
Solving the Production Leveling
Problem with Memetic Algorithms

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Patrick Malik, BSc
Matrikelnummer 11776819

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Associate Professor Dr. techn. Nysret Musliu
Mitwirkung: Projektass.in Dipl.-Ing. Dr.in techn. Marie-Louise Lackner

Wien, 4. September 2023
Patrick Malik Nysret Musliu

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at





Solving the Production Leveling
Problem with Memetic Algorithms

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Patrick Malik, BSc
Registration Number 11776819

to the Faculty of Informatics

at the TU Wien

Advisor: Associate Professor Dr. techn. Nysret Musliu
Assistance: Projektass.in Dipl.-Ing. Dr.in techn. Marie-Louise Lackner

Vienna, 4th September, 2023
Patrick Malik Nysret Musliu

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at





Erklärung zur Verfassung der
Arbeit

Patrick Malik, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 4. September 2023
Patrick Malik

v





Danksagung

Zunächst möchte ich meinem Betreuer Associate Professor Dr. techn. Nysret Musliu
danken, der mich nicht nur während der kompletten Arbeit, sondern insbesondere beim
Abschließen, tatkräftig unterstützt hat. Auch Projektass.in Dipl.-Ing. Dr.in techn. Marie-
Louise Lackner die besonders anfangs eine große unterstützende Rolle gespielt hat möchte
ich danken. Nicht nur habe ich in ihnen Unterstützung in all meinen Vorhaben gefunden,
zudem wurde mir anfangs ein Ruck in die richtige Richtung gegeben und gegen Ende,
unter anderem auch aus dem Urlaub, geholfen, auch die letzten Schritte noch rechtzeitig
und sinnvoll abzuschließen. Ich wurde unterstützt mich im Zuge der Arbeit mit vielen
Dingen auseinandersetzen, die mir schon lange am Herzen lagen und die ein neugefundenes
Interesse am Thema in mir wachsen haben lassen. Vielen Dank für all die Unterstützung
und Beratung die ich in den letzten Monaten erfahren durfte!

Ich möchte aber auch meinem persönlichen Umfeld danken. Meinen Eltern, die mich
seit 26 Jahren bei allem das ich mir vornehme unterstützen und über die Jahre einiges
zu hören bekommen haben, wenn es einmal nicht so lief. Meinem besten Freund, ohne
den ich im ersten Semester vermutlich nicht einmal in die Vorlesung gefunden hätte,
mit dem ich aber auch seit Jahren die Aufs und Abs unserer (oft gar nicht so guten)
Entscheidungen teile, aber auch meinem weiteren Freundeskreis, der die letzten Jahre
zu einer unvergesslichen Zeit gemacht hat und mich zu dem gemacht hat, der ich heute
bin. Abschließend möchte ich auch meiner Freundin danken, die ständig meinen Horizont
erweitert, mich immer bei allem unterstützt und immer für mich da ist, auch an Tagen,
an denen sie selbst zu kämpfen hat.

Danke, ohne euch wär ich nicht hier!

vii





Kurzfassung

In dieser Diplomarbeit präsentieren wir sowohl einen Memetischen als auch Genetischen
Algorithmus, um das kürzlich präsentierte Production Leveling Problem erstmals evolu-
tionär zu lösen. Das Production Leveling Problem ist ein NP-schweres kombinatorisches
Optimierungsproblem, das sich mit der Zuordnung von Aufträgen zu Produktionsperi-
oden beschäftigt. Das Ziel ist die Aufträge gleichmäßig über die Perioden und bestimmte
Ressourcen zu verteilen, während Perioden- und Ressourcen-Limits und Prioritäten ein-
gehalten werden. Das Problem liegt im Bereich der mittelfristigen Planung, ein Gebiet, in
dem die Bestellungen erst gruppiert werden, um dann während der kurzfristigen Planung
konkret für die Periode geplant zu werden.

Wir präsentieren eine Lösungsdarstellung basierend auf der bisherigen Definition und
verwenden die entsprechende Fitness-Funktion mit problemspezifischen Optimierungen.
Sieben Konstruktionsheuristiken werden implementiert, diskutiert und bezüglich Qualität
und Diversität der erzeugten Lösungen analysiert. Während der Diversitätsanalyse wurde
neben den bereits etablierten Metriken der ”allele coverage” und ”solution equality”,
der Begriff des ”Extended Jaccard Index” eingeführt, um die Diversität der Mengen
beschreiben zu können, die durch die Heuristiken erzeugt werden. Weiters werden drei
”Selection” Operatoren, fünf ”Crossover” Operatoren und vier ”Mutation” Operatoren im-
plementiert und besprochen. Vier ”Local Search” Operatoren werden für die Verwendung
im Memetischen Algorithmus vorgestellt. Schließlich werden noch drei ”Replacement”
Ansätze diskutiert.

Nachdem die Operatoren und deren Potential besprochen wurden, werden die vielver-
sprechendsten für das Parameter-Tuning übernommen. Um während des Tunings gute
Lösungen zu finden, ohne die Algorithmen auf die Testdaten anwenden zu müssen, werden
2000 Trainingsdaten unter Verwendung einer Heuristik aus vorherigen Arbeiten erzeugt.
Für einen faireren Vergleich, der aufgrund von Systemunterschieden erschwert ist, wird
ein ”Simulated Annealing” Ansatz implementiert und getuned.

Der Hauptfokus der Arbeit liegt auf dem Vergleich und der Bewertung des Memetischen
und des Genetischen Algorithmus. Dafür vergleichen wir zuerst die Algorithmen, die im
Zuge dieser Arbeit entstanden sind und dann die Ergebnisse mit denen aus der Literatur.

Die Ergebnisse zeigen, dass der Genetische Algorithmus am besten abschneidet, dicht
gefolgt vom Memetischen Algorithmus. Die beiden evolutionären Algorithmen liefern

ix



für das Set der realistischen Instanzen Ergebnisse innerhalb einer 5% ”optimality gap”.
Zusätzlich lösen sie alle der optimal lösbaren Instanzen ohne ”hard constraint”-Verstoß
und sogar 4 der 50 optimal, beides Leistungen die, soweit uns bewusst ist, bisher nicht
mit Metaheuristiken erreicht wurden.



Abstract

In this thesis we develop and present a memetic and genetic algorithm for solving
the Production Leveling Problem introduced recently, providing the first evolutionary
approach to this problem. The Production Leveling Problem is an NP-hard combinatorial
optimisation problem about assigning orders to production periods in such a way that
their demand across those periods and certain resources is balanced while also taking into
account demand limits per period and per resource. It is a problem situated in the realm
of medium-term planning, an area where orders are first grouped to then be scheduled
more concretely during short-term planning.

We propose a solution representation based on the previous problem definition and
implement the fitness function accordingly, introducing problem specific optimisations.
Seven construction heuristics are implemented and discussed and further analysed in
terms of quality and diversity of the solutions they create. When discussing diversity, in
addition to the already established measures of allele coverage and solution equality, the
notion of the Extended Jaccard Index is introduced to gain insight into how diverse the
sets are that the heuristics create. Furthermore, three selection operators, five crossover
operators and four mutation operators are implemented, reviewed and discussed. Four
local search strategies are presented for the use in the memetic algorithm. Lastly, we
look at three different approaches for replacement.

After reviewing the operators and their potential they are reduced to a more compact
set from which the best configurations are then chosen during hyperparameter tuning.
In order to find good solutions without applying the algorithm to the test data provided
in existing literature, a set of 2000 training instances is generated based on a random
instance generator discussed in earlier work. For the sake of comparison and due to
system differences, we also implement and tune a simulated annealing approach.

The main focus of the thesis is the comparison and review of the memetic and the genetic
algorithm developed. For that we first compare the algorithms introduced and tuned
during this thesis amongst themselves and then compare their results with the findings
presented in the literature.

We find that the genetic algorithm performs best amongst the algorithms developed
during this thesis, with the memetic algorithm trailing only slightly behind. On the set of
realistic instances both evolutionary approaches manage to mostly find solutions within a

xi



5% optimality gap. Additionally, they manage to solve the entire set of perfectly solvable
test instances without hard constraint violations, and even solve four of the 50 instances
to optimality, both feats that, to the best of our knowledge, have not been achieved thus
far using metaheuristic approaches.



Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Aims of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Problem Statement and Related Work 5
2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Genetic and Memetic Algorithms for the Production Leveling Prob-
lem 13
3.1 Solution Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Fitness Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Construction Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5 Crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.6 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.7 Local Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.8 Replacement Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Experimental Evaluation 59
4.1 Problem Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 Hyperparameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4 Construction Heuristic Experiments . . . . . . . . . . . . . . . . . . . 74
4.5 Evaluating the best Configurations . . . . . . . . . . . . . . . . . . . . 77
4.6 Comparison with Related Work . . . . . . . . . . . . . . . . . . . . . . 80

xiii



5 Conclusion 89

A Runtime information on Construction Heuristics 91

B Expected and actual allele coverage for multiple examples of both
small and large cardinalities 95

C Results on test instances 99
C.1 Simulated Annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
C.2 Memetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
C.3 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

List of Figures 109

List of Tables 111

Bibliography 115



CHAPTER 1
Introduction

In a production setting optimisation grows in importance day by day. Costs need to be
as low as can be to stay afloat in a world that grows more and more competitive. Supply
chains are designed to be as tight as possible since storing materials is expensive, making
planning evermore crucial. A lot of planning has changed from being done manually
to automatically over the last decades. Planning is done on various levels. So-called
medium-term-planning, lodged right between long- and short-term planning, is in our
context about creating sets of orders for production periods that are then scheduled more
concretely during short-term planning[VLM20].
In this thesis we work on the Production Leveling Problem (PLP), a rather novel
combinatorial optimisation problem that has been introduced and defined by Vass et al.
in [VLM20] in collaboration with an industrial partner. Such a problem consists of a
set of orders that are of a product type and have a production demand and priority. A
problem instance also specifies an amount of periods with maximum production capacities
in which all these orders must be planned. In addition every product type has a separate
maximum capacity. The scheduling algorithm tries to assign orders to each period while
not breaking the maximum capacity limit of each period and of each product type. The
goal is to eventually have a solution that not only adheres to all the capacity restrictions
and keeps orders in order of their priority but also levels the cumulative production
demand of each period.
This problem has been shown to be NP-hard by an NP-Completeness proof via reduction
from Bin Packing in [VLM+22]. Vass et al. presented exact and metaheuristic approaches
solving the Production Leveling Problem that yield good results not only on the instances
provided by the industrial partner but also on randomly created much harder instances.
In this thesis we want to extend the literature on this problem by introducing a memetic
as well as a genetic algorithm. We discuss various operators and analyse their applicability,
find good configurations using hyperparameter tuning and compare the results amongst
the algorithms developed during this thesis as well as with the solutions found by Vass

1



1. Introduction

et al. in [VLM20].

Memetic and genetic algorithms are considered population based evolutionary algorithms
and follow principles found in nature making them easy to understand and digest, while
they are complex enough to warrant exhaustive studying if desired. memetic algorithms
can be considered an extension or hybridisation of genetic algorithms, incorporating
local search into the process of genetic algorithms. This thesis proposes a solution
representation based on the problem definition by Vass et al. in [VLM20] and implements
their fitness function while introducing problem specific optimisations. It implements and
discusses seven construction heuristics that are analysed in depth, gathering information
on the quality and diversity of the solutions they create. In order to better evaluate their
diversity, the notion of the Extended Jaccard Index is introduced, making a comparison
between sets of sets possible. Additionally, three selection operators, five crossover
operators, four mutation operators and three local search strategies are implemented
that are then compared and reduced to a smaller set of viable operators for parameter
tuning. Lastly, we consider three different approaches to replacement.
After finding the best configuration of a memetic and genetic algorithm they are applied
to the test instances. Since there is a considerable difference in hardware, language
and setup between this work and that of Vass et al. [VLM+22] that makes a direct
comparison difficult, we also implement and tune a simulated annealing approach to have
a fairer comparison with.

1.1 Aims of the thesis
This thesis aims to develop a memetic and genetic algorithm for solving the Production
Leveling Problem metaheuristically. We want to gather and provide valuable information
on the roles of each operator, as well as the various implementations on a more theoretical
basis with a particular focus on construction heuristics. In addition a fair comparison
between a simulated annealing approach and the evolutionary algorithms is necessary.
This work further aims to find the best configuration of each algorithm using the parameter
tuning framework SMAC3 [LEF+22]. To validate the findings of Vass et al. and assist
the tuning process, the implementation of their random instance generator is necessary
and important. Last but not least this work seeks to find which algorithm developed
during this thesis performs best on the testing data and how they compare to the results
presented in [VLM20].

1.2 Contributions
This thesis not only provides two evolutionary approaches to solving the Production
Leveling Problem, it investigates and compares the effects different types of operators
have and discusses why some implementations are better suited for this type of problem
than others with a particularly in depth analysis of construction heuristics. This thesis
further introduces the notion of the Extended Jaccard Index, a way of measuring equality

2



1.3. Structure of the thesis

of sets of sets used for comparing our solution representations. During this thesis we
implemented the instance generation procedure initially introduced in [VLM20] to provide
us with valuable training data that is employed to find the best configurations of the
algorithms we developed. Given the change in hardware, programming language and
framework, implementing the simulated annealing approach and tuning its parameters
was deemed necessary. This thesis compares the performance of the genetic and memetic
algorithm as well as the simulated annealing approach we developed and finds that the
genetic algorithm performs best overall, slightly outperforming the memetic algorithm.
We also find that the system change lead to a strong decrease in performance when it
comes to the simulated annealing approach. While the direct comparison of the best
results found in this thesis and the solutions presented in [VLM20] is difficult given the
differences in setup, we discuss the difference in results and find that the evolutionary
algorithms both achieve results mostly within 5% optimality gap when looking at the
set of realistic instances. In addition, however, they perform very well when looking
at the set of randomly generated instances that are perfectly solvable, not only solving
the entire set of 50 instances without a hard constraint violation but also solving four
instances to optimality, both feats that, to the best of our knowledge, have not been
achieved thus far using metaheuristics.

1.3 Structure of the thesis
The thesis is structured as follows. Chapter 2 introduces the problem and presents related
work. Chapter 3 introduces the algorithm and different operators of the algorithm. It
presents and compares the various implementations of those operators and goes into detail
on why an approach would be chosen over another. Section 3.3 discusses extensively the
various implemented construction heuristics and their diverse set of merits and evaluates
those heuristics based on both quality and diversity. Section 4 presents the problem
instances used and how they were generated, discusses the hyperparameter tuning setup
and findings of each algorithm and examines and compares the results achieved. The
results are first compared amongst each other and later compared with the solutions
found by Vass et al. in [VLM20]. In addition some claims from 3.3 are investigated
and confirmed. Last but not least the optimality gap on a subset of the set of realistic
instances is calculated and juxtaposed.

3





CHAPTER 2
Problem Statement and Related

Work

The Production Leveling Problem has been introduced and defined in [VLM20]. In
the following we present those definitions and discuss related work as has been done in
[VLM20]. Additionally, we briefly introduce memetic algorithms and related problems,
where they have been employed.

2.1 Problem Statement
The recently introduced ”Production Leveling Problem”[VLM20][VLM+22] (PLP) deals
with assigning orders to production periods. An order has a demand, priority value
and product type. Each period has a maximum demand capacity for each product type
as well as the sum of all product types. The goal is to assign orders to those periods
balancing the production volume between them, i.e. minimise the sum of deviations
between the periods, while keeping the orders in the order their priorities imply.
Problem-instances are provided both by an industrial partner as well as a random instance
generator created in [VLM20] which is also re-implemented during development of this
thesis to create training data.
In [VLM20] a mixed integer programming (MIP) formulation, variable neighbourhood
descent and simulated annealing algorithm were developed and compared. While the
MIP approach was able to solve most of the small instances, orders with more than 300
orders are considered to be too hard by [VLM20]. The simulated annealing algorithm,
while having no guarantee for optimality, reliably finds very good solutions in under 5
five minutes also for very large instances. In comparison to simulated annealing, the
variable neighbourhood descent approach performs worse. Based on those results this
thesis will consider the results of the simulated annealing approach during comparison.
We will also implement this version of simulated annealing to show reproducibility and

5



2. Problem Statement and Related Work

have a fair comparison, given that the environment changed considerably not only in
hardware but also in framework and programming language.
A Problem related to the Production Leveling Problem, the so-called ”Production
Leveling Problem with Order-Splitting and Resource Constraints” has been introduced
in [VMW20][VLM+22] and also been solved by using Mixed-Integer-Programming and
simulated annealing. There is currently no approach using evolutionary algorithms to
solve the PLP.

2.1.1 Mathematical Formulation
The problem has been first defined in [VLM20][VLM+22], hence we will use the math-
ematical definition introduced there and cite it directly. We will start with the input
parameters, go over the variables and hard constraints and eventually define the fitness
function.

Input parameters (from section 2.1.2 in [VLM20])

K ⊆ Z+ Set of orders {i ∈ Z+|1 ≤ i ≤ k}, where k is the number of orders
M ⊆ Z+ Set of product types {i ∈ Z+|1 ≤ i ≤ m}, where m is the number of

product types
N ⊆ Z+ Set of periods {i ∈ Z+|1 ≤ i ≤ n}, where n is the number of periods
ai ∈ R+ for each objective function component i ∈ {1, 2, 3} the associated weight
c ∈ R+ the maximum overall production volume per period
ct ∈ R+ for each product type t ∈ M the maximum production volume per period
dj ∈ Z+ for each order j ∈ K its associated demand
pj ∈ Z+ for each order j ∈ K its associated priority
tj ∈ Z+ for each order j ∈ K the product type
d∗ ∈ Z+ the target production volume per period, i.e. 1

n j∈K dj

d∗
t ∈ Z+ the target production volume per period for each product type t ∈ M ,

i.e. 1
n j∈K|tj=t dj

Variables (from section 2.1.2 in [VLM20])

• For each order the production period for which it is planned:

yj ∈ N ∀j ∈ K

• The production volume for each period (helper variable):

wi =
j∈K:yj=i

dj ∀i ∈ N

• The production volume for each product type and period (helper variable):

wi,t =
j∈K:yj=i∧tj=t

dj ∀i ∈ N, ∀t ∈ M

6



2.1. Problem Statement

Hard constraints (from section 2.1.2 in [VLM20])

• The limit for the overall production volume is satisfied for each period:

∀i ∈ N wi ≤ c

• The limit for the production volume of each product type is satisfied for each
period:

∀i ∈ N, t ∈ M wi, t ≤ cp

Objective function

The objective (or fitness) function comprises three objectives. These three objectives are
each represented by a corresponding function and are taken as is from [VLM20]:

f1 =
i∈N

|d∗ − wi| (2.1)

f2 =
t∈M


1
d∗

t

·
i∈N

(|d∗
t − wi,t|) (2.2)

f3 = | (i, j) ∈ K2 : yi > yj and pi > pj | (2.3)

Equation 2.1 calculates the sum of deviations across all periods disregarding the product
types. The demands of each order planned for a period are summed up and compared to
the target value wi. This deviation is calculated for every period and added up. Similarly
equation 2.2 calculates the sum of deviations across all periods while considering product
types. Each product type has a per period target value. All orders of the same product
type, planned for the same period are added up and compared with their respective target
value. The deviations across the periods are summed and normalised for each product
type by dividing by the target value of the relevant product type. Those normalised
deviations of each product type are then added up for the f2 value. Lastly, equation 2.3
counts the amount of priority inversions in the solution. A priority inversion is present if
an order with a higher priority is planned after an order with a lower priority.

Those three functions will be combined into a single fitness function after a normalisation
step as presented in [VLM20]:

g1 = 1
n · d∗ · f1 (2.4)

g2 = 1
n · m

· f2 (2.5)

7



2. Problem Statement and Related Work

g3 = 2
k · (k − 1) · f3 (2.6)

In [VLM20] they argue that: ”The normalisation ensures that g1 and g2 stay between
0 and 1 with a high probability. Only for degenerated instances, where even in good
solutions the target is exceeded by factors ≥ 2 higher values are possible for g1 and g2.
The value of g3 is guaranteed to be ≤ 1 because the maximum number of inversions in a
permutation of length k is k · (k − 1)/2.”

Those normalised values are then weighted to represent their severance according to
the industrial partner and added up to make up the final objective function 2.7. In
[VLM20] they further investigated what impact a quadratic objective function would
have but came to the conclusion that there are advantages and disadvantages to both and
none of them is as such better. They further used the non-quadratic objective function
throughout their work which is why we will use it as well for the sake of comparison. For
the weights they decided to use a1 = 1, a2 = 1, a3 = 1

3 in cooperation with the industrial
partner [VLM20].

minimize g = a1 · g1 + a2 · g2 + a3 · g3 (2.7)

In section 3.2 we will further investigate how the calculation of the fitness function can
be sped up both by introducing delta evaluation and the concrete way of implementing
those calculations.

2.1.2 Hard Constraint Violations & Penalties
As stated above this problem comprises two types of hard constraints and therefore two
hard constraints that can be violated. During development it was necessary to decide how
to deal with hard constraint violations. Whether we were to entirely disallow them in our
algorithm by designing our operators around this restriction or to penalise their presence.
In [VLM20] they opted to penalise hard constraint violations. Given the difficulty of the
problem and the complexity of creating solutions that have no hard constraint violations,
forbidding illegal solution candidates is a difficult endeavour. There also exist many
instances in our training and test sets for which we don’t know whether legal solutions
exist. Both this and our goal of comparing our solutions with the results of [VLM20]
lead to the implementation of a penalty system.

Every violation of a hard constraint is counted and, if required, added to the fitness value.
For each violation 1 is added. A violation exists not for every order that violates a hard
constraint, since this would be ambiguous, but for every period that violates the total
capacity and for every period that violates a product type capacity. If a period violates
multiple product type capacities it of course introduces multiple hard constraint violations.

8



2.2. Related Work

Since it is difficult for a legal solution to have a fitness value of > 1 a candidate with hard
constraint violations is most likely to have a higher fitness value so a lower overall fitness.

2.2 Related Work
The Production Leveling Problem [VLM20][VLM+22] and related problems like the Pro-
duction Leveling Problem with Order-Splitting and Resource Constraints [VMW20][VLM+22]
and the Fixed Order Production Leveling Problem [LV19] have been introduced fairly
recently and are therefore not exhaustively researched. The papers currently available
focus on simulated annealing [VLM20][VMW20][VLM+22], variable neighbourhood de-
scent [VLM20][VLM+22] and mixed integer programming [VLM20][VMW20][VLM+22].
In [LV19] Lackner et al. also proposed a dynamic programming algorithm for a derivative
of the problem.
A better studied set of problems closely related to the Production Leveling Problem can
be found under the term Balancing Problems [VLM20]:

• Balanced Academic Curriculum Problem (BACP)
The Balanced Academic Curriculum Problem is very similar in idea to the Pro-
duction Leveling Problem. It is about balancing courses that have a workload
across periods and minimising large deviations from the mean workload per period.
This very much aligns with the demand a PLP order has and the leveling of the
cumulative demand per period. In addition a course in the BACP has prerequisite
courses that enforce an order in a way that is not present in the PLP where priority
inversion are similar, but not hard constraints. The BACP also has no property that
is similar to the product type mechanic of the PLP. In [LPR+13] the problem was
approached using Ant Colony Optimisation, [CM01] presented an Integer Linear
Programming algorithm as well as a constraint programming solution. In [LCM+05]
they combine genetic algorithms with Constraint Programming for this problem
showing that a combination outperforms both approaches on their own in results
and speed. In a later paper by the same team [LCMS06] they went into detail
about the hybridisation approach. It is made clear that this is not a memetic
algorithm where propagation is used as a local search algorithm but rather a hybrid
approach where domain reduction functions, split and a short genetic algorithm
run are employed side by side. It is also documented how the genetic algorithm
has a minor role at the beginning of the run, where constraint propagation reduces
the search space but grows in relevance later in the run when it is about finding an
optimal solution.

• Nurse Scheduling Problem (NSP)
The Nurse Scheduling Problem is a problem about assigning nurses workloads. In
[ML02] this problem is defined for Nurses in neonatal care. Where each nurse is
assigned a set of infants. Each infant, based on the severity of their condition, might
need more or less care, resulting in more or less workload. The goal is to balance

9



2. Problem Statement and Related Work

the workload across the nurses. Additionally, one nurse exists that receives less
workload because they are considered an ’admit’ nurse, that has to deal with infants
that are admitted during the shift. Another aspect is that nurseries are often split
into multiple rooms with different room sizes that can affect the workload leading to
nurses only being assigned infants in one room (or zone in [ML02]). There are also
maximum and minimum constraints. The problem really comes down to finding
groups of infants with similar workloads rather than actually assigning nurses. This
is in essence similar to the Production Leveling Problem while being a considerably
different set of constraints.
In [ML02] they developed both an Integer Programming approach and heuristic
approaches The Integer Programming approach, while having issues finding optimal
solutions in the required time frame, generally found good solutions. The heuristic
approaches are a problem specific heuristic that assigns zone by zone, potentially
losing some optimality if the nurses are not assigned correctly to the zones, that
achieved promising results in the required amount of time, and a COMSOAL
approach.
A different team [SHR09] was able to develop a Constraint Programming model
based on the findings of [ML02] that was capable of solving even very complex
instances of the problem presented in a short amount of time.

• Simple Assembly Line Balancing Problem (SALBP)
The Simple Assembly Line Balancing Problem is a very well studied problem with
an extensive pool of used approaches and derivations. It is about the assigning of
tasks to workstations that are generally arranged in sequence. Some tasks might
require the work of other tasks beforehand introducing precedence relations. Each
task has some processing time. The so called cycle time specifies how much time
is spent at each workstation. If the goal is to find an assignment of tasks to a set
of workstations while reducing the idle time (and hence workstations) as much
as possible, the problem is called SALBP-1[BFS07][Bay86]. Some problems might
specify the amount of workstations making the objective the reduction of the cycle
time. Those would be called SALBP-2 [BFS07][Bay86]. Making both cycle time
and number of stations variable makes a problem SALB-E [BFS07] and lastly
making both fixed makes a problem SALB-F [BFS07].
For the various SALB problems a plethora of approaches is documented in [BFS07]
ranging from mathematical models, over dynamic programming and branch and
bound to metaheuristic approaches like genetic algorithms, ant colony optimisation,
simulated annealing and lots more.

Memetic algorithms [NC12][NOK07] are a form of evolutionary algorithms, more specif-
ically a genetic algorithm [KCK21][GH88] that makes use of local search to improve
a solution. genetic algorithms are a population based approach where first an initial
population, a set of possible solutions, is generated. Those individuals are then evaluated
and assigned a fitness value that represents how well they perform. During selection
a subset of individuals is chosen for recombination, based on the previously assigned

10



2.2. Related Work

fitness-value. During recombination new individuals are created by combining those
previously selected, creating new individuals that are then changed slightly based on
chance. This process is called mutation. From the old population and the set of new
individuals a new population is created with which the whole process starts anew until a
termination condition is met.
When using memetic algorithms, local search can then be used to either obtain better
performing individuals or to repair an invalid solution that conflicts with hard constraints
[Ber19]. How often and long this local search takes place and how many individuals are
improved is subject to fine-tuning.
Evolutionary algorithms have been used extensively over the last decades and have
also been shown to work well with scheduling and balancing problems. In [WMW21] a
memetic algorithm has been used for the Paintshop Scheduling Problem, [WM10] used
memetics for a Break Scheduling Problem and [BFS07] shows a number of papers making
use of genetic algorithms for solving Simple Assembly Line Balancing Problems.

The current state of the art only provides a small set of heuristic techniques for solving
the Production Leveling Problem. Memetic algorithms have only been used for related
problems. This work will fill this gap and provide a first memetic approach for the PLP.

11





CHAPTER 3
Genetic and Memetic Algorithms

for the Production Leveling
Problem

A memetic algorithm is a type of evolutionary algorithm introduced by Moscato in
[Mos89]. More specifically a genetic algorithm with additional local search capabilities
or as Moscato puts it ”They combine a very fast heuristic to improve a solution with
a recombination mechanism that creates new individuals.”[Mos89]. Genetic algorithms
were first introduced by John Holland and properly presented in an early book in 1975
[Hol75]. They are based on the idea of Darwinian evolution and abstractly model the
processes found in nature. Every genetic algorithm features a set of operators that each
can be implemented in various ways based on the problem at hand. Every algorithm
needs a way of representing a solution, often called solution representation or in the case
of population based algorithms individual. Each individual has a concrete encoding of the
solution they are representing called chromosome in the language of genetic and memetic
algorithms. A set of such individuals is called a population. To evaluate and compare
a solution, the algorithm needs a fitness function. This fitness function differs for each
problem and is what is eventually going to be optimised. After a population of various
different individuals is created, a subset of the population is chosen for reproduction.
They then reproduce via the crossover operator, where a set of (mostly two) individuals
creates another set of individuals based on the properties of its parents. They are then
mutated by slightly changing bits of the solution. A memetic algorithm additionally
employs a local search. Where this local search is placed is not specified. Moscato
in [Mos89] introduced local search right at the beginning of the loop arguing that the
solutions are to be improved before they are allowed to interact. In the same paper he
presents different implementations that introduce local search at the end of the loop,
before starting a new generation. This generally leads to the same sequence of operators

13



3. Genetic and Memetic Algorithms for the Production Leveling Problem

except that having it at the beginning also local searches the initially created population.
Those steps are then repeated until some stopping criterion is met.
In this chapter we will first discuss the choice of solution representation, then consider
and compare various ways of constructing such a solution for our starting population. We
will then talk about the fitness function and delta evaluation. Next the various operators
will be discussed starting with selection and crossover followed by the mutation operator.
Afterwards we will examine different ways of Local Search and last but not least will talk
about differing approaches when it comes to replacement strategies.

3.1 Solution Representation
The Solution Representation is arguably the most important part of a genetic and
memetic algorithm [Koz93][Dav90]. It maps the search space to the chromosome space
[Rad91]. Choosing the right solution representation can affect the algorithm in many
ways. It can steer the search and help make meaningful neighbourhood moves, it can
make it easier to find and keep building blocks and formae and it might enable and affect
different types of operators. Another important part when designing the chromosome
can be how understandable it is for human readers. A good representation can help
understand and interpret the problem [Gol91].
Solution Representations can come in any form. Initially, in early genetic algorithms, they
were developed to be fixed length binary strings with each binary character representing
some state or parameter of the problem [Hol75]. Parameters of the problem that are
closely related were also expected to be spatially close. This was necessary for the
genetic algorithm to converge based on the schema theorem. The schema theorem is the
formal groundwork on which genetic and memetic algorithms are built. It is a kind of
template similar to a regular expression. A schema specifies some fixed gene values of a
chromosome and some wildcards and can be arbitrarily long. Depending on the schema
there typically are multiple solution representations that match it. By calculating the
fitnesses of all the solutions matching a schema one can calculate the average fitness
of a schema. If a schema has a higher than average fitness, it is generally expected to
survive longer within the population. Given the simple operators that were used for
early genetic algorithms, schemata that have a long defining length, so schemata that
span over the whole chromosome, specifying a fixed gene assignment at the beginning
and around the end, tend to be broken up more easily through crossover. Initially the
simple crossover, or one-point crossover, was being used [Rad92][Hol75]. This obviously
tends to tear apart long schemata leading to good schemata needing to be short so they
were not to be broken up and would indeed survive multiple generations of the genetic
algorithm, prompting the definition of the building block hypothesis, arguing that genetic
algorithms perform well when working with schemata with short defining length and low
order, i.e. few fixed positions that are close to each other, with a higher than average
fitness. It was further argued that this theory is what makes genetic algorithms perform
as well as they do.
When evaluating a solution candidate one evaluates a plethora of schemata. Solutions

14



3.1. Solution Representation

with high performing schemata are more likely to survive meaning in turn that high
performing schemata are more likely to survive. The fact that a solution representation
can match a large number of schemata and evaluating one solution evaluates all those
schemata was called ”intrinsic parallelism” [Hol75] (often called implicit parallelism in
the literature). The crossover operator is an important operator when it comes to making
use of this implicit parallelism since it recombines large amounts of schemata and helps
sampling solutions for schemata further identifying strong building blocks. Since the
emergence of the schema theorem and the development of simple genetic algorithm a lot
of work has been done to further expand the realm of genetic algorithms.
The solution representation used in this thesis is a non-binary encoding. [HLV98] talks
about why non-binary representations were argued against in the early stages. On the one
hand because of the argued reduced implicit parallelism as compared to binary alphabets.
Goldberg states that: ”The binary alphabet offers the maximum number of schemata per
bit of information.” [Gol91]. A chromosome can contain a higher number of schemata
if the alphabet used is binary. Therefore more schemata are being processed when
processing a chromosome. [HLV98] goes on to argue that there are however other issues
that are more prominent with smaller alphabets, like deception and that the reasoning
for lower implicit parallelism is only true for the classical schema theorem and is shown
not to be a problem for different approaches to the schema theorem [Ant89]. They even
go on to argue that the implicit parallelism is higher than for binary alphabets based
on how the wildcard was interpreted [Ant89][Rad92]. On the other hand the size of the
alphabet directly affects the size of the search space that is covered by one chromosome
and hence the population needed to cover a large percentage of the alleles, or gene values.
Meaning a larger alphabet needs a larger population independent of chromosome length,
as is shown in [TS93].
[Rad91] moves away from the original definition of schemata and defines equivalence
relations or formae. They are a more generalised version of the schema theory, supporting
the definition of non-binary solution representations. In [JD96] formae are described
as follows with C being the Chromosome space: ”It is clear that if C = {0, 1}n, then
formae reduce to schemata, so a forma is a generalisation of the concept of a schema.”.
They also talk about the role of the different operators and their interaction with formae,
also allowing more problem specific but generally new crossover-types, as long as they
”respect” and ”properly assort” formae [Rad91]. They also go on to show that such a
non-binary representation can be advantageous in certain search spaces and that those
representations will be implicitly (or intrinsically) parallel and not suffer from the initially
assumed slow down as long as the operators ”respect” and ”properly assort” the formae
and are not too disruptive.

