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Kurzfassung

Eine endliche, idempotente Algebra heißt Taylor, wenn sie ein System nichttrivialer Glei-
chungen erfüllt. Dabei wird eine Algebra idempotent genannt, wenn für jede ihrer Term-
operationen f die Identität f(x, . . . , x) = x gilt. Ein tiefliegendes Ergebnis von M. Maróti
und R. McKenzie besagt, dass eine endliche, idempotente Algebra genau dann Taylor ist,
wenn sie eine weak near-unanimity- (WNU-) Termoperation besitzt, also eine Termopera-
tion w, welche die Identitäten w(x, . . . , x, y) = w(x, . . . , y, x) = · · · = w(y, x, . . . , x) erfüllt.
WNU-Termoperationen spielten eine Schlüsselrolle beim Nachweis der lange ungelösten
Dichotomie-Vermutung für Constraint Satisfaction Problems (CSPs) über einer endlichen
Menge Γ von Relationen auf einer endlichen Domäne: CSP(Γ) ist genau dann in polyno-
mieller Zeit lösbar, wenn Γ von einer WNU-Termoperation erhalten wird.

Die Theorie der loop conditions fußt auf der Beobachtung, dass die Erfüllung von Iden-
titäten der Form f(x1,1, . . . , x1,n) = f(x2,1, . . . , x2,n) = · · · = f(xk,1, . . . , xk,n) durch eine
Termoperation f einer Algebra äquivalent zur Existenz eines konstanten Tupels in einer
zugehörigen Relation ist. Die durch eine WNU-Termoperation induzierte Relation erweist
sich als symmetrisch. Die Charakterisierung von endlichen, idempotenten Taylor-Algebren
durch die Existenz von WNU-Termoperationen ergibt sich nun durch die Tatsache, dass
jede nichtleere, symmetrische und invariante Relation einer geeigneten Arität, die auf einer
endlichen, idempotenten Taylor-Algebra definiert ist, ein konstantes Tupel enthält.

Von diesem Punkt aus beginnen wir mit der systematischen Untersuchung von k-WNU-
Termoperationen, einer Verallgemeinerung von WNU-Termoperationen. Die Relation, die
durch die eine k-WNU-Termoperation der Arität n definierende loop condition hervorgeht,
besitzt die Invarianzeigenschaft der (n, k)-Symmetrie. Das Hauptziel dieser Arbeit ist, hin-
reichende Bedingungen an n zu finden, die die Existenz eines konstanten Tupels in jeder
nichtleeren, (n, k)-symmetrischen und invarianten Relation auf einer endlichen, idempoten-
ten Taylor-Algebra garantieren und somit die Existenz einer k-WNU-Termoperation der
Arität n implizieren.



Abstract

A finite idempotent algebra is said to be Taylor if it satisfies a set of nontrivial identities.
Here, an algebra is called idempotent if the identity f(x, . . . , x) = x holds for any of its term
operations f . By a deep theorem of M. Maróti and R. McKenzie, a finite idempotent algebra
is Taylor if and only if it possesses a weak near-unanimity (WNU) term operation, i.e., an
operation w satisfying the identities w(x, . . . , x, y) = w(x, . . . , y, x) = · · · = w(y, x, . . . , x).
WNU term operations played a key role in proving the long-unsolved dichotomy conjecture
for finite-domain Constraint Satisfaction Problems (CSPs): CSP(Γ) is tractable if and only
if Γ is preserved by a WNU term operation.

The theory of loop conditions is based on the observation that the satisfaction of iden-
tities of the form f(x1,1, . . . , x1,n) = f(x2,1, . . . , x2,n) = · · · = f(xk,1, . . . , xk,n) by a term
operation f of an algebra is equivalent to the existence of a constant tuple in an associated
relation. The relation associated with a WNU term operation turns out to be symmetric.
The characterisation of finite idempotent Taylor algebras by the existence of WNU term
operations now arises from the fact that any nonempty, symmetric, and invariant relation of
an appropriate arity defined on a finite idempotent Taylor algebra contains a constant tuple.

From this point of origin we initiate the systematic study of k-WNU term operations,
which generalise the notion of WNU term operations. The relation associated with the
loop condition defining a k-WNU term operation of arity n has the invariance property of
being (n, k)-symmetric. The main goal of this thesis is to find sufficient conditions on n
that guarantee the existence of a constant tuple in any nonempty, (n, k)-symmetric, and
invariant relation on a finite idempotent Taylor algebra, and thus imply the existence of a
k-WNU term operation of arity n.
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1 Introduction

We begin by considering the well-known k-colouring problem. Given a graph G, we want
to decide whether or not it is possible to colour each of its vertices in such a way that no
two adjacent vertices are given the same colour, while no more than k colours are used. In
terms of computational complexity, it is folklore knowledge that this decision problem is
NP-complete whenever k ≥ 3. Finding a 2-colouring of a graph, on the other hand, is the
same as asking if the graph is bipartite, and can be solved in linear time. It is possible to
put even more constraints on the admissibility of colourings by considering colourings that
are in some sense compatible with a fixed template. Namely, let H be a finite graph. The
H-colouring problem is defined as the following decision problem:

Problem: H-colouring
Input: A graph G
Question: Does there exist a homomorphism G → H?

The vertices of H are called colours. An H-colouring of G can then be understood as an
assignment of colours to the vertices of G such that adjacent vertices of G receive adjacent
colours. The k-colouring problem is precisely the H-colouring problem for H = Kk, where
Kk denotes the complete graph with k vertices.

It is a remarkable result that the complexity properties known for the k-colouring problem
extend to the wider class of H-colouring problems. Namely, the computational complexity
of the H-colouring problem enjoys a prominent dichotomy, first discovered by P. Hell and
J. Nešetřil in 1990. Here, a problem is said to be tractable if and only if it belongs to the
class P of all decision problems that are solvable in polynomial time.

Theorem 1.1 (Hell-Nešetřil): [HN90] Let H be a finite graph that does not contain loops.
If H is bipartite, then the H-colouring problem is tractable. Otherwise, it is NP-complete.

If H contains a loop, then any graph G admits an H-colouring by simply mapping all
vertices of G to the vertex with the loop, and the H-colouring problem is solvable in con-
stant time.

The H-colouring problem can be represented in the form of a Constraint Satisfaction
Problem (CSP). Formally, let A be a set and let Γ be a finite set of relations on A. Γ will
also be called a constraint language. A sentence is said to be a primitive positive (pp-)
sentence over Γ if it is an existentially quantified conjunction of relations from Γ. Given a
pp-sentence ϕ over a constraint language Γ, the Constraint Satisfaction Problem CSP(Γ)
of Γ is defined as:

1



1 Introduction

Problem: CSP(Γ)
Input: A primitive positive formula ϕ over Γ
Question: Does ϕ hold true in (A; Γ)?

Suppose that H = (VH;EH) is a graph. Then the H-colouring problem is equivalent
to CSP(EH). Namely, for G = (VG;EG) where |VG| = n, let ϕ be the primitive positive
formula

∃v1, . . . , vn :
�

(vi,vj)∈EG

(vi, vj) ∈ EH.

The values of the variables v1, . . . , vn correspond to the colours of the vertices. The question
whether or not ϕ is satisfiable in H is equivalent to asking if G is H-colourable. Conversely,
let ϕ be a pp-sentence over the constraint language Γ = EH. Let D(ϕ) be the structure
whose elements are the variables that occur in ϕ. We define a tuple (x1, . . . , xm) to belong

to the relation E
D(ϕ)
H of D(ϕ) if and only if R(x1, . . . , xm) is used in ϕ. We have that H

satisfies ϕ if and only if there exists a homomorphism D(ϕ) → H. The structure D(ϕ) is
also called canonical database of ϕ.

The complexity of CSPs has been the subject of thorough enquiry. In accordance with
the dichotomy for the H-colouring problem, the following conjecture was first formulated
by T. Feder and M. Y. Vardi in their seminal paper from 1993 [FV93; FV98].

Conjecture 1.2 (Dichotomy Conjecture): Let Γ be a finite-domain constraint language.
Then either CSP(Γ) is tractable, or it is NP-complete.

This conjecture was independently proved in 2017 by A. Bulatov [Bul17] and D. Zhuk
[Zhu17; Zhu20a]. The key part of both proofs was to find a polynomial algorithm that
solves CSP(Γ) in the tractable case. Leading up to this achievement was the recognition
that the complexity of CSP(Γ) can also be studied from an algebraic point of view.

To a relational structure A = (A; (Ri)i∈I) we assign its polymorphism clone Pol(A), the
set consisting of all multivariate operations on A that leave all relations Ri, i ∈ I invariant.
Elements of Pol(A) are called polymorphisms of A. We set CSP(A) := CSP({Ri : i ∈ I}).
A clone homomorphism is a mapping that preserves identities. It is an important result
obtained by A. Bulatov, P. Jeavons, and A. Krokhin that the computational complexity of
CSP(A) only depends on the identities satisfied by the polymorphisms of A:

Theorem 1.3: [BJK05] Let A and B be finite relational structures. If there exists a clone
homomorphism Pol(A) → Pol(B), then CSP(B) is reducible to CSP(A) in polynomial time.

The algebraic approach of analysing identities satisfied by the polymorphism clone Pol(A)
of a relational structure A offered a new tool for studying the complexity of CSP(A). Firstly,
it was shown that it is enough to restrict oneself to the case of relational structures A all
of whose polymorphisms are idempotent, that is, every polymorphism f ∈ Pol(A) satisfies
the identity f(x, . . . , x) = x.
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1 Introduction

Theorem 1.4: [BJK05] Let A be a finite relational structure. Then there exists a finite
relational structure A′ all of whose polymorphisms are idempotent such that CSP(A′) is
reducible to CSP(A) in polynomial time.

Moreover, the following relation between the complexity of CSP(A) and identities satis-
fied by Pol(A) was obtained:

Theorem 1.5: [BJK05] Let A be a finite relational structure all of whose polymorphisms
are idempotent. If Pol(A) does not admit a polymorphism t of some arity k ≥ 2 satisfying
for all i ∈ [k] an identity of the form

t(□1, . . . ,□k) = t(△1, . . . ,△k), (1.1)

where □i = x, △i = y, and □j ,△j ∈ {x, y} for all j ∈ [k], then CSP(A) is NP-complete.

Operations t satisfying a set of identities of the form (1.1) are called Taylor terms. No-
tice that in particular, the Taylor identities fail to be satisfied by projections. Theorem 1.5
suggested a criterion for distinguishing between the tractable and the NP-complete case of
CSP(A) for finite relational structures A all of whose polymorphisms are idempotent. It
was conjectured by A. Bulatov, P. Jeavons, and A. Krokhin that CSP(A) is tractable if
Pol(A) has a Taylor term. Proving this was the remaining part in order to solve Conjec-
ture 1.2.

Long before the algebraic approach to CSPs had begun, W. Taylor analysed algebras
that admit Taylor terms. For an algebra A, let Clo(A) denote the its clone of term op-
erations, that is, the smallest clone of operations that contains all the basic operations of
A. An algebra A is said to be idempotent if all of its term operations are idempotent. A
well-known result obtained by W. Taylor in 1977 states that a finite idempotent algebra
has a Taylor term if and only if there does not exist an mapping Clo(A) → Proj that
preserves identities, where Proj denotes the trivial clone consisting only of the projections
on a two-element set (Theorem 1.9). Algebras satisfying the latter condition are called
Taylor algebras. Mappings that preserve identities are also called clone homomorphisms.

A new proof of Hell and Nešetřil’s Dichotomy Theorem formulated in terms of the alge-
braic approach to CSPs was provided in 2005 by A. Bulatov in [Bul05]. As a main result,
a link between bipartiteness of loopless graphs and Taylor algebras was derived. The proof
used methods which have later been formalised by the notion of pp-constructions. If B is a
structure that can be pp-constructed from another structure A, then CSP(B) can be reduced
to CSP(A) in polynomial time. Furthermore, height 1 identities, i.e., non-nested identities
of the form f(x1, . . . , xn) = g(y1, . . . , ym), are preserved by pp-constructions [BOP18]. The
following theorem offers a connection between the satisfaction of height 1 identities and
pp-constructions.

Theorem 1.6: [BOP18] Let A be a finite relational structure. Then A pp-constructs K3

if and only if there exists a mapping Pol(A) → Proj that preserves height 1 identities.

In other words, a relational structure A pp-constructs K3 if and only if all identities of
height 1 that are satisfied by the polymorphisms of A are also satisfied by projections.

3



1 Introduction

Mappings that preserve height 1 identities are also called h1 clone homomorphisms or
minion homomorphisms. It is a well-known result that follows easily from [BOP18] that
if a structure pp-constructs K3, then it also pp-constructs any finite structure. Note that
if H is a graph that pp-constructs K3, then the H-colouring problem is as hard as the
3-colouring problem and thus NP-complete. Bringing together these results, we are now
able to state a structural counterpart to Theorem 1.1:

Theorem 1.7 (Loop Theorem, [Bul05]): Let H be a finite graph. Then one of the following
holds:

(i) H pp-constructs K3 (and consequently, the G-colouring problem is NP-complete), or

(ii) H is bipartite (and consequently, the G-colouring problem is tractable), or

(iii) H contains a loop (and consequently, the G-colouring problem is tractable).

In 2010 – two decades after the first proof of Hell and Nešetřil’s Dichotomy Theorem
had appeared – M. Siggers used Theorem 1.7 to obtain a surprising algebraic invariance
property. We include this proof in the introduction, though the reader unfamiliar with
universal algebra may refer to section 2 for relevant definitions.

Theorem 1.8: [Sig10] Let A be a finite algebra and assume that Clo(A) has a Taylor
term. Then Clo(A) also has a 6-ary term operation s that satisfies the identity

s(x, x, y, y, z, z) = s(y, z, z, x, x, y). (1.2)

Proof. Let F := FA(x, y, z) be the free algebra over the set {x, y, z} in the variety generated
by A. Note that F is finite and admits a Taylor term. Consider the relation R ⊆ F × F
generated by the columns of identity (1.2), i.e.,

R :=

��
x
y

$
,

�
x
z

$
,

�
y
z

$
,

�
y
x

$
,

�
z
x

$
,

�
z
y

$��
F

.

