
M A S T E R T H E S I S

Model-Based Approaches for
Sleep Stage Classification using
Time-Domain EEG Analysis

submitted to the

Institute of

Analysis and Scientific Computing

TU Wien

under the supervision of

Assistant Prof. Dr. Andreas Körner

by

Alexander Edthofer

Matriculation number: 01613479

Vienna, September 2023

Abstract

Classification of different levels of consciousness is of great importance in the diagnosis
of sleep disorders. Semi-automated or automated strategies are advised to facilitate and
accelerate the procedure. Different methods which achieve a good accuracy have been
proposed in research, most of them are based on machine learning algorithms. However,
none of them is in widespread use in the clinical or preclinical field so far. For acceptance
in the medical sector, a model has to be interpretable, which many of these artificial
intelligence-based models lack. Our approach aims to create an explainable model for
understanding and analysing electroencephalogram (EEG) data.
Due to the complex structure of the brain, a modelling strategy that is based on rules

and equations is not possible in neuroscience. Classical modelling combined with machine
learning supports the development of a mathematical and computational framework for
classification of sleep stages. For a given EEG signal, features are extracted from the signal
that should predict the level of consciousness. The focus lies on entropy-based parameters,
such as Permutation Entropy, Entropy of Difference and Kullback-Leibler Divergence, as
well as Granger Causality is used. These are explained in every detail and used, in combi-
nation with statistical features and a personal parameter of the patient, for the creation of
different machine learning models. They are trained, tested and compared regarding their
performance and interpretability. The training dataset is the CAP Sleep Database. The
implementation and tests are all run on MATLAB.
The results show that linear models, which are much more explainable and easier to

interpret, can compete with more complex ones regarding the performance. The desired
accuracy cannot be achieved, but it is presented, how enhancements of the models can
improve the results. Therefore, this thesis has contributed to show that sleep stage clas-
sification does not have to rely on black-box modelling, but can also work with plain
EEG-based models.

Kurzfassung

Diagnose von Schlafstörungen ist aufgrund der Regeneration des Körpers während des
Schlafs von enormer Wichtigkeit für unsere Gesellschaft. Dies passiert mittels Untersu-
chungen im Schlaflabor und anschließender Schlafstadienklassifikation, welche manuell aus-
geführt bis zu zwei Stunden dauern kann. Daher wird nach semiautomatisierten oder au-
tomatisierten Prozessen geforscht, um die Klassifikation zu beschleunigen. In den letzten
Jahren ist diesbezüglich vor allem maschinelles Lernen federführend, was jedoch noch nicht
in breiter klinischer Verwendung ist. In dieser Arbeit wird daher ein einfaches interpretier-
bares Modell zur Schlafstadienklassifikation gesucht, das Forschenden, Ärzt:innen wie auch
Patient:innen leicht zu erklären ist.
Für Modellierung der Hirnaktivität gibt es aufgrund mangelnder Kenntnisse darüber kei-

ne beschreibenden Gleichungen, stattdessen müssen Parameter gefunden werden, die uns
die komplexen Vorgänge im Gehirn modellieren. Grundlegende Messung dazu ist das Elek-
troenzephalogramm. Von diesem Signal werden Features berechnet, diese Arbeit beschäftigt
sich vor allem mit Entropie-basierten, wie der Permutation Entropy, der Entropy of Dif-
ference und der Kullback-Leibler Divergenz, sowie der Granger Causality. Diese werden
mathematisch detailliert erläutert. Abgesehen davon werden noch statistische Parameter
sowie das Alter verwendet, um verschiedene Modelle basierend auf Algorithmen des ma-
schinellen Lernens mit der CAP Sleep Database zu trainieren. Die Implementierung erfolgt
in MATLAB.
Die Ergebnisse zeigen, dass einfache lineare Modelle mit komplexeren in Bezug auf Ge-

nauigkeit mithalten können. Diese sind leichter interpretierbar und daher auch besser Laien
zu erklären. Durch Erhöhung der Feature Anzahl kann die Genauigkeit sogar noch verbes-
sert werden, auch wenn die gewünschte Genauigkeit nicht erreicht werden konnte. Somit hat
diese Arbeit dazu beigetragen zu zeigen, dass die Klassifikation von Schlafstadien nicht auf
Black-Box Modellen beruhen muss, sondern auch mit einfachen EEG-basierten Modellen
durchgeführt werden kann.

Acknowledgements

There are many people to whom I owe a big ”Thank you!” after submitting this thesis.
First of all, I would like to thank my supervisor Andreas Körner for giving me the

opportunity to study this research topic. He not only introduced me to the field, but also
connected me with other researchers and supported me all the time, especially in the last
months, the weekly meetings were very encouraging.

My colleagues have also been a great help, particularly Clara, Corinna, Iris, Lana and
Daniel. Professional discussions and words of encouragement provided knowledge and a
pleasant atmosphere.

I would also like to thank Matthias Kreuzer, Tom Fenzl and Michelle Franka from the
Technical University of Munich for helpful discussions, especially about the physiology of
the brain and the EEG.

To my parents and siblings I would like to express my gratitude, for understanding that
despite my physical presence I was sometimes mentally absent.
A big thank you also goes to my friends whom I often annoyed with my constant talking

about my Master’s thesis. Nevertheless, they provided a lot of mental support and there
were also very interesting conversations about sleep behaviour and different applications of
machine learning.
Last but not least, I would like to thank my girlfriend Mina. Especially the last few

weeks have been extremely exhausting and without her support, hugs, encouragement,
proofreading, listening to me talk about the thesis, I probably would not have made it
through the summer to hand in on time.

Vienna, September 2023 Alexander Edthofer

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Diplomarbeit selbstständig und ohne
fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt
bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht habe.

Wien, September 2023
Alexander Edthofer

Contents

1. Introduction 1

2. Processing and Coding of Electrical Brain Signals 5
2.1. Signal Recording and Processing of Human Brain Activity 5
2.2. Coding of the Data for Further Investigation 8

3. Attributes and Classification of Sleep 11
3.1. Sleep Stages and their Characterisation . 11
3.2. Review of Automated Classification Algorithms 13

4. Mathematical Fundamentals of the Sleep Scoring Modelling Framework 17
4.1. Application of Entropy in Information Theory 17
4.2. Permutation Entropy . 20
4.3. Entropy of Difference . 21
4.4. Kullback Leibler Divergence and Cross Entropy 23
4.5. Granger Causality . 26
4.6. Statistical Features . 27

5. Building a Classification Model 31
5.1. CAP Sleep Database and Data Preprocessing 31
5.2. Implementation of the Feature Extraction 35
5.3. Selection of the Model . 41

6. Results and Benchmarking 51
6.1. Performance of Different Models for 22 Features 51
6.2. Model Improvement using 64 Features . 55
6.3. Benchmarking Sleep-EDF Sleep Telemetry Database 58

7. Discussion 61

Bibliography 63

List of Figures 69

List of Tables 71

A. OLS Algorithm 73

B. Folddistribution of the Data 75

i

List of Abbreviations

EEG Electroencephalogram/electroencephalography

EOG Electrooculogram/electrooculography

EMG Electromyogram/electromyography

ECG Electrocardiogram/electrocardiography

PE Permutation entropy

EoD Entropy of difference

KLD Kullback Leibler divergence

CE Cross entropy

GC Granger causality

CAP Cyclic alternating patterns

LDA Linear discriminant analysis

SVM Support vector machine

KNN K nearest neighbour

R&K Rechtschaffen and Kales

AASM American Academy of Sleep Medicine

VAR Vector autoregressive

PSD Power spectral density

OLS Ordinary least squares

iii

1. Introduction

Sleep is the natural rest for humans and animals. We all need it for daily functioning as a
counterpart to being awake, when energy is consumed. Biological changes throughout the
day are called circadian rhythms, see [60]. They play an important role in our functioning,
one of them is prominent as it regulates our sleeping behaviour. This one is influenced by
light, which makes us more alert when it is brighter, by body temperature, which is lower at
night, and by chemicals such as melatonin and neurotransmitters. The latter are messenger
substances that enable neurons to communicate with each other and can be easily affected
by caffeine, medicines or drugs. Other addictive substances like alcohol or nicotine affect
the sleep behaviour as well. This can lead to sleep deprivation.

Not only physical but also mental natural recovery happens during sleep. If the body
does not get enough sleep, it can cause severe impairments in everyday life. We get drowsy
and it is hard to concentrate. Low performance in cognitive tasks, judgement, attention
and coordination are the result. Especially when being awake for longer than 24 hours,
metabolic activity decreases, which results in less energy production of the body. If the
deprivation continues, hallucinations as well as mood swings can occur. From this it can be
deduced that sleep reduces the risk of suffering from physical and mental diseases as it helps
us to maintain emotional and social functioning at an optimal level, see [60, 70]. Hence, it
is of great importance to investigate sleeping behaviours for health and, subsequently, for
socio-economic reasons, as it effects all people.

Consequently, as sleep deprivation can be caused by a neurological-psychiatric sleep dis-
order, accurate diagnosis methods of sleep are of great importance for our society. The gold
standard for these is polysomnography in a sleep laboratory over night for at least eight
hours, a recording of multiple biosignals with multiple channels. Using electroencephalogra-
phy (EEG), electrooculography (EOG), electromyography (EMG) and electrocardiography
(ECG) the activity of the brain, the eyes, the muscles and the heart are measured, see
[60, 31], whereas breathing work is recorded as well. The polysomnography is evaluated
by a specialist, which can take up to two hours. This not only takes some time, but also
requires a lot of financial resources of the health care system. Svetnik et al., see [64], wrote
that in 2005 the global market spent around 4.3 billion US$ for sleep stage classification
with a rising forecast due to the new invention of different sleep medication. EEG mon-
itoring during sleep deprivation can also help in the diagnosis of epilepsy, since electrical
brain activity changes greatly during seizures, see [47].

Automated and semi-automated algorithms for supporting sleep stage classification and
analysis of the different biosignals are getting created since over 20 years. Many of these
approaches are based on machine learning algorithms. In research, new classification mod-
els are created and tested on different sleep datasets to benchmark and compare against to
other models. Recent publications by Brandmayr et al. [10] or Van der Donckt et al. [69]

1

1. Introduction

introduce different classification approaches that reach accuracies of up to 87.1%, bench-
marking various datasets. Some algorithms are based on supervised learning, a method for
which the classified stages for the training dataset are available, and some others on unsu-
pervised learning, a training method for which the output is not known. Even though they
perform very well and achieve accuracies of 80% or above, none of them is in widespread use
in hospitals or sleep laboratories. A possible explanation is that many of the approaches are
difficult to interpret and hardly explainable, see [23], properties that are not very accept-
able in the medical field. It is important to reach at least 80%, as this is also approximately
the interrater reliability, i.e. the overall agreement between two different sleep scorers, who
manually classify a polysomnography recording, according to [18].

This is where our approach comes in as we aim to find a plain interpretable model that
is based solely on EEG recordings. Three EEG channels are used to extract 21 different
features, which are the permutation entropy (PE) [5], the entropy of difference (EoD)
[51], the Kullback-Leibler divergence (KLD) [40], the cross entropy (CE) [50], the Granger
causality (GC) [27, 26] and statistical parameters. The PE, EoD, KLD and CE are based
on the Shannon Entropy, which is coming from information theory [63]. The predictors
have already been used by different researchers in the past in the field of EEG analysis,
see [52, 37, 28, 59], but have not yet been combined. We calculate all of the features in
the time-domain, such that no fast Fourier transformation has to be applied on the data,
with the intention that this speeds up the feature extraction. Including the age, we use 22
different predictors for building a sleep stage classification model. The aim of this thesis
is to show that plain linear models, based only on EEG signals and a personal parameter,
achieve similar accuracy to more complex ones. This would pave the way for interpretable
and explainable sleep scoring models based on time-domain EEG analysis that can be
applied in the medical field.

The features are used to train different machine learning algorithms using the cyclic
alternating patterns (CAP) Sleep Database [67]. It is an open source database that has
been downloaded from PhysioNet [25], which is a data repository that contains freely avail-
able data from medical research. We look at linear discriminant analysis (LDA), decision
trees, bagged trees, boosted trees with AdaBoost, kernel logistic regression, naive Bayes
classifier, weighted K nearest neighbour method (KNN) and linear support vector ma-
chines (SVM). They are all supervised learning approaches. AdaBoost is an abbreviation
of adaptive boosting, which is an algorithm that optimises the performance of a model. The
descriptions of the algorithms mainly follow [50, 39]. Afterwards, a comparison between
the models based on the algorithms is given, regarding performance and other properties,
and the best ones are used to benchmark the open-source Sleep Telemetry Database of the
Sleep-EDF Database Expanded [35], which is available on PhysioNet as well.

This thesis is structured as followed. Firstly, in chapter 2, the electrical activity in brains, as
well as the EEG measurement, are described. We also give an insight into (pre-)processing
of the recording and coding of the signal such that the mentioned features can be directly
computed. Secondly, in chapter 3, sleep and its characteristics are explained. The differ-
ent stages and how they are distinguished in a polysomnography recording are described.
Then, a review of automated and semi-automated approaches of sleep scoring is given as

2

well. Thirdly, in chapter 4, the already mentioned features are explained in mathemati-
cal detail. The underlying CAP Sleep Database that is used for training the models and
its properties are described in chapter 5. The parameters and the implementation of the
various features are explained as well. The chapter closes with an introduction into all the
models that are looked at. In chapter 6, the achieved results are presented and the models
are compared. An enhancement of the models to increase the accuracies is given as well.
We do not only take a look at the classification accuracies but also at other properties of
the best performing models. The best ones are then used for sleep stage classification of
the Sleep Telemetry Database to benchmark our created models. Afterwards, in chapter 7
a rough summary and a discussion about the outcomes as well as thoughts of improvement
are given.

The implementation was done in MATLAB c�, Version 2022b [45]. The programs were
executed on a MacBook2017 with an 1.2GHz Dual-Core Intel Core m3 processor and an
8GB 1867MHz LPDDR3 RAM working memory up until the results of chapter 5. The
training and testing of the machine learning models described in chapter 6 were performed
on a desktop computer with Microsoft Windows 10 as an operating system because of
the computational effort that the training took. It runs with an AMD Ryzen7 1700X
Eight-Core Processor with working memory of 3400MHz on eight kernels and 16 logistic
processors. For creating the different models we used the Classification Learner application
of MATLAB.

3

2. Processing and Coding of Electrical Brain
Signals

Every stimulus humans perceive, whether by sight, touch, hearing, smell or taste, is pro-
cessed by their nervous system. It consists of a peripheral and a central part. The first
one is represented by peripheral nerves which are made of nerve fibres. They have different
sizes and functions as there are sensory, motor and vegetative nerves. The sensory system
connects our senses and transmits different stimuli to the central nervous system. The
motor nerves control the movement of our striated muscles, i.e. our skeletal muscles. The
functionality of our internal organs is regulated by the vegetative ones. The central nervous
system consists of the brain and the spinal cord. It is estimated that 100 billion nerve cells
are embedded in the brain. In between two such neurons are glia cells which make up the
structure of the brain. In the central nervous system the information received by the sen-
sory nerves is processed and memorized and, if applicable, actions, for example movement,
are ordered which are then carried out by the motor nerves. Transmission of information is
done by so-called action potentials which are temporary changes in the neuron membrane
electrical potential. They travel along axons. The joints between two neurons or between
axons and neurons are synapses, see [19, 47, 60].

The information processing in the central nervous system is done by changing the elec-
trical properties of the membrane, i.e. the ionic conductivity, see [16]. The measurement of
this brain activity is called EEG. It is of great importance for neurologists in the diagnosis
of diseases, but also for anaesthetists in monitoring during surgery. The recording and
processing of an EEG is a complex technical procedure. This will be discussed in more
detail in the next section. In the second section the encoding of the EEG signal into certain
patterns will be explained. These patterns will be used for the analysis of the EEG.

2.1. Signal Recording and Processing of Human Brain Activity

The procedure of an EEG consists of many different steps, several things are needed, see
[31]. To summarise the signal recording and processing, a schematic diagram of the process
is shown in figure 2.1, the different steps are described in this section.

As already mentioned, information processing is done by changing the neuron membrane
electrical property. To measure this, electrodes are used as the link between the human
body and the recording system. Between the neuron membrane and the skin, where the
electrode is placed, there are still some layers, i.e. the brain itself, the skull and the scalp
as well as other structures like veins, arteries, muscles and tissue. All of these attenuate
and disturb the signal. Hence, only a significant quantity of neurons active concurrently is
capable of producing a signal of sufficient strength for recording, see [60].

5

2. Processing and Coding of Electrical Brain Signals

Electrodes Amplifier Filter ADC

u(t)
representing
brain activity

(𝑥�)
time discrete

EEG signal

Figure 2.1.: Schematic diagram of the signal recording and processing of an EEG.

Once this happens it is also important to look at where the electrodes are placed. For
reasons of comparison and reproducibility the ”10-20 system” has been installed as a stan-
dardisation for the EEG. It allows a dynamic placement since it does not use a constant
measure but specifications given in percent. This way it can be applied not only to adults
but also to children, infants or other people with smaller heads. The name comes from the
fact that certain anatomical landmarks are taken and then the placement occurs in 10 or 20
percent steps of this distance. The key points of reference are the nasion, the lowest point
between the nose and the forehead in the middle between the eyes, the inion, the lower
bony protuberance in the middle of the back of the head at the base of the neck muscles,
and both preauricular points, the cavities in front of the external auditory canal just below
the cheekbone and above the mandibular joint, see figure 2.2. The usual EEG measurement
is done with 21 electrodes, for a larger setting there is a definition with 75 electrodes avail-
able, including four for a reference signal. In smaller settings the reference for the voltage
is usually the average value of all of the electrodes used. There are also cases where the
number of electrodes is minimised down to three, for example during surgery. One is for
grounding, one for a reference signal and one for the actual measurement. Anaesthetists
use it in that setting to monitor the level of consciousness.

As soon as the signal has been measured by the electrodes the processing can start. At
first, an amplifier is needed to increase the amplitude of the signal due to the attenuation
mentioned above. Raw EEG signals have a value in the range of µ-volt. Secondly, artefacts
are detected. These are disturbance voltages, also known as noise, which interfere with
the signal. They can be split up in two categories. The first category is the physiological
which includes movement, sweating or muscle twitching. Other interfering measurements
such as EMG, ECG or EOG are also part of it. The second category comprises the tech-
nical related artefacts like power-supply, noise of the amplifier, missing grounding or using
false electrodes or faulty cables. In most cases these artefacts result in at least a 50Hz
disturbance, see [47].

6

2.1. Signal Recording and Processing of Human Brain Activity

Figure 2.2.: Representation of the ”10-20 system” for the electrode placement during an
EEG recording, taken from [60]. The right picture also shows the placement
of the common setting of 21 electrodes.

Therefore, it is necessary to apply highpass and lowpass filtering. Often a highpass filter of
0.5Hz is used which removes low-frequent noise, for example breathing. For lowpass filtering
the disturbance of line voltage alone is around 50Hz, but it is needed to run the technical
instruments. Furthermore, as [71] states, muscle activity disturbs EEG frequencies over
20Hz. Even if medication for muscle relaxation is applied to the patient, muscle activity
occurs in the forehead.

It is also important to know the frequency of human brain waves. They are divided
into five categories: δ (0.5-4Hz), θ (4-8Hz), α (8-13Hz), β (13-30Hz) and γ (above 30Hz,
mainly up to 45Hz). The first category, the δ-waves, mainly appear in deep sleep but
can also be found during the process of waking up. The θ-waves are associated when
humans are in an unconscious state but easy to arouse. This level is called drowsiness. The
next higher frequent ones, the α-waves, is the most common category in brain activity. It
appears primarily in an awake state when the eyes are closed. The β-waves occur mainly
when adults are mentally active, i.e. during thinking, processing or being attentive. Their
appearance in specific states of consciousness are further described in section 3.1. Because
waves of the last category, the γ-waves, are rare and do not play a major role in determining
the level of consciousness, plus all of the disturbances listed above, a 30Hz lowpass filter is
applied to the EEG, see [60].

After filtering, the signal must be discretised for further investigation and processing.
This is done by a multi-channel analogue-to-digital converter (ADC). The sampling fre-
quency needs to be at least two times the maximum frequency. This result was stated in
1949 by Claude Shannon with the Nyquist-Shannon sampling theorem in [62].

7

2. Processing and Coding of Electrical Brain Signals

Theorem 2.1.1. If a function f(t) contains no frequencies higher than W cps, it is com-
pletely determined by giving its ordinates at a series of points spaced 1

2 W seconds apart.

Proof. The proof can be found in [62].

