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Kurzfassung

Eine Sammlung von semantischen Musik-Features (d.h. Metriken, die bestimmte Merkma-
le von Musikstücken quantifizieren), die vom Musik-Streaming-Dienst Spotify angeboten
wird, zeigt wissenschaftliche Relevanz im Forschungsfeld Music Information Retrieval
aufgrund der Tatsache, dass sie in mehreren vorangegangenen Forschungsarbeiten einge-
setzt wurde. Die Algorithmen, die zur Berechnung dieser semantischen Musik-Features
verwendet werden sind nicht veröffentlicht und treten daher als „Black-Box“-Algorithmen
auf.

Diese Arbeit untersucht die Eigenschaften dieser Musik-Features und Ansätze zur Nach-
bildung der Algorithmen, die zu ihrer Berechnung verwendet werden, bzw. Alternativen
dazu anhand aktueller Methoden aus dem Bereich Music Information Retrieval. Kon-
kret wurden Algorithmen zur Vorhersage der Features “Danceability”, “Acousticness”,
“Instrumentalness”, “Speechiness”, “Liveness”, “Valence”, “Energy” and “Loudness” un-
tersucht. Das Ergebnis dieser Arbeit ist eine Charakterisierung der Eigenschaften der
Musik-Features, sowie eine Reihe von Machine-Learning-Modellen, die die Berechnungen
der Features reproduzieren, und eine Evaluierung, wie gut die Black-Box-Algorithmen
reproduziert werden können.
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Abstract

In the research field of Music Information Retrieval a set of semantic music features (i.e.
descriptors quantifying certain characteristics of pieces of music) that is offered by music
streaming service Spotify has gained scientific relevance because of the fact that it has
been used in various research works in the past. The algorithms that are originally used
for the purpose of calculating these semantic music features are not public and therefore
appear as “black-box” algorithms.

This work studies the characteristics of these music features and approaches to reproduce
or approximate the algorithms that are originally used for calculating them using state of
the art methods from the field of Music Information Retrieval. Specifically, the features
“Danceability”, “Acousticness”, “Instrumentalness”, “Speechiness”, “Liveness”, “Valence”,
“Energy” and “Loudness” are investigated. The outcome of this work is a characterization
of the properties of the music features, as well as a set of machine learning models that
are reproducing the algorithms for calculation of the features and an evaluation of how
well the black-box algorithms can be reproduced.
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CHAPTER 1
Introduction

Music is an important part of our culture and a loyal companion in many people’s
everyday lives all over the world. The multimodality of how music can be represented (e.g.
via audio signals, symbolic music representations or musical score) and of artifacts that
describe characteristics of pieces of music (e.g. song, album or artist information) offer
many possibilities for extracting and retrieving useful information from music. However,
this also issues the challenge of optimally utilizing these multiple modalities and possibly
combining them in order to do so.

The research field of Music Information Retrieval (MIR) is concerned with the extraction
of information from music. The field has been evolving since the 1990s, when computers as
a medium for music consumption and later music streaming services like Spotify1, Apple
Music2, Amazon Music3 or Deezer4 became popular. These technologies were facilitated
by the invention of modern audio compression, which reduces the size of digital music
files, allowing them to be broadcasted via the internet. Along with these technologies,
research interest in retrieval of information from music data arouse [44]. Research in
MIR finds application in tasks such as music recommendation, music annotation and
classification or music similarity estimation, all of which are employed by commercial
products by music streaming services and online selling platforms. These technologies
have become ubiquitious technologies in our everyday’s lifes, and considerably impacted
music consumption as well as the music market itself.

1https://www.spotify.com/
2https://music.apple.com/
3https://music.amazon.com/
4https://www.deezer.com/
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1.1. Problem Statement

1.1 Problem Statement
The music streaming service Spotify5 publishes a set of music features (i.e. descriptors
quantifying certain characteristics of music) for every song available on Spotify. These
music feature namely are “Danceability”, “Acousticness”, “Instrumentalness”, “Speechi-
ness”, “Liveness”, “Valence”, “Energy” and “Loudness”. Originally, these features were
offered for a database of about 30 million songs by EchoNest6, a service that offered this
data via a web API for commercial use. EchoNest was founded in 2005 as a spin-off
from the Massachusetts Insitute of Technology and acquired in 2014 by Spotify, which
has been offering this data under their name since then. This set of music features is
relatively easily available via the internet for a large collection of pieces of music and
appears to describe certain aspects of music well. For these reasons, these music features
have been used in other research works on MIR and music recommender systems in the
past, and have therefore gained scientific relevance [51, 33, 36, 18, 32, 3, 35].

However, Spotify’s music features lack a precise definition of what exactly they are
intended to represent, how they are computed and which sources of information are used
for their computation. As a consequence, the calculations that Spotify makes in order to
extract these features appear as a black-box algorithm that might also change over time.

1.2 Aim of the Work
This motivates the aim of this work, which is to analyze the music features published by
Spotify and to build machine learning models that are able to predict these music features
for the purpose of investigating the reproducibility of these features using state-of-the-art
music feature extraction methods, comparing how different feature extraction methods
perform and obtaining a set of machine learning models that that can be used to extract
these features in a stable version of the features (i.e. a version that does not change over
time as Spotify might change their algorithms for producing the features). To this end,
the following research questions are defined and elaborated in this work:

RQ1 Which prediction performances (measured by Mean Squared Error (MSE) with
Spotify’s feature values serving as ground truth) can be obtained with state-of-the-
art machine learning algorithms on the task of predicting Spotify’s music features
using a test data set that covers a broad range of music styles and genres?

RQ2 Does the choice of different model parameters of state-of-the-art machine learning
algorithms have an influence (measured by MSE with Spotify’s feature values
serving as ground truth) on the task of predicting Spotify’s music features?

RQ3 Can the performances obtained from elaborating research question RQ1 be improved
by using a Multi-Task Learning (MTL) approach?

5https://www.spotify.com/
6http://modelai.gettysburg.edu/2012/music/docs/EchoNestAnalyzeDocumentation.pdf
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1.3. Methodology

In the course of elaborating the research questions stated above an analysis of Spotify’s
music features will be given, and an investigation and comparison of different feature
extraction methods will be conducted.

1.3 Methodology
The methodological approach that is followed in this work in order to answer the research
questions stated above follows a series of steps. The structure of this work corresponds
to this series of steps.

First, state-of-the-art methods of content-based MIR are studied in order to work out
the approaches relevant for reproducing Spotify’s black-box algorithms. This is done
by conducting literature research. In order to be able to answer research question RQ3
the literature research also comprises a review of relevant approaches and prior research
works on the application of MTL in the context of MIR. Chapter 2 introduces the
research field of MIR and gives a brief overview of the relevant approaches. In Chapter
3 an introduction to Convolutional Neural Networks (CNNs) in the context of MIR is
provided.

In order to understand the characteristics of the music features that are subject of this
work, they are analyzed on an appropriate set of pieces of music. The set of data that
is considered for this, as well as for the following parts of the work, are based on the
Million Playlists Dataset [4], consisting of around 1.4 million observations. These data will
subsequently also be used for experiments conducted for the purpose of answering research
questions RQ1-RQ3. Considering the relatively large size of the data set, its creation
necessitates planning and implementation of software for retrieving, preprocessing and
storing these data. In Chapter 4 a characterization of the music features and of the data
set is given.

With the knowledge obtained by these prior steps, a set of experiments is designed and
conducted. To this end, a set of machine learning algorithms and hyperparameters is
selected, and machine learning models are trained on the data set mentioned above. With
an appropriate evaluation criterion, the quality of the models is evaluated and the results
are finally interpreted and discussed. Chapter 5 contains the experiment results and a
how these results can be interpreted.

3



CHAPTER 2
Music Information Retrieval

The research fields of Music Information Retrieval (MIR) is concerned with extracting
information from music. Often, MIR tasks aim at the extraction of certain features (i.e.
descriptors quantifying certain characteristics) from music. For example, such an MIR
task would be the extraction of features quantifying emotions that a human listener
would perceive when listening to a song (which is sometimes referred to as Music Emotion
Recognition) [19].

The data that are used as the basis for Information Retrieval from music are discriminated
between contextual data of music (which is referred to as context-based MIR) or the
music content itself (which is referred to as content-based MIR). These two types of data
are suited for the extraction of different types of music features and require different
methods to be applied to process the data. There has also been research on hybrid MIR
approaches that employ both content-based and context-based features. In the following,
a brief overview of context-based and content-based MIR is given.

2.1 Context-Based Music Information Retrieval
Context-based MIR is concerned with retrieval of information from contextual data
sources of music rather than from the audio of music. This approach to MIR is motivated
by the idea that audio signal representations (i.e. music content) might encode only some
of the aspects a human listener would associate with a piece of music. In this regard,
music content is just one aspect of how music can be characterized and just one source
to retrieve music information from. However, there might also be information about a
piece of music that is contained in other (contextual) data sources rather than in audio.
Depending on the application and the type of features that shall be extracted from music,
contextual data sources might be better suited than content-based methods.

4



2.2. Content-Based Music Information Retrieval

Contextual sources that might contain information important for MIR and that have been
studied in prior research works are, for example, song metadata like artist information,
song or album titles, release dates, genre information, tags or other annotations assigned
to a song. Especially in music recommendation context-based sources have shown to be
able to yield good performances as for example Schedl et al. (2021) [43] have shown.

Besides song metadata, textual sources can also be used in MIR. These are typically
extracted from the World Wide Web, which makes it possible to retrieve them in an
automated fashion, e.g. by web crawlers or from the semantic web. Textual sources
are, for example, artist biographies, song lyrics, news articles, blog posts or status
update messages in social media. To use these unstructured data, methods from classical
Information Retrieval are employed [26].

2.2 Content-Based Music Information Retrieval
Since the late 1990s, research efforts have been made in content-based MIR to retrieve
music information from a song’s audio signal itself.

In general, features extracted from music content can be categorized as low-level, mid-level
or high-level music features. The discrimination between these concepts is based on how
“close” a feature is to a characterization of music in a way it is also naturally perceived
by humans, and respectively how “close” a feature is to characteristics of the data (e.g.
the audio signal) it is extracted from [27]. Low-level music features are features that
describe a property of the data it is based on rather than a property that would also
be perceived by humans. In the case of music features extracted from audio signals of
pieces of music, for example, low-level features would measure some characteristics of
the audio signal itself, e.g. the zero-crossing rate, which measures the rate at which an
audio signal crosses the zero axis. On the other hand, high-level features (also termed
semantic features) represent semantic characteristics of music, i.e. information that is
also naturally perceived by a human listener. This information is generally contained in
an audio signal in more complex structure than low-level features and therefore requires
more sophisticated methods to model these features from the audio. The example of
Music Emotion Recognition mentioned above would be considered a high-level music
feature. Sometimes high-level music features are also calculated from low-level features.
Typical semantic audio features that are subject of common MIR tasks are categorical
features, e.g. classifying a piece of music into music genres or annotations of semantic
tags [48]. Mid-level music features range between low- and high-level features and have
properties of both low-level features and high-level features.

For example, Foote (1997) [14] presented the approach of calculating similarities between
audio signals of pieces of music by transforming an audio signal to obtain a suitable
representation and applying a statistical model. The techniques used in such early
research were inspired by the scientific field of Speech Recognition, which is concerned
with the extraction of text from audio signals containing spoken word. These early
approaches mainly addressed retrieval of low-level music features. Common low-level
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2.2. Content-Based Music Information Retrieval

music features that were also subject of early research works are characteristics like
tempo, loudness, tone color or timbre [17, 44]. More recent research is often concerned
with the extraction of high-level music features.

There are multiple approaches to processing audio signal in order to extract features
representing particular characteristics. State-of-the-art content-based MIR approaches
often transform an audio signal into a signal representation in the frequency domain
and extract desired features using a complex statistical model, often a Machine Learning
model. The experiments conducted in this work that aim at the reproduction of music
features also use a similar approach. In Sections 2.2.1-2.2.3 a brief description of this
approach is given.

2.2.1 Audio Signal Processing
The music representation that is usually started out from in state-of-the-art content-
based MIR is assumed as a time-discrete signal representation in form of a progression
of samples x[n] ∈ [−1, 1], with n = i · Ts and i = 0, 1, 2, . . . , sampled at an (equidistant)
sampling rate of 1

Ts
samples per second from a continuous analog audio signal with typical

sampling rates of e.g. 44 100 Hz [44].

Music is usually composed of multiple different sounds of different frequencies and
amplitudes, which may interfere with each other. A way of extracting information from
music is to derive information about the frequencies and amplitudes of sounds that are
present in a piece of music or a part of it.

