.

5.1 Huet’s Preunification Procedure
Before the preunification of Huet can be discussed, the needed terminology needs to be
introduced. As already described in Section 4.2.1, a unification problem, also called system,
is a multiset of unordered term pairs of the same type, written as {s1

?= t1, . . . , sn
?= tn}.

The pair x
?= t is said to be in solved form w.r.t. unification problem {x

?= t} ∪ E if x
is variable and x ̸∈ FV(E) ∪ FV(t). A system is in solved form if all its pairs are in
solved form. Such a system always looks has the form {x1

?= t1, . . . , xn
?= tn}, where

x1, . . . , xn are pairwise distinct variables and {x1, . . . , xn} ∩ Un
i=1 FV(ti) = ∅. It holds

that a system which is in solved form is always a set rather than a multiset because every
free variable only occurs once on one side of a unification constraint. Moreover, it is
trivial to construct a substitution θ that is a solution of a solved system E. To see this,
let E = {x1

?= t1, . . . , xn
?= tn} be system in solved form. Then, a substitution is induced

by E, denoted by θE , where θE = {x1 ꜗ→ t1, . . . , xn ꜗ→ tn} is an idempotent most-general
unifier of E [SG89, Lemma 3.4].

Huet’s preunification algorithm operates on η-long λ-terms that are in so-called head
normal form. A λ-term t is in head normal form if it is of the form λx̄. a t̄, where a
is either a free variable, a bound variable or a constant. If this is the case, a is called
the head of t. If a is free variable, it is called a flex head and otherwise it is called a
rigid head. A term is called flex (rigid) if its head is flex (rigid). A unification constraint
s

?= t is either called rigid-rigid, flex-rigid, or flex-flex, depending on the heads of s and t.
Moreover, the preunification algorithm assumes that λ-terms in head normal form are
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also given in their η-long form. This has the effect that for every two terms λx̄n. t and
λx̄m. s that have the same type it follows that n = m. If E is in pre-solved form, let
θE denote the substitution equal to θE′ , where E′ is the restriction of E to unification
constraints in solved form.

A unification constraint s
?= t is in pre-solved form w.r.t. unification problem E if it is in

solved form w.r.t. E or s and t are both flex terms. A system is in pre-solved form if
every unification constraint is in pre-solved form. A substitution θ is a preunifier of s
and t if sθ and tθ only differ at subterms that are variable-headed [Pre98]. A complete
set of preunifiers on a set X of variables for two terms s and t is a set U of preunifiers of
s and t, such that for every preunifier θ of s and t, there exists some ρ ∈ U and some σ
such that xρσ and xθ only differ at subterms that are variable-headed for every x ∈ X.

When solving flex-rigid constraints λx̄. y t̄
?= λx̄. a s̄, where y is a flex head and a is a

rigid head, it must hold that if θ (pre-)solves the pair, then (λx̄. y t̄)θ must be headed by
a as well, since a substitution does not change a rigid head. There are two possibilities
to choose, when searching for an instantiation for y:

• If a is some constant f, then y is replaced by a term that is headed by f. This is
called imitation.

• Otherwise, an argument of y is used as a replacement for y, which is called projection.

The detailed notions are introduced next.

Definition 25 (Imitation Binding [VBN20])
Let y be a free variable with type τ̄n → υ, where υ is not functional, and let f be a
constant of type γ̄n → υ, where n, m ≥ 0. The imitation binding of f for y, denoted by
IB(f, y), is then defined as

{y ꜗ→ λx̄n. f (y1 x̄n) . . . (ym x̄n)}

where ȳm are fresh free variables.

The involved types are as follows:

• Every bound variable xi is of type τi.

• Every fresh free variable yi is of type τ̄n → γi.
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Definition 26 (Projection Binding [VBN20])
Let y be a free variable with type τ̄n → υ, where υ is not functional, n > 0, and let i
be such that 1 ≤ i ≤ n and τi = γ̄m → υ. The ith projection binding of y, denoted by
PB(i, y), is then defined as

{y ꜗ→ λx̄n. xi (y1 x̄n) . . . (ym x̄n)}

where ȳm are fresh free variables.

If τi is not of the form γ̄m → υ, then PB(i, y) is not defined. The involved types are
as in Definition 25.

Originally, Huet developed his preunification algorithm using two procedures called Simpl
and Match [Hue75]. However, a more modern representation of this algorithm and also
other unification procedures is to use a set of rules that define transitions [SG89; VBN20].
Thus, Algorithm 3 is formalized as a set of transitions. Given two terms s and t that need
to be unified, the procedure starts with the unification problem {s

?= t} and builds a tree,
where {s

?= t} is the root. A node is a leaf node if it is ⊥ or it is a system in solved form.
Otherwise, all possible transitions are applied to the node, which produce its child nodes.
With this approach various kinds of tree search algorithms can be used to enumerate
preunifiers. For transitions, where the resulting system is of the form {y

?= t} ⊎ E, where
y ̸∈ FV(t) ∪ FV(E), the variable y is not written in η-long form in order to emphasize
that this pair is in solved form and should not be considered again for transitions. This
is the only exception, where terms are not represented in η-long form.

Transitions may be applied in any order, but a good heuristic for an implementation is to
first check if Fail is applicable to cut the search tree as early as possible. Afterwards, rules
Delete, Decompose, and Bind should be applied as often as possible before the explosive
rules Imitate and Project are considered.
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Algorithm 3 (Huet’s preunification algorithm)
Fail {λx̄. a s̄

?= λx̄. b t̄ } ⊎ E −■→ ⊥
where a and b are different rigid heads

Delete {t
?= t} ⊎ E −■→ E

Bind {λx̄. y x̄
?= t} ⊎ E −■→ {y

?= t} ⊎ Eθ
where y is a flex head, y ∉ FV(t), and θ = {y ꜗ→ t}

Decompose {λx̄. a s̄m
?= λx̄. a t̄m} ⊎ E −■→ {λx̄n. si

?= λx̄n. ti | 1 ≤ i ≤ m} ⊎ E
where a is a rigid head

Imitate {λx̄. y s̄
?= λx̄. a t̄ } ⊎ E −■→ {y

?= yθ} ⊎ Eθ
where a is some constant g and θ is an imitation of g for y, i.e., θ = IB(g, y)

Project {λx̄n. y s̄
?= λx̄n. a t̄ } ⊎ E −■→ {y

?= yθ} ⊎ Eθ
where a is a rigid head, 1 ≤ i ≤ n, and θ is a projection for y w.r.t. i,
that is, θ = PB(i, y)

Huet’s preunification algorithm was proven to be sound and complete. In the following,
−■→∗ denotes the reflexive-transitive closure of the transition relation −■→ defined in
Algorithm 3.

Theorem 6 (Soundness of Huet’s preunification algorithm
[SG89, Theorem 5.6])

Let E and E′ be unification problems, such that E −■→∗ E′ and E′ is in pre-solved
form, then θE′ |FV(E) is a preunifier of E.

Theorem 7 (Completeness of Huet’s preunification algorithm
[SG89, Theorem 5.7])

If σ is a preunifier of unification problem E, there exists a sequence of transitions
E −■→∗ E′, where E′ is in pre-solved form and θE′ |FV(E) is more general than σ.

Thus, it is possible to employ Huet’s preunification algorithm to enumerate the set of
preunifiers of two terms.

5.2 Optimized Preunification Procedure
There are several possible optimizations that can be applied to Algorithm 3, that are also
presented in [VBN20]. First of all, the algorithm is changed to operate on raw λ-terms.
That is, λ-terms without implicit α-equivalence. Moreover, it is no longer assumed that
terms are in head normal form, as this will be only lazily enforced. Additionally, terms
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are also not assumed to be in η-long form. This is only needed for the outermost term and
it would be unnecessary to always give all subterms in η-long form. This property is also
going to be lazily enforced. To this end, let t

|↓
h denote the term that is obtained from t

by repeated β-reduction of the leftmost outermost redex until the term is in head normal
form. Note that this can also be achieved by computing t

|↓
β
, but it is simply not needed

to β-reduce the whole term. Rules that enforce the naming of bound variables, outermost
η-expansion, and reduction to head normal form are Normalizeαη and Normalizeβ .

A further improvement is that a state is not represented by a single unification problem
E, but a rather a pair (E, θ) consisting of a unification problem E and a substitution
θ that represents the current partial solution at this state. This has the effect that in
rules such as Bind, Imitate, or Project a substitution does not need to be applied to the
whole unification problem, but rather composed with the substitution of the current
node. Because of this, a new rule Dereference is introduced that applies the substitution
to a flex head to ensure that the head agrees with the corresponding substitution.

Last, but not least, oracles are supported. An oracle is a procedure that enumerates all
elements of a CSU of a decidable unification fragment. Such decidable fragments are
for example first-order, pattern [Nip93], functions-as-constructors [LM21], and fixpoint
[Hue75] unification.