As the frequencies of human brain waves go up to 45Hz, sampling frequencies of at least
100 samples/s should be enough in theory. For practical uses, other sources like [60] suggest
a sampling frequency of 200 samples/s, since the effective bandwidth for EEG signals is
around 100Hz, depending on the specific purpose for which the recording is being made.
After discretisation, the signal can also be filtered further.

2.2. Coding of the Data for Further Investigation

Processed EEG signal can be displayed as a time series (xt)I , I = {1, ..., n}, with a certain
length n. Depending on the investigation it is necessary to encode the series in some way
to calculate different parameters. These will be discussed in detail in chapter 4, but the
encoding in patterns will be introduced here. The parameters, which need the signal in
an encoded form, are the PE, as it was defined in 2002 by Christoph Bandt and Bernd
Pompe [5], and the EoD, as Pasquale Nardone introduced in [51]. Some other measures
are based on these two and will therefore need the same encoding as them. The notation
and definition will follow [9, 73]. The PE and the EoD have in common that one first
has to choose an order m and a time delay τ . Afterwards the series will be divided into
k := n− (m− 1)τ tuples of length m. The time delay tells the index shift we have between
two values in the tuple. This means, that for τ = 1 only neighbouring values appear in a
tuple, whereas for τ > 1 the index distance is greater.
The influence of the time delay τ is discussed in [54]. It is explained that a higher time

delay behaves the same as a lower sampling rate which means that the product of the
two values is constant. Hence, it is of great importance to specify both settings such that
the parameter is described correctly, for example for reasons of reproducibility. This holds
independently of the order m.
As we want to divide the series (xt) into k tuples of length m, where the index shift

between each component is τ , the mapping rule is

(x1, ..., xn) �→ ((x1,x1+τ , x1+2τ , ..., x1+(m−1)τ),

(x2, x2+τ , x2+2τ , ..., x2+(m−1)τ), ..., (xk, xk+τ , xk+2τ , ..., xk+(m−1)τ)). (2.1)

Now, we distinguish between the PE and the EoD. Starting with the first parameter, when
a certain tuple beginning with the value xj is taken, we look at the numerical order of the
values. Numbers r1, r2, ..., rm ∈ J = {1, 2, ...,m} are introduced such that it holds

xj+(rs1−1)τ < ... < xj+(r1−1)τ < ... < xj+(rsm−1)τ .

The values (rs)J are chosen such that one value of the set J is assigned to exactly one of
the values (rs). It is important to mention that r1 is associated to the first value of the
tuple xj , r2 is associated to the second value xj+τ , and so on, until rm is associated to
xj+τ(m−1). The order shows that rs1 is associated to the lowest value of the tuple and rsm

8

2.2. Coding of the Data for Further Investigation

("!, "", "#)

Ω%
1 2 (3)(3) 2 (1)

2 (3)(1)2 1 (3)1 3 (2)
3 1 (2)

("", "#, "$)

("#, "$, "%)
Figure 2.3.: Schematic diagram of the mapping between the tuples of the time discrete

signal (xt) and its encoded permutation variation (rs) for the PE in Ωm for
m = 3 and τ = 1.

to the highest one. If two values within a tuple are equal, then the first appearing one has
the lower index, i.e. if xj1 = xj2 with j1 < j2 then rs1 < rs2 with rs1 associated to xj1 and
rs2 associated to xj2 . This allows ties to be bypassed. For our application of EEG analysis,
this is very rarely the case.

The numbers (rs) ∈ J are a permutation of the pattern (1)...(m). By writing the numbers
(r1)...(rm) in rounded brackets, patterns with order m > 9 can be used as well. The set of
all possible patterns depends on the chosen order m and is defined as

Ωm := {ω : ω is a permutation of (1)(2)...(m)}.

The cardinality of this set is |Ωm| = m! since this is the number of permutations of positive
integers up to m. Two extreme cases are given as an example. If the tuple is strictly
monotonously increasing, then the permutation type equals ω = (1)(2)...(m − 1)(m). On
the opposite if the tuple is strictly monotonously decreasing, then ω = (m)(m− 1)...(2)(1).
A graphical representation of this encoding can be seen in figure 2.3.
The second form of encoding needed is for the EoD. The tuple generation (2.1) is taken

again but now we just look at neighbouring values within one tuple. The encoded form will
be only built up from ”+” and ”− ”. Starting from the first value xj of an arbitrary tuple
if xj+τ as the next one is higher, i.e. xj+τ > xj , then a ” + ” is added to the encoding.
On the opposite, if it is lower, i.e. xj+τ < xj , a ”− ” is added. This comparison is carried

9

2. Processing and Coding of Electrical Brain Signals

(𝑥!, 𝑥", 𝑥#)

Ω�
+ +− −

+ − − +(𝑥", 𝑥#, 𝑥$)

(𝑥#, 𝑥$, 𝑥%)
Figure 2.4.: Schematic diagram of the mapping between the tuples of the time discrete

signal (xt) and its encoded type for the EoD in Ωm for m = 3 and τ = 1.

out for the whole tuple. If two neighbouring values within a tuple are the same, then the
comparison results in a ” + ”, like if the first one would be lower. This coincides with our
definition for ties of the PE encoding. But again, in our application of EEG analysis, this
is very rarely the case.
For a tuple of length m the encoded form has length m − 1 since there are that many

comparisons. Hence, the number of all possible patterns of ” + ” and ” − ” signs of the
encoded form is 2m−1, because every position can be taken by the two symbols. By defining
the space of all possible patterns again as

Ωm := {ω : ω is a string of symbols of lengthm− 1 containing ” + ” or ”− ”},

the cardinality is |Ωm| = 2m−1. Again, for strictly monotonously increasing, the pattern
ω = ” + +... + ”. On the opposite if the tuple is strictly monotonously decreasing, then
ω = ”−−...− ”. A graphical representation of this encoding can be seen in figure 2.4.

10

3. Attributes and Classification of Sleep

Firstly, the main question: What is sleep and how can it be distinguished from wakeful-
ness? The answer is given for example by [49]. On the one hand, wakefulness is typically
defined by a state of high alertness and goal-oriented movements which are caused by either
external stimuli or internal motivations. On the other hand, sleep is characterised by un-
consciousness from which one can be aroused. The last aspect is the important difference
compared to a coma, from which one cannot be aroused, see [60]. Apart from that, it is
specified mainly by decreased interaction, motor and muscular tone, closed eyes, an in-
creased rate of cell structure synthesis and, on the contrary, a decreased rate of breakdown
of cell structures.

The sleep-wake cycle can be categorised in different states, which will be focused on in
section 3.1. The usual classification is done manually by specialists following a manual
[32] using different biosignal measurements. In research there are many algorithms used
for classification and decision support systems, an overview is given in section 3.2. They
primarily use EEG measurements as described in chapter 2.

3.1. Sleep Stages and their Characterisation

The specific sleep states and their characteristics will be introduced in this section. The
measurement plays an important role in sleep analysis. The sleep-wake cycle can mainly be
divided in the three categories wakefulness, rapid eye movement sleep (REM) and non-rapid
eye movement sleep (NREM), see [49]. All of them have their own characteristics regarding
behaviour, vital parameters and brain waves frequency. Wakefulness is typically identified
by high frequency oscillations in the brain waves frequency spectrum with 8Hz upwards,
which indicates α-waves. The EEG activity primarily has a low amplitude. Usually, people
have their eyes closed as well as increased muscle tone.
When falling asleep further, i.e. NREM sleep, the frequencies of the EEG slow down,

usually in the range of θ-waves with a frequency of 0.5 to 4Hz. The amplitude of the EEG
activity is high. Sleep spindles with a frequency of 11 to 15Hz also rarely occur but only
they just around 0.4s. Therefore, NREM sleep is characterised by a reduced muscle tone
and lower frequent brain waves. Furthermore, the autonomous nervous system reacts to
this sleep state, i.e. on the one hand the activity of the parasympathetic nervous system
increases, while on the other hand the sympathetic activity decreases, which results in a
reduced heart rate and blood pressure. The heart rate variability is used to determine this
change of autonomous nervous system activity.
REM sleep has a high frequent spectrum, similar to wakefulness, but a decrease in muscle

tone as well as saw-tooth like waveforms are specific features for that state. In this state
a change of the vital parameters is not identifiable as they are at a similar level as during
wakefulness. REM sleep accounts for around 20 to 25% of the total sleep time. It is the

11

3. Attributes and Classification of Sleep

time when people are supposed to dream. Hence, the higher frequent brain activity as
well as eye ball movement is reasonable. The last symptom is also the reason why it is
called rapid eye movement sleep. During this stage even talking or sudden movements are
possible.

The NREM state can be further distinguished in four subcategories, regarding to Recht-
schaffen and Kales (R&K) [58]. Stage 1 is drowsiness, when someone is between being
awake and asleep. According to [60] around 5 to 10% of the entire sleep time is spent
in this stage, where the muscles begin to relax. One can be easily aroused in that time.
During growing up the brain wave activity changes. Infants and younger children have
more prominent θ-waves in this level of consciousness. Teenagers as well as elderly people
only have little appearance of slow activity. Stage 1 in adults is primarily characterised by
α-waves. Sleep spindles with a frequency of 18 to 25Hz can also occur.

Stage 2 accounts for 40 to 50 % of the total sleep time. When using an EOG to measure
eye movement, one can identify that it stops. The frequencies of the brain waves slow down
more and more, but still spindles of higher frequencies appear from time to time. It is the
state of light sleep. In stage 3, δ-waves occur with rarely appearing sleep spindles of 12 to
14Hz. In stage 4, the δ-waves are the most prominent wave category. They are also barely
detectable in a routine EEG, but require monitoring of at least 24 hours, see [60]. In both
of the last stages muscle and eye activity is almost gone. Humans are hard to wake up
during these stages but if it happens, one is very disorientated. These are called the stages
of deep or very deep sleep.

The classification by R&K was revised by the American Academy of Sleep Medicine
(AASM) in 2007, see [32]. They merged stages 3 and 4 and it is now the internationally
used and recognised sleep stage classification. The abbreviation of the different stages are
listed in table 3.1.

Table 3.1.: Sleep stages and their abbreviations in 1968 and 2007.

Sleep stage awake REM
NREM
stage 1

NREM
stage 2

NREM
stage 3

NREM
stage 4

R&K (1968) W R S1 S2 S3 S4

AASM (2007) W R N1 N2 N3

Figure 3.1 shows an example of how the course of the sleep stages can be during one
night. The data is taken from the open-source CAP Sleep Database [67]. It contains a
polysomnography recording of 108 patients that were monitored over night. Most of them
suffer from a sleep disorder, but there was also a control group of 16 healthy subjects
included. The sleep stages are given in a thirty second interval. The dataset was published
in 2001, therefore the sleep stage classification by R&K was used. For comparable results
we merged the stages S4 and S3 by hand to get the new classification by AASM. The
subject n1 is our example as one of the 16 healthy probands, i.e. not suffering from a sleep
disorder. The woman was 37 years old at the time of the recording.

The sleep stages given on the y-axis are abbreviated as mentioned in table 3.1. The patient
n1 fell asleep at around 22:10 which is approximately 30 seconds after the sleep stage
documentation began. The night and monitoring lasted for 9 hours and 33 minutes. The

12

3.2. Review of Automated Classification Algorithms

0 200 400 600 800 1000 1200

time (30s)

N3

N2

N1

R

W

s
le

e
p
 s

ta
g
e
s

Figure 3.1.: Course of the sleep stages over time using the example of the patient n1.

unit of time on the x-axis is given in 30 seconds. We can see, that the patient fell asleep
and woke up for a brief amount of seconds a few times during that night. The REM phases
always lasted some time, but the most time was spent in stage N2, as it is characteristic
for that stage like mentioned above.

Having a polysomnography recording, the classification is done by specialists following
a certain manual. Nowadays the manual of the AASM published in 2007 is usually used,
see [32], which is updated every few years. The scoring is done visually by splitting the
biosignals in 30 second windows, looking at the different channels during this time and
categorising the sleep stages regarding their attributes. For a recording of a whole night this
can take some time. Hence, algorithms and decision support systems have been invented
and implemented since over 20 years. An overview about different approaches, especially
of the last few years, is given in the next section.

3.2. Review of Automated Classification Algorithms

Manual sleep scoring is a very time consuming procedure. The polysomnography recording
is split in 30 second windows, also called an epoch, and then examined by a specialist,
which can take up to two hours. Hence, semi-automated and automated approaches of
sleep scoring are explored. We provide a literature review of various concepts, focusing on
EEG analysis. In particular, we take a look at the recent advances of the last three years.

A difficulty that automated sleep scoring faces is the comparison to manual sleep stage
classification because of interrater reliability. In 2009, Danker-Hopfe et al. [18] showed in a
study that for the R&K rules the overall agreement was 80.6% and 82% for the standards
set by AASM. Consequently, procedures that reach this percentage are already quite good.

13

3. Attributes and Classification of Sleep

In biology and medicine a measure for classifier accuracy is Cohen’s κ coefficient, see [14],
which is also used in many publications in the field of sleep scoring. It uses the proportion
of units in which the judges agreed p0 and the proportion of units for which agreement is
expected by chance pc. The value is then defined as

κ =
p0 − pc
1− pc

. (3.1)

The value has a range of [−1, 1] and the higher the value the better agreement. A negative
κ indicates worse agreement than random classification. For values between 0 and 0.2 one
has slight agreement, then up to 0.4 fair, until 0.6 moderate, then up to 0.8 substantial and
finally up until 1 (almost) perfect agreement. Danker-Hopfe showed in her study about
the interrater reliability that Cohen’s κ coefficient for the R&K rules was 0.68 and for the
AASM standards 0.76 which means that these values are to be aimed at.
In [64] two systems which had been tested on clinical data and the underlying algorithms

had been published were compared. These were Morpheus by WideMed Technologies Ltd.
from Israel [53] and the Somnolyzer24X7 by The Siesta Group Schlafanalyse GmbH from
Austria [2]. The authors looked at 164 recordings of 82 different subjects and compared the
results between the different automated and semi-automated systems with the manual sleep
scoring according to the rules by R&K. The epoch-by-epoch agreement was between 70%
and 75.9% with a Cohen’s κ between 0.548 and 0.627 with semi-automated classification
performing better than the automated one. Hence, the automatisation of this procedure
promises good results.
Ever since then, the systems developed and it was already published in 2010 that the

agreement between two Somnolyzer24X7 assisted scorings reached 99% with κ = 0.99 and
between semi-automated and manual scoring 81% to 82% with κ = 0.76 according to the
AASM rules, see [3]. The researchers in this field did not want to stop with automated and
semi-automated scoring using polysomnography but also less biosignals and wires.
In 2003, Louis et al. published a computer-based sleep scoring algorithm with up to

three steps to determine the states active wake, quiet wake, REM sleep and NREM sleep,
see [43]. The difference between active and quiet wake is whether the subject is moving or
not. It has a very obvious approach and is designed for Wistar rats using only EEG and
EMG. The algorithm is a decision-making process and contains three steps. For each step, a
threshold is set that has been previously determined using visually scored data. Firstly, the
EMG amplitude is looked at and if it is above the threshold, the rat is in active wake, if not
another level is reached. Secondly, the EEG amplitudes of the frequency wave categories
are considered. If the ratio of δ·α

β·γ is above the second threshold, the rat is in the state of
NREM sleep, if not we get to the third level. There, if the ratio of the EEG amplitudes of
θ2

δ·α is above the third threshold, the rat is in REM sleep state, if not it is simply in quiet
wake. With this algorithm an agreement of 87.9% was reached in comparison to manual
raters. In this publication no Cohen’s κ value was given.

Over the years, different bio- as well as other signals were used to perform sleep stage
classification. The broad field stretches from EOG, see [30], EEG, see [44], ECG, see [57],
and combinations such as EEG and EMG, see [1], or EEG and EOG, see [74] but also
cameras were used during a car drive to determine vigilance states by recording eyes, face
and head, see [33]. According to [21] all of the signals contain important information for

14

3.2. Review of Automated Classification Algorithms

sleep scoring. Consequently, by combining them the result improves and we gain more
knowledge. However, the goal is to reduce wiring but still get good results in comparison
to manual sleep scoring. Performance improvement and optimisation drove the various al-
gorithms and procedures further and at some point machine learning was added in different
forms. Faust et al. made a review in 2018 about deep learning for healthcare applications,
see [20]. The result was that these machine learning methods will be used more and more,
since they improve as more data becomes accessible.
In 2019, Radha et al. addressed the issue of performing sleep stage classification over

time of patients at home, see [57]. Polysomnography is done for one or two nights in the
hospital, but cannot be done long term since the wiring effects the sleep quality. Therefore,
a cheap and ergonomic alternative should be found. They studied heart rate variability
in the context of sleep scoring. For this purpose, they used a long-short-term memory
network, because according to the authors, long term sleep patterns should also be taken
into account. 584 measurements of 292 subjects of different age and health status of the
Siesta database [36] were examined. They split the data in four folds, trained the model
with three and tested it with the last. The overall accuracy was the mean of these four test
runs which results in 77% for a model structure of 128 cells with κ = 0.61. However, it is
described that the performance for people over 50 years declined and this method does not
get close to EEG-based sleep stage classification.
EEG-based methods were followed quite a lot over time according to [22]. The methods

range from fuzzy logic over hidden Markov models and wavelet transformation to feature
extraction in combination with different machine learning algorithms. Especially the most
famous machine learning method, i.e. neural networks, was used in different variations.
In 2020, a convolutional neural network was proposed by Fernandez-Blanco et al. that
achieved very good results, see [22]. They studied the difference of examining two channels
instead of one, i.e. Fpz-Cz and Pz-Oz, on a dataset of 61 recordings with healthy people
as well as patients under medication because of problems with falling asleep. The authors
gained an accuracy of 92.67% in comparison to manual scoring with κ = 0.84.
Combining the good results with low-cost and wearable measurement devices is done

in [13, 41] for example. Casciola et al. applied their convolutional neural network and
long-short-term memory model to EEG measurements of twelve subjects between 21 and
61 years old. Using a portable two-channel headband they get an accuracy of 74% for their
model. Cohen’s κ coefficient was not given in that paper. In comparison, Kwon et al.
invented a convolutional neural network model based on two EEG and two EOG channels
and trained it with a public dataset of 100 people. Afterwards, they tested the model
on four subjects and got an accuracy of 81.52% with κ = 0.734. The advantage of their
approach was that they fabricated four nanomembrane, stretchable electrodes which are
easily wearable. With different neural network enhancements, Brandmayr et al. published
a single channel EEG model in 2022 whose performance had improved even further, see
[10]. In comparison to other deep learning models the authors achieved the best results
applied to three databases with up to 87.1% accuracy and κ = 0.823.
Although many methods with good results have been described in research, none of them

have yet manifested in clinical or pre-clinical settings. A possible explanation is the lack
of interpretability, a big disadvantage that all the deep learning models show, see [23]. A
possible way out is to change the method to explainable and interpretable methods.

15

3. Attributes and Classification of Sleep

In 2023, Van der Donckt et al. proposed with logistic regression and gradient boosted
trees, two rather simple models, see [69]. The authors extracted 131 different features with
56 based on the time domain and 75 based on frequency domain per epoch, but looked at
eight different windows at the same time. They included the current epoch, but also two
in the past and two in the future, as well as overlapping windows of 60 and 90 seconds.
Consequently, the amount of features looked at per epoch was 1048. With these models,
the authors looked at four different datasets and compared them to other sleep scoring
models. The results were an accuracy of up to 86.7% and a Cohen’s κ value of up to 0.816
with which the models could not only compete with deep learning models, but also surpass
them for some measured data. The publication shows the opportunity of interpretable
machine learning models in the field of sleep scoring, which have a better chance of use in
the clinical context.
A recent publication in May 2023 by Metzner et al., see [46], point out that also non-

machine learning algorithms can still give advances in the field of sleep scoring. They used
the general discrimination value, a measure that is based on the intra-class and inter-class
distances for class separability, on the frequency domain EEG measurement together with
a principle component analysis. The authors showed that one component, that has a strong
correlation with the temporal progression of the sleep stages, can model the depth of sleep
very well. This result promises development in the understanding of brain activity in sleep.

16

4. Mathematical Fundamentals of the Sleep
Scoring Modelling Framework

Our modelling approach introduced in chapter 5 is based on 22 features. Some of them
are more prominent as they are mainly statistical parameters, an overview is of these is
given in section 4.6. The ones that are not widely known are described first in the next
sections. The underlying theory of many of them is entropy, hence, before describing the
used parameters an introduction in the field of entropy in information theory is given in
section 4.1. Afterwards, the features PE, section 4.2, and the EoD, section 4.3, are described
which are already mentioned in section 2.2, where the encoding of the time-discrete EEG
signal is explained as a preprocessing to calculate these parameters. Next, two comparison
methods are introduced in sections 4.4 and 4.5, namely the KLD and the GC. The first
one describes the difference to a reference model, the second one calculates the gain or loss
of information between two signals.