As R is symmetric, it is in fact a graph and satisfies the conditions of Theorem 1.7. Since
R contains the triangle

z

x y

it is not bipartite. By definition of R, it holds that R ∈ Inv(F). Consequently, we have
Pol(R) ⊇ Clo(F). Since Clo(F) has a Taylor term, there does not exist an h1 clone homo-
morphism Clo(F) → Proj. In particular, there does not exist an h1 clone homomorphism
Pol(R) → Proj. Thus, by Theorem 1.6, R does not pp-construct K3. By Theorem 1.7,
there therefore exists a loop (a, a) ∈ R. By definition of R, there exists s ∈ Clo(A) such
that

s

��
x
y

$
,

�
x
z

$
,

�
y
z

$
,

�
y
x

$
,

�
z
x

$
,

�
z
y

$$
=

�
a
a

$
.
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In other words, we have the identity

s(x, x, y, y, z, z) = a = s(y, z, z, x, x, y)

on the generators x, y, z of F. Since F is free in the variety generated by A, the identity
also holds on A.

Terms satisfying identity (1.2) are called Siggers terms. Note that in particular, Siggers
terms are Taylor terms. Namely, the variable z can be substituted arbitrarily by either x or
y in order to see that each of the 6 required identities hold. The existence of a Siggers term
operation therefore characterises finite idempotent Taylor algebras. The following theorem
collects other characterisations that have been obtained.

Theorem 1.9: [Tay77; MM08; Sig10; BK12; KMM15] Let A be a finite idempotent alge-
bra. The following are equivalent:

(i) There does not exist a clone homomorphism Clo(A) → Proj.

(ii) (W. Taylor, 1977) Clo(A) has a Taylor term t, i.e., t satisfies identities of the form

t(x, ∗, ∗, . . . , ∗) = t(y, ∗, ∗, . . . , ∗)
t(∗, x, ∗, . . . , ∗) = t(∗, y, ∗, . . . , ∗)

...

t(∗, ∗, ∗, . . . , x) = t(∗, ∗, ∗, . . . , y).

(iii) (M. Maróti and R. McKenzie, 2008) For each prime p > |A|, Clo(A) has a WNU
term operation w of arity p, i.e., w satisfies the identities

w(x, . . . , x, y) = w(x, . . . , y, x) = · · · = w(y, x, . . . , x).

(iv) (M. Siggers, 2010) Clo(A) has a Siggers term s, i.e., s satisfies the identity

s(x, x, y, y, z, z) = s(y, z, z, x, x, y).

(v) (L. Barto and M. Kozik, 2012) For every prime p > |A|, Clo(A) has a cyclic term c,
i.e., c satisfies the identity

c(x1, . . . , xp) = c(x2, . . . , xp, x1).

(vi) (K. Kearnes, P., Marković, and R. McKenzie, 2014) Clo(A) has a 4-ary term s that
satisfies the identity

s(a, r, e, a) = s(r, a, r, e).

In his proof of the Dichotomy Conjecture D. Zhuk provides an algorithm that solves
CSP(Γ) in polynomial time if Γ is preserved by a WNU term operation. Formally, he
proved the following reformulation of Conjecture 1.2:

5
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Theorem 1.10: [Zhu17; Zhu20a] Let Γ be a finite-domain constraint language. Then
CSP(Γ) is tractable if Γ is preserved by a WNU term operation. Otherwise, CSP(Γ) is
NP-complete.

The WNU identities offer more information about the term operation satisfying it than
the Taylor identities do. We are interested in the study of structural implications that arise
from the existence of a WNU term operation in an algebra. In particular, we are interested
in the structure of a particular relation associated with the WNU identities. Inspired by
M. Sigger’s proof of Theorem 1.8 using the Loop Theorem 1.7, the theory of loop conditions
evolved. It provides a method of showing the validity of identities in an algebra via the
existence of a loop in an associated relation. A series of statements have been made or
reformulated in the language of loop conditions. We refer for instance to [MM08; BK12;
BP16; Oľs18; GJP19; Zhu20b; BP20; MP22; Bar+23].

This thesis attempts to line up in the recent results on loop conditions by examining
conditions for the existence of k-WNU term operations in finite idempotent Taylor algebras.
Here, a term operation w of some arity n ≥ k is called k-weak near unanimity (k-WNU) if
it satisfies all identities of the form

w(□1, . . . ,□n) = w(△1, . . . ,△n),

where □i,△i ∈ {x, y} for all i ∈ [n], and |{i ∈ [n] : □i = y}| = k = |{i ∈ [n] : △i = y}|.
Evidently, a WNU term operation is a k-WNU term operation for k = 1.

Analysing the properties of a particular relation associated with the k-WNU identities, we
are to consider

�
n
k

#
-ary relations that are invariant under a certain action of the symmetric

group Sn on [n]. Namely, we index the tuples’ components with all k-element subsets of
[n]. A group action of Sn on tuples of size

�
n
k

#
is given by applying a permutation π ∈ Sn

to the indices of every component:

π
�
(r{i1,...,ik}){i1,...,ik}∈(nk)

!
:=

�
r{π(i1),...,π(ik)}

#
{i1,...,ik}∈(nk)

.

We say that an
�
n
k

#
-ary relation R is (n, k)-symmetric if it is invariant under this action,

i.e., if for any r ∈ R and any π ∈ Sn it holds that also π(r) ∈ R.

For all finite algebras A, the existence of a k-WNU term operation of arity n in Clo(A)
is equivalent to the existence of a constant tuple in some particular

�
n
k

#
-ary relation that

turns out to be (n, k)-symmetric. Our study is restricted to the case of finite idempo-
tent Taylor algebras. The foundation for our attempts of finding such a constant tuple is
thus set by a major result obtained by D. Zhuk in his proof of the Dichotomy Conjecture.
Namely, he showed the existence of either some particular subalgebra or of some particular
factor whenever an algebra is finite, idempotent, and Taylor (Corollary 3.1.3). Given a
finite idempotent Taylor algebra A, this theorem allows us to reduce our enquiry to find
a constant tuple in an invariant relation on A to the consideration of two cases: Either
A possesses a nontrivial strong subuniverse, or it factors into a p-affine algebra for some

6



1 Introduction

prime number p ∈ P. If an algebra is such that any nontrivial subalgebra admits a non-
trivial strong subuniverse, the existence of k-WNU term operations is always guaranteed
(Lemma 5.3). However, number theoretic conditions on the integers n and k appear in the
p-affine case.

We call a tuple (n, k, p) of integers n, k ∈ N and p ∈ P loop-friendly if any nonempty
(n, k)-symmetric relation that is preserved by all p-affine operations contains a constant
tuple. A characterisation of all loop-friendly tuples (n, k, p) for k = 1 has been obtained by
D. Zhuk in [Zhu20b]. The case k = 2 has been solved by L. Barto, Z. Brady, M. Pinsker,
and D. Zhuk in unpublished work. In this thesis, we try to generalise the methods used to
arbitrary k ∈ N.

In order for a finite idempotent Taylor algebra to have a k-WNU term operation of
arity n, it is sufficient that the tuples (n, k, p) are loop-friendly for all primes p ≤ |A|
(Corollary 6.3). We offer some necessary conditions for a tuple (n, k, p) to be loop-friendly,
which gives rise to the question whether or not these conditions are already strong enough
to characterise loop-friendly tuples, and thus suffice to show the existence of a k-WNU
term operation of arity n.

Question 1.11: Let A be a finite idempotent Taylor algebra, and let k ∈ N. Assume that
n ∈ N is such that for all prime numbers p ∈ P with p ≤ |A| we have p ∤ n

�
n
k

#
and for all

1 ≤ j ≤ k − 1 and k ≤ M ≤ n at least one of the following conditions holds:�
n− j

k − j

$
≡ 0 mod p, or�

M

k

$
̸≡ 1 mod p, or�

M − j

k − j

$
̸≡ 0 mod p.

Do these conditions imply that all tuples (n, k, p) for p ≤ |A| are loop-friendly and conse-
quently imply that Clo(A) has a k-WNU term operation of arity n?

The organisation of this thesis is as follows. In Section 2 we introduce basic notions used
in universal algebra. Section 3 is devoted to the special class of Taylor algebras dealt with in
this thesis. Namely, we introduce the notion of strong subuniverses and p-affine algebras and
we state Zhuk’s Cases Theorem for finite idempotent Taylor algebras. Section 4 gives a short
insight into the theory of loop conditions and thus links the satisfaction of identities to the
finding of constant tuples. Section 5 collects the main results about the existence of constant
tuples in (n, k)-symmetric relations defined on finite idempotent Taylor algebras. Finally,
Section 6 uses these results to derive k-WNU term operations under certain conditions.
Questions concerning the existence of k-WNU term operations are formulated in Section 7.
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2 Preliminaries

In this section we provide well-known notions from universal algebra.

2.1 Notation

The set of natural numbers is N = {0, 1, 2, . . . }. For n ∈ N we denote the set {1, 2, . . . , n}
by [n]. Given an integer n > 1 and a, b ∈ Z we write a ≡ b mod n if n is a divisor of a− b,
that is, there is an integer k ∈ Z such that a− b = kn. If n,m ∈ Z are integers such that n
is a divisor of m, we write n | m. Otherwise, if n is not a divisor of m, we write n ∤ m. For
n > 1, Zn denotes the ring of integers modulo n. Recall that Zn is a field if and only if n
is a prime number. The set consisting of all prime numbers is denoted by P. Two integers
are coprime if they do not share any common divisors n ≥ 2.

2.2 Algebras and H, S, P

Let A be a set and n ∈ N. An n-ary operation on A is a mapping f : An → A. If
n = 0, n = 1, or n = 2 we also say constant, unary, or binary operation, respectively. The
set of all operations on A is denoted by OA. Let I be finite a set, and for any i ∈ I assume
that fi : A

ni → A is an ni-ary operation on A. Then the pair A = (A, (fi)i∈I) is called
an algebra with universe A of type (ni)i∈I . The operations fi are called basic operations
of A. We will denote algebras by bold letters and the corresponding universes by letters
in normal font. If A is finite, then A is a finite algebra.

Let A and B be algebras of the same type. A homomorphism from A to B is a map
ϕ : A → B that is compatible with all basic operations, meaning that if fA

i is an ni-ary
basic operation of A and fB

i is the corresponding basic operation on B, then

ϕ(fA
i (a1, . . . , ani)) = fB

i (ϕ(a1), . . . , ϕ(ani))

for all tuples (a1, . . . , ani) ∈ Ani . If ϕ is bijective, then it is also called an isomorphism,
and we write A ∼= B. If ϕ : A → A is a homomorphism on an algebra A, then ϕ is called
an endomorphism of A.

Let A be an algebra. A subset B ⊆ A that is closed under all basic operations of A is
called a subuniverse, i.e., if f is an n-ary basic operation of A and (b1, . . . , bn) ∈ Bn then
also f(b1, . . . , bn) ∈ B. A subuniverse B is made into an algebra B by restricting all basic
functions of A to the set B. The algebra B is then called subalgebra of A and we write
B ≤ A. A subalgebra is nontrivial if it is proper and nonempty. If K is a class of algebras
of the same type, we denote the class of algebras A that are isomorphic to a subalgebra of

8



2 Preliminaries

an algebra A′ ∈ K by S(K).

Given a family of algebras (Aj)j∈J of the same type, we define an algebraic structure on
the product Πj∈JAj by applying the basic functions separately to each component of a tu-
ple. The resulting algebra Πj∈JAj is called the (direct) product of (Aj)j∈J . Let K be a class
consisting of same-type algebras. The class of all algebras A that are isomorphic to a di-
rect product of a family (Aj)j∈J of algebras Aj , j ∈ J that belong to K is denoted by P(K).

If θ is an equivalence relation on the universe of an algebra A such that θ is preserved
by all basic operations of A, then θ is called a congruence. Here, an equivalence relation
θ is said to be preserved by an n-ary operation f if for all ai, bi ∈ A, i ∈ [n] it holds
that (a1, b1), . . . , (an, bn) ∈ θ implies (f(a1, . . . , an)), f(b1, . . . , bn)) ∈ θ (see also the def-
inition given in section 2.7). For any a ∈ A we denote its block of a congruence θ by
[a]θ := {b ∈ A : (a, b) ∈ θ}. The factor algebra A/θ is then obtained by defining the basic
operations on the quotient set A/θ = {[a]θ : a ∈ A} in the natural way. A congruence
is nontrivial if it is neither the equality relation nor A2. Given a class K of algebras of
the same type, the class of all algebras B such that B ∼= A/θ for some A ∈ K and some
congruence θ on A is denoted by H(K).

If the operators H, S, P are applied where K = {A} we write H(A), S(A), P(A),
respectively. The operators can be composed. For example, HSP(A) is the set of all
algebras B such that B ∼= S/θ for some subpower S ≤ Πi∈IA of A and a congruence θ
on S. A class of algebras of the same type is called variety if it is closed under substructures,
products, and homomorphic images. By Birkhoff’s HSP Theorem, this definition coincides
with the one given in Section 2.3. Namely, the Theorem states that a class of same-type
algebras is closed under the application of the operators H, S, and P if and only if there
exists some set of identities so that an algebra belongs to the class if and only if it satisfies
these identities.

2.3 Identities and varieties

Let us fix a type τ = (ni)i∈I of algebras and a set X. For every i ∈ I let fi be an operation
symbol. Assume that all elements x ∈ X and fi, i ∈ I are distinct in pairs. The set of
terms T = T (X, τ) of type τ over X is defined as the smallest set that contains X and
for elements t1, . . . , tni ∈ T also all strings fi(t1, . . . , tni) for each i ∈ I. For every i ∈ I
let fT

i be the ni-ary operation on T defined by fT
i (t1, . . . , tni) �→ fi(t1, . . . , tni). Then

T(X, τ) := (T, (fT
i )i∈I) is an algebra of type τ . We call T(X, τ) the term algebra of type τ

over X, and X the set of variables.

It is folklore knowledge that if A is any algebra of type τ and ϕ : X → A is a map, then
there exists a unique homomorphism ϕ̄ : T(X, τ) → A such that ϕ̄

++
X

= ϕ. This is also

known as the universal property of the term algebra. For terms s, t ∈ T we write sA = tA

if for each assignment of variables ϕ : X → A it holds that ϕ̄(s) = ϕ̄(t).

9
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A pair (t1, t2) ∈ T 2 is called an identity, we also write t1 = t2. An algebra A satisfies
the identity t1 = t2 if tA1 = tA2 . In this case, we write A |= t1 = t2. A variety of type τ is
a class consisting of algebras of type τ with the property that there exists a set Γ ⊆ T 2 of
identities so that an algebra belongs to the class if and only if it satisfies all identities in Γ.
Given Γ ⊆ T 2 the variety induced by Γ is denoted by V(Γ), i.e., for an algebra A of type
τ it holds that

A ∈ V(Γ) ↔ A |= t1 = t2 for all (t1, t2) ∈ Γ.