The improved algorithm is given in Algorithm 4. In contrast to Algorithm 3, transitions
may no longer be applied in any order, but more expensive rules are only allowed if other
rules are not applicable. This is also used to normalize raw λ-terms, as described above,
before other rules may inspect the terms. When enumerating preunifiers for terms s and
t, the procedure starts with ({s

?= t}, id) as the root node, where id denotes the identity
substitution. A leaf node is either a substitution, which is a preunifier of s and t, or ⊥,
which denotes failure of the corresponding path. Otherwise, the children of an internal
node are computed using the given transitions of the algorithm.
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Algorithm 4 (Optimized preunification algorithm)
Normalizeαη ({λx̄m. s

?= λȳn. t} ⊎ E, θ) −■→ ({λx̄m. s
?= λx̄m. t′ xn+1 . . . xm} ⊎ E, θ)

where m ≥ n, x̄m ̸= ȳn, and t′ = t{y1 ꜗ→ x1, . . . , yn ꜗ→ xn}
Normalizeβ ({λx̄. s

?= λx̄. t} ⊎ E, θ) −■→ ({λx̄. s
|↓

h
?= λx̄. t

|↓
h} ⊎ E, θ)

where s or t is not in head normal form

Dereference ({λx̄. y s̄
?= t} ⊎ E, θ) −■→ ({λx̄. (yθ) s̄

?= t} ⊎ E, θ)
where y is a flex head and y ≠ yθ

Succeed (E, θ) −■→ θ
where none of the previous rules are applicable and all unification
constraints in E are flex-flex

Fail ({λx̄. a t̄
?= λx̄. b s̄} ⊎ E, θ) −■→ ⊥

where none of the previous rules are applicable
and a and b are different rigid heads

Delete ({t
?= t} ⊎ E, θ) −■→ (E, θ)

where none of the previous rules are applicable

OracleSuccess ({s
?= t} ⊎ E, θ) −■→ (E, ρθ)

where none of the previous rules are applicable, an oracle computed a finite
CSU U for the unification problem {sθ

?= tθ}, and ρ ∈ U .
If multiple oracles found a CSU, only one is used

OracleFail ({s
?= t} ⊎ E, θ) −■→ ⊥

where none of the previous rules are applicable and an oracle decided that
there exists no solution for the unification problem {sθ

?= tθ}
Decompose ({s

?= t} ⊎ E, θ) −■→ ({λx̄. si
?= λx̄. ti | 1 ≤ i ≤ m} ⊎ E, θ)

where none of the previous rules are applicable, s = λx̄. a s̄m,
t = λx̄. a t̄m, and a is a rigid head

Imitate ({λx̄. y s̄
?= λx̄. a t̄ } ⊎ E, θ) −■→ ({λx̄. y s̄

?= λx̄. a t̄ } ⊎ E, ρθ)
where a is some constant g and ρ is an imitation of g for y, i.e., ρ = IB(g, y),
and none of the rules Normalizeαη to Decompose are applicable

Project ({λx̄. y s̄
?= λx̄. a t̄ } ⊎ E, θ) −■→ ({λx̄. y s̄

?= λx̄. a t̄ } ⊎ E, ρθ)
where a is a rigid head, 1 ≤ i ≤ n, and ρ is a projection for y w.r.t. i,
that is, ρ = PB(i, y) and none of the rules Normalizeαη to Decompose
are applicable

The algorithm is designed such that Imitate and Project can be applied in parallel but only
if previous rules cannot be applied, because these rules introduce many fresh variables,
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which may lead to an explosion of the search space. Dereference partially normalizes the
term w.r.t. to the current substitution, such that the head of the terms in the system are
synchronized with the state of the substitution. That is, it should not be the case that
the algorithm decides that y

?= g is a flex-rigid pair, if yθ is actually a constant w.r.t. to
the corresponding substitution θ.

Often, oracles have the precondition that their input already is in the fragment that is
decided by the oracle. For this algorithm, the oracles have to be able to take any input
and discover if the problem is included in the respective fragment or if this is not the
case [VBN20].

5.3 Locally Nameless Representation
The constraint superposition calculus uses the locally nameless representation for terms
of the simply typed λ-calculus, which is based on De Bruijn indices [de 72]. Not only is
this representation closer to the actual implementation in Zipperposition, but it also has
several other advantages. For example, one gets α-equivalence for free and it allows to
redefine green subterms, such that more terms are covered with the new definition. First,
the syntax is formalized and then also the semantics have to be slightly adapted.

5.3.1 Syntax
In this representation, a bound variable is represented using a De Bruijn index, which is
a natural number that indicates the number of λ-binders that are between the bound
variable and its corresponding λ-binder. The locally named representation of terms, as
defined in Section 2.5, is also called nominal, since bound variables are named. For
example, the nominal term λz. λx. (y z (λx. x) x) would be given by λ λ (y 1 (λ 0) 0) in
locally nameless representation. In this example, the free variable y remains unchanged,
the bound occurrence of z is replaced by the De Bruijn index 1 because the λ-binder
introducing x is between the λ-binder that introduces z. Moreover, in the innermost
λ-expression, the bound occurrence of x is replaced by 0 because the innermost λ-binder
is the last occurrence that binds x. The last occurrence of the bound variable x is also
replaced by 0, but this De Bruijn index refers to the first λ-binder above the subterm
y 1(λ0)0. One advantage of the locally nameless notation is that α-equivalence of λ-terms
is free, because the naming of bound variables is exactly specified by De Bruijn indices.

Note that terms such as λ 1 are most of the time not described, because the De Bruijn
index 1 points to λ-binder that is present in the term. Such occurrences of are called
leaking. Thus, the sets of λ-preterms, λ-terms, preterms, and terms are introduced. In
Section 2.5, also raw λ-terms were defined, but the handling of α-renaming is no longer
needed with the locally nameless representation.

Let (Σty, Σ) be a higher-order type signature, and let V be an infinite set of term variables.
To handle the types of leaking De Bruijn indices, an environment is used to provide
the expected types thereof. An environment E is a list of types over Σty written as

72



5.3. Locally Nameless Representation

[τ0, . . . , τn−1]. The first element of E is τ0 and has index 0, whereas the last element of
E is τn−1 with index n − 1. The length of E, denoted by |E|, is n in this case. When
adding typings to the environment, the notation υ :: E is used to denote the environment
resulting from adding υ to the front of E. The empty list is written as []. Hence,
[τ0, . . . , τn−1] could also be written as τ0 :: τ1 :: . . . :: τn−1 :: [], where :: associates to the
right. The notation E !! n denotes the value at index n of E, where the result is only
defined if n < |E|, that is

(x :: xs) !! n =
{

x if n = 0
xs !! (n − 1) otherwise

The set of λ-preterms w.r.t. environment E is inductively defined as follows:

• A variable x : τ ∈ V is a λ-preterm of type τ w.r.t. E.

• If f : Πᾱn. τ ∈ Σ and ῡn is a tuple of types, then f⟨ῡn⟩ is a λ-preterm of type
τ{ᾱn ꜗ→ ῡn} w.r.t. E.

• If n ∈ N, n < |E|, and E !! n = τ , then the De Bruijn index n⟨τ⟩ is a λ-preterm of
type τ w.r.t. E.

• If t : τ is a λ-preterm w.r.t. υ :: E, then λ⟨υ⟩ t is a λ-preterm of type υ → τ w.r.t.
E.

• If s : υ → τ and t : υ are both λ-preterms w.r.t. E, then s t is a λ-preterm of type
τ w.r.t. E.

If E is the empty list [], it may be omitted. Moreover, if t is a λ-preterm w.r.t. [], then
t is a λ-term, since it contains no leaking De Bruijn indices. Notions like substitution,
subterms, β-reduction, and η-reduction are defined for the locally nameless notation as
expected. The set of (pre)terms consists of the βη-equivalence classes of λ-(pre)terms,
and all notions are lifted to (pre)terms. As a convention, most of the time the β-normal
η-short representative is used when dealing with (pre)terms. For clarity, a nominal
representation may be used, as in sections 5.1 and 5.2.

Note that the subterm of a λ-term is not always a λ-term. To see why this is the
case, consider λ⟨τ⟩ 0, where the subterm 0 is not a λ-preterm w.r.t. [], since the empty
environment provides no type for De Bruijn index 0. When using nominal λ-terms, the
subterm x of λx. x may be recognized as a free variable when given without context.

When working with λ-expressions λ t, it is sometimes needed to replace the De Bruijn
index bound by the outermost λ binder by some variable x to produce a term t′. This
has the effect that the resulting term t′ is still a valid term, while t by itself may not be
a term, because the removal of the λ binder could lead to a leaking De Bruijn index.
This operation is called variable opening and is defined as follows. Given a λ-expression
λ t and a variable x, the variable opening of λ t w.r.t. x, denoted by tx, is given by
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tx = open(t, 0, x). The function open proceeds by recursion on the structure of t as
follows [Cha11]:

open(t, k, x) =

(.......{.......)

x if t is a De Bruijn index equal to k

n if t is a De Bruijn index not equal to k

y if t is a free variable y

open(t1, k, x) open(t2, k, x) if t is an application t1 t2

open(t′, k + 1, x) if t is of the form λ t′

If λ t is a valid term, then also tx is a valid term. The variable x does not need to be
fresh, but it is often required for the concrete application of variable opening.