The first feature does not need to be calculated because it is directly dependent on
the examined patient. As we look at EEG measurements of patients of different age and
health-status we also include age as a feature, since EEG recordings show amplitude and
frequency changes in elderly people, see [60]. It is described that on the one hand α
frequency is reduced and β wave activity is increased. Also, the amplitudes of the EEG
during NREM sleep lower with age. REM sleep is less present, but sleep disruption happens
more frequently. Age is also the only feature that is independent of the time series (xt)I ,
I = {1, ..., n}, that represents the EEG.

4.1. Application of Entropy in Information Theory

Many of the used parameters in the model are entropy-based. Therefore, an introduction
into the concept of entropy is given, which has its origin in physics. In the field of thermo-
dynamics it plays a very important role, see [68]. In the 19th century, Ludwig Boltzmann
described the heat of a fluid by its disordered movement of atoms and molecules. The
entropy increases when the number of states that can be taken rises. In the middle of the
19th century, Clausius gave a macroscopic description of the term, contrary to Boltzmann’s
microscopic view. He introduced the change in the entropy of a system as being dependent
on the supplied heat and, consequently, the temperature. He supposed the second principle
of thermodynamics, ”In a closed system, entropy never decreases”. Hence, it can only stay
constant or increase.

Since then, the term entropy spread throughout many fields of physics, from astronomy
to mechanics. It even found its way to chemistry, biology and social sciences, but every
field interprets the term in its own way, as [55] mentions.

17

4. Mathematical Fundamentals of the Sleep Scoring Modelling Framework

In 1948, Claude Shannon introduced another application of entropy in his article ”A
Mathematical Theory of Communication” [63]. He used it in information theory and de-
scribed the loss of information when a signal is transmitted. In particular, the Shannon
entropy is the rate at which information is produced if discrete information is modelled as
a Markov process. Therefore, there are n possible states that occur with certain respective
probabilities p1, ..., pn. Shannon posed the question, ”Can we find a measure of how much
’choice’ is involved in the selection of the event or of how uncertain we are of the outcome?”,
see [63], p. 10. As an answer he proposed the Shannon entropy H(p1, ..., pn), which should
suffice the assumptions:

(1) The entropy H is continuous in the pi.

(2) If there is an equal probability distribution among the events, i.e. pi = 1
n for all

i = 1, ..., n, then H is a monotonically increasing function with respect to n.

(3) A choice of n events can be broken down into consecutive decisions. Then, H is the
weighted sum of the individual values.

Under these assumptions the following theorem is stated.

Theorem 4.1.1. Let K ∈ IR+ be a positive number. The only H satisfying the three above
assumptions is of the form

H(p1, ..., pn) = −K
n�

i=1

pi log pi. (4.1)

Proof. Firstly, we consider an equal distribution pi =
1
n for all i = 1, ..., n. Furthermore,

A(n) := H(1n , ...
1
n) is defined. We know from condition (2) that A is a monotonically

increasing function in n. Setting n = sm, which means that there are sm possible choices,
with s,m ∈ IN arbitrarily chosen we get A(sm) = mA(s) using the decomposition condition
(3), i.e. m choices from s possibilities. Now t, n ∈ IN are chosen, such that

sm ≤ tn < sm+1. (4.2)

The inequality can be transformed by taking the logarithm into

m

n
≤ log t

log s
≤ m

n
+

1

n
.

This holds since the logarithm function is monotonously increasing and all variables are
positive. This inequality can be rewritten with an arbitrarily small ε to����mn − log t

log s

���� < ε. (4.3)

Analogously to above it also holds that A(tn) = nA(t). With the monotonic assumption
(2) and (4.2) we get the inequality A(sm) ≤ A(tn) ≤ A(sm+1) which is equivalent to

m

n
≤ A(t)

A(s)
≤ m

n
+

1

n
.

18

4.1. Application of Entropy in Information Theory

Again, with an arbitrarily small ε it holds�����mn − A(t)

A(s)

����� < ε. (4.4)

Hence by adding/subtracting inequality (4.4) from (4.3) one gets�����A(t)

A(s)
− log t

log s

����� < 2ε.

This means, that

A(t) = K log t (4.5)

with K ∈ IR+ being positive for the monotonic assumption (2).
Secondly, we assume we have an arbitrarily large number of measured data ni for n

different possible choices. The probability for the j-th choice is

pj =
njn
i=1

ni

with j ∈ {1, ..., n}. The entropy regarding uniformly distributed probabilities among all
measured points is as stated in (4.5)

H

Ç
1n

i=1 ni
, ...,

1n
i=1 ni

å
= A

�
n�

i=1

ni

	
= K log

n�
i=1

ni.

With the decomposition assumption (3) we can break down the choices to the n possibilities
and then, after the j-th is chosen, to a uniformly distributed choice of nj possibilities of
probability 1

nj
. Hence we can again get with equation (4.5),

K log
�
i

ni = H(p1, ..., pn) +
n�

j=1

pjK log nj .

Using
n

j=1 pj = 1 and transforming the equation, we get

H(p1, ..., pn) = K

Ñ
n�

j=1

pj log
n�

i=1

ni −
n�

j=1

pj log nj

é
= −K

n�
j=1

pj log
njn
i=1 ni

= −K
n�

j=1

pj log pj .

Should the probabilities pj be incommeasurable, then they can be approximated by rational
numbers. Due to the continuity assumption (1), the above formula still holds and hence
the theorem is proven. The positive number K can be chosen arbitrarily and depends on
the application.

In the next sections different modifications of the Shannon Entropy will be discussed.

19

4. Mathematical Fundamentals of the Sleep Scoring Modelling Framework

4.2. Permutation Entropy

The first parameter that we want to use in our model is the PE. It was introduced in 2002
by Christoph Bandt and Bernd Pompe [5] and is based on the Shannon Entropy (4.1). This
statistical measurement describes the complexity of time series. The notation is based on
[9, 73]. The starting point for the calculation of the PE is the encoded form of the time
series of length n that represents the EEG measurement as it is described in section 2.2.
A certain order m and time delay τ are chosen and the series is split in k := n− (m− 1)τ
tuples of length m according to the rule (2.1). Afterwards, it is determined which tuple
corresponds to which permutation type ωj ∈ Ωm := {ω : ω is a permutation of (1)(2)...(m)}
as it is represented in Fig. 2.3 by an example with m = 3 and τ = 1. As the cardinality of
the set Ωm is |Ωm| = m! there are m! different permutation types.

For the calculation of the PE it is necessary to calculate the probability distribution
among all the possible pattern types. The probability of a certain permutation type ωj is
defined as pj := P (ωj), with

P (ωj) =
#{i : 1 ≤ i ≤ k, (xi, ..., xi+(m−1)τ) has type ωj}

k
.

The modified Shannon Entropy, such that it holds for the setting of the PE, is with ld = log2
a logarithm base of two

HPE(m) := HPE(p1, ..., pm!) = −
m!�
j=1

pj ld pj . (4.6)

A summand of the overall sum would not be defined if there exists an i with probability
pi = 0. To determine this value, we take the limit towards 0 and, as well known, we get

lim
pi→0

pi ld pi = 0. (4.7)

Therefore, if there is an i with probability pi = 0 we can neglect that summand in the
overall sum. Claude Shannon states in [63] that values of the Shannon Entropy H can
range from 0 to the logarithm of the number of summands. Accordingly, the range of
the PE, as written in equation (4.6), is [0, ld(m!)]. Firstly, keeping in mind that for every
probability distribution holds that the sum over all probabilities equals 1, which reads for
our setting

m!�
j=1

pj = 1,

one can easily conclude that the minimal value 0 of the range is taken if there exists an i
with pi = 1. Then, it follows that for all other l �= i holds pl = 0 and for the PE follows

HPE(m) = −
m!�
j=1

pj ld pj = −pi ld pi = −1 · 0 = 0.

20

4.3. Entropy of Difference

Secondly, the functions takes the maximal value of ld(m!) when the probabilities over all
patterns is equally distributed. This means that pj =

1
m! for all j ∈ 1, ...,m!. In that case,

for the PE follows

HPE(m) = −
m!�
j=1

pj ld pj = −m!
1

m!
ld

Å
1

m!

ã
= − (ld 1− ld(m!)) = ld(m!).

Knowing this range, one can define a normalised measurement to make it comparable
independent of the order m because otherwise the range would increase with m as well,
since the range is [0, ld(m!)]. This can be achieved by dividing the PE as defined in equation
(4.6) by ld(m!) which results in

ĤPE(m) := − 1

ld(m!)

m!�
j=1

pj ld pj . (4.8)

The range of the normalised measurement ĤPE is [0, 1]. Analogously to above the extremal
values are once again obtained for the same probability distribution. This means that on
the one hand if there is an i ∈ {1, ...,m!} for that holds pi = 1 then ĤPE(m) = 0. On the
other hand if there is an equal distribution pj =

1
m! , then the maximal value ĤPE(m) = 1

is obtained. Consequently, large values of ĤPE indicate higher complexity, since a larger
number of different patterns appear.
This way one can also define values and ranges for applications. There are already some

fields where the PE is used. Yan et al describe a characterisation of rotary machine status
in [72]. The advantage of this complexity measure is that it can also deal with non-linear
behaviour as it appears during vibration. Especially good results were found for monitoring
the status of rolling bearings. It is also already implemented in the topic of EEG analysis
in research. This is, among others, explained by Olofsen et al. in [52]. They investigate the
change of the PE when analysing time discrete series of EEG signals of humans who took
or got γ-amino-butyric acid (GABA)-ergic anaesthetic drugs. The entropy value was high
at almost 1 when the EEG signal had mainly high frequencies. On the contrary, low values
at around 0.4 were obtained by ĤPE when low frequencies prevail. They highlight the need
of an open-source EEG index that is sensitive to eye-blink artefacts and has minimal to no
time delay in reacting to changes in the EEG signal. The PE gives promising first results.
The use case in this thesis also addresses the question of how the value can reflect on the

level of consciousness in humans, but we focus on the application in the field of sleep stage
classification. When referring to the PE, we always speak of the normalised PE as defined
in equation (4.8) from now on.

4.3. Entropy of Difference

The EoD is similar to the PE as it is also a modification of the Shannon Entropy. It is a
complexity measure of time discrete series as well, but was introduced twelve years later
in 2014 by Pasquale Nardone, see [51]. Again, we use the EEG signal of length n in an
encoded form described in section 2.2, but this time we use the second introduced form of
tuple generation. Hence, for a chosen order m and time-delay τ we have k := n− (m− 1)τ

21

4. Mathematical Fundamentals of the Sleep Scoring Modelling Framework

tuples of length m according to the rule (2.1). The encoding in the different types of tuples
ωj ∈ Ωm := {ω : ω is a string of symbols of lengthm−1 containing ”+” or ”−”} happens as
illustrated in Fig. 2.4 with the example with m = 3 and τ = 1 by looking at neighbouring
values of the tuple and determine if there is an increase, which gives a ”+ ”, or a decrease,
which gives a ”− ”. As mentioned above, the cardinality of the set Ωm is |Ωm| = 2m−1 and
therefore there are 2m−1 different possible types of encoded patterns.
The EoD is calculated on the basis of the Shannon Entropy by

HED(m) := HED(p1, ..., p2m−1) = −
2m−1�
j=1

pj ld pj . (4.9)

The base of the logarithm is two again. The variables pj describe the probability distribu-
tion among the patterns, i.e. pj := P (ωj), with

P (ωj) =
#{i : 1 ≤ i ≤ k, (xi, ..., xi+(m−1)τ) has type ωj}

k
.

As in equation (4.7), if a certain i exists such that pi = 0 which would follow in a not defined
summand due to the logarithm, we take the limit towards 0 and neglect the summand in
the total sum. To take a look at the range that the EoD can obtain, we look at the two
extremal cases of a probability distribution again which are on the one hand when there
exists a i with pi = 1 and on the other hand if pj = 1

2m−1 for all j ∈ {1, ..., 2m−1}. With
the constraint

2m−1�
j=1

pj = 1

follows for the first case

HED(m) = −
2m−1�
j=1

pj ld pj = −pi ld pi = −1 · 0 = 0.

For the second case we get

HED(m) = −
2m−1�
j=1

pj ld pj = −2m−1 1

2m−1
ld

Å
1

2m−1

ã
= −

Ä
ld 1− ld(2m−1)

ä
= ld(2m−1) = m− 1.

The last step of the equation follows since the logarithm is of base two. Hence, we get, as
Claude Shannon already mentioned in his work [63], that the range ofHED is [0,m−1]. This
gives the opportunity to define a normalised measure to have a comparison independently
of m and also to the PE.

ĤED(m) := − 1

m− 1

2m−1�
j=1

pj ld pj (4.10)

22

4.4. Kullback Leibler Divergence and Cross Entropy

The measure ĤED has a range of [0, 1], which can easily be verified by looking at the
calculations of the extremal values above, but dividing by the factor m − 1. Like for the
PE, higher values indicate large complexity. The normalised EoD as defined in equation
4.10 is from now on the meant measure when speaking about the EoD.

The EoD has already been used in the field of EEG analysis for sleep or wake behaviour
in rats, see [37]. The authors used different settings to investigate different behaviours,
i.e. order m = 5 and time-delay τ = 1 for fast dynamics in the EEG and τ = 6 for slow
dynamics. They differentiated between two groups, one having Alzheimer’s disease and
one control group. The calculation showed increased values of the EoD for awake rats of
the control group in comparison to when they were sleeping. In the group of rats with
Alzheimer’s disease this difference was not found, but they showed lower EoD values in the
wake state than the control group, indicating lower complexity during this state for that
group. However, one has to keep in mind that this experiment was done with rats and one
cannot conclude for our race. The application of the EoD in this work will focus on sleep
stage classification of humans.

4.4. Kullback Leibler Divergence and Cross Entropy

The concept of the next feature has been invented decades ago by Solomon Kullback and
Richard Leibler, see [40]. In 1951, they were concerned about the problem of measuring
divergence between populations using statistics. This involves the difference of information
between two groups of people or animals. Using Shannon’s theory about measuring infor-
mation, which is described in section 4.1 and [63], they defined a measure to determine the
loss of information when using one signal to predict another one.

Firstly, the KLD was introduced for continuous problems but also extended for applica-
tions on time-discrete series. Following the notation of [40, 50, 28], the measure is defined
as

KL(p, q) :=
n�

j=1

pj log

Ç
pj
qj

å
, (4.11)

with p = (pj)J and q = (qj)J , J = {1, ..., n} describing the probability distributions of two
time-discrete signals of length n. The second argument q is the distribution of the signal
that is used to predict the signal whose distribution is the first argument p. The number
of summands n is the number of possible outcomes, which in our case depends on whether
we are looking at the KLD associated with the PE, which is described in section 4.2, or
associated with the EoD, described in section 4.3. Depending on the order m, in the first
case it holds n = m!, since there are that many possible patterns after encoding for the
PE. In the second case n = 2m−1 as for the EoD there are that many patterns that can be
achieved. In literature the KLD is also often described as relative entropy of p with respect
to q, see [17].

The lower boundary of the KLD is 0. This can be proven with Jensen’s inequality, as it
is done in [17, 50].

23

4. Mathematical Fundamentals of the Sleep Scoring Modelling Framework

Theorem 4.4.1 (Jensen’s inequality). For any convex function f , we have that

f

Ñ
n�

j=1

λjxj

é
≤

n�
j=1

λjf(xj), (4.12)

where λj ≥ 0 and
n

j=1 λj = 1.

Proof. The proof can be found in [17].

A function f is convex if for every k, l ∈ {1, ..., n} and 0 ≤ λ ≤ 1 it holds that

f(λxk + (1− λ)xl) ≤ λf(xk) + (1− λ)f(xl).

It is called strictly convex if this equation holds only for λ = 0 or λ = 1. A function f is
called (strictly) concave if −f is (strictly) convex. Knowing that, we can prove the lower
boundary assumption stated above.

Theorem 4.4.2 (Information inequality). Let p, q be two probability distributions, i.e.n
j=1 pj = 1 and

n
j=1 qj = 1. Then

KL(p, q) ≥ 0

with equality if and only if pj = qj for all j ∈ {1, ..., n}.
Proof. Following [17], let A = {j : pj > 0} be the support of p. With the conventions based
on continuity arguments and the limit towards 0, as analogously stated in equation (4.7),
it holds that

lim
pj→0

pj log
pj
qj

= 0, lim
qj→0

0 log
0

qj
= 0 and lim

qj→0
pj log

pj
qj

= ∞.

Consequently, since the logarithm function is concave it follows that

−KL(p, q) = −
�
j∈A

pj log
pj
qj

=
�
j∈A

pj log
qj
pj

≤
(4.12)

log
�
j∈A

pj
qj
pj

= log
�
j∈A

qj

≤ log
n�

j=1

qj = log 1 = 0.

Since the logarithm function is moreover strictly concave, the Jensen inequality gives an
equal sign if and only if

qj
pj

= c for some c ∈ IR and all j ∈ {1, ..., n}. Consequently, when

looking at the next inequality it only holds equality if and only if

log
�
j∈A

qj = log
�
j∈A

cpj = log c
�
j∈A

pj = log c
!
= 0.

Hence, c = 1 and therefore KL(p, q) = 0 if and only if pj = qj for all j ∈ {1, ..., n}.

24

4.4. Kullback Leibler Divergence and Cross Entropy

There is no upper boundary for this measure because if there exists an i ∈ {1, ..., n} such
that qi = 0 and pi �= 0, the corresponding summand in the definition of the KLD in
equation (4.11) would tend toward ∞ and hence, the whole sum would equal ∞, see [17].
Consequently, no normalisation can be defined since no maximal value can be given.
The KLD can be computed with the PE and the EoD as underlying coding separately,

which means that the base of the logarithm is two. This results in the following two
definitions.

KLPE(p, q) =
m!�
j=1

pj ld

Ç
pj
qj

å
(4.13)

KLED(p, q) =
2m−1�
j=1

pj ld

Ç
pj
qj

å
(4.14)

Based on an entropy measure and the KLD the CE can be defined, see [50]. It is determined
as the sum of both of them. Hence, we have two new measures, dependent on the underlying
entropy method, either the PE or the EoD. To shorten the definitions of the CE, the sum
is now seen over all j ∈ {1, ...,m!} or j ∈ {1, ..., 2m−1} analogously to equations (4.13) or
(4.14) depending on the underlying entropy method. As the entropy methods defined in
lines (4.6) and (4.9), respectively, depend on the order m as a symbol of the size of the
probability distribution, but with differing definitions in literature for the measures, we set
H(p) = H(m) for our following definition of the CE.

H(p, q) :=H(p) +KL(p, q)

=−
�
j

pj ld pj +
�
j

pj ld
pj
qj

=
�
j

pj(−ld pj + ld pj − ld qj)

=−
�
j

pj ld qj

The interpretation of the CE is, according to [50], that it is the mean number of bits that
are required to encode information of a source modelled by p, when the distribution q is
used as basis for the encoding. When p = q we get the PE or EoD H(p, p) = H(p) which,
accordingly, is the number of bits when using the same model for prediction. The KLD as
the difference between the CE and the entropy measure is then the mean number of extra
bits required for the information encoding, when using q instead of p for the prediction.
Since there is no upper boundary for the KLD we also do not normalise the CE. Therefore,
the CE is computed as the sum of the KLD and the entropy measure before eventual
normalisation.
The KLD has been applied in the field of EEG analysis already in 2009 by Gupta et al.

[28]. A modification of the measure was introduced, since a distance measure was needed.
As the KLD is a non-symmetric measure, one has to redefine it such that it is symmetric
by

KLdist(p, q) :=
KL(p, q) +KL(q, p)

2
.

25

4. Mathematical Fundamentals of the Sleep Scoring Modelling Framework

The abbreviation ”dist” specifies that this measure is now a distance measure in the math-
ematical sense. The authors use the KLdist in combination with different machine learning
algorithms for classification of different mental tasks like multiplication, letter composing,
counting and rotating an imaginary figure as well as a baseline task where nothing was done.
They compare the results with the same algorithm, but with the euclidean distance measure
and find better classification. In 2017, the KLD was applied on an EEG for determining
seizure/non-seizure episodes of patients who suffer from epilepsy by Quintero-Rincón et al.
[56]. They also found that the measure is potentially useful for this application.