The variety generated byA is the class of all type τ algebras that satisfy all identities thatA
does, and is denoted by V(A). By Birkhoff’s HSP Theorem, it holds that V(A) = HSP(A).

In this thesis we consider algebras whose basic operations f satisfy the identity

f(x, x, . . . , x) = x.

An algebra is said to be idempotent if this condition is satisfied. An immediate consequence
of the definition is given by the following lemma.

Lemma 2.3.1: Let A be an idempotent algebra and θ a congruence on A. Then every
congruence block of θ is a subuniverse of A.

Proof. Let a ∈ A and consider [a]θ = {b ∈ A : (a, b) ∈ θ}. We need to show that [a]θ is
closed under all basic operations of A. Let f be an n-ary basic operation of A and take
b1, . . . , bn ∈ [a]θ. Since θ is a congruence, it is by definition preserved by basic operations,
and we have (f(b1, . . . , bn), a) = (f(b1, . . . , bn), f(a, . . . , a)) ∈ θ, i.e., f(b1, . . . , bn) ∈ [a]θ.

A term operation w on an algebra A is called weak near-unanimity (WNU) term opera-
tion if the identities

w(y, x, x, . . . , x) = w(x, y, x, . . . , x) = · · · = w(x, . . . , x, y)

hold in A. A generalisation yields the notion of k-weak near-unanimity (k-WNU) term
operations. For an integer k ∈ N, a k-WNU term operation w of arity n ≥ k satisfies all
identities of the form

w(□1, . . . ,□n) = w(△1, . . . ,△n),

where □i,△i ∈ {x, y} for all i ∈ [n], and

|{i ∈ [n] : □i = y}| = k = |{i ∈ [n] : △i = y}|.

Evidently, there exist
�
n
k

#
different tuples of size n that have exactly k instances of y and

n− k instances of x. Therefore, when simplified to a non-redundant system of identities, a
k-WNU term operation of arity n is defined by a system of

�
n
k

#− 1 identities.

10
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2.4 Free algebras

Let V be a variety of type τ , X a set, and T = T(X, τ) the corresponding term algebra.
On its universe T we consider the following congruence relation:

ΣV :=
�
A∈V

�
(s, t) : sA = tA

� ⊆ T 2.

We set the free algebra FV(X) over X in the variety V to be the factor algebra T/ΣV . If
X = {x1, . . . , xn}, we write FV(x1, . . . , xn) and call it the free algebra with n generators.
All identities that hold in FV(X) also hold in any A ∈ V.

2.5 Clones of operations

Let A be a set of operations on a set A. A is called a clone if

• A contains all projections prni : An → A : (x1, . . . , xn) �→ xi for all n ∈ N and i ∈ [n],
and

• A is closed under composition, i.e., if f ∈ A is n-ary and g1, . . . , gn ∈ A are m-ary,
then also f ◦ (g1, . . . , gn) ∈ A where

f ◦ (g1, . . . , gn)(x1, . . . , xm) := f(g1(x1, . . . , xm), . . . , gn(x1, . . . , xm)).

For an algebra A, by Clo(A) we denote the clone generated by all basic operations of A,
i.e., Clo(A) is the smallest clone consisting of operations on A that contains all the basic
operations of A. Elements of Clo(A) are called term operations.

Let A be an algebra and for n ∈ N let Clon(A) be the clone of all n-ary term operations
of A. We endow Clon(A) with an algebraic structure of the same type as A. Namely, if f
is a basic operation of A of some arity m, then we set

f(g1, . . . , gm) := f ◦ (g1, . . . , gm)

for all g1, . . . , gm ∈ Clon(A). By definition of a clone, this assignment is well-defined, i.e.,
it holds that f(g1, . . . , gm) ∈ Clon(A). The following lemma justifies our terminology for
elements of Clo(A): It states that any term operation can be defined by a term over the
basic operations of A. Furthermore, since Clon(A) ≤ AAn ∈ SP(A), it yields a way to
regard the free algebra FV(A)(x1, . . . , xn) with n generators in the variety V(A) generated
by A as a finite subpower of A. In particular, this implies that if A is finite, idempotent,
and Taylor, then so is FV(A)(x1, . . . , xn) for any n ∈ N.

Lemma 2.5.1: Let A be an algebra of size |A| ≥ 2, V(A) its generated variety, and
X = {x1, . . . , xn} a finite set. Then there is an isomorphism between Clon(A) and the free
algebra FV(A)(x1, . . . , xn) with n generators in the variety V(A).

11
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Proof. Recall the definition of the free algebra in the variety V(A) as the term algebra T
over the variable set {x1, . . . , xn} factorised by the congruence

ΣV(A) :=
�

B∈V(A)

�
(s, t) ∈ T 2 : sB = tB

�
as given in Section 2.4. We claim that every g ∈ Clon(A) is induced by an element of
T , and that every term t ∈ T is induced by some n-ary term operation. We show the
claim by induction of the complexity of g and t, respectively. If g is a projection prni for
some i ∈ [n], then g(x1, . . . , xn) is just the variable xi, hence, g is induced by a term.
Conversely, the variables xi, i ∈ [n] are induced by the projections prni . For the inductive
step, first assume that g is of the form f ◦ (g1, . . . , gm), where f ∈ Clo(A) is m-ary and
g1 . . . , gm ∈ Clon(A) are induced by terms t1, . . . , tm, respectively. It then follows from
the definitions of Clo(A) and of the term algebra T that f ◦ (g1, . . . , gm)(x1, . . . , xn) ∈ T .
Secondly, assume that t is of the form f(t1, . . . , tm) for some m-ary basic operation f of A
and terms t1, . . . , tm ∈ T that are induced by n-ary term operations g1, . . . , gm ∈ Clon(A),
respectively. Then f ◦ (g1, . . . , gm)(x1, . . . , xn) = t and f ◦ (g1, . . . , gm) ∈ Clo(A). This
concludes the proof of the claim. Therefore, for g ∈ Clon(A) we may consider the block of
its induced term [g(x1, . . . , xn)]ΣV(A)

under the congruence ΣV(A).

By definition of ΣV(A), the map that sends g ∈ Clon(A) to the block [g(x1, . . . , xn)]ΣV(A)

of its induced term g(x1, . . . , xn) is an injective homomorphism from Clon(A) to the free
algebra FV(A)(x1, . . . , xn). Namely, two operations g1, g2 ∈ Clon(A) are different if and
only if there exists a tuple (a1, . . . , an) ∈ An such that g1(a1, . . . , an) ̸= g2(a1, . . . , an).
Thus, if g1 ̸= g2, it follows that [g(x1, . . . , xn)]ΣV(A)

̸= [g2(x1, . . . , xn)]ΣV(A)
. For surjectivity

of the mapping, take [t]ΣV(A)
arbitrary. Let g ∈ Clon(A) such that g induces t. We then

have that g �→ [g(x1, . . . , xn)]ΣV(A)
= [t]ΣV(A)

.

The following notion allows us to compare identities satisfied by algebras.

Let A,B be clones. A map ξ : A → B is called a clone homomorphism if

• ξ preserves arities, i.e., it sends every operation from A to an operation of the same
arity in B,

• ξ preserves projections, i.e., for all n ∈ N and all i ∈ [n] it sends the n-ary projection
onto the i-th coordinate in A to the same projection in B 1, and

• ξ preserves compositions, i.e., if f ∈ A is n-ary and g1, . . . , gn ∈ A have the same
arity, then it holds that ξ(f ◦ (g1, . . . , gn)) = ξ(f) ◦ (ξ(g1), . . . , ξ(gn)).

It is easy to see that clone homomorphisms preserve identities. Namely, if A and B are
algebras, and ξ : Clo(A) → Clo(B) is a clone homomorphism, then any identity satisfied
by term operations from A are also satisfied by their images in Clo(B) under the clone

1In the following, we will abuse notation and will not distinguish between projections on different sets,
i.e., the condition that a clone homomorphism ξ preserves projections may be written as ξ(prni ) = prni .
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homomorphism ξ.

Example 2.5.2: For example, let A be an algebra and assume that A has a term operation
m ∈ Clo(A) satisfying the identities

m(x, y, y) = m(y, y, x) = x.

Let B be an algebra, possibly of different type, and let ξ : Clo(A) → Clo(B) be a clone
homomorphism. Since ξ preserves arities, compositions, and projections we have that

ξ(m)(x, y, y) = ξ(m) ◦ (π3
1, π

3
2, π

3
2)(x, y, z) = ξ(m ◦ (π3

1, π
3
2, π

3
2)(x, y, z)) = ξ(m(x, y, y)),

i.e., ξ(m) ∈ Clo(B) also satisfies the identity ξ(m)(x, y, y) = ξ(m)(y, y, x) = x. Opera-
tions m satisfying the identities m(x, y, y) = m(y, y, x) = x are called Mal’cev operations.

For any set U , by ProjU we denote the clone consisting merely of all projections on U .
Proj denotes the clone of projections on a two-element set. An immediate consequence of
the definition of clone homomorphisms is given by the following lemma.

Lemma 2.5.3: Let U be any set of size |U | ≥ 2. Then there exist clone homomorphisms
ProjU → Proj and Proj → ProjU .

Proof. For πn
i : Un → U : (u1, . . . , un) �→ ui let ξ(π

n
i ) : {0, 1}n → {0, 1} : (x1, . . . , xn) → xi

and vice versa.

2.6 Relational structures

Let A be a set. A relation R on A is a subset R ⊆ An for some n ∈ N. We call n the
arity of the relation. By RA we denote the set of all relations on A. If (a1, . . . , an) ∈ R
for some R ∈ RA, we also write R(a1, . . . , an). A relational structure with universe A is a
tuple A = (A; (Ri)i∈I), where (Ri)i∈I is a finite family of relations on A. We denote a re-
lational structure with double-struck letters, and the corresponding universe in normal font.

A graph is relational structure G = (V ;E), where V is a finite set whose elements are
called vertices, and E ⊆ V 2 is a binary symmetric relation on V whose elements are called
edges. A graph is bipartite if its vertices can be divided into two disjoint sets V1 and V2

such that every edge connects a vertex from V1 to one in V2. It is a well-known fact that
a graph is bipartite if and only if it does not contain any cycles of odd length. For the
purpose of this thesis, a hypergraph is a relational structure G = (V ;E) where E ∈ RV is
a relation on V of arbitrary arity k ∈ N, i.e., a hypergraph is just a relational structure
with a single relation that is not necessarily symmetric. G is called complete if E = V k,
and empty if E = ∅. A loop in a hypergraph G = (V ;E) is a constant tuple (c, . . . , c) ∈ E.

Let A = (A;R1, . . . , Rm) and B = (B;S1, . . . , Sm) be two relational structures such that
for all i ∈ [m] the arities of Ri and Si coincide and are given by ni. A homomorphism from
A to B is a map ϕ : A → B with the property that

(a1, . . . , ani) ∈ Ri ⇒ (ϕ(a1), . . . , ϕ(ani)) ∈ Si

13
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for all i ∈ [m] and (a1, . . . , ani) ∈ Ani . Two structures A and B are homomorphically
equivalent if there exist homomorphisms A → B and B → A.

Let A = (A, (Ri)i∈I) be a relational structure. Assume that for every i ∈ I the arity
of Ri is given by ri. We say that an n-ary relation R on A is pp-definable from (Ri)i∈I if
there exists a finite family (Rj)j∈J of relations from (Ri)i∈I and some k ∈ N such that for
any (x1, . . . , xn) ∈ An it holds that

(x1, . . . , xn) ∈ R ⇔ ∃y1 ∈ A, . . . , ∃yk ∈ A :
�
j∈J

Rj(zj,1, . . . , zj,rj ),

where zj,l ∈ {y1, . . . , yk, x1, . . . , xn} for any j ∈ J and l ∈ [rj ]. Formulas of the form
∃y1 . . . ∃ykΦ where Φ is a conjunction of relational symbols and equalities are called prim-
itive positive formulas (pp-formulas).

Let A and B be relational structures. We say that B is a pp-power of A if there exists
some n ≥ 1 such that B is isomorphic to a structure with domain An whose relations are
definable using only primitive positive formulas over A. Here, a k-ary relation on An is
being considered as a kn-ary relation on A. Furthermore, we say that A pp-constructs B if
B is homomorphically equivalent to a pp-power of A.

2.7 The Pol-Inv correspondence

Let A be a set. An m-ary operation f ∈ OA on A is said to preserve an n-ary relation
R ∈ RA if for all r1, . . . , rm ∈ R it holds that f(r1, . . . , rm) ∈ R, where f is applied to
tuples coordinatewisely. Explicitly, this means�x11

...
x1n

& , . . . ,

�xm1
...

xmn

& ∈ R ⇒ f

�
�x11

...
x1n

& , . . . ,

�xm1
...

xmn

&
& =

�f(x11, . . . , x
m
1 )

...
f(x1n, . . . , x

m
n )

& ∈ R.

For a set F ⊆ OA of operations on A we let

Inv(F ) := {R ∈ RA : R is invariant under each operation from F}.
Conversely, for a set Γ ⊆ RA of relations on A we define

Pol(Γ) := {f ∈ OA : f preserves each relation from Γ}.
The operators Pol and Inv form a Galois-correspondence between the sets RA and OA.

Let A = (A; (Ri)i∈I) be a finite relational structure. The polymorphism clone of A is the
set Pol(A) := Pol({Ri : i ∈ I}). Its elements are called polymorphisms of A. Note that
the polymorphism clone of a relational structure is in fact a clone in the sense of Section 2.5.

For an algebra A = (A; (fi)i∈I), by Inv(A) we denote the set Inv(A) := Inv({fi : i ∈ I})
of relations on A that are preserved by all basic operations of A. Observe that a relation
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R ⊆ An is a subuniverse of An if and only if it holds that R ∈ Inv(A). By ⟨R⟩A we denote
the smallest subuniverse of An that contains R. In other words, ⟨R⟩A is the subuniverse
of An generated by R.

2.8 (n, k)-symmetric relations

If (G,+,−) is a group with identity element e ∈ G and X is a set, then a group action of
G on X is a map α : G × X → X such that α(e, x) = x and α(g, α(h, x)) = α(g + h, x)
for all g, h ∈ G and x ∈ X. A group action of a group G on a set X is also denoted by
G

α↷ X. If α is clear from the context, we just write G ↷ X.