2.2.2 Short-Time Fourier Transform
To this end, a transform referred to as Fourier Transform, which converts an audio signal
representation in time-domain into one in frequency-domain, is applied. The idea behind
this is that an audio signal can be considered as the sum of multiple sine waves and
that the signal can be represented by its frequency components, i.e. by a number of
frequencies and their absolute amplitude [37, Chapter 2]. Figure 2.1 shows a signal along
with its Fourier Transform.

The result of a Fourier Transform represents the amplitudes of the frequencies that are
present in the audio signal. Because the frequencies in the signal change over time,
applying Fourier Transform on the audio signal of e.g. an entire song would average the
frequency information over the entire song, and information of how frequencies change
over time would get lost. In order to solve this problem, the audio signal is first split
(also called framed) into small (possibly overlapping) chunks (called frames) of the signal
and the amplitude of each occurring frequency for every frame is calculated using Fourier
Transform. This is procedure is referred to as Short-Time Fourier-Transformation (STFT).
The result of an STFT is then a series of vectors where each element represents a certain
frequency and an element’s value is the amplitude of the respective frequency in the
respective time frame. Such a series of vectors is usually considered a matrix and called
a spectrogram. Figure 2.2 shows a short piece of an audio signal and its corresponding
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2.2. Content-Based Music Information Retrieval
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(a) Sine wave with frequency 30Hz and amplitude 0.6
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(b) Sine wave with frequency 110Hz and amplitude 0.35
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(c) Random noise
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(d) Sum of the signals shown in Figures 2.1a-2.1c
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(e) Extract of the Fourier Transform of the signal shown in Figure 2.1d. Because the signal
is composed of waves of 30Hz and 100Hz, the Fourier Transform shows maxima at 30Hz and
100Hz. Note that the amplitude around 30Hz is approximately double the amplitude around
110Hz, which corresponds to the amplitudes of the sine waves the signal is composed of. The
random noise that is part of the signal is represented by random frequencies having an increased
amplitude.

Figure 2.1: Example of a signal composed of multiple sine waves and its Fourier Transform.
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2.2. Content-Based Music Information Retrieval
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(b) Log-Scaled Spectrogram

Figure 2.2: Audio signal and its corresponding Log-Scaled Spectrogram of a sample of 3
seconds from the song “Yellow Ledbetter” by Pearl Jam (1991).

frequency components over time that are calculated by an STFT. For its calculation, a
frame size of 256 samples and a hop size of 128 were used and the resulting amplitudes
were scaled with 20 · log10.

An element X(m, k) representing the amplitude of frequency k present in the mth time
frame of a spectrogram X can be defined as

X(m, k) =
N−1

n=0
x(n + mH) · w(n) · e− 2πikn

N

where N denotes the number of samples of the time frame, x denotes the audio signal
(and thus x(n+mH) denotes the nth value of the signal in the time frame) and w denotes
a window function [37, Chapter 2].

A spectrogram resulting from an audio signal is dependent on multiple parameters that
affect the STFT. These are parameters that characterize the framing of the audio signal
and the type of window function that is used.

The framing of the audio signal is characterized by the frame size N ∈ N (i.e. the number
of samples that make up a frame), the number of samples H ∈ N a frame is shifted
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2.2. Content-Based Music Information Retrieval

with respect to its previous frame (referred to as hop size) and the way samples at the
beginning and end of the audio signal are treated (referred to as padding). Frame sizes
used in audio signal framing typically range from 256 to 8192 samples (which results in
frames of approx. 6 ms to 186 ms seconds assuming a sampling rate of 44100 Hz) [27,
Chapter 2]. Hop sizes are oftentimes chosen as H = N

2 . For padding, often “zero-padding”
is used, which means that incomplete frames at the beginning and end of the signal are
filled with zeros [37, Chapter 2].

The window function w : [0 : N − 1] → R often is a bell-shaped function, like a Hann
function or Gaussian function, which has the effect of increasing the effect samples
towards the center of a frame have on a spectrogram’s vector [37, Chapter 2].

Oftentimes, before extracting features from a spectrogram representation of music, the
vectors obtained from STFT are further transformed into mel scale, a representation
of the frequencies at a logarithmic scale. Spectrograms transformed into mel space are
referred to as mel spectrograms. This is done because of the fact that humans perceive
pitch as the logarithm of the actual frequency. By transforming a spectrogram into mel
scale the pitch of a sound is represented the way it is perceived by a human listener.
This ultimately aims at representing music in a way that is close to the perception of
humans in order to extract high-level music features. The transformation of a frequency
spectrogram into a mel spectrogram is done by multiplication of each frame’s Fourier
Transform with a filter bank consisting of a triangular filter for each resulting mel bin.
The transformation of a value f in frequency scale to a value m in mel scale is defined
as m = 2595 · log10(1 + f

700). Figure 2.3 shows a mel filter bank with 20 filters mapping
frequencies from 0 to 22050Hz onto mel scale.

2.2.3 State of the Art in Content-Based Music Information Retrieval
From spectrogram representations of music, a number of low-level music features can be
calculated, such as the Band Energy Ratio, which is used in speech/music classification
tasks [29], the Spectral Centroid, which can be interpreted as the brightness of a sound
or Bandwidth, which is a measure of the variance of the frequencies of an audio signal
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Figure 2.3: Mel filter bank
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2.2. Content-Based Music Information Retrieval

[27, Chapter 2].

Apart from low-level features that can be directly computed from frequency domain
representations of music, the extraction of higher-level music features often requires
more sophisticated techniques [24]. One such technique, which has been elaborated in
a lot of research works, is to retrieve information from spectrograms of audio signals
using machine learning techniques. There is literature showing that good results can be
achieved using spectrograms as inputs to machine learning algorithms, such as Support
Vector Machines or ensemble learning [9, 38, 34]. For example, Costa et al. (2011) [9] have
analyzed the performance of Support Vector Machines to perform genre classifications
from sprectrograms of pieces of music, or Nanni et al. (2016) [38] have extracted music
genres from sprectrograms using an ensemble method. These approaches either extract
low-level music features from the spectral music representation or so-called Local Binary
Patterns, which represent local texture information of a visual image [11].

Another approach that has shown promising results is to use spectrograms as input
to Convolutional Neural Networks (CNNs) [6, 39, 45]. CNNs are suited for processing
2-dimensional structures like spectrograms and exploiting 2-dimensional visual patterns
from them. The motivation behind this approach is that the desired information in
spectrograms is structured in such 2-dimensional patterns. With this approach, state-of-
the-art results in extracting semantic music features could be achieved.

One general idea behind employing machine learning algorithms for MIR from audio
spectrograms is that learning music features in this way limits the amount of preprocessing
of audio signals that is required with other approaches where music features are hand-
crafted [10]. Sometimes however a downside of using machine learning algorithms for
MIR might be that usually larger amounts of training data are needed in order to learn
music features.

10



CHAPTER 3
Music Feature Learning using

Convolutional Neural Networks

Extracting high-level music features from audio representations of music can be quite a
challenging task because of the fact that the desired information is often structured in a
complex way. This necessitates appropriate methods for the extraction of such features.
One such method that has become particularly popular in recent times is the use of
machine learning algorithms to obtain models of such features from audio. Because of
the complexity of the information structured in audio, appropriate machine learning
algorithms have to have according expressive power.

In consideration of that, Convolutional Neural Networks (CNNs) have proven to be
suitable for this task in ongoing research [6, 50]. The experiments conducted in this work
that aim at the reproduction of music feature extraction algorithms also employ CNNs
for the extraction of semantic music features. This Chapter gives a description of the
theory of CNNs.

3.1 Neural Networks
A supervised machine learning model embodies a mathematical function f̂ that depends
on model parameters. Supervised machine learning describes the task of adapting these
model parameters such that f̂ approximates a target function f : X → Y .

In general, supervised machine learning is done by an algorithm that takes labeled data
(i.e. pairs of (x, y) with x ∈ X and a label y ∈ Y ), and adapts f̂ in order to obtain a
better approximation of f . The process of repeatedly adapting f̂ based on training data
is called training. The aim of training is to obtain a best-possible approximation f̂ of f
and to be able to use the resulting model to predict unlabeled data (i.e. to predict y
from x).

11



3.1. Neural Networks
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Figure 3.1: Schematic of an artificial neuron.

The approximation f̂ can then be used in future to predict unlabeled data (i.e. data
points (x, y) where x can be observed, but y is unknown).

The set of pairs (x, y) that are used for training the model are called the training dataset,
x is called an input data point, often of high dimensionality, and y is called ground truth
or target and often a discrete or real value.

Training is usually done by computing the predicted label ŷ = f̂(x) for such a pair
of (x, y) and modifying the model parameters in such a way that the error ε = y − ŷ
(where operator − denotes an appropriate difference operator for measuring the difference
between y and ŷ) is minimized.

Supervised machine learning is employed in many applications for solving problems in
science and is employed in many consumer products in today’s world. It plays to its
strength in problems where the problem’s solution is embodied in a function that cannot
be specified explicitly (e.g. because an explicit function definition is not known or finding
such a specification is too expensive), but function values are known (or can be observed)
for a limited set of instances. Oftentimes, the object of machine learning is just to
obtain a better representation of a particular problem instance, which can then be used,
for example, in other artificial intelligence tasks. This is referred to as Representation
Learning.

Neural networks - a type of machine learning models - describe a structure composed of
artificial neurons, each of which applies a function to its input data. The result of such
a function is either passed to another artificial neuron or is the entire neural network’s
output. The function parameters of each artificial neuron is adapted during training. In
classical neural networks, the output of a neuron with n inputs is given by

y = φ


n

i=1
wixi + b

where w1, . . . , wn ∈ R are the neuron’s weights, b ∈ R is a bias, x1, . . . , xn are the inputs
and φ is a function, called the activation function, which can either enhance or simplify
the neuron’s output.
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Figure 3.2: Activation functions commonly used in artificial neurons.

The activation function φ is typically a differentiable, non-linear function that is usually
the same for all neurons in hidden layers. The choice of φ determines different properties
of the neural network and can help to avoid common problems that can occur during
training. Commonly used activation functions, depicted in Figure 3.2, are the sigmoid
function φ(x) = 1

1+e−x , the hyperbolic tangent function φ(x) = tanh(x) or a rectified
linear unit (ReLU) function like φ(x) = max(0, x).

The weights w1, . . . , wn and bias b of a neuron are the parameters that are adapted
during training. Hence, one neuron on its own can already be interpreted as a machine
learning model since it applies a trainable function to calculate the output for an input.

However, because the function embodied by a single neuron is just a relatively simple
activation function applied to a linear combination of the input, one neuron alone lacks
the power to express complex relationship between input and output data. By joining a
number of neurons to form a neural network, relationships of arbitrary complexity can
be expressed. There are a variety of topologies used for the arrangement of neurons in
a neural network, with different advantages for different machine learning tasks. Many
neural network topologies group the neurons in so-called layers. In feedforward neural
networks, neurons are grouped in ordered layers, which group neurons such that the
neurons of one layer are not connected with each other (i.e. there is no neuron that takes
the output of another neuron of the same or a previous layer as its input) and all neurons
of one layer are connected with all neurons of the consecutive layer. Recurrent neural
networks additionally consist of special recurrent layers whose neurons are connected to
each other (i.e. the output of a neuron is possibly connected to its input or the input of
another neuron in the same layer).

If a neural network consists of multiple layers, it is called a deep neural network, with
the first layer (i.e. the layer whose neurons take the model’s input as their input) being
referred to as the input layer, the last layer being referred to as the output layer and the
other layers being called hidden layers. Figure 3.3 depicts a schematic representation of
a deep neural network with two hidden layers.
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Figure 3.3: Illustration of a Deep Neural network with two hidden layers.

3.2 Optimization Algorithms
In order to calculate a neural network’s output for a given input, the input data flows
through the network’s layers - one after the other - until the final output data exits the
network. Information flowing in this way is referred to as forward propagation because
information flows "forward" from the input layer of the network to its output layer.

As with some other supervised machine learning algorithms (and already described
above), when training neural networks, training data points x are repeatedly fed into the
network to calculate its output ŷ. Loss (also called cost or error) C(y, ŷ) is calculated
using a defined loss function C, which measures the similarity of y and ŷ. The network’s
parameters Θ are then manipulated based on the loss C(y, ŷ) so that C(y, ŷ) would be
decreased if the same x were fed into the network again. This way, with every training
data point fed into the network and followed by an update of Θ, the model is repeatedly
optimized towards minimizing C. This whole procedure is based on the idea that a small
value of C would be equal to a predicted output ŷ being similar to y, and in case C(y, ŷ)
is small for any y ∈ Y , function f̂ (which is represented by the model) would approximate
target function f .