4.5. Granger Causality

The next parameter that will be focused on is the GC. It was introduced by Clive W.J.
Granger in 1963 as a parameter for the field of econometrics, to face the problem of deciding
if causality happens there and if feedback is present, see [27, 26]. Later on, the theory was
enhanced and specified even more. Definitions of the GC exist in the time-domain as well
as the frequency-domain. However, since the analysis model of the EEG as a time series is
based only in the time-domain, the corresponding measure will be described here.

For the definition we follow the notation of Barnett and Seth [6]. Firstly, we have to
give an introduction in vector autoregressive (VAR) theory. Let n,m ∈ IN. We take a
look at finite sequences of measurements or observations of a stochastic process of the form
(Xt)I ∈ (IRm)I with I = {1, ..., n} and simply write X for these time series. They are
also called multivariate processes. For two such time series X and Y we now want to
investigate whether and how the series Y influences a process X, and vice versa. To do
this, first consider the following VAR model of order p, VAR(p) for short, of the form

Xt =
p�

i=1

A�
iXt−i + εXt . (4.15)

It is assumed that each value Xt of the time series results from the p previous values Xt−i,
which are already known and weighted with the regression coefficients A�

i ∈ IR. The p
previous values Xt−i are then used to calculate the lag value. In this context, Xt−i is also
called the i-th lag value of Xt. The error term εXt , also called the residual, indicates the
deviation of the modelled value from the actual value Xt. In the next step, consider the
model

Xt =
p�

i=1

AiXt−i +
p�

i=1

BiYt−i + εXYt . (4.16)

In this model, not only lag values of X are used to model the value Xt, but also those of Y .
The coefficients A1, ..., Ap in this model generally do not match the coefficients A�

1, ..., A
�
p

of the other model. If this is would be the case, i.e. for all i = 1, ..., p hold Bi = 0 it would
mean that the lag values of Y do not contribute anything to the modelling of X. Hence,
there would be no conditional dependence of X on the past of Y .

The definition of the GC is based on the Maximum likelihood theory that suggests an
analysis method of parametric data modelling. For models as given in equations (4.15) and

26

4.6. Statistical Features

(4.16) the log-likelihood ratio statistic is used. The test statistic can be used to test the
null hypothesis, as mentioned above, that Bi = 0 for all i = 1, ..., p. This means that there
would be zero causality. GC is therefore a measure that tests whether X can be modelled
significantly better with lag values of Y than without.
The GC is then defined using the log-likelihood ratio of the absolute value of the covari-

ances of the residuals εXt and εXYt , see [7], as

FY→X := ln

Ç |Cov(εXt)|
|Cov(εXYt)|

å
. (4.17)

Since we only take a look at univariate time series, the covariance equals the variance, i.e.
Cov(X) = s2, which for a time series X is defined by the mean value x̄ as

x̄ :=
1

n

n�
i=1

xi, s2 :=
1

n

n�
i=1

(xi − x̄)2.

The Multivariate Granger Causality Toolbox, as presented in [6], is a MATLAB toolbox
using the GC in different varieties for analysing time series in general. However, it is already
intended for the use in the field of neuroscience. The method is used during drug-induced
anaesthesia for example. As it is shown in [7] there is an increase of the GC during loss of
consciousness. Causal interactivity in the system was presented as well. The measure has
also been applied in sleep scoring. Saghayan gives an example of an automated sleep stage
classification method in [59] using the GC in combination with a SVM with a Gaussian
kernel as a machine learning approach which is a non-linear classifier. With the GC in
different varieties they used 30 features in total by calculating the measure between all
electrodes and all possible directions. The model was applied to EEG measurements of ten
healthy probands and trained and tested in a ten fold classification. The authors gained
an accuracy of 72.7% and κ = 0.65.

The GC accounts for two features in our model as we use multiple channels.

4.6. Statistical Features

After the description of all these measures we now have eight features for the model up
until now, i.e. age, the PE, the EoD, the KLD as well as the CE with respect to both
of the entropies and the GC. The other features that are used are statistical ones and are
presented in this section. The notation of the parameters is taken from [48]. For all values
a time series (xt)I , I = {1, ..., n}, of length n is considered.

Firstly, the central measures are explained. Starting with the arithmetic mean or arith-
metic average x̄ is defined as the sum of all values divided by the length of the series.

x̄ :=
1

n

n�
i=1

xi

Since this parameter takes all values with the same weight into account, it is very sensitive
for outliers, which means that if the extremal values, i.e. minimum or maximum, are very
low or high, respectively, they have a big impact on the arithmetic mean. There is a

27

4. Mathematical Fundamentals of the Sleep Scoring Modelling Framework

modification of the arithmetic average, which is the trimmed arithmetic mean. This cuts
a fixed percentage of outliers off the series and calculates the parameter with the reduced
amount of values. This measure was not included in the list of features. With the geometric
and the harmonic average there are also two other kinds of mean. The geometric one x̄g is
defined as the n-th root of the product of all the values of the series.

x̄g := n

Ã
n

i=1

xi

However, since the time series (xt)I can also include negative values and n can be an even
number, it could be the case that this parameter is not defined in IR as it could be a complex
number. That is the reason why we did not include the geometric mean as a feature in the
model. The harmonic mean x̄h is defined as

x̄h :=
nn

i=1
1
xi

.

Hence, the reciprocal of this measure is the arithmetic mean of the reciprocals. There are
also central measures which are more robust, i.e. less sensitive, to outliers. The mode xmod

is very easy to determine because it is the value in the series with the highest frequency. For
the definition of the median or central value x̃ we first have to arrange the series according
to the size of the values. Then, we get a series which we will label with x[1], ..., x[n]. The
median is then defined, dependent on the fact if n is even or odd, as

x̃ :=

 x[n+1
2], if n is odd,

1
2

�
x[n2]

+ x[n2+1]

�
, if n is even.

(4.18)

This means that the median is literally the central value if n is odd or the arithmetic mean
between the two central values if n is even.
Secondly, we also look at measures of dispersion. The range R of a time series is given

by the subtraction of the maximal value and the minimal value. Using the ordered series
which was labelled above as x[1], ..., x[n] we get

R := x[n] − x[1].

As we already discussed with the mean, the range is also very sensitive to outliers. The
variance s2 is widely known and given by

s2 :=
1

n

n�
i=1

(xi − x̄)2.

Because of its definition it is also often called mean squared deviation. The standard
deviation s is based on the variance and the square root of it. Hence, it is, on the contrary
to the variance as a squared measure of dispersion, a linear one.

s :=
√
s2 =

Ã
1

n

n�
i=1

(xi − x̄)2

28

4.6. Statistical Features

Both of these parameters take the arithmetic mean into account. A parameter that calcu-
lates the dispersion of the median is the mean absolute deviation d. It is defined as

d :=
1

n

n�
i=1

|xi − x̃| .

The median x̃, as presented in equation (4.18), has the important property that 50% of
the values of the time series are higher or equal and 50 % are lower or equal than that
parameter. This can be generalized by a p-quantile xp. It is defined, such that p · 100 %
of the values are lower or equal and (1− p) · 100 % of the values are higher or equal than
xp. Hence, the median is nothing less than the quantile x0.5. For the definition, the floor
operation .� is used which gives the first integer that is lower or equal. Again, we use the
ordered sequence x[1], ..., x[n].

xp :=

®
x[np
+1], if np is not an integer,

1
2

Ä
x[np] + x[np+1]

ä
, if np is an integer.

Other special cases of the p-quantile are the 0.25-quantile and 0.75-quantile which are also
called the lower and upper quartile respectively. These are used as features for the model.
Another measure, the interquartile range Q, is similarly defined to the range but with the
difference of the quartiles.

Q := x0.75 − x0.25

The last two statistical measures are the shape parameters skewness γ̂1 and kurtosis γ̂2.
They are defined as

γ̂1 :=
1

n

n�
i=1

Å
xi − x̄

s

ã3
,

γ̂2 :=
1

n

n�
i=1

Å
xi − x̄

s

ã4
.

The skewness describes if it is more likely to be on the right or on the left side of the
arithmetic mean. The kurtosis stands for the concentration around the average and conse-
quently, how strongly the edges are occupied.
This gives us a total of 22 features that are used as the basis for our model approach for

EEG analysis, which is described in the next chapter.

29

5. Building a Classification Model

After introducing the features, a machine learning model for sleep scoring is built. Impor-
tant properties of this model should be, as described in section 3.2, that it is interpretable
and still able to achieve good results. It should be valid not only for healthy subjects but
also hold for patients suffering from sleep or other neurological disorders. The examined
dataset is the CAP Sleep Database published in 2001, see [67], which is presented in section
5.1. Furthermore, the data processing, which was done for the application, is presented in
this section as well. In the following section 5.2, the implementation and settings of the
features presented in chapter 4 is explained. The decision process of which model is chosen
is difficult, the different machine learning algorithms and their properties are described in
section 5.3. The achieved results are further discussed in chapter 6.

5.1. CAP Sleep Database and Data Preprocessing

The CAP Sleep Database [67] contains 92 polysomnography recordings of patients with
various sleep disorders and 16 of patients without any sleep related or neurological disorders,
made at the Sleep Disorders Centre of the Ospedale Maggiore of Parma in Italy. The
purpose of this publication was to provide a large number of examples where not only
the sleep stages but also the CAP stages are annotated. CAP are cyclic EEG patterns
of brain activity followed by deactivation. It is a sign of restlessness during sleep and an
omen of sleep disorders as a very high number of CAP phases are examined in various sleep
disorders, such as insomnia (ins), periodic leg movements (plm), sleep-disordered breathing
(sdb), REM behaviour disorder (rbd) or nocturnal frontal lobe epilepsy (nfle). In EEGs of
patients suffering from narcolepsy (narco), CAP phases are also often present. Recordings
of patients diagnosed with each of the listed disorders are included in the database, as
well as recordings of two patients suffering from bruxism (brux) and 16 healthy subjects
(n). The latter are called the control group and did not take any medication that affects
the central nervous system. The abbreviations in brackets are the anonymised patient IDs
which, in combination with numbering, provide a unique allocation of the recording to a
subject, for example nfle13 or n1 who was mentioned in section 3.1 for the sleep course
over night in figure 3.1. In table 5.1, the database with its 108 recordings is broken down
into each disorder and its abbreviation as well as the number of available patients.
The database includes at least two EEG channels, two EOG channels, two EMG channels,

ECG and respiratory signals and the age of the subjects. Additional EEG channels are
often given as well. As we only want to use EEG measurements for our model we only look
at this information. The placement of the electrodes was done as usual according to the
10-20 system, see figure 2.2. The sleep stage classification was done by expert neurologists
educated by the already mentioned sleep disorders centre according to the R&K rules. For
this purpose, the software REMlogicTM by Embla R� was used. The classifications are given

31

5. Building a Classification Model

Table 5.1.: Breakdown of the CAP database regarding its disorders.

Disorder Abbreviation Number of Recordings

No pathology
(control group)

n 16

Bruxism brux 2

Insomnia ins 9

Narcolepsy narco 5

Nocturnal frontal
lobe epilepsy

nfle 40

Periodic leg movements plm 10

REM behaviour disorder rbd 22

Sleep-disordered breathing sdb 4

among other formats in a .txt file, the authors of the publication provided a MATLAB
script for reading these as well. The polysomnography recordings are given in a .edf format
which was imported in MATLAB using the import edf function, alongside other functions
needed, written by Sebastian Berger et al. and published in [9] with adaptions to our
specific needs. The European data format is the standard format in this field. This way
we could import the EEG channels and the information of the recordings in MATLAB, the
other measurements were excluded since we do not need them for our model.

For our purpose of building a sleep scoring model, we want to use the modern classifi-
cation rules according to the AASM. Hence, we merge S4 and S3 to N3 and get the sleep
stages W, R, N1, N2 and N3 as explained in section 3.1.

Even though the original intention of the publication of the dataset was to have a large
amount of recordings with CAP annotations, we will only be using the sleep scoring of the
dataset. This data is very useful for our intention of building a sleep scoring model that
is valid for all subjects independent of their health status, as it contains many datasets
of patients suffering from sleep or other neurological disorders. As it is not our focus to
diagnose sleep disorders, we treat every recording the same way in the model creation
process. The CAP annotations are therefore irrelevant for us. Another advantage of the
dataset is that the selection of patients is very heterogeneous as it includes people aged
from 14 to 82 years old and 66 male and 42 female individuals. The exact breakdown of
the subjects’ ages and genders is given in the publication.

The publication does not mention anything about the settings and the preprocessing of
the recordings. Hence, we had to investigate these ourselves. We noticed a large difference
in the setup between the subjects regarding the filter settings and the sampling frequency,
when only looking at the insomnia patients and the control group. For the first problem, we
looked at the frequency spectrum of the EEG signals using the fft function of MATLAB.
It computes the discrete Fourier transform using fast Fourier transformation. With the
MATLAB function fftshift we could shift the zero-frequency component to the centre
such that the plot of the frequency spectrum is interpretable and symmetric around this
component. We found out that some of the recordings seemed to have a small highpass
filter while others did not have any, for example n4. This is shown in figure 5.1, where

32

5.1. CAP Sleep Database and Data Preprocessing

on the left hand side the unfiltered signal of the channel Fp2-F4 is shown. On the x-axis
the frequency in Hertz and on the y-axis the power per frequency in decibel per Hertz are
given. One can see that the frequency spectrum shows an outlier in the zero-frequency
component in the middle. As described in section 2.1 such low frequent noise happens for
example due to breathing, that is why a highpass filter is necessary. On the right hand
side of the figure the same EEG signal is pictured but filtered with a 0.5Hz highpass and
a 30Hz lowpass filter. Here we do not see the outlier anymore.

-100 -50 0 50 100
0

5

10

15

10
5

-100 -50 0 50 100
0

5

10

15

10
5

frequency (Hz)

p
o

w
e

r/
fr

e
q

u
e

n
c
y
 (

d
B

/H
z
)

Figure 5.1.: The figure shows the frequency spectrum of the EEG signal of the channel
Fp2-F4 using the example of subject n4. On the left hand side no additional
filter is used, on the right hand side a lowpass filter of 30Hz and a highpass
filter of 0.5Hz are used. It illustrates the necessity of a highpass filter.

Apart from the missing highpass filter we also discovered different lowpass filters applied to
the recordings. Most of them showed a lowpass filter of maximal 50Hz, but some seemed to
do not have any. As an example, the frequency spectrum of subject ins2 is shown in figure
5.2. Again, on the left hand side the unfiltered spectrum of the EEG signal of the channel
Fp2-F4 is shown, with the frequency in Hertz on the x-axis and the power per frequency
in decibel per Hertz on the y-axis. Even frequencies up to around 100Hz still have a visible
magnitude, bearing in mind that the scale of the y-axis is times 105. Due to reasons of
noise, as explained in section 2.1, a lowpass filter of 30Hz and a highpass filter of 0.5Hz
are applied to the signal. The corresponding frequency spectrum is shown on the right
hand side of the figure. With these two filters we have a consistent processing of the EEG
recordings. The MATLAB pre-implemented functions lowpass and highpass are used.

33

5. Building a Classification Model

-100 -50 0 50 100
0

1

2

3

4

5

6

7

8
10

5

-100 -50 0 50 100
0

1

2

3

4

5

6

7

8
10

5

frequency (Hz)

p
o
w

e
r/

fr
e
q
u
e
n
c
y
 (

d
B

/H
z
)

Figure 5.2.: The figure shows the frequency spectrum of the EEG signal of the channel
Fp2-F4 using the example of subject ins2. On the left hand side no additional
filter is used, on the right hand side a lowpass filter of 30Hz and a highpass
filter of 0.5Hz are used. It illustrates the necessity of a lowpass filter.

The sampling frequency was the second important parameter regarding the signal record-
ing and processing setup for which we faced a huge difference in all datasets. It ranges
from 100Hz to 512Hz. This problem can be easily solved by simply resampling the EEG
recordings. Our set parameter is 200Hz, as [60] suggests. For this, we used the function
par resample, which was published by Sebastian Berger et al. in [9]. It is based on the
MATLAB function resample but uses multiple CPU scores for the computation, if it is run
on GNU Octave with the parallel package. As we run our implementation in MATLAB, it
simply uses the resample function as it is.

After the preprocessing of the EEG signals we interpret them as time series. We had
to cut each of the time series into suitable lengths, as the annotation of the sleep scoring
was not always given for the full recording but sometimes started later or finished earlier.
This way, we had for a certain time period of 30s, where the sleep stage was given, a
corresponding EEG signal as direct comparison.
Unfortunately, when importing the data in MATLAB we had to exclude four datasets.

Three of them were not possible to load, which were brux1, n13 and n14. The first one was
a missing sample and the others were excess samples. The fourth problematic data base
was nfle27 because the file that contains the sleep stage annotations is a part of brux2 as
this patient ID was written on top of the .txt file.

34

5.2. Implementation of the Feature Extraction

5.2. Implementation of the Feature Extraction

The filtered, resampled and cut recordings are the input for the model that we want to
build. Another input are the ages of the examined subjects. We use up to three EEG
channels always depending on the availability of the signals. The main channel is the one
for which most of the features described in chapter 4 are calculated. As brain activity
during sleep results mostly in electrical activity in the frontal region, see [12, 61], channels
of electrodes that are placed there should be the main signal. Hence, the channel Fp2-F4
or Fp1-F3 are used whenever possible. If both are available, Fp2-F4 is preferred, if none
of them is available, the next frontal will be used. Two other EEG signals are taken as
well as an input for the calculation of the GC. For this, we use an EEG channel that is
placed on the back of the head in the parietal region, i.e. P4-O2 or P3-O1, and a channel
that is placed in the centre of the head, i.e. C4-A1 or C3-A2. The GC is then calculated
two times. By defining the signals as F for the main and P and C for the other two EEG
signals, we compute FP→F and FC→F following the notation of section 4.5. The signals
are cut into windows of 6000 datapoints corresponding to 30s which is the time period that
the sleep scoring also uses for the annotation of the stages. This correspondence is needed
for the training of the model and as a comparison when it is tested.
The possible outputs of our model are the five sleep stages W, R, N1, N2 or N3. This

connection between input and output is illustrated in figure 5.3. A closer look at the model
in between will be given hereafter.

MODEL
age

EEG
signals

C

1

2

3

Figure 5.3.: Rough model structure for visualising input and output. The output
C ∈ {W, R, N1, N2, N3} can take one of the five sleep stages.

After the definition of input and output, the parameters for the different features will be
explained in detail. We need to set the order m and the time delay τ for the PE and
the EoD, the corresponding KLDs and consequently for the CE, choose a model signal to
predict the main EEG signal for the KLDs and define the order of the underlying VAR
model for the GC. The regression coefficients for the VAR model in equations (4.15) and
(4.16) will be estimated throughout the calculation. For the age and the statistical features
we do not have to set any parameters since we already defined that we only use the lower
quartile x0.25 and the upper quartile x0.75 of the p-quantiles.
For the PE as well as for the EoD we choose an order m = 3 and a time delay τ = 1.

To make this decision, we looked at different combinations of the values for the patients

35

5. Building a Classification Model

ins1-ins9 and n1-n9 and calculated the correlation between the PE, the EoD and the KLDs
with the sleep stages. For this, we had to assign each sleep stage a certain value, which
are listed in table 5.2, and then used the corrcoef MATLAB function. We tested the
parameters for m from 3 to 7 and for τ from 1 to 5. The results were that for the order
we get a very similar correlation between the values m = 3 to m = 7. Hence, we chose
m = 3 due to minimal computational effort. For the time delay the best correlation values
were received for τ = 1. For higher time delays lower correlation values occurred which
can be explained using the findings of [54]. Popov et al. described that the product of the
time delay and the sampling frequency is constant, i.e. higher time delays behave the same
as lower sampling rates. A lower sampling frequency gives a worse resolution of the EEG
signal which can lead to a wrong signal imaging, see [60]. This led us to the decision of
choosing τ = 1.

Table 5.2.: Assigned values for each sleep stage.

Sleep stage awake REM
NREM
stage 1

NREM
stage 2

NREM
stage 3

Abbreviation W R N1 N2 N3

Value 5 4 3 2 1

After defining the order and the time delay, the EEG signal can be divided and coded into
the patterns following section 2.2. Firstly, looking at the encoding of the PE we introduce
an algorithm that is based on the Lehmer code for further symbolisation, following [8].
This gives a simpler numerical representation of a pattern type using the mapping

(x1, x2, ..., xm) �→
m−1�
i=1

Ñ
(m− i)!

m�
j=i+1

[xi > xj]

é
.