Let k ≤ n be positive integers. We will identify the binomial coefficient
�
n
k

#
with the set of

all subsets of {1, . . . , n} that contain exactly k elements. Let Sn denote the symmetric group
on {1, . . . , n}. For E = {i1, . . . , ik} ∈ �

n
k

#
and σ ∈ Sn we set σ(E) := {σ(i1), . . . , σ(ik)}.

This defines a group action Sn
α↷

�
n
k

#
given by α(σ,E) := σ(E). For any set A, this yields

a group action Sn
ᾱ↷ A(nk) on the product A(nk) by setting 2

ᾱ(σ, (aE)E∈(nk)) := (aα(σ,E))E∈(nk).

A relation R ⊆ A(nk) is said to be (n, k)-symmetric if it is invariant under the action

Sn
ᾱ↷ A(nk), meaning that for all σ ∈ Sn and for all r ∈ R it holds that also ᾱ(σ, r) ∈ R. If

k = 1, we say that R is symmetric.

Remark 2.8.1: Observe that if R is an (n, k)-symmetric relation and

(□1, . . . ,□i−1, ri,□i+1, . . . ,□j−1, rj ,□j+1, . . . ,□(nk)
) ∈ R (2.1)

is a tuple from R such that ri and rj are its i-th and its j-th component, respectively, then
there exists a tuple

(△1, . . . ,△i−1, rj ,△i+1, . . . ,△j−1, ri,△j+1, . . . ,△(nk)
) ∈ R (2.2)

such that rj is its i-th and ri is its j-th coordinate. Here, the components △l, l ∈ [
�
n
k

#
]

of the tuple (2.2) are given by an appropriate reordering of the components □l, l ∈ [
�
n
k

#
]

of the tuple (2.1). In particular, if for every i ∈ [
�
n
k

#
] we denote the projection on the i-th

coordinate by pri, we have

pr1(R) = pr2(R) = · · · = pr(nk)
(R).

2Note that equivalently, the product A(nk) can be regarded as the set of all functions f :
�
n
k

� → A. The

group action Sn
ᾱ↷ A(nk) is then given by

ᾱ(σ, f) := g :

��
n
k

� → A

E �→ f(α(σ,E))
.
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Recall the definition of pp-definable relations from Section 2.6. A basic fact about pp-
definable relations on an algebra A is given by the following lemma.

Lemma 2.8.2: Let A be an algebra. If R is a relation on A that is pp-definable from a
family of invariant relations, then it holds that R ∈ Inv(A).

Proof. Let the arity of R be given by n. Let (Ri)i∈I be a family of invariant relations on A
and k ∈ N be such that a tuple (x1, . . . , xn) ∈ An belongs to R if and only if it holds that

∃y1 ∈ A, . . . , ∃yk ∈ A :
�
i∈I

Ri(zi,1, . . . , zi,ri),

where for all i ∈ I the arity of Ri is given by ri, and zi,j ∈ {y1, . . . , yk, x1, . . . , xn} for
all j ∈ [ri]. Let f be a m-ary basic operation of A. For each j ∈ [m] take some tuple
rj = (xj1, . . . , x

j
n) ∈ R. We have to show that

f(r1, . . . , rm) =

�f(x11, . . . , x
m
1 )

...
f(x1n, . . . , x

m
n )

& ∈ R.

By definition, for any j ∈ [m] there exist yj1, . . . , y
j
k ∈ A witnessing (xj1, . . . , x

j
n) ∈ R.

For i ∈ [N ] let zji denote the tuple (zji,1, . . . , z
j
i,ri

) ∈ {yj1, . . . , yjk, xj1, . . . , xjn}ri such that

Ri(z
j
i ) is satisfied. Since Ri ∈ Inv(A), it holds that f(z1i , . . . , z

m
i ) ∈ Ri. If for l ∈ [k]

we set yl := f(y1l , . . . , y
m
l ) , then by the tuple (y1, . . . , yk) we have found a witness that

f(r1, . . . , rm) ∈ R.

A relation R ⊆ An is said to be subdirect if pri(R) = A for every i ∈ [n]. If A is an alge-
bra and it additionally holds that R is a subuniverse of the product An, we write R ≤sd An.

A relation R ⊆ An on an algebra A is said to satisfy the restriction-property if there
exists a proper subalgebra B ⪇ A such that R ∩Bn ̸= ∅.

The following lemma states that for an (n, k)-symmetric invariant relation R, the failure
of the restriction-property already implies R to be subdirect.

Lemma 2.8.3: Let A be an algebra. Assume that R ⊆ A(nk) is a nonempty, invariant, and
(n, k)-symmetric relation on A for some n, k ∈ N. If R does not satisfy the restriction-

property, then R ≤sd A(nk).

Proof. Since R does not satisfy the restriction-property, for all proper subalgebras B ⪇ A
it holds that R ∩Bn = ∅. By (n, k)-symmetry of R, we have

pr1(R) = pr2(R) = · · · = pr(nk)
(R).

Notice that pr1(R) is pp-definable from R by

x ∈ pr1(R) ↔ �∃a2 ∈ A, . . . , ∃a(nk) ∈ A : (x, a2, . . . , a(nk)
) ∈ R

#
,

and is therefore a subuniverse of A by Lemma 2.8.2. Since R ⊆ pr1(R)(
n
k), we must

therefore have pr1(R) = A. Hence, R ≤sd A(nk).
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3 Taylor Algebras

In this thesis, we will only consider finite idempotent Taylor algebras. These have played a
major role in the proof of the Dichotomy Conjecture 1.2. A fundamental result obtained by
D. Zhuk in the course of his proof (see [Zhu17; Zhu20a]) states the occurence of one of two
cases whenever an algebra is finite, idempotent, and Taylor. Namely, he showed that any
finite idempotent Taylor algebra possesses either a strong subuniverse or a p-affine factor
for some prime number p ∈ P (Corollary 3.1.3). We will formulate Zhuk’s Theorem in
section 3.1 and provide the required definitions and some consequences in the subsequent
sections.

We will use the following definition of Taylor algebras:

Definition 3.1: Let A be a finite algebra. A is called Taylor if there does not exist a
clone homomorphism Clo(A) → Proj.

Since for any B ∈ HSP(A) there exists a clone homomorphism Clo(A) → Clo(B), it
suffices to ask that the variety generated by A does not contain a two-element algebra B
whose every operation is a projection, i.e., an algebra B such that Clo(B) = Proj. In fact,
for a finite idempotent algebra A it is even enough to require that HS(A) does not contain
such an algebra [BJ01].

For finite idempotent algebras there exist many different characterisations. Namely, fi-
nite idempotent Taylor algebras can be characterised by the existence of term operations
satisfying certain sets of identities. Theorem 1.9 in the introduction collects some of these
characterisations.

Example 3.2: As an example of a Taylor algebra consider an algebra A that has a Mal’cev
term operation m ∈ Clo(A), i.e., m satisfies the identities m(x, y, y) = m(y, y, x) = x.
In Example 2.5.2 we showed that if B is an algebra such that there exists a clone ho-
momorphism ξ : Clo(A) → Clo(B), then Clo(B) admits the Mal’cev operation ξ(m). In
particular, since the Mal’cev identities fail to be satisfied by projections, there does not
exist a clone homomorphism ξ : Clo(A) → Proj. As any group A = (A; +,−) has the
Mal’cev operation given by m(x, y, z) := x− y+ z, groups are examples of Taylor algebras.

Example 3.3: Another simple example of a Taylor algebra is the three-element rock-paper-
scissors algebra �{rock, paper, scissors}; winner(x, y)#.
Namely, it satisfies the identity winner(x, y) = winner(y, x), which cannot be satisfied by
projections.
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3 Taylor Algebras

3.1 Zhuk’s Theorem

Zhuk’s Cases Theorem yielded a crucial ingredient for his algebraic approach to CSPs. The
theorem is stated below, the required concepts will be provided in the sections thereafter.
For the proof of the theorem we refer to [Zhu17; Zhu20a; Zhu20b].

An algebra is essentially unary if for any of its basic operations f , say of arity n, there
exists a unary operation g and i ∈ [n] such that f(x1, . . . , xn) = g(xi), i.e., f has at most
one non-dummy variable. The notions of strong subuniverses and p-affine algebras are
given in Definition 3.2.1 and Definition 3.3.1, respectively.

Theorem 3.1.1 (Zhuk’s Cases): [Zhu20b, Theorem 3.3] Let A be a finite idempotent
algebra of size at least 2. Then at least one of the following holds:

(i) A has a nontrivial strong subuniverse.

(ii) There exist p ∈ P and a congruence θ on A such that A/θ is p-affine.

(iii) There exists an essentially unary algebra U ∈ HS(A) of size at least 2.

For the purpose of this thesis, however, essentially unary algebras do not show up:

Lemma 3.1.2: Let A be a Taylor algebra. Then there does not exist an essentially unary
algebra U ∈ HS(A) of size at least 2.

Proof. For any U ∈ HS(A) there exists a clone homomorphism Clo(A) → Clo(U). If U
is essentially unary of size at least 2, the mapping that sends every f ∈ Clo(U) to the
projection onto its non-dummy variable is a clone homomorphism Clo(U) → ProjU . By
Lemma 2.5.3, there exists a clone homomorphism ProjU → Proj. Thus, if U ∈ HS(A)
is essentially unary, we obtain a clone homomorphism Clo(A) → Proj, i.e., A is non-
Taylor.

In case A is Taylor, Zhuk’s Cases Theorem therefore reduces to the following corollary:

Corollary 3.1.3: Let A be a finite idempotent Taylor algebra of size at least 2. Then at
least one of the following holds:

(i) A has a nontrivial strong subuniverse.

(ii) There exist p ∈ P and a congruence θ on A such that A/θ is p-affine.

3.2 Strong subuniverses

The notion of a strong subuniverse is a collective term referring to subalgebras of one of
three types. Even though we will not need the exact definitions for the purpose of this
thesis, we provide them for completeness.
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3 Taylor Algebras

Let A be an algebra and let B ≤ A be a subalgebra of A.

B is called an absorbing subuniverse if there exists a term operation t ∈ Clo(A), say of
arity n, such that for all (a1, . . . , an) ∈ An it holds that

|{i ∈ [n] : ai /∈ B}| ≤ 1 ⇒ t(a1, . . . , an) ∈ B.

If t can be chosen binary, then B is called binary absorbing subuniverse.

B is central if it is an absorbing subuniverse and for every a ∈ A \B it holds that

(a, a) /∈ ⟨({a} ×B) ∪ (B × {a})⟩A.

B is said to be a projective subuniverse if for every n ∈ N and every n-ary basic operation
f of A there exists a coordinate i ∈ [n] such that for all (a1, . . . , an) ∈ An it holds that
f(a1, . . . , an) ∈ B whenever ai ∈ B.

An algebra A is polynomially complete (PC) if the clone of all operations is generated
by all basic operations of A and all constant operations. A nontrivial subuniverse B ⊆ A
is called a PC subuniverse if there exists a nontrivial congruence θ on A and some a ∈ A
such that B = [a]θ and A/θ ∼= D1 × · · · × Ds where each Di is a PC algebra that has
no nontrivial binary absorbing subuniverses, or no nontrivial central subuniverses, or no
nontrivial projective subuniverses.

The definition of a strong subuniverse is now given as follows:

Definition 3.2.1: Let A be an algebra and let B ⊆ A be a subuniverse of A. Then B is
called a strong subuniverse if it is a binary absorbing subuniverse, a central subuniverse,
or a PC subuniverse.

3.3 p-affine algebras

The other type of algebras that appears in Corollary 3.1.3 is given by p-affine algebras.
We will show that the clone of term operations of a p-affine algebra contains all p-affine
operations.

Definition 3.3.1: Let A be an idempotent algebra and p ∈ P. A is called p-affine if there
exist operations ⊕ and ⊖ on A such that (A,⊕,⊖) ∼= ((Zp)

n,+,−) for some n ≥ 1,

(A1) m(x, y, z) := x⊖ y ⊕ z ∈ Clo(A), and

(A2) {(x, y, z, w) : x⊕ y = z ⊕ w} ∈ Inv(A).

Remark 3.3.2: Let A be p-affine. Condition (A2) implies that any m-ary term operation
f ∈ Clo(A) fulfills f(x ⊖ y ⊕ z) = f(x) ⊖ f(y) ⊕ f(z) for m-tuples x,y, z, where ⊕
and ⊖ are applied separately to each coordinate. Namely, take any x = (x1, . . . , xm),
y = (y1, . . . , ym), z = (z1, . . . , zm) ∈ Am, and for i ∈ [m] set wi := xi ⊖ yi ⊕ zi. Since by
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3 Taylor Algebras

definition, xi ⊕ zi = yi ⊕ wi for all i ∈ [m], all tuples (xi, zi, yi, wi) belong to the relation
that is invariant by condition (A2). Thus, we have that the tuple��

f(x1, . . . , xm)
f(z1, . . . , zm)
f(y1, . . . , ym)
f(w1, . . . , wm)

&&
fulfills f(x1, . . . , xm) ⊕ f(z1, . . . , zm) = f(y1, . . . , ym) ⊕ f(w1, . . . , wm). In other words, it
holds that f(x)⊖ f(y)⊕ f(z) = f(x⊖ y⊕ z). From now on, we will only use the symbols
+ and − to denote the operations ⊕ and ⊖, respectively.

Remark 3.3.3: [Bra22b] IfA is p-affine, we obtain a nice normal form for its term operations.
Namely, assuming that A = (Zp)

n, condition (A2) is equivalent to asking that any term
operation f ∈ Clo(A) can be written in the form

f(x1, . . . , xm) =

m)
i=1

Aixi (3.1)

with Ai ∈ (Zp)
n×n such that

*m
i=1Ai = In, where In denotes the identity matrix of size n.

In order to see this, take f ∈ Clo(A) and assume that its arity is given by m. For each
i ∈ [m] let Ai : A → A be the operation defined by

Ai(x) := f(0, . . . , 0, x, 0 . . . , 0),

where x is on the i-th place. Observe that by Remark 3.3.2, Ai(x + y) = Ai(x) + Ai(y).
Namely, since A is idempotent, we have f(0, . . . , 0) = 0. Thus, we have

Ai(x+ y) = f

����������

����������

0
...
0
x
0
...
0

&&&&&&&&&&
−

����������

0
...
0
0
0
...
0

&&&&&&&&&&
+

����������

0
...
0
y
0
...
0

&&&&&&&&&&

&&&&&&&&&&
= f

����������

����������

0
...
0
x
0
...
0

&&&&&&&&&&

&&&&&&&&&&
− f

����������

����������

0
...
0
0
0
...
0

&&&&&&&&&&

&&&&&&&&&&
+ f

����������

����������

0
...
0
y
0
...
0

&&&&&&&&&&

&&&&&&&&&&
=

= Ai(x) +Ai(y).