The solution representation used in this work is a non-binary string, whose alphabet
consists of period numbers. The chromosome contains as many genes as the problem
instance contains orders. More formally, given the set of periods N and the set of orders
K, the alphabet, or possible gene values are equivalent to N , and the chromosome is of

15



3. Genetic and Memetic Algorithms for the Production Leveling Problem

length |K|, or as defined in [VLM20] ”For each order the production period for which it
is planned” or:

yj ∈ N ∀j ∈ K

This solution representation comes with both advantages and disadvantages, but is
certainly a very intuitive and interpretable encoding. It is one of two very natural such
representations, with the other being the opposite, a list of sets that contain the orders
that are in each period. In comparison, the chosen solution representation is a lot easier
to work with, since no nested data structures are needed. Simple operators like a simple
mutation and simple crossover are also trivial, particularly compared to the second
option, where a simple crossover would not have been possible without having to repair
the solutions afterwards in most cases. There are some obvious, more problem specific
crossovers, that could have been applied more easily with the second encoding, this,
however, can be rectified easily and will be addressed in the section about our crossover
operators. Of course there are also options to encode the problem in a binary alphabet,
in much the same way the adjacency matrix does for the Travelling Sales-rep Problem.
Given the sheer size of a lot of our problem instances however, this would not only have
been problematic in terms of space complexity, it would have also introduced issues in
terms of crossover, similar to the earlier alternative representation. Enumerating the
combinations is of course also out of the question for similar reasons.
When looking at the guidelines the original schema theorem presented, our encoding is
a bad choice, since, given the lack of relatedness of neighbouring genes, short building
blocks are not encouraged. When looking at formae and our choice of crossover operators,
however, the encoding appears to be a valid choice.
A problem our solution representation has is the large amount of epistasis present. High
epistasis means, that looking at a gene value in isolation says very little about the fitness
contribution of this allele, i.e. there is strong interdependence among the genes [Dav90].
This is of course, to a degree, inherent to the problem definition. With the representation
we chose to use, one cannot gauge the impact a gene has, since this impact of an order
being in a certain period, very much depends on every other gene that has the same value.
If the target limit is already reached, adding an order to a period has a very different
effect then when the period is empty.
In [BBM93a] and [Dav90] it is argued that genetic algorithms, and in turn also memetic
algorithms, are a particularly good choice when it comes to epistatic problems, as long as
the epistasis is not too high. They argue that low-epistasis problems are easily solvable
by hill-climb algorithms and don’t need the tool set provided by genetic algorithms. Yet
epistasis leads to larger building blocks since more genes need to be considered, which in
turn is detrimental to a genetic or memetic algorithms performance. [Dav90] discusses
the role of solution representations and their strong effect on epistasis. It appears that
epistasis is mostly an issue based on the assumptions made for the classical schema
theorem. Large building blocks, which are a consequence of epistatic problems, have a
negative effect on a genetic or memetic algorithms performance, since their survivability

16



3.2. Fitness Function

is low when looking at the original operators. This can be mitigated, however, if operators
are chosen in a way that preserves those building blocks. This appears to be in line with
the reason why the choice of solution representation has a large effect on the epistasis
of a problem and should reduce the negative effects of highly epistatic problems. The
crossover operators chosen in this thesis appear to address that issue to a certain degree
as will be mentioned at the relevant section.

3.2 Fitness Function
The fitness function represents the viability of a solution. It is this function that is
optimised and hence capturing each change in value is necessary for the algorithm to
move in the right direction. This necessitates regular and highly frequent recalculations.
Each change in the solution has to be measured and evaluated requiring constant updates
of the fitness function. The speed at which this value is calculated is therefore crucial for
the performance of the algorithm.
This evaluation can be sped up in two important ways: firstly by making the calculation
of the entire function as quick as possible and secondly by introducing delta evaluation.
Delta evaluation is a technique where the fitness delta introduced by a change is calculated
and then added (or subtracted) to the previous fitness value. This is particularly useful
for small and regular changes where the calculation of the delta can vastly outspeed the
recalculation of the entire function.

Given the nature of a memetic algorithm both types of speedup are vital. Mutations
and the local search introduce many small iterative changes that can capitalise on the
performance improvements introduced by delta evaluations. The crossover operator
however regularly creates large changes that facilitate entire recalculations of the fitness
function. To support both approaches every solution keeps a state for each part of the
fitness function. This state is made to be easily modifiable such that small changes can
be made that are introduced by the delta evaluation. Based on this state the entire
fitness value can be then calculated quickly while parts of it can be used to calculate the
fitness delta for the delta evaluations.

3.2.1 f1 - support state
Each solution candidate keeps a vector of the cumulative demand for each period. When
a delta evaluation asks for moving an order from one period to the other, the demand of
this order can be simply subtracted from the from-period and added to the to-period.
Subtracting the target value yields the new deviation for this single period. This value
can then be compared to the deviation present before this change resulting in the delta
value of f1. For multiple moves the changes to each affected period have to be added
up and can then be calculated in much the same way. To recalculate the entire f1 value
we can simply subtract the target demand per period d∗ from each value then take the
absolute of the results and create the sum of the vector. Using numpy’s matrix operations

17



3. Genetic and Memetic Algorithms for the Production Leveling Problem

this operation is considerably quicker than calculating those deviations programmatically.

This vector also has the benefit of making it just as easy to count hard constraint
violations. For this, one simply subtracts the capacity limit of each period wi and counts
the remaining values > 0.

3.2.2 f2 - support state
Given the more complex nature of f2 its support state is also somewhat more complicated.
The idea is similar to that of f1. Each solution candidate keeps a matrix of demands per
period and product type. A row represents one period, a column a product type yielding
a n × m matrix. Instead of subtracting a single value from each cell of a vector, this time
a row vector is subtracted from each row in the matrix. The vector that is subtracted
being the target demands of the product types. f2 further requires the division by d∗

t

which is done after the absolute deviations of each period are summed up to result in the
deviations per product type. After division, this row is then also added up producing the
f2-value of this solution. Since this can be done by matrix operations again, recalculating
the fitness value is fairly quick. For the delta evaluation the calculation is akin to the
calculation of f1 with the additional division being necessary.

Hard constraint violations of the second type are also easily supported by this structure.
A vector of product type maximum capacities has to be subtracted from the matrix after
which, again, all values > 0 can be counted.

3.2.3 f3 - support state
Counting priority inversions is entirely more difficult than the two calculations prior.
A lot of development went into finding a fast way of calculating this component of the
fitness function. The support structure used is again a matrix. The rows represent the
periods, the columns the priorities yielding a n × pmax matrix. Each cell represents the
amount of orders with this priority in the given period. To calculate the f3-value from
this matrix we first have to calculate the cumulative sum along axis 1 resulting in a same
sized matrix where each element of a row counts how many orders are smaller than or
equal to its priority in this period, i.e. if we look at the third row and the fourth cell we
see how many orders of priority 4 or less (or 3 or less, depending on whether priorities
start at 0 or 1) are in this period. On this basis another cumulative sum is built along the
other axis. This calculates a similar thing but across all previous periods, i.e. this same
example of the third row 4th cell now counts all orders of priority 4 (or three) or less
that have been planned in this, the first or the second period. With this information one
can now plan an order for a period and check how many orders with a priority less than
itself have been planned earlier resulting in the priority inversions this order creates. To
receive the entire f3 value we multiply the initial structure counting the appearance of a
priority per period with the matrix we received after creating the cumulative sums. The
matrices cannot be multiplied directly but have to be shifted since a priority inversion is

18



3.3. Construction Heuristics

only present for orders that are planned earlier and have less priority, not in the same
period or with the same priority. Meaning the order count for a (period, priority) combo
must be multiplied with the (period − 1, priority − 1) combo of the cumulative sum
matrix. This creates a matrix with the amount of priority inversions each period and
priority combination creates which only needs to be added up to receive f3. This entire
calculation can be achieved using numpy’s tensordot function with axes=2 resulting in
the following, surprisingly fast code:
def f 3 ( s e l f , p r i o r i t y _ d i c t : ndarray ) −> f loat :

priority_dict_summed_to_use = np . cumsum(
np . cumsum( pr i o r i t y_d i c t , ax i s =1)
, a x i s=0

)

return f loat (
np . t ensordot (

p r i o r i t y _ d i c t [ 1 : , 1 : ] ,
priority_dict_summed_to_use [ : −1 , : −1]

)
)

The calculation of the f3-delta is a bit more involved too. First it must be determined
how the order moves. If it moves from an earlier period up into a later period or vice
versa. Depending on the direction the amount of inversions must be in- or decreased by
the amount of orders that are affected. Since a delta evaluation can contain multiple
moves (e.g. an order swap might contain two) the changing amount of orders per period
and priority must be considered as well. The sum of priority inversion changes is then
the resulting delta.

3.3 Construction Heuristics
Construction heuristics are an essential part of a memetic algorithm. There are a few
important aspects such a heuristic has to fulfil. Given that a lot of solutions have to be
created in order to provide a population at the start of a run, the construction heuristic
must be fairly quick. This will be discussed in subsection 3.3.2. Genetic algorithms and
memetic algorithms find new good solutions by putting together building blocks or as
has been discovered more general formae [Rad91]. They are combined during crossover
to form potentially better solutions. Early on it was argued that they have to be initially
provided during the construction of the population. Mutation was considered more of
a security policy to reintroduce prematurely deleted building blocks [Gol89]. [TS93]
argues that this is mostly true for low cardinality alphabets. High cardinality alphabets,
particularly combinatorial problems with high cardinality alphabets, are simply too vast
to introduce all of the possible building blocks in a population. They conclude that a
high mutation rate might be necessary to further explore the search space. This is in
a way also supported by [Rad92] which argues that in k-ary string representations the

19



3. Genetic and Memetic Algorithms for the Production Leveling Problem

mutation operator is a way to ”keep the gene-pool well stocked”[Rad92].
Memetic algorithms additionally have the stage of local search which might, for one,
restore previous building blocks that have been prematurely removed from the population,
fulfilling the role Goldberg had for mutation, it might however as well help find new
building blocks, even though only within the neighbourhood and not in a particularly
exploratory way.
Another important facet of construction heuristics is that they provide solutions that steer
the algorithm in the right direction. [SG90] shows non-random construction heuristics
and argues that the diversity of the initial population is of course important and gives
the algorithm a lot of diverse building blocks, random initialisations also create a lot of
nonsensical candidates, however, that just lengthen the search process. In our problem
this could be reflected by a solution candidate that puts all of the orders into one period.
This would of course be a possible solution, also part of the search space, but would
generally not put us anywhere near a good solution.
With this being said, the construction heuristic needs to provide candidates that point in
the direction of good and valid solutions while still creating a diverse population that
contains a large number of different building blocks.
For this thesis we created different construction heuristics. Which construction heuristic
fits the best for our algorithm and problem will be eventually decided during hyper-
parameter tuning. First, however, we will analyse our options and potentially remove
inadequate algorithms. In the following we will first explain the algorithms, then dis-
cuss the quality of the solutions based on a few metrics. We will then introduce and
evaluate the algorithms on another set of metrics for measuring the diversity of the
solutions created by the algorithms, also establishing the notion of the Extended Jaccard
Index. Based on those comparisons we will compare them and decide which construction
heuristics will be considered during hyperparameter tuning.

3.3.1 Algorithms
This section explains how the different construction heuristics work and what their focus
is. Their expected results in terms of population diversity and which parts of the fitness
function they cater to is discussed.

First-Fit Construction Heuristic

The First-Fit construction heuristic is a fairly quick and easy construction heuristic. The
idea is to assign orders to the first period they fit into without violating hard constraints.
To accommodate the priority inversion part of the fitness function the orders are first
sorted by priority. This clearly harms the diversity of the produced solutions and therefore
the amount of provided formae. It is, however, one of the easiest ways to ensure some
compliance with the priority order. Some diversity remains, since generally a lot of
orders have the same priority. Those ties are broken randomly, yet they will clearly be
spatially close, given the essence of the algorithm. The sorted orders are then, like stated
above, iterated through and assigned to the first period that can accommodate this order

20



3.3. Construction Heuristics

without violating a hard constraint. Any remaining orders are assigned a random period.
Given the nature of the algorithm, there generally is a bit of skew towards the earlier
periods, meaning that earlier periods usually have higher cumulative demand, while later
periods tend to stay emptier. No concrete step is taken to match the target limit, the
target limit being the cumulative demand each period tries to reach as closely as possible,
which certainly affects the demand balance across the periods, affecting the f1 and f2
parts of the fitness function negatively. Given the focus of the heuristic, it is expected to
do fairly well when it comes to hard constraint violations.
Summarily the First-Fit construction heuristic is a simple and quick algorithm that tries
to honour the priority order. It fills up earlier periods first leading to an unbalanced
solution while still trying to fulfil hard constraints as long as possible. The produced
solution candidates are also not expected to be particularly diverse given the ordering
that takes place in the beginning of the heuristic and the way those orders are distributed.
Solutions created by the First-Fit construction heuristic are expected to lack performance
when it comes to f1 and f2 but excel in f3. They are also expected to have a fairly low
amount of constraint violations.

First-Fit-with-Target-Limit Construction Heuristic

The First-Fit-with-Target-Limit construction heuristic addresses some issues the previous
algorithm had. The idea is the same: orders are sorted by priority and assigned to the
earliest accommodating period. The definition of whether a period can accommodate an
order, however, has changed. In this heuristic orders are only accepted into a period if
the demands don’t exceed the target limit of the instance. In comparison, the First-Fit
construction heuristic only checks for validity. Any remaining orders will then be assigned
by the original rules, allowing orders only if they do not violate hard constraints. Lastly,
all the orders still not assigned are assigned at random.
It is important to note that of course both, f1 and f2 target limits, so overall period
target limits and target limits per product type and period are considered. This leads to a
much more balanced solution candidate, while introducing a lot more priority inversions,
given that lower priority orders are what remains after the first step, which are then
assigned, starting at earlier periods. In terms of hard constraint violations, this heuristic
should perform similarly to the First-Fit construction heuristic.

Vass-et-al Construction Heuristic

The Vass-et-al construction heuristic is a heuristic from the thesis originally introducing
the Production Leveling Problem [VLM20], from the authors Vass et al., hence the name.
This is a more involved construction heuristic trying to not only honour the priority
order as well as possible but also find the best fitting period. This generally leads to
good solutions while being a lot slower than the other heuristics. The algorithm iterates
through the periods, calculates the delta cost of adding each order to the current period
and adds an order to a list of suitable orders if adding it would improve the solution.
This is done until either there are no orders left or a set amount of suitable orders have

21



3. Genetic and Memetic Algorithms for the Production Leveling Problem

been found. Another parameter, the selection size r, then further restricts this set of
suitable orders to the best r options, i.e. the r orders with the best fitness improvement.
One of these orders is then randomly chosen to be added to the period. This is done
until the algorithm finds no suitable orders, i.e. the period is close to the target limit,
after which the next period is considered. If there are any orders remaining, they are
then, one by one, assigned to the period with the greatest remaining capacity.
This is the most considerate construction heuristic of this thesis, while also taking a lot
longer to execute. It considers the priority orders in a very similar way to the previous two,
while focusing more on balancing the periods and enforcing the hard constraints. While
they originally state that by controlling the selection size r the diversity of the population
can be increased, diversity is expected to be a problem with this implementation still.
This comes as no surprise, however, since the construction heuristic was originally created
for a simulated annealing and variable neighbourhood descent approach, where only one
initial solution needed creating. Given the amount of care put into choosing the best
match for an order, the heuristic is expected to do fairly well when it comes to hard
constraint violations and fitness in general.

Random Construction Heuristic

The Random construction heuristic is a very simple construction heuristic assigning each
order to a random period. The orders are shuffled randomly and then split into a number
of sets corresponding to the periods. This leads to a solution that has roughly the same
amount of orders per period, while completely disregarding any fitness concerns. The
algorithm provides a good benchmark for comparing different construction heuristics,
particularly when looking at diversity. While in early, non-combinatorial, low cardinality
alphabet problems random solutions were the go-to for population creation, the sheer size
of the search space commands some steering in the right direction. The number of hard
constraint violations introduced in this construction heuristic will be a good benchmark,
indicating when there is a certain tendency in one direction or whether there is none at
all.

By-Demand Construction Heuristic

The By-Demand construction heuristic was created purely to create a very balanced
solution, dealing with hard to accommodate orders early. The orders are sorted descending
by their demand. The algorithm then walks through the periods one by one, moving
back down when reaching the last period and assigning one order at a time. This leads
to a very balanced solution, completely disregarding priorities and product types. The
diversity of the created solution is also expected to be fairly low given the initial sorting of
the orders. Depending on the problem instance there can be more or less orders with the
same demand, so the diversity can differ from instance to instance. A diverse population
would be, however, merely a coincidence and not at all inherent to the heuristic. Solutions
created by this construction heuristic are expected to do exceptionally well when it comes
to f1, they are expected to do okay when looking at f2 but will do about as well when it

22



3.3. Construction Heuristics

comes to f3 as the Random construction heuristic. It is expected to do very well when it
comes to violating the per period capacity constraint. Which is expected to affect the
per product type and period constraint violations in a positive way.

Next-Fit Construction Heuristic

The Next-Fit construction heuristic is a heuristic very similar to the First-Fit construction
heuristic. Orders are first sorted by priority, even though this effect will be marginal given
the rest of the algorithm. Then it tries to find the next period in which this order still
fits without violating hard constraints. The main difference to the First-Fit construction
heuristic is the starting point from which the algorithm looks for an accommodating
period. The First-Fit algorithm always starts at the first period, the Next-Fit algorithm
starts from the first period after the last assignment, i.e. the next period. E.g. If one
iteration assigns period 2 to an order, the first period that is checked for the next order
would be period 3, as compared to period 1 which would be checked when applying the
First-Fit heuristic. It tries to approach the balancing issue the First-Fit construction
heuristic has from a different angle, but creates a lot more priority inversions. Diversity
wise this approach is expected to do slightly better than the First-Fit construction
heuristic, since small changes should lead to larger changes down the line with this
heuristic.
Solutions created by the Next-Fit construction heuristic are expected to do better in
f1 and f2 than First-Fit, yet worse when it comes to f3. In terms of violations, results
should be comparable to the First-Fit construction heuristic. The results should be
similar to First-Fit-with-Target-Limit when it comes to f1 and f2 and worse for f3.

By-Demand-Next-Fit Construction Heuristic

The By-Demand-Next-Fit construction heuristic is, as the name implies, a combination of
both, the By-Demand and the Next-Fit construction heuristic. Given the marginal benefits
of sorting by priority in the Next-Fit construction heuristic and the obvious disadvantages
of completely disregarding two thirds of the fitness function, this construction heuristic
tries to combine the perks of the two. Orders are sorted by demand and should therefore
help balancing the solution early on, yet they are tested for compliance with hard
constraints. This, again, does not consider priority inversions. It is expected to be less
diverse than the Next-Fit construction heuristic, since there are generally more unique
demand values than priority values in the problem instances, which leads to a stricter
order of orders and therefore less randomness when choosing the next order. It is expected
to be more diverse than the plain By-Demand construction heuristic, since compliance
must be considered which can be affected by small changes earlier in the algorithm,
i.e. small randomness within the ordering of orders goes a longer way when checking
whether an order fits or not, since the product types may be distributed differently and
might therefore be full at different times, which might affect the period that is chosen
next, which affects the period afterwards, etc. since this uses the Next-Fit heuristic. It
is also expected to be more diverse than the First-Fit construction heuristic, for the

23



3. Genetic and Memetic Algorithms for the Production Leveling Problem

same reasons the Next-Fit construction heuristic is expected to be more diverse, which is
very much in line with the reasoning about why it is more diverse than the By-Demand
heuristic. It has to be noted that sorting the orders by demand instead of priority works
against the diversity, as stated earlier, this is, however, expected to reduce the diversity
only marginally, as compared to the reasons stated for Next-Fit vs. First-Fit. In terms
of fitness this heuristic is expected to do well when it comes to f1 and f2. It is expected
to outperform First-Fit, Next-Fit and First-Fit-with-Target-Limit when it comes to
f1. For f2 better results than First-Fit and Next-Fit are anticipated. f3 is of course
expected to perform on par with Next-Fit and considerably worse than First-Fit and
First-Fit-with-Target-Limit.

3.3.2 Runtime

This section discusses the differences and results when looking at the runtime of the
various construction heuristics. The runtime is a measure that is not crucial to which
algorithm will be chosen for parameter tuning, it can however disqualify a construction
heuristic if the runtime is not accommodable. Constructing a population heuristically,
while not being integral to the notion of a memetic algorithm, is an important part
kick-starting the process.

instance name # orders # periods First-Fit First-Fit-with- Random By-Demand Next-Fit By-Demand- Vass-et-al
Target-Limit Next-Fit

953 2019 10 0.192962 0.278277 0.04847 0.04532 0.123304 0.121345 19.00843
958 888 5 0.055028 0.038168 0.012564 0.00939 0.014951 0.013543 6.55470
987 2706 4 0.218398 0.268908 0.061272 0.052801 0.112029 0.109302 67.01908
small_0001 86 8 0.256754 0.356063 0.129709 0.061948 0.153359 0.155395 0.03772
small_0003 34 7 0.003864 0.004927 0.005516 0.00163 0.002221 0.002636 0.00681
957 885 34 0.027551 0.035951 0.012892 0.010744 0.017223 0.015926 1.62304
966 975 22 0.024665 0.032291 0.011653 0.010574 0.019025 0.020056 2.77193
967 2527 31 0.104902 0.150392 0.032317 0.029904 0.080617 0.071563 13.8639
987 1725 26 0.057846 0.076989 0.020989 0.021413 0.044829 0.042186 6.25021
980 1449 23 0.047484 0.060679 0.018242 0.01669 0.034059 0.030369 4.84471
994 3360 37 0.152414 0.238769 0.044644 0.042904 0.115706 0.114404 22.03195
956 3583 50 0.181366 0.283796 0.044877 0.040892 0.116534 0.114389 18.44896
960 733 61 0.029476 0.035756 0.010081 0.008844 0.014441 0.013029 1.1809
962 3086 77 0.441327 0.255496 0.040578 0.038306 0.099578 0.09532 10.31609
964 3856 69 0.2445 0.327717 0.051597 0.048233 0.139232 0.136788 21.23846
970 112 57 0.003586 0.004438 0.001937 0.002265 0.00221 0.001885 0.02429

Table 3.1: This table shows the mean runtimes in seconds for each of the construction
heuristics of a few chosen instances with increasing amount of orders, since that has been
the main parameter affecting the runtime. Each value is the average of 50 runs. More
specific data can be found in the appendix A.1.

When looking at the runtimes in Table 3.1 there exists one very obvious outlier with the
Vass-et-al construction heuristic. The algorithm design explains the poor runtime, since
for each period, every order is considered multiple times until the period is full. While
this is of no particular concern when creating one solution for a simulated annealing run,
it is problematic when such a construction has to be executed up to a couple hundred
times. Therefore the Vass-et-al construction heuristic will not be considered during
hyperparameter tuning but will be further analysed nonetheless, since it might provide

24



3.3. Construction Heuristics

some insights in what makes a high quality construction heuristic for the problem at
hand.

3.3.3 Solution Quality

As discussed earlier we expect each construction heuristic to create solutions that are
strong in some aspects an weak in others. In the following we analyse whether those
expectations are fulfilled and if there are any construction heuristics that create outstand-
ingly strong solution candidates as well as the opposite and can be sorted out. We first
look at the overall fitness average of a population with 100 individuals created by each
construction heuristic. We then look at the various parts that make up this fitness value
on their own. Lastly, we will discuss the prevalence of hard constraint violations in the
created solutions.

Fitness - overall

The overall solution fitness consists of the three normalised and weighted sub-fitness
values f1, f2 and f3 that are explained in more detail in chapter 2. In addition to those
weighted values, hard constraint violations are added. For each hard constraint violation
1 is added to the fitness value. The fitness value of a solution without hard constraint
violation is typically below 1, making hard constraint violations particularly weighty.
Table 3.2 shows the average fitness values of 100 solutions created by a construction
heuristic for a given instance. The best averages of an instance are highlighted in bold.
Most of the best fitnesses are achieved by three construction heuristics: By-Demand-
Next-Fit, Vass-et-al and First-Fit. The By-Demand-Next-Fit heuristic ranks highest most
often but also performs very well when not in first. The heuristic is in terms of rank the
best performing construction heuristic of the bunch. There are also no outliers except for
instance 962 where it only places 4th. First-Fit and Vass-et-al are close. With First-Fit
performing a bit worse, yet more consistent and Vass-et-al having more first places while
having a few more bad placements as well. The Random heuristic performs as expected,
worse than any other heuristic in every single instance. The By-Demand heuristic performs
surprisingly badly and is generally a lot closer to the Random construction heuristics
results than expected, except for instance 970, for which it beats all the other heuristics.
This, again, must be an outlier, where the sorting of orders by demand corresponds well
to a good solution. The performance of the First-Fit-with-Target-Limit construction
heuristic is surprising too, in that it is considerably worse than the First-Fit construction
heuristic. This would have not been surprising were it only marginal. It seems, however,
that the heuristic introduces a lot more constraint violations. The Next-Fit construction
heuristic performs very average. Similarly to First-Fit-with-Target-Limit, slightly worse
performance than the First-Fit construction heuristic would not have been surprising,
particularly with the introduction of more priority inversions. That there are this many
more hard constraint violations introduced, however, is surprising.

25



3. Genetic and Memetic Algorithms for the Production Leveling Problem

instance name First-Fit First-Fit-with- Random By-Demand Next-Fit By-Demand- Vass-et-al
Target-Limit Next-Fit

953 1.20984 5.48576 39.36117 31.69154 2.70177 0.4113 1.79531
958 0.3159 1.35334 18.23439 12.9018 0.94774 0.22198 0.92303
987 0.85052 2.47204 16.53666 7.6801 1.91491 0.11124 2.59134
small_0001 0.23092 2.73015 8.99624 7.45302 1.10126 0.2428 0.27771
small_0003 0.38874 2.24078 6.90951 5.62134 2.55777 0.51536 0.62839
957 6.13806 22.24932 100.6481 99.26041 12.58682 0.8428 8.64692
966 0.41853 2.17289 31.26933 25.00536 0.86415 0.38763 0.29489
967 14.74353 40.24608 184.32559 172.9424 25.55374 9.94495 9.90171
978 2.2602 23.17795 112.88342 100.49048 6.99952 0.68265 7.23193
980 2.01215 4.78539 56.87753 37.43377 2.80417 2.24437 1.18184
994 0.57071 17.99127 146.34361 101.517 4.98209 0.52554 2.49298
956 0.35794 1.37748 50.62482 56.87084 0.30545 0.23857 0.10086
960 0.84092 7.30709 39.6401 3.87745 0.90094 0.88606 3.91812
962 0.36333 0.00629 24.84062 0.17022 0.29274 0.18792 0.02391
964 0.3174 5.00921 70.96599 33.33036 4.54743 0.21442 0.17154
970 1.32102 13.91778 44.23045 0.25408 10.55117 0.2793 2.04602

Table 3.2: This table shows the mean fitness values of 100 solutions created by the
corresponding construction heuristics. The first block shows a sample of problem instances
with small alphabets (number of periods), the middle shows medium alphabets and the
bottom block shows large alphabets. Each fitness value is calculated by the formula for a
solutions fitness. For each hard constraint violation present, 1 is added. The best fitness
value of an instance is highlighted in bold.

Fitness - g1

The fitness value g1 is the normalised f1 value that represents the overall deviations from
the target demand per period. For this value, no product types are considered, it is just
checked how far off the target of each period is from the cumulative demand per period.
The numbers shown in the table have been normalised by dividing the absolute f1 values
by the target demand per period times the number of periods.
The results are not particularly surprising. The best value of each instance is highlighted
in bold. The By-Demand construction heuristic is in all but one cases the best heuristic
when it comes to balancing the demand across periods. This came as no surprise since
that is the only strength of this particular heuristic. For instance 962 the First-Fit-with-
Target-Limit construction heuristic performed better. By-Demand-Next-Fit is arguably
the second best construction heuristic for this metric. Nine out of 16 times it placed
second, four times it placed third, one time fourth and once fifth. The other heuristics
performed somewhat worse with First-Fit performing the worst overall, most of the time
even worse than the Random construction heuristic. The First-Fit construction heuristic
was expected to be deficient when it comes to g1, yet the degree of deficiency comes as a
surprise. The changes made to improve this heuristic in the form of the First-Fit-with-
Target-Limit construction heuristic appear to have had the desired effect. It outperforms
the First-Fit construction heuristic in almost every instance and generally by a lot. The
Next-Fit construction heuristic was created as an improvement for First-Fit heuristic and
is an alternative to First-Fit-with-Target-Limit. It was expected to outperform First-Fit
when it comes to f1 and be comparable to First-Fit-with-Target-Limit. The heuristic

26



3.3. Construction Heuristics

indeed outperforms First-Fit by a lot. When compared to First-Fit-with-Target-Limit,
it is at times similar, can even deliver better results, yet in 10 out of those 16 cases it
performs a bit worse. Vass-et-al performs not particularly well in this regard placing
in the midfield with First-Fit-with-Target-Limit and Next-Fit. The comparison with
By-Demand seems almost unfair given the otherwise general ineffectiveness of this con-
struction heuristic.

instance name First-Fit First-Fit-with- Random By-Demand Next-Fit By-Demand- Vass-et-al
Target-Limit Next-Fit

953 0.16617 0.01165 0.0537 0.00126 0.03475 0.0079 0.03752
958 0.15149 0.01352 0.0414 0.00039 0.0293 0.01688 0.02971
987 0.14599 0.0093 0.01909 0.0001 0.01665 0.00198 0.00116
small_0001 0.10826 0.05908 0.17626 0.01204 0.05353 0.03679 0.05397
small_0003 0.07716 0.11192 0.16737 0.0149 0.10542 0.07607 0.05877
957 0.15344 0.10787 0.0903 0.00535 0.0639 0.054264 0.06552
966 0.15602 0.02667 0.08352 0.00757 0.06111 0.02661 0.07697
967 0.13758 0.02839 0.06006 0.00061 0.03205 0.02578 0.04535
978 0.13702 0.06559 0.06375 0.00131 0.03841 0.02251 0.04542
980 0.16366 0.01402 0.06338 0.00291 0.04299 0.01357 0.04173
994 0.15715 0.01903 0.05938 0.00074 0.0353 0.03657 0.03632
956 0.17736 0.00306 0.05855 0.00148 0.05137 0.00872 0.04282
960 0.12963 0.0611 0.15398 0.00586 0.05298 0.03202 0.03072
962 0.18047 0.00154 0.07881 0.00346 0.06542 0.01205 0.00897
964 0.16358 0.01294 0.05437 0.00262 0.05448 0.00655 0.03379
970 0.10981 0.20374 0.38371 0.04887 0.18715 0.05715 0.07139

Table 3.3: The table shows the mean g1 values of 100 solutions created by the corre-
sponding construction heuristics. The first block shows a sample of problem instances
with small alphabets (number of periods), the middle shows medium alphabets and the
bottom block shows large alphabets. The best fitness value of an instance is highlighted
in bold.

Fitness - g2

The g2 value is the normalised f2 value. f2 represents the deviation from the target
demand per period and product type. The value is normalised by dividing it by the
number of periods times the number of products. In Table 3.4 the average g2 values of
100 solutions created by the different construction heuristics are displayed. The best are
highlighted in bold.
The picture this table paints is a lot less clear than the previous ones. First-Fit-with-
Target-Limit has most of the time the best results, with 9 of 16 values being the best
and another 3 being second best, while also having a few results near the bottom
with 3 fifth and one sixth place. By-Demand-Next-Fit and Vass-et-al perform about
as well as each other. All in all it is very hard to judge which construction heuristic
performs best when looking at the g2 values. It is, however, fairly easy to judge the worst
contenders. Both Random and By-Demand perform very badly, with By-Demand having
one exception, where it comes first. Next-Fit and First-Fit perform okay but all in all
just very average. The First-Fit-with-Target-Limit construction heuristic outperforms

27



3. Genetic and Memetic Algorithms for the Production Leveling Problem

the First-Fit construction heuristic in a lot of the instances, as was predicted. The
magnitude at which this outperforming happens is a lot less significant though, than
it has been for f1. Next-Fit outperforms First-Fit in most cases, yet does considerably
worse when compared to First-Fit-with-Target-Limit. The performance of By-Demand
is unexpectedly bad. The balancing work that goes into balancing for f1 was expected
to lead to an okay performance for f2 and even though it outperformed the Random
construction heuristic, it generally did only by little.

instance name First-Fit First-Fit-with- Random By-Demand Next-Fit By-Demand- Vass-et-al
Target-Limit Next-Fit

953 0.32633 0.25246 0.50361 0.40671 0.28309 0.26035 0.25724
958 0.15761 0.04924 0.26644 0.22647 0.11142 0.09935 0.06382
987 0.13345 0.04086 0.19503 0.14796 0.0957 0.04684 0.07238
small_0001 0.1073 0.07038 0.3067 0.29707 0.08162 0.07653 0.05447
small_0003 0.28896 0.32709 0.5202 0.47138 0.32474 0.27246 0.26402
957 0.6528 0.61468 0.87846 0.85004 0.62602 0.63025 0.62639
966 0.24632 0.15865 0.44081 0.35154 0.20883 0.20308 0.19244
967 0.29067 0.24633 0.54644 0.45398 0.25283 0.23115 0.27583
978 0.53562 0.53952 0.73186 0.6978 0.50444 0.50122 0.53426
980 0.23819 0.09459 0.38753 0.28685 0.16508 0.14259 0.11486
994 0.39951 0.3187 0.5438 0.46606 0.34729 0.3291 0.02616
956 0.17397 0.00657 0.19496 0.18723 0.09369 0.06831 0.04616
960 0.70014 0.72599 0.76331 0.70832 0.68797 0.6933 0.86683
962 0.18047 0.00154 0.07881 0.00346 0.06542 0.01205 0.00897
964 0.14884 0.02669 0.23887 0.1641 0.09297 0.04547 0.04806
970 0.10981 0.20374 0.38371 0.04887 0.18715 0.05715 0.07139

Table 3.4: In this table the mean g2 values of 100 solutions created by the corresponding
construction heuristics are displayed. The three blocks show small, medium and large
alphabets. The best fitness value of an instance is indicated in bold.

Fitness - g3

Table 3.5 shows the mean g3 values of 100 solutions created by each construction heuristic
for each instance. The g3 value is the normalised f3 value, calculated by multiplying f3
with 2

k∗(k−1) with k being the number of orders of the instance. A high g3 value means
a high amount of priority inversions, meaning that orders with low priority are often
scheduled before orders with high priority.
This table is the very opposite of the g2-table. The picture could not be clearer. The
First-Fit construction heuristic delivers the best results for each instance except one and
generally by a lot. This makes sense, since it is the heuristic with the most focus on
priority and the heuristic that keeps this order the strictest. It was also expected to excel
when it comes to f3, as has been discussed in 3.3.1. The second and third best heuristics
when it comes to g3 are not as obvious, with First-Fit-with-Target-Limit being the second
best in most instances and Vass-et-al being the third best in most instances. The Random
construction heuristic performs a bit below the 0.5 mark which is expected. Also both,
By-Demand and By-Demand-Next-Fit, were anticipated to do about as well as Random
does, since there was no effort put into reducing priority inversions. Unsurprisingly the
results are at times almost identical.