5.3.2 Semantics
The semantics of the simply typed λ-calculus in locally nameless representation has to
be slightly adapted. Let I = (Ity, J , L) be an interpretation and let ξ be a valuation.
The λ-designation function L is still a mapping from valuations and terms that are
λ-expressions of type τ to elements of [τ]ξ

Ity . The denotation of λ-terms is changed to[λ t]ξ
I = L(ξ, λ t). The interpretation I is proper if [λ t]ξ

I(a) = [tx]ξ[x ꜗ→a]
I for all terms

that are λ-expressions and all valuations ξ, where x is a fresh variable. Note that
interpretations are only defined for terms and not for the set of all preterms.

5.4 Term Orders, Selection Functions, and Eligibility
Like the calculus presented in Section 4.2, the constraint superposition calculus is
parameterized by a strict and a nonstrict term order, and a literal and Boolean subterm
selection function. Their definitions have to be slightly altered, as specified next.

An order ≻ is a strict ground term order if it is a well-founded strict total order on ground
terms and it satisfies conditions (O1) to (O3) of Definition 11, such that the adapted
definition of green subterms is used. Since all quantifiers are preprocessed, condition
(O4) is not required. Strict and nonstrict term orders are defined as in Definition 12,
with the extension that for a strict term order ≻ the following property is required:

(O4’) Let t and s be terms such that t ≻ s and let θ be a substitution such that all
variables in tθ and sθ are nonfunctional. Then it must be the case that if sθ
contains a nonfunctional variable, then tθ must also contain the variable.

A literal selection function is a mapping from a clause C to a subset of its negative
literals, where the literals in the subset are called selected in C. A Boolean subterm
selection function is a function which maps a clause to a subset of its green positions with
Boolean subterms. These positions are called selected in C. The following restrictions
must be obeyed:
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• A subterm must not be selected if it is ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, or it is a variable-headed term.

• A subterm must not be selected if it is at the top-level position on either side of a
positive literal.

Eligibility is used as in Definition 14.

5.5 Inference Rules
Since unification can be postponed and done in tandem with performing inferences, the
enumeration of CSUs is no longer required. However, when doing an inference it may be
useful to try to find either a most general unifier, try to compute the first elements of a
CSU, or perform preunification for a fixed amount of time before storing the unification
constraint as is. One could, for example, check if the unification problem is efficiently
solvable by some oracle. To this end, the notion of complete sets of substitutions is used.

Definition 27 (Complete sets of substitutions)
A complete set of substitutions on a set X of variables for constraints T , denoted by
CSSX(T ), is a set S of substitutions with the following property: For every unifier θ
of T there exists some ρ ∈ S and a substitution σ such that xρσ = xθ for every x ∈ X.
In the following, CSSX(T ) denotes an arbitrary complete set of substitutions for T
and it is assumed that every contained substitution is idempotent on X. As for CSUs,
it is required that every substitution of CSSX(T ) unifies the types of every unification
constraint contained in T . Usually, X is the set of free variables of the involved clauses
and will be left implicit.

Intuitively, every element of a complete set of substitutions is either a solution of the
given constraints or can be extended to be a solution of them. Examples for complete
sets of substitutions are complete sets of unifiers, complete sets of preunifiers, and even
the singleton set containing the identity substitution.

The formal definition of clauses with unification constraints is given next.

Definition 28 (Constrained clauses)
A constraint is a finite set of unordered pairs of terms, written as [[t1

?= s1, . . . , tn
?= sn]].

A constrained clause is a pair consisting of a clause C and a constraint T , denoted by
C[[T ]]. Let CH denote the set of all constrained clauses. If T is empty, we may write
C instead of C[[T ]]. The semantics for constrained clauses is as expected, i.e., C[[T ]]
is satisfied by an interpretation if at least one literal of C is satisfied and for every
constraint t

?= s of T it holds that t and s are syntactically equal.

We define (C[[t1
?= s1, . . . , tn

?= sn]])θ = (Cθ)[[t1θ
?= s1θ, . . . , tnθ

?= snθ]] for all substitu-
tions θ, clauses C and terms t1, . . . tn, s1, . . . sn.

75



5. Constraint Superposition Calculus

The definition of green subterms is changed such that green subterms are a subset of
orange subterms.

Definition 29 (Orange subterms and orange positions)
An orange position is a tuple of natural numbers that indicates an orange subterm as
follows:

• The empty position ε is an orange position of every term t. The orange subterm
at ε is t.

• If p is an orange position of si, then i.p is an orange position of the term a s̄,
where a is either a constant symbol or a De Bruijn index. The orange subterm
at i.p is the orange subterm of si at p.

• If p is an orange position of t, then 1.p is an orange position of the term λ t. The
orange subterm at 1.p is the orange subterm of u at p.

Using the notion of orange subterms, a green subterm is an orange subterm that does
not contain leaking De Bruijn indices. If u is a green subterm of t at position p, we write
t u p, where p may be omitted. For example, consider the term f (x a z) (λ g b (h 0)).
Its orange subterms are the term itself, x a z, λ g b (h 0), g b (h 0), b, (h 0), and 0. On
the other hand, its green subterms are the term itself, x a z, and λ g b (h 0), and b. Note
that the only green subterm under the λ-abstraction is the subterm b because all other
orange subterms contain the De Bruijn index 0. Moreover, the subterm b is not green
w.r.t. to the old definition of green terms as in Section 4.2.

Let ≻ be a strict term order and let ≿ be a nonstrict term order. We also globally fix a
literal selection function HLitSel and a Boolean subterm selection function HBoolSel. In
the following, the rules of the constraint superposition calculus are presented.

D, ,, ,
D′ ∨ t ≈ t′ [[T ]] C u [[S]]
(D′ ∨ C t′ [[T, S, t

?= u]])σ
Sup

1. σ ∈ CSS(T, S, t
?= u);

2. u is not variable-headed;
3. tσ ̸≾ t′σ;
4. the position of u is ≿-eligible in C w.r.t. σ;
5. Cσ ̸≾ Dσ;
6. t ≈ t′ is strictly ≿-eligible in D w.r.t. σ;
7. tσ is not a fully applied logical symbol;
8. if t′σ = ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, the position of u is at the top level of a positive literal.
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D, ,, ,
D′ ∨ t ≈ t′ [[T ]] C u [[S]]

(D′ ∨ C z t′ [[T, S, z t
?= u]])σ

FluidSup

1. σ ∈ CSS(T, S, z t
?= u);

2. u is headed by a functional variable;
3. - 8. conditions 3 to 8 from Sup;

9. z is a fresh variable;
10. (z t′)σ ̸= (z t)σ.

C, ,, ,
C ′ ∨ u ̸≈ u′ [[S]]
(C ′[[S, u

?= u′]])σ
ERes

1. σ ∈ CSS(S, u
?= u′);

2. u ̸≈ u′ is ≿-eligible in C w.r.t. σ.

C, ,, ,
C ′ ∨ u ≈ v′ ∨ u ≈ v [[S]]

(C ′ ∨ v ̸≈ v′ ∨ u ≈ v′[[S, u
?= u′]])σ

EFact

1. σ ∈ CSS(S, u
?= u′);

2. uσ ̸⪯ vσ;
3. u ≈ v is ≿-eligible in C w.r.t. σ.

C, ,, ,
C ′ ∨ s ≈ s′ [[S]]

(C ′ ∨ s x ≈ s′ x[[S]])σ ArgCong

1. σ is the most general type substitution such that sσ is functional (that is,
σ = id if s is functional or {α ꜗ→ (β → γ)} for fresh β and γ if s is of type α
for some type variable α);

2. s ≈ s′ is strictly ≿-eligible in C w.r.t. σ;
3. x is a fresh variable.
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C u [[S]]
(C ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ u ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤[[S]])σ BoolHoist

1. σ is the most general type substitution such that uσ is of Boolean type (that
is, σ = id if u is of Boolean type or {α ꜗ→ o} if u is of type α for some type
variable α);

2. u is neither variable-headed nor a fully applied logical symbol;
3. the position of u is ≿-eligible in C w.r.t. σ;
4. the occurrence of u is not at the top level of a positive literal.

C, ,, ,
C ′ ∨ s ≈ s′ [[S]]

(C ′[[S, s
?= ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, s′ ?= ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤]])σ

FalseElim

1. σ ∈ CSS(S, s
?= ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, s′ ?= ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤);

2. s ≈ s′ is strictly ≿-eligible in C w.r.t. σ.

C u [[S]]
(C ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ x ≈ y[[S, u

?= x ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ y]])σ
EqHoist

C u [[S]]
(C ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∨ x ≈ y[[S, u

?= x ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈ y]])σ
NeqHoist

1. σ ∈ CSS(S, u
?= t), where t is

• x ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ y for EqHoist;
• x ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈ y for NeqHoist.