An algorithm that implements a method for minimizing the loss is called an optimization
algorithm (or optimizer). Research on neural networks has established a variety of different
optimization algorithms with different characteristics that also affect the training results
in different ways. Hence, the optimization algorithm can be considered a hyperparameter
when using neural networks for solving machine learning tasks.
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3.2. Optimization Algorithms

The way optimizing a network’s weights in order to minimize C works is that the gradient
of C are calculated with respect to the network’s weights for a pair (x, y), and the weights
are manipulated in a way that C follows the gradient towards a local minimum of C.
The calculation of the gradient of C can be efficiently done using the Backpropagation
Algorithm, which feeds the output ŷ calculated for a training data point x into the
network backwards (i.e. from the output layer to the input layer). In the following, the
principle of the Backpropagation Algorithm is explained.

Consider a deep neural network and training data consisting of n pairs (xi, yi) of input
data points xi and target values yi with i = 1, . . . , n. Let (l) be a layer of a neural
network, with K(l)(i) being the weights of (l) at the time where the network has been
trained with the ith training data point (i.e. before training the network, the weights of
(l) are denoted by K(l)(0), after learning the first training data point x1 the weights are
updated to K(l)(1), etc.) and B(l)(i) being the bias of (l) respectively.

When training the network, the goal is to update the elements of K(l)(i−1) and B(l)(i−1)

so that the loss for the ith training data point is minimized. The updated weights K(l)(i)

can be given by
K(l)(i)

q,r = K(l)(i−1)
q,r − ϵ · ∂C(y, ŷ)

∂K
(l)(i−1)
q,r

for an element K
(l)(i)
q,r of K(l)(i), and the updated bias B(l)(i) can be given by

B(l)(i)
q = B(l)(i−1)

q − ϵ · ∂C(y, ŷ)
∂B

(l)(i−1)
q

for an element B
(l)(i)
q of B(l)(i). ϵ denotes the learning rate (see Section 3.3).

As shown above, calculating K(l)(i) and B(l)(i) involve calulating the gradients ∂C(y,ŷ)
∂K

(l)(i−1)
q,r

and ∂C(y,ŷ)
∂B

(l)(i−1)
q

of C(y, ŷ), which can be expressed by the Chain Rule as

∂C(y, ŷ)
∂K

(l)(i−1)
q,r

= ∂C(y, ŷ)
∂z(l)

∂z(l)

∂K
(l)(i−1)
q,r

with z(l) = r=1
m K

(l)(i−1)
q,r Y

(l−1)
r + B

(l)
q . For a neural network with L layers (1), . . . , (L)

the Chain Rule can be applied iteratively to express the network’s output y for an input
x as an expression of x and the gradients [16, Chapter 6].

3.2.1 Stochastic Gradient Descent
For many machine learning tasks in practice, calculating the gradient of the loss function
with respect to the entire training data set involves high computational efforts that are
infeasible in many cases. In order to reduce computational effort, the gradient can be
calculated with respect to only one training data point at a time and the weights can be
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updated after every training data point. This approach is known as Stochastic Gradient
Descent (SGD), which was first described by Robbins (1951) [41].

The problem with updating the network’s weights after training a single data point is
that every training data point directly influences the network’s weights, which adds noise
to the loss function. In contrast, Gradient Descent (i.e. calculating the gradient with
respect to the entire training data set) usually results in a smoother descent of the loss
function.

In order to reduce the noise stemming from SGD and also avoid infeasible computational
efforts for Gradient Descent, a preferred approach is to calculate the gradients with
respect to small batches of training data and update the weights after each such batch.
This is referred to as Mini-batch SGD (or often just SGD) [42].

Besides the fact that additional noise is added to the gradients when using SGD as
compared to the “true” gradients (i.e. when the entire data set is used for computing
the gradients), this noise can also be used to one’s advantage. In cases where the model
parameters are optimized towards a local minimum of the loss function that is not its
global minimum, this noise can cause the parameters to be updated “away” from this
local minimum and possibly towards the global minimum. The amount of noise that
is added to the gradients is controlled by the learning rate (because the learning rates
restricts how much the weights and biases are changed at each update), as well as the
batch size (because with increasing batch size the impact and also the noise of a single
training data point decreases) [52].

3.2.2 Adam
Adaptive Moment Estimation (Adam), introduced by Kingma and Ba (2014), is an
optimization algorithm that is intended to perform a more efficient parameter optimization
than SGD [25]. Indeed, empirical experiments have shown that Adam is generally
computationally more efficient than SGD and models with Adam tend to learn a target
function faster (i.e. with fewer training examples). However, there is research showing
that SGD yields better overall prediction performance than Adam because of the fact
that it is less prone to overfitting [42, 55].

3.3 Learning Rate
The learning rate is a hyperparameter of neural networks that represents the maximum
amount that the weights and biases of the neural network are changed at a time in
training in order to minimize the value of the loss function. The learning rate restricts the
maximum change in the model parameters in order that the loss function is minimized
gradually with additional training samples until it reaches a minimum. This is called
convergence. On the one hand, the learning rate has to be large enough in order that
the parameters are not adapted towards a local (and not a global) minimum of the
loss function and in order that the goal of the training (which is to minimize the loss
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function) is reached within a reasonable amount of training samples. On the other hand,
the learning rate has to be small enough so that the model parameters do not "step over"
a minimum value of the loss function [40].

Oftentimes, when training neural networks, an approach of decreasing the learning during
training is chosen. This way, the learning, and accordingly the changes of the model
parameters, are big at the beginning of the training (resulting in a faster decrease of the
loss function) and small at the end of the training (resulting in small and precise changes
of the model parameters towards the convergence of the model) [40].

3.4 Convolutional Neural Networks
A Convolutional Neural Network (CNN) (sometimes abbreviated ConvNet) is a type of
deep neural networks that is specialized in processing input data structured as multi-
dimensional tensors, in particular visual images. In contrast to ordinary deep neural
networks described above, CNN additionally consist of special layers making them
especially capabable of processing and extracting information that is structured in a
similar way visual information is typically structured in images or characteristics of music
are structured in a spectrogram representation of a song [16].

Recently, the application of CNNs has become more and more popular in the scientific
field of Music Information Retrieval (MIR), especially in content-based MIR, due to
the promising results that could be achieved with CNN approaches on extraction of
information from music content, which made them the state of the art for many MIR
tasks. For example, Korzeniowski and Widmer (2017) proposed CNN-based estimation
of musical key from spectrogram representations of songs with state-of-the-art prediction
performance [28], Schreiber and Müller (2018) presented a CNN approach for estimation
of the tempo of pieces of music also with state-of-the-art performance [46], Holzapfel
and Grill (2016) [23] and Durand et al. (2016) [12] both studied CNN-based systems
for extraction of different rhythm-related music features, and Schindler et al. (2016)
compared different CNN architectures for music tagging [45].

3.4.1 Layers of Convolutional Neural Networks
The architecture of CNNs is composed of a concatenation of layers, with each layer (l)
performing an operation on the data by taking a tensor Y (l−1) ∈ Rw(l−1)×h(l−1)×c(l−1) as
an input and producing a tensor Y (l) ∈ Rw(l)×h(l)×c(l) as an output, which is either the
input of the subsequent layer (l + 1) or the CNN’s final output. Matrix Y

(l)
k ∈ Rw(l)×h(l)

with Y
(l)

k i,j = Y
(l)

i,j,k, i ∈ {1, . . . , w(l)}, j ∈ {1, . . . , h(l)}, k ∈ {1, . . . , c(l)} is called the kth

feature map of Y (l).
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3.4. Convolutional Neural Networks

Convolutional Layers

A Convolutional Layer consists of a filter kernel, which is a tensor containing the
parameters that are tuned during training. It produces the output by performing a
convolution on its input using the filter kernel. Because the filter kernel is usually much
smaller in the first and second dimension (which are an image’s width and height in case
the CNN is processing images, or the time and frequency dimension of a spectrogram
representation of music) a Convolutional Layer applies the filter kernel on each small
area of the input tensor and thus is able to exploit local characteristics of the input [16].

Let l be a Convolutional Layer,
Y (l−1) ∈ Rw(l−1)×h(l−1)×c(l−1) be the input of (l),
K(l) ∈ Rf (l)×f (l)×c(l) be the filter kernel of (l),
B(l) ∈ Rc(l) called the layer’s bias,
and Y (l) ∈ Rw(l)×h(l)×c(l) be the layer’s output of (l)

with w(l) =





w(l−1)+2p(l)−f (l)

s(l) + 1 ; s(l) > 0

w(l−1) + 2p(l) − f (l); s(l) = 0
and h(l) =





h(l−1)+2p(l)−f (l)

s(l) + 1 ; s(l) > 0

h(l−1) + 2p(l) − f (l); s(l) = 0
.

The ith feature map of the Convolutional Layer’s output Y (l) is given by

Y
(l)

i = B
(l)
i +

c(l−1)

j=1
K

(l)
i,j ∗ Y

(l−1)
j

The operator ∗ denotes a two-dimensional convolution operator, which is defined as

(K ∗ Y )i,j =
wK

m=1

hK

n=1
KwK ,hk

∗ Yi−m,j−n

for Y ∈ RwY ×hY and K ∈ RwK×hK . However, in most CNN implementations ∗ is
implemented as the cross-correlation operator

(K ∗ Y )i,j =
wK

m=1

hK

n=1
KwK ,hK

∗ Yi+m,j+n

which is similar to the convolution operator, but computationally less expensive. By
adapting the layer’s kernel weights appropriately (which is done when training the
CNN), a Convolutional Layer that performs cross-correlation will give results equal to a
Convolutional Layer that actually performs the convolution operation. [16, 7]

Pooling Layers

A Pooling Layer performs a specified aggregation operation on the input tensor that
reduces the size of the tensor. A very common aggregation function used in many CNN
architectures’ Pooling Layers is the maximum function. Pooling Layers depend on the
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two hyperparameters filter size and stride. The filter size determines the number of
tensor elements on which the aggregation function is applied, and the stride determines
the number of tensors the filter is shifted to the next part of the input tensor. Pooling
Layers do not consist of any parameters that are tuned during training.

The output Y (l) ∈ Rw(l)×h(l)×c(l) of a max Pooling Layer (l) with a filter of size f (l) × f (l)

and stride s applied on input Y (l−1) ∈ Rw(l−1)×h(l−1)×c(l−1) is given by

Y
(l)

i,j,k = max(Y (l−1)
i∗s+0,j∗s+0,k, . . . , Y

(l−1)
i∗s+f (l),j∗s+0,k

, . . . , Y
(l−1)

i∗s+0,j∗s+f (l),k
, . . . , Y

(l−1)
i∗s+f (l),j∗s+f (l),k

)

for i = 1, . . . , w(l), j = 1, . . . , h(l) and k = 1, . . . , c(l), with w(l) ≈ w(l−1)

s , h(l) ≈ h(l−1)

s and
c(l) = c(l−1).

Pooling Layers are used for reducing the size of a tensor, but also have the effect of
making features invariant to certain translations. For example, features of similar but
slightly different shapes or positions that are present in the input feature maps would
tend to result in the same output of a Pooling Layer. These invariances are often a
desired property when extracting features whose exact shapes or positions are not of
relevance, but their overall presence are [16].

Fully Connected Layers

A Fully Connected Layer (also called dense Layer or linear Layer) connects every element
of the input tensor to every element of the output tensor so that every output tensor
element is a linear transformation of the input tensor. Thus, a Fully Connected Layer
acts like a layer in an ordinary multilayer neural network.

The output Y (l) ∈ Rc(l) of a Fully Connected Layer (l) is given by

Y
(l)

i =
c(l−1)

j=1
K

(l)
i,j ∗ Y

(l−1)
j + B

(l)
i

for an input Y (l−1) ∈ Rc(l−1) , weight K(l) ∈ Rc(l),c(l−1) and bias B(l) ∈ Rc(l) [16].

Recurrent Layers

Recurrent Layers describe a type of layers whose neurons are connected in a way that
forms a directed cycle, i.e. (parts of) the output of a Recurrent Layer is used as its own
input [49]. As a consequence, not only the output of the preceding layer is used as a
Recurrent Layer’s input, but also (part of) the output the Recurrent Layer produced
from the previous data point. This means that a neural network consisting of Recurrent
Layers is able to process sequences of input data and dependencies within such sequences.
Usually, the sequences of data fed into such a recurrent neural network are time series
data and the Recurrent Layers are utilized to exploit temporal information from them.