The operation
m

j=i+1[xi > xj] on the right hand side is the right inversion count and gives
the number of elements placed on the right of xi that are higher than xi. The function
symbolise gives us the numerical representation. It was written once again by Sebastian
Berger et al., published in [9, 8], but has been adapted and enhanced. Dependent on the
order m, this function calls another one, which in the case of m = 3 is encode pe dim 3.

After this procedure our EEG signal represented by the time series (xt)I , I = {1, ..., n},
of length n, which was divided into k := n− (m− 1)τ tuples of length m, is encoded into
a numerical representation vector y ∈ {1, ...,m!}k. This way, it is very easy to determine
the probability distribution among all the possible pattern types and to compute the PE
according to equation (4.8) afterwards.
Analogously, we could gain a simple numerical representation of the EoD patterns ac-

cording to the mapping

(x1, x2, ..., xm) �→
m−1�
i=1

Ä
2m−i[xi > xi+1]

ä
.

In comparison to the mapping for the PE, the term on the right hand side has a simpler
structure because we only compare neighbouring values to determine the pattern and do

36

5.2. Implementation of the Feature Extraction

not need to compare the values of the whole tuple. For encoding the tuple, we wrote a
function symbolise eod that calls dependent on the order another one which is named for
m = 3 encode eod dim 3.
As before, we have a numerical representation of our time series (xt)I , I = {1, ..., n}, and

with k := n − (m − 1)τ a vector y ∈ {1, ..., 2m−1}k is received as the output, containing
the pattern types of the k tuples we divided the series into. The probability distribution is
calculated and used for the computation of the EoD, according to equation (4.10).
Next, a reference signal for predicting the main signal with the KLD is searched. For this

we take a look at different types of noise, especially white, pink and brown noise, which are
defined according to their spectral density 1

fβ , see [34]. Noise signals in general are produced
by stochastic processes. The variable β takes for white, pink and brown noise the values
β ∈ {0, 1, 2} respectively, i.e. white noise has an equally distributed frequency spectrum,
pink shows a decrease, the higher the frequency the lower the power density, and brown an
even larger decrease. Figure 5.4 shows the power spectral density (PSD) of the three kinds
of noise and illustrates the difference between them. The signals are created in MATLAB
using the dsp.ColoredNoise function, for the PSD we used the function fft, similar to
above.
White noise has an almost constant frequency spectrum, meaning that high frequencies

occur as often as low ones, which results in a flat curve for the course. Pink and brown

10
0

10
1

10
2

frequency (Hz)

10
-3

10
-2

10
-1

10
0

10
1

10
2

P
S

D
 (

W
/H

z
)

Figure 5.4.: PSD of white, pink and brown noise starting at 1Hz with white depicted in
black and pink and brown in their respective colours. A sampling frequency
of 200Hz and a duration of 10s are chosen. The loglog plot shows the equal
distribution of the frequencies for the white noise and a decrease in power when
the frequencies increase for pink and even more for brown noise.

37

5. Building a Classification Model

noise, on the contrary, already resemble waves as low frequencies prevail more and more
with reduced occurrence of high frequencies. These two kinds of noise look more rhythmic.
Examples of the courses of the different signals are given in figure 5.5, which show the
described properties.

0 1 2 3 4 5 6 7 8 9 10
-1

0

1

0 1 2 3 4 5 6 7 8 9 10
-0.1

0

0.1

0 1 2 3 4 5 6 7 8 9 10

-0.02

-0.01

0

time (s)

s
ig

n
a
l
m

a
g
n
it
u
d
e

Figure 5.5.: Example for white (top), pink (middle) and brown (bottom) noise signals with
white depicted in black and pink and brown in their respective colours. A
sampling frequency of 200Hz and a duration of 10s are chosen. The magnitude
of each signal is illustrated on the y-axis over the time given in seconds on the
x-axis. White resembles a complete random signal without any structure, but
pink and brown, on the contrary, show wave-like behaviour.

In 2001, it has been already described that pink noise very often appears in biosystems,
e.g. instabilities in solid state physics, lasers or fluid instabilities, see [65, 29]. The dynamic
processes in these systems are self-organizing and stochastic and seek the lowest available
energy as equilibrium. Such processes are associated with pink noise. Human brain activity
during wakefulness can also be compared to pink noise as it is a good approximation, see
[15, 11]. The brain activity shows a steeper decrease for higher frequencies during an
unconscious state, see [15], and hence resembles brown noise more.

Christoph Bandt defined in [4] a distance between the PE and white noise. Patients suf-
fering from insomnia and healthy subjects of the control group of the CAP Sleep Database

38

5.2. Implementation of the Feature Extraction

were examined using this measure on one EEG channel. The results were, that it is a good
estimate of sleep depth and patients suffering from insomnia had a smaller distance than
healthy people had.
These results motivate to take white noise as the reference model signal for the KLD

because it measures the divergence of the examined signal to the reference one. As white
noise has PE values of almost one, see [4], it also shows the highest possible values. Another
reason to choose white noise is that since the KLD is always nonnegative, as shown in
section 4.4, the parameter does not measure in which direction the divergence is directed.
For example, if pink noise would be the reference model and the KLD has a certain value,
we could not interpret if it would tend more towards white or towards brown noise. Hence,
the choice for the reference signal q for the KLDs in definitions (4.13) and (4.14) is white
noise.
For the generation of white noise, we used the MATLAB function dsp.ColoredNoise.

The reference signal should have the same settings as the EEG signal. Therefore, we created
the noise with the same length as the EEG signal, such that the resampling frequency of
200Hz is maintained. Afterwards, the noise signal is filtered the same way as the EEG
signals with a lowpass filter of 30Hz and a highpass filter of 0.5Hz.
The calculation of the CE is done with the PE and the EoD of equations (4.6) and (4.9),

respectively, i.e. without any normalisation. This is done because the CE is the sum of the
entropy measure and the KLD. Since the KLD has no normalisation, we also do not want
to take it into account for the entropy measure.

Up until now, only the main EEG channel has been used. For the GC, we also use
the other two channels, however they are only used for this measure. Firstly, we have
to define the order p of the underlying VAR model. The Multivariate Granger Causality
Toolbox, written by Lionel Barnett and Anil K. Seth, see [6], was used for the compu-
tations. The main function we use for the calculation of the time-domain GC FP→F is
GCCA tsdata to mvgc. The second GC value using the EEG channel placed at the centre
of the head is computed analogously. The abbreviation GCCA stands for Granger causal
connectivity analysis. The arguments of the function are the time series representing the
two EEG channels of the 30 second windows, the indices of the examined channel F and
the signal, that could possibly be an influence P , as well as the order of the VAR model
p. To take a look at what orders are possible, we tested the datasets of the subjects n1
to n9 and ins1 to ins9 and discovered that the VAR model can only be generated for the
orders p ∈ {1, 2}. For higher orders, the model could no longer be created as it was unable
to estimate parameters using the 6000 data points of the two EEG channels, respectively.
Consequently, we tested the function once for p = 1 and once for p = 2 and compared the
results.
The main function calls the function tsdata to var of the toolbox two times, once for

the reduced model in equation (4.15) and once for the full one in equation (4.16), which
fits the regression coefficients A�

i and Ai, Bi and the residuals εXt and εXYt . The ordinary
least squares (OLS) algorithm is applied, which estimates the coefficients as well es the
residuals. With these, the covariance of the residuals can be estimated as well, and thus,
the GC FP→F can be directly computed with these values according to equation (4.17).
The algorithm is explained in detail in appendix A. There could also be the possibility
of calculating the GC more accurately by computing an autocovariance sequence using

39

5. Building a Classification Model

the estimations received by the function tsdata to var with the function var to autocov

and afterwards calculating the time-domain GC using autocov to mvgc. These functions
require more computational effort. Due to efficiency reasons, this method was waived and
consequently the GC is computed with the estimated covariance of the residuals that have
been obtained by the function tsdata to var.

The results for the GC for the different orders p are listed in table 5.3. We examined
the time-domain GCs FP→F and FC→F for the channels P4-O2 and P3-O1 as well as
C4-A1 and C3-A2, respectively, whenever available. According to the channel, the GC in
the table will be written as FX→F with X ∈ {P,C}. The mean of the absolute values
of all possible calculations is given depending on the availability of the channel for the
different patients’ databases. We compare absolute values because we want to get the
highest possible measures.

Table 5.3.: Mean of the absolute values of the GC for different orders p and different
channels.

P4-O2 P3-O1 C4-A1 C3-A2

FX→F , p = 1 0.205 0.279 0.264 0.472

FX→F , p = 2 0.215 0.195 0.182 0.43

When comparing these results we conclude to choose the VAR model order p = 1 as it
shows higher values in more channels. For the central channel, we either take C4-A1 or
C3-A2, if both are available then C3-A2 is preferred because of the higher value. However,
for these two channels it was often the case that either one or the other was given, but
never both. Out of the parietal channels we prefer to take P3-O1, if not, then P4-O2 is
taken. The latter one is present in almost all recordings. The GC was also calculated
for the other available channels, but did not show higher measures in the most frequently
occurring EEG signals, in rarely occurring channels the value was sometimes higher, but
not significantly. Consequently, these channels were our choice of interest for this feature.

As we already described, the used channels are either Fp2-F4 or Fp1-F3, C3-A2 or C4-
A1 and P3-O1 or P4-O2. 97 out of the 104 used datasets had always given at least one of
the two searched signals. In two of the recordings, nfle25 and nfle33, the signals are not
labelled with the measure between two electrodes, as in the other patients, but with the
measure of one electrode. From them, the signals Fp2, C3 and O1 are taken. The datasets
of subjects n12 and n15 did not contain the correct frontal and parietal channel, for n12
we take C4-A1 as the frontal, C3-A2 as the central and O2-A1 as the parietal signal, for
n15 F3-A2 is used for the frontal, C3-A2 for the central and O2-A1 for the parietal signal.
The biggest problem regarding the channel selection we encountered with the datasets n6,
n7 and n9. Only the channels C3-A2 and O2-A1 were available. There was no point in
excluding them as well, otherwise the size of the control group would have been very small.
Hence, we took the first signal as the frontal one and the second as the central and the
parietal.

After defining all the parameters for our features and the channels for the EEG signals
to be examined, the feature extraction can be done and the process of selecting a machine
learning model, that classifies the data, begins.

40

5.3. Selection of the Model

5.3. Selection of the Model

It can be very difficult to choose a machine learning algorithm that fits the appropriate
properties, i.e. being interpretable but still being able to receive a good accuracy. We
follow a suggestion given in [39] to start with a few models, that are flexible but less in-
terpretable as they have a higher probability of achieving the maximal accuracy. Then,
we also use models that are not very complex until we reach a plain model, that is the
easiest to interpret. This way, the performance can be analysed by comparing the achieved
accuracy. Other properties, such as training time or prediction speed, can be important as
well depending on the final application of the model. If, in the end, different algorithms
have similar results, these properties are crucial. For us, the most important one is inter-
pretability. The data is split into test and training data, with the latter one needed for
building the model, more details on how this is done are given in chapter 6.
This guide led us to choose eight different machine learning algorithms for classification

as the basis for the models. We run all of them separately and compare afterwards, so
the order they are given has no meaning. The different models are a decision tree, LDA,
a linear SVM, weighted KNN, bagged trees, boosted trees with AdaBoost, kernel logistic
regression and naive Bayes classifier. The explanation and notation of the algorithms are
based on [50, 39]. The implementation was done in MATLAB, using the Classification
Learner application of the machine learning package. It can train different models, test
them on given data and export them afterwards to the regular MATLAB workspace.
A decision tree is a method, that splits the input, i.e. the features, into smaller parts to

minimise the misclassification error. Let the input be denoted by the matrix X ∈ IRN×D

with N being the number of samples and D the number of features. In our case, the
number of samples equals the number of the examined 30s windows in our training data.
The output y ∈ {1, ..., 5}N is given as well, which are the scored sleep stages for the various
windows. It is needed for building the model, which is called growing a tree for this method.
The output and the input are summarised as dataset D. Each node in the tree has to decide
whether a feature j of a sample i, xij ∈ X, is lower or higher than a certain threshold t. This
is done by a split function, that gives back the best feature and corresponding threshold
for that node.

(j∗, t∗) = argmin
j∈{1,...,D}, t∈Tj

(cost({Xi, yi : xij ≤ t}) + cost({Xi, yi : xij > t}))

The vector Xi denotes the i-th row of the matrix X, i.e. the i-th sample, and Tj the possible
thresholds, which can be determined by taking all the values that feature j obtains. The
dividing also needs a cost function, we use the Gini index. Firstly, we calculate estimates
for the class conditional probabilities for the classes c ∈ {1, ..., 5} according to

π̂c =
1

|D|
�
i∈D

I(yi = c), (5.1)

with I ∈ {0, 1} determining if the output yi is the sleep stage c or not. The Gini index
defined by

5�
c=1

π̂c(1− π̂c) =
5�

c=1

π̂c −
5�

c=1

π̂2
c = 1−

5�
c=1

π̂2
c

41

5. Building a Classification Model

represents the expected error rate. The tree grows following the procedure 5.1 given as
pseudocode, see [50].

Algorithm 5.1: Recursive algorithm for growing a decision tree for classification depicted
from [50].

1 f unc t i on f i tT r e e (node , D , depth)
2 node . p r ed i c t i on = c l a s s l a b e l d i s t r i b u t i o n ;
3 (j∗, t∗,DL,DR) = sp l i t (D) ;
4 i f not wor thSp l i t t i ng (depth , cost , DL,DR) then
5 return node ;
6 else
7 node . l e f t = f i tT r e e (node ,DL , depth+1);
8 node . r i g h t = f i tT r e e (node ,DR , depth+1);
9 return node ;

10 end

In MATLAB we set an abort criterion, such that the maximal number of splits is 100. This
reduces the risk of overfitting. A major advantage of decision trees is that they are very
interpretable, as they can basically be torn down to if-then queries. On the other side, two
disadvantages are that they do not yield good classification accuracies compared to other
algorithms and they are unstable, i.e. very sensitive to changes in the input data.

To overcome the last drawback, the method of bagging, also known as bootstrap aggre-
gating, is introduced. It is an ensemble technique that takes a certain number of learners
and handles the prediction of each one of them as a vote. The class with the highest number
of votes has the highest probability for an accurate prediction and is therefore chosen by
the algorithm. Bagged trees take decision trees as the underlying learners, for our model
we take 30 and choose the maximal number of splits as 4185, as the predefined settings of
MATLAB are for this classification model. Unfortunately, when using multiple trees the
property of interpretability is lost.

Boosted trees are another modification in which several decision trees are combined to
create a new model. A certain number of weak learners, in our case 30 decision trees,
are the basis. They are called that way because they perform just a little better than a
complete random classifier. This is achieved by setting the maximal number of splits to
a rather low value, in our case it is 20. A boosting algorithm is used for model building
procedure. We use AdaBoost, an abbreviation of adaptive boosting, which adds one weak
learner that predicts the misclassified samples better than the model before in every step.
The basic concept is that weights are given in each step, such that the misclassified samples
receive a higher weight and correctly classified ones less in this iteration.

The original algorithm was invented for a binary classification problem, the enhanced
one, that is used by MATLAB, is called AdaBoost.M2 and is explained as a pseudocode
in algorithm 5.2. The procedure was introduced in 1997 by Yoav Freund and Robert E.
Schapire, see [24]. The input is the dataset D that comprises of the feature matrix of all the
samples X ∈ IRN×D and the output y ∈ {1, ..., k}N with N being the number of samples, D
the number of features and k the number of classes, in our case k = 5. The other inputs are
the weak learners, WeakLearn, and the number of iterations T , which equals the number

42

5.3. Selection of the Model

of learners. We use 30 of them. The variables for the weights are wt
i,c with t specifying

the current iteration, i the sample number and c the class, i.e. the sleep stage. A uniform
distribution is used for initialisation.
In every iteration the procedure first calculates a label weight function qt and a distri-

bution Dt which is needed for the weak learner. The classifier then tries to minimise the
pseudo-loss εt, which is defined in step 3. It is a modification of the misclassification error,

Algorithm 5.2: Boosting algorithm AdaBoost.M2 for an ensemble method to improve weak
classifiers to a better performing model depicted from [24].

1 f unc t i on AdaBoost .M2(D , WeakLearn , T)
2 I n i t i a l i z e weight vec to r w1

i,c =
1

N(k−1) for i = 1, ..., N, c ∈ {1, ..., k}\{yi} .
3 for t = 1, 2, ..., T

4 1 . Set W t
i =

�
c =yi

wt
i,c ;

5 Def ine the l a b e l weight func t i on

qt(i, c) =
wt
i,c

W t
i

6 for c �= yi and the d i s t r i b u t i o n

Dt(i) =
W t

i
N�
i=1

W t
i

.

7 2 . Ca l l WeakLearn provided with the d i s t r i b u t i o n Dt and l a b e l
weight func t i on qt ;

8 get back a hypothes i s : ht : X × {1, ..., k} → [0, 1] .
9 3 . Ca l cu la t e pseudo−l o s s o f ht :

10

εt =
1

2

N�
i=1

Dt(i)

Ñ
1− ht(Xi, yi) +

�
c =yi

qt(i, c)ht(Xi, c)

é
.

11 4 . Set βt =
εt

1−εt
.

12 5 . Set the new weights vec to r to

wt+1
i,c = wt

i,cβ
1/2(1+ht(Xi,yi)−ht(Xi,c))
t

for i = 1, ..., N, c ∈ {1, ..., k}\{yi} .
13 end
14 return

h(x̃) = arg max
c∈{1,...,k}

T�
t=1

Å
log

1

βt

ã
ht(x̃, c);

43

5. Building a Classification Model

as it examines the weighted problem. Typically it has low values in the first iterations
and rises afterwards. Once the weights have been updated, the next iteration can begin.
After all weak learners are included, i.e. after T iterations, the final hypothesis function h
is returned, which represents the trained model. It calculates for a given input x̃ for each
class c ∈ {1, ..., k} the weighted mean of the hypothesis values of the weak learners and
then chooses the class with the highest one.

Next, LDA will be introduced. It is based on the multivariate normal distribution, whose
probability density function is defined for a dimension of d as

N (x|µ,Σ) = 1

(2π)
d
2 |Σ| 12

exp

Å
−1

2
(x− µ)TΣ−1(x− µ)

ã
,

with µ = E(x) ∈ IRD denoting the mean vector and Σ the D ×D covariance matrix of x.
The variable D defines the number of features again, |Σ| refers to the determinant of the
matrix Σ. The argument of the exponential function is also called Mahalanobis distance
between the data vector x and its mean vector. In general, Gaussian discriminant analysis
as an application of the distribution given above is a generative classifier that defines the
class conditional densities as

p(x|y = c, θ) = N (x|µc,Σc). (5.2)

They are used for the calculation of the probability that for a given feature vector x the
class c ∈ {1, ..., k} is predicted. The variable θ comprises of the parameters of the model,
k defines the number of classes again. According to Bayes’ rule the conditional probability
that we would like to determine is

p(y = c|x, θ) = p(y = c|θ)p(x|y = c, θ)
k�

c�=1

p(y = c�|θ)p(x|y = c�, θ)

. (5.3)

The prior probabilities p(y = c|θ) are computed as the sampling probability of the training
dataset of N samples of each class analogously to equation (5.1) and denoted as π̂c.

π̂c =
1

N

N�
i=1

I(yi = c) (5.4)

Plugging this, as well as the probability density function (5.2), in, we get

p(y = c|x, θ) = π̂c(2π)
− d

2 |Σc|− 1
2 exp

Ä
−1

2(x− µc)
TΣ−1

c (x− µc)
ä

k�
c�=1

π̂c�(2π)
− d

2 |Σc� |−
1
2 exp

Å
−1

2
(x− µc�)

TΣ−1
c� (x− µc�)

ã .
This formula gives a quadratic function of x and the algorithm is therefore called quadratic
discriminant analysis. Assuming that the covariance matrices are shared or tied, i.e. all of

44

5.3. Selection of the Model

them are equal Σc = Σ, we get LDA.

p(y = c|x, θ) = π̂c(2π)
− d

2 |Σ|− 1
2 exp

Ä
−1

2(x− µc)
TΣ−1(x− µc)

ä
k�

c�=1

π̂c�(2π)
− d

2 |Σ|− 1
2 exp

Å
−1

2
(x− µc�)

TΣ−1(x− µc�)

ã
=

π̂c exp
Ä
−1

2x
TΣ−1x+ µT

c Σ
−1x− 1

2µcΣ
−1µc

ä
k�

c�=1

π̂c� exp

Å
−1

2
xTΣ−1x+ µT

c�Σ
−1x− 1

2
µc�Σ

−1µc�

ã
=

exp
Ä
µT
c Σ

−1x− 1
2µcΣ

−1µc + ln(π̂c)
ä

k�
c�=1

exp

Å
µT
c�Σ

−1x− 1

2
µc�Σ

−1µc� + ln(π̂c�)

ã
Defining γc := −1

2µ
T
c Σ

−1µc + ln(π̂c) and βc = Σ−1µc we can shorten the definition to

p(y = c|x, θ) = exp
Ä
βT
c x+ γc

ä
k�

c�=1

exp
Ä
βT
c�x+ γc�

ä .
It is called linear, because, since the term exp

Ä
−1

2x
TΣ−1x

ä
is truncated from the numera-

tor and denominator, a linear function remains, if the logarithm of the definition is taken.
Linear models generally have the property to be interpretable. When all appearing param-
eters for the posterior probabilities p(y = c|x, θ) are determined, the model is trained and
can test new data given by the feature vector x by calculating the posterior probabilities
of each class and choose the class with the highest value.