2. x and y are fresh variables;
3. the position of u is ≿-eligible in C w.r.t. σ;
4. if the head of u is a variable, it must be applied and the affected literal must

be of the form u ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, u ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, or u ≈ v for a variable-headed term v.
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C u [[S]]
(C t′ [[S, t

?= u]])σ
BoolRw

1. σ ∈ CSS(S, t
?= u) and (t, t′) is on of the following pairs, where x is a fresh

variable:

(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)
(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)
(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)
(⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)

(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)
(⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)
(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)
(⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)

(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)
(⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)
(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ →→→→→→→→→→→→→→→→→→→→→→→→→ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)
(⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ →→→→→→→→→→→→→→→→→→→→→→→→→ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)

(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ →→→→→→→→→→→→→→→→→→→→→→→→→ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)
(⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ →→→→→→→→→→→→→→→→→→→→→→→→→ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)
(x ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ x, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)
(x ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈ x, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)

2. the position of u is ≿-eligible in C w.r.t. σ;
3. if the head of u is a variable, it must be applied and the affected literal must

be of the form u ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, u ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, or u ≈ v for a variable-headed term v.

C u [[S]]
(C z ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ x ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤[[S, z x

?= u]])σ
FluidBoolHoist

1. u is headed by a functional variable;
2. z and x are fresh variables;
3. σ ∈ CSS(S, z x

?= u);
4. (z ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)σ ̸= (z x)σ;
5. xσ ̸∈ {⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥};
6. the position of u is ≿-eligible in C w.r.t. σ.

C u [[S]]
(C z ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∨ x ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥[[S, z x

?= u]])σ
FluidLoobHoist

1. u is headed by a functional variable;
2. z and x are fresh variables;
3. σ ∈ CSS(S, z x

?= u);
4. (z ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)σ ̸= (z x)σ;
5. xσ ̸∈ {⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥};
6. the position of u is ≿-eligible in C w.r.t. σ.

Finally, axiom Ext is used for extensionality reasoning.

z (diff⟨α, β⟩ z y) ̸≈ y (diff⟨α, β⟩ z y) ∨ z ≈ y (Ext)
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5. Constraint Superposition Calculus

5.6 Redundancy Criterion
Given a higher-order signature (Σty, Σ) a first-order signature (Σty, ΣF) is constructed
as described in Section 4.2.6. Additionally, De Bruijn indices will also be encoded in
the first-order level. To this end, for each monomorphic type τ̄ → τ with m ≥ 0 and for
every n ∈ N, a first-order symbol dbn,τ̄→τ

j is introduced with argument type τ1 × · · · × τj

and result type τj+1 → · · · → τm → τ for every 0 ≤ j ≤ m. Here, the superscript n
will denote the actual value of the index. Note that on the first-order level → is an
uninterpreted type constructor. Moreover, for all monomorphic types τ and υ a first-order
symbol lamτ with argument type υ and result type τ → υ. This constant is used to
encode λ-expressions λ⟨τ⟩ t of type τ → υ as lamτ (t′), where t′ is the encoded version of
t.

When translating higher-order constrained clauses to first-order clauses, the notion of
ground closures, which are a subset of constrained clauses, is used.

Definition 30 (Ground closures)
A ground closure is a constrained clause C[[T ]], where T is of the form x1

?= t1, . . . , xn
?=

tn, all variables xi are pairwise different and include all variables occurring in C, and ti

are ground terms. Ground closures are denoted by C ·θ, where θ = {x1 ꜗ→ t1, . . . , xn ꜗ→
tn}. Let CG denote the set of all ground closures. A closure C · θ is true in an
interpretation if Cθ is.

Note that for ground closures C · θ the clause C can contain variables but every variable
occurring in C has to be mapped to a ground term by θ. Ground closures will be used
by the grounding function G, because we only want to consider ground instances of a
constrained clause C[[T ]] that satisfy T .

The redundancy criterion is based on a translation to ground monomorphic first-order
logic with an interpreted Boolean type. That is, the logic used in Section 4.1 restricted
to the variable- and quantifier-free fragment. Moreover, as in Section 4.2.6, the sketch
of the completeness proof as the redundancy criterion are developed using levels. But
rather than three levels, four levels are used, with corresponding sets of (constrained)
clauses or closures, terms, and inference system, which are given below:

• Level H: The higher-order level H deals with higher-order terms as defined in
Section 5.3 and constrained clauses as defined in Definition 28. Let TH and CH
denote the set of terms and constrained clauses on this level, respectively. Its
inference system is called HInf , whose rules are given in Section 5.5.

• Level G: The ground higher-order level G contains ground higher-order terms and
ground closures as defined below in Definition 31. Let TG denote the set of ground
higher-order terms and CG denote the set of all ground closures. The inference
system called GInf .
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5.6. Redundancy Criterion

• Level PG: This level is called the partly substituted ground higher-order level and
is a fragment of G, where only nonfunctional variables occur. Let TPG denote the
set of ground higher-order terms without functional variables and let CPG denote
the set of all ground closures without functional variables. Its inference system is
denoted by PGInf .

• Level PF: The partly substituted ground first-order level contains firt-order closures
and first-order terms with interpreted Booleans. Let TPF denote the set of first
order terms over the signature (Σty, ΣF) and let CPF denote the set of ground
first-order closures over TPF. Moreover, let PFInf denote the inference system for
level PF.

Levels H, G, and PG use higher-order logic as defined in Section 2.5 with the new concepts
of constrained clauses and closures. The level PF uses first-order logic with interpreted
Booleans as given in Section 2.2. The inference systems are discussed in Section 5.7. The
levels are connected via a grounding function G, a partial substitution mapping PS and
a first-order encoding function F as visualized below:

H
higher-order level

G
ground higher-order level

PG
partly substituted ground higher-order level

PF
partly substituted ground first-order level

G

PS

F

The definitions of these functions will be discussed next. The transition from level H to
level G is done via the grounding function G.
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5. Constraint Superposition Calculus

Definition 31 (Grounding function G)
The grounding function G : CH → P(CG) maps a constrained clause C[[T ]] ∈ CH to a
set of ground closures of the form C · θ ∈ CG, such that Tσθ is true. The closure C · θ
is called a ground instance of C[[T ]].

Note that if a list of constraints T is unsatisfiable, for example, if T contains a constraint
that has different rigid heads, then G(C[[T ]]) = ∅. The next step is the function PS,
which takes a ground closure ·θ ∈ CG and maps it to a ground closure C ′ · θ′ ∈ CPG that
contains only nonfunctional variables. This process is called partial substitution.

Definition 32 (Partial substitution function PS)
Given a ground closure C · θ ∈ CG, the partial substitution function PS : CG → CPG
is defined in two steps. Two substitutions p(θ) and q(θ) are constructed as follows.
First, p(θ) consists of all type variable mappings in θ. Moreover, for each mapping
y ꜗ→ t in θ with yθ ̸= y, define yp(θ) to be the term resulting from replacing each
nonfunctional green subterm at a green position p in t of type τ by a fresh variable
yp : τ . If a nonfunctional green subterm is contained inside another nonfunctional
green subterm, then only the outermost nonfunctional green subterm is replaced by
such a fresh variable. The substitution q(θ) is given by ypq(θ) = yθ|p for every fresh
variable yp introduced by p(θ). Finally, let PS(C · θ) = Cp(θ) · q(θ).

The complicated definition of PS deserves to be accompanied by an illustrating example.
To this end, consider (x g ∨ y) · θ with θ = {α ꜗ→ (ι → o), x ꜗ→ λ f (0 (h b)), y ꜗ→ c}, where
x : α, y : o, b : ι, c : o, h, g : ι → ι, and f : ι → o. Then:

p(θ) = {α ꜗ→ (ι → o), x ꜗ→ λ f (0 x1.1.1), y ꜗ→ yε}
q(θ) = {x1.1.1 ꜗ→ h b, yε ꜗ→ c}

And finally:

PS((x g ∨ y) · θ) = (x g ∨ y)p(θ) · q(θ)
= ((λ f (0 x1.1.1)) g ∨ yε) · q(θ)
= (f (g x1.1.1) ∨ yε) · q(θ)

Note that p(θ) and q(θ) are defined such that if θ grounds a term t, then tp(θ) contains
only nonfunctional variables and tθ = tp(θ)q(θ). That is, variables can only occur at
the top level for Boolean variables or as arguments of De Bruijn indices or function
symbols but never occur applied to arguments. These variables can then be used by
the first-order encoding function F , where they are mapped to first-order variables.
Otherwise, functional variables would have no first-order counterpart and could not be
translated, which means that the refutational completeness cannot be lifted. In the last
step, F is used to go from level PG to level PF.

82



5.6. Redundancy Criterion

Definition 33 (First-order encoding function F)
Let F : TPG → TPF be defined by structural recursion on its argument:

F(x) = x

F(λ⟨τ⟩ t) = lamτ (F(t))
F(f⟨τ̄⟩ t1 . . . tn) = f τ̄

n(F(t1), . . . , F(tn))
F(m⟨τ⟩ t1 . . . tn) = dbm,τ

n (F(t1), . . . , F(tn))

F is lifted to closures C · θ ∈ TPG by defining F(C · θ) = F(C) · F(θ), where F(C)
maps each side of each literal individually and F(θ) = F({x1 ꜗ→ t1, . . . , xn ꜗ→ tn}) =
{x1 ꜗ→ F(t1), . . . , xn ꜗ→ F(tn)}.