Thus, Ai is in fact an endomorphism of ((Zp)
n,+,−) and can thus be represented by a

matrix in (Zp)
n×n. We claim that equality (3.1) holds for all tuples (x1, . . . , xm) ∈ Am.

Take some (x1, . . . , xm) ∈ Am and let k be the number of non-zero values among x1, . . . , xm.
We proceed by induction of k. By idempotence, f(0, . . . , 0) = 0. It follows immediately by
the definition of Ai that the equality holds if k = 1. Now assume that the representation
holds true for all tuples (x1, . . . , xm) ∈ Am such that |{i ∈ [n] : xi ̸= 0}| = k. Let
(x1, . . . , xm) ∈ Am be such that the number of non-zero values among x1, . . . , xm is equal
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3 Taylor Algebras

to k + 1. Let j ∈ [n] be such that xj ̸= 0. It again follows from condition (A2) and
Remark 3.3.2 that

f(x1, . . . , xj−1, xj , xj+1, . . . , xm) = f(x1, . . . , xj−1, 0, xj+1, . . . , xm)+f(0, . . . , 0, xj , 0, . . . , 0),

where xj is in the j-th place. By inductive hypothesis, we then have

f(x1, . . . , xj−1, xj , xj+1, . . . , xm) =
)
i∈[m],
i ̸=j

Aixi +Ajxj .

By idempotence of A, we must have x = f(x, . . . , x) =
*m

i=1Aix for all x ∈ A, and there-
fore

*m
i=1Ai = In.

The following proposition states that if f is an operation on a p-affine algebra A of the
form (3.1) such that each of the endomorphisms Ai is simply the multiplication with some
constant, then f must already be a term operation of A. We refer to such an operation f
of the form

f(x1, . . . , xn) =

n)
i=1

λixi,

where n ∈ N and λ1, . . . , λn ∈ Zp with
*n

i=1 λi = 1 as p-affine operation.

Proposition 3.3.4: Let A be a p-affine algebra. If f is any p-affine operation on A, then
f ∈ Clo(A).

Proof. By definition of A, there exists a term operation m of the form

m(x, y, z) = x− y + z ∈ Clo(A).

Let n ∈ N and λ1, . . . , λn ∈ Zp be such that
*n

i=1 λi = 1. Without loss of general-
ity, we can assume that λi ̸= 0 for all i ∈ [n]. Let f be the operation given by setting
f(x1, . . . , xn) :=

*n
i=1 λixi for all (x1, . . . , xn) ∈ An. In order to see that f ∈ Clo(A), we

proceed by induction on n. If n = 1, i.e., f is unary, then it is in fact the projection pr11
and therefore contained in Clo(A) by definition of Clo(A).

Observe that if p = 2, there do not exist 2-affine combinations of even length since 2 | n
implies that

*n
i=1 λi = 0. Therefore, n must be odd, i.e., there exists some k ∈ N such

that n = 2k + 1, and we have

f(x1, . . . , x2k+1) = x1 + · · ·+ x2k+1.

In this case, for the inductive step assume that any 2-affine operation of arity 2k + 1 is
contained in Clo(A). If now n = 2k + 3, we obtain f ∈ Clo(A) as

x1 + · · ·+ x2k+3 = m(x1 + · · ·+ x2k+1� �� 	
∈Clo(A)

, x2k+2, x2k+3).
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3 Taylor Algebras

Assume now that p ̸= 2. Before we proceed to the inductive step, we consider n = 2 and
a special case of n = 3. Subsequently, we inductively prove that f ∈ Clo(A) for all n ≥ 3.
First, let n = 2, i.e., f is of the form

f(x1, x2) = λx1 + (1− λ)x2. (3.2)

For λ = 2 we have λx1 + (1− λ)x2 = m(x1, x2, x1), and for λ ≥ 3

(λ+ 1)x1 + (1− (λ+ 1))x2 = λx1 + (1− λ)x2 + x1 − x2 = m(λx1 + (1− λ)x2, x2, x1).

In both cases, f is generated by m. Hence, we get f ∈ Clo(A). Secondly, if n = 3 and f is
of the form

f(x1, x2, x3) = x1 − λx2 + λx3,

it is generated by m and term operations of the form (3.2). Namely, if λ = 1, then f = m.
Otherwise, by setting µ := 2 + (λ− 1)−1 we have that

x1 − λx2 + λx3 = λ (λ−1x1 + (1− λ−1)x2)� �� 	
∈Clo(A)

+(1− λ) (µx2 + (1− µ)x3)� �� 	
∈Clo(A)

.

Consequently, f ∈ Clo(A).

For the inductive step, assume now that any n-ary p-affine function belongs to Clo(A)
and let an n+1-ary p-affine operation be given by f(x1, . . . , xn+1) =

*n+1
i=1 λixi. If we have

that λ :=
*n

i=1 λi ̸= 0, then by the inductive hypothesis it follows that

n)
i=1

λi

λ
xi ∈ Clo(A).

But then also

f(x1, . . . , xn+1) = λ ·
n)

i=1

λi

λ
xi� �� 	

∈Clo(A)

+(1− λ) xn+1� �� 	
∈Clo(A)

∈ Clo(A),

being of the form λf1 + (1− λ)f2 with f1, f2 ∈ Clo(A). In case λ :=
*n

i=1 λi = 0, we have*n
i=2 λi = −λ1. As before, the inductive hypothesis yields

n)
i=2

λi

−λ1
xi ∈ Clo(A).

Thus,

f(x1, . . . , xn+1) = λ1 x1���	
∈Clo(A)

−λ1

n)
i=2

λi

−λ1
xi� �� 	

∈Clo(A)

+ xn+1� �� 	
∈Clo(A)

∈ Clo(A),

being of the form f1 − λf2 + λf3 with f1, f2, f3 ∈ Clo(A).
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For p ∈ P, a relation R defined on the domain of some p-affine algebra is said to be
p-affine if it is preserved by any p-affine operation. If A is a p-affine algebra, then by
Lemma 3.3.4 we have that any invariant relation R ∈ Inv(A) is p-affine. The following
definition will be essential for our endeavours of finding constant tuples in (n, k)-symmetric
relations.

Definition 3.3.5: Let n, k ∈ N and p ∈ P. The tuple (n, k, p) is said to be loop-friendly if
every nonempty (n, k)-symmetric p-affine relation contains a constant tuple.

We are able to immediately exclude tuples (n, k, p) that satisfy p | �nk#.
Counterexample 3.3.6: A necessary condition for the loop-friendliness of a tuple (n, k, p) is
that p ∤

�
n
k

#
. To see this, consider the relation

R := {(x1, . . . , x(nk)) ∈ (Zp)
(nk) :

(nk))
i=1

xi = 1}.

Then R is a nonempty and (n, k)-symmetric relation that is preserved by all p-affine oper-
ations. However, if p | �nk#, it fails to contain a constant tuple.

The following lemma allows us to represent any p-affine algebra in HSP(A) as one in in
HS(A), and thus limits the possible values of p. Namely, if B ∈ HS(A) is p-affine, we must
have p ≤ |A|. The proof is found in [Zhu20b].

Lemma 3.3.7: [Zhu20b, Corollary 4.3.1] Let A be a finite idempotent algebra and let
B ∈ HSP(A) be p-affine for some prime p ∈ P. Then there exists a p-affine algebra B′ ≤ B
such that B′ ∈ HS(A).
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4 Loop Conditions

Our attempts of proving the existence of a k-WNU term operation in Clo(A) for any finite
idempotent Taylor algebra A and all k ∈ N are primarily inspired by M. Sigger’s proof of
the existence of a 6-ary Siggers term operation that is provided in the introductory section
of this thesis (Theorem 1.8). Namely, we consider the relation R generated by the columns
of the k-WNU identities in the free algebra and try to argue the existence of a constant
tuple in R. The following section provides a short insight into the underlying concept of
loop conditions. It is based on [GJP19].

4.1 Definition

A loop condition on a finite set X is a set L of identities of the form

f(x1,1, . . . , x1,n) = f(x2,1, . . . , x2,n) = · · · = f(xk,1, . . . , xk,n), (4.1)

where f is an n-ary function symbol, k ≥ 2, and xi,j ∈ X for all i ∈ [k] and j ∈ [n].
The numbers k and n are referred to as the width and the arity of the loop condition L,
respectively. The k-ary relation associated with L is

RL := {(x1,i, . . . , xk,i) : 1 ≤ i ≤ n} ⊆ Xk.

Given a relation R = {(r1,1, . . . , rk,1), . . . , (r1,n, . . . , rk,n)} ⊆ Xk for some k ≥ 2, we assign
to it the loop condition LR defined by the identities

f(r1,1, . . . , r1,n) = f(r2,1, . . . , r2,n) = · · · = f(rk,1, . . . , rk,n).

Technically, these identities depend on the enumeration of the tuples in R. But since we
are interested in the satisfaction of identities in clones of operations, which are closed under
the permutation of variables, we may ignore this dependency and call LR the loop condition
associated with R.

4.2 Satisfaction of loop conditions

An algebra A is said to satisfy a loop condition L of the form (4.1) if the function symbol
that appears in L can be assigned a term operation f ∈ Clo(A) in such a way that the
resulting identity is true for all values of the variables xi,j in the domain of A. A loop
condition is called trivial if it can be satisfied by an algebra of size at least 2 whose only
basic operations are projections. Note that a loop condition L is trivial if and only if the as-
sociated hypergraph (X;RL) contains a loop, i.e., if RL contains a constant tuple. Namely,
let L be a loop condition of some arity n ∈ N and width k ∈ N and assume that L is trivial.
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4 Loop Conditions

We want to show that RL contains a constant tuple. Let i ∈ [n] be such that prni is the pro-
jection satisfying the loop condition. Then we have (x1,i, x2,i, . . . , xk,i) ∈ RL by definition
of RL. As the identities pri(x1,1, . . . , x1,n) = pri(x2,1, . . . , x2,n) = · · · = pri(xk,1, . . . , xk,n)
are satisfied by an algebra of size at least two, we must have x1,i = x2,i = · · · = xk,i. Thus,
the hypergraph (X;RL) contains a loop. The converse is clear.

Furthermore, the following lemma states a connection between the satisfaction of loop
conditions and loops in an associated hypergraph and thus justifies the terminology. It
represents a generalisation of the methods used in the proof of Theorem 1.8 in the intro-
duction.

Lemma 4.2.1: Let L be a loop condition of width k ≥ 2 and arity n on a finite set X. Let
RL ⊆ Xk be the relation associated with L, and let A be an algebra. Then the following
are equivalent:

(i) L is satisfied by A.

(ii) The relation
⟨RL⟩FV(A)(X)

generated by RL contains a constant tuple.

Proof. Let R := ⟨RL⟩FV(A)(X) and assume that L is of the form

f(x1,1, . . . , x1,n) = f(x2,1, . . . , x2,n) = · · · = f(xk,1, . . . , xk,n).

First, we prove the implication (i) ⇒ (ii). Assume that A satisfies L and let f ∈ Clo(A)
witness this fact. RL consists of all tuples xi := (x1,i, . . . , xk,i) for i ∈ [n]. As, by definition,
R ∈ Inv(FV(A)(X)), we have f(x1, . . . , xn) ∈ R. Since f witnesses L, f(x1, . . . , xn) is a
constant tuple.

For the implication (ii) ⇒ (i), assume that (c, . . . , c) ∈ R is a constant tuple in R. Since
R is generated by RL, there exists an n-ary term operation f ∈ Clo(A) such that�c

...
c

& = f(x1, . . . , xn) =

�f(x1,1 . . . , x1,n)
...

f(xk,1 . . . , xk,n)

& .

This means that the identities are satisfied on the generators xi,j , i ∈ [k], j ∈ [n]. Since
FV(A)(X) is the free algebra with these generators, the loop condition is also satisfied
by A.

Consequently, we obtain the following result for the satisfaction of loop conditions whose
associated relational structures are homomorphic.

Corollary 4.2.2: Let L and L′ be loop conditions of the same width k ≥ 2 on a finite set
X. If there exists a homomorphism (X;RL) → (X;RL′), then any algebra that satisfies L
also satisfies L′.
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Proof. Let A be an algebra that satisfies L. By Lemma 4.2.1, it suffices to show that
the relation R′ := ⟨RL′⟩FV(A)(X) generated by RL′ contains a constant tuple. Let R :=

⟨RL⟩FV(A)(X) denote the relation generated by RL. Since A satisfies L, there exists a

constant tuple (c, . . . , c) ∈ R by Lemma 4.2.1. Let ξ : X → X be the homomorphism that
sends tuples from RL to tuples from RL′ . We can extend this mapping to a homomorphism
ξ̄ on FV(A)(X) by freeness. Inevitably, ξ̄ sends tuples from R to tuples from R′. It follows
that R′ contains the constant tuple (ξ̄(c), . . . , ξ̄(c)).

4.3 Application to k-WNU

In the course of this thesis, we will consider the loop condition L on the variable set
X = {x, y} arising from the defining identities satisfied by a k-WNU term operation of
arity n. Recall that an operation w of some arity n ∈ N is a k-WNU term operation if for
every n-tuple z ∈ {x, y}n that has exactly k many instances of y, w satisfies the identity

w(y, . . . , y, y� �� 	
k

, x, x, . . . , x� �� 	
n−k

) = w(z).

Note that k-WNU terms operations are Taylor terms. In particular, the k-WNU identities
fail to be satisfied by projections.

As there exist
�
n
k

#
different tuples of size n that have exactly k instances of y and n− k

instances of x, L has arity n and width
�
n
k

#
. Written out explicitly, the n-ary k-WNU

identities are of the form

w(

k� 	� �
y, . . . , y, y, x, x, . . . , x) =

=w(y, . . . , y, x, y, x, . . . , x) =

...

=w(x, . . . , x, x, x, y, . . . , y� �� 	
n

).

The
�
n
k

#
-ary relation RL associated with this loop condition is given by the n columns of the

identities above. Clearly, these columns depend on the order of the identities. However, for
any order of the identities, RL turns out to be (n, k)-symmetric in the sense of Section 2.8.
In other words, a permutation of the components of the n-tuple

(y, . . . , y� �� 	
k

, x, . . . , x� �� 	
n−k

)

induces a permutation of the components of elements of RL, and RL is invariant under all
permutations that arise in this way.

In light of Lemma 4.2.1, we wish to find a constant tuple in R := ⟨RL⟩FV(A)(X), where
A is finite, idempotent, and Taylor, and RL is as above. The idea is to go by induction
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4 Loop Conditions

on the size of the algebra A, using Zhuk’s result Corollary 3.1.3. In the strong subalgebra
case, we wish to restrict R to a smaller relation whose domain is a proper subset of the
domain of R and to find a constant tuple there. However, a restriction of R will not be of
the same form as R, i.e., generated by the columns of the identities of L. Therefore, we
prove a stronger statement by induction. Namely, we prove that in the strong subalgebra
case, any non-empty, invariant, and (n, k)-symmetric relation contains a constant tuple
(Lemma 5.3). R inherits its (n, k)-symmetry from RL.