Naive Bayes is very similar to LDA and if Σc in equation (5.2) is a diagonal matrix they
are even equivalent. The machine learning algorithm takes Bayes’ rule of equation (5.3) as
well, but assumes that the features are conditionally independent. This results in a change
of the calculation of the class conditional densities, which were defined for the LDA, as
given in equation (5.2), to

p(x|y = c, θ) =
D

j=1

p(xj |y = c, θjc).

The parameters comprised by θjc are the mean µjc and the variance σjc of a certain feature
j of items a class c, the variable D defines the number of the features. As in our case all of
them are real values for which we can set p(x|y = c, θ) =

�D
j=1N (xj |µjc, σjc) and compute

the probabilities using the normal distribution. The prior probabilities p(y = c|θ) =: π̂c
are again calculated analogously to equation (5.4) as the probability of how often class c
occurs in the training dataset. After the training process, a test can be run like before by
determining all the posterior probabilities p(y = c|x, θ) for a given x and predicting the
class with the highest one.
The assumption of the conditional independence is strict and it is very unlikely that this

is the case in reality. That is why the method is called naive. Nevertheless, models based

45

5. Building a Classification Model

on this algorithm do not have a high risk of overfitting and are quite interpretable because
of their plain structure, while still performing well to some extent.

Both LDA and naive Bayes are generative classifiers, as they start looking at a joint
model of the form p(y, x) and then deriving p(y|x). Another technique is given by logistic
regression for example. Even though the name is misleading, it is a discriminative classifier.
A discriminative approach tries to fit the model p(y|x) directly. At the end of the section
we will discuss the differences as well as the advantages and disadvantages between the two
creation processes. The logistic regression model for multiple classes takes the form

p(y = c|x,W) =
exp(W T

c x)
k�

c�=1

exp(W T
c� x)

.

The weight matrix W ∈ IRD×k stores the coefficients of the classes c ∈ {1, ..., k} for D
features. The vector Wc represents the c-th column of the matrix W . To get a procedure
for determining the weights, we need some definitions and corresponding notation. Let
µic = p(yi = c|Xi,W) for the i-th out of N training samples and summarised to the vector
µi = (µi1, ..., µik)

T . For yic = I(yi = c) the vector yi comprises of (yi1, ..., yik)
T . As it is

suggested in [38], for reasons of identifiability, the last column of W is set to a zero vector,
i.e. Wk = 0. Afterwards, we set the vector w as a column vector of length D · (k− 1) with
the values of the matrix W of the columns 1 to k − 1 stacked, i.e. w = (W1; ...;Wk−1).
Hence, we also shorten the vectors µi and yi by 1 to a length of k − 1. Logistic regression
uses a negative log-likelihood function as basis, consequently we have for this reason

f(w) = − log

�
N

i=1

k

c=1

µyic
ic

	
= −

N�
i=1

k�
c=1

yic log(µic)

= −
N�
i=1

��
k−1�
c=1

yicW
T
c Xi

	
− log

�
k−1�
c�=1

exp(W T
c� Xi)

	�
.

We will need the gradient g and the Hessian matrix H of this function. For this, we use
the kronecker product of matrices ⊗. The gradient calculates to

g(W) = ∇f(w) =
N�
i=1

(µi − yi)⊗Xi

which results in a column vector of length D · (k−1). The Hessian is a D(k−1)×D(k−1)
matrix given by

H(W) = ∇2f(w) =
N�
i=1

(diag(µi)− µiµ
T
i)⊗ (XiX

T
i).

The operator diag gives back a (k − 1) × (k − 1) diagonal matrix with the values of its
argument on the main diagonal. We then consider the perturbed problem with the objec-
tive function f �(W) = − log p(D|w) − log p(W) with p(W) =

�k
c=1N (Wc|0, V0) using .2

46

5.3. Selection of the Model

regularisation which we want to minimise. The regularisation strength is chosen by MAT-
LAB automatically. The normal distribution is taken of a mean vector of 0 and a variance
matrix V0. The function, the gradient and the Hessian matrix then read as

f �(W) = f(W) +
1

2

k�
c=1

WcV
−1
0 Wc,

g�(W) = g(W) + V −1
0

�
k�

c=1

Wc

	
,

H �(W) = H(W) + I ⊗ V −1
0 .

The matrix I denotes the unit matrix. These definitions are needed for the algorithm that
estimates our parameters of the logistic regression model. The basic idea is to use Newton’s
algorithm

θk+1 = θk − ηkH
−1
k gk

with a learning rate ηk and a parameter set θk, which includes the weight matrix W to find
the optimal fix point of the parameters. An iteration limit of 1000 is set. For determining
the Hessian, the L-BFGS algorithm is used, which stands for limited memory Broyden,
Fletcher, Goldfarb and Shanno. The four last names belong to the people who created the
procedure. It is a quasi Newton method that approximates the Hessian matrix Hk or its
inverse using only a diagonal and a low rank matrix.

As we use kernel logistic regression, we first do a random feature expansion using the
Fastfood scheme, see [42] for further information. It maps the input x ∈ IRD to a higher
dimensional space. The parameters for this procedure are set automatically by MATLAB.
In the high dimensional space the logistic regression model is applied, which minimises the
objective function f �. Even though the overall model is called kernel logistic regression,
no Gaussian kernel, a method that is not introduced in this work, is applied to the model.
The presented procedure defines an equivalent and this is the way how it is implemented
in MATLAB.

The model that is introduced next is KNN. It is a plain approach that tests new data
by looking at a certain number of neighbours K of the points used to train the model,
which we summarised as D. We set K = 10 in our model. For the decision of the nearest
neighbours, a distance metric has to be chosen, in our case it is the Euclidean distance

d(x̃, Xi) =

Ñ
D�
j=1

(x̃j − xij)
2

é 1
2

.

The distance is calculated for feature vector that is tested x̃ and each of the N training
sample vectors Xi. Each of them is of length D which is the number of predictors. This
defines a neighbourhood NK(x̃,D) of size K around x̃. The probability for a certain class
c is then given by

p(y = c|x̃,D,K) =
1

K

�
i∈NK(x̃,D)

I(yi = c). (5.5)

47

5. Building a Classification Model

The model predicts the class with the highest probability. We use a modification of this
algorithm, which is called weighted KNN. The distance measure affects not only the choice
of neighbourhood, but also the strength of that neighbour’s ”vote”. The distance weight
in our setting is set to squared inverse, which means that equation (5.5) changes to

p(y = c|x̃,D,K) =
�

i∈NK(x̃,D)

1

d(x̃, Xi)2
I(yi = c).

The factor 1
K was neglected as well, since we cannot speak about probabilities anymore

because they do not sum up to 1. This procedure changes the model in a way that the
more distant a neighbour is the less of an influence it has on the prediction. As the
distance measure is of great importance for the original procedure and even more for the
modification, the scales of the features are highly important. Predictors, whose values do
not have a wide range, contribute less to the result. Consequently, in literature it is found
that standardisation of the features is recommended. MATLAB does this for each numeric
feature by centring by the mean and scaling by the standard deviation, respectively.

Properties of KNN models are very easy to explain to other people and they show good
performances. However, when using a high number of features these characteristics di-
minish, as interpretation for this approach can only happen on a local level, since only
neighbours are being looked at. This gets complex for many predictors. The classifica-
tion accuracy also reduces with an increasing number of feature vectors, even though for
weighted KNN this is not as bad as for the original algorithm.
The last machine learning approach, that will be introduced, are linear SVMs. They are

only used for binary classification, but extensions can also make classification of multiple
classes possible. As we have k = 5 different classes, a one-versus-one approach is used that
trains

k(k−1)
2 linear SVMs fc,c� , that can distinguish between two classes c, c�. The prediction

is then made according to the most ”votes” of the classifiers.
Binary classification with linear SVMs is a similar approach to logistic regression, but

changes the underlying function from negative log-likelihood to the hinge loss function
max(0, 1 − yf(x)). The class labels are denoted as y ∈ {−1, 1}, as only two available
classes remain. The input is the feature vector x ∈ IRD. The confidence in choosing label
1 is given by the function f(x) = wTx+ b with a weight vector w ∈ IRD and a bias b ∈ IR.
The objective function for determining the weights is

min
w,b

�
1

2
||w||2 + C

N�
i=1

max (0, 1− yif(xi))

	
.

The constant C is determined throughout the training process and specifies the number of
tolerable errors during the training. The solution is given by

ŵ =
N�
i=1

αiXi

with a sparse α vector. Many of the components are 0 because the hinge loss function
often obtains the value 0. When for i ∈ {1, ..., N} the corresponding αi is greater than 0,
Xi is called a support vector. These are the ones that are not classified correctly. After

48

5.3. Selection of the Model

the training process, the prediction for a certain feature vector x of the binary classifier is
given by

ŷ(x) = sgn(f(x)) = sgn
Ä
ŵTx+ b̂

ä
with sgn ∈ {−1, 1} denoting the signum function. Our MATLAB procedure standardises
the feature data as well, analogously like for KNN.
This procedure is, in the given linear case, easy to interpret, however, especially in the

case of multiple classes the training time of the model is very high, as it is presented in
section 6.2.
After introducing all the various examined models, a short comparison between discrim-

inative versus generative approaches and corresponding properties is given. An overview
about which of the presented models belongs to which category is given in table 5.4. Gener-
ative models are generally easier and faster to fit. They are able to fit each class separately,
which can be important when adding a new one, and they can handle unlabelled training
data as well as missing features better. The last characteristics are not very important for
our application. On the contrary, due to sometimes very strong assumptions in generative
models, like for naive Bayes, discriminative ones are often better calibrated regarding their
probability estimates, i.e. probabilities of 0 or 1 only happen rarely. Another advantage for
discriminative models is that they can preprocess features, for example using expansion.

Table 5.4.: Breakdown which of the examined models is generative and which is
discriminative.

Model Generative or discriminative

LDA Generative

Naive Bayes classifier Generative

Weighted KNN Generative

Kernel logistic regression Discriminative

Decision tree Discriminative

Bagged trees Discriminative

Boosted trees with AdaBoost Discriminative

Linear SVM Discriminative

As all the models have now been introduced, we can apply the algorithms on the CAP
Sleep Database and compare the results to gain a classification model for our sleep scoring
problem.

49

6. Results and Benchmarking

The CAP Sleep Database is used for training and testing the different models. As explained
in section 5.1, we use 104 datasets. To get a comparison, we split the data into five folds
and always train the algorithms with four folds and then test with the fifth one. The given
accuracies and results in section 6.1 always represent the mean of these five test runs. For
the first application of our models, we use the 22 features, as explained in chapter 4. Van
der Donckt et al. suggest in [69] to use a higher number of predictors, i.e. not lower than
40, as a low number of features limits the research contribution. Accordingly, we expanded
our feature set, which is presented in section 6.2. Afterwards, the best performing, trained
models are used for benchmarking the Sleep Telemetry Database of the Sleep EDF Database
Expanded [35]. In section 6.3 the corresponding results are given.

6.1. Performance of Different Models for 22 Features

For finding a well performing sleep scoring model, we investigate different machine learning
algorithms, which are described in section 5.3. The eight models are a decision tree, LDA,
a linear SVM, weighted KNN, bagged trees, boosted trees with AdaBoost, kernel logistic
regression and naive Bayes classifier. Before we can train the different models, we first
have to determine the five folds we split the database into. The algorithms are then always
trained with four folds and tested with the fifth one, for comparison, the mean is taken from
the five runs. As we want to build a model for sleep stage classification, independent of the
health status regarding sleep disorders, we split the data base in a way such that each sleep
disorder is equally distributed among all folds. This way, each fold is as heterogeneous as
possible. We also distributed the seven data sets as widely as possible, where we faced the
problem of having to choose different EEG signals. With these assumptions the folds as
presented in appendix B are determined. The datasets, for which we had to take different
channels than usual, are underlined.
After the extraction of all the features for the 104 patients, we created two tables accord-

ing to the folds with training data and test data. They contain the 22 features for each 30s
window of each patient, where 21 of them change for almost every window, the age only
changes with the patient. The tables also contain the sleep stages of the 30s windows.
Firstly, the training data is handed over to the Classification Learner application of

MATLAB. We have to choose which column of the table is the response variable, in our
case this is the column of the sleep stages, and which ones are the predictors, which are
the 22 other columns. One can also select to not work with all of them but only choose
some. We use all of the 22 features. There is also the option to set aside a test dataset
of the imported table. This is not done here, since an additional table is already set aside
with the test data. The application also gives an option for validation, which protects
against overfitting, see [50]. We use cross-validation with five folds, meaning that we split

51

6. Results and Benchmarking

the training data in five folds again, train them with four and test them against the fifth
one, like it is later done with the test data. Thereafter, the average validation accuracy is
the mean of the five runs. However, these folds are chosen randomly, therefore we have a
high probability of training the model with data of a patient and to then do the validation
test with different data from the same patient. This makes the model biased towards
that patient, which is something we want to avoid in the overall model. Consequently,
we still perform our tests later with the test dataset. But still, cross-validation gives a
rough estimate of the accuracy of the model. Even though it is not recommended for large
datasets, due to computational effort, we choose it for our model building process, as we
want better estimates for the accuracy. Another variant would be the holdout validation,
which only tests one validation fold against the other training folds. This approach is
faster for larger datasets. The validation procedure is of great importance, if no test set is
available, but we create our own set by splitting the database. After a validation process,
the final model is trained with the whole table of the training data.

Secondly, the different models are chosen with the settings as described in section 5.3
and then trained. The validation accuracies are listed in table 6.1. Some models were
trained quickly, some of them needed more time, for example the linear SVM or bagged
trees. A short comparison of the exact times is given in section 6.2. After having the model
trained with four folds, it is tested against the fifth fold. The test accuracy results are also
presented in table 6.1.

Table 6.1.: Test and validation accuracies of the eight examined models given in percent.
In this case the feature extraction comprised of 22 predictors.

Model Validation accuracy Test accuracy

LDA 61.9% 61.5%

Naive Bayes classifier 44.5% 44.1%

Weighted KNN 69.9% 62.5%

Kernel logistic regression 53.1% 49.4%

Decision tree 65.1% 60.4%

Bagged trees 73.6% 62.8%

Boosted trees with AdaBoost 63.6% 60.3%

Linear SVM 64.8% 63.7%

As we can see, the models perform very differently. The validation and test accuracies for
most models are over 3%, for LDA, naive Bayes classifier and linear SVM they are lower.
This strengthens our hypothesis to split the CAP Sleep Database according to the patients
and sleep disorders to gain a sleep scoring model for all humans, independent of their health
status. It seems that in the cases of a high validation accuracy, if the model is trained with
data of a certain patient, and then tests with different data of the same person, it classifies
better, than for a complete different subject. Therefore, we only compare the models based
on their test accuracies. Linear SVM, bagged trees, weighted KNN and LDA are the four
best in descending order. We want to investigate these further by looking at the confusion
matrices of the models.

52

6.1. Performance of Different Models for 22 Features

A confusion matrix lists the observations of predicted and true classes in a table, see
[50, 39]. True classes are written in the rows and the predicted classes in the columns.
This way observations of truly predicted classes can be found on the main diagonal. In the
off-diagonals, the misclassified stages are written, divided into which class was incorrectly
predicted. With the confusion matrix, one can directly compute some important rates. On
the one hand, the true positive rate (TPR) of each class is the number of true predictions
divided by the corresponding rowsum of the matrix. This value is also called sensitivity.
The false negative rate is 1 - TPR for each class, also known as false alarm rate. On the other
hand, the positive predictive values (PPV) is the number of true predictions divided by
the corresponding columnsum of the matrix. The false discovery rate is therefore 1 - PPV.
To obtain the confusion matrices of the four models, we take the correctly and incorrectly
classified observations of each test run and sum them up. The result for each model is
presented in figure 6.1, the plots are done with the MATLAB function confusionchart.
Blue coloured cells show correctly predicted sleep stages, red coloured incorrectly ones.
The darker the colour, the more correct or false observations were done.

N3 N2 N1 R W

N3

N2

N1

R

W

T
ru

e
 C

la
s
s

LDA

16092

3817

11

149

187

7871

1595

8922

3531 35

477

3227

1998

7356

2892

716

2022

931

2090

12282

29242

N3 N2 N1 R W

N3

N2

N1

R

W

Weighted KNN

17330

5497

98

467

332

6740

1033

5119

2299

57

334

442

594

544

558

5018

1853

9888

3047

471

1921

1109

2449

12705

25538

N3 N2 N1 R W

Predicted Class

N3

N2

N1

R

W

T
ru

e
 C

la
s
s

Bagged trees

18113

6182

64

702

323

5941

1070

5170

1968

46

316

508

696

610

441

4373

1651

9074

2534

615

2333

1242

2875

13492

25104

N3 N2 N1 R W

Predicted Class

N3

N2

N1

R

W

Linear SVM

16375

3477

15

256

193

7266

1221

5972

2845

850

4885

2314

10269

3079

665

2111

985

2020

12810

27835

Figure 6.1.: Confusion matrices of the different models trained with four folds and tested
against the fifth one with 22 features. Blue coloured cells show correctly pre-
dicted classes, red coloured misclassified ones. White coloured cells represent
no observation.

Taking the rowsum over each of the matrices we can see that for the 104 examined datasets
of the CAP Sleep Database, there are 105443 windows of a length of 30s for which we know
the sleep stage annotations. In total, the stage N3 appeared 25156 times for all patients,
N2 38308 times, N1 4535 times, R 18517 times and W 18927 times. What all four models

53

6. Results and Benchmarking

have in common is that many misclassifications happen between the stages N3 and N2 and
N2 and R. Incorrect predictions between R and W also occur quite often. Linear SVM and
LDA rarely or not at all attempt to predict the class N1.

We do not only want to compare the overall accuracy of the models but to also calculate
Cohen’s κ coefficient, see [14], which was introduced in section 3.2. According to [66], the
calculation can be modified using the confusion matrix. For the adaption to fit our case we
define the number of correctly predicted sleep stages, which is the sum of the main diagonal,
i.e. the trace, as T =

5
i=1Mii. The matrix M denotes the confusion matrix. The rowsum

of M is a vector of length 5 that contains the true number of sleep stages, which will be
denoted by SC. The columnsum analogously comprises of the predicted number of sleep
stages, written as SP . As defined in equation (3.1) the adaption to our problem reads as

κ =
p0 − pc
1− pc

=

T

N
−

5�
c=1

SCc

N

SPc

N

1−
5�

c=1

SCc

N

SPc

N

with N = 105443 being the number of 30s windows. Cohen’s κ coefficient has the advantage
that it also considers the number of predictions that happen by chance, which is represented
by the term

5
c=1

SCc
N

SPc
N . As with the overall accuracy, a higher value indicates better

accuracy. For comparison, the overall accuracy OA is defined as

OA =
T

N
· 100%.

The κ values are listed in table 6.2. It is visible that the linear SVM continues to be the
best model for this value.

Table 6.2.: Cohen’s κ values for the four better performing models that were trained with
22 features.

Model Cohen’s κ coefficient

LDA 0.4674

Weighted KNN 0.4929

Bagged trees 0.4991

Linear SVM 0.5052

To optimise our models and to achieve a higher accuracy and κ value, we take more features
into account and hope that we can get a better classification of stage N1 as it has never
been predicted by the linear SVM. This is done in section 6.2.