In the context of CNNs, networks that consist of Recurrent Layers (together with Convo-
lutional, Pooling and Fully Connected Layers) are referred to as Convolutional Recurrent
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Neural Networks (CRNNs). Many CRNN architectures that have been successfully em-
ployed in various applications in recent years consist of a concatenation of Convolutional
and Pooling Layers followed by one or several Fully Connected and Recurrent Layers.
When processing two- or three-dimensional images (like visual images or sprectrogram
representations of audio signals), Convolutional and Pooling Layers are used for ex-
ploiting local dependencies of each element of a sequence of input data and Recurrent
Layers following these Convolutional and Pooling Layers are used for exploiting temporal
information that is structured across the elements of the sequence.

Literature describes a number of different types of Recurrent Layers used as part of CNNs,
commonly used are Long Short-Term Memorys (LSTMs), introduced by Hochreiter and
Schmidhuber (1997) [21], or the Gated Recurrent Unit (GRU), as introduced by Cho et
al. (2014) [5]. Both LSTM and GRU contain a mechanism that allows them to store a
feature of the input sequence across multiple elements of the input sequence.

In MIR research, in the recent past, CRNNs were able to achieve state-of-the-art results
in tasks like music tagging, as shown by Choi et al. (2017) [8], from spectrogram
representations. Here, CRNN models are used because of their ability to extract local
information in a more flexible way than conventional CNN models. An explanation for
this is that some parts of the information to be extracted might be influenced by the
global structure of an input spectrogram and other parts might be influenced by short
time segments of such a spectrogram [8].

3.4.2 Training Convolutional Neural Networks
Training CNNs is done using the same principle as in other feedforward neural networks,
which is to iteratively minimize the loss function using gradient descent. For Convolutional
Layers and Pooling Layers special adaptions to the optimization algorithm that is used
have to be made.

Multi-Task Learning

Besides the approach described above, which is to train a neural network to predict
one target variable to solve a machine learning task at hand (which is referred to as
Single-Task Learning (STL)), another strategy is to train a single neural network to
predict multiple target variables at once from the same input variables, i.e. to solve
multiple machine learning tasks at once. This strategy is referred to as Multi-Task
Learning (MTL) and has shown to be able to yield promising results in the context of
deep neural networks in some cases as compared to using multiple networks where each
one solves an individual task [53].

The benefit of prediction performance when using MTL is based on multiple mechanisms.
One of the benefits of MTL is that when learning multiple target variables, the values of
all of those variables will contain some sort of noise, which may be part of the parameters
of hidden layers that learn internal feature representations. With MTL, however, a shared
internal feature representation for mutliple target functions can help to average out these
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Figure 3.4: Schematic of a common MTL CNN architecture learning n tasks.

noises and thus reduce them. Furthermore, in cases where a network has difficulties
learning a certain variable, learning other variables at the same time that are easier to
learn, can improve the learning results for the variable, which is harder to learn. The
reason for this is that, by learning other target variables, internal feature represenations
can be created that are beneficial for learning the variable that was initially more difficult
to learn [2].

There is a variety of different approaches described in literature of how the idea of MTL
can be employed in deep neural networks, and especially in CNNs. Often, a neural
network architecture is used that takes as its input a common set of input features for
learning a set of tasks and calculates an output variable (or a set of output variables)
for each of the tasks. In order to be able to optimize the weights of such a network, a
loss function that combines the loss functions of all the tasks has to be found. A trivial
loss function would be the sum of the losses of the individual tasks. There are also other
strategies that attempt to regularize the losses during training [31, 15].

Besides different ways to handle the problem of loss weighting, there are also different
approaches of how the architecture of MTL CNNs can be structured. One MTL approach
suggests to use a neural network architecture where all or the majority of hidden layers is
shared across different tasks. In the context of CNNs, architectures as depicted in Figure
3.4, which share a sequence of Convolutional and Pooling Layers across multiple tasks
followed by a series of Fully Connected Layers for each individual task, have shown good
prediction performances [54].

Also in the music domain, such MTL CNN models have shown promising results in
various MIR tasks. For example, Böck et al. (2019) [1] have obtained state-of-the-art
accuracy in tempo and beat estimation from spectrogram representations of songs using

21



3.4. Convolutional Neural Networks

MTL models. Singh and Biswas (2021) [47] were able to outperform a conventional CNN
model with MTL CNNs in the tasks of artist and language recognition from spectrograms.

3.4.3 Convolutional Neural Network Architectures
The architecture of a CNN describes the way layers are connected in order to form the
CNN. There is quite a lot of research works that has studied how different architectures
affect the performance of CNNs for different machine learning tasks and data sets. Many
CNN architectures that have been showing good prediction performance consist of a series
of Convolutional Layers and Pooling Layers, followed by one or more Fully Connected
Layers. Generally, CNNs with more layers tend to have higher expressive power. However,
more complex architectures can also be more prone to generalization error. Furthermore,
working with CNNs with a higher number of layers is computationally more expensive,
which is the reason why early research works employed smaller CNN architectures than
more recent research.

In the following, a brief overview of the architectures used for the attempt of reproduction
of Spotify’s black-box algorithms for calculating the music feature that are subject of
this work is given.

LeNet-5

LeNet-5 is an early CNN architecture proposed by LeCun et al. (1989) [30]. A schematic
of the architecture is given in Figure 3.5. LeNet-5 was originally employed and became
famous for the task of handwritten digit recognition from monochrome images of 32 × 32
pixels. Compared to ResNet-34, described in Section 3.4.3, and many popular modern
architectures that have yielded promising results in various applications, LeNet-5 is a
relatively small network in that it has a small number of layers and thus has limited
abilities with regard to exploiting complex structures from its inputs.

LeNet-5 is one of the neural network architectures that are considered for reproducing
Spotify’s music features as part of the experiments conducted in this work. The reason for
this is that because of the characteristics of LeNet-5, it is presumably a good example for
investigating how well a small architecture is suited for extracting semantic information
from spectrogram music representations.

Residual Networks

Residual Network (ResNet) is a group of architectures that was first elaborated by He et al.
(2016) [20], and is popular in various image recognition tasks because of its good prediction
performance and its relatively low number of layers compared to other architectures.
ResNets consist of a sequence of layers, just as e.g. LeNet-5, and additionally contain
connections that pass the output of certain layers across subsequent layers so that these
these layers are skipped. The output tensor of the sequence of skipped layers is then
added to the input tensor of the sequence and forwarded to an activation function. Such a
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Figure 3.5: Schematic of LeNet-5 architecture

sequence of layers is called a residual block and is depicted in Figure 3.6. The motivation
for using residual blocks is to avoid the so-called vanishing gradient problem, which is
the case when gradients become so small during backpropagation that the network’s
weights are effectively not updated or updated very slowly. Because residual blocks pass
the gradient past themselves to the previous layer, it is less likely to vanish and, hence,
residual networks may have better prediction performance [13].

Figure 3.7 shows the structure of ResNet-34, a residual network architecture, which is
employed in the experiments of reproducing Spotify’s black-box algorithms as part of
this work. ResNet-34 contains 16 residual blocks of the same structure as the residual
block shown in Figure 3.6.

Convolutional Recurrent Neural Networks

There is a variety of CRNN architectures described in literature in the field of MIR.
However, for the experiments conducted as part of this work only one CRNN architecture
is considered, whose structure is depicted in Figure 3.8. This architecture was already
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Figure 3.6: Schematic of a typical residual block.

used in other research works in the field of MIR. For example Choi et al. (2017) [8]
employed this architecture for the task of music tagging and Nasrullah and Zhao [39] for
the task of artist classification. In both works the CRNN showed promising results for
the respective tasks.

Multi-Task Learning

The MTL architecture that is used in the attempt of reproducing Spotify’s black-box
algorithms is shown in Figure 3.9. A similar architecture was already used in a prior
research work by Singh and Biswas (2021) [47] where a MTL model was trained to
simultaneously perform music artist prediction and language recognition from spectrogram
representations of songs.

24



3.4. Convolutional Neural Networks
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Figure 3.7: Schematic of ResNet-34 architecture.
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Figure 3.8: Schematic of a CRNN.
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Figure 3.9: Schematic of a MTL CNN.
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CHAPTER 4
Experiments

4.1 Data Set
The data set that is considered for the attempt of reproducing the black-box algorithms
that are the subject of this work is a set of audio sequences of songs along with the
feature values of the music features that are calculated by these algorithms. The machine
learning models that are trained to estimate these music features will use the audio
sequences as their input and the feature values as ground truth.

The selection of songs that is considered in the course of this work is supposed to be
composed of songs that differ across various genres and origin times and regions with
the intention to map a broad variety of different music in order to obtain a preferably
"general" algorithm for approximating Spotify’s features in the sense that this algorithm
yields good results for different types of music, and to be able to evaluate the results in
terms of different properties of the evaluated music. For the sake of simplicity there is no
such selection of songs created in the course of this work, but a data set of songs readily
available - the Million Playlists Dataset [4] - that has been created with sufficiently
similar intentions is used instead.

The Million Playlists Dataset is a set of 1 000 000 playlists that was created for the RecSys
Challenge 2018 for the task of finding a list of songs that continues a playlist in the best
possible way [4]. For the experiments conducted in this work all songs contained in the
playlists of the Million Playlists Dataset are taken to form a data set of 2 261 469 songs.

For each of these 2 261 469 songs, a variety of metadata can be retrieved through Spotify’s
web API1, including the audio features that are attempted to be approximated in this
work, as well as an audio sample that is used for approximating the features. However,
only for 1 405 808 songs such a sample is available. Therefore, the dataset that is
considered throughout this work is restricted to those 1 405 808 songs.

1https://developer.spotify.com/documentation/web-api/reference/, accessed 2022-11-26
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Figure 4.1: The 20 most frequent genres in the data set along with the relative frequency
they are assigned to a song (relative to the total number of songs). The genres are based
on annotations of a song’s artists with genres and were retrieved from Spotify’s web
API3. The reason artists’ genres were used here rather than a song’s genre annotations
is that Spotify does not provide this information. Because of the fact that a song can
potentially have multiple artists and an artist can potentially be annotated with multiple
genres, a song can potentially be assigned multiple artists.

For each of these songs the data set that will be used for training the machine learning
models consists of the audio signal of a sample of 30 seconds, as well as the ground
truth labels of the audio features “Danceability”, “Acousticness”, “Instrumentalness”,
“Speechiness”, “Liveness”, “Valence”, “Energy” and “Loudness”.

As described above, the audio samples that are used for approximating the audio features
are downloaded from Spotify’s web API2. There they are available in MP3 format with a
sample rate of 44 100Hz. Each of these audio samples contains a continuous sequence of
30 seconds. Generally, these samples do not contain the very beginning or end of a song,
but some part in between.

The songs considered in the Million Playlists Dataset are intended to cover a broad
selection of different styles and genres of music. Because of the fact that the selection of
songs considered in this work only consists of songs available on Spotify, the selection
of songs is biased towards mainstream music originated from “Western cultures” [22].
Figure 4.1 shows the 20 most frequent genres of the songs in the data set.

As described in Section 4.1, the data set that is used for the reproduction of the algorithms
for calculating the semantic audio features contains 1 405 808 data points.

2https://developer.spotify.com/documentation/web-api/reference/, accessed 2022-11-26
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4.2. Music Features

For the purpose of training and evaluating the performances of the machine learning
models that are the subject of the experiments conducted as part of this work, the
data set is split into three subsets: a training set, a validation set and a test set. This
approach is standard practice in designing machine learning experiments and has the
intention of preventing biased evaluation, i.e. evaluating a model’s performance during
parameter optimization based on data that has already been used for training the model
or evaluating a final model’s performance on data that has already been used for selecting
the final model. Research literature describes different ways of how a data set is best
split into these three subsets depending on characteristics of the respective data set.
Depending on the size of a data set and the distribution of the individual subsets with
respect to the population distribution different split ratios (i.e. the ratio of the sizes
between training, validation and test set) are suggested.

In case of the data set at hand, ∼ 5% of the total number of data points (i.e. 70 290
data points) are assigned to each the validation and the test set. The remaining 90% of
the data points (i.e. 1 265 228 data points) are assigned to the training set. This split
ratio is chosen because of the relatively large amount of available data, considering that
a validation (respectively test) set of 70 290 data points is expected to give sufficient
confidence when evaluating the models’ performances. The assignment of data to one of
the three subsets is done by random sampling.

4.2 Music Features
In the following, a brief characterization of each of the music features is given.

4.2.1 Danceability
The feature “Danceability” is intended to provide information about “how suitable a
track is for dancing based on a combination of musical elements including tempo, rhythm
stability, beat strength, and overall regularity”4. Values of “Danceability” are real
values ranging from 0 to 14, where 0 describes a “least danceable” song, and 1 a “most
danceable”4 one. Figure 4.3 shows the distribution of the values of “Danceability” in the
data set with a mean of ∼ 0.550, q0.25 ≈ 0.425, q0.50 ≈ 0.565, q0.75 ≈ 0.69 and a variance
of ∼ 0.034. As shown in Figure 4.2, the values are positively correlated with feature
“Valence” (correlation coefficient ρ ≈ 0.530). Figure 4.2 does not indicate correlations
between “Danceability” and any other features.