Following other completeness proofs for superposition calculi with constraints [Bac+92;
NR92], only a subset of ground closures are used for showing refutational completeness,
which are called order-irreducible ground instances. This notion is defined for first-order
logic as follows.

Definition 34 (Order-irreducibility)
A ground closure literal L · θ is order-irreducible w.r.t. a ground term rewrite system
R if for all variables x in L, xθ is irreducible w.r.t. every rule s −■→ t ∈ R, where
Lθ ≻ s ≈ t. A ground closure C · θ ∈ CPF is order-irreducible w.r.t. R if all its
literal are order-irreducible w.r.t. R. Given N ⊆ CPF, the set irredR(N) denotes all
order-irreducible ground closures in N w.r.t. R.

To ensure that there are enough order-irreducible ground instances of constrained clauses
D[[U ]] whenever a ground closure C · θ is order-irreducible, the following definition is
introduced.

Definition 35 (Trust)
A ground closure C · θ ∈ CG trusts a ground instance D · ρ of D[[U ]] ∈ CH if for each
variable x in D,

(Trust1) x does not appear in U ; or

(Trust2) for every literal L ∈ D containing x, there exists a literal K ∈ C and a
substitution σ such that zθ = zσρ for all variables z in C, and L ⪯ Kσ.

The next lemma will be helpful when using the notion of trust for the justification of
simplification rules.

Lemma 5 (Unconstrained trust)
Let C · θ ∈ CG and D[[U ]] ∈ CH. If U is empty, i.e., D[[U ]] = D, then C · θ trusts every
ground instance D · ρ of D.
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5. Constraint Superposition Calculus

The proof just uses condition Trust1 for every variable x in D, which holds trivially
since U is empty and thus x does not appear therein.

With these definitions in place, a simple version of clause redundancy, fittingly named
simple clause redundancy, is introduced. This version of redundancy makes it easier to
justify simplification rules, because the general form of redundancy criteria for constrained
superposition calculi are very hard to apply. This notion of redundancy is based on work
of Nieuwenhuis and Rubio [NR92].

Definition 36 (Simple clause redundancy)
Let N ⊆ CH and C[[T ]] ∈ CH. The constrained clause C[[T ]] is called simply redundant
w.r.t. N , denoted by C[[T ]] ∈ HRed⋆

C(N), if for every C · θ ∈ G(C[[T ]]) one of the
following conditions holds:

(SCR1) There exist ground instances Di · ρi of clauses Di[[Ui]] ∈ N , where 1 ≤ i ≤ n,
such that

(SCR1a) F(P({D1 · ρ1, . . . , Dn · ρn})) |= F(P(C · θ)); and
(SCR1b) for all 1 ≤ i ≤ m it holds that Di · ρi ≺ C · θ; and
(SCR1c) for all 1 ≤ i ≤ m it holds that C · θ trusts the instance Di · ρi of Di[[Ui]].

(SCR2) There exists a ground instance D · ρ of some D[[U ]] ∈ N such that

(SCR2a) Dρ = Cθ; and
(SCR2b) C[[T ]] ⊐Cθ D[[U ]]; and
(SCR2c) C · θ trusts the instance D · ρ of D[[U ]].

Condition SCR1 is a generalization of standard superposition redundancy to higher-order
constrained clauses, while the second condition SCR2 can be used for subsumption. It is
parameterized by a family of well-founded partial orders {⊐C | C ∈ CG} on CH. If this
family is chosen correctly, partial unification of constraints can be made a simplification
rule. To this end, let D[[U ]] ∈ CH and let nD[[U ]] be the smallest number of unification
steps w.r.t. the specific algorithm used needed to find a substitution σ such that there is
a ρ, where C = Dσρ and σρ is a solution of U . If there is no such σ, then nD[[U ]] = ∞.
Then, let D[[U ]] ⊐C D′[[U ′]] iff nD[[U ]] > nD′[[U ′]]. This definition has the effect that partial
unification makes clauses smaller w.r.t. ⊐C .

In an implementation, the following simplification rule Unif can be used to perform
partial unification of constraints.
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C[[T ]]
Unif

C[[U1]] · · · C[[Un]]

1. for all ground substitutions θ, Tθ is true iff there is a i, such that Uiθ is true;
2. C[[T ]] ⊐Cθ C[[Ui]] for all i and all grounding substitutions θ, where Tθ is true.

Now, it can be proven that the notion of simple clause redundancy is able to justify Unif.
To this end, it must be shown that C[[T ]] is simply redundant w.r.t. {C[[Ui]] | 1 ≤ i ≤ n},
i.e., C[[T ]] ∈ HRed⋆

C({C[[Ui]] | 1 ≤ i ≤ n}).

For a proof, let C · θ be an arbitrary ground instance of C[[T ]]. Because of condition 1 of
Unif, there exists an i, where Uiθ is true. To show simple redundancy condition SCR2 is
employed, where C ·θ is used for D ·ρ and C[[Ui]] for D[[U ]], which is possible since C ·θ is a
ground instance of C[[Ui]]. Clearly, it holds that Cθ = Cθ, which proves condition SCR2a.
Moreover, condition SCR2b follows from condition 2 of Unif. Finally, to discharge
condition SCR2c, condition Trust2 is used, where σ is the identity substitution. □

Related to partial unification, the following Weaken simplification rule allows to substi-
tute a solved pair which occurs in the unification constraints of a clause.

C[[y ≡ u, T ]]
Weaken

(C[[T ]]){y ꜗ→ u}

1. y is a variable which does not occur in u;
2. C[[y ≡ u, T ]] ⊐Cθ (C[[T ]]){y ꜗ→ u} for all grounding substitutions θ, where

(y ≡ u, T )θ is true.

To show that also Weaken can be justified by simple clause redundancy, the proof
obligation C[[y ≡ u, T ]] ∈ HRed⋆

C({(C[[T ]]){y ꜗ→ u}}) has to be discharged. Let C · θ be a
ground instance of C[[y ≡ u, T ]]. It must be the case that yθ = uθ because θ is a solution
for y ≡ u. Condition SCR2 is applied, where (C[[T ]]){y ꜗ→ u} is used for D[[U ]] and
C{y ꜗ→ u} · θ is used for D · ρ. Condition SCR2a holds, i.e., Cθ = C{y ꜗ→ u}θ because
yθ = uθ. Condition SCR2b follows from condition 2 of Weaken. Finally, for condition
SCR2c it must be shown that C · θ trusts the instance C{y ꜗ→ u} · θ of (C[[T ]]){y ꜗ→ u}.
To this end, condition Trust2 is used. Let x be a variable occurring in some literal
L ∈ C{y ꜗ→ u} and let K be a literal in C such that K{y ꜗ→ u} = L. Using σ = {y ꜗ→ u},
it holds that zθ = zσθ for all variables z in C, because C · θ is a ground instance of
C[[y ≡ u, T ]]. Additionally, Kσ = L implies L ⪯ Kσ. □

Another prominent simplification rule is subsumption, which can be stated for the current
context as follows.
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C Cσ ∨ D[[T ]]
Subsumption

C

1. if D is empty, then Cσ[[T ]] ⊐Cσθ C for all grounding substitutions θ, where
Tθ is true.

To show that Subsumption can be justified by simple clause redundancy, Cσ ∨D[[T ]] has
to be simply redundant w.r.t. C, because only Cσ ∨ D[[T ]] is deleted by Subsumption.
Thus, let Cσ ∨ D · θ be a ground instance of Cσ ∨ D[[T ]]. The proof proceeds by a case
split on D.

• If D is nonempty, condition SCR1 is applied, where C · σθ is used for D1 · ρ1.
The clause Cσθ is a proper subclause of (Cσ ∨ D)θ and hence F(P(C · σθ)) |=
F(P(Cσ ∨ D · θ)), which shows condition SCR1a, and C · σθ ≺ Cσ ∨ D · θ, which
shows condition SCR1b. It remains to prove condition SCR1c, i.e., Cσ ∨ D · θ
trusts the instance C · σθ of C. Here, Lemma 5 can be applied.

• If D is empty, condition SCR2 is applied, where C · σθ is used for D · ρ. Condi-
tion SCR2a holds trivially and condition SCR2b holds because of condition 1 of
Subsumption. Finally, condition SCR2c is fulfilled Lemma 5. □

The last simplification rule that is presented here is demodulation, which, given a unit
equality t ≈ t′ allows replacing an instance tσ in a clause C by t′σ and deleting the old
clause, provided that tσ ≻ t′σ. In our context, this rule is stated as follows.

t ≈ t′ C tσ [[T ]]
Demodulation

t ≈ t′ C t′σ [[T ]]

1. tσ ≻ t′σ;
2. C tσ ≻ (t ≈ t′)σ.