28



3.3. Construction Heuristics

First-Fit-with-Target-Limit was expected to perform worse than First-Fit, yet the viability
of solutions constructed by the First-Fit-with-Target-Limit construction heuristic is
surprising. Next-Fit performs unsurprisingly worse than both First-Fit and First-Fit-
with-Target-Limit, very close to random. The difference between First-Fit-with-Target-
Limit and Next-Fit, however, was expected to be a lot smaller. This is mostly because
of the unexpectedly good performance of First-Fit-with-Target-Limit. The Vass-et-al
construction heuristic performing worse than the two heuristics that adhere a lot more
closely to the priority order comes as no surprise. Yet just putting it in third place
appears to be underselling the actual results when it comes to fitness. The solutions
created by Vass-et-al are quite a bit worse than the solutions created by the best two in
most cases, yet they are distinctly better than the rest of the solutions when it comes to
priority inversions.

instance name First-Fit First-Fit-with- Random By-Demand Next-Fit By-Demand- Vass-et-al
Target-Limit Next-Fit

953 0.02201 0.03494 0.43153 0.43068 0.43176 0.42913 0.12163
958 0.0204 0.03175 0.31964 0.31484 0.32104 0.31722 0.11849
987 0.00322 0.00563 0.18762 0.18611 0.18769 0.18726 0.05336
small_0001 0.04606 0.09204 0.42981 0.43172 0.40832 0.38839 0.11778
small_0003 0.06787 0.12527 0.42579 0.40518 0.38281 0.50048 0.13679
957 0.06542 0.17031 0.478 0.49504 0.4707 0.47486 0.105
966 0.04854 0.08268 0.46498 0.46873 0.46261 0.4738 0.07642
967 0.04582 0.06408 0.38727 0.38341 0.38654 0.38404 0.06154
978 0.05265 0.09853 0.47341 0.4541 0.46997 0.47677 0.09674
980 0.03088 0.05032 0.46984 0.462 0.46829 0.47459 0.07571
994 0.04212 0.07059 0.48128 0.48061 0.47848 0.47961 0.06323
956 0.01981 0.02353 0.48393 0.48637 0.48117 0.48461 0.0356
960 0.03342 0.05997 0.48839 0.48979 0.47995 0.48223 0.06169
962 0.00715 0.00962 0.489 0.48987 0.48571 0.49145 0.01792
964 0.01491 0.02875 0.48823 0.49089 0.47992 0.48717 0.02906
970 0.1842 0.21091 0.4891 0.46898 0.35059 0.495 0.12967

Table 3.5: This table shows the mean g3 values of 100 solutions created by their
corresponding construction heuristic. The three blocks show small, medium and large
alphabets. The best fitness values of the instance are highlighted in bold.

Fitness - hard constraint violations

There are two types of hard constraint violations and they very much fit the concepts
of f1 and f2. The first type of hard constraint violation occurs when the cumulative
demand of a period is larger than c and the second hard constraint is violated whenever
the orders in a period of a product type cumulatively exceed their ct.
Each such violation is counted separately. A solution with 10 periods could technically
only have 10 violations of the first hard constraint and if this same instance has 5
product types, it could have 5 hard constraint violations per period, so 50 violations
when considering the second hard constraint and 60 altogether.
Table 3.6 displays the average number of hard constraint violations for 100 solutions
created by the corresponding construction heuristic right after construction. Table 3.7
shows the number of hard constraint violations of the first type and table 3.8 shows the

29



3. Genetic and Memetic Algorithms for the Production Leveling Problem

hard constraint violations of the second type. It is not certain whether all of the 16
instances have valid configurations, i.e. can have 0 hard constraint violations.
By-Demand-Next-Fit delivers the best results when it comes to hard constraint violations.
Most of the time it manages to not introduce any violations at all, while it still keeps
them lower than the other heuristics in the other cases. All the violations introduced
are created through the second hard constraint, which is a pattern that occurs through
the rest of this section. It creates the least violations in all of the instances, while
being tied in all but two, mostly with the First-Fit construction heuristic and Vass-et-al.
The First-Fit heuristic performs best, tied with By-Demand-Next-Fit, in 11 out of the
16 instances and is in a firm second place. This also created most violations for the
product type hard constraint, yet the difference to the first hard constraint is not as
prominent here. Vass-et-al places third with 9 ties for the first place. The remaining
heuristics perform a lot worse. The Random construction heuristic introduces the most
hard constraint violations in all but one instance, closely followed by the By-Demand
construction heuristic which tends to create the second worst results in most cases. It
performs even worse than Random in one case but performs okay for a few other instances.
All of this happens, while the results for the per period hard constraint are excellent. The
By-Demand construction heuristic creates no hard constraint violations when it comes to
the first constraint and performs on par with By-Demand-Next-Fit as best heuristic in
this regard, yet it introduces a lot of violations when it comes to violations of the second
type, looking at table 3.8, sometimes performing worse than Random. This development
was unexpected in a way, since the performance when it comes to the second constraint
was expected to be influenced by the performance when it comes to the first, which
appears not to be the case.
Interestingly instance 962 is constructed without hard constraint violations by all con-
struction heuristics but the Random construction heuristic. The remaining heuristics all
perform okay.
The results of the Next-Fit construction heuristic are somewhat surprising. In terms of
violations, the heuristic was expected to perform about as well as the First-Fit construc-
tion heuristic. Yet, while performing okay, the results are notably worse, with most of
the difference introduced in the per product type and period capacity constraint. This
might be explained by the better balancing the Next-Fit construction heuristic does from
the start. A period is not, one after another, filled until there is no capacity left but all
are filled somewhat evenly. This leads to an even remaining capacity, i.e. each period has
about the same space left. That is not the case with the First-Fit construction heuristic,
since earlier periods are filled first. Therefore the later periods have larger spaces, making
it possible for orders of larger demands to be assigned as well, which might not be possible
for solutions created by the Next-Fit construction heuristic. This leads to more orders
being unassigned, that are then assigned randomly and clearly breaking capacity limits.
This line of thinking also explains the even worse results of First-Fit-with-Target-Limit.
Since the balancing is done twice, first with the target limit, second with the maximum
capacity, it disqualifies larger demand orders even earlier and when reconsidering them
there already is only the limited space left between the target and maximum capacity.

30



3.3. Construction Heuristics

instance name First-Fit First-Fit-with- Random By-Demand Next-Fit By-Demand- Vass-et-al
Target-Limit Next-Fit

953 0 5 38 31 2 0 1
958 0 1 17 12 0 0 0
987 0 2 16 7 1 0 2
small_0001 0 2 8 7 0 0 0
small_0003 0 1 6 5 2 0 0
957 5 21 99 98 11 0 7
966 0 1 30 24 0 0 0
967 14 39 183 172 25 9 9
978 1 22 111 99 6 0 6
980 1 4 56 36 2 1 1
994 0 17 145 100 4 0 2
956 0 1 50 56 0 0 0
960 0 6 38 3 0 0 3
962 0 0 24 0 0 0 0
964 0 4 70 33 4 0 0
970 1 13 43 0 10 0 1

Table 3.6: This table shows the mean number of hard constraint violations of 100
solutions created by the corresponding construction heuristic for each instance. The rows
are partitioned into small, medium and large alphabets. The best results are highlighted
in bold.

instance name First-Fit First-Fit-with- Random By-Demand Next-Fit By-Demand- Vass-et-al
Target-Limit Next-Fit

953 0 0 0 0 0 0 0
958 0 0 0 0 0 0 0
987 0 0 0 0 0 0 0
small_0001 0 0 2 0 0 0 0
small_0003 0 0 2 0 0 0 0
957 2 6 6 0 2 0 0
966 0 0 3 0 0 0 0
967 3 0 3 0 0 0 0
978 0 2 2 0 0 0 0
980 0 0 2 0 0 0 0
994 0 0 3 0 0 0 0
956 0 0 4 0 0 0 0
960 0 4 18 0 0 0 0
962 0 0 11 0 0 0 0
964 0 0 5 0 0 0 0
970 0 6 22 0 5 0 0

Table 3.7: This table shows the mean number of violations of the maximum capacity
per period hard constraint of 100 solutions created by the corresponding construction
heuristic for each instance. The rows are partitioned into small, medium and large
alphabets.

Fitness - conclusion

In the following the construction heuristics are evaluated purely from a fitness point
of view. Diversity will be addressed in the next section and is another important part
when choosing a construction heuristic for memetic algorithms. When looking at overall
fitness, the worst contenders are the Random and By-Demand construction heuristic.

31



3. Genetic and Memetic Algorithms for the Production Leveling Problem

instance name First-Fit First-Fit-with- Random By-Demand Next-Fit By-Demand- Vass-et-al
Target-Limit Next-Fit

953 0 5 38 30 2 0 1
958 0 1 18 12 0 0 0
987 0 2 16 7 1 0 2
small_0001 0 1 6 7 0 0 0
small_0003 0 0 3 5 0 0 0
957 3 15 92 98 9 0 7
966 0 1 27 24 0 0 0
967 10 39 181 173 24 9 9
978 1 19 109 99 6 0 6
980 1 4 53 37 2 1 1
994 0 17 141 100 4 0 2
956 0 1 46 56 0 0 0
960 0 1 21 3 0 0 3
962 0 0 11 0 0 0 0
964 0 4 65 33 4 0 0
970 0 6 22 0 5 0 0

Table 3.8: This table shows the mean number of violations of the maximum capacity per
period and product type hard constraint of 100 solutions created by the corresponding
construction heuristic for each instance. The rows are partitioned into small, medium
and large alphabets.

Random was never expected to do particularly well when it comes to fitness. It is a well
needed benchmark for comparison with other construction heuristics and will have better
results when it comes to diversity. The By-Demand construction heuristic does very well
when it comes to balancing the solutions, yet this good performance when it comes to f1
did not translate well to f2, including the corresponding hard constraints. The amount
of violations this construction heuristic produces is unexpectedly high. It is just not a
very good construction heuristic for the problem at hand. Vass-et-al performed about
as expected. The runtime of this heuristic makes it unviable when it comes to using it
for a memetic algorithm, yet in terms of fitness the heuristic performs amongst the best.
There are next to no hard constraint violations introduced, performing slightly worse
than By-Demand-Next-Fit and First-Fit. While Next-Fit and First-Fit-with-Target-Limit
were both introduced to improve on the idea of the First-Fit construction heuristic, they
perform worse when it comes to overall fitness, mostly on the basis of hard constraint
violations. Both considerably improve the performance of the First-Fit construction
heuristic when it comes to f1. They both do better in terms of f2 even though the
difference is a lot smaller and while both are expected to lose out on f3, which they
do, the performance loss is a lot less considerable than assumed. The amount of hard
constraint violations introduced, however, thwarts the apparent gains. Lastly, the two
most promising construction heuristic when it comes to fitness while having reasonable
runtimes need discussing. The First-Fit construction heuristic and By-Demand-Next-Fit
construction heuristic are two very different approaches. The First-Fit construction
heuristic creates solutions with a focus on priority, while keeping constraint violations
low. Yet sacrificing levelling of the periods which reflects in their f1 and f2 values.
The By-Demand-Next-Fit construction heuristic is very different in that way, since it

32



3.3. Construction Heuristics

completely disregards priority. This can be seen when looking at the results of f3. It does
outstandingly well when it comes to hard constraint violations and produces passable
results when it comes to levelling the orders.
Combining both, First-Fit and By-Demand-Next-Fit to produce an initial population
could prove useful and is something that should be considered at a later point.

3.3.4 Solution Diversity

The diversity of a population is a key component to a functional memetic algorithm. The
population created at the start needs to provide a diverse set of building blocks or formae
to enable the algorithm to find good solutions [TS93][Rad91][SG90][Sud18]. Evaluating
the diversity of a population, however, can be difficult. Sometimes Hamming-distance is
used for measuring diversity of a population [CYTH14][Zhu03] (and the problems with
using only that will be addressed later) but other than that there seems to be no standard
way of measuring how diverse a population is [BGK04]. For a simple non-combinatorial
problem where each gene acts somewhat independent of one another, allele coverage
can be a helpful tool. Allele coverage shows how many of the alleles, or assignable gene
values, are covered within a population. This is a tool introduced in [TS93] with the
notion of expected allele coverage. They further discuss how large a population must
be to have enough allele coverage when using a Random construction heuristic. With
high epistasis this tool becomes less useful. Section 3.3.4 will go into detail on how allele
coverage and expected allele coverage work and whether using it can still be of benefit to
our problem. Another very simple tool that will be discussed in the following section, is
what we call equality ratio. This simply checks for orders that are assigned the same
period. This too will be further expanded on in the next section. Both those tools lack a
certain sophistication given the complexity of the problem at hand. We introduce the
extended Jaccard index to help further describe the diversity of a population created for
our problem. This metric builds upon the Jaccard index and will be further explained in
the corresponding part.

Equality ratio

The equality ratio is a very quick and simple way of evaluating a populations diversity. A
similar notion was used in [Spe00] for measuring population homogeneity. It represents
the average equality per gene and is arguably the opposite of the normalised hamming
distance. A gene is equal to another gene in the same position of another solution
candidate if the value is the same:

x = [1, 0, 3, 2, 2, 0], y = [1, 3, 2, 0, 2, 1]

DH,norm(x, y) = 4
6

33



3. Genetic and Memetic Algorithms for the Production Leveling Problem

equ(x, y) = 2
6 = 1 − DH,norm(x, y)

If two solutions have the same value in every gene, their equality ratio is 1. If two
solutions share no gene value, their equality ratio equals 0. The amount of equalities
are added up and divided by the number of genes, producing the equality ratio. If a
construction heuristic creates each solution in the same way, e.g. by just assigning each
order a period in an ascending way, the construction heuristics diversity will be obviously
low, displayed by a high equality ratio, in this case, 1.
While a low equality ratio does not necessarily equate a high diversity, a high equality
ratio certainly gives strong indication of low diversity.

Table 3.9 shows the results of our heuristics. The Random construction heuristic is a
valuable reference point in this endeavour, since it is often very instance dependent how
likely a high equality ratio is. It is also the best performing construction heuristic when
it comes to equality ratio, which is unsurprising. What is surprising, however, is that the
Next-Fit construction heuristic comes very close for most instances, and even performs
slightly better for instance 967. The results are notably bad whenever there are not a
lot of orders. Which makes sense, since the start of the Next-Fit construction heuristic
is very similar for each solution. This explains the results for instances ”small_0001”,
”small_0003” and ”970”. The lack of performance when it comes to ”962” and ”964” is
hard to explain, but might be due to the high number of periods both of those instances
have, leaving lots of capacity in every period which discourages diversity since no period
has to be found that would allow a previously non-fitting order.
The First-Fit, First-Fit-with-Target-Limit and Vass-et-al construction heuristics, perform
poorly yet understandably so. The high equality of First-Fit is inherent to the algorithm.
The heuristic sorts the orders first by priority and then tries to assign them to the first
period that can accommodate it. This, of course, leads to the orders being put in the
same period until it is full, removing any benefit in terms of diversity that the little
randomness provided within each priority class had. First-Fit-with-Target-Limit performs
even worse at times. This arguably comes from the ”restarting” of the algorithm once it
filled up the periods to its target limit. The First-Fit construction heuristic is able to
introduce some randomness after some initial filling up, which is completely taken away
from the First-Fit-with-Target-Limit heuristic, which starts again, filling up the periods,
starting at period 1.
Vass-et-al was used with a random selection size of 10. The general high equality can be
explained by the very careful choice of orders for each period and their initial sorting.
Since this heuristic was not particularly viable from the start, given its runtime, the
algorithm wasn’t tested with different values for r. This equality ratio is therefore not
very meaningful when it comes to assessing the diversity of the algorithm. It also has to
be noted, again, that the algorithm was not designed with diversity in mind, given that
it was designed for a simulated annealing and variable neighbourhood descent algorithm.

34



3.3. Construction Heuristics

The By-Demand construction heuristic lies in the midfield of the algorithms. The
heuristic was expected to perform rather badly, given the strict order that is enforced
in the beginning of the algorithm. The way orders are assigned periods, appears to
positively affect the diversity of the created solutions.
The By-Demand-Next-Fit construction heuristic performs well. As a hybrid of By-
Demand, which performs okay, and, Next-Fit, which excels when it comes to the measure
of equality ratio, the results are about as expected. The heuristic performs well and
even close to random at times, yet also has a few outliers. The order introduced with
By-Demand seems to generally worsen the results in terms of diversity, yet the Next-Fit
approach appears to introduce a lot of randomness.

instance name First-Fit First-Fit-with- Random By-Demand Next-Fit By-Demand- Vass-et-al
Target-Limit Next-Fit

953 0.82583 0.83053 0.10003 0.16403 0.10009 0.13753 0.83089
958 0.71274 0.77516 0.19971 0.36236 0.19998 0.26289 0.74147
987 0.47991 0.47532 0.24977 0.28775 0.24991 0.26158 0.84179
small_0001 0.78058 0.66201 0.12555 0.4735 0.21725 0.43252 0.31537
small_0003 0.66767 0.69844 0.14355 0.76368 0.30214 0.76342 0.32624
957 0.65389 0.74595 0.0294 0.27829 0.04559 0.11709 0.26428
966 0.73852 0.71577 0.04527 0.10806 0.04728 0.08871 0.58695
967 0.1684 0.1612 0.03227 0.15506 0.03215 0.05587 0.2994
978 0.72879 0.74029 0.03837 0.19966 0.03968 0.09872 0.5052
980 0.77778 0.77096 0.04359 0.11197 0.04483 0.0835 0.57972
994 0.73309 0.72636 0.02701 0.07842 0.02786 0.05775 0.59237
956 0.71909 0.69923 0.02 0.04081 0.02138 0.03122 0.69636
960 0.74286 0.73426 0.01645 0.10004 0.16747 0.09133 0.33372
962 0.79322 0.78784 0.01299 0.01932 0.04622 0.01432 0.7102
964 0.72959 0.72197 0.01454 0.02496 0.02171 0.01937 0.69164
970 0.40146 0.46882 0.0178 0.16592 0.28939 0.16107 0.20169

Table 3.9: This table shows the equality ratio (smaller is better) of each construction
heuristic on a given instance. The instances are blocked by alphabet size, starting with a
small alphabet size, then medium, then large.

Extended Jaccard Index

Since the solution representation is highly non-linear, the value of a single gene, all by
itself, says little about the fitness of the solution. The fitness is much more a product of
how the orders are grouped together. This, of course, has an effect on how building blocks
or formae work for our problem. We will use building blocks and formae interchangeably
from here on out unless otherwise stated, since the idea of formae is better conveyed
through the ”building blocks” name. If order 1 and 2 are in period 3 together and perform
well in terms of fitness for this period, it is less relevant that they are both in period
three, than that they are in a period together. Whether that’s period 3, 2 or 1, can
of course impact the f3 value, but is, as such, of little relevance to the quality of the
solution, particularly when it comes to building blocks. Building blocks and formae in
this problem, are much more the set of orders that are planned together and work well
together.
As mentioned before, one of the jobs of a construction heuristic, is to provide a diverse

35



3. Genetic and Memetic Algorithms for the Production Leveling Problem

set of solutions with many different building blocks. This means in our case, that it is
important, that solutions provide a lot of different combinations of orders for a given
period. The equality ratio is not capable of recognising this type of diversity if orders are
not put into the same period together.

The following should paint a clearer picture of why this is an issue: Assume there are
two solution candidates for a problem instance with 3 periods and 6 orders. Solution 1
looks as follows: [0, 0, 1, 1, 2, 2]. So order 0 and 1 are assigned to period 0, order 1 and
2 are scheduled for period 1 and order 2 and 3 are planned to be handled in period 2.
Solution 2 looks different but somewhat recognisable: [1, 1, 2, 2, 0, 0]. These two solutions
very much differ when it comes to f3, the amount of priority inversions, at least assuming
that priority behaves as normal and is not the same for all, etc.. When looking at
hard constraint violations and f1 and f2, however, both solutions are the exact same.
Illustrating the earlier point about the irrelevance of period and relevance of which orders
are put together. This is a dynamic the equality ratio fails to capture. The equality ratio
of the two solutions above would be 0, implying there is no relationship whatsoever. Yet
it is this diversity that is crucial for how well a genetic or memetic algorithm performs.
Measuring this equality proofed harder than expected. To the best of our knowledge
there is no metric available that would capture the similarity of two sets of sets. There is
a very well known metric for measuring the similarity of two sets in the Jaccard index.
The Jaccard index is defined as follows:

J(X, Y ) = |X ∩ Y |
|X ∪ Y |

The size of the intersection of two sets divided by the size of the union of two sets. This
will come in very handy, yet is not particularly applicable in this form. To compare two
solutions and how similar they are, the overlap of each period needs to be calculated.
For this the Jaccard index of each period of one with each period of the other solution is
calculated creating n values for each period of one solution, with n being the number of
periods, and therefore n2 values for the comparison of two solutions. This matrix makes
a comparison difficult, particularly if more than two solutions are to be compared. Some
consolidation is necessary.
We looked at two of several methods of capturing this information. First averaging the
values across all the periods for each period was tried. This dilutes the values and makes
it hard to see differences. The other option considered, was to take the biggest overlap of
each period with another period. This represents strong overlaps very well, yet has issues
capturing more sophisticated distributions. This is further illustrated in an example
below. Eventually it was decided that the issues of averaging can be rectified much
more easily than the issues of taking the maximum, by simply normalising. For this,
the minimum and maximum values possible need to be calculated. The quickest way
of finding these values was to enumerate the possibilities of small examples and simply
find the minimum and maximum values the extended Jaccard index calculation could
produce. The maximum value possible was found to be 1

n , the minimum value possible,

36



3.3. Construction Heuristics

for every problem with more orders than periods, was found to be 1
n2 . Next it is shown

how the minimum and maximum values possible are derived from the formulas. The
Jaccard index divides the size of the intersection by the size of the union. The set of
union is always at least as large as the set of intersection |X ∪ Y | ≥ |X ∩ Y |. Hence
|X∩Y |
|X∪Y | ≤ 1. Therefore no single Jaccard index can be larger than 1. It is important to
notice, that an order can only be assigned to one period, meaning an order that already
intersected, cannot intersect again. Also, every order has to intersect at one point, since
every order must be assigned. These bits of information are useful to show the minimum
and maximum values the index can reach.
The next part illustrates why the following formula is true:

1
n

≥ X∈NS1
Y ∈NS2

|X∩Y |
|X∪Y |

n

n
≥ 1

n2

With n being the amount of periods and hence period sets, and NS1 and NS2 being
the period sets for solution 1 and solution 2. Further it is important to note that
|NS1| = |NS2| = n. First we show that 1

n2 is the lower bound of this index. To get the
smallest possible value from the inner fraction, the union of sets must be as large as
possible. This is the case if all of the orders of the problem are in the union, meaning,
|X ∪ Y | = k, with k being the number of orders. With this, the inner part and eventually
the entire numerator can be written as:

|X ∩ Y |
k

= 1
k

|X ∩ Y | =⇒ 1
k

X∈NS1 Y ∈NS2

|X ∩ Y |

Since each order has to be intersected once, the sum of intersections across all period
combinations between solutions 1 and 2 is k, simplifying to 1

k k = 1. Leaving only the
two divisions by n:

1
n
n = 1

n2 .
Along very similar lines we can show why 1

n constitutes the upper bound of our index.
The maximum overlap a period can have is 1. Since every order can only intersect once,
the sum of intersections of one period of solution 1 with the periods of solution 2, is
equal to the orders in the period of solution 1, so:

Y ∈NS2

|X ∩ Y | = |X|; X ∈ NS1

If this period is only overlapped with subsets, the size of union is always equal to the
size of the period set of solution 1:

|X ∪ Y | = |X| iff Y ⊆ X, X ∈ NS1, Y ∈ NS2

This leads to
1

|X|
Y ∈NS2

|X ∩ Y | = |X|
|X| = 1; X ∈ NS1 iff ∀Y ∈ NS2 : Y ⊆ X

37



3. Genetic and Memetic Algorithms for the Production Leveling Problem

Assuming all this, the formula looks like follows:

X∈NS1
1
n

n

Since |NS1| = n we get n 1
n = 1, yielding our 1

n as best possible result.

With the minimum and maximum value now calculatable, we can go on and normalise
the extended Jaccard index results trivially by

x − xmin

xmax − xmin

Calculating the similarity of a whole population this way is computationally somewhat
expensive, yet nothing that has to happen regularly, which makes it acceptable. Every
solution has to be compared with every other solution in the population, eventually
averaging those results as well.
The following tries to clarify the idea and struggles of the Extended Jaccard Index with
an example.

This clarification uses the example from above.
To reiterate: solution 1: [0, 0, 1, 1, 2, 2], solution 2: [1, 1, 2, 2, 0, 0].
Translated into the relevant period sets: solution 1: {{0, 1}, {2, 3}, {4, 5}} and solution 2:
{{4, 5}, {0, 1}, {2, 3}}
The overlap of this example is rather obvious and should be reflected as such. The Jaccard
index for each combination of period 0 of solution 1 with solution 2 would be: 0

4 , 2
2 and

0
4 . Since period 0 of solution 1 overlaps entirely with period 1 of solution 2 and not at all
with periods 0 and 2. When averaged, this leads to a value of 0+1+0

3 = 1
3 . If a best case,

diversity wise, came around: [0, 0, 0, 0, 0, 0], the period sets would look like the following:
{{0, 1, 2, 3, 4, 5}, {}, {}}, leading to Jaccard indices of

2
6
3 ,

2
6
3 and

2
6
3 and hence

1
9 + 1

9 + 1
9

3 = 1
9 .

When using the maximum value instead, the first example of maximum overlap would
show up as 1 and this example of minimum overlap shows up as 1

3 . If we now go on to
normalise the values of the average results, our maximum example produces an index of:
1
3 − 1

9
1
3 − 1

9
=

2
9
2
9

= 1 and our minimum example:
1
9 − 1

9
1
3 − 1

9
= 0

With the Extended Jaccard Index explained, the results of the tested construction
heuristics can be discussed. In table 3.10 the extended Jaccard indices of each heuristic
and instance combination are presented. The Random construction heuristic somewhat
confirms the validity of the normalised index, with most of the results being around 0.5.
The first very clear outliers are both First-Fit construction heuristics: First-Fit and First-
Fit-with-Target-Limit. Both are among the worst performing heuristics for most of the
instances. The poor performance comes as no surprise given the nature of this heuristic.
Both were expected to perform badly when it comes to diversity and they do indeed.
Vass-et-al comes next, also finding itself consistently in the last third. The way solutions
are created leaves little room for diversity. Both By-Demand and By-Demand-Next-Fit

38



3.3. Construction Heuristics

perform surprisingly well, with the latter achieving a bit better results. As mentioned
earlier the stricter order was expected to result in less diverse solutions, yet the small
deviations that exist seem to have a larger effect. The By-Demand-Next-Fit construction
heuristic performs a bit better when it comes to diversity, which makes sense, given that
a large part of the heuristic is taken from the Next-Fit construction heuristic, which
performs outstandingly. The Next-Fit construction heuristic is by far the best heuristic
when it comes to diversity, particularly for small alphabets it seems. The results are
generally very close to Random. Next-Fit is by far the best construction heuristic of the
bunch when it comes to the Extended Jaccard Index.

instance name First-Fit First-Fit-with- Random By-Demand Next-Fit By-Demand- Vass-et-al
Target-Limit Next-Fit

953 0.73401 0.77702 0.47502 0.47823 0.0711 0.47579 0.7688
958 0.63835 0.69277 0.44592 0.46823 0.13121 0.44841 0.6543
987 0.50691 0.524 0.42898 0.43031 0.15221 0.42912 0.72201
small_0001 0.73855 0.6546 0.49245 0.55798 0.16327 0.53629 0.5097
small_0003 0.71571 0.69106 0.52203 0.76891 0.22383 0.75652 0.54473
957 0.66164 0.71836 0.50246 0.53782 0.50157 0.50741 0.53544
966 0.68214 0.69949 0.49417 0.49734 0.4933 0.49521 0.61189
967 0.49804 0.51427 0.49492 0.50489 0.49418 0.49493 0.53378
978 0.69974 0.71233 0.49405 0.51071 0.49331 0.49592 0.59021
980 0.74372 0.73833 0.49297 0.49949 0.49235 0.49466 0.61952
994 0.68134 0.70805 0.49595 0.50008 0.49546 0.49704 0.63043
956 0.64996 0.69526 0.49848 0.50035 0.49792 0.49875 0.6845
960 0.6889 0.73233 0.51772 0.52734 0.53749 0.52509 0.56676
962 0.69699 0.76181 0.50307 0.50358 0.50739 0.50315 0.70192
964 0.67859 0.71203 0.50088 0.50162 0.50047 0.50087 0.68369
970 0.86654 0.84529 0.66381 0.69831 0.73333 0.71275 0.7792

Table 3.10: This table shows the extended Jaccard Index (smaller is better) for each
construction heuristic and instance. The instances are partitioned into small, medium
and large alphabets.

Expected Allele Coverage

Allele coverage and Expected Allele coverage are a notion introduced in [TS93]. Chromo-
somes have a number of genes and those genes have a number of possible values, also
called alleles. The cardinality of the alphabet used is equal to the number of alleles per
gene. If a chromosome has k genes, it can cover k alleles. With a binary alphabet, in
theory, two solutions could cover the entire space, as long as they are disjoint. It helps a
genetic algorithm if as many alleles as possible are covered. For a linear problem it could
be argued that those two intentionally disjoint solutions could suffice. Yet since most
applications of genetic or memetic algorithms are non-linear, it helps if some combinations
of alleles are present in a few solutions, to help with finding appropriate and powerful
schemata. Initially those starting populations were created randomly. [TS93] talks about
how for simple binary encodings random generation of an initial population is feasible
but how the need for larger populations grows with the cardinality of the alphabet used
and the non-linearity present in the problem. They introduce the concept of Expected

39



3. Genetic and Memetic Algorithms for the Production Leveling Problem

Allele Coverage that, based on the cardinality and population size, shows how much of
the alleles are covered if a population is created randomly [TS93]:

pm(N, K) = 1
KN


K

m

K−m−1

v=0
(−1)v


K − m

v
(K − m − v)N

E[ac] = 1
K

K−1

m=1
m pm(N, K)

with N being the population size and K the cardinality of the alphabet. Even though
the initial paper presents E[ac] to be the Expected Allele Coverage, the result of the
above formula must be subtracted from 1 to receive the actual E[ac] which appears to
be an oversight in the initial paper:

E[ac] = 1 − 1
K

K−1

m=1
m pm(N, K)

They then go on and show like in table 3.11 for different cardinalities what size a
population needs to be to cover more than 99% of the alleles [TS93]:

Alphabet Size Required Population Size Expected Coverage (%)
2 7 99.22
4 17 99.25
8 35 99.07
16 72 99.04
32 146 99.03

Table 3.11: This table from [TS93] shows the population size needed to reach at least
99% of allele coverage for a given cardinality when initialising a population at random.

For validation the following plot (Figure 3.1) shows the expected coverage versus the
actual allele coverage of a random population for a given cardinality with the population
size growing along the x-axis. The two plots show the results for a small and large
alphabet, more plots can be found in the appendix Figure B.1, generally behaving very
similarly. Notable is however, that for large cardinality alphabets the population needs a
certain size for the formula to produce realistic results. Generally far below the cardinality
and hence far below any reasonable population size. To avoid scaling issues and confusion
those early populations will be omitted in later plots.

Since our problem encoding is highly epistatic and can have a fairly large alphabet size,
depending on the number of periods, allele coverage is only helpful to a small extent.
It cannot really be used as a metric to evaluate whether our populations are diverse
enough, yet it can give an indication of whether our construction heuristics generate a

40



3.3. Construction Heuristics

Figure 3.1: The expected and actual allele coverage values for small and large cardinalities
based on the calculations from [TS93] and its change along increasing population sizes.

lot of similar solutions, very similar to the equality ratio.
In the following we will calculate the expected allele coverage based on the population size
and cardinality and compare it to the actual allele coverage the construction heuristics
produce.

instance small_0001 - 8 periods
heuristic / population size 10 20 50 100 200
expected 0.73692 0.93079 0.99873 0.99999 1
First-Fit 0.19767 0.20494 0.20784 0.20784 0.20784
First-Fit-with-Target-Limit 0.24854 0.27761 0.29505 0.29505 0.29651
Random 0.72674 0.94186 1 1 1
By-Demand 0.38662 0.41279 0.42877 0.43023 0.43023
Next-Fit 0.61191 0.71511 0.76308 0.78343 0.78343
By-Demand-Next-Fit 0.43313 0.5029 0.52034 0.5218 0.5218
Vass-et-al 0.48982 0.58866 0.73401 0.78197 0.83284

Table 3.12: This table shows the development of the allele coverage (bigger is better)
based on population size for each construction heuristic on a small instance with 8
periods.

The three tables 3.12, 3.13 and 3.14 show how different sized alphabets represented by
three instances behave based on population size. Further examples are given in the
appendix (B.1, B.2, B.3). The tables show very clearly how the allele coverage grows
with rising population sizes, yet that there are differing limits each construction heuristic
converges towards. This shows that while for small populations it might be viable
to use one construction heuristic, its diversity might be limited if the population size
requirements grow. The data shows that both First-Fit and First-Fit-with-Target-Limit
not only start a lot lower in coverage but also seem to converge to a fairly low limit.

41



3. Genetic and Memetic Algorithms for the Production Leveling Problem

instance 978 - 26 periods
heuristic / population size 10 20 50 100 200
expected 0.32443 0.54361 0.85928 0.98019 0.9996
First-Fit 0.07021 0.07674 0.08374 0.08836 0.09108
First-Fit-with-Target-Limit 0.06958 0.07638 0.08782 0.09204 0.09638
Random 0.32437 0.54283 0.85841 0.98013 0.99946
By-Demand 0.21346 0.29168 0.36013 0.37687 0.37855
Next-Fit 0.32372 0.53917 0.85039 0.96784 0.98862
By-Demand-Next-Fit 0.27567 0.43023 0.62169 0.70956 0.74053
Vass-et-al 0.11121 0.13634 0.17112 0.19835 0.22296

Table 3.13: This table shows the development of the allele coverage based on population
size for each construction heuristic on a medium instance with 26 periods.

instance 964 - 69 periods
heuristic / population size 10 20 50 100 200
expected - - - 0.51806 0.94605
First-Fit 0.02544 0.02776 0.02985 0.02989 0.03223
First-Fit-with-Target-Limit 0.02661 0.02932 0.0325 0.03255 0.03589
Random 0.13599 0.25332 0.5183 0.51902 0.94596
By-Demand 0.12986 0.23341 0.4397 0.43871 0.70912
Next-Fit 0.1318 0.24012 0.45201 0.45296 0.72911
By-Demand-Next-Fit 0.13308 0.2444 0.48401 0.48464 0.70924
Vass-et-al 0.0304 0.03664 0.04664 0.05469 0.06238

Table 3.14: This table shows the development of the allele coverage based on population
size for each construction heuristic on a large instance with 69 periods.