4.2.2 Acousticness
According to Spotify’s web API documentation “Acousticness” is “a confidence measure
from 0.0 to 1.0 of whether the track is acoustic”4. 1 represents high confidence that
the track is acoustic, whereas 0 represents low confidence the track is acoustic. Figure
4.4 shows the distribution of the values of “Acousticness” present in the data set. The

4https://developer.spotify.com/documentation/web-api/reference/, accessed 2022-11-26
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Figure 4.2: Scatter plot matrix showing correlations between the music features. This
visualization is based on feature values of a random sample of 1000 songs of the data set.
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Figure 4.3: Distribution of the values of “Danceability”
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Figure 4.4: Distribution of the values of “Acousticness”

values have a mean of ∼ 0.358, q0.25 ≈ 0.021, q0.5 ≈ 0.216, q0.75 ≈ 0.704 and a variance
of ∼ 0.128. Figure 4.2 shows that “Acousticness” is negatively correlated with “Energy”
(ρ ≈ −0.746) and “Loudness” (ρ ≈ −0.6222).

4.2.3 Instrumentalness
Music feature “Instrumentalness” expresses the probability of a track containing no
vocals5. The values range from 0 to 1 with higher values representing higher probabilities
that a song contains no vocals. with a mean of ∼ 0.235, q0.25 = 0, q0.5 ≈ 0.001,
q0.75 ≈ 0.52 and a variance of ∼ 0.128. The distribution of the “Instrumentalness”
values in the data set is visualized in Figure 4.5. From Figure 4.2 no correlations
between feature “Instrumentalness” and other features are detectable. Spotify provides
a description stating that vocal “ooh” and “aah” sounds are counted as instrumentals,

5https://developer.spotify.com/documentation/web-api/reference/, accessed 2022-11-26
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Figure 4.5: Distribution of the values of “Instrumentalness”

“Instrumentalness” values greater than 0.5 are inteded to be assigned to instrumental
songs and rap or track containing spoken word are vocal6.

4.2.4 Speechiness
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Figure 4.6: Distribution of the values of “Speechiness”

Feature “Speechiness” is intended to express to what extent spoken word is present in
a track, where tracks with more speaking tend to have a higher feature value6. Values
of “Speechiness” are real an between 0 and 1. Spotify furthermore describes in its API
documentation that music (and other “non-speech-like” tracks) have “Speechiness” values
of less than 0.33. Songs that contain music as well as spoken word (e.g. rap or other
tracks that contain sections of speech and sections of music) have values between 0.33 and
0.66, and tracks that do not contain any music have values greater than 0.66. Figure 4.6

6https://developer.spotify.com/documentation/web-api/reference/, accessed 2022-11-26
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4.2. Music Features

gives an impression of the distribution of the values of feature “Speechiness” in the data
set and that the majority of values are distributed below a value of 0.33. The mean value
for “Speechiness” is ∼ 0.089, q0.25 ≈ 0.035, q0.5 ≈ 0.047 and q0.5 ≈ 0.082. No correlations
between “Speechiness” and other music features are noticable in Figure 4.2.

Figure 4.6 also indicates a relatively small number of songs clustered between 0.8 and 1
and further analysis shows that among those songs with values above 0.66, the median
is ∼ 0.921, which seems to be approximately the center of this cluster. The genre
annotations that the artists of these songs are annotated with the most are “comedy”,
“new comedy” and “comic”. Upon further invesitgation, it appears that some of these
tracks indeed seem to be recordings of comedy programs rather than music. However, the
large majority of observations in the data set does not seem to be such non-music tracks.

4.2.5 Liveness
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Figure 4.7: Distribution of the values of “Liveness”

“Liveness” is a music feature that estimates the probability of the recording containing
noise from an audience. The feature values are real numbers ranging from 0 to 1 with
higher values representing a higher probability that the recording contains noise from
an audience. Figure 4.7 shows the probability density function and a histogram along
with a boxplot of the values of “Liveness” in the data set. The values have a mean of
∼ 0.206, q0.25 ≈ 0.095, q0.5 ≈ 0.126, q0.75 ≈ 0.285 and variance ∼ 0.035. Figure 4.2 does
not indicate any obvious correlations between “Liveness” and other features.

4.2.6 Valence
Music feature “Valence” represents how positive a song is perceived emotionally. Its
values are real and range from 0 to 1 with low values describing songs that sound negative
and high ‘Valence” values that sound positive. Figure 4.8 shows that the values are
relatively broadly distributed within their range with noticable local maxima of the
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Figure 4.8: Distribution of the values of “Valence”

probability distribution function at each end of the range of values. In the data set
“Valence” has mean ∼ 0.470, q0.25 ≈ 0.239, q0.5 ≈ 0.457, q0.75 ≈ 0.690 and variance
∼ 0.073. As mentioned above, the songs in the data set show correlations between
“Valence” and “Danceability” (ρ ≈ 0.530).

Further analysis shows that among songs with particularly low “Valence” values, genre
“classical” (followed by “classical performance”, “soundtrack” and “orchestra”) is the
most prevalent. Among songs with particularly high values of “Valence” the three most
assigned genres are “regional mexican”, “corrido” (a music genre originated from Mexico)
and “nuevo regional mexicano”.

4.2.7 Energy
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Figure 4.9: Distribution of the values of “Energy”

35



4.3. Experiment Design

Feature “Energy” intends to describe how energetic, intensive and active a song is
perceived. The values of “Energy” are real numbers ranging from 0 to 1. The distribution
of the values of feature “Energy” in the data set is visualized in Figure 4.9. The values have
a mean of ∼ 0.581, quantiles q0.25 ≈ 0.382, q0.5 ≈ 0.619 and q0.75 ≈ 0.808 and variance
∼ 0.072. Figure 4.2 suggests that there is relatively strong positive correlation between
“Energy” and “Loudness” and negative correlation between “Energy” and “Acousticness”
(ρ ≈ −0.746). According to Spotify’s web API documentation “Energy” correlates with
“dynamic range, perceived loudness, timbre, onset rate, and general entropy”7.

4.2.8 Loudness
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Figure 4.10: Distribution of the values of “Loudness”

Feature “Loudness” measures the average loudness of a song on decibel scale ranging
from −60dB to 0dB. The values in the data set are real numbers. Figure 4.9 shows the
distribution of the values of feature “Loudness” in the data set. The values have a mean
of ∼ −9.786, quantiles q0.25 ≈ 12.009, q0.5 ≈ −8.253 and q0.75 ≈ −5.888 and variance
∼ 32.924. As already mentioned, “Loudness” is positively correlated with “Energy”
(ρ ≈ 0.790) and negatively correlated with “Acousticness” (ρ ≈ −0.622).

4.3 Experiment Design
As part of this work, a number of experiments are being conducted. The aim of these
experiments is to answer the research questions formulated in Section 1.2, which address
the question to what extent it is possible to reproduce the algorithms that are employed
by Spotify for calculating the music features detailed in Section 4.2 using Convolutional
Neural Networks (CNNs) for extracting them from spectrogram music representations.
The evaluation of the experiments is based on the performance of the CNN models.

7https://developer.spotify.com/documentation/web-api/reference/, accessed 2022-11-26
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The attempt of reproducing the black-box algorithms is restricted to the approaches
described in Chapter 3 and moreover, not all CNN architectures described in 3.4.3 and
combinations of their parameters will be fully exploited in order to determine the best
approximation for each of the semantic audio features. These restrictions are made in
order to keep the computational efforts for training the CNN models in feasible bounds.
A more detailed description of which CNN architectures and parameters are considered
in the experiments is given in the following.

In order to be able to answer research questions RQ1 and RQ2 a set of models with
different parameters is trained for each of the music features described in Section 4.2.
For each music feature, the CNN architectures LeNet-5 and ResNet-34, as well as the
Convolutional Recurrent Neural Network (CRNN) architecture presented in Section 3.4.3
are investigated. For each music feature and architecture two different learning rates, in
particular 0.001 and 0.0001, and two different optimization algorithms, namely Adam
and Stochastic Gradient Descent (SGD) (see Sections 3.2.1 and 3.2.2), are furthermore
considered. These parameter combinations amount to twelve models per music feature
or 96 models in total. Each model is trained on the training data set and subsequently
evaluated on the validation set to be able to compare the quality of the models against
each other. Based on the MSE obtained from evaluation the best performing model of
each music feature is then evaluated again on the test data set. The evaluation results
on the test set are considered as the final prediction results and are used for discussing
research question RQ1.

For the purpose of answering research question RQ3, which addresses the comparison
of the results obtained in the experiments described above with a Multi-Task Learning
(MTL) approach, a set of MTL models is trained. To that end, multiple music features are
learned by the same model at the same time. For the sake of keeping the computational
efforts within feasible bounds, not all possible combinations of music features are learned
by an MTL model. Instead, exemplarily, four pairs (of two music features each) are
selected and one MTL model is trained for each pair. The pairs that are considered are
the features “Danceability” and “Valence”, the features “Acousticness” and “Energy”,
the features “Instrumentalness” and “Speechiness” and the features “Liveness” and
“Loudness”. The reason for considering these pairs of features is that they cover all
individual features and contain pairs of features that show correlations with each other
(which are the pair of “Danceability” and “Valence” and the pair of “Acousticness” and
“Energy”), as well as pairs of features that do not indicate correlations with each other
(which are the pair of “Instrumentalness” and “Speechiness” and the pair of “Liveness”
and “Loudness”). Thus, it might be possible to derive whether the prediction performance
benefits from using correlated features in such an MTL setting. As with the Single-Task
Learning (STL) experiments described above, every model is first trained on the training
data set. The models are then evaluated using the validation data set. Based on the
results, research question RQ3 can be assessed.
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4.4 Experiment Implementation
The software that executes data preprocessing, training and evaluating of the models
that are subject of the experiments conducted as part of this work are implemented in
Python (version 3.8.5)8. The neural networks and the code for preprocessing of audio
signals are implemented using the machine learning framework PyTorch (version 1.8.1)9

and its audio processing library Torchaudio10. Additional notable libraries that were
used for the implementations are NumPy (version 1.19.2)11 and pandas (version 1.1.3)12,
as well as Matplotlib (version 3.3.2)13 and seaborn14 for creating visualizations depicted
in this work.

All experiments conducted in the course of this work were executed on a machine equipped
with an Intel Core i5-9600K CPU, 32 gigabytes of RAM and an Nvidia GeForce GTX
1080 GPU. For model training and evaluation, the capabilities of PyTorch, which allow
execution of vectorized operations on GPUs, were utilized. This allowed for accelerated
execution speeds as compared to execution on CPUs.

4.5 Performance Evaluation
The performance of the CNN models that are trained as part of this work is evaluated
by measuring the quality of the predictions on the test set. This is done by comparing
the predictions to the ground truth.

Since all the target variables considered in the experiments have continuous values,
measuring the quality of a model can be done by using a metric that expresses the
similarity between predicted values ŷ and ground truth values y.

One possible metric with this property would be the Mean Absolute Error (MAE).

MAE =
n
i=1 |yi − ŷi|

n

It has the advantage of representing the error between predicted and ground truth values
on the same scale, on which the values themselves are given. Thus, the interpretation of
MAE values is particularly intuitive.

Beside MAE, it is also worth considering the Mean Squared Error (MSE).

MSE =
n
i=1 (yi − ŷi)2

n
8https://www.python.org/
9https://pytorch.org/

10https://pytorch.org/audio/stable/index.html
11https://numpy.org/
12https://pandas.pydata.org/
13https://matplotlib.org/
14https://seaborn.pydata.org/
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It expresses the average squared differences between predicted and ground truth values,
with MSE values ranging from 0 to ∞ where lower values describe better prediction.
Because of the fact that MSE uses the squared differences between ŷ and y rather than the
absolute difference, greater deviations of ŷ from y have a greater effect on the measured
performance. In this way, predicted values with greater errors are penalized more than
predictions that are closer to ground truth.

Because of the different dispersions of the feature value distributions of the different
features that are the subject of the experiments, the scale of the MSEs of the resulting
machine learning models might differ across the features. In order to be able to interpret
how “good” an MSE value obtained from evaluation is in contrast to the scale of a
feature’s value, the R2 Score, defined as

R2 = 1 −
n
i=1 (yi − ŷi)2

n
i=1 (yi − ȳ)2 ,

can be considered. R2 Score puts the MSE in relation to a feature’s variance, with values
ranging from −∞ to 1 where values below 0 describe an MSE greater than the feature
values’ variance, values above 0 describe an MSE lower than the feature values’ variance
and 1 describes a perfect fit (i.e. an error of 0). Ultimately, MSE metric will be used to
choose which model performs best.
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CHAPTER 5
Reproduction of Spotify’s Audio

Features

5.1 Audio Signal Processing
The audio signals of the songs in the dataset that are considered for the experiments
conducted as part of this work are downloaded from Spotify’s web API 1 as MP3 files
containing audio samples of 30 seconds length with a sample rate of 44 100Hz, which
makes 30 · 44 100 = 1 323 000 samples per song.