Since this proof is more involved than the ones before, a sketch is presented. We
want to show that C tσ [[T ]] is simply redundant w.r.t. t ≈ t′ and C t′σ [[T ]]. Let
C tσ · θ be a ground instance of C tσ [[T ]]. We apply condition SCR1, with t ≈ t′

for D1[[U1]] and C t′σ [[T ]] for D2[[U2]]. Let t ≈ t′ · σθ and C t′σ · θ be the correctly
ground instances used. If t′ contains variables that are not in t, then σ can be extended.
Because the demodulation is applied to a green context, it can be shown that F(P({t ≈
t′ · σθ, C t′σ · θ})) |= F(P({C tσ · θ})). Moreover, the conditions of Demodulation
imply that t ≈ t′ · σθ ≺ C tσ · θ and C t′σ · θ ≺ C tσ · θ. For condition SCR1c,
C tσ · θ trusts the ground instance t ≈ t′ · σθ of t ≈ t′ by Lemma 5. For C t′σ · θ
condition Trust2 is employed using the identity substitution for σ.
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5.7 Refutational Completeness
This section presents a sketch for refutational completeness of the constraint superposition
calculus w.r.t. Henkin semantics. As in the previous completeness proofs, the result from
the previous layer is used in each case, where the base case is the first-order calculus
on the level PF. The results of Section 4.1 regarding the presented superposition for
first-order logic with interpreted Booleans can not be used without modifications. The
corresponding calculus for level PF is given in Figure 5.1. Term orders, eligibility and
selection functions are defined as in Section 4.1, where instead of stating that a literal is
eligible in a clause C w.r.t. to some substitution θ, the substitution is simply the one
that is part of the closure C · θ. As for other calculi, it is required that closures for binary
inference are variable-disjoint and thus the disjoint union of substitutions that are part
of the closures in the premises is well-defined.

For refutational completeness of this calculus, the results of [Bac+92] and [NR92] need to
be generalized to support the interpreted Boolean type. Several lemmata and definitions
from [Num+21] can also be used in this case. Since the first-order version of λ-abstractions
and De Bruijn indices are just function symbols, we need to distinguish terms that have
a special syntactic property. To this end, we say that a first-order term t is closed if
F−1(t) is a valid term and not a preterm. If t′ is a higher-order term without functional
variables, then F(t′) is always closed. Let N0 ⊆ N ⊆ CPF, where N0 is the initial set of
clauses and N is a saturated set of ground first-order closures obtained by exhaustively
applying the inference rules above. If every term in N0 is closed, it holds that also every
term in N is closed because the inference rules always rewrite closed terms to closed
terms. The fundamental result for level PF should then say that if N is saturated and
⊥ ̸∈ N , then there is a rewrite system RN that is a model of all the order-irreducible
closures w.r.t. N , i.e., RN |= irredR(N). The term order for level PF can be obtained
from level PG by defining F(t) ≻ F(t′) if and only if t ≻ t′ for t, t′ ∈ TPG.

Now, we consider level PG. To this end, let N0 ⊆ N ⊆ CPG, where N0 is the initial clause
set and N is a saturated set of ground closures and ⊥ ̸∈ N . The used inference system
is the one of the constraint superposition calculus, where for every inference rule the
premises and the conclusions are mapped via G and PS. Using the approach presented
in Section 4.2.7, the first-order interpretation RF(N) can be lifted to a higher-order
interpretation I of all order-irreducible ground closures in N . Since, by assumption,
every closure in N0 is of the form C · id for the identity substitution id, we have that every
closure in N0 is order-irreducible and therefore I |= N0. This property holds because the
initial clause set on the nonground higher-order level is assumed to contain no constraints.

For the refutational completeness of level G, the inferences have to be lifted from level
PG to level G. As before, let N0 ⊆ N ⊆ CG, where N0 is the initial clause set and
N is a saturated set of ground closures and ⊥ ̸∈ N . Care has to be taken for the
handling of functional variables. The calculus for level G is a translation of the constraint
superposition calculus via the grounding function G. If all inferences can be shown to be
liftable or redundant, the result of the level PF gives a model I of PS(N0) which can
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(
D, ,, ,

D′ ∨ t ≈ t′ ) · θ1 C[u] · θ1
(D′ ∨ C[t′]) · (θ1 ⊎ θ2) Sup (

C, ,, ,
C ′ ∨ u′ ≈ v′ ∨ u ≈ v ) · θ

(C ′ ∨ v ̸≈ v′ ∨ u ≈ v′) · θ
Factor

(
C, ,, ,

C ′ ∨ u ̸≈ u′ ) · θ

C ′ · θ
Irrefl (

C, ,, ,
C ′ ∨ s ≈ t ) · θ

C ′ · θ
⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥Elim

C[u] · θ

C[t′] · θ
BoolRw C[u] · θ

(C[⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥] ∨ u ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) · θ
BoolHoist

C[s ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ t] · θ

(C[⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥] ∨ s ≈ t) · θ
≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈Hoist C[s ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈ t] · θ

(C[⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤] ∨ s ≈ t) · θ
̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈Hoist

The rules are subject to the side conditions given below:

Sup tθ1 = uθ2; u is not a variable; tθ′1 ≻ t′θ1; Dθ1 ≺ C[u]θ2; the position of u is
⪰-eligible in C · θ2; t ≈ t′ is strictly ⪰-eligible in D · θ1; the root of t is not a
logical symbol; if t′θ1 = ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, the subterm u is at the top level of a positive literal.

Factor uθ = u′θ; uθ ≈ vθ is ⪰-eligible in C · θ; uθ ≻ vθ.

⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥Elim (s ≈ t)θ = ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤; s ≈ t is strictly ⪰-eligible in C · θ.

BoolRw condition 1 from BoolRw of Section 4.1.3 where the variable x is
replaced by a placeholder term s; uθ = t; u is not a variable; the position of u
is ⪰-eligible in C · θ.

BoolHoist u is a Boolean term whose root is an uninterpreted predicate; the
position of u is ⪰-eligible in C; u is not at the top level of a positive literal.

⋆Hoist (where ⋆ ∈ {≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈, ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈}) the position of the indicated subterm is ⪰-eligible in
C · θ.

Figure 5.1: Inference Rules for level PF
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be transformed into I ′ such that I |= N0 by correctly handling the functional variables
mapped by the mapping PS.

Finally, for level H and N0 ⊆ N ⊆ CH such that ⊥ ̸∈ N and N is saturated w.r.t. the
constraint superposition calculus, a model for N0 has to be constructed. This is done by
using the model I of G(N0) which can be obtained by the results for level G. Thus, if all
the concrete proof steps are valid, the result of refutational completeness holds for the
constraint superposition calculus.
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5.8 Saturation Procedure
The saturation procedure for the constraint superposition calculus is only a slight variation
of Algorithm 2 and is given by Algorithm 5 below.

Algorithm 5 (Higher-order constrained given clause procedure)
function ExtractClause(Q, stream)

maybe clause ← pop and compute first element of stream
if stream is not empty then

add stream to Q with an increased weight
return maybe clause

function HeuristicProbe(Q)
(collected clauses, i) ← (∅, 0)
while i < Kbest and Q is not empty do

(maybe clause, j) ← (∅, 0)
while J < Kretry,Q is not empty, and maybe clause = ∅ do

stream ← pop the lowest weight stream in Q
maybe clause ← ExtractClause(Q, stream)
j ← j + 1

collected clauses ← collected clauses ∪ maybe clause
i ← i + 1

return collected clauses

function FairProbe(Q, num oldest)
collected clauses ← ∅
oldest streams ← pop num oldest oldest streams from Q
for stream in oldest streams do

collected clauses ← collected clauses ∪ ExtractClause(Q, stream)
return collected clauses

function ForceProbe(Q)
collected clauses ← ∅
while Q is not empty and collected clauses = ∅ do

collected clauses ← FairProbe(Q, |Q|)
if Q and collected clauses are empty then status ← Satisfiable
else status ← Unknown
return (status, collected clauses)
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function GivenClause(P )
A ← ∅
Q ← empty priority queue
status ← Unknown
i ← 0
while status = Unknown do

if P is not empty then
given ← pop chosen clause from P and simplify it using A
if given = ⊥[[T ]] such that all constraints in T are flex-flex then

status ← Unsatisfiable
else

A ← A ∪ {given}
for stream in streams of inferences between given and clauses in A do

if stream is not empty then P ← P ∪ ExtractClause(Q, stream)
i ← i + 1
if i mod Kfair = 0 then P ← P ∪ FairProbe (Q, ⌊i/Kfair⌋)
else P ← P ∪ HeuristicProbe(Q)

else // P is empty
(status, forced clauses) ← ForceProbe(Q)
P ← P ∪ forcedClauses

return status

The only textual change is highlighted with a yellow background in the function Given-
Clause. There, instead of checking if the given clause is empty, the constraints have to
be also checked. To this end, if the given clause contains no literals and all constraints are
flex-flex the status Unsatisfiable can be returned because then a contradiction is found.
Moreover, in an implementation one can decide if inferences between constrained clauses
can be carried out at any time or if the constrained clauses should already be in a state
where all the constraints of the involved clauses are flex-flex.