Random behaves as expected very much in line with the calculated expected allele
coverage. Next-Fit performs amongst the best again and is generally a very strong
heuristic when it comes to diversity. Vass-et-al achieves a high allele coverage for the
small population but cannot keep up when the population size grows. This could be due
to it’s parameter controlling randomness. The random selection size r is set to 10 across
all these experiments. If this parameter was to increase with population size, the diversity
would surely be able to keep up. Since the construction heuristic is not relevant for
further use, given the unviable runtime, this will not be investigated further. By-Demand
and By-Demand-Next-Fit lie somewhere in between the best and worst contenders. While
it seems that By-Demand-Next-Fit outperforms By-Demand in most cases, on closer look
the difference seems to vary less with more periods. While investigating this peculiarity
we found that it does not depend on the amount of orders and also not on the amount of
orders per period. The only correlation that could be found, while very weak, is between
periods and difference. This correlation varies with different population sizes. When
calculating the Pearson correlation coefficient for period amount and difference between

42



3.3. Construction Heuristics

By-Demand and By-Demand-Next-Fit a fairly strong negative correlation of -0.526944491
could be found for population 10, this strongly reduced for population 50 to -0.216800649,
for a population size of 100 we calculated even less with -0.182506019 and for our largest
test population of 200 the correlation apparently grew again to -0.263338734. When
plotting the allele coverages it seems that the instances of medium size produce more
outliers which By-Demand-Next-Fit seems to be able to handle better. The single spike
early in the graph can be explained by the low amount of orders instance ”small_0003”
has. Results for this instance have regularly been shown to be an outlier, particularly
when it comes to diversity. This seems to show that there is no relevant correlation
between the amount of periods and the difference in performance of the By-Demand and
By-Demand-Next-Fit construction heuristic, yet it appears that By-Demand-Next-Fit
not only generally performs slightly better but is also more robust.

Figure 3.2: This graph shows the coverage versus the amount of periods represented
by a single instance per period and the measured coverage of the By-Demand and By-
Demand-Next-Fit construction heuristic when producing a population of size 50.

3.3.5 Diversity - conclusion
In conclusion we can say that as expected the Random construction heuristic performs
best in terms of diversity. Followed closely by the Next-Fit construction heuristic which
at times even outperforms the Random construction heuristic. First-Fit and First-Fit-
with-Target-Limit both perform unsatisfactory and are regularly last when it comes to
our diversity metrics. Even though the Vass-et-al heuristic will not be considered further
it has to be mentioned again that the results are not particularly representative. The
heuristic does well when it comes to expected allele coverage for small alphabets. The
selection size chosen is also small. It can be expected that with growing selection size

43



3. Genetic and Memetic Algorithms for the Production Leveling Problem

the results for larger alphabets improve too. Still, Vass-et-al achieves in both equality
ratio and Extended Jaccard Index fairly bad results that do not appear to improve
with smaller alphabets. Hence, even adjusting the selection size might not make the
heuristic particularly diverse, even though it certainly helps to an extent. Last but
not least By-Demand and By-Demand-Next-Fit perform well in most diversity, and
also fitness, regards. By-Demand-Next-Fit outperforms the By-Demand heuristic in
every category and for most instances. Both algorithms are regularly amongst the best
heuristics tested. When it comes to equality ratio they are slightly worse than Random
and similarly matching the Random construction heuristic in most cases when it comes
to the Extended Jaccard index. This means that both heuristics not only perform well
in relation to other heuristics but also in terms of absolute numbers.

Conclusion - overall

The best overall results are achieved by the By-Demand-Next-Fit construction heuristic.
It’s constructions not only perform well when it comes to fitness and hard constraint
violations, they are also diverse. The First-Fit construction heuristic lacks when it comes
to diversity, yet produces great results in terms of fitness. Vass-et-al is too slow for a
population based heuristic but generally creates great solutions. First-Fit-with-Target-
Limit performs well in terms of fitness but introduces entirely too many hard constraint
violations. By-Demand and Next-Fit are greats when it comes to their specialities, f1
and diversity respectively but cannot translate those to other areas.
During the experiment we will consider creating a population made up of both By-
Demand-Next-Fit and First-Fit solutions. The lack in diversity can be balanced out by
only creating a small amount of First-Fit solutions yet the quality of those solutions
should not be overlooked. Given the very different types of solutions created by First-Fit
and By-Demand-Next-Fit mixing both types of solutions will, rather ironically, create an
even more diverse population. Whether or not this actually achieves better results will
be discussed in chapter 4.

3.4 Selection
Selection is the part of the algorithm that steers the search towards better solutions.
Here it is decided which individuals to pick for reproduction. In this step the search
can be guided strongly towards better solutions, called high selective pressure, or not
so strongly, low selective pressure. While high selective pressure generally leads to fast
improvements it makes it difficult to break out of local optima and leads to premature
convergence since it only allows very good candidates to be part of the population. Hence
it is important to find a balance that keeps good solutions in the population while also
allowing less well performing solutions that might be within the basin of attraction of
another optimum.
Initially selection was introduced as fitness proportionate, or Roulette Wheel, selection
[Hol75]. Which we will shortly look at in more detail. Over the years a few more

44



3.4. Selection

approaches of selecting the next individuals emerged. In addition to fitness proportion-
ate selection we will discuss Rank Selection [BBM93b][GD90][Whi89] and Tournament
Selection [BBM93b][GD90][Whi89] and why Tournament Selection is our tool of choice.
We will also discuss the scaling problem and how it affects our decision.

3.4.1 Fitness Proportionate Selection
Fitness proportionate or Roulette Wheel Selection selects the individuals in relation to
their fitness values [Hol75][GD90]. An individual with twice as good a fitness, will be
chosen twice as likely while an individual with nine tenths of the fitness of another will be
chosen 10 percent less likely. This fact while being subtle perfectly describes the scaling
problem and why it becomes an issue at later stages of the search. As the solutions get
better their fitness converges. Where in the beginning there generally are a wide range of
fitnesses, towards the end of the search the fitnesses of the individuals in the population
differ less and less. When using fitness proportionate selection this means that in the
beginning when there are large differences between the fitnesses, there is high selection
pressure, while towards the end this pressure shrinks dramatically [Whi89]. This can be
addressed by scaling the fitness when selecting or by choosing a different type of selection
like rank selection.

It should be noted that for fitness proportionate selection we cannot use our fitness
calculation out of the box since we are trying to minimise the fitness value. To address
this we simply divide 1 by our fitness value leading to larger values when the fitness is
smaller.

3.4.2 Rank Selection
Rank Selection is a selection method that addresses the scaling problem by ranking
the solutions by fitness and then choosing them randomly with probabilities according
to their rank [BBM93b][Whi89][GD90]. This means that it does not matter how the
fitness behaves towards the end of the search. When using linear ranking a solution one
rank better than another will be chosen twice as likely and a solution two ranks higher
will be selected three times as likely. This selection can of course also be non-linear
to increase or decrease selection pressure [BBM93b]. This type of selection makes it
possible to tune selective pressure very precisely while keeping it steady throughout the
search. [BBM93b] further argues that [Whi89] and [Bak85] show ranking ”to be superior
to fitness scaling”[BBM93b].

For the thesis we implemented the pseudo code from [Whi89] appendix 1.

3.4.3 Tournament Selection
Tournament selection is the third and last selection method implemented for this thesis.
The idea is rather simple. k individuals are sampled randomly and the best of those k is

45



3. Genetic and Memetic Algorithms for the Production Leveling Problem

chosen for the next population [Whi89][BBM93b][GD90]. By increasing k the selective
pressure increases. One clear disadvantage tournament selection has compared to rank
selection is that k is a natural number which means that tuning the selective pressure
can only be done coarsely [FL10]. In [HH08] tournament selection is investigated for
relations with polynomial ranking methods. Amongst other results it is shown that a
binary tournament selection is equivalent to linear ranking without the need of sorting
a population. [GD90] has shown this as well earlier and also argues to use tournament
selection for its speed and control of selective pressure.

3.4.4 Conclusion

Based on the information gathered, the experiments will be conducted using Tournament
Selection with the tournament size as tunable parameter. If the tournament size is found
to be 2 we will reconsider using Rank Selection to more finely downtune the selection
pressure, for all other intents and purposes Tournament Selection should be the right
choice.

3.5 Crossover
The crossover operator is one of the unique features of evolutionary algorithms. During
recombination multiple individuals of a population are combined to produce offspring
based on their own properties. It is here where good features of one solution can be
combined with good features of another solution, creating a new, better, solution than
existed before. The crossover operator is next to the mutation operator one of the
most important tools of exploration of a genetic algorithm [ECS89]. How much of the
population of the next generation is created by recombination depends on the crossover
rate. The missing amount of individuals is then generated from solutions of the previous
generation. Sometimes, as it is the case with our algorithm, the currently best known
solution is reintroduced in the population as well.
Crossover methods reach from historically studied implementations that are not specific
to a problem to problem specific operators that make use of peculiarities of a concrete
problem formulation. The main goal of both is, however, to explore the search space and
create better individuals from the good bits of other solution candidates.
”In order to explore they must disrupt some of the schemata on which they operate”
[ECS89]. This disruption means that children lose membership of some schemata their
parents are in. This is of course true for every change made to a chromosome. Since
every gene is part of a large number of schemata, changing a single allele introduces
disruption. Higher disruption means lower probability of survival for a schema. While
disruption is important and necessary for the algorithm to find new and better solution
candidates, it must not be too strong, since too much disruption, and hence exploration,
might just overwhelm the exploitation efforts of the selection operator [ECS89].
The way disruption works, however, is a lot more subtle than this section might have
let on. For one, disruption can come from various places. It is for example affected by

46



3.5. Crossover

biases. Crossover operators can have multiple biases. [ECS89] introduced the notion
of the positional and distributional bias. A crossover method has positional bias if the
probability of disrupting a schema depends on the position of a gene. In other words, if
the defining length of a schema has influence on the survivability, a crossover operator
has positional bias. This is particularly present for the One-Point crossover operator. An
operator has distributional bias if the number of bits changed is non-uniform. Confusingly
the Uniform crossover is an example of an operator with high distributional bias. The
number of bits exchanged for each crossover operation is binomially distributed around a
mean. The One-Point crossover is the exact opposite. The number of bits exchanged is
uniformly distributed, meaning it is just as likely to exchange one bit as it is to exchange
the whole chromosome. Both of those operators and a few more will be discussed shortly.
In his dissertation [Spe00] Spears considers population diversity an important part of
disruption. This is of course a natural evolution of the idea, since recombination combines
parts of a population. If a population is homogeneous a recombination operator’s ability
of exploration is limited. Throughout the generations of an evolutionary algorithm
the population converges and grows more homogeneous meaning that in later stages
recombination grows less and less disruptive. In [JS90] they argue along the same lines
that so called crossover productivity diminishes with the the population growing more
homogeneous.
Based on the idea of [Sys89] Spears considers not only disruptive but also constructive
aspects of recombination. Construction is about crossover operators creating instances of
new, higher order, schemata by recombination from parents with lower order schemata
parts. It is generally found that the probability of construction depends on different
schema properties depending on the crossover operator and the population homogeneity.
There also seems to be some correlation between distributional bias and construction,
since [Spe00] shows that Uniform Crossover is most constructive around its 0.5 parameter
(so half of the chromosome is swapped) and N-Point crossover becomes more constructive
with growing N. That is when both crossovers have the highest distributional bias. It
is important to mention here that while higher disruption lead to higher construction
during recombination, this is not the case for mutation operators [Spe00].
In [Spe00] Spears found that the survival of a schema does, on average, not depend on
the type of recombination operator. Loss of survivability by disruption is always made
up by the gain in construction. It is merely dependent on population homogeneity and
of course order. He further confirmed that recombination is better at constructing higher
order building blocks from lower order building blocks than mutation. ”[...] the largest
constructive advantage for recombination occurs when both lower-order building blocks
have order roughly 1/2 of k (the order of Hk)”[Spe00] with Hk being the schema of order
k. ”This paints the picture that recombination will be most useful when high-fitness
building blocks of relatively high order [...] can be combined into higher-order building
blocks (Hk) that are also of high fitness.”[Spe00]. Generally supporting the idea of the
recombination operator being the most important tool when it comes to recombining
building blocks into better solutions.
In [JS90] Spears and De Jong show that for a search space that is too complex for its

47



3. Genetic and Memetic Algorithms for the Production Leveling Problem

population size higher disruption leads to better results. Both [TS93] and [Rad92] made a
similar statement about mutation and that for complex search spaces high mutation rates,
and hence high disruption, are necessary for exploration. This suggests that it is indeed the
disruption and not the construction of disruptive recombination operators that is relevant.

3.5.1 Recombination Strategies

We will now present and discuss the various crossover operators that were implemented
during this thesis, their advantages and disadvantages and why only a hand full of
operators were considered during parameter tuning.

One-Point and N-Point Crossover

Even though One-Point and N-Point crossover have already been discussed we will quickly
summarise the most important details about the operators. One-Point crossover is one
of the earliest operators, initially called Simple Crossover, already mentioned in [Hol75].
The idea is simple. Two chromosomes are split into two parts each at a randomly chosen
point. Two new chromosomes are created by combining one part of one chromosome
with the other part of the other chromosome. This operator has very high positional bias
[ECS89]. Genes close to each other are more likely to be moved together. This means
that it is necessary to model the solution representation in a way that puts genes closer
together if they are related. Whether genes are related or not can sometimes be not very
clear [ECS89]. In comparison One-Point crossover has very low distributional bias. The
amount of genes exchanged ranges uniformly from one to all.
The logical next step is increasing the amounts of points at which the chromosome is
split. 2-Point crossover and further N-Point crossover were an early addition to the pool
of crossover operators in both the literature and this thesis. With even N the operator
now takes out a chunk of the solution and transplants it into another chromosome. This
is a lot less disruptive to schemata of high defining length than one-point crossover was.
The positional bias for N = 2 is slightly lower, while the distributional bias remains
unchanged. With higher N , however, both distributional and positional bias move away
from One-Point crossover [ECS89].

While both operators were implemented during this thesis they are not particularly
promising. Positional bias is of little use with the type of solution representation
employed. It is not possible to know which orders are interacting when encoding the
problem. This means that the position of genes is random and cannot make use of
the positional bias introduced by the crossover operators. Given the complexity of our
problem it also appears that high disruption is and necessary [JS90] and we also think
that more sophisticated operators are in order.

48



3.5. Crossover

Uniform Crossover

The Uniform Crossover operator has also been discussed in the introduction of this chapter.
It has been presented by Syswerda in [Sys89] and has since been a staple when it comes
to crossover operators. The concept is rather simple. For each gene in a chromosome it is
decided separately whether it is part of the first or second new solution. This happens by
chance and is controlled via a parameter. When this parameter is set to 0.5 the chance
of each gene to be part of the first new chromosome is 0.5, meaning half of the genes are
part of one chromosome and half of the other. This is also where the distributional bias
of the operator is at its peak. The amount of data exchanged is binomially distributed.
The positional bias is for every value of the parameter 0, since membership of one or
the other chromosome is decided on a gene by gene basis. In [Sys89] it is argued that
Uniform Crossover performs better than One- and 2-Point Crossover. They explain it
both theoretically and present empirical evidence. The theoretical argument is that One-
and Two-Point crossover performs better for schemata of shorter defining length and
Uniform crossover has better results when it comes to schemata of higher defining length.
Since there are a lot more schemata of higher defining lengths however, Syswerda argues
that Uniform crossover is the better choice. The experiments done mostly support that
claim. Another investigation by [ECS89] certainly supports that uniform crossover is
generally a better choice than One- and Two-Point crossover, yet it is also regularly
outperformed by N-Point crossovers with N > 2. Additionally, One- and Two-Point
crossover both require a certain adherence to the Building Block Hypothesis to work
well, given their positional bias. Uniform Crossover has no such restriction. The high
disruption introduced by Uniform crossover certainly comes in handy when working with
too small a population [BBM93a].

Uniform crossover is expected to be a better choice than N-Point crossover. Its high
disruption and low positional bias seem like a good fit for the problem at hand. We
think, however, that the algorithm needs more help with maintaining and recombining
promising building blocks than what Uniform crossover can deliver. The operator will be
considered during hyperparameter testing, yet is not expected to perform particularly
well.

Period Uniform Crossover

Period Uniform Crossover is the first of three custom crossover operators introduced in
this thesis. The idea is conceptually simple. Instead of orders, periods are recombined.
This requires transformation of the solution representation into the representation sug-
gested in section 3.1. For this, the solution is transformed from a list of orders to a list
of sets of orders that correspond to the order assignment of each period. This makes it
possible to recombine periods. Orders that are in periods together are interacting hence
orders that fit well together could be considered building blocks. Recombination on the
basis of periods seems a lot more natural for this problem then recombination based on
arbitrary orders.

49



3. Genetic and Memetic Algorithms for the Production Leveling Problem

To recombine periods, the algorithm iterates through the number of periods and considers
for each period the order sets of both parents. It then decides by chance which set is
put into which child. This most likely introduces duplicate orders, so orders that are
in two periods at the same time, while also discarding orders, not making them part of
the solution at all. This is simply dealt with by removing any duplicate order from the
period with higher cumulative demand and reintroducing missing orders. Missing orders
are first sorted by demand and then, largest demand first, added to the period with the
currently lowest cumulative demand.
Analysing the biases of this operator turns out to be fairly difficult. On the one hand
because of the transformation that takes place, on the other, because of the random
aspect of redistributing orders that have not been assigned. Given the transformation,
this crossover operator has no positional bias when considering the initial solution repre-
sentation. The distributional bias however is fairly high. Period Uniform crossover is
very dependent on the other operators, since this crossover operator alone introduces
relatively little randomness, because entire sets of orders are recombined. Orders that are
together in a period are unlikely to be removed from each other during recombination.
This suggests some kind of positional bias when looking at the transformed solution
representation, even though the bias does not come from the position of the gene in the
chromosome but from the position in the transformed chromosome which comes from
the value of the gene in the initial solution representation. It is not positional bias in
the traditional sense, especially since it does not depend on the defining length of the
schema.

The operator is created with the idea of not disrupting building blocks, while reconfiguring
those into better solutions. This disruption appears to be limited to schemata of order
greater than k

n , so the average number of orders per period and to schemata that overlap
periods. Additionally, there is some disruption of schemata smaller than this through the
redistribution when orders are duplicated. This generally suggests that there is not a
lot of exploratory power behind this operator in the typical sense, but some exploration
similar to what mutation does.

Simple Period Crossover

Simple-Period crossover is another custom operator based on the Period-Uniform crossover
operator. This operator also works on the transformed solution representation and re-
combines periods rather than orders. To improve the results the performance of each
period is considered.
The process is similar to the process of Period-Uniform crossover. They simply differ when
deciding which child receives its period from which parent. Where the Period-Uniform
operator decided by chance, this operator considers the fitness of the periods. One child
will receive all periods that have better fitness and the other child will receive all periods
that remain. Subsequently the removal of duplicates and redistribution of missing orders
is handled.

50



3.5. Crossover

The biases are similar to the prior operator, yet the algorithm seems more directed,
certainly introducing more biases and further removing exploration capabilities. In
[VC99] this new bias is called directional bias. ”This bias determines the direction the
GA is likely to converge to. Directional bias benefits GA search as it pushes the GA
towards fitter regions in the search space.”[VC99]. It is difficult to judge whether this
additional steering is too much restriction in terms of exploration, particularly for a
problem and a search space that requires a lot of it.

Product Type Crossover

The third and last custom operator we introduced is Product-Type crossover. It too
makes use of transforming the solution representation, yet in a different way than our
other operators. This operator recombines orders based on their product type. During
recombination a set of half the product types is chosen randomly. One individual gets
all orders that are of the product types from the set from one parent and the remaining
orders from the other parent. This requires no handling of duplicate or missing orders,
yet it also means that all the orders of a product type are always moved together. This
introduces another bias similar to the positional bias while not depending on the posi-
tion in the chromosome but the product type that is initially assigned by the instance.
This restriction is stronger than the period restriction earlier, since the period based
crossovers introduced some randomness when duplicates appear and also move different
sets of orders based on the disruption by the mutation operator. This operator always
moves the same set of orders together regardless of what happens between recombination
cycles. The distributional bias is fairly high since around half the product types are chosen.

This operator appears to be too strict and not exploratory enough. The never changing
set of orders that is moved together seems to be problematic. The operator is, however,
considered during parameter tuning.

3.5.2 Conclusion

During hyperparameter tuning the configuration will contain Uniform, Period-Uniform,
Simple-Period and Product-Type crossover as choices for the crossover operator. One-
and N-Point crossover have been decided to be disregarded during those experiments
due to their nature and how they seem inappropriate for this solution representation.
Additionally, we cannot make use of the positional bias with the problem encoding at
hand. We expect Period-Uniform crossover to come out on top based on the natural
design of the operator and the relatively high exploration when comparing it with the
other custom operators.

51



3. Genetic and Memetic Algorithms for the Production Leveling Problem

3.6 Mutation
The mutation operator is the second operator responsible for exploration. This operator
mutates individuals most of the time directly after recombination. This mutation intro-
duces much needed randomness. How a solution is mutated can vary. How much of a
chromosome is mutated depends on the mutation rate of the algorithm, another tunable
parameter.
Mutation is often considered a secondary or background operator [Gre86] ([Jon85] via
[BBM93a] and was initially called a security policy for reintroducing already lost alleles.
The introduction of randomness that does not depend on other solutions in the population
is particularly important when it comes to genetic drift and exploration towards the end
of the search when the population has largely converged. Genetic drift happens when
some gene value starts appearing more frequently than others by pure chance, which is
then amplified by the mechanisms of the algorithm.
While recombination is seen as the ”main force leading to a thorough search of the problem
space”[BBM93a], crossover productivity starts declining towards the end of the search.
One advantage of the crossover operator is that generally only alleles are introduced
that have been tested to a degree, since they already are in the population. This is the
reason for the diminishing crossover productivity. Once the population loses diversity,
introducing new gene values through crossover becomes more difficult [Spe00]. This is not
the case for mutation. While for high mutation rates this is equatable to random search,
low mutation rates can be particularly helpful towards the end of the search, introducing
new gene material to the pool. Or as [BBM93a] argues that [Con91] points out: ”muta-
tion becomes more productive, and crossover less productive, as the population converges”.

Disruption and construction are important properties when it comes to search operators.
[Spe00] analyses disruption and construction rates of both operators in depth. While
mutation can be as disruptive as recombination and more, recombination introduces
construction at the same rate as it disrupts, yet for mutation, construction decreases with
growing disruption. Hence mutation has no role in constructing higher order building
blocks but is the more viable exploration operator [Spe92]. This leads to an important
interaction between the two operators. Recombination helps combining promising parts of
different solutions while removing diversity from the population and mostly recombining
what is already there. Mutation helps exploring the search space and slows down
premature convergence while providing the recombination operator with new material.
This lead Spears in [Spe92] to state: ”It is not clear that the current distinction between
crossover and mutation is necessary, or even desirable, although it may be convenient”.

When choosing a mutation rate, it is important that it is high enough to provide enough
disruption and exploration, yet it must also be low enough so that it does not overpower
the selection pressure applied. Too much mutation and it degrades into random search,
too little and premature convergence is a given.
In [Müh92] it is stated: ”In most of the cases the optimal mutation rate is proportional
to the length of the chromosome”. Given the instance-based problem size our algorithm

52



3.6. Mutation

faces, we adapted the parameter. Instead of a mutation rate, so a probability a gene is
mutated, we opted to tune something we call the mutation dividend. This value is then
divided by the length of the chromosome, in our case the number of orders, to provide
the mutation rate. This makes it possible to tune the value for instances of varying size.

Last but not least it is necessary to mention that adaptive mutation behaviour is
something that is frequently mentioned in the literature. This makes it possible to adapt
the mutation rate across the duration of the search. Given the large amount of variables
already part of this evaluation it was decided to not consider the use of adaptive mutation
behaviour.

3.6.1 Mutation Strategies

In the following we present the different mutation strategies that have been implemented
in this thesis.

Move Mutation

The Move mutation operator is a very simple operator similar to the early mutation
operators that simply flipped a binary bit. This is the extension to larger alphabets
but just as simple. The operator calculates the number of mutations based on the
mutation probability and the length of the chromosome. Then the according amount of
Move-neighbourhood moves is generated. For each move an order is chosen at random
and for each order a new period is chosen randomly as well. This can be any possible
period except the one the order is already assigned to.
Creeping mutation is a design choice that is regularly mentioned in the literature, this
would allow only values close to the currently assigned gene value. While moving an order
only to neighbouring periods would certainly be more gentle to f3 the operator would
lose a considerable amount of exploratory power. This is why it was decided against
using creeping mutation.

Swap Mutation

Swap mutation is another rather simple operator. For this mutator the amount of
mutations is calculated and correspondingly drawn from the Swap-Neighbourhood. For
one such move two genes are selected at random and their values are swapped. If the
genes have the same value, another gene is chosen. This always makes orders swap their
periods. Here too, creeping mutation was considered but decided against.

Neighbourhood-Switching Mutation

Neighbourhood-Switching mutation combines the two operators just introduced. A
tunable parameter controls the probability of choosing the move- or swap-neighbourhood.
When mutating an individual it is first decided by chance whether this mutation is done by

53



3. Genetic and Memetic Algorithms for the Production Leveling Problem

moving or swapping genes. Afterwards the individual is then mutated as described above.
This operator was inspired by [VLM20] and their chance-based choice of neighbourhood.

Violation-based Mutation

This operator is a bit more sophisticated than the previous two. With this strategy,
genes that are violating a hard constraint, so are within a period that is violating one
of the two capacity limits, are more likely to be mutated. The increase in likelihood is
influenced by a parameter acting as a factor. When mutating a solution, each gene is
checked for mutation based on the mutation rate configured. If an order is violating
a constraint, the mutation probability is multiplied by the given factor. This leads to
a higher likelihood of mutation when an order is in a violating period. The mutation
applied is then either a move or swap mutation decided randomly based on a parameter
like for the Neighbourhood-Switching mutation.

3.6.2 Conclusion
During hyperparameter tuning we will only consider the Violation-based mutator. Both
Move and Swap mutation can be emulated by tuning the parameter of the Neighbourhood-
Switching strategy if necessary and the Neighbourhood-Switching strategy can be emu-
lated by changing the parameter of the Violation-based mutator to 1.

3.7 Local Search
Memetic algorithms distinct themselves by introducing local search to the concept of
evolutionary algorithms. In [Mos89] they were first labelled as such and have since only
grown in relevance. He presents algorithms that he deems ”examples of what [he] calls
memetic algorithms.”[Mos89] and argues that they qualify because they are population
based approaches that ”combine a very fast heuristic to improve a solution with a re-
combination mechanism that creates new individuals”[Mos89]. While giving a rough
idea, this also shows that memetic algorithms are not as strictly laid out as other types
of algorithms. In his article he presents two approaches in ASPARAGOS [Müh89] and
SAGA [HB91]. In [Müh89] the initial population is improved by local search and after
applying the typical genetic operators the offspring is improved as well. Those improved
individuals are then considered for the next generation. This application of the local
search after applying the genetic operators is common [Poo09][WM10][NOK07]. There
are also approaches that improve the entire population at the start of a generation so
before applying the genetic operators [LC18]. While this difference might appear trivial
since the operators are applied in a loop, there is a subtle change to which individuals
are searched. When local searching the entire population while a crossover rate < 100%
is configured, individuals that have already been improved are searched again. With
crossover rates generally being less than 100% this happens frequently. While this is a
small difference, it is worth mentioning.
For this thesis we decided to stick with the more common approach and apply the local

54



3.7. Local Search

search after the genetic operators have been employed and only consider the offspring
during local search. Based on [NOK07] it was decided to make the frequency of the local
search and the amount of individuals that are improved tunable. It is possible to specify
a cadence in terms of generations, i.e. a cadence of 5 means every 5 generations local
search is performed, and also how much of the offspring is considered during search, while
this always considers the stronger individuals first, i.e. a parameter of 10% configures the
algorithm to search the top 10% of the offspring. Additionally, the amount of iterations
per local search can be specified.

Lastly, the type of local search needs to be decided. During the development of this
thesis multiple local search options have been implemented and will now be presented
and discussed. We will further argue which options are considered during parameter
tuning.

3.7.1 Simple Local Search
Move- and Swap-Neighbourhood Local Search

Similar to the mutation operator, a local search operator employing the move- and
swap-neighbourhood was implemented. With a very simple hill-climb algorithm it checks
whether the randomly chosen move from the neighbourhood improves the current solution.
If that is the case, the move is applied and another iteration is started from this new,
improved solution. Once no move in the neighbourhood can improve the solution or the
amount of iterations specified is reached, the search stops. For the same reasons as in
mutation, it was decided to consolidate the two neighbourhoods into one strategy with a
probability of choosing one or the other. This probability can be set as parameter. The
chosen neighbourhood can change between iterations. While being simple, this operator
has no intentional bias towards any parts of the fitness function. This makes it possible to
explore the neighbourhood without considering problem specific knowledge, introducing
random exploration similar to the mutation operator, while exploiting good solutions as
starting point.

3.7.2 Problem Specific Local Search
A set of more problem specific local search approaches have been implemented as well,
each catering to a certain part of the fitness function.

Priority-Inversion-Fixing Local Search

The Priority-Inversion-Fixing local search operator addresses the concepts assessed by f3.
The local search operator tries to remove priority inversions, i.e. orders that are planned
before other orders with higher priorities.
Given the maximum priority and the number of periods of the instance, one can calculate
the average priority per period pavg. Dividing the priority value of an order by this

55



3. Genetic and Memetic Algorithms for the Production Leveling Problem

newly calculated pavg yields a period reference for each order, i.e. a rough estimate
for the period this order should be in to create as little priority inversions as possible.
Subtracting this value from the period the order is currently planned in shows how far
away the order is from its reference period. The bigger the difference, the more likely
it introduces a lot of priority inversions. The heuristic now iterates through the orders,
starting with the order with the biggest deviation. Next it creates a sorted list of the
periods it should rather be in based on this reference value. Creating this list is more
tricky than it first appears, e.g. if an order is planned for period 6 and its reference
value states 2.3, the algorithm must consider 2 first, then 3, 1, 4, 5, 6, ... . This can
be easily handled by taking a list of period numbers, subtracting the optimal period
value, taking the absolute and ranking those periods by their value. The periods are
then considered, one after the other. For each period a swap with all of the orders in
this period is considered and rejected if the constraint violations increase or the f3-value
is not actually improved. If no improvement can be found for this order and period
combination, the next period is chosen and the procedure repeats until a move is found or
no periods are left. Subsequently the next order is considered until there are no iterations
or orders left.
This clearly biases the search towards fixing f3. During development it was found that
generally when no hard constraint violations remained the biggest and certainly easiest
to fix fitness cost came from f3. While this is certainly no search that should be used on
its own, it can be a helpful tool to improve a solution.

Product-Type-Hard-Constraint-Fixing Local Search

In a similar vein the Product-Type-Hard-Constraint-Fixing local search addresses f2 and
the corresponding hard constraint violations. The algorithm first checks which product
types are currently penalised because of hard constraint violations. It then chooses one
of these product types and uses a modified move and swap neighbourhood in which
only orders are considered that are of the chosen product type. If no product type is
violated, all product types are considered. The neighbourhood is chosen at random. The
algorithm then looks for a move that improves f2 and does not introduce any new hard
constraint violations. If no such move is found it considers another product type. If
such a move is found, it restarts at choosing a product type to fix until no iteration is
left. The bias towards repairing f2 is clear. Since the biggest part of the hard constraint
violation can come from the product type capacity violations and balancing the product
type levels helps in balancing the overall levels, focusing on that part of the problem
seemed apparent. This search, however, really only focuses on that part of the problem
and might be best combined with other searches.

Behaviour-Switching Local Search

The Behaviour-Switching local search operator combines all of the earlier introduced
operators. If a solution has product type hard constraint violations, the Product-Type-
Hard-Constraint-Fixing local search operator is applied. If the normalised f3-value g3 is

56



3.8. Replacement Strategy

the largest part of the current fitness, the Priority-Inversion-Fixing operator is applied. If
neither of those are the case, the simple local search switching randomly between Move-
and Swap-neighbourhood is applied. If one of the cases applies, all of the iterations are
done using this local search.

3.7.3 Conclusion

During hyperparameter tuning the two consolidated operators and the Priority-Inversion-
Fixing local search will be considered. The simpler neighbourhood switching operator
might be able to introduce more new, unseen solutions that have not been considered
by more sophisticated operators. Particularly when other operators of the algorithm
employ problem specific knowledge. This might help with exploration while exploiting
already good solutions. This in turn means, however, that the search is a lot less directed
and probably slower in improving the solutions. The Behaviour-Switching local search,
employing both of the problem specific and the simple search algorithms, has a very
clear bias towards solutions that are in more problem specific neighbourhoods. Since
while product type capacity violations exist only the product-type-fixing operator is
applied, the other aspects might not be considered at all, particularly when it is not
possible to resolve the violations. Last but not least, it is certainly worth considering the
priority-inversion-fixing operator. While it only focuses on one aspect of the function,
there are usually a lot of priority inversions to fix. If the simpler local search is being
chosen during parameter tuning, we expect a higher amount of iterations to be tuned as
well than would be necessary for the other local searches.

3.8 Replacement Strategy
The replacement strategy of a memetic algorithm decides which Individuals are taken
to the next Generation. Often, when talking about genetic algorithms, the algorithm is
generational, meaning that all individuals of the earlier generation are replaced. There
is the notion of elitism, which would ensure that the best solution appears in the next
generation at least once. [SV98] talks about different Replacement strategies in steady
state genetic algorithms. It presents Replace Worst, Replace Random, Elitist Replace
Random, Kill Tournament, Elitist Kill Tournament and Conservative Replacement and
discusses their takeover times. For Kill Tournament, much like the related Tournament
Selection operator, a tournament is held, eliminating the worst contender. This tourna-
ment is repeated until the population is small enough. Elitist Recombination is another
interesting idea. There, a tournament is held between the parents and the offspring and
the two fittest individuals of the family are chosen [Thi97].
In this thesis Replace Worst, Kill Tournament and Generational Replacement are imple-
mented and discussed. When investigating the effects of the various crossover-operators it
became clear that sometimes crossover operators can produce a very good individual and
one bad candidate that is worse than the parents. This could of course be an opportunity
for exploration, however it also poses the question whether it might be better to consider

57



3. Genetic and Memetic Algorithms for the Production Leveling Problem

the parents as well for the following generation. During hyperparameter tuning Kill
Tournament and Generational Replacement are considered. Replace Worst can simply
be emulated by Kill Tournament given a large enough tournament size. Kill Tournament
has great potential selection pressure which might help steer the algorithm. When not
tuned properly, however, it might hinder the much needed exploration efforts the problem
requires.