As opposed to the property of R to be generated by a certain set of generators, the
property of R to be (n, k)-symmetric is preserved by the restriction of R to a proper sub-

structure. To see this, let B ⊊ A be a proper subset of A such that R ∩ B(nk) ̸= ∅. Take

r ∈ R ∩ B(nk) and π ∈ Sn. By (n, k)-symmetry of R, we have π(r) ∈ R. But since the
tuple π(r) is given by an appropriate reordering of the components of r that belong to B by

assumption, it follows that π(r) ∈ R∩B(nk), and the restriction R∩B(nk) is (n, k)-symmetric.

Thus, in the strong subalgebra case, the only challenge to inductively restrict the finding
of a constant tuple in R to a smaller relation remains to show non-emptiness of an appro-
priate restriction of R (Lemma 5.2). The p-affine case of Zhuk’s Corollary 3.1.3 requires
different methods. The Lemmata 5.1.1, 5.2.1, and 5.2.2 solve the p-affine case for the values
k = 1 and k = 2. Lemma 5.3.1 and Conjecture 5.4.1 try to generalise the statements to
arbitrary k ≥ 3, however, definite results remain to be achieved.
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5 Constant Tuples

This section examines conditions under which an (n, k)-symmetric invariant relation de-
fined on the domain of a finite idempotent Taylor algebra contains a constant tuple. We
will start by examining such relations for k = 1, 2, 3, and apply the same ideas for arbitrary
k ∈ N. Corollary 3.1.3 (Zhuk’s cases) splits the process into the consideration of algebras
that admit strong subuniverses and those which factor to a p-affine algebra for prime num-
bers p ∈ P.

When employed for the purpose of finding a constant tuple in some relation R, the
strength of strong subuniverses lies in the fact that they can be used to inductively restrict
the search to a smaller relation that is contained in R and whose domain is a proper subset
of the domain of R. We show that if an algebra A is such that any nontrivial subalgebra
has a nontrivial strong subuniverse, then the property of an invariant relation R ∈ Inv(A)
to be (n, k)-symmetric is sufficient to ensure a constant tuple in R (Lemma 5.3). This is
done by reducing the statement to the existence of a constant tuple in a proper subalgebra.
To this end, we collect connections between the existence of nontrivial strong subuniverses
and (n, k)-symmetric relations.

Let A be a set and let B ⊆ A. A relation R ⊆ An of some arity n ∈ N is called B-essential
if it holds that R ∩Bn = ∅ and R ∩ (Bi−1 ×A×Bn−i) ̸= ∅ for all i ∈ [n].

First, we state some algebraic properties of subdirect subpowers of an algebra admitting
a strong subalgebra. For the proof we refer to [Zhu20b].

Theorem 5.1: [Zhu20b, follows from Theorem 3.5] Let A be a finite idempotent algebra,
R ≤sd An a subdirect subalgebra for some n ≥ 2, and B ≤ A a strong subuniverse of A.

(i) If A has no nontrivial central subuniverses or B is central, then for all j ∈ [n] the
set

pr1(R ∩ (A× · · · ×A×B ×A× · · · ×A)),

where B occurs at the j-th position, is a strong subuniverse of A.

(ii) If R is B-essential, then n = 2.

Following [Zhu20b], we show how to use Theorem 5.1 in order to prove that the existence
of a nontrivial strong subuniverse allows us to restrict our search of a constant tuple to
a proper subalgebra. Recall that a relation R defined on the domain of an algebra A is
said to satisfy the restriction-property if there exists a proper subalgebra B ⪇ A such that
Bn ∩R ̸= ∅.
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5 Constant Tuples

Lemma 5.2: [Zhu20b] Let A be a finite idempotent algebra and let R ⊆ A(nk) be a
nonempty, invariant, and (n, k)-symmetric relation for some n > 2, k < n. If A ad-
mits a nontrivial strong subuniverse, then R satisfies the restriction-property.

Proof. We have to show that there exists a proper subalgebraB ⪇ A such thatB(nk)∩R ̸= ∅.
If R is not subdirect, then R satisfies the restriction-property by Lemma 2.8.3. On the other

hand, assume that R is a subdirect relation, i.e., we have R ≤sd A(nk). Let B ⪇ A be a

nontrivial subuniverse of A. If R ∩ B(nk) ̸= ∅, then we have found a witness that R does
satisfies the restriction-property. Otherwise, let us agree on an order of the elements of
[
�
n
k

#
] so that we can write

r = (rE1 , . . . , rE(nk)
)

for all elements r of R. Note that since n > 2 and k < n, it holds that
�
n
k

# ≥ 3. Take
j ∈ [

�
n
k

#
] such that |E1 \ Ej | = 1. We let

C := pr1(R ∩ (A× · · · ×A×B ×A · · · ×A)),

where B is on the j-th place. Observe that if there exists a nontrival central subuniverse
S ⪇ A, then we can simply replace B by S. In any case, the requirements of Theo-
rem 5.1 (i) are fulfilled and we obtain that C is a strong subuniverse of A. We claim that

C is nontrivial and that C ∩R(nk) ̸= ∅. Thus, C witnesses the fact that R does satisfies the
restriction-property.

First, we must have C ̸= A. Otherwise, C = A implies that pr{1,j}(R) ∩ B2 ̸= ∅, where
for any subset M ⊆ [

�
n
k

#
] we denote by prM (R) the |M |-ary relation consisting of all |M |-

tuples obtained by projecting tuples from R onto their components that belong to M . Since

R∩B(nk) = ∅, we can choose a subset {1, j} ⊆ M ⊆ [
�
n
k

#
] that is minimal with respect to the

partial order ⊆ on the power set of [
�
n
k

#
], and with the property that prM (R) ∩ B|M | = ∅.

But then, prM (R) is a B-essential relation of arity |M | > 2 in contradiction to item (ii) of
Theorem 5.1. Therefore, C is a nontrivial strong subuniverse.

Now, suppose towards a contradiction that C ∩R(nk) = ∅ and take c ∈ C. By definition,
there exists a tuple r = (rE1 , . . . , rE(nk)

) ∈ R such that rE1 = c and rEj ∈ B. We claim that

there exists M ⊆ [
�
n
k

#
] of size |M | > 2 such that prM (R) is a C-essential relation. Then,

this yields a contradiction to item (ii) of Theorem 5.1. In order to prove the claim, observe
that since |E1 \Ej | = 1 and

�
n
k

# ≥ 3, there exists a k-element subset F ∈ �
n
k

#
such that the

following conditions are satisfied:

|F \ Ej | = |F \ E1| = 1

|F ∩ Ej | = |F ∩ E1| = k − 1

F ̸= E1, Ej .

These condition guarantee that there exist permutations π, τ ∈ Sn such that

pr1(π(r)) = rF ,
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5 Constant Tuples

prj(π(r)) = rEj ,

pr1(τ(r)) = rE1 , and

prj(τ(r)) = rF .

Namely, if k < n− 1, we set
F := (E1 ∩ Ej) ∪ {i},

where i /∈ E1 ∪ Ej . Then π is the transposition that swaps i with the element of E1 \ Ej ,
and τ is the transposition that swaps i with the element of Ej \E1. Otherwise, if k = n−1,
we set

F := (E1 \ Ej) ∪ (Ej \ E1) ∪ ((E1 ∩ Ej) \ {i}),
where i ∈ E1 ∩ Ej . Then π is the transposition that swaps the element of Ej \ E1 with
the element of E1 \ F , and τ is the transposition that swaps the element of E1 \ Ej with
the element of Ej \ F . By (n, k)-symmetry of R, pr1(π(r)) = rF and prj(π(r)) = rEj ∈ B
yield that rF ∈ C. Moreover, as pr1(τ(r)) = rE1 ∈ C and prj(τ(r)) = rF ∈ C, by (n, k)-

symmetry of R we get pr{1,j}(R)∩C2 ̸= ∅. Since we have assumed that C∩R(nk) = ∅, there
exists a subset {1, j} ⊆ M ⊆ [

�
n
k

#
] that is minimal with respect to the partial order ⊆ on

the power set of [
�
n
k

#
], and with the property that prM (R) ∩ B|M | = ∅. But then prM (R)

is C-essential with arity |M | > 2, again contradicting item (ii) of Theorem 5.1. Therefore,

we must have C ∩R(nk) ̸= ∅. Hence, R satisfies the restriction-property.

It now follows that if an algebra is such that every nontrivial subalgebra admits a non-
trivial strong subuniverse, then the existence of a constant tuple is guaranteed for any
(n, k)-symmetric invariant relation.

Lemma 5.3: [Zhu20b] Let A be a finite idempotent algebra with the property that any

subalgebra B ≤ A with |B| ≥ 2 has a nontrivial strong subuniverse. Assume that R ⊆ A(nk)

for some n > 2, k ≤ n is a nonempty, invariant, and (n, k)-symmetric relation. Then R
contains a constant tuple.

Proof. If n = k, the statement is trivial, so we can suppose that k < n. We go by induction
on |A|. The base case |A| = 1 is clear. Assume the statement holds for all algebras of
size less than |A|. Since by assumption, A admits a nontrivial strong subuniverse, we have
that R does satisfies the restriction-property by Lemma 5.2. Thus, there exists a proper

subalgebra B ⪇ A with R∩B(nk) ̸= ∅. Now, R∩B(nk) is a nonempty, invariant, and (n, k)-
symmetric relation on B. If |B| = 1, we have found a constant tuple. Otherwise, since
a subalgebra of a subalgebra is a subalgebra, B satisfies the assumptions of the inductive
hypothesis, and R ∩ Bn contains a constant tuple. In particular, R contains a constant
tuple.

Recall that a tuple (n, k, p) where n, k ∈ N and p ∈ P is called loop-friendly if every
nonempty (n, k)-symmetric p-affine relation contains a constant tuple. If (n, k, p) is a loop-
friendly tuple, then the existence of a p-affine factor also allows us to restrict the search of
a constant tuple to a smaller relation.
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5 Constant Tuples

Lemma 5.4: Let n, k ∈ N and p ∈ P be such that the tuple (n, k, p) is loop-friendly. Assume
that A is an algebra and that θ is a congruence on A such that A/θ is p-affine. Then every
nonempty, (n, k)-symmetric, and invariant relation on A satisfies the restriction-property.

Proof. Let R ∈ Inv(A) be a nonempty and (n, k)-symmetric relation. We want to construct

a proper subuniverse B of A such that B(nk) ∩R ̸= ∅. Let

Rθ :=


([a1]θ, . . . , [a(nk)

]θ) : (a1, . . . , a(nk)
) ∈ R

�
be the relation on A/θ consisting of the equivalence classes of elements of R under the
congruence θ. Then Rθ is a nonempty, (n, k)-symmetric, and invariant relation on the
domain of the p-affine algebra A/θ. By loop-friendliness of the tuple (n, k, p), Rθ contains
a constant tuple ([a]θ, . . . , [a]θ). In other words, R has a tuple all of whose components
belong to the same block under θ. By Lemma 2.3.1, the block [a]θ is a subuniverse of A.
Since A/θ = Zp × · · · × Zp, we have |A/θ| ≥ 2. Thus, θ ̸= A2 and [a]θ ⪇ A, i.e., [a]θ is

a proper subuniverse of A that satisfies [a]
(nk)
θ ∩ R ̸= ∅. Hence, R satisfies the restriction-

property.

5.1 The symmetric case

Any symmetric relation R ∈ Inv(A) on a finite idempotent Taylor algebra has a constant
tuple if only its arity satisfies some number theoretic conditions. In case A is a p-affine
algebra, its existence can be shown constructively as follows.

Lemma 5.1.1: [Zhu20b] Let p ∈ P and let n ∈ N. Then the tuple (n, 1, p) is loop-friendly
if and only if p ∤ n.

Proof. The necessity of the condition p ∤ n has been shown in Counterexample 3.3.6. For
the converse, let A be a p-affine algebra and let R ⊆ An be a nonempty, p-affine, and
symmetric relation. We will find a term operation f ∈ Clo(A) such that f applied to any
tuple r ∈ R and appropriate permutations of r, which are elements of R by symmetry,
yields a constant tuple. To this end, by Lemma 3.3.4 it is sufficient to provide a linear
combination f(x1, . . . , xm) :=

*m
i=1 λixi with

*m
i=1 λi = 1 for some m ∈ N and with the

mentioned property.

Consider the action Sn ↷ R and take the cyclic permutation σ on [n] given by

σ : 1 �→ 2 �→ · · · �→ n �→ 1

Then

σ0(

�a1
...
an

&) + σ1(

�a1
...
an

&) + · · ·+ σn−1(

�a1
...
an

&) =

�a1 + a2 + · · ·+ an
...

a1 + a2 + · · ·+ an

& .
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Since p ∤ n by assumption, the sum n of the coefficients fulfills n ̸= 0. Using that R is
p-affine we get that

n−1)
i=0

1

n
σi(

�a1
...
an

&) =
1

n

�a1 + a2 + · · ·+ an
...

a1 + a2 + · · ·+ an

& ∈ R.

Hence, we have found a constant tuple in R. Therefore, the tuple (n, 1, p) is loop-friendly.

Putting together Lemma 5.1.1 and the results we have obtained in the beginning of
Section 5, we are now able to show the existence of a constant tuple in any symmetric
relation of an appropriate arity as in [Zhu20b].

Theorem 5.1.2: Let A be a finite idempotent Taylor algebra and let n ∈ N be such that
p ∤ n for all p ∈ P with p ≤ |A|. If R ⊆ An is a nonempty, invariant, and symmetric
relation, then R contains a constant tuple.

Proof. If n = 1, the statement is trivial. Since 2 ∤ n, we can therefore assume that n > 2.
We prove by induction on |A|. The base case |A| = 1 is clear. Assume that the statement
holds for all algebras of size less than |A|. We claim that there exists a proper subalgebra
B ⪇ A with R ∩ Bn ̸= ∅, i.e., we claim that R satisfies the restriction-property. Then, by
the inductive hypothesis, there exists a constant tuple in R ∩ Bn. In particular, R has a
constant tuple.