5.9 Implementation in Zipperposition
I implemented the constraint superposition calculus in the Zipperposition automated
theorem prover [Cru15].

Its name is a pun that mixes the words zipper (a functional data-structure invented by
Huet) and superposition (as in the superposition calculus). Because the superposition
calculus described in Section 4.2 was already implemented, I was able to build upon
this work. The overall goal is to add unification constraints to clauses and to be able to
provide a configuration switch to only use the constraints if the switch is set.

Zipperposition is developed in the programming language OCaml [Ler+22]. OCaml
supports functional, object-oriented, and imperative programming styles. Its rich type
system allows the definition of (generalized) algebraic data types, modules and functors,
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which can be thought of functions that transform modules to modules. In Zipperposition,
these features are used extensively where they help to catch several errors at compile
term which would otherwise occur as runtime errors in languages without sophisticated
type systems. Although OCaml is a high-level language, the compiler emits reasonably
fast executables. Zipperposition won the higher-order problem category of the CADE
ATP System Competition in the years 2020, 2021, and 2022 [Sut20; Sut21; Sut22]. The
project is developed such that new features can be easily implemented as extensions.
This approach is used to define several different calculi inside Zipperposition. In the
beginning, the prover only supported first-order logic. But by defining several extensions
and due to the modular architecture of the project, each calculus leading to the higher-
order superposition calculus and the constraint superposition calculus for higher-order
logic is implemented in Zipperposition. Every supported calculus can be selected by its
corresponding command-line argument.

The source code of Zipperposition is publicly available at GitHub under https://
github.com/sneeuwballen/zipperposition. I forked this repository in order
to add my changes. Hence, the source code discussed in this section and the version
of Zipperposition used for the evaluation can be obtained at https://github.com/
hetzenmat/zipperposition. In the following, I document how constraints were
added to clauses. Moreover, I describe the necessary changes needed in order to turn
the unification procedures of Zipperposition into preunification procedures. Finally, the
altered saturation procedure is discussed, as well as new simplification rules.

5.9.1 Constrained Clauses

In order to add support for constrained clauses, I added a set of functions which operate
on constraints, located in the file Constraints.ml. Here, a single constraint is just
a pair of terms and a collection of constraints, then, is a list of pairs of terms. This is
modelled in OCaml as follows.

type elem = Term.t * Term.t

type t = elem list

Thus, other code can now use Constraints.t to refer to values that model constraints.
Instead of a simple list, a more complex data structure would possibly be more performant
for operations on constraints, but I chose this representation since this closely resembles
our definition of constrained clauses. Now, the constraints can simply be added to the
data type representing clauses. This is done via the following type defined in the file
Constraints.ml, where I just had to add the field called constraints.
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type t = {
id : int; (** unique ID of the clause *)
lits : Literal.t array; (** the literals *)
trail : Trail.t; (** boolean trail *)
constraints : Constraints.t; (** unification constraints *)
mutable flags : flag; (** boolean flags for the clause *)

}

Hence, a clause is modelled by the above record type. The record field trail is used for
Zipperposition’s AVATAR implementation for clause splitting [Vor14]. For the constraint
superposition calculus, the extension implementing clause splitting was disabled and thus
for the implementation of the constraint superposition calculus, the record field trail
can be disregarded.

When checking if a clause is unsatisfiable, the constraints have to be respected in the
following function.

let is_empty c =
Literals.is_absurd c.lits
&& Trail.is_empty c.trail
&& List.for_all Constraints.is_flex_flex c.constraints

This function checks if each literal is absurd, that is, if it is either the constant ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥
or an equation of the form t ̸≈ t. If there are no literals in the clause, the expression
Literals.is_absurd c.lits is also true. After the trail is checked, if all constraints
are flex-flex it can be safely reported that the given clause is empty.

5.9.2 Preunification

The unification procedures implemented in Zipperposition operate like the ones presented
in this thesis. That is, the current state of a unification problem is modelled as a list of
pairs of terms, which represent the constraints that need to be solved, and a substitution,
which is the partial solution constructed this far. At each unification step, it first is
checked if the list of unification constraints that need to be solved is empty. If this is the
case, the current partial solution is also a solution to the whole problem. Otherwise, the
remaining cases need to be checked. The main unification loop is implemented in the file
UnifFramework.ml.

To also support preunification, I introduce the following code before all other cases are
checked.
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match problem with
| [] -> (* no constraints, found a solution *)

OSeq.return (Some (Unif_subst.of_subst subst))
| _ when P.preunification && all_flex_flex problem ->

let p = ref problem in
let sub = ref subst in

while !p != [] do
let ((lhs, rhs), tail) = Future.head_tail !p in
p := tail;

match unif_types !sub lhs rhs with
| None -> raise Unif.Fail
| Some subst ->

sub := subst;
done;

let unifier =
Unif_subst.make !sub (make_constraints problem)

in
OSeq.return (Some unifier)

| (lhs, rhs) as current_constraint :: rest ->
(* remaining cases *)

This code is rather imperative, but could also be refactored into a more functional style
using List.fold. The intention here is to return a solution early if all constraints are
flex-flex. If this is the case, it remains to unify also all the types of the flex-flex pairs.
If for some flex-flex pair the types are not unifiable w.r.t. to the current substitution,
then the Unif.Fail exception is raised, which signals that there is no solution for the
current branch. Otherwise, a substitution is returned where the remaining flex-flex pairs
are added as constraints. This branch of the match construct is only taken if the flag
P.preunification is set. Using the functional iterator module OSeq, the solutions
of the unification problems can be computed by demand.

5.9.3 Saturation Procedure

Zipperposition’s saturation procedure is a slight variation of Algorithm 5. The proof
state is stored in the environment module implemented in env.ml. Using the function
next_passive : unit -> Clause.t option, the next passive clause is chosen
if there is one. The function implementing a single step of the given clause procedure,
realized in saturate.ml, looks slightly simplified as follows.
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let given_clause_step num =
(* select next given clause *)
match Env.next_passive () with
| None ->

(* final check: might generate other clauses *)
let clauses = Env.do_generate () in
if Iter.is_empty clauses
then Sat
else (

Env.add_passive clauses;
Unknown

)
| Some c when not (Env.C.only_flex_flex c) ->
(*
Clause has non flex-flex constraints
Send corresponding signal and do nothing else;
this case should be handled in the Superposition module

*)

Signal.send
Env.on_given_clause_with_non_flex_flex_constraints c;

Unknown
| Some c ->
(* check if c is the empty clause *)
(* otherwise, perform generating inferences *)

If a given clause is encountered that as non flex-flex constraints, the corresponding
signal is sent and the status Unknown is returned. In all other cases, no changes are
necessary. This signal is then handled in the module implementing superposition calculi.
When this signal is encountered, the constraints of the clause are used as the current
state of a preunification problem. This problem is then added to the environment as
a generating rule by inserting a new stream that produces clauses. Solutions to this
preunification problem are then added to the passive clause set by calls to the function
Env.do_generate.

5.9.4 Simplification Rules

To efficiently solve unification constraints, it can be attempted to solve individual
constraints using unification procedures for specific subclasses of higher-order unification
that always admit a most-general unifier. To this end, the following function is defined
in Constraints.ml.
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let try_unif (l,r) =
[ (try_lfho_unif, "lfho")
; (try_fixpoint_unif, "fixpoint")
; (try_pattern_unif, "pattern") ]
|> List.find_map (fun (alg,n) -> match alg l r with

| Ok s -> Some (s, n)
| Error _ -> None)

This function attempts to solve a unification constraint by using either λ-free higher-order
unification, fixpoint unification, or pattern unification. If one of these procedures yields
a most-general unifier it is returned.

Using this function, a simplification rule that performs partial unification of constraints
is implemented, which is an instance of the Unif simplification rule. This rule calls the
function try_unif for all constraints of a clause. If a constraint yields a substitution,
the constraint is removed from the clause and the substitution is applied to the whole
constrained clause.

The rule discussed above handles the case of unifiable constraints. The other case is when
a constraint is evidently unsolvable. This is handled by a rule, which allows deleting
clauses from the search space if the corresponding constraints admit no solution. Its
implementation looks as follows.
let unsolvable constraints =

let check (l,r) = different_rigid_rigid (l,r) ||
([ try_lfho_unif
; try_fixpoint_unif
; try_pattern_unif ]
|> List.exists (fun alg -> match alg l r with

| Ok _ -> false
| Error b -> b))

in
List.exists check constraints

The constraints of a clause are unsolvable, if there is a constraint that is rigid-rigid.
This case is checked by a call to the function different_rigid_rigid. Then, it is
checked if one of the aforementioned unification procedures indicates that the problem
has no solutions. This is done via the result Error b, where the Boolean b is true if
the problem admits no solution. If the Boolean is false, this result just represents the
case that the problem does not lie in the supported fragment.