58



CHAPTER 4
Experimental Evaluation

In this chapter we discuss the experiments done in this thesis. First we talk about the
problem instances used. Next we quickly discuss the simulated annealing approach from
[VLM20] and how and why it was implemented again here. We then present the settings
used for our algorithms that have been found through parameter tuning. Afterwards we
compare and talk through the results. All experiments were run on an Intel(R) Core(TM)
i7-8750H CPU @ 2.20GHz and 16GB DDR4 RAM.

4.1 Problem Instances
This thesis aims to make a direct comparison with the results of [VLM20] possible. This
requires our tests to run on the same test-instances. Those test-instances have been
provided. Additional training data is of course necessary for the hyperparameter tuning
step. In [VLM20] they were provided with 27 realistic instances by their industrial
partner which entirely went into the testing set. They further described a way of creating
additional instances based on those 27 realistic examples. In this thesis we recreated the
instance generator to generate 2000 instances of training data.

4.1.1 Instance Generator

The instance generator presented in [VLM20] was implemented to generate our own
training instances. We created both perfect and purely random instances. During
implementation we came across a few minor problems that we tried to clear up. Firstly
we want to mention the integer partitioning algorithm. There are conditions for the input
parameters that have to be met for the algorithm to produce the right results. In the
first line of the algorithm they specify:

array ← an array consisting of n − (k · minV ) zeros;

59



4. Experimental Evaluation

This of course requires n − (k · minV ) to be at least 0. The integer partitioning happens
several times during the creation of a perfect instance and just once for purely random
instances. When creating a perfect instance, so an instance whose fitness is known to
be able to be zero, it happens once in the very beginning using the input parameters.
The same is true for the one occurrence when creating random instances. For those calls
we can control the input and restrict the provided values (number of orders, number
of periods and number of products) to only those that allow the array to be of correct
size. During the creation of a perfect instance, however, the function is called multiple
times, usually based on other integer partitions. This means that we cannot ensure
that the input parameters conform with the necessary restrictions. The result of an
integer partitioning algorithm has two very easy to check properties: It must be split
into the specified amount of partitions and its sum must equal the integer that needed
partitioning. When creating instances we regularly check whether these two requirements
hold. If this is not the case we scrap the instance creation and try again.
When creating a perfect instance we further check whether the fitness actually equals
zero and scrap the instance if this is not the case. This rarely happens, yet can happen
due to floating point errors.

With those considerations we created 1000 perfectly solvable and 1000 purely random
instances. In table 4.1 we compare the minimum, maximum, mean and standard deviation
of the parameters of all the relevant sets. R1 is the set of 27 realistic instances provided
by the industrial partner through [VLM20]. R2 is the set of 1000 perfectly solvable
training instances created during development of this thesis. R∗

2 consists of 50 perfectly
solvable instances created by [VLM20]. R3 is a set of 1000 purely random instances
created for this thesis. R∗

3 is made up of 50 purely random instances created in [VLM20].
R4 is a set of 10 randomly generated small instances created by Vass et al. in [VLM20].
Instance sets marked with * are sets that are part of the test set. It is interesting to note
that even though the sets R2 and R∗

2, and R3 and R∗
3 are created by the same algorithm

their distributions do not align. Particularly the difference in mean value for R2 and R∗
2

are notable.

As done in [VLM20] we want to show the distribution of our generated instances. Figure
4.1 shows the scatter plot of our 1000 perfect instances in R2. Supported by the histograms
of each property on its own in Figure 4.2 we can say that the instances are fairly well
distributed. The number of instances with low orders is distinctly low and the number
of products shows a very clear dip around 9 that we cannot properly explain. It most
certainly comes from the restrictions on the input parameters.

The scatter plot of our random instances is similar to the results of the perfect instances.
The histograms also mostly align. A key difference is the amount of low order instances,
where we can see no distinct dip in occurrences for our purely random instances. The
peculiarity of about 9 products is present too. Number of products is, however, one of
the controlled parameters that are checked for validity due to the integer partitioning
algorithm. That the dip exists for both types of instances would suggest that it indeed

60



4.2. Implementation

min max mean std
Parameter Instance Set

R∗
1 [VLM20] 79 1585 307.19 412.56

R2 119 3994 2179.766 1049.15053

k R∗
2 [VLM20] 105 3896 1595.86 954.08971

R3 101 3997 2008.894 1100.41202
R∗

3 [VLM20] 112 3991 2076.76 1207.01978
R∗

4 [VLM20] 34 98 61.20 19.70
R∗

1 [VLM20] 4 8 6.93 1.24
R2 1 19 9.672 5.43874

m R∗
2 [VLM20] 1 19 8.82 5.50209

R3 1 19 9.833 5.4331
R∗

3 [VLM20] 1 19 9.04 5.47707
R∗

4 [VLM20] 1 4 2.80 1.03
R∗

1 [VLM20] 20 20 20.00 0.00
R2 2 79 39.078 22.25612

n R∗
2 [VLM20] 4 78 39.5 22.48287

R3 2 80 39.87 22.67093
R∗

3 [VLM20] 4 77 39.26 22.03782
R∗

4 [VLM20] 7 18 10.90 4.04

Table 4.1: This table shows the minimum, maximum, mean and standard deviation of
the three parameters used when creating instances. Instance Sets marked with * are part
of the test-set and taken from [VLM20].

comes from the controlling of the parameters to allow for a valid partitioning.

In summary we created 1000 perfectly solvable and 1000 purely random instances with
the algorithm presented in [VLM20]. Those 2000 instances make up our training data.
Another 50 perfectly solvable and 50 purely random instances have been generated
by [VLM20] and are, next to the 27 realistic and 10 small instances also provided by
[VLM20], our test data.

4.2 Implementation
The entirety of the project has been implemented in Python 3.10.0 with numpy 1.22.3 as
one of the core libraries. During development a lot of optimisation techniques have been
tried. We considered using numba, PyJion, pypy and cython. With PyJion the amount
of extra work that was needed made us decide to discard it as an option. PyPy turned
out to be a lot slower since our algorithm made use of lots of numpy operations which
appear to not work as well in combination with PyPy as compared to native python.
Numba did not work for us since it apparently had issues with the object oriented design
of our code.

61



4. Experimental Evaluation

Figure 4.1: This scatter plot shows the distribution of R2 across their properties: number
of orders, number of periods and number of products.

It was opted to focus on improving the performance by using numpy and just generally
better designed code.
In [VLM20] the results were achieved using C# which makes a fair comparison difficult
anyways. To allow for a comparison nevertheless, we decided to implement the proposed
simulated annealing algorithm on the basis of our PLP-framework, using the same solution
representation, fitness function implementation etc..

4.3 Hyperparameter Tuning

In the following we discuss the configurations, setup and results of our hyperparameter
tuning runs. With the different framework and hardware we decided to tune the
parameters of the simulated annealing implementation as well as our memetic and genetic
algorithm. All three algorithms were tuned for a runtime of 5 minutes with runtimes
exceeding those by more than 10% considered illegal. The tuning was done using SMAC3
for a fixed amount of trials.

62



4.3. Hyperparameter Tuning

Figure 4.2: The histograms show how the number of different properties of R2 are
distributed.

4.3.1 Simulated Annealing

To find whether the results of the Vass et al. thesis [VLM20] could be replicated simply
by increasing the runtime the configuration was applied to test runs with runtimes of
300, 600 seconds. Some results for 300 and 600 seconds are documented in Table 4.3.
After finding that higher runtimes on a small subset did not improve the performance
dramatically they were not further tested and are therefore not documented. It was
then decided to re-tune the parameters, leading to better results. To tune the simulated
annealing algorithm a similar setup like in [VLM20] was used. The parameters initial
temperature and iterations per temperature were tuned. It was decided against tuning
the move percentage and cooling rate for multiple reasons. The cooling rate was shown
to have a similar slope at different rates with tuned iterations per temperature. This
means that tuning the iterations with a set cooling rate of 0.95 should be sufficient and
is what was done in [VLM20]. The move percentage has also been tuned in [VLM20] and
found to be best at 40%, meaning that the neighbourhood is a move-neighbourhood 40%
of the time and a swap-neighbourhood 60% of the time. While the initial temperature
and iterations per temperature values strongly depend on the runtime of the algorithm
and the amount of iterations that get done during this runtime, tuning them in this new
setup seems necessary. Tuning the move percentage, however, appears to be independent

63



4. Experimental Evaluation

Figure 4.3: This scatter plot shows the distribution of R3 across their properties: number
of orders, number of periods and number of products.

of the setup and will be taken as is from the earlier thesis.
The tuning limits were set to be the same as in [VLM20]. The limits and results can be
seen in Table 4.2

Parameter Type Min Max Tuning
Iterations per temperature integer 103 106 19078
Initial Temperature real 0.1 10 0.389

Table 4.2: The tuning limits and results for tuning the simulated annealing algorithm
on 2000 instances with 10.000 trials using SMAC3

The parameters were tuned for 10.000 trials on 2000 training instances generated as has
been described in section 4.1. While the initial temperature is with 0.389 higher than the
0.22 found in [VLM20], the iterations per temperature are with 19078 considerably lower
than the 252.000 found in [VLM20]. This can be explained by the slower system. Since
less iterations are available, the algorithm has to make more daring moves leading to a
higher initial temperature. The lower amount of iterations per temperature is a clear

64



4.3. Hyperparameter Tuning

Figure 4.4: The histograms show how the number of different properties of R3 are
distributed.

consequence of that.
In Table 4.3 a few fitness values are shown to display the results achieved by the different
tunings. Column one specifies the instance name, column two lists the results reported by
[VLM20]. Column three and four show the results achieved by using the tunings reported
in [VLM20] with 5 minutes and 10 minutes runtime on the hardware used during this
thesis. The last column shows the results achieved by using the parameters found during
hyperparameter tuning in this thesis.

While the results reported by [VLM20] still outperform all the simulated annealing
results achieved by our algorithm, our own parameters perform significantly better than
the parameters from [VLM20]. Doubling the runtime of the configuration taken from
[VLM20] increases the results of the tuning somewhat, while generally still not beating
the results of our own tuning. When ranking the results and averaging this rank we find
that in total, across all testing instances, the tuning found during this thesis ranks 1.52,
while the configuration found in [VLM20] only ranks 2.3 for the 5 minute runtime and
2.06 for the 10 minute runtime. Table ?? shows the average ranks split between testing
subsets. While most results are self explanatory, it should be mentioned that on the
set of perfectly solvable instances R∗

2 both tunings of Vass et al. perform slightly better

65



4. Experimental Evaluation

[VLM20] tune
instance name [VLM20] 5min 10min own tune
realistic_instance_01 1.0203 1.19221 1.20298 1.13472
realistic_instance_02 1.1734 1.34517 1.33427 1.26852
realistic_instance_03 0.9894 1.07747 1.15742 1.08214
realistic_instance_04 1.0128 2.21124 1.17736 1.09785
realistic_instance_05 1.1575 1.23212 1.29193 1.21835
randomly_perfect_random_0951 0.0467 0.09296 0.10095 0.09442
randomly_perfect_random_0952 0.0391 1.03104 2.03136 1.02858
randomly_perfect_random_0953 0.0227 0.1368 0.13498 0.0975
randomly_perfect_random_0954 0.0278 0.03079 1.0361 2.0378
randomly_perfect_random_0955 0.005 0.00574 0.00556 0.00573
randomly_generated_0951 0.3754 3.50871 3.62064 0.54686
randomly_generated_0952 1.9065 9.31275 7.21181 6.10842
randomly_generated_0953 0.2255 1.32146 0.39841 0.36389
randomly_generated_0954 0.127 1.2198 1.20938 1.21767
randomly_generated_0955 0.0322 1.1404 1.1356 1.13086
randomly_generated_small_0001 0.0303 0.1297 0.13235 0.03378
randomly_generated_small_0002 0.4499 1.5385 2.59995 0.4685
randomly_generated_small_0003 0.2715 0.33422 0.33735 0.27422
randomly_generated_small_0004 0.3541 0.43878 0.407 0.35464
randomly_generated_small_0005 0.79 1.82128 0.82337 0.80014

Table 4.3: This table shows the median fitness of three trials on five instances per testing
subset by different tunings and the results reported in [VLM20]

than the results of our simulated annealing configuration. While the tuning found in this
thesis ranks first only 12 times, which is less often than the other two candidates with 21
and 23 for the 5 and 10 minute configurations respectively, it ranks second on 24 out
of 50 instances as compared to 13 and 10. Also it is last least often with only 14 third
places versus 16 and 17. This suggests that the tuning found in [VLM20] indeed works
better on longer runtimes.
While the comparison with a 10 minute run is not particularly fair, the tuning found still
beats it most of the time showing that it works well for this setup.

4.3.2 Memetic Algorithm

Tuning the memetic algorithm is a much bigger endeavour. During this experiment
multiple tuning runs with restrictions were executed that have been adjusted run after
run. The first hyperparameter tuning run of 4000 trials on 2000 instances was started
with a large amount of possible parameters and generous limits. Table 4.5 lists the 16
parameters that have been tuned. Four of those were only relevant if certain parameters
were active.

66



4.3. Hyperparameter Tuning

average rank
Instance Set own tune 5 minutes [VLM20] 5 minutes [VLM20] 10 minutes
R∗

1 [VLM20] 1.07407 2.70370 2.22222
R∗

2 [VLM20] 2.04 1.9 1.88
R∗

3 [VLM20] 1.4 2.38 2.22
R∗

4 [VLM20] 1 2.6 2.4

Table 4.4: The average rank per subset of the simulated annealing algorithm tuned in
this chapter and the configuration found in [VLM20] running 5 and 10 minutes.

parameter condition values
Population Size 100 .. 500
By Demand Next Fit Ratio 0. .. 1.
Tournament Size 1 .. 10
Crossover Behaviour Period-Uniform Crossover,

Uniform Crossover,
Simple-Period Crossover,
Product-Type Crossover

Crossover Rate 0. .. 1.
Mutation Move % 0. .. 1.
Violating Probability Factor 0. .. 10.
Mutation Dividend 0.01 .. 10.
LS Behaviour Behaviour-Switching,

Priority-Inversion-Fixing,
Neighbourhood-Switching

LS Move % Neighbourhood-Switching, 0. .. 1.
Behaviour-Switching

LS Iterations 0 .. 200
LS Cadence 0 .. 200
LS % 0. .. 1.
LS Inversion Fixing % Behaviour-Switching 0. .. 1.
Replacement Strategy Generational,

Kill-Tournament
Kill-Tournament Size Kill-Tournament 1 .. 10

Table 4.5: This table lists the parameters and possible values and conditions of each
parameter for the first tune with 4000 trials.

In the following each parameter is briefly described:

• Population Size
Controls the size of the population

67



4. Experimental Evaluation

• By Demand Next Fit Ratio
The ratio of individuals of the population that are created by using the By-Demand-
Next-Fit construction heuristic. The remaining individuals are constructed using
the First-Fit heuristic.

• Tournament Size
The tournament size used during the Tournament Selection process.

• Crossover Behaviour
The crossover behaviour chosen.

• Crossover Rate
The crossover rate specifies how many of the selected individuals are chosen for
recombination and in turn how many newly created individuals are considered for
the next generation.

• Mutation Move %
During mutation it is frequently chosen between the move- and swap-neighbourhood.
This value specifies how often the move-neighbourhood is chosen, the rest of the
times the swap-neighbourhood is used. (e.g. 0.4 means 40% of the time move and
60% of the time swap is used)

• Violating Probability Factor
During mutation when a gene is considered to be mutated, the probability of
mutation is multiplied with this factor if the order is part of a violating period or
period-product-type combination.

• Mutation Dividend
The amount of genes that are supposed to be mutated in an individual. Usually
mutation rate is used for the probability of mutating a gene. Since chromosome
length is variable with this problem encoding, longer chromosomes would be
mutated more often. To combat this the mutation dividend value specifies the
amount of genes that are supposed to be mutated. This value is then divided by
the chromosome length, yielding the mutation rate and probability of mutation per
gene.

• Local Search (LS) Behaviour
The local search behaviour used during the local search step.

• LS Move %
Similarly to the Mutation Move % this parameter specifies how likely it is that the
move-neighbourhood is chosen over the swap-neighbourhood. Only two of three
local search behaviours use those neighbourhoods, therefore this parameter is only
active if either the Neighbourhood-Switching or Behaviour-Switching LS behaviour
is active.

68



4.3. Hyperparameter Tuning

• LS Iterations
This parameter specifies the amount of iterations done on each individual that is
searched.

• LS Cadence
The local search cadence specifies how often individuals are local searched. A
cadence of 0 turns off local search, a cadence of 1 applies local search on every
generation, a higher cadence makes local search rarer.

• LS %
This parameter specifies the fraction of the population that is searched. The
population is first sorted by fitness. E.g. if the parameter is set to 0.1, the top 10
percent of the population are local searched.

• LS Inversion Fixing %
When using the Behaviour-Switching local search Behaviour, part of the local search
is a heuristic that fixes priority inversions. How likely this local search is used is
specified by this parameter.

• Replacement Strategy
This parameter specifies the replacement Strategy used.

• Kill-Tournament Size
If the Kill-Tournament replacement strategy is active, the size of the tournament is
controlled by this parameter.

In this first tuning run the parameters shown in table 4.6 have been found to be the
best configuration after 4.000 trials on 2000 problem instances. Many of the parameters
are not only unexpected, they are also suboptimal at best. Most of the parameters like
By-Demand-Next-Fit Ratio, population size and crossover behaviour are unsurprising.
What is surprising, however, is that the found configuration turns off local search entirely
by setting the cadence to 0. Additionally, the Kill-Tournament replacement strategy was
chosen with a very large tournament size of 10, introducing a large amount of selection
pressure. The crossover rate and hence the amount of recombined, mutated and searched
individuals is very low with about 5 percent. This makes the choice of mutation and
crossover parameters almost irrelevant.
With those results it is clear that the tuning configuration has to be reconsidered and
has been too loosely defined for the amount of trials to achieve useful results. Hence
the configuration was strongly restricted. Since local search was turned off entirely,
considering a purely genetic algorithm configuration is strongly suggested. To give both
approaches a fair chance, we will first consider tuning configurations that force local
search to be applied by adjusting the limits and then tune a purely genetic algorithm
by turning off local search entirely. In this subsection we will further discuss different
memetic algorithm tunings. In subsection 4.3.3 we will focus on the tuning of a genetic
algorithm. To allow further restrictions and restarting of the tuning process the amount

69



4. Experimental Evaluation

of trials was reduced to 1000 and the amount of instances to 200 with 100 instances
of the randomly generated set R∗

2 and 100 instances of the perfectly solvable randomly
generated set R∗

2.

parameter tuned value
Population Size 377
By Demand Next Fit Ratio 0.8917
Tournament Size 3
Crossover Behaviour ProductTypeCrossover
Crossover Rate 0.0534
Mutation Move % 0.8152
Violating Probability Factor 0.2836
Mutation Dividend 7.9143
LS Behaviour BehaviourSwitching
LS Move % 0.9981
LS Iterations -
LS Cadence 0
LS % -
LS Inversion Fixing % -
Replacement Strategy KillTournament
Kill-Tournament Size 10

Table 4.6: This table shows the results from the first parameter tuning run described in
4.5. Since the LS cadence was set to 0, the other parameters were not further considered.

For the second tuning run a few changes were made. The parameters can be found in table
4.7. Firstly it was made impossible to turn off local search. It is still an option to increase
the local search cadence to a degree that makes local search rare and reduce iterations so
that the local search step is short. This decision was made to make sure that local search
takes place and is considered fairly during the tuning process. Since the Kill-Tournament
replacement strategy has a strong effect on selection pressure, therefore generally lowering
the crossover rate in return, which disregards a lot of the other operators and parameters,
the replacement strategy was set to Generational. This ensures that the tune produces
a more traditional memetic algorithm. Additionally, the crossover rate minimum was
raised to 0.4.
This new tuning setup displayed in 4.8 was found to perform better on every single instance
tested. This time the By-Demand-Next-Fit ratio prefers the First-Fit construction
heuristic. The crossover rate for the Period-Uniform crossover operator is on the lower
end with around 43%. Population size is rather high, which is expected. The mutation
dividend is fairly low and about where a typical mutation rate would be expected with a
high factor for violating genes of about 8. The most notable part of the configuration
is that local search is avoided again. While the Neighbourhood-Switching local search
is already a fast operator with little complexity and the most moderate of the options,
its cadence was set to 84 generations, its iterations are set to 1 and the percentage of

70



4.3. Hyperparameter Tuning

individuals that is searched is found to be around 1%, making local search rare and
brief. The complete disregard for the local search operator comes as a surprise. While we
cannot explain that phenomenon the first thought was that maybe diversity was reduced
notably leading to less gene material and hence hurting the performance of the algorithm.
After a short investigation into that concern it was found that this has not been the case.
The operator does the opposite. Not only does the average fitness of the population
improve, the allele coverage does too and population equality is reduced as well. All
in all local search seems to be a good addition. Another reason could be the way the
tuning process works. As mentioned earlier, trials that exceed the 5 minute runtime
limit by more than 10% are considered illegal. A high amount of iterations, low cadence
and a high percentage will inevitably lead to exceeding this runtime limit. Many of the
configurations that use local search will therefore be considered illegal. This might lead
to the tuner considering local search to be unviable.

parameter condition values
population size 100 .. 500
By Demand Next Fit ratio 0. .. 1.
tournament size 1 .. 10
Crossover Behaviour PeriodUniformCrossover,

UniformCrossover,
SimplePeriodCrossover,
ProductTypeCrossover

crossover rate 0.4 .. 1.
mutation move % 0. .. 1.
violating probability factor 0. .. 10.
mutation dividend 0.01 .. 10.
LS Behaviour BehaviourSwitching,

PriorityInversionFixing,
NeighbourhoodSwitching

LS move % NeighbourhoodSwitching, 0. .. 1.
BehaviourSwitching

LS iterations 1 .. 200
LS cadence 1 .. 200
LS % 0. .. 1.
LS Inversion Fixing % BehaviourSwitching 0. .. 1.

Table 4.7: This table lists the parameters, conditions and values possible for the second
memetic algorithm parameter tuning run.

To investigate this second theory another tuning run was done reducing the upper limits
of the local search parameters to reduce the amounts of illegal solutions and just generally
removing a few more parameters. This is to check whether it was illegal solutions and
how the tuning process works, or the general unviability of the local search of this
implementation.

71



4. Experimental Evaluation

parameter tuned value
Population Size 296
By Demand Next Fit Ratio 0.31856
Tournament Size 7
Crossover Behaviour PeriodUniformCrossover
Crossover Rate 0.4376
Mutation Move % 0.3203
Violating Probability Factor 8.1672
Mutation Dividend 1.0905
LS Behaviour NeighbourhoodSwitching
LS Move % 0.6019
LS Iterations 1
LS Cadence 84
LS % 0.0121
LS Inversion Fixing % -

Table 4.8: This table displays the results found during the tuning of the parameters
described in 4.7. With the Neighbourhood-Switching LS Behaviour, no LS-Inversion-
Fixing % is present.

The new tuning scenario and best found configuration can be found in table 4.9 and 4.10
respectively.

This configuration comes a lot closer to the expected values of each local search parameter.
Four iterations per individual is not a lot but with a cadence of 18 generations frequent,
especially since the algorithm tends to take several hundred generations for most instances.
The local search percentage is with 16% fairly low but otherwise unremarkable. The
remaining configuration is not particularly special. The By-Demand-Next-Fit-Ratio is
with not even 10% a lot lower than expected.
When testing this configuration it was found that it improves on the first configuration
found but does not achieve the results the previous configuration did. A sample of the
performance of the three tested configurations is shown in Table 4.11.
This finding suggests that it is indeed the implementation of local search that is at fault.
Forcing more local search does not improve the results. While we do not know why
this is the case, it might be that while the local search operator requires quite a bit of
resources, the improvements are small and local, also strongly affected by the epistasis
at hand. Those small improvements, while expensive, are than mostly removed by the
remaining operators. While the local search operator does in fact improve solutions,
the time needed for the improvement gained might be used better elsewhere. Finally in
subsection 4.3.3 we investigate whether turning off local search entirely leads to better
results.

72



4.3. Hyperparameter Tuning

parameter condition values
population size 150 .. 300
By Demand Next Fit ratio 0. .. 1.
tournament size 1 .. 10
Crossover Behaviour PeriodUniformCrossover,

UniformCrossover,
SimplePeriodCrossover,
ProductTypeCrossover

crossover rate 0.4 .. 0.8
mutation move % 0.4
violating probability factor 0. .. 10.
mutation dividend 0.5 .. 10.
LS Behaviour BehaviourSwitching,

PriorityInversionFixing,
NeighbourhoodSwitching

LS move % NeighbourhoodSwitching, 0.4
BehaviourSwitching

LS iterations 1 .. 50
LS cadence 1 .. 50
LS % 0.1 .. 1.
LS Inversion Fixing % BehaviourSwitching 0. .. 1.

Table 4.9: This table shows the further restricted MA tuning configuration. Local search
iterations, percentage and cadence were further restricted to enable regular use and less
illegal configurations. Additionally, the population size, crossover rate and mutation
dividend values were restricted to a smaller range. The two move percentage values for
mutation and local search have also been fixed to 0.4 based on the results from [VLM20].

4.3.3 Genetic Algorithm

Based on the experiments from the previous section, a separate tune of a purely genetic
algorithm is sensible. The parameters that are tuned, their value ranges and the tuning
results can be found in table 4.12. The population size is notably smaller than with the
configuration found for the memetic algorithm. The tournament size is with 8 fairly high.
Product-Type crossover was a viable candidate from the start and is not a particularly
surprising choice. The crossover rate is with about 55% a bit lower than expected, yet
still within a reasonable range. A surprising parameter choice is the very low By-Demand-
Next-Fit-Ratio with only about 5%, clearly preferring the First-Fit construction heuristic.
Lastly, when looking at mutation, an interesting picture is painted, with a fairly low
mutation dividend of only about 0.7 and a higher violating probability factor of 2.9.
This suggests that the mutation operator tries to keep non-violating genes in place while
moving orders that are violating the hard constraints. The move-% parameter for the
mutation operator is with 55% about where it was expected to be.

73



4. Experimental Evaluation

parameter tuned value
Population Size 177
By Demand Next Fit Ratio 0.0971
Tournament Size 6
Crossover Behaviour ProductTypeCrossoverBehaviour
Crossover Rate 0.42137
Mutation Move % 0.4
Violating Probability Factor 3.59097
Mutation Dividend 3.6775
LS Behaviour NeighbourhoodSwitching
LS Move % 0.4
LS Iterations 4
LS Cadence 18
LS % 0.16782
LS Inversion Fixing % -

Table 4.10: The table shows the configuration found to be best for the tuning configuration
in table 4.9

.

fitness median
instance name initial tune second tune third tune
realistic_instance_01 1.17423 1.04929 1.11176
realistic_instance_02 1.27884 1.18529 1.23207
realistic_instance_03 1.1514 1.00376 1.07758
realistic_instance_04 1.1928 1.0231 1.10796
realistic_instance_05 1.297 1.18685 1.24192

Table 4.11: This table shows a sample of the three tunings described in section 4.3.2.
While it is only a sample of 5 instances, the results behave similarly on every instance
tested. The initial tuning has the worst results across the board, always outperformed by
tuning three while the second tuning always achieves the best results with a wide margin.

4.4 Construction Heuristic Experiments

In section 3.3 it was claimed that the First-Fit and By-Demand-Next-Fit construction
heuristics both produce good results when it comes to fitness and hard constraint viola-
tions with the By-Demand-Next-Fit heuristic being more diverse and hence probably a
better choice. Further the First-Fit construction heuristic was mainly included in the
tuning to provide a more diverse set of solutions.
In this section we want to discuss the configurations found during tuning and support
our claims with experiments while also exploring why the found configurations don’t
necessarily agree with what has been claimed.

74



4.4. Construction Heuristic Experiments

parameter values tuned
population size 100 .. 500 155
By Demand Next Fit ratio 0. .. 1. 0.0437
tournament size 1 .. 10 8
Crossover Behaviour PeriodUniformCrossover, ProductTypeCrossover

UniformCrossover,
SimplePeriodCrossover,
ProductTypeCrossover

crossover rate 0. .. 1. 0.5529
mutation move % 0. .. 1. 0.54724
violating probability factor 0. .. 10. 2.91607
mutation dividend 0.01 .. 10. 0.67895

Table 4.12: This table shows the parameters, possible values and tuned values of the
genetic algorithm hyperparameter tuning process.

4.4.1 Diversity

In section 3.3 it was claimed that the First-Fit construction heuristic produces a less
diverse set of solutions that the By-Demand-Next-Fit construction heuristic. If that is the
case a genetic algorithm with a population of First-Fit constructed solutions requires more
exploration than a configuration using By-Demand-Next-Fit as construction heuristic.
To test this a simple tuning setup was created. A genetic algorithm is being tuned to
simplify the process, hence local search was turned off entirely. To minimise the amount
of influences the set of tunable parameters was reduced to only mutation dividend and
tournament size. The other parameters have been set to values that are near the values
found to do well during tuning of the genetic algorithm in Table 4.12. The algorithm
used a population size of 150, a crossover rate of 0.5, the Crossover Behaviour was set
to the Product-Type-Crossover and for simplicity the Mutation Behaviour was changed
from the Violation-Based-Mutator to the Neighbourhood-Switching mutation behaviour.
The mutation move percentage was set to 0.4 based on the findings in [VLM20]. The
tournament size is considered during tuning to be able to still get competitive results
since increasing exploration without increasing the selection pressure is most likely not
sufficient. The experiment was then started, tuning the mutation dividend and tourna-
ment size with the By-Demand-Next-Fit ratio set to 0 and 1 meaning a population made
from only First-Fit or only By-Demand-Next-Fit constructed solutions.
The tuning process was allowed 300 trials using 200 training instances.
For our claim to be true we expect a higher mutation dividend for the configuration with
the By-Demand-Next-Fit ratio set to 0.

The tuning results are displayed in Table 4.13 and indeed support our claim. The
mutation dividend found to work best for the population made up of First-Fit constructed
solutions is with ∼ 1.32 about 25% higher than the ∼ 1.05 of the By-Demand-Next-Fit

75



4. Experimental Evaluation

parameter First-Fit By-Demand-Next-Fit
mutation_dividend 1.32711 1.05127
tournament_size 8 5

Table 4.13: This table displays the tuning results of the experiment validating our claims
made in section 3.3.

constructed population. The tournament size has also been adjusted accordingly.

4.4.2 Tuning results
This begs the question why every configuration found to perform well during hyperpa-
rameter tuning seems to find low values to work best for the By-Demand-Next-Fit ratio.
To answer this we applied the two configurations found in the previous subsection to 5
instances of each test subset.

instance First-Fit By-Demand-Next-Fit
randomly_generated_0951 0.40921 0.50918
randomly_generated_0952 1.94424 2.01522
randomly_generated_0953 0.25370 0.32899
randomly_generated_0954 1.17224 0.24751
randomly_generated_0955 1.08022 0.11663
randomly_generated_small_0001 0.04569 0.03994
randomly_generated_small_0002 0.47228 0.48503
randomly_generated_small_0003 0.28797 0.27903
randomly_generated_small_0004 0.35643 0.37791
randomly_generated_small_0005 0.79293 1.80612
randomly_perfect_random_0951 0.07459 0.16725
randomly_perfect_random_0952 0.07484 0.1939
randomly_perfect_random_0953 0.01692 0.07219
randomly_perfect_random_0954 0.03816 0.1556
randomly_perfect_random_0955 0.00102 0.07536
realistic_instance_01 1.05166 1.05867
realistic_instance_02 1.18803 1.20494
realistic_instance_03 1.00135 1.03567
realistic_instance_04 2.02735 1.05293
realistic_instance_05 1.17951 1.18763

Table 4.14: This table displays the fitness values achieved on a few instances by the two
tunings found during the diversity experiment.

Table 4.14 shows the fitness values found during testing. The configuration using only
the First-Fit construction heuristic outperforms the other configuration often. This

76



4.5. Evaluating the best Configurations

first configuration even delivers some of the best results found during this thesis, while
introducing more hard constraint violations than usual in others. Generally the results
seem to suggest that the solutions created by the First-Fit construction heuristic are
better suited for processing by a genetic or memetic algorithm. It might be that the
structure of the solution is better suited for improvements or that diversity plays not as
big a role for the population sizes that are being used.
Diversity is expected to play a bigger role the bigger the population gets but appears
to have been overestimated in section 3.3. When considering the configuration found
for the memetic algorithm in Table 4.8 and the configuration of the genetic algorithm
in Table 4.12 the latter uses a smaller By-Demand-Next-Fit ratio while also having a
smaller population size. To find whether the need for diversity increases with population
size another experiment is conducted in a similar fashion. This time in addition to the
mutation dividend and tournament size the By-Demand-Next-Fit ratio is tunable. For
the first tuning the population size is kept at 150, for the second tuning the population
size is increased to 400. If the need for diversity indeed increases with population size,
the By-Demand-Next-Fit ratio is expected to grow as well.

parameter population size 150 400
mutation_dividend 0.67453 2.18489
tournament_size 2 6
by_demand_next_fit_ratio 0.39357 0.73478

Table 4.15: This table shows the tuning results for the experiment testing whether the
By-Demand-Next-Fit ratio value increases with larger population size.

And grow it does. In Table 4.15 the results of the tuning process are displayed and confirm
our expected results. For a smaller population size of 150 the By-Demand-Next-Fit ratio
was set to about 40% while it was increased to 73% for a population of size 400.

4.5 Evaluating the best Configurations
In this section we will consider and compare the testing results using our best tunings for
the three different approaches discussed in this chapter so far. The simulated annealing
approach will use the configuration shown in Table 4.2. The memetic algorithm uses
the configuration shown in Table 4.8 and the genetic algorithm is configured with the
parameters displayed in Table 4.12. While the evaluation of the three configurations
is done considering all test instances, only samples will be shown in this chapter. The
results of each configuration on every test instance can be found in the appendix.
As shown in Table 4.1 the test set is split into 4 different subsets. A set of 50 randomly
generated instances, 50 randomly generated perfectly solvable instances that are known
to have their optimum at fitness 0.0, 27 realistic instances and 10 randomly generated
small instances.
When looking at the performance of the entire test set, the genetic algorithm is the
clear winner. On 69 of the 137 test instances it ranks first, on 54 second and on 14 last.

77



4. Experimental Evaluation

The memetic algorithm comes second with 29 first places, 72 second places and 36 last
places. Lastly, the simulated annealing approach comes last, while having a higher first
place count than the memetic algorithm with 43 first places. It comes second 7 times
and places last on 87 of the test instances. Looking at the results of each subset gives
a bit more insight. The average ranks of each algorithm for each subset can be seen in
Table 4.16. While the simulated annealing approach comes last overall, it ranks best in 9
out of 10 small instances of set R∗

4 and comes last in every single one of the 27 realistic
instances of set R∗

1. While it ranks last on the two sets of randomly generated instances,
the results are a lot less clear ranking 2.32 on average on the randomly generated subset
R∗

3 and 2.18 on the perfectly solvable subset R∗
2.