The audio signal of each song is transformed into frequency domain by applying Short-
Time Fourier-Transformation (STFT). To this end, the audio signal is segmented with a
frame size of 400, a hop size of 200 and “zero-padding”, which results in 6 625 frames.

Each frame of N samples is multiplied with a Hann function

w(n) = sin2


πn

N − 1 .

The STFT is then performed on each of the 6 625 frames, producing 6 225 vectors of 201
values. The number of values per vector is limited to 201 because this is the 201Hz is
the lowest frequency that can be present in a frame of 400 samples.

The resulting spectrograms are then transformed into Mel scale using 128 filter banks.
This transformation results in a Mel spectrogram of 6 225 frames with 128 bins in each
frame.

These 6 225 × 128 matrices are used as the inputs to Convolutional Neural Network
(CNN) models of different architectures and hyperparameters. The architectures and
hyperparameters are described below together with the experiment results.

1https://developer.spotify.com/documentation/web-api/reference/, accessed 2022-11-26
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5.2 Experiment Results
5.2.1 Single-Task Learning Results
Danceability

Experiment Results
CNN architecture Learning rate Optimization algorithm MAE MSE R2 Score

LeNet-5 SGD 0.0001 ∼ 0.088 ∼ 0.013 ∼ 0.626
LeNet-5 SGD 0.0010 ∼ 0.084 ∼ 0.012 ∼ 0.655
LeNet-5 Adam 0.0001 ∼ 0.086 ∼ 0.012 ∼ 0.640
LeNet-5 Adam 0.0010 ∼ 0.088 ∼ 0.013 ∼ 0.634

ResNet-34 SGD 0.0001 ∼ 0.088 ∼ 0.013 ∼ 0.615
ResNet-34 SGD 0.0010 ∼ 0.078 ∼ 0.010 ∼ 0.701
ResNet-34 Adam 0.0001 ∼ 0.071 ∼ 0.008 ∼ 0.767
ResNet-34 Adam 0.0010 ∼ 0.071 ∼ 0.009 ∼ 0.748

CRNN SGD 0.0001 ∼ 0.099 ∼ 0.016 ∼ 0.526
CRNN SGD 0.0010 ∼ 0.096 ∼ 0.016 ∼ 0.546
CRNN Adam 0.0001 ∼ 0.096 ∼ 0.015 ∼ 0.563
CRNN Adam 0.0010 ∼ 0.094 ∼ 0.015 ∼ 0.569

Table 5.1: Experiment results for feature “Danceability”

Table 5.1 contains the results for feature “Danceability” of the experiments that are
described in Section 4.3. Each row in Table 5.1 represents one model that was trained
on the training data set to extract feature “Danceability”. The models are based on the
hyperparameters specified in the respective row and yielded a Mean Absolute Error (MAE)
and Mean Squared Error (MSE) as given in the respective columns when predicting the
validation data set. The training time using the hardware as described in Section 4.4
was approximately 19 hours for each of the models (with the models with ResNet-34
architecture having slightly longer training times).

As can be seen from the table, based on the MSE when predicting the validation data
set, the best-performing model is the ResNet-34 model with learning rate 0.0001 and
Adam optimization with an MSE of ∼ 0.008. Also, it is noticable that the ResNet-34
models with Adam optimization yield approximately the same MSE, regardless of the
chosen learning rate, and they are performing better than any other models.

Figure 5.1 shows the MSE for the different models when predicting the validation data
set in relation to the number of data points already trained. It shows that the two
best-performing ResNet-34 models have lower errors throughout the entire training
process (except for the very beginning). The other curves representing the other models
show roughly the same location. All curves show a relatively steep descent at the
beginning of training (until approximately 250 000 trained samples) and a relatively
shallow descent afterwards. The MSE on the validation set of the model with ResNet-34
architecture, learning rate 0.001 and Stochastic Gradient Descent (SGD) optimization
shows an especially high variability during training. Also, the validation curves of the
LeNet-5 and Convolutional Recurrent Neural Network (CRNN) models have a higher
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Figure 5.1: MSEs for the different models when predicting feature “Danceability” on the
validation data set in relation to the number of data points already trained.

variablity than the other ResNet-34 models.

The training errors (i.e. the MSE when predicting the training data set) and the validation
errors are shown in Figure 5.2 in relation to the number of data points already trained.
Here, the values are exemplarily shown for the ResNet-34 model with learning rate
0.0001 and Adam optimization only as this is the best performing model. However, the
respective graphs of the other models have similar characteristics. Note that for the
training error shown in Figure 5.2 each point of the graph is calculated as the MSE of
the previous 640 training samples. The relatively great noise of the curve showing the
training error in Figure 5.2 can be explained by the fact that the training error was
calculated on a small subsets of the training data. Contrarily, the validation errors are
calculated on the entire validation set, which is a larger set of data, and therefore are
less prone to noise.

It is apparent that both curves shown in Figure 5.2 have a steeper slope in the section
that represents the beginning of the training process than later in the training process.
The reason for this is that in the beginning of training the model weights are adapted
more in order to minimize loss as compared to later in the training process when the
model is already fitted and represents the target function better. Usually, with more
training the error would reduce until the model reaches a point where it cannot improve
anymore considering the limitations of its expressive power (i.e. its ability to express
the relationship between input data and target). In the given case, the error seems to
decrease even at the very right part of the curve, which means that the model would
probably be still improving with more training data (or when learning the training data
set again in another epoch). However, because of the chosen training data set and because
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Figure 5.2: Comparison of MSEs when predicting feature “Danceability” on the training
data set vs. on the validation data set in relation to the number of data points already
trained. The predictions are made with the ResNet-34 model with learning rate 0.0001
and Adam optimization.

of the fact that the experiments conducted as part of this work are designed to include
only one training epoch, the training process is stopped after learning the training data
once, even though the model probably might have been improved with more training.
As can be seen, both curves have a similar shape and the training and validation errors
are approximately the same throughout the entire process of training the model. This
usually means that the model performance when predicting unseen data is not worse
than when predicting data that was used for model training and the model is expected
to generalize well on unseen data.

The ResNet-34 model with Adam optimization and learning rate 0.0001 yields an MSE
of ∼ 0.009 on the test data set.

Acousticness

The results of the experiments that study to what extent it is possible to reproduce
Spotify’s algorithms that calculate music feature “Acousticness” are given in Table 5.2. As
described in Section 4.4 the experiment setup is the same for the experiments for feature
“Danceability”. Also, the resulting prediction performances of the trained models show
similarities with the models that predict feature “Danceability” in that the ResNet-34
models perform best regarding MSE. The overall best performing model is the one with
ResNet-34 architecture, learning rate 0.001 and Adam optimization algorithm yielding
an MSE of ∼ 0.046 on the validation data set. All LeNet-5 and CRNN models perform
worse than the ResNet-34 models and the models that use Adam optimization seem to
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Experiment Results
CNN architecture Learning rate Optimization algorithm MAE MSE R2 Score

LeNet-5 SGD 0.0001 ∼ 0.172 ∼ 0.052 ∼ 0.599
LeNet-5 SGD 0.0010 ∼ 0.159 ∼ 0.050 ∼ 0.610
LeNet-5 Adam 0.0001 ∼ 0.176 ∼ 0.062 ∼ 0.524
LeNet-5 Adam 0.0010 ∼ 0.166 ∼ 0.051 ∼ 0.602

ResNet-34 SGD 0.0001 ∼ 0.156 ∼ 0.052 ∼ 0.600
ResNet-34 SGD 0.0010 ∼ 0.097 ∼ 0.021 ∼ 0.835
ResNet-34 Adam 0.0001 ∼ 0.093 ∼ 0.019 ∼ 0.853
ResNet-34 Adam 0.0010 ∼ 0.093 ∼ 0.018 ∼ 0.860

CRNN SGD 0.0001 ∼ 0.171 ∼ 0.056 ∼ 0.568
CRNN SGD 0.0010 ∼ 0.168 ∼ 0.055 ∼ 0.579
CRNN Adam 0.0001 ∼ 0.179 ∼ 0.057 ∼ 0.560
CRNN Adam 0.0010 ∼ 0.182 ∼ 0.062 ∼ 0.523

Table 5.2: Experiment results for feature “Acousticness”

be consistently better than those using SGD across all other hyperparameter settings.
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Figure 5.3: MSEs for the different models when predicting feature “Acousticness” on the
validation data set in relation to the number of data points already trained.

Figure 5.1 shows the MSE for the different models when predicting the validation data
set in relation to the number of data points already trained. As can be seen at the
beginning of training all models have relatively high errors compared to the errors after
training. Moreover, the two ResNet-34 models with Adam optimization show a relatively
low MSE already early in the training process.

The ResNet-34 model with Adam optimization and learning rate 0.001 yields an MSE of
∼ 0.015 on the test data set.
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Instrumentalness

Experiment Results
CNN architecture Learning rate Optimization algorithm MAE MSE R2 Score

LeNet-5 SGD 0.0001 ∼ 0.261 ∼ 0.101 ∼ 0.224
LeNet-5 SGD 0.0010 ∼ 0.338 ∼ 0.174 ∼ −0.343
LeNet-5 Adam 0.0001 ∼ 0.263 ∼ 0.109 ∼ 0.163
LeNet-5 Adam 0.0010 ∼ 0.257 ∼ 0.103 ∼ 0.208

ResNet-34 SGD 0.0001 ∼ 0.170 ∼ 0.055 ∼ 0.580
ResNet-34 SGD 0.0010 ∼ 0.178 ∼ 0.058 ∼ 0.556
ResNet-34 Adam 0.0001 ∼ 0.150 ∼ 0.045 ∼ 0.655
ResNet-34 Adam 0.0010 ∼ 0.148 ∼ 0.040 ∼ 0.690

CRNN SGD 0.0001 ∼ 0.267 ∼ 0.104 ∼ 0.201
CRNN SGD 0.0010 ∼ 0.256 ∼ 0.098 ∼ 0.244
CRNN Adam 0.0001 ∼ 0.278 ∼ 0.109 ∼ 0.157
CRNN Adam 0.0010 ∼ 0.257 ∼ 0.103 ∼ 0.204

Table 5.3: Experiment results for feature “Instrumentalness”

Table 5.3 contains the results of the Single-Task Learning (STL) experiments for feature
“Instrumentalness”. The prediction performances shown in the table show that the best
performing models are the ones with ResNet-34 architecture. The overall best model is
the ResNet-34 model with learning rate 0.001 and Adam optimization, which yields an
MSE of ∼ 0.04 when predicting the validation set. All models with LeNet-5 or CRNN
architectures perfrom worse than any of the ResNet-34 models. The R2 Scores of the
LeNet-5 and CRNN models show that the MSEs of these models are only slightly lower
than the variance Var(X) ≈ 0.122 of feature “Instrumentalness”. This means that a
trivial model, which would always predict the mean value of feature “Instrumentalness”
(and therefore yield an MSE = Var(X)), would only be slightly worse than the LeNet-5
and CRNN models. From Table 5.3 no relationships between the other hyperparameters
and prediction performance can be observed.

Figure 5.4 shows the MSE for the different models when predicting the validation data
set in relation to the number of data points already trained. It shows that the ResNet-34
models have better validation errors throughout the training process compared to the
LeNet-5 or CRNN models. All models have similar validation errors at the beginning
of the training process, which improve relatively fast during the first ∼ 250 000 training
samples. Later in the training process, the LeNet-5 and CRNN models all seem to have
an MSE of ∼ 0.11 with a higher variablity as compared to the ResNet-34 models. An
MSE of ∼ 0.11 is only slightly lower than the variance of Var(X) ≈ 0.122 of feature
“Instrumentalness”, which is also shown by the R2 Scores. The curves of the ResNet-34
models with learning rate 0.0001 seem to descent during the entire training process,
even at the end of the training (which suggests that these models would likely still be
improving with more training).

The ResNet-34 model with Adam optimization and learning rate 0.001 yields an MSE of
∼ 0.041 on the test data set.
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Figure 5.4: MSEs for the different models when predicting feature “Instrumentalness” on
the validation data set in relation to the number of data points already trained.