5.10 Evaluation
The evaluation was performed on a server with an AMD EPYC 7502 32-core processor
clocked at 2.50 GHz, 1 TB RAM, and 960 GB SSD. As in [Ben+23b], all 2606 TH0
theorems from the TPTP 7.3.0 library [Sut17] and 1253 „Judgment Day“ problems [BN10]
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5.10. Evaluation

TPTP ofSH SH Total
Zipperposition 975 269 254 1498
Zipperposition with constraints 973 269 255 1497

Figure 5.2: Evaluation against original Zipperposition

generated using Sledgehammer [PB10] were used as the benchmark set. The benchmarks
and raw evaluation data is publicly available1. The wall-clock time limit for every problem
was 30 seconds. In the following, the TH0 theorems from TPTP are denoted by „TPTP“.
Each of the 1253 „Judgment Day“ problems comes in two variants. One variant uses the
native Boolean type. These problems are denoted by „SH“. The other variant uses an
encoding into Boolean-free higher-order logic, and the problems thereof are denoted by
„ofSH“. Thus, the whole benchmark suite consists of 5112 problems. Zipperposition is a
cooperative theorem prover. That is, a backend reasoner may be executed to try to finish
the current proof attempt. For Zipperposition the backend reasoner is usually E. In all
the experiments in this section, no backend reasoner was used in order to only measure
the characteristics of Zipperposition itself.

In the first experiment, it was tested if the added implementation of unification constraints
degrades performance when the unification constraints are disabled. Zipperposition
implements several different modes that can be used for higher-order problems. The
mode „complete“ enables all inference rules given in Section 4.2.5 and uses the complete
and possibly non-terminating higher-order unification algorithm of [VBN20]. To this end,
the latest official version of Zipperposition and my implementation were executed in the
complete higher-order mode. Although my implementation is called „Zipperposition with
constraints“, the handling of unification constraints was disabled. The results can be
seen in Figure 5.2. Hence, my implementation does not impose a noticeable performance
slowdown.

I implemented two modes for the constraint superposition calculus. The complete mode,
called „constraints-complete“, enables all inferences rules given in Section 5.5 and uses the
possibly non-terminating complete preunification algorithm described in Section 5.2. The
optimized mode, called „constraints-best“, resembles the mode „best“ of Zipperposition.
In the „best“ mode, explosive rules such as FluidSup and the Ext axiom are disabled,
because they either introduce fresh higher-order variables or are able to transform first-
order into higher-order problems. Moreover, the unification algorithm uses limits to cut
off the search after a certain number of iterations to get a terminating but incomplete
approximation of unifiers. Also, inference rules dealing with the native Boolean type
are disabled. In the „constraints-best“ mode, also rules such as FluidSup and the Ext
axiom were disabled. Moreover, Boolean reasoning is disabled and the preunification
algorithm has an iteration limit.

1https://doi.org/10.5281/zenodo.8284039
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TPTP ofSH SH Total
complete 973 269 255 1497
constraints-complete 1116 225 214 1555

Figure 5.3: Evaluation of „complete“ mode against „constraints-complete“ mode

TPTP ofSH SH Total
best 1822 455 447 2724
constraints-best 1453 319 301 2073

Figure 5.4: Evaluation of „best“ mode against „constraints-best“ mode

Thus, one experiment compares the modes „complete“ and „constraints-complete“ and
another experiment compares the modes „best“ and „constraints-best“. The results are
given by Figure 5.3 and Figure 5.3, respectively.

It can be seen that the „constraints-complete“ mode improves upon the „complete“ mode
regarding TPTP problems but performs worse on the SH and ofSH problem sets. A
possible reason for this behavior is that TPTP problems use more features of higher-order
logic than problems generated using Sledgehammer from Isabelle, which is also noticed
by Jasmin Blanchette in [Bla23]. The „constraints-best“ mode is a clear improvement
compared to the „constraints-complete“ mode, as over 500 more problems could be solved.
When comparing the results of the last experiment, it is evident that the „constraints-best“
mode is not competitive compared to the „best“ mode. A possible explanation is that the
„best“ mode uses more fine-tuned heuristics than my „constraints-best“ mode. However,
there are 103 problems that were solved by „constraints-best“ but not by „best“. In
competitions, Zipperposition is executed in a portfolio of different configurations. Thus,
the „constraints-best“ mode would be a possible candidate for addition to a portfolio of
different configurations.
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CHAPTER 6
Related Work

Besides the superposition calculus, there are many other approaches for higher-order
theorem proving. Some of them rely on a translation into first-order logic, of which
there are several different possible translations. One has to choose an approach for the
elimination of λ-abstractions, for example combinators or λ-lifting, where new function
definitions are added that replace the actual λ-expressions [Hug82]. Then, a regular
first-order prover can be used and depending on the translation, the resulting proof has
to be checked for soundness [Ker91].

The combinatory superposition calculus is used by Vampire [BR20]. Here, higher-order
terms are encoded using combinators and the combinator axioms are used as rewrite
rules. Moreover, since first-order unification is employed, the calculus should be easy to
implement for existing first-order provers. By using a strategy schedule construction tool,
Vampire succeeded in claiming the first place at the CADE ATP System Competition
2023 in the category of higher-order logic theorems [Sut23], overtaking Zipperposition.

A sequent calculus for higher-order logic is employed by the prover AgsyHOL [Lin14].
Using sequent calculi for automated provers is convenient because they are well suited
for proof search. AgsyHOL tries to find a proof by applying the inference rules from the
goal backwards one after another until a complete derivation tree is constructed.

The prover Satallax applies a tableau calculus which is navigated via a SAT solver [Bro12].
It uses a transformation from higher-order terms to propositional literals and clauses.
Satallax starts with a conjunction of the given axioms together with the negation of
the conjecture. Using a SAT solver and the mapping to propositional logic, the formula
is tested for satisfiability. If the SAT solver reports unsatisfiability, also the original
problem is unsatisfiable.

Also, the SMT provers CVC4 and veriT have been enhanced to support higher-order logic
[Bar+19]. Two approaches are presented: The pragmatic one extends an SMT solver that
is targeted for first-order cases only with a minimal number of modifications. While in
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the redesign approach, the data structures and algorithms of the solver are redeveloped
from the bottom up. For solvers with a smaller code base, the redesign approach is
suggested and for complex solvers the pragmatic approach might work better.
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CHAPTER 7
Conclusion

In this thesis, we have presented a novel superposition calculus for higher-order logic that
employs unification constraints which was implemented in the state-of-the-art automated
theorem prover Zipperposition.

In Chapter 3 a framework for saturation-based theorem proving introduced by Waldmann
et al. [Wal+22] is discussed. By instantiating the framework for a given inference system
and redundancy criterion, one is able to obtain refutational completeness of a calculus by
lifting the result from the ground to the non-ground case. Moreover, the framework can
be used for any suitable logic.

A variation of the classical superposition calculus is presented in Chapter 4. This calculus
adds support for an interpreted Boolean type as well as inprocessing clausification. Its
refutational completeness is used by the superposition calculus for higher-order logic.
By using nonstandard models, i.e., Henkin semantics, refutational completeness can be
obtained without being affected by Gödel’s first incompleteness theorem.

The constraint superposition calculus was introduced in Chapter 5. By employing a
simple version of clause redundancy, several simplification rules can be easily justified. An
efficient preunification algorithm is presented, which allows cutting the search space when
only variable-headed terms, i.e., flex-flex pairs, remain. Moreover, we give a proof sketch
for refutational completeness. The implementation of the calculus in Zipperposition is
documented, and its effectiveness empirically evaluated.

7.1 Future Work
There are several possibilities for future work. First and foremost, the constraint su-
perposition calculus should be proven refutationally complete, which is already ongoing
work. When having a pen-and-paper proof, a major result would be a formal proof using
a proof assistant. An attractive proof assistant for this venture is Isabelle/HOL. The
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7. Conclusion

reason for this is that Nicolas Peltier proved refutational completeness of a variant of the
first-order superposition calculus in Isabelle/HOL [Pel16]. Also the saturation framework
is fully formalized in Isabelle/HOL [Tou20; BT20]. Moreover, Blanchette et al. used
Isabelle/HOL to formally verify variants of given clause procedures [BQT23], one of
which is Zipperposition’s given clause loop. From a formal proof, it then may be possible
to extract code in a programming language such as OCaml, Haskell, or Scala in the
case of Isabelle/HOL. Although extracted code from formal theorem provers tends to be
rather slow, the resulting program would be correct by construction and could serve as a
tool to catch soundness bugs in more performant implementations, since the extracted
program is expected to give the correct answer.

Additionally, the implementation in Zipperposition can be improved by developing spe-
cialized heuristics and data structures. The new modes supporting unification constraints
and preunification could be incorporated into the portfolio to check if this increases the
performance of Zipperposition in competition contexts. Since the higher-order superposi-
tion calculus is implemented in the E theorem prover [VBS23], it would be possible to
add support for the unification constraint approach, without first needing to implement
the whole calculus.
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