The memetic and genetic algorithm have a clearer ranking. The memetic algorithm is on
average worse in every subset than the genetic algorithm. While the memetic algorithm
happens to rank better than the genetic algorithm on a few instances, this is generally not
the case. On the subset R∗

3 it averages 2.14 as compared to 1.54 of the genetic algorithm.
On the small instance subset R∗

4 both rank with 2.5 and 2.3 similarly and considerably
worse than the simulated annealing approach with 1.2. On the set of perfectly solvable
instances R∗

2 the memetic algorithm averages a rank of 2.12, barely outperforming the
2.18 of the simulated annealing approach and beaten by an average rank of 1.62 of the
genetic algorithm. Lastly, on the set of realistic instances both approaches perform well
with results close to each other. This is also represented by the similar average rank.
The memetic algorithm ranks 1.59 while the genetic algorithm ranks 1.40 on average.
Another notable peculiarity is that only the two evolutionary approaches manage to find
an optimal solution to four of the perfectly solvable instances.

average rank
Instance Set SA MA GA
R∗

1 [VLM20] 3 1.5925 1.4074
R∗

2 [VLM20] 2.18 2.12 1.62
R∗

3 [VLM20] 2.32 2.14 1.54
R∗

4 [VLM20] 1.2 2.5 2.3

Table 4.16: Here the average rank of the simulated annealing (SA), memetic algorithm
(MA) and genetic algorithm (GA) on each subset of the test set is displayed.

While ranking can give a good overview of what model performs best in most cases, it
gives very little information about the actual performance. While Table 4.17 shows a
sample of each subset, Table 4.18 shows a summary of the performance of each approach.
While the ranks indicate that the genetic algorithm does best most of the time, Table 4.18
shows that the results are not as clear cut. For the perfectly solvable set R∗

2 the statistics
are clear. Not only does the genetic algorithm have a lower mean and median, the results
are also more robust considering it has the lowest standard deviation. Additionally, the
highest fitness value for this set is the lowest of the three. The set of realistic instances
R∗

1 is not as clear. While the average fitness is smaller for the genetic algorithm, the
median and standard deviation of the memetic algorithm is smaller. Yet both, minimum

78



4.5. Evaluating the best Configurations

median fitness
instance SA MA GA
randomly_generated_0951 0.54686 0.5164 0.50251
randomly_generated_0952 6.10842 1.94685 2.02057
randomly_generated_0953 0.3639 0.33652 0.33044
randomly_generated_0954 1.21767 0.25902 0.23438
randomly_generated_0955 1.13086 0.12494 0.12473
randomly_generated_small_0001 0.03378 0.04261 0.03775
randomly_generated_small_0002 0.46851 0.49274 0.48977
randomly_generated_small_0003 0.27422 0.28193 0.28313
randomly_generated_small_0004 0.35464 0.36444 0.35812
randomly_generated_small_0005 0.80014 0.79373 0.79213
randomly_perfect_random_0951 0.09442 0.08673 0.07115
randomly_perfect_random_0952 1.02858 0.07428 0.07177
randomly_perfect_random_0953 0.0975 0.0702 0.04977
randomly_perfect_random_0954 2.0378 0.03843 0.0398
randomly_perfect_random_0955 0.00573 0.00138 0.00441
realistic_instance_01 1.13472 1.04929 1.04357
realistic_instance_02 1.26852 1.18529 1.19578
realistic_instance_03 1.08214 1.00376 1.00689
realistic_instance_04 1.09785 1.0231 1.02378
realistic_instance_05 1.21835 1.18685 1.18372

Table 4.17: This table shows the median fitness of the simulated annealing (SA), memetic
algorithm (MA) and genetic algorithm (GA) configuration on 5 instances of each test
subset. The best result is highlighted in bold.

and maximum value of the genetic algorithm show better performance. A similar picture
paints itself for set R∗

3 of the random instances. This time the average fitness value is
lower for the memetic algorithm while the median is higher. The memetic algorithm has
lower standard deviation and finds a smaller minimum fitness, still beat by the simulated
annealing approach, but reaches a slightly higher maximum value. While the genetic and
memetic algorithm both clearly outperform the simulated annealing approach in sets R∗

1,
R∗

2 and R∗
3, as indicated by the ranks it is the clear winner on the set of small instances

R∗
4 achieving better values in every column.

Another insight can be gained when looking at the difference between the fitness values
of the memetic and genetic algorithm. Table 4.19 displays them as absolute difference
subtracting the fitness of the genetic algorithm from that of the memetic algorithm. A
positive difference hence means that the genetic algorithm performed better, a negative
value indicates the opposite.

Without going into too much detail, the values paint a clear picture. While the average
difference of every test set except the set of random instances R∗

3 is in favour of the

79



4. Experimental Evaluation

average median std.dev min max

R∗
1

SA 1.07283 1.11567 0.35739 0.54032 2.22541
MA 0.96408 1.0231 0.34092 0.44161 2.16071
GA 0.96059 1.02378 0.34441 0.4239 2.15999

R∗
2

SA 0.30215 0.07006 0.48011 0.00417 2.03780
MA 0.08346 0.07466 0.06 0 0.22259
GA 0.07272 0.06853 0.04914 0 0.19988

R∗
3

SA 2.30846 1.19638 3.08682 0.02346 15.90542
MA 1.63904 0.48159 2.51242 0.04307 11.50414
GA 1.64845 0.40476 2.6002 0.06183 11.45467

R∗
4

SA 0.43842 0.41157 0.28757 0.01355 0.80014
MA 0.55019 0.60457 0.3625 0.0198 1.2397
GA 0.54857 0.60318 0.362349 0.02227 1.23697

Table 4.18: This table shows the average, median, standard deviation, minimum and
maximum fitness of the test subsets.

absolute difference
instance set avg median std.dev min max
R∗

1 0.00348 0.00187 0.00758 -0.01049 0.02158
R∗

2 0.01073 0.00818 0.02696 -0.0602 0.10911
R∗

3 -0.00941 0.00648 0.32005 -1.01045 1.05585
R∗

4 0.00161 0.00217 0.00303 -0.0029 0.00632

Table 4.19: This table shows the absolute difference between the memetic and genetic
algorithm on the three test subsets.

genetic algorithm, the median values support that even more conclusively.

In summary, given that the genetic algorithm performs best on most instances, places last
on the least and shows its ability when compared directly in terms of absolute difference,
the genetic algorithm can be considered the best configuration found during this thesis.

4.6 Comparison with Related Work
In this section we want to compare our results with those of related work, i.e. the paper
of Vass et al. [VLM20]. The direct comparison is difficult. Not only does the hardware
differ, there is also a difference in programming language and framework. As mentioned
earlier this is the reason for tuning our implementation again instead of executing it with
the parameters from [VLM20].

In order to understand the difference in setup we discuss the difference in results of
our simulated annealing configuration and the configuration of Vass et al.. With this

80



4.6. Comparison with Related Work

relationship in mind we will subsequently review and compare the performance of the
memetic and genetic algorithm.

4.6.1 Simulated Annealing

absolute difference
instance set avg median std.dev min max
R∗

1 0.14215 0.09273 0.20443 0.06085 1.16844
R∗

2 0.18586 0.02767 0.46875 -0.98712 2.01
R∗

3 1.47515 0.17747 2.45378 -0.82033 14.25492
R∗

4 0.00645 0.00499 0.00531 0.00054 0.01861

Table 4.20: This table shows the average, median, standard deviation, minimum
and maximum absolute difference between the simulated annealing tuning found in
subsection 4.3.1 and the results from Vass et al.[VLM20] for each testing subset.

Table 4.20 shows the absolute difference between the simulated annealing configuration
found in subsection 4.3.1 and the results from Vass et al.[VLM20]. The fitness values
compared include hard constraint violations. This leads to rather high values for solutions
that differ in the amount of hard constraint violations. The values give a good indication
that in most cases the solution presented by Vass et al. performs better, yet it also shows
that there are instances in R∗

2 and R∗
3 that produce better results using the simulated

annealing approach developed in this thesis. The average difference of R∗
1 and R∗

2 show
small but significant increases in fitness. The median values are considerably smaller.
While the smallest difference of R∗

1 is with 0.06 small but positive, the minimum value of
absolute differences found in R∗

2 is negative, indicating that at least one instance is solved
more efficiently by the simulated annealing approach developed in this thesis. The largest
difference for instances of the set of realistic problems is with around 1.16 considerable
and suggests the introduction of an additional hard constraint violation in at least one
instance. The maximum difference of the set R∗

2 is even bigger with a value slightly above
2. The set of random instances R∗

3 shows that while there are some instances that improve
on the results from Vass et al. by up to -0.82, there are also instances that perform
significantly worse with an absolute difference of 14.25 as the worst example of the entire
testing set. The difference on the set of small instances R∗

4 is tiny but positive throughout.

As mentioned before, the number of hard constraint violations is part of the fitness values
compared. Since their representation as fitness value is somewhat arbitrary and makes
a fair comparison of fitness values difficult the information has been gathered again
after removing any instances that differ in hard constraint violations. The difference
in hard constraint violations is additionally displayed in table 4.21. The table shows
that the simulated annealing algorithm presented by Vass et al. has one instance in R∗

3
for which it creates more hard constraint violations than the configuration presented
in this thesis. Our own simulated annealing implementation introduces considerably

81



4. Experimental Evaluation

more hard constraint violations than the algorithm presented in [VLM20]. While no
instances in R∗

4 and only one instance in R∗
1 contains more hard constraint violations,

R∗
2 and R∗

3 introduce more such violations in 8 and 23 instances respectively. While for
the 8 instances in R∗

2 only 9 more violations are introduced, the 23 instances of R∗
3 that

violate more hard constraints do so by violating additional 72. This severely affects the
performance of our simulated annealing configuration.

instance set R∗
1 R∗

2 R∗
3 R∗

4

Va
ss # instances 0 1 1 0

# violations 0 1 1 0
SA

# instances 1 8 24 0
# violations 1 9 72 0

Table 4.21: This table shows the number of instances with hard constraint violations
that are present for only one of the two implementations. In addition the number of
violations is shown as well.

When removing those values from the data set, the absolute difference figures appear
considerably less severe. Table 4.22 shows the absolute difference on each cleaned subset.
Given the amount of outliers in set R∗

3, this is were the biggest changes are to be expected.
Here the average changed from 1.47 to 0.08 while the median changed from 0.177 to 0.07.
While the clean up naturally had the biggest impact on the maximum value, changing it
from an absolute difference of 14.25 to 0.18, the minimum value has also been affected,
changing it from a negative -0.82 to a positive 0.0001 leaving no instance for which the
simulated annealing algorithm improved on the results of this subset.

absolute difference
instance set avg median std.dev min max
R∗

1 cleaned 0.10268 0.09256 0.03653 0.06085 0.1889
R∗

2 cleaned 0.02329 0.02209 0.02093 -0.01134 0.0748
R∗

3 cleaned 0.08224 0.07717 0.06026 0.00014 0.18348
R∗

4 cleaned 0.00645 0.00499 0.00531 0.00054 0.01860

Table 4.22: This table shows the average, median, standard deviation, minimum
and maximum absolute difference between the simulated annealing tuning found in
subsection 4.3.1 and the results from Vass et al.[VLM20] for each testing subset after
removing instances that differ in hard constraints.

In summary the simulated annealing approach presented in [VLM20] vastly outperforms
the simulated annealing approach developed and tuned during this thesis. The choice of
programming language, framework and hardware while still maintaining a runtime limit
of 300 seconds lead to a more aggressive tune that while producing reasonable results
most of the time still struggles to remove many hard constraint violations.

82



4.6. Comparison with Related Work

absolute difference
instance set avg median std.dev min max
R∗

1 0.0334 0.02817 0.02968 0.00555 0.12452
R∗

2 -0.03283 0.03269 0.24925 -0.89645 0.16329
R∗

3 0.80573 0.13065 1.67485 -0.91588 9.18753
R∗

4 0.11822 0.01511 0.30182 0.00373 1.0231

Table 4.23: This table shows the average, median, standard deviation, minimum
and maximum absolute difference between the memetic algorithm tuning found in
subsection 4.3.2 and the results from Vass et al.[VLM20] for each testing subset.

4.6.2 Memetic Algorithm
Table 4.23 shows the absolute difference values between the memetic algorithm and the
simulated annealing approach presented in [VLM20]. Starting with the set of realistic
instances R∗

1 the average difference is with 0.033 considerably lower than that of the
simulated annealing approach presented in the previous section. This is true for every
value of this set. The median is found to be slightly smaller than the average. In addition
a standard deviation of about 0.03 shows stable difference values on this test subset.
While the minimum and maximum values are small, the minimum value remains positive,
meaning that while the results are better than our simulated annealing approach, they fall
short of the results shown by Vass et al.. The set of perfect instances R∗

2 shows a negative
average that cannot be backed up by the small but positive median of about 0.033. The
minimum value is negative, showing an improvement in at least one instance of the set
when compared to the results of [VLM20]. The maximum value is with an increase of
0.16 larger than for the previous set but considerably smaller than the corresponding
value of our simulated annealing approach in Table 4.20. The set of random instances R∗

3
has the by far biggest average difference amongst the sets with a 0.8 increase in fitness
value. The median is notably lower at about 0.13 suggesting some strong outliers with
considerably higher difference which is confirmed by the large maximum difference of
above 9. The standard deviation is higher than for the other subsets with about 1.67.
The smallest value of the set improves the results of Vass et al. with a difference of around
-0.91. All of the values calculated for R∗

3 are significantly lower than those found for the
simulated annealing approach in Table 4.20. On the set of small instances R∗

4 the memetic
algorithm not only performs worse than the simulated annealing approach of Vass et al.
it is also outperformed by the simulated annealing algorithm developed in this thesis.
The average difference is about 0.11, with a lower median of around 0.015. In addition
the standard deviation is with about 0.3 considerably larger than the almost 0.005 of the
simulated annealing result in Table 4.20 indicating a less stable set of fitness values. The
smallest difference found on this rather small test set of only 10 instances is with a fitness
increase of about 0.0037 only marginally bigger when compared to the results in [VLM20].
It is considerably larger than the difference of our simulated annealing approach. The
biggest absolute difference found is slightly above 1, giving an indication of why the stan-
dard deviation is higher than expected and the introduction of a hard constraint violation.

83



4. Experimental Evaluation

As done in the previous subsection we will again look at the difference in hard constraint
violations.

instance set R∗
1 R∗

2 R∗
3 R∗

4

Va
ss # instances 0 4 1 0

# violations 0 4 1 0

M
A # instances 0 0 14 1

# violations 0 0 37 1

Table 4.24: This table shows the number of instances with hard constraint violations
that are present for only one of the two implementations. In addition the number of
violations is shown as well.

Table 4.24 shows the number of instances and corresponding hard constraint violations
that are present for one approach but not the other. While there is no difference in
hard constraint violations in either direction for the set of realistic instances R∗

1, our
memetic algorithm removes one violation each in four instances of the set of perfect
instances R∗

2. Those four instances are now devoid of any violations making the entire set
non-violating. There are no additional violations introduced by the memetic algorithm
in set R∗

2. The set R∗
3 paints the exact opposite picture. While one hard constraint

violation in one instance is solved by the memetic algorithm, it introduces 37 additional
violations in 14 of the 50 instances. The results of Vass et al. show no hard constraint
violations in R∗

4, hence there are no improvements possible. The memetic algorithm
introduces, however, one violation in one instance on the set of small instances. While
this result strongly improves on the violations introduced by our simulated annealing
approach and even manages to make an entire set violation-free, the amount of additional
violations introduced, particularly in the set of random instances R∗

3, is problematic. In
the following we will also look at the statistical descriptors of the test sets after removing
the instances on which hard constraint violations differ.

absolute difference
instance set avg median std.dev min max
R∗

1 cleaned 0.0334 0.02817 0.02968 0.00555 0.12452
R∗

2 cleaned 0.03944 0.03466 0.04687 -0.04311 0.16329
R∗

3 cleaned 0.08846 0.09274 0.05115 -0.01609 0.17497
R∗

4 cleaned 0.01768 0.01231 0.01136 0.00373 0.04284

Table 4.25: This table shows the average, median, standard deviation, minimum
and maximum absolute difference between the memetic algorithm tuning found in
subsection 4.3.1 and the results from Vass et al.[VLM20] for each testing subset after
removing instances that differ in hard constraints.

Table 4.25 shows the absolute difference again after cleaning the data. As expected,
they normalised considerably after removing the strongest values. Since there were no

84



4.6. Comparison with Related Work

differences in violations for the set of realistic instances R∗
1 the values for this set remain

unaltered. Since the memetic algorithm removed the violations of four instances, those
improvements had to be removed, raising the value from an average improvement on the
fitness to an average increase in fitness. The value changed from about negative -0.03
to positive about 0.04. Removing four of the lowest values also raised the median to
0.034. Accordingly the standard deviation shrank from about 0.25 to about 0.05. The
minimum value, while showing less improvement, remained negative, while the maximum
value did not change. The biggest effect is again to be seen on set R∗

3. By removing 15
of the 50 instances from the data, the values changed drastically. The average shrank
to about 0.088, the median changed from about 0.13 to around 0.092, the standard
deviation changed from including an entire hard constraint violation with above 1.67 to
a considerably more stable 0.05 and while the minimum value remained barely negative
at about -0.01, the maximum value naturally shrank from a difference in fitness value of
above 9 to around 0.175.

4.6.3 Genetic Algorithm

In the following we will discuss the difference in fitness values for the genetic algorithm
described in Table 4.12. Table 4.26 shows the absolute difference on each testing subset
between the genetic algorithm and the results achieved by the simulated annealing
approach presented in [VLM20]. Starting with set R∗

1 the average is with 0.0299 low but
positive, indicating that on average this approach performs worse than the simulated
annealing approach. Both the average and the median are, however, still a bit lower
than those values of the memetic algorithm, showing some improvement over the results
of the memetic algorithm for the set of realistic instances. The minimum value is with
0.0078 positive and larger than the smallest difference of the Memetic Algorithm, the
maximum value is with 0.1 smaller. On the set of perfect instances R∗

2 the genetic
algorithm performs better than the memetic algorithm on all accounts but the standard
deviation. While the average is negative at -0.04, the median is positive at 0.024. The
standard deviation lies around 0.26. The minimum value improves the fitness value of
an instance by -0.95, while the biggest fitness increase compared to the results of Vass
et al. lies around 0.14. While the average absolute difference on the set R∗

3 is with 0.81
slightly bigger than the average of the memetic algorithm, the median is with 0.11 smaller
than the 0.13 of the memetic algorithm in Table Table 4.23. The standard deviation is
with 1.75 even higher than that of the memetic algorithm. The minimum value reaches
an improvement of -0.92, a value smaller than that of the memetic algorithm, while
the maximum also improves to the still large value of about 9.18. On the set of small
instances R∗

4 the genetic algorithm achieves on average a 0.11 higher fitness value, which
is slightly improving on the results of the memetic algorithm. So does the median of 0.013.
The standard deviation lies at 0.3. While the minimum value shows no improvement
at all on the results of Vass et al., the smallest fitness increase remains negligible. The
maximum difference of above 1 still suggests at least one instance for which another hard
constraint violation is introduced.

85



4. Experimental Evaluation

absolute difference
instance set avg median std.dev min max
R∗

1 0.02991 0.02362 0.02331 0.00786 0.10294
R∗

2 -0.04357 0.02409 0.2594 -0.9555 0.14058
R∗

3 0.81514 0.11348 1.75558 -0.92276 9.13807
R∗

4 0.1166 0.01383 0.30146 0.00213 1.02037

Table 4.26: This table shows the average, median, standard deviation, minimum and
maximum absolute difference between the genetic algorithm tuning found in subsec-
tion 4.3.2 and the results from Vass et al.[VLM20] for each testing subset.

Looking at the hard constraint violations that have been removed and introduced
in Table 4.27 the table looks barely any different to that of the memetic algorithm
(Table 4.24). While there are no violation changes in R∗

1, the genetic algorithm also
removes the 4 remaining violations of set R∗

2. In set R∗
4 the genetic algorithm introduces

a violation in one instance. Set R∗
3 is, again, the set with the worst results. While one

violation that has been present in [VLM20] is removed, 37 new violations are introduced.
This time, however, with only 13 instances affected, one instance less than the memetic
algorithm. This means that in turn another instance appears to have received an
additional violation.

instance set R∗
1 R∗

2 R∗
3 R∗

4

Va
ss # instances 0 4 1 0

# violations 0 4 1 0

G
A # instances 0 0 13 1

# violations 0 0 37 1

Table 4.27: This table shows the number of instances with hard constraint violations
that are present for only one of the two implementations. In addition the number of
violations is shown as well.

absolute difference
instance set avg median std.dev min max
R∗

1 cleaned 0.02991 0.02362 0.02331 0.00786 0.10294
R∗

2 cleaned 0.03199 0.02679 0.04079 -0.04439 0.14058
R∗

3 cleaned 0.08664 0.09694 0.04471 -0.01846 0.1521
R∗

4 cleaned 0.01619 0.0135 0.01183 0.00213 0.03987

Table 4.28: This table shows the average, median, standard deviation, minimum and
maximum absolute difference between the genetic algorithm tuning found in subsec-
tion 4.3.1 and the results from Vass et al.[VLM20] for each testing subset after removing
instances that differ in hard constraints.

Table 4.28 shows the average, median, standard deviation, minimum and maximum value

86



4.6. Comparison with Related Work

of the absolute difference between the testing results of the genetic algorithm and the
simulated annealing results presented in [VLM20] by Vass et al. after removing instances
for which there are differing hard constraint violations to give a better indication of the
actual difference in fitness values. Since there has been no change in data, the values
for the set of realistic instances have not changed for the genetic algorithm. When
looking at the set of perfectly solvable instances R∗

2, however, the average moved from an
improvement to a fitness increase of 0.03. The median also rose slightly to 0.026. Both
values indicate better performance than the cleaned values of the memetic algorithm
in Table 4.25. The standard deviation lies around 0.04. The best improvement on an
instance of the set of R∗

2 without considering violations reduces fitness by -0.044, while
the worst change, while not being affected by the cleaning process, increases fitness by
0.14. Testing subset R∗

3 is affected most by the removal of differing instances. Its average
fitness difference decreases to 0.086, a value lower than the memetic algorithm’s. The
median is, however, slightly above both the average and the median of the memetic
algorithm. The standard deviation measures 0.044. The minimum shows an improvement
of -0.01846, while the maximum difference increases fitness by 0.1521. Both values are
below the corresponding minimum and maximum numbers for the memetic algorithm.
On the set of small instances R∗

4 the average and median shrank slightly to 0.016 and
0.0135 respectively. While the genetic algorithm fails to improve on any of the instances
of R∗

4, the smallest difference found is with 0.00213 the smaller of the two evolutionary
approaches. So is the maximum difference of 0.04.

4.6.4 Optimality Gap
In [VLM20] an optimality gap analysis was done for the metaheuristic and exact techniques
employed in their work. For this gap the lower bound of the MIP solver was used. The
values are provided in the corresponding thesis. They found that for most of the set of
realistic instances their simulated annealing algorithm manages to find solutions within
a 3% optimality gap. For a similar analysis of the results gathered in this thesis the
optimality gaps for those same 19 out of 27 instances for which a reasonable lower bound
has been found are calculated and shown in Figure 4.5. The instances that are not
shown are not displayed because they argue that only lower bounds for which the MIP
optimality gap is 10% or lower should be considered. The figure shows clearly that the
simulated annealing results presented in [VLM20] are performing considerably better
than the results found during this thesis, also within the 3% stated. The simulated
annealing configuration found in subsection 4.3.1 performs considerably worse than the
other algorithms. While the set of realistic instances is not necessarily representative for
the entire problem the plot nicely visualises in a way that is otherwise difficult the relation
of the algorithms while slightly understating the performance of the genetic algorithm.
While the optimality gap of 3% cannot be reached by our evolutionary approaches, most
are within 5%.

87



4. Experimental Evaluation

Figure 4.5: This figure shows the optimality gap for the simulated annealing approach
by Vass et al. [VLM20] and the three approaches that have been developed in this thesis.

88



CHAPTER 5
Conclusion

In this thesis we presented a genetic and memetic approach to solving the Production
Leveling Problem. We first introduced the problem and fitness function, then went on to
present our solution representation and various implementations of the different genetic
and memetic operators. We discussed and analysed those operators with a particular focus
on construction heuristics, for which we looked at the quality and diversity of the solutions
they create. In order to measure equality between sets of our solution representations,
the notion of the Extended Jaccard Index was introduced. Based on the analysis we
manually disregarded some options to reduce the set of operator implementations to
a more manageable size. We implemented and applied a random instance generator
presented in earlier work to generate 2000 random instances for use in the tuning process.
Using a hyperparameter tuning framework we then tuned both the memetic and genetic
algorithm to find their best configurations. To make a fairer comparison possible and
to accommodate changes in hardware, programming language and general framework
we implemented a simulated annealing approach and tuned its learning rate and initial
temperature. During the experiments we found evidence supporting the diversity claims
made during this investigation while it was also shown that there are additional properties
that influence the suitability of a construction heuristics that need further investigation.
Using their best configuration the simulated annealing, genetic and memetic algorithm
were applied to the test data provided in the literature. We first compare the results
amongst the algorithms implemented in this thesis and additionally compare them with
the results of previous work.
The main outcomes of this work are:

• Diversity plays an important role for genetic algorithms, requiring more diverse
construction heuristics with growing population sizes.

• The genetic algorithm performed slightly better than the memetic algorithm which
additionally applies local search.

89



5. Conclusion

• Although the evolutionary algorithms could not quite match the results found in the
literature on the set of perfectly solvable instances, they managed to solve the entire
set without hard constraint violations, as well as 4 instances to optimality, which,
to the best of our knowledge, has not been achieved thus far using metaheuristics.

• On the set of realistic instances both evolutionary approaches find solutions mostly
within a 5% optimality gap.

There are various avenues for future work opened by this thesis. The further investigation
of the Production Leveling Problem is certainly an interesting topic. With the difference
in circumstances it could not be resolved whether evolutionary algorithms perform overall
better or worse than simulated annealing on the PLP. Further work could investigate that
by testing the algorithms found in this thesis with similar hardware and implemented in
a similarly fast programming language as done in other work. For this another tuning
process would have to take place since, as also shown in this thesis, different hardware
requires different parameters, particularly with a runtime limit in place. Another approach
that is not as dependent on hardware would be to increase the runtime used. The same
experiments could be conducted on 10 or 20 minute runtimes to give the algorithm more
time to properly execute. This, too, would require additional tuning. Independently
of the problem, the role of construction heuristics could be further investigated. The
applicability of the Extended Jaccard Index needs to be explored and further validated.
This thesis also showed that while Solution Quality and Diversity are an important
measure when it comes to construction heuristics, there are other properties that we have
not been able to capture within this work that need discussing.

90



APPENDIX A
Runtime information on
Construction Heuristics

91



A
.

R
untim

e
inform

ation
on

C
onstruction

H
euristics

953 958
mean median min max std. dev. mean median min max std. dev.

First-Fit 0.19296 0.18499 0.16697 0.29276 0.02681 0.05502 0.04251 0.03141 0.15357 0.02824
First-Fit-with-Target-Limit 0.27827 0.2727 0.25955 0.35237 0.01728 0.03816 0.03752 0.03578 0.0526 0.00276

Random 0.04846 0.04494 0.04108 0.07406 0.0075 0.01256 0.0106 0.00898 0.02576 0.00411
By-Demand 0.04532 0.04213 0.038 0.06927 0.00763 0.00938 0.00891 0.00783 0.02929 0.00298

Next-Fit 0.1233 0.12137 0.11374 0.14383 0.00787 0.01495 0.0142 0.01257 0.03063 0.0031
By-Demand-Next-Fit 0.12134 0.11879 0.11361 0.13809 0.00668 0.01354 0.01296 0.01227 0.03048 0.0027

Vass-et-al 14.76951 14.25532 13.98852 18.47919 1.37648 0.61506 0.61667 0.595 0.62607 0.00957

987 small_0001
mean median min max std. dev. mean median min max std. dev.

First-Fit 0.21839 0.20766 0.18059 0.30073 0.03041 0.25675 0.24955 0.22654 0.3206 0.02514
First-Fit-with-Target-Limit 0.2689 0.26163 0.23432 0.36638 0.02753 0.35606 0.34435 0.33047 0.46466 0.02942

Random 0.06127 0.05428 0.03796 0.12156 0.01908 0.1297 0.10397 0.05438 0.49834 0.0839
By-Demand 0.0528 0.0495 0.03538 0.11195 0.01621 0.06194 0.05761 0.04256 0.10784 0.01591

Next-Fit 0.11202 0.1047 0.09024 0.15022 0.01625 0.15335 0.14826 0.13035 0.21004 0.01939
By-Demand-Next-Fit 0.1093 0.10538 0.09148 0.151 0.01498 0.15539 0.14478 0.13057 0.25107 0.02826

Vass-et-al 6.57144 6.41616 6.32205 7.11303 0.26413 12.49558 12.39268 12.14817 13.83533 0.48143

small_0003 957
mean median min max std. dev. mean median min max std. dev.

First-Fit 0.00386 0.00363 0.00338 0.00635 0.00065 0.02755 0.02601 0.02411 0.04614 0.00436
First-Fit-with-Target-Limit 0.00492 0.00457 0.00405 0.00875 0.00102 0.03595 0.03533 0.03422 0.05514 0.00298

Random 0.00551 0.00608 0.00229 0.01091 0.00211 0.01289 0.01207 0.0101 0.02657 0.00295
By-Demand 0.00163 0.00144 0.00138 0.00425 0.00054 0.01074 0.00977 0.00874 0.02695 0.00285

Next-Fit 0.00222 0.00207 0.0019 0.00479 0.00045 0.01722 0.01674 0.01547 0.02834 0.00189
By-Demand-Next-Fit 0.00263 0.00227 0.00172 0.00627 0.00105 0.01592 0.01541 0.01484 0.02872 0.00198

Vass-et-al 0.01959 0.01874 0.01794 0.0273 0.00278 1.53761 1.4393 1.38894 2.39079 0.22329

966 967
mean median min max std. dev. mean median min max std. dev.

First-Fit 0.02466 0.02419 0.02283 0.03681 0.00196 0.1049 0.0986 0.09159 0.14214 0.0136
First-Fit-with-Target-Limit 0.03229 0.03166 0.03033 0.04458 0.00246 0.15039 0.14385 0.13593 0.20566 0.01679

Random 0.01165 0.01137 0.01044 0.02427 0.00187 0.03231 0.03118 0.02822 0.05443 0.00503
By-Demand 0.01057 0.01011 0.00933 0.02407 0.00209 0.0299 0.02823 0.02617 0.05684 0.00548

Next-Fit 0.01902 0.01832 0.01648 0.03006 0.00262 0.08061 0.07452 0.06664 0.1476 0.01707
By-Demand-Next-Fit 0.02005 0.01833 0.01628 0.0305 0.00438 0.07156 0.06893 0.06455 0.10831 0.00764

Vass-et-al 2.22708 2.16485 2.06907 3.05381 0.18503 12.40396 11.89147 11.57874 22.42138 1.63738

978 980
mean median min max std. dev. mean median min max std. dev.

First-Fit 0.05784 0.05488 0.05171 0.08325 0.00701 0.04748 0.04462 0.03934 0.07845 0.00735

92



First-Fit-with-Target-Limit 0.07698 0.0769 0.0741 0.08106 0.00162 0.06067 0.05758 0.05402 0.08407 0.00721
Random 0.02098 0.02053 0.01909 0.02516 0.0012 0.01824 0.0173 0.0161 0.03331 0.00283

By-Demand 0.02141 0.02017 0.01743 0.03467 0.00375 0.01668 0.01587 0.0146 0.03622 0.00317
Next-Fit 0.04482 0.04231 0.03714 0.06608 0.00759 0.03405 0.03118 0.02856 0.0569 0.00688

By-Demand-Next-Fit 0.04218 0.0387 0.03661 0.0742 0.00784 0.03036 0.02949 0.02805 0.05141 0.00338
Vass-et-al 5.87972 5.82007 5.75282 6.60861 0.19345 4.32943 4.20477 4.10103 5.20406 0.26543

994 956
mean median min max std. dev. mean median min max std. dev.

First-Fit 0.15241 0.14649 0.14147 0.19902 0.01234 0.18136 0.18089 0.16568 0.21257 0.01102
First-Fit-with-Target-Limit 0.23876 0.23083 0.21845 0.30872 0.02288 0.28379 0.26936 0.24709 0.4108 0.03829

Random 0.04464 0.04218 0.03809 0.07186 0.00746 0.04487 0.04258 0.04042 0.06146 0.00552
By-Demand 0.0429 0.03804 0.03506 0.09734 0.01243 0.04089 0.03873 0.03643 0.06977 0.00645

Next-Fit 0.1157 0.10911 0.09994 0.15382 0.01412 0.11653 0.11395 0.11041 0.14101 0.00674
By-Demand-Next-Fit 0.1144 0.10893 0.1012 0.15068 0.0129 0.11438 0.11184 0.10994 0.13546 0.006

Vass-et-al 17.04793 16.51025 16.04884 24.17448 1.52648 14.01949 13.60102 13.39229 15.81247 0.8548

960 962
mean median min max std. dev. mean median min max std. dev.

First-Fit 0.02947 0.02877 0.02677 0.04901 0.00408 0.44132 0.24365 0.16462 3.11136 0.52174
First-Fit-with-Target-Limit 0.03575 0.03483 0.03421 0.05234 0.00287 0.25549 0.25207 0.23246 0.32551 0.02244

Random 0.01008 0.00967 0.0085 0.02471 0.00228 0.04057 0.03798 0.03629 0.06252 0.00627
By-Demand 0.00884 0.00843 0.00765 0.02478 0.00237 0.0383 0.03476 0.03243 0.05783 0.00719

Next-Fit 0.01444 0.01327 0.01204 0.03212 0.00314 0.09957 0.09373 0.08834 0.14844 0.01325
By-Demand-Next-Fit 0.01302 0.01266 0.01191 0.02923 0.00239 0.09532 0.09141 0.08722 0.12101 0.00864

Vass-et-al 0.57803 0.5765 0.56509 0.59333 0.00822 6.37136 6.29784 5.93559 7.35394 0.38579

964 970
mean median min max std. dev. mean median min max std. dev.