By Corollary 3.1.3, either A has a nontrivial strong subuniverse, or A factors to a p-affine
algebra for some prime p ∈ P. If A has a nontrivial strong subuniverse, then R satisfies
the restriction-property by Lemma 5.2. If on the other hand, there exists a congruence
θ on A such that A/θ is p-affine, we must have p ≤ |A| and thus p ∤ n by assumption.
By Lemma 5.1.1, the tuple (n, 1, p) is loop-friendly, and by Lemma 5.4, R satisfies the
restriction-property. Therefore, in both cases of Corollary 3.1.3, there exists a proper
subalgebra B ⪇ A with R ∩ Bn ̸= ∅ and we can apply the inductive hypothesis to obtain
a constant tuple in R.

Remark 5.1.3: Observe that actually, the number theoretic conditions on the arity n are
slightly stronger than necessary. It suffices to ask that n is not divisible by p ∈ P if there
exists a p-affine algebra in HS(A).

5.2 The (n, 2)-symmetric case

When trying to generalise the statement of Theorem 5.1.2 to (n, 2)-symmetric relations,
difficulties arise in the p-affine case. Namely, the construction of a constant tuple in an
(n, 2)-symmetric invariant relation on a p-affine algebra now substantially depends on the
value of p. The proof for the case p = 2 was given by Z. Brady in a personal correspondence
with L. Barto, M. Pinsker, and D. Zhuk. The proof for p ̸= 2 goes back to M. Pinsker and
D. Zhuk.
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Lemma 5.2.1: Let p ∈ P\{2} and let n ∈ N be such that p ∤ n
�
n
2

#
. Then the tuple (n, 2, p)

is loop-friendly.

Proof. Let A be a p-affine algebra and assume that R ⊆ A(n2) is a nonempty, p-affine,
and (n, 2)-symmetric relation. We have to show that R contains a constant tuple. For a
two-element subset G = {i, j} ∈ �

n
2

#
we write tG ∈ Sn for the transposition that swaps

i and j. The idea of the proof is to find a p-affine combination of transpositions tG that
yields a constant tuple when applied to any element r ∈ R. To this end, we consider the
following operators:

T0(r) := r

T1(r) :=
)

G∈(n2)
tG(r)

T2(r) :=
)

G1,G2∈(n2),
G1∩G2=∅

tG1 ◦ tG2(r).

Note that the number of addends in the operators T0, T1, and T2 are given by 1,
�
n
2

#
, and�

n
2

#�
n−2
2

#
, respectively. We claim that there exist elements c0, c1 ∈ Zp such that for any

r ∈ A(n2),
T2(r) + c1T1(r) + c0T0(r) (5.1)

gives a constant tuple. Furthermore, we claim that c0 and c1 can be chosen such that the
operation A3 → A given by

(x0, x1, x2) �→
�
n− 2

2

$�
n− 4

2

$
x2 +

�
n

2

$
c1x1 + c0x0 (5.2)

is p-affine. By Lemma 3.3.4, proving this claim suffices to show the loop-friendliness of the
tuple (n, 2, p). Namely, by (n, 2)-symmetry of R, all addends of the tuple (5.1) belong to
R, and as the coefficients used add up to 1, the tuple belongs to R by p-affinity of R and
Lemma 3.3.4.

In order to prove the claim, given E ∈ �
n
2

#
we want to determine the sizes of the sets

T0,F (E) :=

�
{E}, E = F

∅, else

T1,F (E) :=


G ∈

�
n

2

$
: tG(E) = F

�
T2,F (E) :=


(G1, G2) ∈

�
n

2

$
×
�
n

2

$
: tG1 ◦ tG2(E) = F, G1 ∩G2 = ∅

�
for any F ∈ �

n
2

#
. The sizes of these sets express the number of addends used in the definition

of the operators T0, T1, and T2 that move the set E to the set F . Consequently, as the
components of any r = (rE)E∈(n2) ∈ R are indexed by two-element subsets of [n], they
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determine how often the F -th component rF of r appears in the E-th component of the
tuple T2(r) + c1T1(r) + c0T0(r). Our goal now is to find constants c, c0 and c1 independent
of E and F such that

|T2,F (E)|+ c1|T1,F (E)|+ c0|T0,F (E)| = c. (5.3)

It then follows that for every r = (rE)E∈(n2) ∈ R, every component rE of r appears exactly c

times in every component of T2(r) + c1T1(r) + c0T0(r). In other words, expression (5.1)
yields the constant tuple

T2(r) + c1T1(r) + c0T0(r) = c

��
*

E∈(n2) rE
...*

E∈(n2) rE

&& .

In relation to any E ∈ �
n
2

#
there are essentially three types of edges in the complete

graph with vertices {1, . . . , n} that are of interest: There is E itself, edges F ∈ �
n
2

#
such

that |E ∩ F | = 1, and edges F ∈ �
n
2

#
such that E ∩ F = ∅. The size of Ti,F (E) depends

on the type of F in relation to E. The following table collects all values of |Ti,F (E)| for
i = 0, 1, 2.

|T0,F (E)| |T1,F (E)| |T2,F (E)|
E = F 1

�
n−2
2

#
+ 1

�
n−2
2

#�
n−4
2

#
+ 2

�
n−2
2

#
|E ∩ F | = 1 0 1 2

�
n−3
2

#
E ∩ F = ∅ 0 0 4

The conditions on the constants c, c0, and c1 in equation (5.3) now give a system of linear
equations: ��

4 = c

2
�
n−3
2

#
+ c1 = c�

n−2
2

#�
n−4
2

#
+ 2

�
n−2
2

#
+ c1(

�
n−2
2

#
+ 1) + c0 = c.

We obtain c = 4, c1 = −(n2−7n+8), and c0 =
n4−10n3+27n2−18n

4 . Plugging in these values,
the sum of all coefficients in operation (5.2) is equal to�

n

2

$�
n− 2

2

$
+ c1

�
n

2

$
+ c0 = 2n(n− 1). (5.4)

Since p ̸= 2 and p ∤
�
n
2

#
= n(n−1)

2 by assumption, we have 2n(n − 1) ̸= 0. Therefore, the
operation

(x0, x1, x2) �→ 1

2n(n− 1)

��
n

2

$�
n− 2

2

$
x2 +

�
n

2

$
c1x1 + c0x0

$
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is p-affine. As R ∈ Inv(A), R is preserved by any p-affine operation by Lemma 3.3.4. Thus,
for any r ∈ R we have

1

2n(n− 1)

�
T2(r) + c1T1(r) + c0r

# ∈ R.

By our choice of c0 and c1, the expression above yields a constant tuple. Hence, we have
now shown that if we take any r = (rE)E∈(n2) ∈ R, then R also contains the constant tuple

4

2n(n− 1)
(
)

E∈(n2)
rE , . . . ,

)
E∈(n2)

rE).

Therefore, the tuple (n, 2, p) is loop-friendly.

Since the number of all permutations (5.4) used in the construction above will always be
divisible by 2, we have to choose a different construction for p = 2.

Lemma 5.2.2: [Bra22a] Let n ∈ N be such that 2 ∤ n
�
n
2

#
. Then the tuple (n, 2, 2) is

loop-friendly.

Proof. Let A be a 2-affine algebra and assume that R ⊆ A(n2) is a nonempty, 2-affine, and
(n, 2)-symmetric relation. Since 2 ∤ n

�
n
2

#
, we must have n ≡ 3 mod 4, so there exists k ∈ N

such that n = 4k+3. To any r = (rE)E∈(n2) ∈ R we assign the graph Gr := ([n];Er) where

(i, j) ∈ Er if and only if r{i,j} = 1. We will find a 2-affine term operation such that when
applied to any r ∈ R and appropriate permutations of r it gives a constant tuple, i.e., the
resulting graph is either the empty or the complete graph.

Let r ∈ R. Let σ ∈ Sn be the cyclic permutation given by

σ : 1 �→ 2 �→ · · · �→ n �→ 1,

and set

S(r) :=
n−1)
i=0

σi(r).

By (n, 2)-symmetry and 2-affinity of R, we have S(r) ∈ R. The graph GS(r) contains an
edge between vertices j and k if and only if the number of graphs Gσi(r) containing the
edge is odd, where i = 0, . . . , n− 1. Observe that, in fact, GS(r) contains an edge between
vertices j and k if and only if there is an odd number of edges in Gr between vertices of
distance ±(k − j) mod n. S(r) is therefore determined by the tuple

s(r) := (s1, s3, s5, . . . , sn−2) ∈ (Z2)
2k+1,

where si counts modulo 2 the number of edges between vertices of distance i in Gr. Let
T denote the permutation on [n] given by 1 �→ 2 �→ 3 �→ 1 and which fixes all other elements.
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We claim that the following identity holds:

s(S(T (S(r)))) = (s3, s1 + s3 + s5, s3 + s5 + s7, . . . , sn−6 + sn−4 + sn−2, sn−2) (5.5)

In order to prove the claim, we will examine for every i = 0, . . . , 2k how vertices of distance
2i+ 1 in GS(T (S(r))) derive from edges in Gr.

Edges in GS(T (S(r))) between vertices of distance 1 can arise from edges in Gr in the
following ways:

• edges in Gr between distinct vertices i and j of distance 1 where {i, j}∩{1, 2, 3} = ∅,
• an edge in Gr between the vertices 1 and 3,

• an edge in Gr between the vertices 3 and n,

• an edge in Gr between the vertices 1 and 2, or

• an edge in Gr between the vertices 2 and 4.

The number of edges in GS(T (S(r))) between vertices of distance 1 is modulo 2 therefore
equal to s1 + sn−2 + s3 + s1 + sn−2 ≡ s3 mod 2. A symmetric argument shows that the
number of edges between vertices of distance n− 2 is modulo 2 equal to sn−4.

Now, fix some l ∈ [2k − 1]. The number of edges in GS(T (S(r))) between vertices of
distance l̄ := 2l + 1 can arise from edges in Gr in the following ways:

• edges in Gr between distinct vertices i and j of distance l̄ where {i, j}∩ {1, 2, 3} = ∅,
• an edge in Gr between the vertices 3 and 1 + l̄,

• an edge in Gr between the vertices 3 and n− l̄ + 1,

• an edge in Gr between the vertices 2 and 3 + l̄,

• an edge in Gr between the vertices 2 and n− l̄ + 3,

• an edge in Gr between the vertices 1 and 2 + l̄, or

• an edge in Gr between the vertices 1 and n− l̄ + 2.

It is therefore modulo 2 equal to

sl̄ + sl̄−2 + sl̄+2 + sn−(l̄+1) + sn−l̄+1 + sn−(l̄+1) + sn−l̄+1 ≡ sl̄ + sl̄−2 + sl̄+2 mod 2.

Hence, S(T (S(r))) is indeed determined by the tuple claimed in (5.5). We now inductively
define operators Ai for i ∈ [k] by

A1(r) := S(T (S(r)))

Ai+1(r) := A1(Ai(r)) +Ai(r) +Ai−1(r) mod 2
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Plugging in identity (5.5), it follows that

s(Ai(r)) =(s2i+1, s2i−1 + s2i+1 + s2i+3, s2i−3 + s2i−1 + s2i+1 + s2i+3 + s2i+5, . . . ,

s1 + s3 + · · ·+ s4i−1 + s4i+1, s3 + s5 + · · ·+ s4i+1 + s4i+3, . . . ,

sn−4i−2 + sn−4i + · · ·+ sn−4 + sn−2, . . . , sn−2i−4 + sn−2i−2 + sn−2i, sn−2i−2)

For i = k we have that the tuple s(Ak(r)) := (a1, a2, . . . , ak+1, . . . , a2k, a2k+1) fulfills
al = a2k+2−l for all l ∈ [k], i.e., s(Ak(r)) is left-right symmetric. Applying Ak once more we
obtain the constant tuple s(Ak(Ak(r))) = (ak+1, ak+ak+1+ak+2, . . . , ak+ak+1+ak+2, ak+1).
Hence, GAk(Ak(r)) is either the empty or the full graph. Since the sum of all coefficients
appearing in Ak ◦ Ak is odd, by (n, 2)-symmetry of R and Lemma 3.3.4 it holds that the
constant tuple Ak(Ak(r)) is indeed an element of R for any r ∈ R.

The condition that 2 ∤ n
�
n
2

#
in Theorem 5.2.5 is not only sufficient but also necessary to

guarantee that the tuple (n, 2, 2) is loop-friendly. The necessity of the condition 2 ∤
�
n
2

#
has

been shown in Counterexample 3.3.6. This counterexample was found by L. Barto.

Counterexample 5.2.3: Assume that 2|n. Take any subset P ⊆ [n] such that |P | = n
2 , and

let PC := [n]\P . By
�
P
2

#
and

�
PC

2

#
we denote the set of all 2-element subsets of P and PC ,

respectively. Consider the relation RP defined by

RP :=

��x ∈ (Z2)
(n2) :

)
E∈(P2)

xE +
)

F∈(PC

2 )

xF = 1

�� ,

and let
R :=

�
P⊆[n], |P |=n

2

RP .

Then R is invariant under the action of Sn. Being a solution set of a system of linear

equations, R is 2-affine. In order to see that R is also nonempty, consider a tuple x ∈ (Z2)
(n2)

induced by a triangle

1

11

i.e., in the notation of the proof of Lemma 5.2.2, the graph Gx assigned to x has exactly 3
edges and these edges form a triangle. We claim that x belongs to any RP . Let P ⊆ [n]
with |P | = n

2 . If all 3 vertices with non-zero adjacent edges of Gx lie within P or if all 3
vertices with non-zero adjacent edges of Gx lie within PC , i.e.,

PC

P

or

P

PC

,
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then )
E∈(P2)

xE +
)

F∈(PC

2 )

xF = 1 + 1 + 1 = 1

and thus x ∈ RP . Otherwise, either exactly 1 edge lies within P and no edge lies within
PC , or exactly 1 edge lies within PC and no edge lies within P :

PC

P
or

P

PC

.

In these cases, we also have )
E∈(P2)

xE +
)

F∈(PC

2 )

xF = 1.

Therefore, in all cases x ∈ RP . However, R cannot contain a constant tuple as for all
c ∈ Z2 and P ⊆ [n] with |P | = n

2 we have
*

E∈(P2)
c+

*
F∈(PC

2 )
c = 0

We have now shown the following characterisation of loop-friendly tuples.

Corollary 5.2.4: Let n ∈ N. Then the tuple (n, 2, 2) is loop-friendly if and only if 2 ∤ n
�
n
2

#
.

A combination of the Lemmata 5.2, 5.4, 5.2.1, and 5.2.2 now gives a constant tuple in
any appropriate (n, 2)-symmetric relation.