54

6.2. Model Improvement using 64 Features

6.2. Model Improvement using 64 Features

It is written in [69] that if the number of features is below 40, the research contribution is
limited. As we want to expand our number of predictors to optimise the performance of
our models, as described in section 6.1, the number of features is almost tripled. Out of
the 22 predictors, that had been used before, the age is the only one that cannot be used
a second time. Except for the GC, that makes up two of the features, all of the others had
been simply calculated of the frontal channel, up until this moment. These 19 features are
now also computed of the central and of the parietal signals. Before, the GC had been
calculated regarding the influence of the central channel C on the frontal F FC→F and the
parietal P on F FP→F . Now, we also compute every other possible combination of the GC,
i.e. FF→C , FF→P , FC→P and FP→C , which gives us four more predictors. This way, we
were able to remain in the time-domain, resulting in a total of 3 · 19 + 6+ 1 = 64 features.

By first extracting the new amount of features, we followed the same procedure outlined
in the previous section and examined the accuracy of the tests to compare the eight models.
For this, we also used the same test folds, as described in appendix B, to compare the
different approaches regarding the number of predictors. The validation folds for cross-
validation are randomly chosen by the Classification Learner application. The test and
validation accuracies for each of the algorithms are listed in table 6.3.

Table 6.3.: Test and validation accuracies of the eight examined models given in percent.
In this case the feature extraction comprised of 64 predictors.

Model Validation accuracy Test accuracy

LDA 65.2% 63.7%

Naive Bayes classifier 46% 45.4%

Weighted KNN 76.4% 65.8%

Kernel logistic regression 58.9% 54.5%

Decision tree 67.2% 62.1%

Bagged trees 77.7% 67.2%

Boosted trees with AdaBoost 66.6% 63.1%

Linear SVM 68.4% 66.1%

The four best models regarding the test accuracy are LDA, weighted KNN, bagged trees
and linear SVM, as discovered before, but the order has changed. Bagged trees are now
the best classifier. When comparing to the results achieved with 22 features, we can see
that the test accuracy increases for all the models up until a raise of five percentage points.
The ratio between validation and test accuracy stays approximately the same. To have a
deeper insight into the performance, we want to take a closer look at the confusion matrices
of the four best models and later on determine the Cohen’s κ value as well. The confusion
matrices are pictured in figure 6.2, the plots are again created using the MATLAB function
confusionchart.

As we look at the same data, the number of 30s windows stays the same with 105443. We
achieve similar results as before, but the number of correct predictions is higher for each
model and class, as expected. The feature expansion led to the desired hope for the LDA

55

6. Results and Benchmarking

N3 N2 N1 R W

N3

N2

N1

R

W

T
ru

e
 C

la
s
s

LDA

16108

3174

13

140

147

7566

1615

7795

3235

4

49

55

108

164

718

3676

1949

8930

2557

760

2011

903

1544

12824

29398

N3 N2 N1 R W

N3

N2

N1

R

W

Weighted KNN

17750

5106

64

426

403

6624

993

4569

2027

59

468

764

752

813

312

4826

1801

11270

2291

411

1669

913

1500

13393

26239

N3 N2 N1 R W

Predicted Class

N3

N2

N1

R

W

T
ru

e
 C

la
s
s

Bagged trees

18689

5352

35

554

335

5626

1172

4973

1736

22

278

633

536

459

302

3779

1541

10207

1555

517

2175

1154

2247

14842

26724

N3 N2 N1 R W

Predicted Class

N3

N2

N1

R

W

Linear SVM

17061

3446

18

291

204

6328

1294

5400

2360

953

4893

2255

11188

2446

814

2331

968

1638

13917

27638

Figure 6.2.: Confusion matrices of the different models trained with four folds and tested
against the fifth one with 64 features. Blue coloured cells show correctly pre-
dicted classes, red coloured misclassified ones. White coloured cells represent
no observation.

that the model also tries to predict the sleep stage N1. This is not the case for the linear
SVM. However, the increase in correct classifications also resulted in a rise in the overall
accuracy of the algorithm. Apart from that, we still see a high number of misclassifications
between the stages N3 and N2 and N2 and R. When comparing the Cohen’s κ coefficient,
listed in table 6.4, we see an increase in all four models. Again it holds, that the higher
the overall accuracy the higher the κ value.

Table 6.4.: Cohen’s κ values for the four better performing models that were trained with
64 features.

Model Cohen’s κ coefficient

LDA 0.5007

Weighted KNN 0.539

Bagged trees 0.5595

Linear SVM 0.5399

When the two approaches with 22 and 64 features are compared, it is obvious that for each
model the higher number of predictors performs better in terms of accuracy. Although the
training time increases with more features, the primary aim is to develop a model that
predicts with maximum accuracy. In order to achieve the desired results, the longer period

56

6.2. Model Improvement using 64 Features

of training can be considered to be of little importance, since properties like interpretabil-
ity, accuracy and prediction speed matter more. The latter one is an estimate given by
MATLAB of how fast new data is tested on the basis of the prediction speed during vali-
dation. However, training time is still included in the comparison of the final models that
are trained with the whole dataset containing the 104 subjects.
After all of the investigations, we decided to train all four of the finalists, i.e. bagged

trees, linear SVM, weighted KNN and LDA. A comparison between them is given in table
6.5.

Table 6.5.: Comparison of linear SVM, bagged trees, weighted KNN and LDA trained with
104 datasets of the CAP Sleep Database and 64 features extracted. The prop-
erties are the accuracies of the five fold test of table 6.3, of a five fold cross-
validation, if it is easy to interpret, the training time and the prediction speed.

LDA Weighted KNN Bagged trees Linear SVM

Five fold
test

63.7% 65.8% 67.2% 66.1%

Five fold
cross-validation

64.9% 76.3% 77.5% 68.2%

Easy to
interpret

Yes No No Yes

Training
time

6.85s 429.25s 861.68s 2308.9s

Prediction
speed

∼ 190000 obs/s ∼ 1100 obs/s ∼ 39000 obs/s ∼ 110000 obs/s

As we can see, the accuracies for the five fold cross-validation of the entire database used
are similar to the mean of cross-validation when trained with the specified four folds which
is listed in table 6.3. In terms of interpretability, we already discussed some points in
section 5.3, linear models like linear SVM and LDA are easier to interpret than the other
ones. The training time between the models differs a lot. Especially the linear SVM needed
much more time than the rest with almost 39 minutes. This long training time has already
been hinted in section 5.3, as SVMs cannot create a model for classification of multiple
classes directly. In our case, the linear SVM model is comprised of 5·4

2 = 10 linear SVMs,
which always only classify a binary case. Bagged trees follow with a training time of 15
minutes and weighted KNN needed approximately half of that time. LDA is trained very
quickly, needing only a few seconds. The five fold cross-validation also increases training
time, holdout validation would speed up this process. In terms of prediction speed, LDA
and linear SVM are outstanding, whereas weighted KNN is much slower. The unit of this
property is given in observations per second.

57

6. Results and Benchmarking

6.3. Benchmarking Sleep-EDF Sleep Telemetry Database

The four models obtained from the previous section, i.e. LDA, weighted KNN, bagged
trees and linear SVM trained with the whole database of 104 subjects, are now tested to
benchmark a new set of data. The Sleep-EDF Database Expanded [35] is freely available
and was downloaded from PhysioNet [25]. It comprises of 197 polysomnography recordings
split into two separate databases. The Sleep Casette is a set of 153 recordings of 78
subjects between the ages of 25 to 101, who did not take any sleep-related medication,
recorded between 1987 and 1991. The Sleep Telemetry Database contains 44 recordings of
22 patients with minor problems with falling asleep who were between the ages of 18 and
79. The subjects were recorded on two consecutive nights in 1994, one night being given
the sleep medication temazepam and the other night a placebo. With Fpz-Cz and Pz-Oz
only two EEG signals were recorded with a sampling rate of 100Hz. The sleep stages are
annotated based on the R&K rules, and therefore we had to manually merge the sleep
stages S3 and S4 to our needs according to the AASM rules again.

The second database, i.e. the Sleep Telemetry Database, is used for testing our models.
As only two EEG channels are included, we choose Fpz-Cz as the frontal and Pz-Oz as
the central and parietal one analogously to the subjects n6, n7 and n9 of the CAP Sleep
Database, as described in section 5.2. The signals go through the same preprocessing, as
needed, by resampling to 200Hz, lowpass filtering with 30Hz and highpass filtering with
0.5Hz. Afterwards, the 64 features are extracted and the sleep stages are predicted. In
figure 6.3, the confusion matrices of the four models are pictured, which show the true and
predicted classes of the summarised 44 datasets. The plots are created using the MATLAB
function confusionchart.

With the confusion matrices, the overall accuracy and the Cohen’s κ coefficients are
determined. The results are listed in table 6.6 and show slightly worse outcomes than for
the CAP Sleep Database. However, the best model LDA reaches an accuracy of 64% and
κ = 0.4842, which is a relatively good achievement because of the limited number of EEG
channels and a sampling rate of only 100Hz.

Table 6.6.: Overall accuracy and Cohen’s κ coefficients of the four models trained with 64
features for the Sleep Telemetry Database.

Model Overall accuracy Cohen’s κ coefficient

LDA 64% 0.4842

Weighted KNN 60.7% 0.447

Bagged trees 54.9% 0.3711

Linear SVM 59.1% 0.4261

In early 2023, Van der Donckt et al. gave an overview of benchmarking results of different
classification approaches in their publication [69]. With their newly introduced approach,
they achieved the best results for this database, with an overall accuracy of 83.6% and
κ = 0.765. It is a gradient boosted trees model with Catboost using 1048 features per 30s
window. They used the two given EEG channels, one EOG and one EMG channel for their
feature extraction.

58

6.3. Benchmarking Sleep-EDF Sleep Telemetry Database

N3 N2 N1 R W

N3

N2

N1

R

W

T
ru

e
 C

la
s
s

LDA

4855

1320

6

16

438

1487

881

2319

615

4

5

114

12

2603

1511

4728

1068

63

612

1258

1307

2813

15358

N3 N2 N1 R W

N3

N2

N1

R

W

Weighted KNN

5645

2876

20

101

42

729

1005

3263

756

114

310

455

162

13

2475

1170

3292

748

30

678

1155

1264

3340

13750

N3 N2 N1 R W

Predicted Class

N3

N2

N1

R

W

T
ru

e
 C

la
s
s

Bagged trees

5095

3152

16

104

38

1183

929

3079

878

6

136

159

291

211

96

2740

838

2462

608

37

1085

1718

2439

3313

12780

N3 N2 N1 R W

Predicted Class

N3

N2

N1

R

W

Linear SVM

5428

1889

20

42

920

738

919

2339

1223

1

1

10

3600

1465

4659

731

241

1010

1256

1335

2173

13393

Figure 6.3.: Confusion matrices of the different models trained with 64 features for bench-
marking the Sleep Telemetry Database of the Sleep-EDF Database Expanded.
Blue coloured cells show correctly predicted classes, red coloured misclassified
ones. White coloured cells represent no observation.

Now that all the results of our models have been presented, it can be concluded that
more complex, difficult to interpret models do not automatically perform better in sleep
scoring. Even though bagged trees with 64 features were the best classifier for the CAP
Sleep Database, linear SVM followed with only one percentage point less overall accuracy.
When the models were applied to the Sleep Telemetry Database, LDA achieved the best
performance. This shows that linear sleep scoring models based on EEG analysis can
compete with more complex models in terms of accuracy.

59

7. Discussion

Sleep stage classification is of great importance in the diagnosis of sleep disorders. As every
human being needs the right amount of sleep to stay healthy, it has a big impact on the
overall health care system. However, the procedure of sleep scoring done manually by a
specialist can take some time and, consequently, costs the society money. To speed up this
process, semi-automated and automated approaches have been introduced more than 20
years ago. These are used in research and achieve very good results and perform very well,
but none of them has yet manifested in widespread use in the clinical setting. Hence, it is
important to continue the research.

Our approach to this topic is to find an interpretable machine learning model that is based
on features in the time-domain and examines three EEG signals. For this purpose, we
present different entropy-based parameters, i.e. PE, EoD, KLD and CE, in every mathe-
matical detail. Especially the first two show a high correlation with the course of the sleep
stages and thus are highly promising predictors for sleep scoring. Apart from that the GC
is explained in detail as well, as this is a measure of influence between the channels. Sta-
tistical parameters and the age of the examined subject as personal information complete
our list of features.

With the parameters eight machine learning algorithms are trained which are LDA, naive
Bayes classifier, weighted KNN, kernel logistic regression, a decision tree, bagged trees,
boosted trees with AdaBoost and a linear SVM. For training and testing, 104 recordings of
the CAP Sleep Database [67] are used. The preprocessing of the data is described and the
mathematical basis for the models is introduced. We split the patients into five folds and
achieve our results by taking the mean of five runs, in which the algorithms are trained
with four folds and are then tested against the fifth one. The models were tested with
22 features, mainly applied to one EEG signal, and also with 64 predictors, by applying
them to the other two given channels. In both cases these tests show that with LDA and
linear SVM, two models that are easy to interpret, can compete with the more complex
models, that also performed well. The accuracy was evaluated using the overall accuracy
and the Cohen’s κ coefficient. For the better performing case of 64 features, bagged trees
achieved the highest accuracy with 67.2% and κ = 0.5595, followed by the linear SVM with
66.1% and κ = 0.5399, weighted KNN with 65.8% with κ = 0.539 and LDA with 63.7% and
κ = 0.5007. Similar results were obtained with benchmarking the Sleep Telemetry Database
of the Sleep-EDF Database Expanded, although only two EEG channels are available for
these recordings, and therefore, the database does not fit the requirements for our models
perfectly. Therefore, it can be concluded that plain linear models, that are based only on
EEG signals and a personal parameter, achieve similar accuracy to more complex ones.
This suggests further research with linear machine learning models for sleep scoring based

61

7. Discussion

on time-domain EEG analysis, as the properties of explainability and interpretability are
desired in the medical field.

Even though the results did not show the desired accuracy of at least 80% overall ac-
curacy and κ = 0.7, which according to [18] are the values of overall agreement between
two raters, we could show that black-box modelling does not always have to be the better
performing option in machine learning. Linear models can compete with models that can-
not be or are hard to interpret. They also outperform the more complex models in other
properties, such as prediction speed. Our research demonstrated as well that a feature
expansion can improve the performance in terms of accuracy.

Improvements to the models can also be done. From the machine learning perspective,
some algorithms can be adapted regarding their hyperparameters, which is called model
tuning. An example would be to change the number of neighbours K in a KNN model.
Using feature selection, the number of features can also be optimised. Some of them may
not contribute to a correct classification and should therefore be neglected anyway. This
can result in more interpretable and less time-consuming models. Some algorithms per-
form even worse, if many non-informative features are present, see [39]. Decision trees and
their modifications have the advantage that they are resistant against this deterioration.
In the recent publication [69] the authors receive our desired results with simple models by
taking two EEG, one EMG and one EOG channel into account. With them they extract
131 features per window and by looking at eight different sized time windows at the same
time they have 1048 predictors for the classification of one 30s window. They also include
features calculated in the frequency-domain, which can be directly applied to our models
without taking other measurements or channels into account. Adding different biosignals
or more channels would always result in more wiring. However, this is something that
researchers want to minimise as well because it has a negative effect on the sleep quality of
the subject.

The results of this thesis provide a starting point for the development of EEG-based sleep
scoring models using interpretable machine learning algorithms. This is an important step
not only for the classification of sleep stages, but also for the level of consciousness in
general, as this knowledge can eventually also be transferred to other medical fields, e.g.
vigilance states during anaesthesia. As only time-domain features are used, a fast analysis
seems promising, which would be an important property for real-time classification of level
of consciousness.
The PE has already been used as a measure of anaesthesia for the EEG in [52]. The

authors concluded that PE was a promising predictor but that further research was needed.
In this work it has been shown that the use of multiple parameters to measure vigilance
states during unconsciousness can produce a good classification model. By calculating the
features of several channels instead of one, an increased accuracy is achieved. This means
that the PE as well as the other entropy-based features contribute to a better classification.

62

Bibliography

[1] M. Akin, M. B. Kurt, N. Sezgin, and M. Bayram. Estimating vigilance level by using
EEG and EMG signals. Neural Computing and Applications, 17:227–236, 2008.

[2] P. Anderer, G. Gruber, S. Parapatics, M. Woertz, T. Miazhynskaia, G. Klösch,
B. Saletu, J. Zeitlhofer, M. J. Barbanoj, H. Danker-Hopfe, et al. An E-health so-
lution for automatic sleep classification according to Rechtschaffen and Kales: valida-
tion study of the Somnolyzer 24× 7 utilizing the Siesta database. Neuropsychobiology,
51(3):115–133, 2005.

[3] P. Anderer, A. Moreau, M. Woertz, M. Ross, G. Gruber, S. Parapatics, E. Loretz,
E. Heller, A. Schmidt, M. Boeck, et al. Computer-assisted sleep classification according
to the standard of the American Academy of Sleep Medicine: validation study of the
AASM version of the Somnolyzer 24× 7. Neuropsychobiology, 62(4):250–264, 2010.

[4] C. Bandt. A new kind of permutation entropy used to classify sleep stages from
invisible EEG microstructure. Entropy, 19(5):197, 2017.

[5] C. Bandt and B. Pompe. Permutation entropy: a natural complexity measure for time
series. Physical review letters, 88(17):174102, 2002.

[6] L. Barnett and A. K. Seth. Granger causality for state-space models. Physical Review
E, 91(4):040101, 2015.

[7] A. B. Barrett, M. Murphy, M.-A. Bruno, Q. Noirhomme, M. Boly, S. Laureys, and
A. K. Seth. Granger causality analysis of steady-state electroencephalographic signals
during propofol-induced anaesthesia. PloS one, 7(1):e29072, 2012.

[8] S. Berger, A. Kravtsiv, G. Schneider, and D. Jordan. Teaching ordinal patterns
to a computer: Efficient encoding algorithms based on the lehmer code. Entropy,
21(10):1023, 2019.

[9] S. Berger, G. Schneider, E. F. Kochs, and D. Jordan. Permutation entropy: too
complex a measure for EEG time series? Entropy, 19(12):692, 2017.

[10] G. Brandmayr, M. Hartmann, F. Fürbass, G. Matz, M. Samwald, T. Kluge, and
G. Dorffner. Relational local electroencephalography representations for sleep scoring.
Neural Networks, 154:310–322, 2022.

[11] G. Buzsaki. Rhythms of the Brain. Oxford university press, 2006.

[12] C. Cajochen, R. Foy, D.-J. Dijk, et al. Frontal predominance of a relative increase
in sleep delta and theta EEG activity after sleep loss in humans. Sleep Res Online,
2(3):65–69, 1999.

63

Bibliography

[13] A. A. Casciola, S. K. Carlucci, B. A. Kent, A. M. Punch, M. A. Muszynski, D. Zhou,
A. Kazemi, M. S. Mirian, J. Valerio, M. J. McKeown, et al. A deep learning strat-
egy for automatic sleep staging based on two-channel EEG headband data. Sensors,
21(10):3316, 2021.

[14] J. Cohen. A coefficient of agreement for nominal scales. Educational and psychological
measurement, 20(1):37–46, 1960.

[15] M. A. Colombo, M. Napolitani, M. Boly, O. Gosseries, S. Casarotto, M. Rosanova,
J.-F. Brichant, P. Boveroux, S. Rex, S. Laureys, et al. The spectral exponent of the
resting EEG indexes the presence of consciousness during unresponsiveness induced
by propofol, xenon, and ketamine. NeuroImage, 189:631–644, 2019.

[16] R. Cooper, J. W. Osselton, and J. C. Shaw. Elektroenzephalographie : Technik und
Methoden. Fischer, Stuttgart, 1974.

[17] T. M. Cover. Elements of information theory. John Wiley & Sons, 1999.

[18] H. Danker-hopfe, P. Anderer, J. Zeitlhofer, M. Boeck, H. Dorn, G. Gruber, E. Heller,
E. Loretz, D. Moser, S. Parapatics, et al. Interrater reliability for sleep scoring ac-
cording to the Rechtschaffen & Kales and the new AASM standard. Journal of sleep
research, 18(1):74–84, 2009.

[19] G. Eckert and W. Müller. Zentralnervensystem (ZNS) und peripheres Nervensystem
(PNS), chapter 14, pages 297–310. John Wiley & Sons, Ltd, 2017.

[20] O. Faust, Y. Hagiwara, T. J. Hong, O. S. Lih, and U. R. Acharya. Deep learning for
healthcare applications based on physiological signals: A review. Computer methods
and programs in biomedicine, 161:1–13, 2018.

[21] O. Faust, H. Razaghi, R. Barika, E. J. Ciaccio, and U. R. Acharya. A review of
automated sleep stage scoring based on physiological signals for the new millennia.
Computer Methods and Programs in Biomedicine, 176:81–91, 2019.