First-Fit 0.24449 0.23585 0.21344 0.33271 0.02597 0.00358 0.00346 0.0033 0.00606 0.0004
First-Fit-with-Target-Limit 0.32771 0.32087 0.31309 0.40986 0.01819 0.00443 0.00428 0.00402 0.00696 0.00047

Random 0.05159 0.04786 0.04433 0.07745 0.00852 0.00193 0.00168 0.00158 0.00456 0.00054
By-Demand 0.04823 0.04566 0.04202 0.0658 0.00679 0.00226 0.00177 0.00137 0.00719 0.00123

Next-Fit 0.13923 0.13332 0.12511 0.1888 0.01466 0.0022 0.00206 0.00186 0.00543 0.00052
By-Demand-Next-Fit 0.13678 0.13226 0.12508 0.17349 0.01209 0.00188 0.00172 0.00166 0.00512 0.00051

Vass-et-al 12.15971 11.97158 11.88331 13.36876 0.44723 0.02006 0.01982 0.01833 0.02234 0.00128

953 958 987 957 small_1 small_3
orders 2019 888 2706 885 86 34

periods 10 5 4 34 8 7

978 980 994 962 956 960
orders 1725 1449 3360 3086 3583 733

periods 26 23 37 77 50 61

93



A
.

R
untim

e
inform

ation
on

C
onstruction

H
euristics

Table A.1: This table shows the mean, median, min, max and standard deviation of the runtimes in seconds for each
construction heuristic on a set of files. The instances chosen are not necessarily representative, they are, however, chosen with
a certain variation in number of periods and number of orders in mind. All the results have been calculated from 50 runs of
each combination.

94



APPENDIX B
Expected and actual allele

coverage for multiple examples of
both small and large cardinalities

population 20
instance name periods expected First-Fit First-Fit-with-Target-Limit Random By-Demand Next-Fit By-Demand-Next-Fit Vass-et-al
987 4 0.996829 0.601349 0.598577 0.996674 0.945307 0.996582 0.983925 0.380081
958 5 0.988471 0.368919 0.385135 0.988514 0.709009 0.986937 0.876577 0.383784
small_0003 7 0.954179 0.315126 0.340336 0.970588 0.218487 0.62605 0.218487 0.642857
small_0001 8 0.930791 0.204942 0.277616 0.94186 0.412791 0.715116 0.502907 0.588663
953 10 0.878423 0.150619 0.15478 0.878058 0.723824 0.877811 0.784151 0.168648

Table B.1: This table shows the expected allele coverage for the given periods of small
size and a population of 20 and the results the different construction heuristics produced.

population 100
instance name periods expected First-Fit First-Fit-with-Target-Limit Random By-Demand Next-Fit By-Demand-Next-Fit Vass-et-al
966 22 0.990458 0.103823 0.112168 0.990256 0.758228 0.976317 0.791515 0.203263
980 23 0.988265 0.086776 0.088427 0.987488 0.552735 0.979116 0.700183 0.200108
978 26 0.9802 0.088361 0.09204 0.980134 0.376878 0.967848 0.709565 0.19835
967 31 0.962333 0.247916 0.28528 0.962163 0.464072 0.961615 0.830131 0.223011
957 34 0.949475 0.082918 0.076604 0.948388 0.169791 0.77338 0.523662 0.249053
994 37 0.935423 0.060039 0.067704 0.936583 0.54782 0.928209 0.653016 0.113127

Table B.2: This table shows the expected allele coverage for the given periods of medium
size and a population of 100 and the results the different construction heuristics produced.

population 200
instance name periods expected First-Fit First-Fit-with-Target-Limit Random By-Demand Next-Fit By-Demand-Next-Fit Vass-et-al
956 50 0.982412 0.047234 0.050008 0.981931 0.6247 0.949813 0.624516 0.087273
970 57 0.970984 0.065163 0.107613 0.968828 0.141604 0.239192 0.141604 0.222431
960 61 0.963332 0.038915 0.049315 0.962941 0.245902 0.206383 0.245902 0.150158
964 69 0.946053 0.032233 0.035897 0.945968 0.709123 0.729114 0.709247 0.062387
962 77 0.926789 0.027291 0.028987 0.926097 0.72059 0.305519 0.720796 0.049234

Table B.3: This table shows the expected allele coverage for the given periods of large
size and a population of 200 and the results the different construction heuristics produced.

95



B. Expected and actual allele coverage for multiple examples of both small
and large cardinalities

96



Figure B.1: The expected and actual allele coverage values for small and large cardinalities
based on the calculations from [TS93] and its change along increasing population sizes.

97





APPENDIX C
Results on test instances

C.1 Simulated Annealing
instance average median std.dev min max
randomly_generated_0951 0.844961 0.546864 0.496755 0.4431 1.544919
randomly_generated_0952 4.731234 6.108424 1.959221 1.960493 6.124784
randomly_generated_0953 0.335662 0.3639 0.044813 0.272407 0.370677
randomly_generated_0954 1.20836 1.217676 0.822351 0.196565 2.21084
randomly_generated_0955 1.10831 1.130868 0.031955 1.063119 1.130944
randomly_generated_0956 0.079454 0.078334 0.001786 0.078054 0.081974
randomly_generated_0957 2.35159 2.726958 0.535963 1.593635 2.734176
randomly_generated_0958 0.091784 0.112771 0.03329 0.044793 0.117788
randomly_generated_0959 0.094826 0.113566 0.028113 0.055089 0.115822
randomly_generated_0960 0.79452 0.830231 0.052221 0.720682 0.832647
randomly_generated_0961 3.161625 2.526766 0.974556 2.419642 4.538468
randomly_generated_0962 0.02354 0.023469 0.002168 0.020921 0.026231
randomly_generated_0963 2.041689 2.095619 0.875904 0.942982 3.086465
randomly_generated_0964 0.086457 0.087009 0.00217 0.083566 0.088795
randomly_generated_0965 0.075886 0.075732 0.000229 0.075717 0.07621
randomly_generated_0966 0.263837 0.29996 0.054713 0.186517 0.305035
randomly_generated_0967 5.626459 6.301157 0.983681 4.235531 6.34269
randomly_generated_0968 1.095401 0.467371 0.972963 0.349147 2.469684
randomly_generated_0969 4.35696 5.360877 2.162018 1.353883 6.35612
randomly_generated_0970 0.116756 0.123537 0.015417 0.09542 0.131312
randomly_generated_0971 2.214861 2.509834 0.431169 1.605202 2.529546
randomly_generated_0972 0.841263 1.175086 0.473221 0.172028 1.176675
randomly_generated_0973 0.218481 0.250558 0.045813 0.153693 0.251191
randomly_generated_0974 0.859208 0.863451 0.010261 0.845069 0.869105
randomly_generated_0975 0.035477 0.035077 0.000584 0.035052 0.036303
randomly_generated_0976 1.270249 1.2964 0.039687 1.214165 1.300181
randomly_generated_0977 4.347572 5.366804 2.186418 1.309813 6.366099
randomly_generated_0978 1.579282 1.613171 0.866095 0.501999 2.622677
randomly_generated_0979 5.379998 4.769315 1.760598 3.59492 7.77576
randomly_generated_0980 1.158204 1.172371 0.023216 1.125469 1.176771
randomly_generated_0981 4.452382 5.458934 1.426374 2.435186 5.463026
randomly_generated_0982 0.060685 0.059147 0.007666 0.052161 0.070748
randomly_generated_0983 5.440618 5.498602 0.842812 4.380618 6.442634
randomly_generated_0984 0.154734 0.162113 0.020939 0.126209 0.17588
randomly_generated_0985 0.037624 0.037704 0.003518 0.033276 0.041893
randomly_generated_0986 9.513173 11.51588 2.839112 5.498066 11.52558
randomly_generated_0987 0.06538 0.080444 0.023291 0.032481 0.083216
randomly_generated_0988 0.469882 0.139032 0.471838 0.133461 1.137154
randomly_generated_0989 2.917032 3.959862 1.479454 0.824771 3.966463
randomly_generated_0990 0.02884 0.029931 0.002225 0.025739 0.03085
randomly_generated_0991 1.403585 1.434622 0.84753 0.350406 2.425726

99



C. Results on test instances

randomly_generated_0992 2.653952 3.358829 1.001134 1.238139 3.364889
randomly_generated_0993 4.472721 4.841025 0.524958 3.730326 4.846812
randomly_generated_0994 1.728637 2.40032 0.955258 0.377705 2.407886
randomly_generated_0995 1.882673 2.216411 0.473686 1.212781 2.218826
randomly_generated_0996 13.19415 15.90542 6.091396 4.757242 18.91979
randomly_generated_0997 5.357349 6.08226 1.02629 3.905956 6.08383
randomly_generated_0998 1.223063 1.225967 0.006003 1.214703 1.22852
randomly_generated_0999 1.905952 1.277286 0.973309 1.159822 3.280748
randomly_generated_1000 0.082105 0.096325 0.029328 0.041253 0.108738

Table C.1: This table shows the results of the simulated annealing algorithm using the
configuration found in this thesis on the randomly generated part of the test set. The
values are calculated from three trials per instance.

instance average median std.dev min max
randomly_generated_small_0001 0.035934 0.033787 0.006692 0.029024 0.04499
randomly_generated_small_0002 0.466009 0.46851 0.004199 0.460094 0.469423
randomly_generated_small_0003 0.275406 0.274226 0.001752 0.274108 0.277883
randomly_generated_small_0004 0.355067 0.354648 0.001728 0.353191 0.357362
randomly_generated_small_0005 0.799201 0.800143 0.002972 0.795183 0.802278
randomly_generated_small_0006 0.69001 0.690531 0.002079 0.687244 0.692255
randomly_generated_small_0007 0.01368 0.01355 0.001982 0.01132 0.016169
randomly_generated_small_0008 0.22123 0.228276 0.010921 0.205806 0.22961
randomly_generated_small_0009 0.793097 0.792984 0.000396 0.792679 0.793629
randomly_generated_small_0010 0.731647 0.727558 0.007614 0.725065 0.742319

Table C.2: This table shows the results of the simulated annealing algorithm using the
configuration found in this thesis on the small randomly generated part of the test set.
The values are calculated from three trials per instance.

instance average median std.dev min max
randomly_perfect_random_0951 0.093996 0.094427 0.001154 0.092417 0.095144
randomly_perfect_random_0952 1.028674 1.028585 0.815963 0.029371 2.028065
randomly_perfect_random_0953 0.075978 0.097505 0.033689 0.028406 0.102025
randomly_perfect_random_0954 1.390059 2.037804 0.918457 0.091166 2.041207
randomly_perfect_random_0955 0.005717 0.00573 3.39E-05 0.00567 0.00575
randomly_perfect_random_0956 0.062824 0.079768 0.026377 0.025571 0.083132
randomly_perfect_random_0957 0.073116 0.07279 0.001722 0.07119 0.075369
randomly_perfect_random_0958 0.698586 1.02914 0.47284 0.029904 1.036715
randomly_perfect_random_0959 0.392935 0.061875 0.471478 0.057229 1.0597
randomly_perfect_random_0960 0.35572 0.023223 0.471764 0.021043 1.022893
randomly_perfect_random_0961 1.12677 1.179654 0.81822 0.099264 2.101391
randomly_perfect_random_0962 1.086204 1.090062 0.012027 1.069929 1.098621
randomly_perfect_random_0963 0.391375 0.061403 0.471001 0.055261 1.057461
randomly_perfect_random_0964 0.091523 0.087858 0.010443 0.080966 0.105745
randomly_perfect_random_0965 0.078031 0.0787 0.001748 0.075635 0.079759
randomly_perfect_random_0966 1.423751 1.091955 0.469989 1.090882 2.088416
randomly_perfect_random_0967 0.004177 0.004177 0 0.004177 0.004177
randomly_perfect_random_0968 0.093185 0.093114 0.008231 0.08314 0.1033
randomly_perfect_random_0969 0.016998 0.020037 0.004513 0.010618 0.020339
randomly_perfect_random_0970 0.04887 0.050217 0.0043 0.043061 0.053333
randomly_perfect_random_0971 0.095968 0.098589 0.005419 0.088421 0.100894
randomly_perfect_random_0972 0.091492 0.088752 0.010019 0.080823 0.104901
randomly_perfect_random_0973 0.074146 0.074584 0.003546 0.069601 0.078254
randomly_perfect_random_0974 0.03072 0.031412 0.001521 0.028611 0.032138
randomly_perfect_random_0975 0.74719 1.086212 0.480933 0.067049 1.088308
randomly_perfect_random_0976 0.043019 0.044267 0.004176 0.037395 0.047393
randomly_perfect_random_0977 0.080233 0.082292 0.005068 0.073258 0.085148
randomly_perfect_random_0978 0.067712 0.068591 0.010177 0.054833 0.079713

100



C.2. Memetic Algorithm

randomly_perfect_random_0979 0.045786 0.044923 0.002879 0.042772 0.049663
randomly_perfect_random_0980 0.057456 0.057896 0.005112 0.050987 0.063486
randomly_perfect_random_0981 0.04224 0.043677 0.003492 0.03743 0.045613
randomly_perfect_random_0982 1.090025 1.090765 0.001283 1.08822 1.091091
randomly_perfect_random_0983 0.070211 0.073871 0.005476 0.062471 0.074292
randomly_perfect_random_0984 1.407333 1.078197 0.469475 1.07254 2.071262
randomly_perfect_random_0985 0.39504 0.063118 0.472792 0.058337 1.063663
randomly_perfect_random_0986 0.381193 0.054922 0.470292 0.04241 1.046247
randomly_perfect_random_0987 1.023533 0.021158 1.417933 0.020647 3.028792
randomly_perfect_random_0988 0.013746 0.014984 0.00175 0.011271 0.014984
randomly_perfect_random_0989 0.081287 0.084944 0.00591 0.07295 0.085966
randomly_perfect_random_0990 0.74408 1.074945 0.469248 0.080464 1.076831
randomly_perfect_random_0991 0.056962 0.056419 0.002679 0.053987 0.060482
randomly_perfect_random_0992 0.015324 0.015324 1.73E-18 0.015324 0.015324
randomly_perfect_random_0993 0.058884 0.057557 0.005103 0.053403 0.06569
randomly_perfect_random_0994 0.057981 0.057385 0.001646 0.056329 0.060228
randomly_perfect_random_0995 0.070479 0.070643 0.002309 0.067574 0.073222
randomly_perfect_random_0996 0.006324 0.005442 0.001336 0.005319 0.008213
randomly_perfect_random_0997 0.395104 0.06247 0.470696 0.062073 1.060768
randomly_perfect_random_0998 1.089718 1.097983 0.822634 0.078095 2.093078
randomly_perfect_random_0999 0.048865 0.048952 0.000198 0.048591 0.049052
randomly_perfect_random_1000 0.065722 0.069491 0.006653 0.056371 0.071303

Table C.3: This table shows the results of the simulated annealing algorithm using the
configuration found in this thesis on the randomly perfect generated part of the test set.
The values are calculated from three trials per instance.

instance average median std.dev min max
realistic_instance_01 1.101344 1.134725 0.049217 1.03176 1.137548
realistic_instance_02 1.241425 1.268523 0.045819 1.176902 1.278851
realistic_instance_03 1.059096 1.08214 0.041263 1.001144 1.094003
realistic_instance_04 1.072543 1.097858 0.03996 1.01613 1.103641
realistic_instance_05 1.203758 1.218353 0.02863 1.163754 1.229167
realistic_instance_06 1.12471 1.14411 0.027803 1.085392 1.144628
realistic_instance_07 1.241362 1.264685 0.043435 1.180488 1.278914
realistic_instance_08 1.195048 1.228737 0.048495 1.126469 1.229937
realistic_instance_09 1.16853 1.191608 0.03963 1.11276 1.201221
realistic_instance_10 1.190898 1.218058 0.039445 1.135122 1.219516
realistic_instance_11 1.093612 1.118947 0.03664 1.0418 1.12009
realistic_instance_12 1.165945 1.1917 0.039061 1.110746 1.19539
realistic_instance_13 1.062368 1.087339 0.040436 1.005329 1.094434
realistic_instance_14 2.204968 2.225414 0.03324 2.158086 2.231403
realistic_instance_15 0.99798 1.012709 0.027124 0.959941 1.021289
realistic_instance_16 1.202372 1.23109 0.043141 1.141395 1.23463
realistic_instance_17 1.037485 1.059153 0.034302 0.989064 1.064239
realistic_instance_18 1.099615 1.115671 0.03312 1.053482 1.129692
realistic_instance_19 0.648838 0.661096 0.042985 0.591144 0.694273
realistic_instance_20 0.709052 0.737539 0.049485 0.639451 0.750168
realistic_instance_21 0.749199 0.77192 0.036392 0.697847 0.777831
realistic_instance_22 0.566579 0.571399 0.007235 0.556352 0.571985
realistic_instance_23 0.634921 0.656509 0.032649 0.58878 0.659474
realistic_instance_24 0.990496 0.673715 0.496831 0.605748 1.692025
realistic_instance_25 0.516552 0.540327 0.037917 0.46304 0.54629
realistic_instance_26 1.757811 1.787146 0.865626 0.683276 2.80301
realistic_instance_27 0.646548 0.676043 0.047104 0.580074 0.683528

Table C.4: This table shows the results of the simulated annealing algorithm using the
configuration found in this thesis on the realistic part of the test set. The values are
calculated from three trials per instance.

C.2 Memetic Algorithm
instance average median std.dev min max

101



C. Results on test instances

randomly_generated_0951 0.515944 0.516406 0.001503 0.513916 0.51751
randomly_generated_0952 1.94858 1.946854 0.002558 1.946689 1.952197
randomly_generated_0953 0.336306 0.336525 0.000601 0.335486 0.336909
randomly_generated_0954 0.259011 0.259022 0.001647 0.256988 0.261023
randomly_generated_0955 0.125282 0.124945 0.00067 0.124684 0.126218
randomly_generated_0956 0.170736 0.170506 0.001168 0.169435 0.172268
randomly_generated_0957 0.67397 0.67235 0.002736 0.671737 0.677824
randomly_generated_0958 0.090792 0.090185 0.001108 0.089844 0.092347
randomly_generated_0959 0.119887 0.11986 0.000818 0.118898 0.120902
randomly_generated_0960 0.687569 0.688104 0.001206 0.685898 0.688704
randomly_generated_0961 6.496276 6.501339 0.81491 5.495697 7.491791
randomly_generated_0962 0.102884 0.102878 0.000245 0.102587 0.103187
randomly_generated_0963 0.9607 0.960668 0.000706 0.959852 0.96158
randomly_generated_0964 0.178444 0.178578 0.000228 0.178124 0.178632
randomly_generated_0965 0.139798 0.140772 0.001584 0.137564 0.141058
randomly_generated_0966 0.235358 0.235158 0.0019 0.233137 0.237779
randomly_generated_0967 6.344533 6.3472 0.815842 5.344004 7.342395
randomly_generated_0968 0.429716 0.429942 0.001533 0.427736 0.431471
randomly_generated_0969 5.440245 5.439694 0.002851 5.437062 5.44398
randomly_generated_0970 0.097177 0.097137 0.001095 0.095857 0.098538
randomly_generated_0971 3.868595 3.539358 0.466927 3.537498 4.528928
randomly_generated_0972 0.248392 0.247751 0.001208 0.247342 0.250085
randomly_generated_0973 0.220518 0.22009 0.000894 0.219701 0.221762
randomly_generated_0974 0.854724 0.854571 0.000419 0.854305 0.855297
randomly_generated_0975 0.10983 0.11039 0.002347 0.106717 0.112383
randomly_generated_0976 1.25403 1.284095 0.045397 1.189871 1.288125
randomly_generated_0977 1.397164 1.396317 0.001402 1.396035 1.39914
randomly_generated_0978 0.588278 0.587717 0.003462 0.584346 0.59277
randomly_generated_0979 2.999677 2.671986 0.46966 2.663187 3.663857
randomly_generated_0980 1.118104 1.117338 0.00117 1.117217 1.119757
randomly_generated_0981 2.527039 2.52913 0.004988 2.520159 2.531828
randomly_generated_0982 0.141653 0.141883 0.000999 0.140331 0.142746
randomly_generated_0983 12.17025 11.50414 0.943529 11.50202 13.5046
randomly_generated_0984 0.143066 0.142688 0.001758 0.141126 0.145383
randomly_generated_0985 0.059635 0.059048 0.001657 0.057964 0.061893
randomly_generated_0986 10.19814 9.498973 1.743694 8.499778 12.59567
randomly_generated_0987 0.064585 0.064214 0.000797 0.063848 0.065692
randomly_generated_0988 0.138458 0.140329 0.003981 0.132923 0.142122
randomly_generated_0989 0.799778 0.800469 0.002391 0.796566 0.8023
randomly_generated_0990 0.042249 0.043079 0.002708 0.038596 0.045071
randomly_generated_0991 0.366397 0.36807 0.004092 0.360763 0.370357
randomly_generated_0992 0.302013 0.302123 0.001408 0.300235 0.303679
randomly_generated_0993 4.464161 4.796417 0.469895 3.799628 4.796438
randomly_generated_0994 0.446648 0.446774 0.003564 0.442221 0.45095
randomly_generated_0995 2.29736 2.298762 0.002784 2.293474 2.299845
randomly_generated_0996 3.155733 2.824738 0.468692 2.823899 3.818563
randomly_generated_0997 6.002031 6.009767 0.818287 4.995992 7.000333
randomly_generated_0998 1.234945 1.235296 0.000549 1.23417 1.235371
randomly_generated_0999 1.259155 1.259385 0.000917 1.257935 1.260145
randomly_generated_1000 0.100422 0.099153 0.006077 0.093696 0.108419

Table C.5: This table shows the results of the memetic algorithm using the configuration
found in this thesis on the randomly generated part of the test set. The values are
calculated from three trials per instance.

instance average median std.dev min max
randomly_perfect_random_0951 0.085613 0.086731 0.004867 0.079172 0.090935
randomly_perfect_random_0952 0.074168 0.07428 0.0003 0.073758 0.074467
randomly_perfect_random_0953 0.051743 0.070207 0.026712 0.01397 0.071051
randomly_perfect_random_0954 0.038107 0.038431 0.000983 0.036774 0.039116
randomly_perfect_random_0955 0.001947 0.001388 0.000896 0.001243 0.003212
randomly_perfect_random_0956 0.073098 0.074 0.00194 0.070403 0.074891
randomly_perfect_random_0957 0.106661 0.108417 0.002694 0.102854 0.108711
randomly_perfect_random_0958 0.018397 0.018262 0.000678 0.017642 0.019286
randomly_perfect_random_0959 0.204319 0.206646 0.006039 0.196039 0.210271
randomly_perfect_random_0960 0.006737 0.007029 0.000412 0.006155 0.007029
randomly_perfect_random_0961 0.197406 0.196558 0.001436 0.196232 0.199428
randomly_perfect_random_0962 0.076432 0.076645 0.000831 0.075324 0.077326
randomly_perfect_random_0963 0.224463 0.222592 0.004967 0.219535 0.231263

102



C.2. Memetic Algorithm

randomly_perfect_random_0964 0.06061 0.060848 0.001588 0.058556 0.062425
randomly_perfect_random_0965 0.115619 0.11646 0.004115 0.110212 0.120186
randomly_perfect_random_0966 0.197974 0.196978 0.001902 0.196307 0.200635
randomly_perfect_random_0967 0 0 0 0 0
randomly_perfect_random_0968 0.051621 0.052643 0.001806 0.049083 0.053136
randomly_perfect_random_0969 0 0 0 0 0
randomly_perfect_random_0970 0.064923 0.065933 0.002994 0.060856 0.067979
randomly_perfect_random_0971 0.024713 0.023586 0.003199 0.021482 0.029071
randomly_perfect_random_0972 0.09121 0.091063 0.001792 0.089093 0.093475
randomly_perfect_random_0973 0.08606 0.085736 0.002015 0.083771 0.088674
randomly_perfect_random_0974 0.077007 0.077522 0.001769 0.074629 0.078868
randomly_perfect_random_0975 0.058252 0.058142 0.000453 0.05776 0.058854
randomly_perfect_random_0976 0.08925 0.089143 0.008781 0.07855 0.100058
randomly_perfect_random_0977 0.075765 0.075044 0.00155 0.074333 0.077918
randomly_perfect_random_0978 0.061364 0.061042 0.001965 0.059136 0.063915
randomly_perfect_random_0979 0.08542 0.085778 0.002016 0.082792 0.08769
randomly_perfect_random_0980 0.008293 0.006842 0.00215 0.006704 0.011333
randomly_perfect_random_0981 0.056884 0.055903 0.001819 0.055316 0.059435
randomly_perfect_random_0982 0.11933 0.153039 0.051218 0.046953 0.157997
randomly_perfect_random_0983 0.115416 0.115488 0.006097 0.107912 0.122847
randomly_perfect_random_0984 0.202052 0.201143 0.001533 0.200802 0.204212
randomly_perfect_random_0985 0.174095 0.174561 0.00258 0.170728 0.176995
randomly_perfect_random_0986 0.092498 0.090698 0.002953 0.090134 0.096661
randomly_perfect_random_0987 0.032967 0.032768 0.000513 0.032461 0.03367
randomly_perfect_random_0988 0 0 0 0 0
randomly_perfect_random_0989 0.057042 0.056115 0.002424 0.054648 0.060365
randomly_perfect_random_0990 0.070132 0.070239 0.000555 0.069405 0.070752
randomly_perfect_random_0991 0.093886 0.069697 0.034338 0.069514 0.142448
randomly_perfect_random_0992 0 0 0 0 0
randomly_perfect_random_0993 0.083172 0.08254 0.00304 0.079806 0.08717
randomly_perfect_random_0994 0.121853 0.120972 0.004818 0.116442 0.128146
randomly_perfect_random_0995 0.101716 0.101767 0.001211 0.100208 0.103172
randomly_perfect_random_0996 0.001659 0.001374 0.000876 0.000756 0.002846
randomly_perfect_random_0997 0.183985 0.187209 0.006989 0.174281 0.190465
randomly_perfect_random_0998 0.162661 0.16255 0.000388 0.162252 0.163182
randomly_perfect_random_0999 0.098893 0.098504 0.001028 0.097874 0.1003
randomly_perfect_random_1000 0.07079 0.070543 0.000637 0.070163 0.071663

Table C.6: This table shows the results of the memetic algorithm using the configuration
found in this thesis on the randomly perfect generated part of the test set. The values
are calculated from three trials per instance.

instance average median std.dev min max
randomly_generated_small_0001 0.038242 0.042619 0.006212 0.029457 0.04265
randomly_generated_small_0002 0.48938 0.492745 0.008092 0.478226 0.49717
randomly_generated_small_0003 0.281947 0.281934 0.004287 0.276703 0.287204
randomly_generated_small_0004 0.364124 0.364448 0.001193 0.362528 0.365397
randomly_generated_small_0005 0.793137 0.793737 0.001571 0.790985 0.794689
randomly_generated_small_0006 0.716465 0.716398 9.57E-05 0.716398 0.716601
randomly_generated_small_0007 0.02048 0.019804 0.005099 0.014601 0.027036
randomly_generated_small_0008 0.911434 1.239706 0.466427 0.251809 1.242786
randomly_generated_small_0009 0.803744 0.80442 0.003142 0.799602 0.807209
randomly_generated_small_0010 0.749112 0.746131 0.005249 0.744715 0.75649

Table C.7: This table shows the results of the memetic algorithm using the configuration
found in this thesis on the small randomly generated part of the test set. The values are
calculated from three trials per instance.

103



C. Results on test instances

instance average median std.dev min max
realistic_instance_01 1.046516 1.049296 0.004207 1.040571 1.049682
realistic_instance_02 1.187758 1.185297 0.004675 1.183674 1.194302
realistic_instance_03 1.003595 1.003767 0.000521 1.002888 1.004129
realistic_instance_04 1.032051 1.023103 0.01559 1.019074 1.053976
realistic_instance_05 1.188053 1.18685 0.005095 1.182502 1.194807
realistic_instance_06 1.106118 1.104435 0.003676 1.102699 1.111219
realistic_instance_07 1.211571 1.212041 0.00376 1.206749 1.215924
realistic_instance_08 1.13698 1.133449 0.005207 1.133149 1.144341
realistic_instance_09 1.125378 1.125354 0.002902 1.121836 1.128944
realistic_instance_10 1.139077 1.140684 0.003639 1.134039 1.142507
realistic_instance_11 1.068581 1.066731 0.005859 1.06251 1.076501
realistic_instance_12 1.13554 1.135822 0.002381 1.132492 1.138304
realistic_instance_13 1.007863 1.008407 0.001392 1.005952 1.009231
realistic_instance_14 2.494184 2.16071 0.472118 2.159983 3.161859
realistic_instance_15 0.962395 0.963717 0.002271 0.959199 0.96427
realistic_instance_16 1.16208 1.163288 0.005728 1.154539 1.168414
realistic_instance_17 1.017462 1.021065 0.005526 1.009654 1.021666
realistic_instance_18 1.071092 1.074773 0.00587 1.062808 1.075694
realistic_instance_19 0.575241 0.575197 0.001902 0.572934 0.577592
realistic_instance_20 0.624511 0.624254 0.002025 0.622169 0.62711
realistic_instance_21 0.696562 0.697258 0.001493 0.694488 0.697939
realistic_instance_22 0.5612 0.562426 0.005933 0.553398 0.567775
realistic_instance_23 0.563832 0.564126 0.003772 0.559073 0.568297
realistic_instance_24 0.581547 0.581644 0.003365 0.577377 0.585619
realistic_instance_25 0.443057 0.441618 0.003181 0.440084 0.447467
realistic_instance_26 0.664961 0.664892 0.003305 0.660948 0.669042
realistic_instance_27 0.560937 0.559987 0.00271 0.558195 0.564628

Table C.8: This table shows the results of the memetic algorithm using the configuration
found in this thesis on the realistic part of the test set. The values are calculated from
three trials per instance.

C.3 Genetic Algorithm
instance average median std.dev min max
randomly_generated_0951 0.499349572 0.502514 0.010044 0.485776 0.509759
randomly_generated_0952 1.996945686 2.020572 0.035367 1.946954 2.023311
randomly_generated_0953 0.329161966 0.330441 0.002089 0.326216 0.330829
randomly_generated_0954 0.237958051 0.234388 0.011773 0.225659 0.253827
randomly_generated_0955 0.12591904 0.124732 0.00271 0.123357 0.129668
randomly_generated_0956 0.168461027 0.169223 0.001449 0.166432 0.169728
randomly_generated_0957 0.672990332 0.673795 0.002491 0.669617 0.675559
randomly_generated_0958 0.09005765 0.090259 0.002813 0.086516 0.093398
randomly_generated_0959 0.124399455 0.125295 0.001484 0.122307 0.125596
randomly_generated_0960 0.686968733 0.687074 0.001296 0.685331 0.688501
randomly_generated_0961 6.135057958 6.463896 0.465075 5.477343 6.463935
randomly_generated_0962 0.15335692 0.153375 0.000579 0.152639 0.154057
randomly_generated_0963 0.955889538 0.955836 0.000849 0.954877 0.956956

104



C.3. Genetic Algorithm

randomly_generated_0964 0.175790832 0.175459 0.00047 0.175458 0.176455
randomly_generated_0965 0.131876526 0.131663 0.000854 0.130953 0.133013
randomly_generated_0966 0.221125297 0.220921 0.00148 0.219423 0.223032
randomly_generated_0967 5.31789765 5.324661 0.825291 4.303762 6.32527
randomly_generated_0968 0.400075485 0.400927 0.001302 0.398236 0.401064
randomly_generated_0969 5.076265708 5.413582 0.480695 4.396466 5.418749
randomly_generated_0970 0.092835604 0.094165 0.002212 0.089718 0.094623
randomly_generated_0971 4.544601235 4.54981 0.81741 3.540888 5.543106
randomly_generated_0972 0.233643931 0.2338 0.002365 0.230672 0.236459
randomly_generated_0973 0.210316161 0.210922 0.001576 0.208156 0.211871
randomly_generated_0974 0.854112724 0.853989 0.002426 0.851205 0.857144
randomly_generated_0975 0.110627257 0.110294 0.000787 0.109874 0.111714
randomly_generated_0976 1.176189803 1.177379 0.003193 1.171822 1.179368
randomly_generated_0977 0.33558394 0.340466 0.007616 0.324829 0.341457
randomly_generated_0978 0.559599315 0.556713 0.010043 0.548999 0.573086
randomly_generated_0979 2.32230257 2.654797 0.472464 1.654141 2.65797
randomly_generated_0980 1.140093356 1.112325 0.039489 1.112016 1.195939
randomly_generated_0981 2.501721831 2.503855 0.81844 1.498276 3.503034
randomly_generated_0982 0.137546514 0.137559 0.000346 0.137117 0.137964
randomly_generated_0983 11.12373501 11.45467 1.252012 9.451893 12.46464
randomly_generated_0984 0.142135306 0.140146 0.003613 0.139055 0.147205
randomly_generated_0985 0.08472753 0.084781 0.001454 0.082921 0.086481
randomly_generated_0986 9.816346729 10.48414 0.945092 8.479785 10.48512
randomly_generated_0987 0.061611811 0.061836 0.000696 0.06067 0.062329
randomly_generated_0988 0.123314631 0.123752 0.000721 0.122298 0.123894
randomly_generated_0989 0.793765725 0.79306 0.001091 0.79293 0.795307
randomly_generated_0990 0.08130432 0.081785 0.001172 0.07969 0.082438
randomly_generated_0991 0.362953683 0.363902 0.001754 0.360494 0.364465
randomly_generated_0992 0.295397014 0.29524 0.000461 0.294928 0.296023
randomly_generated_0993 4.455309521 4.788225 0.472084 3.787683 4.79002
randomly_generated_0994 0.406078918 0.4086 0.006711 0.396895 0.412742
randomly_generated_0995 2.561994922 2.25942 0.443374 2.237671 3.188894
randomly_generated_0996 3.115861697 2.812536 0.43686 2.801408 3.733641
randomly_generated_0997 6.981019169 6.978928 0.819099 5.978879 7.98525
randomly_generated_0998 1.211331085 1.211116 0.004606 1.2058 1.217077
randomly_generated_0999 1.239461666 1.239736 0.003932 1.234514 1.244135
randomly_generated_1000 0.105316917 0.106269 0.001658 0.102985 0.106696

Table C.9: This table shows the results of the genetic algorithm using the configuration
found in this thesis on the randomly generated part of the test set. The values are
calculated from three trials per instance.