Speechiness

Experiment Results
CNN architecture Learning rate Optimization algorithm MAE MSE R2 Score

LeNet-5 SGD 0.0001 ∼ 0.076 ∼ 0.013 ∼ 0.085
LeNet-5 SGD 0.0010 ∼ 0.063 ∼ 0.009 ∼ 0.328
LeNet-5 Adam 0.0001 ∼ 0.074 ∼ 0.011 ∼ 0.196
LeNet-5 Adam 0.0010 ∼ 0.071 ∼ 0.011 ∼ 0.209

ResNet-34 SGD 0.0001 ∼ 0.041 ∼ 0.005 ∼ 0.627
ResNet-34 SGD 0.0010 ∼ 0.044 ∼ 0.005 ∼ 0.600
ResNet-34 Adam 0.0001 ∼ 0.040 ∼ 0.005 ∼ 0.640
ResNet-34 Adam 0.0010 ∼ 0.037 ∼ 0.004 ∼ 0.687

CRNN SGD 0.0001 ∼ 0.083 ∼ 0.015 ∼ −0.097
CRNN SGD 0.0010 ∼ 0.079 ∼ 0.014 ∼ −0.029
CRNN Adam 0.0001 ∼ 0.088 ∼ 0.017 ∼ −0.231
CRNN Adam 0.0010 ∼ 0.079 ∼ 0.015 ∼ −0.069

Table 5.4: Experiment results for feature “Speechiness”

The result of the experiments that are described in Section 4.3 are given in Table 5.4
for feature “Speechiness”. Note that compared to the MSE values obtained for the other
features described above, the MSEs of “Speechiness” are much lower in general. The main
reason for this is that the feature value distribution of “Speechiness” is also narrower
than the distribution of other features. The R2 Scores adjust for these differences in
the feature value distributions and show that the CRNN models perfrom worse than
the feature’s variance Var(X) ≈ 0.013 (which can be interpreted as a trivial model that
would always predict the mean value of “Speechiness”) and the LeNet-5 models are only
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slightly better than the variance. The “Speechiness” model that yields the best prediction
performance is the model with ResNet-34 architecture, 0.001 learning rate and Adam
optimizer with an MSE of ∼ 0.004.
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Figure 5.5: MSEs when predicting feature “Speechiness” on the validation data set in
relation to the number of data points already trained for the different models.

Figure 5.5 shows curves that represent the validation errors in the course of the training
process for the different models that were considered in the experiments. Here, a
relationship between the models’ CNN architecture and the error during training can be
observed. The CRNN models perform the worst, followed by the LeNet-5 models and
followed by the Resnet-34 models.

The ResNet-34 model with Adam optimization and learning rate 0.001 yields an MSE of
∼ 0.005 on the test data set.

Liveness

Table 5.5 contains the results of the experiments conducted for feature ‘Liveness”. The
model with the lowest MSE of ∼ 0.032 is the ResNet-34 model with Adam optimization
algorithm and a learning rate of 0.001. However, the other MSE values of the other
models on the validation set are not much worse. All models range at an MSE of
∼ 0.032 to ∼ 0.038, which is only approximately the variance of feature “Liveness” of
Var(X) ≈ 0.036, yielding R2 Scores of around 0.

The curves in Figure 5.6 show that the MSEs of the different models obtained on the
validation data set during training all reach a value of approximately 0.033 to 0.04
after around 250 000 to 500 000 trained samples and stay in that range throughout the
remainder of the training process (with some “outlying” validation MSEs). There is
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Experiment Results
CNN architecture Learning rate Optimization algorithm MAE MSE R2 Score

LeNet-5 SGD 0.0001 ∼ 0.139 ∼ 0.038 ∼ −0.062
LeNet-5 SGD 0.0010 ∼ 0.136 ∼ 0.035 ∼ 0.017
LeNet-5 Adam 0.0001 ∼ 0.135 ∼ 0.036 ∼ −0.003
LeNet-5 Adam 0.0010 ∼ 0.135 ∼ 0.035 ∼ 0.021

ResNet-34 SGD 0.0001 ∼ 0.123 ∼ 0.033 ∼ 0.063
ResNet-34 SGD 0.0010 ∼ 0.131 ∼ 0.035 ∼ 0.006
ResNet-34 Adam 0.0001 ∼ 0.121 ∼ 0.033 ∼ 0.069
ResNet-34 Adam 0.0010 ∼ 0.123 ∼ 0.032 ∼ 0.105

CRNN SGD 0.0001 ∼ 0.141 ∼ 0.038 ∼ −0.061
CRNN SGD 0.0010 ∼ 0.135 ∼ 0.036 ∼ −0.010
CRNN Adam 0.0001 ∼ 0.136 ∼ 0.037 ∼ −0.034
CRNN Adam 0.0010 ∼ 0.137 ∼ 0.038 ∼ −0.065

Table 5.5: Experiment results for feature “Liveness”
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Figure 5.6: MSEs when predicting feature “Liveness” on the validation data set in relation
to the number of data points already trained for the different models.

no relationship observable between any of the hyperparameters and the progression of
validation MSE or the final MSE.

The ResNet-34 model with Adam optimization and learning rate 0.001 yields an MSE of
∼ 0.031 on the test data set.
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Valence

Experiment Results
CNN architecture Learning rate Optimization algorithm MAE MSE R2 Score

LeNet-5 SGD 0.0001 ∼ 0.226 ∼ 0.075 ∼ −0.012
LeNet-5 SGD 0.0010 ∼ 0.199 ∼ 0.056 ∼ 0.237
LeNet-5 Adam 0.0001 ∼ 0.201 ∼ 0.059 ∼ 0.209
LeNet-5 Adam 0.0010 ∼ 0.193 ∼ 0.054 ∼ 0.277

ResNet-34 SGD 0.0001 ∼ 0.144 ∼ 0.035 ∼ 0.530
ResNet-34 SGD 0.0010 ∼ 0.150 ∼ 0.036 ∼ 0.515
ResNet-34 Adam 0.0001 ∼ 0.131 ∼ 0.030 ∼ 0.601
ResNet-34 Adam 0.0010 ∼ 0.129 ∼ 0.027 ∼ 0.636

CRNN SGD 0.0001 ∼ 0.235 ∼ 0.078 ∼ −0.058
CRNN SGD 0.0010 ∼ 0.212 ∼ 0.066 ∼ 0.107
CRNN Adam 0.0001 ∼ 0.217 ∼ 0.069 ∼ 0.071
CRNN Adam 0.0010 ∼ 0.231 ∼ 0.080 ∼ −0.075

Table 5.6: Experiment results for feature “Valence”

The STL experiment results for feature “Valence” are given in Table 5.6. Here, the model
with ResNet-34 architecture, Adam optimizer and learning rate 0.001 performs best,
yielding an MSE of ∼ 0.027 on the validation set. In general, the ResNet-34 models give
MSE values approximately two times lower than the LeNet-5 or CRNN models.
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Figure 5.7: MSEs when predicting feature “Valence” on the validation data set in relation
to the number of data points already trained for the different models.

Figure 5.7 shows the MSEs of the different models on the validation data set during the
training process. The curves representing the LeNet-5 and CRNN models have similar
locations and show that the MSEs range from ∼ 0.06 to ∼ 0.08 during the process of
training after the first ∼ 250 000 training samples. The MSEs do not seem to improve
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anymore after the first ∼ 250 000 samples. The curves representing the ResNet-34 models
show that the MSE values of these models seem to improve throughout the entire training
process.

The ResNet-34 model with Adam optimization and learning rate 0.001 yields an MSE of
∼ 0.027 on the test data set.

Energy

Experiment Results
CNN architecture Learning rate Optimization algorithm MAE MSE R2 Score

LeNet-5 SGD 0.0001 ∼ 0.124 ∼ 0.024 ∼ 0.679
LeNet-5 SGD 0.0010 ∼ 0.127 ∼ 0.024 ∼ 0.672
LeNet-5 Adam 0.0001 ∼ 0.135 ∼ 0.028 ∼ 0.615
LeNet-5 Adam 0.0010 ∼ 0.119 ∼ 0.022 ∼ 0.694

ResNet-34 SGD 0.0001 ∼ 0.090 ∼ 0.013 ∼ 0.823
ResNet-34 SGD 0.0010 ∼ 0.092 ∼ 0.014 ∼ 0.809
ResNet-34 Adam 0.0001 ∼ 0.104 ∼ 0.018 ∼ 0.754
ResNet-34 Adam 0.0010 ∼ 0.099 ∼ 0.016 ∼ 0.775

CRNN SGD 0.0001 ∼ 0.211 ∼ 0.067 ∼ 0.092
CRNN SGD 0.0010 ∼ 0.196 ∼ 0.058 ∼ 0.211
CRNN Adam 0.0001 ∼ 0.190 ∼ 0.057 ∼ 0.227
CRNN Adam 0.0010 ∼ 0.212 ∼ 0.067 ∼ 0.086

Table 5.7: Experiment results for feature “Energy”

Table 5.7 shows that the prediction performances of the considered models are greatly
dependent on the choice of the network architecture with the ResNet-34 models yielding
the best results, followed by the LeNet-5 models and followed by the CRNNs. The overall
best performance is achieved by the ResNet-34 model with SGD optimization and a
learning rate of 0.0001 with an MSE of ∼ 0.013.

Figure 5.8 shows the models’ validation MSEs during training. Here, a clear difference
between the performances of the CRNN models and the other models can be seen in that
the CRNN models have much worse prediction performances during training and also
higher variabilities of the validation curves than most other models. The CRNN models
do not seem to improve at all during training.

The ResNet-34 model with Adam optimization and learning rate 0.001 yields an MSE of
∼ 0.010 on the test data set.
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Figure 5.8: MSEs when predicting feature “Energy” on the validation data set in relation
to the number of data points already trained for the different models.

Loudness

Experiment Results
CNN architecture Learning rate Optimization algorithm MAE MSE R2 Score

LeNet-5 SGD 0.0001 ∼ 1.911 ∼ 7.163 ∼ 0.779
LeNet-5 SGD 0.0010 ∼ 1.738 ∼ 5.981 ∼ 0.815
LeNet-5 Adam 0.0001 ∼ 1.818 ∼ 6.045 ∼ 0.813
LeNet-5 Adam 0.0010 ∼ 1.901 ∼ 6.319 ∼ 0.805

ResNet-34 SGD 0.0001 ∼ 1.429 ∼ 5.314 ∼ 0.836
ResNet-34 SGD 0.0010 ∼ 1.936 ∼ 9.557 ∼ 0.705
ResNet-34 Adam 0.0001 ∼ 1.535 ∼ 5.812 ∼ 0.820
ResNet-34 Adam 0.0010 ∼ 1.443 ∼ 5.500 ∼ 0.830

CRNN SGD 0.0001 ∼ 1.907 ∼ 6.504 ∼ 0.799
CRNN SGD 0.0010 ∼ 1.695 ∼ 6.026 ∼ 0.814
CRNN Adam 0.0001 ∼ 1.887 ∼ 6.689 ∼ 0.793
CRNN Adam 0.0010 ∼ 1.868 ∼ 6.649 ∼ 0.795

Table 5.8: Experiment results for feature “Loudness”

The experiment results for feature “Loudness” are given in Table 5.8. The ResNet-34
model using SGD optimization with learning rate 0.0001 and the two ResNet-34 models
with Adam optimizer show relatively good prediction performance on the validation set
compared to the other models. Especially, the ResNet-34 with SGD optimization and
a learning rate of 0.001 has a noticeably worse MSE than any of the other considered
models.

Figure 5.9 shows curves that represent the validation errors in the course of the training
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Figure 5.9: MSEs when predicting feature “Loudness” on the validation data set in
relation to the number of data points already trained for the different models.

process for the different models that were considered in the experiments. Interestingly,
the graph representing the ResNet-34 model with SGD optimizer and learning rate 0.001,
which yielded the worse prediction performance on the validation set as stated in Table
5.8, performed relatively well when validated during the training process, but had a
significantly worse MSE after training was finished. The reason for this is not evident,
but is likely to be caused by random fluctuations of the MSE during adaptation of the
network’s weights. It is also noticable that the graph representing MSEs of the LeNet-5
model with Adam optimizer and learning rate 0.001 shows two relatively high peaks
during the process of training.

The ResNet-34 model with Adam optimization and learning rate 0.001 yields an MSE of
∼ 5.608 on the test data set.

5.2.2 Multi-Task Learning Results
In the following, the results of the Multi-Task Learning (MTL) experiments conducted
as part of this work are given. These experiments are carried out in order to be able to
answer research question RQ3, which addresses the comparison of the results described
in Section 5.2.1 above with an MTL approach.

The data preprocessing for the MTL experiments is done the same way as described in
Section 5.1. The CNN architecture used here is the one described in Section 3.4.3. All
models were trained using Adam optimization with a learning rate of 0.001 and without
loss weighting.