[22] E. Fernandez-Blanco, D. Rivero, and A. Pazos. Convolutional neural networks for sleep
stage scoring on a two-channel EEG signal. Soft Computing, 24:4067–4079, 2020.

[23] L. Fiorillo, A. Puiatti, M. Papandrea, P.-L. Ratti, P. Favaro, C. Roth, P. Bargiotas,
C. L. Bassetti, and F. D. Faraci. Automated sleep scoring: A review of the latest
approaches. Sleep medicine reviews, 48:101204, 2019.

[24] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of computer and system sciences, 55(1):119–
139, 1997.

[25] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G.
Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley. PhysioBank,
PhysioToolkit, and PhysioNet: Components of a new research resource for complex

64

Bibliography

physiologic signals. Circulation, 101(23):e215–e220, 2000 (June 13). Circulation Elec-
tronic Pages: http://circ.ahajournals.org/content/101/23/e215.full PMID:1085218;
doi: 10.1161/01.CIR.101.23.e215.

[26] C. W. Granger. Investigating causal relations by econometric models and cross-spectral
methods. Econometrica: journal of the Econometric Society, pages 424–438, 1969.

[27] C. W. J. Granger. Economic processes involving feedback. Information and control,
6(1):28–48, 1963.

[28] A. Gupta, S. Parameswaran, and C.-H. Lee. Classification of electroencephalography
(EEG) signals for different mental activities using Kullback Leibler (KL) divergence.
In 2009 IEEE International Conference on Acoustics, Speech and Signal Processing,
pages 1697–1700. IEEE, 2009.

[29] H. Haken. Synergetics: an overview. Reports on Progress in Physics, 52(5):515, 1989.

[30] S. Hanke, J. Zeitlhofer, G. Wiest, W. Mayr, and D. Moser. Automated vigilance
classification based on EOG signals: preliminary results. InWorld Congress on Medical
Physics and Biomedical Engineering, September 7-12, 2009, Munich, Germany: Vol.
25/9 Neuroengineering, Neural Systems, Rehabilitation and Prosthetics, pages 428–
431. Springer, 2009.

[31] K. P. Hoffmann and U. Krechel. Geräte und Methoden der Klinis-
chen Neurophysiologie (EEG, EMG/ENG, EP). Medizintechnik: Ver-
fahren—Systeme—Informationsverarbeitung, pages 129–168, 2007.

[32] C. Iber, S. Ancoli-Israel, A. L. Chesson, S. F. Quan, et al. The AASM manual for the
scoring of sleep and associated events: rules, terminology and technical specifications,
volume 1. American academy of sleep medicine Westchester, IL, 2007.

[33] Q. Ji and X. Yang. Real-time eye, gaze, and face pose tracking for monitoring driver
vigilance. Real-time imaging, 8(5):357–377, 2002.

[34] Y. Jiang, C.-K. Peng, and Y. Xu. Hierarchical entropy analysis for biological signals.
Journal of Computational and Applied Mathematics, 236(5):728–742, 2011.

[35] B. Kemp, A. Zwinderman, B. Tuk, H. Kamphuisen, and J. Oberye. Analysis of a
sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG.
IEEE Transactions on Biomedical Engineering, 47(9):1185–1194, 2000.

[36] G. Klosh, B. Kemp, T. Penzel, A. Schlogl, P. Rappelsberger, E. Trenker, G. Gruber,
J. Zeithofer, B. Saletu, W. Herrmann, et al. The SIESTA project polygraphic and
clinical database. IEEE Engineering in Medicine and Biology Magazine, 20(3):51–57,
2001.

[37] M. Kreuzer, G. L. Keating, T. Fenzl, L. Härtner, C. G. Sinon, I. Hajjar, V. Ciavatta,
D. B. Rye, and P. S. Garćıa. Sleep/wake behavior and EEG signatures of the TgF344-
AD rat model at the prodromal stage. International journal of molecular sciences,
21(23):9290, 2020.

65

Bibliography

[38] B. Krishnapuram, L. Carin, M. Figueiredo, and A. Hartemink. Learning sparse
Bayesian classifiers: multi-class formulation, fast algorithms, and generalization
bounds. IEEE. Trans. Pattern. Anal. Mach. Intell, 32, 2005.

[39] M. Kuhn, K. Johnson, et al. Applied predictive modeling, volume 26. Springer, 2013.

[40] S. Kullback and R. A. Leibler. On information and sufficiency. The annals of mathe-
matical statistics, 22(1):79–86, 1951.

[41] K. Kwon, S. Kwon, and W.-H. Yeo. Automatic and accurate sleep stage classification
via a convolutional deep neural network and nanomembrane electrodes. Biosensors,
12(3):155, 2022.

[42] Q. Le, T. Sarlós, A. Smola, et al. Fastfood-approximating kernel expansions in loglinear
time. In Proceedings of the international conference on machine learning, volume 85,
page 8, 2013.

[43] R. P. Louis, J. Lee, and R. Stephenson. Design and validation of a computer-based
sleep-scoring algorithm. Journal of neuroscience methods, 133(1-2):71–80, 2004.

[44] D. M. Mateos, R. G. Erra, R. Wennberg, and J. L. P. Velazquez. Measures of Entropy
and Complexity in altered states of consciousness, 2017.

[45] MATLAB. Version 9.13.0 (R2022b). The MathWorks Inc., Natick, Massachusetts,
2022.

[46] C. Metzner, A. Schilling, M. Traxdorf, H. Schulze, K. Tziridis, and P. Krauss. Extract-
ing continuous sleep depth from EEG data without machine learning. arXiv preprint
arXiv:2301.06755, 2023.

[47] V. Milnik. Elektrophysiologie in der Praxis. Elsevier Health Sciences Germany, 2012.

[48] H.-J. Mittag. Statistik: eine Einführung mit interaktiven Elementen. Springer-Verlag,
2017.

[49] E. Murillo-Rodriguez. Methodological Approaches for Sleep and Vigilance Research.
Academic Press, 2021.

[50] K. P. Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[51] P. Nardone. Entropy of Difference. arXiv preprint arXiv:1411.0506, 2014.

[52] E. Olofsen, J. Sleigh, and A. Dahan. Permutation entropy of the electroencephalogram:
a measure of anaesthetic drug effect. British journal of anaesthesia, 101(6):810–821,
2008.

[53] S. D. Pittman, M. M. MacDonald, R. B. Fogel, A. Malhotra, K. Todros, B. Levy, A. B.
Geva, and D. P. White. Assessment of automated scoring of polysomnographic record-
ings in a population with suspected sleep-disordered breathing. Sleep, 27(7):1394–1403,
2004.

66

Bibliography

[54] A. Popov, O. Avilov, and O. Kanaykin. Permutation entropy of EEG signals for dif-
ferent sampling rate and time lag combinations. In 2013 Signal Processing Symposium
(SPS), pages 1–4. IEEE, 2013.

[55] M. Popovic. Researchers in an entropy wonderland: A review of the entropy concept.
arXiv preprint arXiv:1711.07326, 2017.

[56] A. Quintero-Rincón, M. Pereyra, C. D’Giano, H. Batatia, and M. Risk. A visual
EEG epilepsy detection method based on a wavelet statistical representation and the
Kullback-Leibler divergence. In VII Latin American Congress on Biomedical Engi-
neering CLAIB 2016, Bucaramanga, Santander, Colombia, October 26th-28th, 2016,
pages 13–16. Springer, 2017.

[57] M. Radha, P. Fonseca, A. Moreau, M. Ross, A. Cerny, P. Anderer, X. Long, and
R. M. Aarts. Sleep stage classification from heart-rate variability using long short-
term memory neural networks. Scientific reports, 9(1):14149, 2019.

[58] A. Rechtschaffen and A. Kales. A manual of standardized terminology, techniques and
scoring system for sleep stages of human subjects. United States Government Printing
Office, Washington DC, 1968.

[59] M. H. Saghayan, S. Seifpour, and A. Khadem. Automated Sleep Stage Scoring Using
Brain Effective Connectivity and EEG Signals. In 2021 7th International Conference
on Signal Processing and Intelligent Systems (ICSPIS), pages 1–5. IEEE, 2021.

[60] S. Sanei and J. A. Chambers. EEG signal processing. John Wiley & Sons, 2013.

[61] L. A. Schmidt, K. A. Cote, D. L. Santesso, and C. E. Milner. Frontal electroen-
cephalogram alpha asymmetry during sleep: stability and its relation to affective style.
Emotion, 3(4):401, 2003.

[62] C. Shannon. Communication in the Presence of Noise. Proceedings of the IRE,
37(1):10–21, 1949.

[63] C. E. Shannon. A mathematical theory of communication. The Bell system technical
journal, 27(3):379–423, 1948.

[64] V. Svetnik, J. Ma, K. A. Soper, S. Doran, J. J. Renger, S. Deacon, and K. S. Koblan.
Evaluation of automated and semi-automated scoring of polysomnographic recordings
from a clinical trial using zolpidem in the treatment of insomnia. Sleep, 30(11):1562–
1574, 2007.

[65] P. Szendro, G. Vincze, and A. Szasz. Pink-noise behaviour of biosystems. European
Biophysics Journal, 30:227–231, 2001.

[66] A. J. Tallón-Ballesteros and J. C. Riquelme. Data mining methods applied to a digital
forensics task for supervised machine learning. Computational intelligence in digital
forensics: forensic investigation and applications, pages 413–428, 2014.

67

Bibliography

[67] M. G. Terzano, L. Parrino, A. Sherieri, R. Chervin, S. Chokroverty, C. Guilleminault,
M. Hirshkowitz, M. Mahowald, H. Moldofsky, A. Rosa, et al. Atlas, rules, and recording
techniques for the scoring of cyclic alternating pattern (CAP) in human sleep. Sleep
medicine, 2(6):537–554, 2001.

[68] S. Titz. Welt der Physik: Entropie. https://www.weltderphysik.de/thema/

phaenomene-der-thermodynamik/entropie/, 23 July 2013.

[69] J. Van Der Donckt, J. Van Der Donckt, E. Deprost, N. Vandenbussche, M. Rademaker,
G. Vandewiele, and S. Van Hoecke. Do not sleep on traditional machine learning:
Simple and interpretable techniques are competitive to deep learning for sleep scoring.
Biomedical Signal Processing and Control, 81:104429, 2023.

[70] E. J. W. Van Someren. Brain mechanisms of insomnia: new perspectives on causes
and consequences. Physiological Reviews, 101(3):995–1046, 2021. PMID: 32790576.

[71] E. M. Whitham, K. J. Pope, S. P. Fitzgibbon, T. Lewis, C. R. Clark, S. Loveless,
M. Broberg, A. Wallace, D. DeLosAngeles, P. Lillie, A. Hardy, R. Fronsko, A. Pul-
brook, and J. O. Willoughby. Scalp electrical recording during paralysis: Quantitative
evidence that EEG frequencies above 20Hz are contaminated by EMG. Clinical Neu-
rophysiology, 118(8):1877–1888, 2007.

[72] R. Yan, Y. Liu, and R. X. Gao. Permutation entropy: A nonlinear statistical mea-
sure for status characterization of rotary machines. Mechanical Systems and Signal
Processing, 29:474–484, 2012.

[73] M. Zanin, L. Zunino, O. A. Rosso, and D. Papo. Permutation entropy and its main
biomedical and econophysics applications: A review. Entropy, 14(8):1553–1577, 2012.

[74] Z. Zhang, S. Wei, G. Zhu, F. Liu, Y. Li, X. Dong, C. Liu, and F. Liu. Efficient
sleep classification based on entropy features and a support vector machine classifier.
Physiological Measurement, 39(11):115005, nov 2018.

68

https://www.weltderphysik.de/thema/phaenomene-der-thermodynamik/entropie/
https://www.weltderphysik.de/thema/phaenomene-der-thermodynamik/entropie/

List of Figures

2.1. Schematic diagram of the signal recording and processing of an EEG. . . . 6

2.2. Representation of the ”10-20 system” for the electrode placement during an
EEG recording, taken from [60]. The right picture also shows the placement
of the common setting of 21 electrodes. 7

2.3. Schematic diagram of the mapping between the tuples of the time discrete
signal (xt) and its encoded permutation variation (rs) for the PE in Ωm for
m = 3 and τ = 1. 9

2.4. Schematic diagram of the mapping between the tuples of the time discrete
signal (xt) and its encoded type for the EoD in Ωm for m = 3 and τ = 1. . . 10

3.1. Course of the sleep stages over time using the example of the patient n1. . . 13

5.1. The figure shows the frequency spectrum of the EEG signal of the channel
Fp2-F4 using the example of subject n4. On the left hand side no additional
filter is used, on the right hand side a lowpass filter of 30Hz and a highpass
filter of 0.5Hz are used. It illustrates the necessity of a highpass filter. . . . 33

5.2. The figure shows the frequency spectrum of the EEG signal of the channel
Fp2-F4 using the example of subject ins2. On the left hand side no additional
filter is used, on the right hand side a lowpass filter of 30Hz and a highpass
filter of 0.5Hz are used. It illustrates the necessity of a lowpass filter. 34

5.3. Rough model structure for visualising input and output. The output
C ∈ {W, R, N1, N2, N3} can take one of the five sleep stages. 35

5.4. PSD of white, pink and brown noise starting at 1Hz with white depicted in
black and pink and brown in their respective colours. A sampling frequency
of 200Hz and a duration of 10s are chosen. The loglog plot shows the equal
distribution of the frequencies for the white noise and a decrease in power
when the frequencies increase for pink and even more for brown noise. . . . 37

5.5. Example for white (top), pink (middle) and brown (bottom) noise signals
with white depicted in black and pink and brown in their respective colours.
A sampling frequency of 200Hz and a duration of 10s are chosen. The
magnitude of each signal is illustrated on the y-axis over the time given in
seconds on the x-axis. White resembles a complete random signal without
any structure, but pink and brown, on the contrary, show wave-like behaviour. 38

6.1. Confusion matrices of the different models trained with four folds and tested
against the fifth one with 22 features. Blue coloured cells show correctly pre-
dicted classes, red coloured misclassified ones. White coloured cells represent
no observation. 53

69

List of Figures

6.2. Confusion matrices of the different models trained with four folds and tested
against the fifth one with 64 features. Blue coloured cells show correctly pre-
dicted classes, red coloured misclassified ones. White coloured cells represent
no observation. 56

6.3. Confusion matrices of the different models trained with 64 features for bench-
marking the Sleep Telemetry Database of the Sleep-EDF Database Ex-
panded. Blue coloured cells show correctly predicted classes, red coloured
misclassified ones. White coloured cells represent no observation. 59

70

List of Tables

3.1. Sleep stages and their abbreviations in 1968 and 2007. 12

5.1. Breakdown of the CAP database regarding its disorders. 32
5.2. Assigned values for each sleep stage. 36
5.3. Mean of the absolute values of the GC for different orders p and different

channels. 40
5.4. Breakdown which of the examined models is generative and which is dis-

criminative. 49

6.1. Test and validation accuracies of the eight examined models given in percent.
In this case the feature extraction comprised of 22 predictors. 52

6.2. Cohen’s κ values for the four better performing models that were trained
with 22 features. 54

6.3. Test and validation accuracies of the eight examined models given in percent.
In this case the feature extraction comprised of 64 predictors. 55

6.4. Cohen’s κ values for the four better performing models that were trained
with 64 features. 56

6.5. Comparison of linear SVM, bagged trees, weighted KNN and LDA trained
with 104 datasets of the CAP Sleep Database and 64 features extracted. The
properties are the accuracies of the five fold test of table 6.3, of a five fold
cross-validation, if it is easy to interpret, the training time and the prediction
speed. 57

6.6. Overall accuracy and Cohen’s κ coefficients of the four models trained with
64 features for the Sleep Telemetry Database. 58

B.1. Distribution of the patients among the folds. The underlined patients are
the ones that did not have a recording of at least one of the usually taken
channels. 75

71

A. OLS Algorithm

The OLS algorithm is used during the feature extraction for estimating the regression
coefficients and the residuals. It is already pre-implemented in the used MVGC toolbox,
written by Lionel Barnett and Anil K. Seth, an explanation is given in [6].
The algorithm takes a general representation of the VAR model into account, by defining

the different time-series that occur in the full model of equation (4.16) as

Ut =

Ç
Xt

Yt

å
. (A.1)

Let Xt and Yt be of length n, the time series Ut is of the same length. The model repre-
sentation can then be extended to the systemÇ

Xt

Yt

å
=

p�
k=1

Ç
Axx,k Axy,k

Ayx,k Ayy,k

åÇ
Xt−k

Yt−k

å
+

Ç
εXYt

εY Xt

å
,

with the first row being equivalent to equation (4.16). Using definition (A.1) and summa-
rizing the regression coefficient matrix to Ak and the residuals vector to εt, the system can
be rewritten as

Ut =
p�

k=1

AkUt−k + εt.

For the computation, the time series Ut will first be demeaned, i.e. the mean Ū = 1
n

n
t=1 Ut

is subtracted from each element of the series. The OLS algorithm uses this representation
to get estimated regression coefficients Âk and estimated residuals ε̂t, by solving the overde-
termined system �

k=1

ÂkUt−k = Ut,

for t = p+1, ..., n, with QR-decomposition. This is done such that the mean squared error

E2 =
1

n− p

n�
t=p+1

||εt||2,

with ||.|| representing the L2 norm, is minimised. Consequently the covariance of the
estimated residuals can be computed using the formula for the unbiased sample covariance,
see [6], ‘Cov(ε̂t) = 1

n− p− 1

n�
t=p+1

ε̂t ε̂
T
t .

The output of the algorithm are the estimated regression coefficients Âk, the estimated
residuals ε̂t and the estimated covariance ‘Cov(ε̂t). In our case, only the latter one is
returned as we only need this for the calculation of the GC.

73

B. Folddistribution of the Data

Table B.1.: Distribution of the patients among the folds. The underlined patients are the
ones that did not have a recording of at least one of the usually taken channels.

D
is
o
rd
er

F
ol
d
1

F
ol
d
2

F
ol
d
3

F
ol
d
4

F
ol
d
5

N
o
p
at
h
o
lo
gy

n
4
,
n
9
,
n
16

n
5,

n
15

n
1,

n
6
,
n
10

n
2,

n
7
,
n
11

n
3,

n
8,

n
12

B
ru
x
is
m

b
ru
x
2

In
so
m
n
ia

in
s1
,
in
s2

in
s3
,
in
s4

in
s5
,
in
s6

in
s7
,
in
s8

in
s9

N
a
rc
ol
ep

sy
n
a
rc
o1

n
ar
co
2

n
ar
co
3

n
ar
co
4

n
ar
co
5

N
o
ct
u
rn
a
l
fr
on

ta
l

lo
b
e
ep

il
ep

sy
n
fl
e3
3,

n
fl
e3
4-
n
fl
e3
9

n
fl
e2
5,

n
fl
e4
0,

n
fl
e
26

-n
fl
e3
2

n
fl
e1
7-
n
fl
e2
4

n
fl
e9
-n
fl
e1
6

n
fl
e1
-n
fl
e8

P
er
io
d
ic

le
g
m
ov
em

en
ts

p
lm

1
,
p
lm

2
p
lm

3,
p
lm

4,
p
lm

5,
p
lm

6
p
lm

7,
p
lm

8
p
lm

9,
p
lm

10

R
E
M

b
eh

av
io
u
r

d
is
or
d
er

rb
d
1
-r
b
d
5

rb
d
6-
rb
d
10

rb
d
11

-r
b
d
14

rb
d
15

-r
b
d
18

rb
d
19

-r
b
d
22

S
le
ep

-d
is
or
d
er
ed

b
re
a
th
in
g

sd
b
1

sd
b
2

sd
b
3

sd
b
4

75

	Introduction
	Processing and Coding of Electrical Brain Signals
	Signal Recording and Processing of Human Brain Activity
	Coding of the Data for Further Investigation

	Attributes and Classification of Sleep
	Sleep Stages and their Characterisation
	Review of Automated Classification Algorithms

	Mathematical Fundamentals of the Sleep Scoring Modelling Framework
	Application of Entropy in Information Theory
	Permutation Entropy
	Entropy of Difference
	Kullback Leibler Divergence and Cross Entropy
	Granger Causality
	Statistical Features

	Building a Classification Model
	CAP Sleep Database and Data Preprocessing
	Implementation of the Feature Extraction
	Selection of the Model

	Results and Benchmarking
	Performance of Different Models for 22 Features
	Model Improvement using 64 Features
	Benchmarking Sleep-EDF Sleep Telemetry Database

	Discussion
	Bibliography
	List of Figures
	List of Tables
	OLS Algorithm
	Folddistribution of the Data