instance average median std.dev min max
randomly_perfect_random_0951 0.070893316 0.071155 0.000877 0.069712 0.071813
randomly_perfect_random_0952 0.070626356 0.071772 0.002445 0.067229 0.072878
randomly_perfect_random_0953 0.045976891 0.049774 0.007228 0.035859 0.052297
randomly_perfect_random_0954 0.038711068 0.039806 0.002525 0.03522 0.041107
randomly_perfect_random_0955 0.004316969 0.004416 0.000203 0.004034 0.004501
randomly_perfect_random_0956 0.044296026 0.046534 0.005423 0.036824 0.04953
randomly_perfect_random_0957 0.087132151 0.086399 0.003842 0.082836 0.092162
randomly_perfect_random_0958 0.018987209 0.019042 0.000226 0.018687 0.019233
randomly_perfect_random_0959 0.170407569 0.169769 0.002803 0.167339 0.174115
randomly_perfect_random_0960 0.006971984 0.007039 0.00046 0.006379 0.007499
randomly_perfect_random_0961 0.088193258 0.087446 0.00526 0.082158 0.094976
randomly_perfect_random_0962 0.092318764 0.095651 0.017541 0.069364 0.111942
randomly_perfect_random_0963 0.198116666 0.199884 0.003628 0.193062 0.201404
randomly_perfect_random_0964 0.049332881 0.050974 0.003286 0.044747 0.052278
randomly_perfect_random_0965 0.089248947 0.087631 0.002455 0.087398 0.092718
randomly_perfect_random_0966 0.105145519 0.1056 0.00149 0.103136 0.1067
randomly_perfect_random_0967 0 0 0 0 0
randomly_perfect_random_0968 0.039302621 0.038874 0.000827 0.038574 0.04046
randomly_perfect_random_0969 7.15001E-05 0 0.000101 0 0.000215
randomly_perfect_random_0970 0.058105919 0.058427 0.002553 0.054831 0.06106
randomly_perfect_random_0971 0.025976064 0.022314 0.006578 0.020402 0.035212
randomly_perfect_random_0972 0.081317337 0.080755 0.002169 0.078987 0.08421
randomly_perfect_random_0973 0.067177045 0.067313 0.001961 0.064711 0.069507
randomly_perfect_random_0974 0.069591904 0.069759 0.001085 0.068187 0.07083
randomly_perfect_random_0975 0.061316887 0.053545 0.012852 0.050973 0.079432
randomly_perfect_random_0976 0.149605255 0.149341 0.000422 0.149275 0.1502

105



C. Results on test instances

randomly_perfect_random_0977 0.076908356 0.078205 0.004165 0.071284 0.081236
randomly_perfect_random_0978 0.057533498 0.056983 0.000901 0.056814 0.058804
randomly_perfect_random_0979 0.130271487 0.131892 0.002327 0.126981 0.131941
randomly_perfect_random_0980 0.012026204 0.01053 0.00359 0.008574 0.016975
randomly_perfect_random_0981 0.053443243 0.052448 0.002682 0.050771 0.057111
randomly_perfect_random_0982 0.110026388 0.112714 0.00712 0.100279 0.117086
randomly_perfect_random_0983 0.09627884 0.094228 0.003394 0.093547 0.101062
randomly_perfect_random_0984 0.17250318 0.172867 0.00234 0.169473 0.17517
randomly_perfect_random_0985 0.150154256 0.150865 0.001191 0.148476 0.151121
randomly_perfect_random_0986 0.077859725 0.076976 0.001437 0.076717 0.079886
randomly_perfect_random_0987 0.031568185 0.031959 0.000817 0.030431 0.032315
randomly_perfect_random_0988 0 0 0 0 0
randomly_perfect_random_0989 0.061633954 0.061186 0.001893 0.059572 0.064144
randomly_perfect_random_0990 0.063183474 0.061638 0.004956 0.058036 0.069876
randomly_perfect_random_0991 0.065855613 0.064302 0.003383 0.062714 0.070551
randomly_perfect_random_0992 0 0 0 0 0
randomly_perfect_random_0993 0.135880063 0.134855 0.001744 0.134449 0.138336
randomly_perfect_random_0994 0.099166243 0.098578 0.002753 0.096128 0.102793
randomly_perfect_random_0995 0.089363961 0.088269 0.001992 0.087664 0.092159
randomly_perfect_random_0996 0.004121399 0.004295 0.000523 0.003412 0.004657
randomly_perfect_random_0997 0.153618076 0.151572 0.003182 0.15117 0.158112
randomly_perfect_random_0998 0.129101368 0.124605 0.017663 0.11007 0.152629
randomly_perfect_random_0999 0.084050445 0.084025 0.002166 0.081411 0.086716
randomly_perfect_random_1000 0.061021092 0.059878 0.002104 0.059214 0.063971

Table C.10: This table shows the results of the genetic algorithm using the configuration
found in this thesis on the randomly perfect generated part of the test set. The values
are calculated from three trials per instance.

instance average median std.dev min max
randomly_generated_small_0001 0.038028301 0.037751 0.00517 0.03184 0.044494
randomly_generated_small_0002 0.492090472 0.489777 0.007796 0.483912 0.502582
randomly_generated_small_0003 0.285103649 0.283132 0.003254 0.282489 0.28969
randomly_generated_small_0004 0.358161034 0.35812 0.000177 0.357968 0.358395
randomly_generated_small_0005 0.791647403 0.79213 0.000962 0.790304 0.792508
randomly_generated_small_0006 0.716388368 0.716601 0.001738 0.714162 0.718403
randomly_generated_small_0007 0.022712768 0.022272 0.000953 0.02183 0.024036
randomly_generated_small_0008 1.232759731 1.236972 0.006099 1.224135 1.237172
randomly_generated_small_0009 0.804220411 0.8 0.009123 0.795772 0.816889
randomly_generated_small_0010 0.752181854 0.749032 0.004961 0.748328 0.759186

Table C.11: This table shows the results of the genetic algorithm using the configuration
found in this thesis on the small randomly generated part of the test set. The values are
calculated from three trials per instance.

106



C.3. Genetic Algorithm

instance average median std.dev min max
realistic_instance_01 1.044595781 1.043579 0.008595 1.034614 1.055594
realistic_instance_02 1.194188491 1.195786 0.002803 1.190248 1.196531
realistic_instance_03 1.005891023 1.006899 0.001746 1.003435 1.00734
realistic_instance_04 1.025971325 1.023787 0.00372 1.022918 1.031208
realistic_instance_05 1.183083917 1.183724 0.003848 1.178084 1.187444
realistic_instance_06 1.106003358 1.105925 0.000315 1.105662 1.106422
realistic_instance_07 1.209604695 1.208791 0.001666 1.208096 1.211927
realistic_instance_08 1.137826358 1.139783 0.002987 1.133606 1.14009
realistic_instance_09 1.126811279 1.127586 0.002496 1.123441 1.129407
realistic_instance_10 1.137951553 1.135953 0.005886 1.131953 1.145949
realistic_instance_11 1.0700808 1.069545 0.001455 1.068628 1.072069
realistic_instance_12 1.132480111 1.136164 0.005412 1.124828 1.136448
realistic_instance_13 1.008857766 1.008423 0.002085 1.00655 1.0116
realistic_instance_14 2.161467026 2.15999 0.004199 2.157225 2.167187
realistic_instance_15 0.959600558 0.961847 0.006876 0.950284 0.966671
realistic_instance_16 1.154238208 1.151712 0.004995 1.149787 1.161215
realistic_instance_17 1.009883333 1.012789 0.004782 1.003142 1.013718
realistic_instance_18 1.072658925 1.072678 0.001131 1.071264 1.074034
realistic_instance_19 0.57715469 0.576793 0.000695 0.576544 0.578127
realistic_instance_20 0.626174719 0.626568 0.004661 0.62028 0.631676
realistic_instance_21 0.696304963 0.696946 0.000913 0.695014 0.696955
realistic_instance_22 0.541188627 0.540847 0.004031 0.536431 0.546288
realistic_instance_23 0.547575236 0.545415 0.006696 0.540671 0.55664
realistic_instance_24 0.566817423 0.566748 0.009015 0.555812 0.577893
realistic_instance_25 0.417037275 0.423903 0.01676 0.393958 0.433251
realistic_instance_26 0.660432755 0.659894 0.000917 0.65968 0.661724
realistic_instance_27 0.554433419 0.553983 0.001263 0.553162 0.556155

Table C.12: This table shows the results of the genetic algorithm using the configuration
found in this thesis on the realistic part of the test set. The values are calculated from
three trials per instance.

107





List of Figures

3.1 The expected and actual allele coverage values for small and large cardinalities based on the calculations
from [TS93] and its change along increasing population sizes. . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 This graph shows the coverage versus the amount of periods represented by a single instance per period and
the measured coverage of the By-Demand and By-Demand-Next-Fit construction heuristic when producing
a population of size 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 This scatter plot shows the distribution of R2 across their properties: number of orders, number of periods
and number of products. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 The histograms show how the number of different properties of R2 are distributed. . . . . . . . . . . . . 63
4.3 This scatter plot shows the distribution of R3 across their properties: number of orders, number of periods

and number of products. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4 The histograms show how the number of different properties of R3 are distributed. . . . . . . . . . . . . 65
4.5 This figure shows the optimality gap for the simulated annealing approach by Vass et al. [VLM20] and the

three approaches that have been developed in this thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . 88

B.1 The expected and actual allele coverage values for small and large cardinalities based on the calculations
from [TS93] and its change along increasing population sizes. . . . . . . . . . . . . . . . . . . . . . . . . 97

109





List of Tables

3.1 This table shows the mean runtimes in seconds for each of the construction heuristics of a few chosen
instances with increasing amount of orders, since that has been the main parameter affecting the runtime.
Each value is the average of 50 runs. More specific data can be found in the appendix A.1. . . . . . . . 24

3.2 This table shows the mean fitness values of 100 solutions created by the corresponding construction heuristics.
The first block shows a sample of problem instances with small alphabets (number of periods), the middle
shows medium alphabets and the bottom block shows large alphabets. Each fitness value is calculated by
the formula for a solutions fitness. For each hard constraint violation present, 1 is added. The best fitness
value of an instance is highlighted in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 The table shows the mean g1 values of 100 solutions created by the corresponding construction heuristics.
The first block shows a sample of problem instances with small alphabets (number of periods), the middle
shows medium alphabets and the bottom block shows large alphabets. The best fitness value of an instance
is highlighted in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 In this table the mean g2 values of 100 solutions created by the corresponding construction heuristics are
displayed. The three blocks show small, medium and large alphabets. The best fitness value of an instance
is indicated in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 This table shows the mean g3 values of 100 solutions created by their corresponding construction heuristic.
The three blocks show small, medium and large alphabets. The best fitness values of the instance are
highlighted in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6 This table shows the mean number of hard constraint violations of 100 solutions created by the corresponding
construction heuristic for each instance. The rows are partitioned into small, medium and large alphabets.
The best results are highlighted in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.7 This table shows the mean number of violations of the maximum capacity per period hard constraint of 100
solutions created by the corresponding construction heuristic for each instance. The rows are partitioned
into small, medium and large alphabets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.8 This table shows the mean number of violations of the maximum capacity per period and product type hard
constraint of 100 solutions created by the corresponding construction heuristic for each instance. The rows
are partitioned into small, medium and large alphabets. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.9 This table shows the equality ratio (smaller is better) of each construction heuristic on a given instance.
The instances are blocked by alphabet size, starting with a small alphabet size, then medium, then large. 35

3.10 This table shows the extended Jaccard Index (smaller is better) for each construction heuristic and instance.
The instances are partitioned into small, medium and large alphabets. . . . . . . . . . . . . . . . . . . 39

3.11 This table from [TS93] shows the population size needed to reach at least 99% of allele coverage for a given
cardinality when initialising a population at random. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.12 This table shows the development of the allele coverage (bigger is better) based on population size for each
construction heuristic on a small instance with 8 periods. . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.13 This table shows the development of the allele coverage based on population size for each construction
heuristic on a medium instance with 26 periods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.14 This table shows the development of the allele coverage based on population size for each construction
heuristic on a large instance with 69 periods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 This table shows the minimum, maximum, mean and standard deviation of the three parameters used when
creating instances. Instance Sets marked with * are part of the test-set and taken from [VLM20]. . . . 61

4.2 The tuning limits and results for tuning the simulated annealing algorithm on 2000 instances with 10.000
trials using SMAC3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 This table shows the median fitness of three trials on five instances per testing subset by different tunings
and the results reported in [VLM20] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 The average rank per subset of the simulated annealing algorithm tuned in this chapter and the configuration
found in [VLM20] running 5 and 10 minutes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 This table lists the parameters and possible values and conditions of each parameter for the first tune with
4000 trials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.6 This table shows the results from the first parameter tuning run described in 4.5. Since the LS cadence was
set to 0, the other parameters were not further considered. . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.7 This table lists the parameters, conditions and values possible for the second memetic algorithm parameter
tuning run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.8 This table displays the results found during the tuning of the parameters described in 4.7. With the
Neighbourhood-Switching LS Behaviour, no LS-Inversion-Fixing % is present. . . . . . . . . . . . . . . . 72

111



4.9 This table shows the further restricted MA tuning configuration. Local search iterations, percentage and
cadence were further restricted to enable regular use and less illegal configurations. Additionally, the
population size, crossover rate and mutation dividend values were restricted to a smaller range. The two
move percentage values for mutation and local search have also been fixed to 0.4 based on the results from
[VLM20]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.10 The table shows the configuration found to be best for the tuning configuration in table 4.9 . . . . . . . 74
4.11 This table shows a sample of the three tunings described in section 4.3.2. While it is only a sample of 5

instances, the results behave similarly on every instance tested. The initial tuning has the worst results
across the board, always outperformed by tuning three while the second tuning always achieves the best
results with a wide margin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.12 This table shows the parameters, possible values and tuned values of the genetic algorithm hyperparameter
tuning process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.13 This table displays the tuning results of the experiment validating our claims made in section 3.3. . . . . 76
4.14 This table displays the fitness values achieved on a few instances by the two tunings found during the

diversity experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.15 This table shows the tuning results for the experiment testing whether the By-Demand-Next-Fit ratio value

increases with larger population size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.16 Here the average rank of the simulated annealing (SA), memetic algorithm (MA) and genetic algorithm

(GA) on each subset of the test set is displayed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.17 This table shows the median fitness of the simulated annealing (SA), memetic algorithm (MA) and genetic

algorithm (GA) configuration on 5 instances of each test subset. The best result is highlighted in bold. . 79
4.18 This table shows the average, median, standard deviation, minimum and maximum fitness of the test subsets. 80
4.19 This table shows the absolute difference between the memetic and genetic algorithm on the three test subsets. 80
4.20 This table shows the average, median, standard deviation, minimum and maximum absolute difference

between the simulated annealing tuning found in subsection 4.3.1 and the results from Vass et al.[VLM20]
for each testing subset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.21 This table shows the number of instances with hard constraint violations that are present for only one of the
two implementations. In addition the number of violations is shown as well. . . . . . . . . . . . . . . . . 82

4.22 This table shows the average, median, standard deviation, minimum and maximum absolute difference
between the simulated annealing tuning found in subsection 4.3.1 and the results from Vass et al.[VLM20]
for each testing subset after removing instances that differ in hard constraints. . . . . . . . . . . . . . . 82

4.23 This table shows the average, median, standard deviation, minimum and maximum absolute difference
between the memetic algorithm tuning found in subsection 4.3.2 and the results from Vass et al.[VLM20] for
each testing subset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.24 This table shows the number of instances with hard constraint violations that are present for only one of the
two implementations. In addition the number of violations is shown as well. . . . . . . . . . . . . . . . . 84

4.25 This table shows the average, median, standard deviation, minimum and maximum absolute difference
between the memetic algorithm tuning found in subsection 4.3.1 and the results from Vass et al.[VLM20] for
each testing subset after removing instances that differ in hard constraints. . . . . . . . . . . . . . . . . 84

4.26 This table shows the average, median, standard deviation, minimum and maximum absolute difference
between the genetic algorithm tuning found in subsection 4.3.2 and the results from Vass et al.[VLM20] for
each testing subset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.27 This table shows the number of instances with hard constraint violations that are present for only one of the
two implementations. In addition the number of violations is shown as well. . . . . . . . . . . . . . . . . 86

4.28 This table shows the average, median, standard deviation, minimum and maximum absolute difference
between the genetic algorithm tuning found in subsection 4.3.1 and the results from Vass et al.[VLM20] for
each testing subset after removing instances that differ in hard constraints. . . . . . . . . . . . . . . . . 86

A.1 This table shows the mean, median, min, max and standard deviation of the runtimes in seconds for each
construction heuristic on a set of files. The instances chosen are not necessarily representative, they are,
however, chosen with a certain variation in number of periods and number of orders in mind. All the results
have been calculated from 50 runs of each combination. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

B.1 This table shows the expected allele coverage for the given periods of small size and a population of 20 and
the results the different construction heuristics produced. . . . . . . . . . . . . . . . . . . . . . . . . . 95

B.2 This table shows the expected allele coverage for the given periods of medium size and a population of 100
and the results the different construction heuristics produced. . . . . . . . . . . . . . . . . . . . . . . . . 95

B.3 This table shows the expected allele coverage for the given periods of large size and a population of 200 and
the results the different construction heuristics produced. . . . . . . . . . . . . . . . . . . . . . . . . . . 95

C.1 This table shows the results of the simulated annealing algorithm using the configuration found in this thesis
on the randomly generated part of the test set. The values are calculated from three trials per instance. 100

C.2 This table shows the results of the simulated annealing algorithm using the configuration found in this thesis
on the small randomly generated part of the test set. The values are calculated from three trials per instance. 100

C.3 This table shows the results of the simulated annealing algorithm using the configuration found in this
thesis on the randomly perfect generated part of the test set. The values are calculated from three trials per
instance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

C.4 This table shows the results of the simulated annealing algorithm using the configuration found in this thesis
on the realistic part of the test set. The values are calculated from three trials per instance. . . . . . . . 101

C.5 This table shows the results of the memetic algorithm using the configuration found in this thesis on the
randomly generated part of the test set. The values are calculated from three trials per instance. . . . . 102

112



C.6 This table shows the results of the memetic algorithm using the configuration found in this thesis on the
randomly perfect generated part of the test set. The values are calculated from three trials per instance. 103

C.7 This table shows the results of the memetic algorithm using the configuration found in this thesis on the
small randomly generated part of the test set. The values are calculated from three trials per instance. . 103

C.8 This table shows the results of the memetic algorithm using the configuration found in this thesis on the
realistic part of the test set. The values are calculated from three trials per instance. . . . . . . . . . . . 104

C.9 This table shows the results of the genetic algorithm using the configuration found in this thesis on the
randomly generated part of the test set. The values are calculated from three trials per instance. . . . . 105

C.10 This table shows the results of the genetic algorithm using the configuration found in this thesis on the
randomly perfect generated part of the test set. The values are calculated from three trials per instance. 106

C.11 This table shows the results of the genetic algorithm using the configuration found in this thesis on the small
randomly generated part of the test set. The values are calculated from three trials per instance. . . . . 106

C.12 This table shows the results of the genetic algorithm using the configuration found in this thesis on the
realistic part of the test set. The values are calculated from three trials per instance. . . . . . . . . . . . 107

113





Bibliography

[Ant89] Jim Antonisse. A new interpretation of schema notation that overtums the binary encoding constraint. In
J. David Schaffer, editor, Proceedings of the 3rd International Conference on Genetic Algorithms, George
Mason University, Fairfax, Virginia, USA, June 1989, pages 86–91. Morgan Kaufmann, 1989.

[Bak85] James E. Baker. Adaptive selection methods for genetic algorithms. In Proceedings of the 1st International
Conference on Genetic Algorithms, page 101–111, USA, 1985. L. Erlbaum Associates Inc.

[Bay86] Ilker Baybars. A survey of exact algorithms for the simple assembly line balancing problem. Management
Science, 32(8):909–932, 1986.

[BBM93a] D Beasley, DR Bull, and RR Martin. An overview of genetic algorithms: Pt 2, research topics. University
Computing, 15/4:170 – 181, 1993.

[BBM93b] David Beasley, David R. Bull, and Ralph Robert Martin. An overview of genetic algorithms: Pt1, fundamentals.
University Computing archive, 15:58–69, 1993.

[Ber19] Michal Bereta. Baldwin effect and lamarckian evolution in a memetic algorithm for euclidean steiner tree
problem. Memetic Comput., 11(1):35–52, 2019.

[BFS07] Nils Boysen, Malte Fliedner, and Armin Scholl. A classification of assembly line balancing problems. Eur. J.
Oper. Res., 183(2):674–693, 2007.

[BGK04] Edmund K. Burke, Steven M. Gustafson, and Graham Kendall. Diversity in genetic programming: an analysis
of measures and correlation with fitness. IEEE Trans. Evol. Comput., 8(1):47–62, 2004.

[CM01] Carlos Castro and Sebastian Manzano. Variable and value ordering when solving balanced academic curriculum
problems. CoRR, cs.PL/0110007, 2001.

[Con91] G. V. Conroy. Handbook of genetic algorithms by lawrence davis (ed.), chapman & hall, london, 1991, pp
385, £32.50. Knowl. Eng. Rev., 6(4):363–365, 1991.

[CYTH14] Cheng Chen, Zhenyu Yang, Yuejin Tan, and Renjie He. Diversity controlling genetic algorithm for order
acceptance and scheduling problem. Mathematical Problems in Engineering, 2014:367152, Feb 2014.

[Dav90] Yuval Davidor. Epistasis variance: Suitability of a representation to genetic algorithms. Complex Syst., 4(4),
1990.

[ECS89] Larry J. Eshelman, Rich Caruana, and J. David Schaffer. Biases in the crossover landscape. In J. David
Schaffer, editor, Proceedings of the 3rd International Conference on Genetic Algorithms, George Mason
University, Fairfax, Virginia, USA, June 1989, pages 10–19. Morgan Kaufmann, 1989.

[FL10] Yongsheng Fang and Jun Li. A review of tournament selection in genetic programming. In Zhihua Cai, Chengyu
Hu, Zhuo Kang, and Yong Liu, editors, Advances in Computation and Intelligence - 5th International
Symposium, ISICA 2010, Wuhan, China, October 22-24, 2010. Proceedings, volume 6382 of Lecture Notes
in Computer Science, pages 181–192. Springer, 2010.

[GD90] David E. Goldberg and Kalyanmoy Deb. A comparative analysis of selection schemes used in genetic
algorithms. In Gregory J. E. Rawlins, editor, Proceedings of the First Workshop on Foundations of Genetic
Algorithms. Bloomington Campus, Indiana, USA, July 15-18 1990, pages 69–93. Morgan Kaufmann, 1990.

[GH88] David E. Goldberg and John H. Holland. Genetic algorithms and machine learning. Mach. Learn., 3:95–99,
1988.

[Gol89] David E. Goldberg. Genetic Algorithms in Search Optimization and Machine Learning. Addison-Wesley,
1989.

115



[Gol91] David E. Goldberg. Real-coded genetic algorithms, virtual alphabets, and blocking. Complex Syst., 5(2),
1991.

[Gre86] John J. Grefenstette. Optimization of control parameters for genetic algorithms. IEEE Trans. Syst. Man
Cybern., 16(1):122–128, 1986.

[HB91] Christopher L. Huntley and Donald E. Brown. A parallel heuristic for quadratic assignment problems. Comput.
Oper. Res., 18(3):275–289, 1991.

[HH08] Kassel Hingee and Marcus Hutter. Equivalence of probabilistic tournament and polynomial ranking selection.
In Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2008, June 1-6, 2008, Hong
Kong, China, pages 564–571. IEEE, 2008.

[HLV98] Francisco Herrera, Manuel Lozano, and José L. Verdegay. Tackling real-coded genetic algorithms: Operators
and tools for behavioural analysis. Artif. Intell. Rev., 12(4):265–319, 1998.

[Hol75] John H. Holland. Adaptation in natural and artificial systems : an introductory analysis with applications
to biology, control, and artificial intelligence. Univ. of Michigan Pr., Ann Arbor, Mich, 1975.

[JD96] Márk Jelasity and József Dombi. Implicit formae in genetic algorithms. In Hans-Michael Voigt, Werner
Ebeling, Ingo Rechenberg, and Hans-Paul Schwefel, editors, Parallel Problem Solving from Nature - PPSN
IV, International Conference on Evolutionary Computation. The 4th International Conference on Parallel
Problem Solving from Nature, Berlin, Germany, September 22-26, 1996, Proceedings, volume 1141 of
Lecture Notes in Computer Science, pages 154–163. Springer, 1996.

[Jon85] Kenneth A. De Jong. Genetic algorithms: A 10 year perspective. In John J. Grefenstette, editor, Proceedings
of the 1st International Conference on Genetic Algorithms, Pittsburgh, PA, USA, July 1985, pages 169–177.
Lawrence Erlbaum Associates, 1985.

[JS90] Kenneth A. De Jong and William M. Spears. An analysis of the interacting roles of population size and
crossover in genetic algorithms. In Hans-Paul Schwefel and Reinhard Männer, editors, Parallel Problem
Solving from Nature, 1st Workshop, PPSN I, Dortmund, Germany, October 1-3, 1990, Proceedings, volume
496 of Lecture Notes in Computer Science, pages 38–47. Springer, 1990.

[KCK21] Sourabh Katoch, Sumit Singh Chauhan, and Vijay Kumar. A review on genetic algorithm: past, present, and
future. Multim. Tools Appl., 80(5):8091–8126, 2021.

[Koz93] John R. Koza. Genetic programming - on the programming of computers by means of natural selection.
Complex adaptive systems. MIT Press, 1993.

[LC18] Beatrice Luca and Mitica Craus. Local search algorithms for memetic algorithms: understanding behaviors
using biological intelligence. 07 2018.

[LCM+05] Tony Lambert, Carlos Castro, Éric Monfroy, María Cristina Riff, and Frédéric Saubion. Hybridization of
genetic algorithms and constraint propagation for the BACP. In Maurizio Gabbrielli and Gopal Gupta,
editors, Logic Programming, 21st International Conference, ICLP 2005, Sitges, Spain, October 2-5, 2005,
Proceedings, volume 3668 of Lecture Notes in Computer Science, pages 421–423. Springer, 2005.

[LCMS06] Tony Lambert, Carlos Castro, Éric Monfroy, and Frédéric Saubion. Solving the balanced academic curriculum
problem with an hybridization of genetic algorithm and constraint propagation. In Leszek Rutkowski, Ryszard
Tadeusiewicz, Lotfi A. Zadeh, and Jacek M. Zurada, editors, Artificial Intelligence and Soft Computing -
ICAISC 2006, 8th International Conference, Zakopane, Poland, June 25-29, 2006, Proceedings, volume
4029 of Lecture Notes in Computer Science, pages 410–419. Springer, 2006.

[LEF+22] Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng, Carolin Ben-
jamins, Tim Ruhkopf, René Sass, and Frank Hutter. SMAC3: A versatile bayesian optimization package for
hyperparameter optimization. J. Mach. Learn. Res., 23:54:1–54:9, 2022.

[LPR+13] José Miguel León, Wenceslao Palma, Nibaldo Rodriguez, Ricardo Soto, Broderick Crawford, Fernando
Paredes, and Guillermo Cabrera-Guerrero. Solving the balanced academic curriculum problem using the aco
metaheuristic. Mathematical Problems in Engineering, Volume 2013:1–8, 2013.

[LV19] Marie-Louise Lackner and Johannes Vass. Extended complexity results for the production leveling problem.
Technical Report CD-TR 2019/2, 2019.

[ML02] C. Mullinax and Mark Lawley. Assigning patients to nurses in neonatal intensive care. J. Oper. Res. Soc.,
53(1):25–35, 2002.

[Mos89] Pablo Moscato. On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic
algorithms. Technical Report C3P Report 826, California Institute of Technology, 1989.

116



[Müh89] Heinz Mühlenbein. Parallel genetic algorithms, population genetics, and combinatorial optimization. In Jörg D.
Becker, Ignaz Eisele, and Friedhelm Mündemann, editors, Parallelism, Learning, Evolution, Workshop on
Evolutionary Models and Strategies, Neubiberg, Germany, March 10-11, 1989, Workshop on Parallel
Processing: Logic, Organization, and Technology - WOPPLOT 89, Wildbad Kreuth, Germany, July 24-28,
1989, volume 565 of Lecture Notes in Computer Science, pages 398–406. Springer, 1989.

[Müh92] Heinz Mühlenbein. How genetic algorithms really work: Mutation and hillclimbing. In Reinhard Männer
and Bernard Manderick, editors, Parallel Problem Solving from Nature 2, PPSN-II, Brussels, Belgium,
September 28-30, 1992, pages 15–26. Elsevier, 1992.

[NC12] Ferrante Neri and Carlos Cotta. Memetic algorithms and memetic computing optimization: A literature
review. Swarm Evol. Comput., 2:1–14, 2012.

[NOK07] Quang Huy Nguyen, Yew-Soon Ong, and Natalio Krasnogor. A study on the design issues of memetic algorithm.
In Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2007, 25-28 September 2007,
Singapore, pages 2390–2397. IEEE, 2007.

[Poo09] Garg Poonam. A comparison between memetic algorithm and genetic algorithm for the cryptanalysis of
simplified data encryption standard algorithm. International Journal of Network Security & Its Applications,
1, 04 2009.

[Rad91] Nicholas J. Radcliffe. Equivalence class analysis of genetic algorithms. Complex Syst., 5(2), 1991.

[Rad92] Nicholas J. Radcliffe. Non-linear genetic representations. In Reinhard Männer and Bernard Manderick,
editors, Parallel Problem Solving from Nature 2, PPSN-II, Brussels, Belgium, September 28-30, 1992,
pages 261–270. Elsevier, 1992.

[SG90] Alan C. Schultz and John J. Grefenstette. Improving tactical plans with genetic algorithms. In Proceedings
of the 2nd International IEEE Conference on Tools for Artificial Intelligence, TAI 1990, Herndon, VA,
USA, November 6-9, 1990, pages 328–334. IEEE Computer Society, 1990.

[SHR09] Pierre Schaus, Pascal Van Hentenryck, and Jean-Charles Régin. Scalable load balancing in nurse to patient
assignment problems. In Willem Jan van Hoeve and John N. Hooker, editors, Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems, 6th International
Conference, CPAIOR 2009, Pittsburgh, PA, USA, May 27-31, 2009, Proceedings, volume 5547 of Lecture
Notes in Computer Science, pages 248–262. Springer, 2009.

[Spe92] William M. Spears. Crossover or mutation? In L. Darrell Whitley, editor, Proceedings of the Second
Workshop on Foundations of Genetic Algorithms. Vail, Colorado, USA, July 26-29 1992, pages 221–237.
Morgan Kaufmann, 1992.

[Spe00] William M Spears. Evolutionary algorithms : the role of mutation and recombination ; with 23 tables.
Natural computing series. Springer, Berlin [u.a.], 2000.

[Sud18] Dirk Sudholt. The benefits of population diversity in evolutionary algorithms: A survey of rigorous runtime
analyses. CoRR, abs/1801.10087, 2018.

[SV98] Jim Smith and Frank Vavak. Replacement strategies in steady state genetic algorithms: Static environments.
In Wolfgang Banzhaf and Colin R. Reeves, editors, Proceedings of the Fifth Workshop on Foundations
of Genetic Algorithms, Amsterdam, The Netherlands, September 24-28, 1998, pages 219–234. Morgan
Kaufmann, 1998.

[Sys89] Gilbert Syswerda. Uniform crossover in genetic algorithms. In J. David Schaffer, editor, Proceedings of the
3rd International Conference on Genetic Algorithms, George Mason University, Fairfax, Virginia, USA,
June 1989, pages 2–9. Morgan Kaufmann, 1989.

[Thi97] Dirk Thierens. Selection schemes, elitist recombination, and selection intensity. In Thomas Bäck, editor,
Proceedings of the 7th International Conference on Genetic Algorithms, East Lansing, MI, USA, July
19-23, 1997, pages 152–159. Morgan Kaufmann, 1997.

[TS93] David M. Tate and Alice E. Smith. Expected allele coverage and the role of mutation in genetic algorithms.
In Stephanie Forrest, editor, Proceedings of the 5th International Conference on Genetic Algorithms,
Urbana-Champaign, IL, USA, June 1993, pages 31–37. Morgan Kaufmann, 1993.

[VC99] Kanta Vekaria and Chris Clack. Biases introduced by adaptive recombination operators. In Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO’99), volume 1, pages 670–677. Morgan
Kaufmann, 1999.

[VLM20] Johannes Vass, Marie-Louise Lackner, and Nysret Musliu. Exact and metaheuristic approaches for the
production leveling problem. CoRR, abs/2006.08731, 2020.

117



[VLM+22] Johannes Vass, Marie-Louise Lackner, Christoph Mrkvicka, Nysret Musliu, and Felix Winter. Exact and
meta-heuristic approaches for the production leveling problem. J. Sched., 25(3):339–370, 2022.

[VMW20] Johannes Vass, N. Musliu, and Felix Winter. Solving the production leveling problem with order-splitting
and resource constraints. In 13th International Conference on the Practice and Theory of Automated
Timetabling - PATAT 2021, pages 261–284, 2020.

[Whi89] L. Darrell Whitley. The GENITOR algorithm and selection pressure: Why rank-based allocation of repro-
ductive trials is best. In J. David Schaffer, editor, Proceedings of the 3rd International Conference on
Genetic Algorithms, George Mason University, Fairfax, Virginia, USA, June 1989, pages 116–123. Morgan
Kaufmann, 1989.

[WM10] Magdalena Widl and Nysret Musliu. An improved memetic algorithm for break scheduling. In Maria J. Blesa,
Christian Blum, Günther R. Raidl, Andrea Roli, and Michael Sampels, editors, Hybrid Metaheuristics -
7th International Workshop, HM 2010, Vienna, Austria, October 1-2, 2010. Proceedings, volume 6373 of
Lecture Notes in Computer Science, pages 133–147. Springer, 2010.

[WMW21] Wolfgang Weintritt, Nysret Musliu, and Felix Winter. Solving the paintshop scheduling problem with memetic
algorithms. In Francisco Chicano and Krzysztof Krawiec, editors, GECCO ’21: Genetic and Evolutionary
Computation Conference, Lille, France, July 10-14, 2021, pages 1070–1078. ACM, 2021.

[Zhu03] Kenny Qili Zhu. A diversity-controlling adaptive genetic algorithm for the vehicle routing problem with time
windows. In 15th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2003), 3-5
November 2003, Sacramento, California, USA, pages 176–183. IEEE Computer Society, 2003.

118


	Kurzfassung
	Abstract
	Contents
	Introduction
	Aims of the thesis
	Contributions
	Structure of the thesis

	 Problem Statement and Related Work
	Problem Statement
	Related Work

	Genetic and Memetic Algorithms for the Production Leveling Problem
	Solution Representation 
	Fitness Function 
	Construction Heuristics
	Selection
	Crossover
	Mutation
	Local Search
	Replacement Strategy

	Experimental Evaluation
	Problem Instances 
	Implementation
	Hyperparameter Tuning
	Construction Heuristic Experiments
	Evaluating the best Configurations
	Comparison with Related Work

	Conclusion
	Runtime information on Construction Heuristics
	Expected and actual allele coverage for multiple examples of both small and large cardinalities
	Results on test instances
	Simulated Annealing
	Memetic Algorithm
	Genetic Algorithm

	List of Figures
	List of Tables
	Bibliography