As described in Section 4.3 the combinations of features that are considered in the MTL
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experiments are features “Danceability” and “Valence”, features “Acousticness” and
“Energy”, features “Instrumentalness” and “Speechiness” and features “Liveness” and
“Loudness”. For each of these combinations, a CNN model with two heads is trained.
The resulting models are then evaluated on the test data set in order to estimate a final
model’s prediction performance.

Experiment Results
Tasks Feature MAE MSE R2 Score

“Danceability”, “Valence” “Danceability” ∼ 0.094 ∼ 0.015 ∼ 0.565
“Valence” ∼ 0.173 ∼ 0.047 ∼ 0.366

“Acousticness”, “Energy” “Acousticness” ∼ 0.144 ∼ 0.038 ∼ 0.703
“Energy” ∼ 0.126 ∼ 0.024 ∼ 0.675

“Instrumentalness”, “Speechiness” “Instrumentalness” ∼ 0.212 ∼ 0.082 ∼ 0.358
“Speechiness” ∼ 0.044 ∼ 0.009 ∼ 0.321

“Liveness”, “Loudness” “Liveness” ∼ 0.128 ∼ 0.034 ∼ 0.020
“Loudness” ∼ 3.977 ∼ 24.359 ∼ 0.264

Table 5.9: MTL experiment results. The left column contains the music features that have
been learned simultaneously, the three right columns contain the prediction performances
for the feature given in the second column from the left.

“Danceability” - “Valence”

As shown in Table 5.9, the MTL model trained to extract features “Danceability” and
“Valence” yields an MSE of ∼ 0.015 when predicting feature “Danceability” on the test
data set and an MSE of ∼ 0.047 when predicting feature “Valence”.

Compared to the result obtained from the best STL models described in Section 5.2.1,
which yield an MSE of 0.009 when predicting feature “Danceability” on the test data set,
the MTL approach achieved worse prediction performance. Also compared to the best
STL model for predicting feature “Valence” yielding an MSE of ∼ 0.027, the prediction
performance of the MTL approach is worse.

“Acousticness” - “Energy”

The MTL model that attempts to reproduce the feature extraction algorithms for features
“Acousticness” and “Energy” achieves an MSE of ∼ 0.038 for feature “Acousticness” and
an MSE of ∼ 0.018 for feature “Energy”. Also both “Acousticness” and “Energy” have
worse errors than respective best STL models.

“Instrumentalness” - “Speechiness”

As can be seen from Table 5.9, the MTL model that was trained to predict features
“Instrumentalness” and “Speechiness” yields an MSE of ∼ 0.082 for “Instrumentalness”
and ∼ 0.009 for “Speechiness”. Also here, the results obtained from the MTL approach
are worse than the respective best STL results, but better than the worst STL models.
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5.3. Discussion

“Liveness” - “Loudness”

As shown in Table 5.9, the MTL approach for feature extraction of “Liveness” and
“Loudness” yields an MSE of ∼ 0.034 for “Liveness” and ∼ 24.359 for “Loudness”.

In comparison with the results obtained from the STL approaches for learning features
“Liveness” as described above, the MTL has a higher error than the best STL model,
but is better than the LeNet-5 and CRNN models (compared when evaluating on the
validation data set). Compared with the STL result for “Loudness”, the MTL approach
is worse than any of the STL models.

5.3 Discussion
The results described in Section 5.2 show that the prediction performances of the machine
learning models that were considered in the experiments differ substantially across the
music features that are subject of this work. Such a comparison of the quality of the
feature extraction across the different music features is only reasonable when comparing
R2 Scores, which adjusts the MSEs by the features’ variances, which of course differ
across the features.

The final model for prediction of features “Acousticness”, “Energy” and “Loudness”
achieve an R2 Score greater than 0.8 and the final model for features “Danceability”,
“Instrumentalness”, “Speechiness” and “Valence” an R2 Score between 0.5 and 0.8,
whereas the final model that predicts feature “Liveness” shows an R2 Score of only 0.122.
This shows that Spotify’s “black-box” algorithms that calculate features “Danceability”,
“Acousticness”, “Instrumentalness”, “Speechiness”, “Valence”, “Energy” and “Loudness”
can be reproduced quite well using spectrogram representations of audio samples compared
to the algorithm calculating feature “Liveness”. The latter one can only be reproduced
marginally better than a trivial model that would always just predict a feature values’
mean (which would yield an R2 Score of 0).

A comparison of the behavior of the individual prediction performances when varying
the different hyperparameters that are considered in the STL experiments described
above shows a pattern, which holds for almost all the music features subject of this
work. It shows that any of the ResNet-34 models is able to outperform all the LeNet-5
or CRNN models (with the exception of feature “Loudness”). Both, the LeNet-5 and
the CRNN architecture, have in common that they are generally smaller architectures
(i.e. architectures with less Convolutional Layers) than the ResNet-34 architecture. This
suggests that the size of a neural network might determine its capability of extracting the
music feature considered in the experiments. This would also be suggested in comparison
of the MTL results with those of the ResNet-34 models, since the neural network employed
in the MTL experiments also has fewer layers than ResNet-34 and the ResNet-34 models
outperformed the MTL results with respect to any of the investigated music features.
However, note that there might also be different reasons appearing in correlation with
the choice of the neural network architecture rather than the size of a neural network.
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5.3. Discussion

Also note that these observations only hold true with respect to the other parameter
settings that were considered as part of the experiments. This means in particular that
the settings of other experiment variables might have caused the LeNet-5 or CRNN
models to perform worse than the ResNet-34 models, and by using different settings of
e.g. the learning rate or the optimization algorithm (or any other control variable used
in data preprocessing or training) the LeNet-5 or CRNN models might have performed
differently in comparison with the results achieved by the ResNet-34 models. In order
to be able to draw a conclusion about the question of whether the number of layers or
other characteristics of the considered models caused the ResNet-34 models to perform
better in general, further investigation of the impact of the number of layers would have
been necessary.
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CHAPTER 6
Conclusion

This work is concerned with a set of semantic music features that is published for every
song available on Spotify. As described in Section 1.1 this set of music features was used in
multiple research works in the field of Music Information Retrieval (MIR) in the past and
therefore gained scientific relevance. The aim of this work is to explore the characteristics
of these music features and especially to what extent it is possible to reproduce the
algorithms Spotify uses for the calculation of these features using state-of-the-art methods
of MIR. The research questions defined in Section 1.2 are supposed to frame the scope of
this work and to specify its aim. In order to be able to give scientifically sound answers
to the research questions, a series of experiments is designed and conducted. A detailed
description of the experimental setup is described in Chapter 4.

The results of the Single-Task Learning (STL) experiments show which prediction
performances can be obtained when predicting the music features published by Spotify
that are subject of this work. As the experiment results stated in Section 5.2 show,
feature “Danceability” can be predicted with an Mean Squared Error (MSE) of ∼ 0.009,
“Acousticness” with ∼ 0.015, “Instrumentalness” with ∼ 0.041, “Speechiness” with
∼ 0.005, “Liveness” with ∼ 0.031, “Valence” with ∼ 0.027, “Energy” with ∼ 0.010,
and feature “Loudness” with ∼ 5.608. These measurements give an answer to research
question RQ1 as defined in Section 1.2. Because of the fact that the test data set that
was used in the experiments to measure the final models’ results for each of the features
represents a broad range of music (to the extent it is offered by Spotify) and because
the machine learning algorithms that were applied in the experiments can be considered
as state of the art, the prerequisites of “using a test data set that covers a broad range
of music styles and genres” and “state-of-the-art machine learning algorithms” that are
defined in research question RQ1 are arguably met by the experiments. A description of
the contents of the data set that is used in this work and basis of the experimental results
is given in Section 4.1 and is intended to argue that the test data set actually “covers
a broad range of music styles and genres”. The explanations about the state of the art
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in MIR and especially the state of the art in deep learning for music feature learning is
attempting to act as a justification of the claim that the machine learning algorithms
used in the experiments are indeed state of the art.
A comparison of the different model hyperparameters that are considered in the machine
learning experiments suggests that there is a correlation between some of the chosen
hyperparameters and the performance obtained from the models on the task of predicting
Spotify’s music features that are subject of this work. The hyperparameters that are
tuned in the STL experiments are the Convolutional Neural Network (CNN) architecture,
the optimization algorithm and the learning rate. For all considered features (with the
exception of feature “Loudness”) the choice of the network architecture has a noticable
impact on the resulting model performance. The experiments show that the models that
apply ResNet-34 architecture are able to outperform the other CNN architectures under
consideration with regards to MSE. The exact reason for this cannot be derived from
the conducted experiments. One potential explanation for the fact that the considered
models with ResNet-34 architecture performed better than the other models could be
that the depth of the employed CNN has an impact on the resulting model performance.
It is common that CNNs with more hidden layers are able to achieve better prediction
results because of the fact that with more hidden layers more complex internal feature
representations can be expressed by a network and accordingly more complex relationships
between input and output can be mapped.
The other model hyperparameters that are tuned as part of the conducted experiments do
not show any relationship with the resulting models’ ability to reproduce the algorithms
for calculating the music features at hand. These observations give an answer to
research question RQ2, which addresses the comparison of the influence of different
model parameters on the task of predicting these music features with regards to the
models’ MSE.
Besides the experiments conducted in this work, which are concerned with the assessment
of the abilities to reproduce Spotify’s algorithms for calculating the music features using
STL CNN models, a series of experiments is conducted, which assesses the capabilities
of Multi-Task Learning (MTL) for this purpose. In comparison with the prediction
performances obtained using STL, the MTL models generally yield worse results for
all considered music features. The exact reason for this cannot be derived from the
experiment results. One potential explanation would be that the smaller size of the used
MTL networks has a disadvantage in comparison with the larger ResNet-34 architecture
used in the STL experiments. This would also be indicated by the fact that for some
of the music features the MTL models yield equal performance as the other network
architectures considered in the STL experiments, which have a size similar to the MTL
architecture. Another explanation would be that with MTL it is simply not possible to
outperform STL on the machine learning tasks at hand regardless of the size of the used
networks.
It should be noted that the approaches considered in this work for predicting the music
features are only a selection of possible approaches and that there would be a wide
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variety of other approaches that is left out of consideration. The selection of approaches
considered in this work is made in order to keep the extent of the experiments in a
feasible scope. However, it remains unclear whether other approaches could have yielded
better results in the task of predicting the music features. It is very likely that with other
approaches or, for example, by further tuning the considered hyperparameters, better
prediction performance results could have been obtained. The results actually obtained
in this work yet give an approximate measurement of well each of the music feature can
be extracted.
Also, it should be noted that the aim of this work, which is to study to what extent it is
possible to reproduce the algorithms Spotify uses for calculation of the music features, is
limited with respect to the fact that a number of premises are made. One such premise
is that the machine learning models for reproducing the feature extraction algorithms
only rely on spectrogram representations of audio signals as their input. This work does
not address other types of music descriptors that could be suitable for prediction of the
music features subject of this work. Furthermore, the audio signals only cover a sample of
each song of 30 seconds. It is evident that an audio signal covering an entire song would
contain more information that could be relevant for extraction of the music features.
Moreover, it should be noted that the music feature values used in this work, which are
offered by Spotify and were downloaded via a web API from Spotify, may change as
Spotify changes their algorithms that calculate these music features. Because of the fact
that the feature values were only downloaded once for the purpose to be used as part of
this work, this work considers only a “snapshot” of the feature values that might change
over time. This of course limits the validity of the findings of this work, since the gained
insights might not be true anymore as Spotify changes the algorithms for calculating
the music features. On the other hand, the reproduced feature extraction algorithms
provide a stable version of the set of features, which does not change even if Spotify
would change their feature extraction algorithms. For this reason, the algorithms that
are produced as part of this work might be particularly valuable for other research works
that use these music features because they ensure reproducibility, which is not given by
Spotify’s verions of the feature extraction algorithms.
In conclusion, this work gives a characterization of a set of semantic music features,
which appear to be scientifically relevant in the research field of MIR, and it attempts to
study to what extent these music features can be extracted from audio signals and to
reproduce the algorithms originally used to calculate these features. The results of this
attempt shows that it is indeed possible to perform the extraction of these features to a
certain degree using the methods applied in this work.
As described above, the findings of this work underlie certain limitations. Apart from
the limited validity of the findings that is caused by these limitations, they also show
that this work leaves room for future works, which could extend the research efforts
already made by this work. For example, a possible future work could study other
music descriptors, whether contextual or other audio representations, in order to further
improve the extraction of the features. Also, an analysis of how well the features can be
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learned when using the audio signals of entire songs rather than only samples - as it is
done in this work - would help to gain further insights.
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