Theorem 5.2.5: Let A be a finite idempotent Taylor algebra and let n ∈ N be such that

p ∤ n
�
n
2

#
for all p ≤ |A| with p ∈ P. If R ⊆ A(n2) is a nonempty, invariant, and (n, 2)-

symmetric relation, then R contains a constant tuple.

Proof. We proceed by induction on |A|. The base case |A| = 1 is clear. We can assume
that n > 2. We apply Corollary 3.1.3 and show that in both cases, A admits a proper

subalgebra B ⪇ A such that R∩B(n2) ̸= ∅, i.e., R satisfies the restriction-property. It then

follows by the inductive hypothesis that there exists a constant tuple in R∩B(n2). Hence, R
contains a constant tuple. If A admits a strong subuniverse, then R satisfies the restriction-
property by Lemma 5.2. Otherwise, there exists a congruence θ on A such that A/θ is
p-affine for some p ∈ P. In particular, we have p ≤ |A|. Lemma 5.2.1 and Lemma 5.2.2 now
yield the loop-friendliness of the tuple (n, 2, p). By Lemma 5.4, R satisfies the restriction-
property.

A way to obtain appropriate n ∈ N that satisfy the number theoretic conditions of
Theorem 5.2.5 is given in Lemma 8.1 in Appendix A.
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5.3 The (n, 3)-symmetric case

In order to motivate a proof of the existence of constant tuples in (n, k)-symmetric relations
for arbitrary k ∈ N, we constructively show the loop-friendliness of tuples (n, 3, p) for
p ̸= 2, 3 and appropiate n ∈ N. To this end, we generalise the ideas by D. Zhuk and
M. Pinsker for the case k = 2.

Lemma 5.3.1: Let p ∈ P with p > 3. If n ∈ N is such that p ∤ n
�
n
3

#
, then the tuple (n, 3, p)

is loop-friendly.

Proof. Let A be a p-affine algebra and let R ⊆ A(
n
3) a nonempty, p-affine, and (n, 3)-

symmetric relation. We proceed as in the proof of Lemma 5.2.1. Again, for a two-element
subset G ∈ �

n
2

#
we write tG for the transposition on [n] of the elements of G. We claim

that there exist elements c0, c1, c2 ∈ Zp such that for any r ∈ A(n3) the expression

T3(r) + c2T2(r) + c1T1(r) + c0r

gives a constant tuple, where

T1(r) :=
)

G∈(n2)
tG(r)

T2(r) :=
)

G1,G2∈(n2),
G1∩G2=∅

tG1 ◦ tG2(r)

T3(r) :=
)

G1,G2,G3∈(n2),
G1,G2,G3 disjoint in pairs

tG1 ◦ tG2 ◦ tG3(r).

Furthermore, we claim that we can choose c0, c1, and c2 in such a way that the operation
A4 → A given by

(x0, x1, x2, x3) �→
�
n

2

$�
n− 2

2

$�
n− 4

2

$
x3 + c2

�
n

2

$�
n− 2

2

$
x2 + c1

�
n

2

$
x1 + c0x0 (5.6)

is p-affine and therefore preserves R. By (n, 3)-symmetry and p-affinity of R, it then follows
that R contains a constant tuple.

Again, for i = 0, 1, 2, 3 and E,F ∈ �
n
3

#
we let

T0,F (E) :=

�
{E}, E = F

∅, else

T1,F (E) :=


G ∈

�
n

2

$
: tG(E) = F

�
T2,F (E) :=


(G1, G2) ∈

�
n

2

$
×
�
n

2

$
: tG1 ◦ tG2(E) = F, G1 ∩G2 = ∅

�
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T3,F (E) :=

�
(G1, G2, G3) ∈

�
n

2

$3

: tG1 ◦ tG2 ◦ tG3(E) = F, G1, . . . , Gl disjoint in pairs

�
.

The table for the values of |Ti,F (E)|, i = 0, 1, 2, 3 now looks as follows:

|T0,F (E)| |T1,F (E)| |T2,F (E)| |T2,F (E)|
E = F 1 3 +

�
n−3
2

#
6
�
n−3
2

#
+ 6

�
n−3
4

#
54
�
n−3
4

#
+ 90

�
n−3
6

#
|E ∩ F | = 2 0 1 2 + 2

�
n−4
2

#
6
�
n−4
2

#
+ 18

�
n−4
4

#
|E ∩ F | = 1 0 0 4 12

�
n−5
2

#
E ∩ F = ∅ 0 0 0 36

Our aim is to find c, c0, c1, c2 ∈ Zp such that for all E,F ∈ �
n
3

#
|T3,F (E)|+ c2|T2,F (E)|+ c1|T1,F (E)|+ c0|T0,F (E)| = c.

This yields the following linear equation:��
1 3 +

�
n−3
2

#
6
�
n−3
2

#
+ 6

�
n−3
4

#
54
�
n−3
4

#
+ 90

�
n−3
6

#
0 1 2 + 2

�
n−4
2

#
6
�
n−4
2

#
+ 18

�
n−4
4

#
0 0 4 12

�
n−5
2

#
0 0 0 36

&& ·

��
c0
c1
c2
1

&& =

��
c
c
c
c

&& (5.7)

In particular, we have that c = 36. Let c0, c1, c2 be such that (c0, c1, c2, 1) solves (5.7).
Plugging in these values, the sum of all coefficients that appear in operation (5.6) is given
by ��

1�
n
2

#�
n
2

#�
n−2
2

#�
n
2

#�
n−2
2

#�
n−4
2

#
&&

T

·

��
c0
c1
c2
1

&& = 6n(n− 1).

Since p ̸= 2, 3, we have 6n(n− 1) ̸= 0 by assumption. Therefore, the operation that maps
a tuple (x0, x1, x2, x3) to

1

6n(n− 1)

��
n

2

$�
n− 2

2

$�
n− 4

2

$
x3 + c2

�
n

2

$�
n− 2

2

$
x2 + c1

�
n

2

$
x1 + c0x0

$
is p-affine. By definition of c0, c1, and c2,

1

6n(n− 1)
(T3(r) + c2T2(r) + c1T1(r) + c0r)

gives a constant tuple for every r ∈ R. By (n, 3)-symmetry and p-affinity of R, we obtain
a constant tuple in R. Thus, the tuple (n, 3, p) is loop-friendly.

Clearly, the above proof fails if p = 2, 3. Different constructions are necessary for these
values of p in order to obtain a similar result to Theorem 5.2.5. However, to the best of
our knowledge, this problem remains open. In the general case of p-affine (n, k)-symmetric
relations the same issues arise for all p ≤ k.
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5.4 The (n, k)-symmetric case

In this section, we finally consider (n, k)-symmetric relations R ∈ Inv(A) for arbitrary
n ≥ k. Difficulties when trying to find a constant tuple in an (n, k)-symmetric relation
R ∈ Inv(A) only occur in the case where A is a p-affine algebra. Generalising the methods
of the previous sections, Conjecture 5.4.1 shows in principle how to construct a constant
tuple in all p-affine cases with p > k. Some evidence supporting that this construction
works has been carried out numerically.

Conjecture 5.4.1: Let k ∈ N and p ∈ P such that p > k. If n ∈ N is such that p ∤ n
�
n
k

#
,

then the tuple (n, k, p) is loop-friendly.

Proof. Let A be a p-affine algebra and assume that R ⊆ A(
n
k) is a nonempty, p-affine, and

(n, k)-symmetric relation. As before, let tG denote the transposition of the elements of G

for any G ∈ �
n
2

#
. For l ∈ [k] and r ∈ A(nk) we set

Tl(r) :=
)

G1,...,Gl∈(n2),
G1,...,Gl disjoint in pairs

tG1 ◦ · · · ◦ tGl
(r).

We claim that there exist elements c0, . . . , ck−1 ∈ Zp such that the expression

Tk + ck−1Tk−1 + · · ·+ c1T1 + c0. (5.8)

yields a constant tuple for any r ∈ R. Moreover, c0, . . . , ck−1 can be chosen such that the
operation Ak+1 → A given by

(x0, . . . , xk) �→
k−1(
j=0

�
n− 2j

2

$
xk + ck−1

k−2(
j=0

�
n− 2j

2

$
xk−1 + · · ·+ c1

�
n

2

$
x1 + c0x0

is p-affine. It then follows by p-affinity and (n, k)-symmetry of R that R contains a constant
tuple. As before, c0, . . . , ck−1 will be defined according to the size of the sets

Tl,F (E) :=

�
(G1, . . . , Gl) ∈

�
n

2

$l

: tG1 ◦ · · · ◦ tGl
(E) = F, G1, . . . , Gl disjoint in pairs

�

for all subsets E,F ∈ �
n
k

#
depending on the size of their intersection E ∩ F , where l ∈ [k].

For l = 0 we let

|T0,F (E)| :=
�
1 E = F

0 else

Assume that E,F ∈ �
n
k

#
are such that |E ∩ F | = r, where 0 ≤ r ≤ k. Clearly, it holds that

|Tl,F (E)| = 0 for 0 ≤ l < k − r.
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With the convention that
�
a
b

#
:= 0 if a < b, we define for k−r ≤ l ≤ k and 0 ≤ i ≤ l−k+r:

Mi,l,r :=

�
r

2i

$ i(
j=1

(2j − 1)� �� 	
number of ways to

have i pairwisely disjoint
transpositions within E∩F

�
n− 2(k − r)− r

2(l − k + r − i)

$ l−k+r−i(
j=1

(2j − 1)� �� 	
number of ways to

have l−k+r−i pairwisely disjoint
transpositions within {1,...,n}\(E∪F )

(k − r)!� �� 	
number of bijections
E\(E∩F )→F\(E∩F )

l!

αl,r :=
l−k+r)
i=0

Mi,l,r.

We then have

|Tl,F (E)| = αl,r =
l−k+r)
i=0

Mi,r,l

Since we want to find c, c0, . . . , ck−1 such that

|Tk,F (E)|+ ck−1|Tk−1,F (E)|+ · · ·+ c0|T0,F (E)| = c

for all E,F ∈ �
n
k

#
, we obtain the linear equations�������

1 α1,k α2,k α3,k . . . αk,k

0 1 α2,k−1 α3,k−1 . . . αk,k−1

0 0 4 α3,k−2 . . . αk,k−2

0 0 0 36 . . . αk,k−3
...

...
...

...
. . .

...
0 0 0 0 . . . αk,0

&&&&&&&

�������

c0
c1
c2
c3
...
1

&&&&&&&
=

�������

c
c
c
c
...
c

&&&&&&&
.

Observe that the diagonal entries fulfill αl,k−l = (l!)2 for all 0 ≤ l ≤ k. Since p > k, it thus
holds that αl,k−l ̸= 0 for all 0 ≤ l ≤ k, i.e., the matrix has full rank. In other words, we
can recursively define cl, 0 ≤ l ≤ k − 1 by

cl :=
1

(l!)2

(k!)2 − αk,k−l −
k−1)

j=l+1

αj,k−lcj

 .

If we plug in those values, operation (5.8) now gives a constant tuple when applied to
any r ∈ R. We have tested numerically that the sum of all coefficients appearing in
operation (5.8) satisfies

k−1(
j=0

�
n− 2j

2

$
+ ck−1

k−2(
j=0

�
n− 2j

2

$
+ · · ·+ c1

�
n

2

$
+ c0 = k!n(n− 1) · · · (n− k + 1). (5.9)

The Python code providing some evidence for identity (5.9) can be found in the appendix.
As p > k and p ∤

�
n
k

#
, it holds that k!n(n − 1) · · · (n − k + 1) ̸= 0. By p-affinity and

(n, k)-symmetry of R, for any r ∈ R we obtain that R also contains the constant tuple

1

k!n(n− 1) . . . (n− k + 1)

�
Tk(r) + ck−1Tk−1(r) + · · ·+ c1T1(r) + c0r

# ∈ R.
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The construction above fails if p ≤ k. However, in order to inductively prove the existence
of a constant tuple in an invariant (n, k)-symmetric relation defined on a finite idempotent
Taylor algebra A, the loop-friendliness of all tuples (n, k, p) for p ≤ |A| needs to be guaran-
teed. The proof of the following generalisation of the symmetric and the (n, 2)-symmetric
cases is practically identical to the ones of Theorem 5.1.2 and Theorem 5.2.5.

Lemma 5.4.2: Let A be a finite idempotent Taylor algebra. Let n, k ∈ N be such that for
all p ∈ P with p ≤ |A| the tuple (n, k, p) is loop-friendly. If R is a nonempty, invariant,
and (n, k)-symmetric relation on A, then R contains a constant tuple.

Proof. We proceed as in the proofs of Theorem 5.1.2 and Theorem 5.2.5. The statement
is trivial for |A| = 1. Assume that the statement holds for all algebras of size less than
|A|. If A has a nontrivial strong subuniverse, then R satisfies the restriction-property by
Lemma 5.2. Otherwise, by Corollary 3.1.3, there exists a congruence θ on A such that
A/θ is p-affine for some p ∈ P. Evidently, p ≤ |A|. By assumption, the tuple (n, k, p) is
therefore loop-friendly. By Lemma 5.4, R satisfies the restriction-property. Thus, in both

cases of Corollary 3.1.3, there exists a proper subalgebra B ⪇ A such that R ∩ B(n2) ̸= ∅.
By the inductive hypothesis, R∩B(n2) has a constant tuple. Hence, there exists a constant
tuple in R.

Recall that by Corollary 5.2.4, a tuple (n, 2, p) is loop-friendly if and only if 2 ∤ n
�
n
2

#
.

However, the following counterexample shows that for arbitrary k ≥ 3 a characterisation
of all loop-friendly tuples (n, k, p) is more difficult. Namely, there exist n, k ∈ N and p ∈ P
that satisfy p ∤ n

�
n
k

#
, but the tuple (n, k, p) fails to be loop-friendly. This counterexample

was found by L. Barto.

Counterexample 5.4.3: Consider n = 7, k = 3, p = 3. Then
�
n
k

# ≡ 2 mod p, and n ≡ 1

mod p, i.e., it holds that p ∤ n
�
n
k

#
. For a tuple x = (xE)E∈(nk) ∈ Zp

(nk) and u, v ∈ [n] we

define

x∅ :=
)

E∈(nk)
xE

xv :=
)

E∈(nk)
v∈E

xE

xuv :=
)

E∈(nk)
u,v∈E

xE .

Let R be the relation given by

R :=


r ∈ Zp

(nk) : r∅ = 1, ∀u, v ∈ [n] rv = ruv = 0
�
.

R is p-affine and symmetric. In order to see that R ̸= ∅, take any M ⊆ [n] of size |M | = 5.
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Let x = (xE)E∈(nk) be defined by

xE :=

�
1 if E ⊆ M

0 else
.

We have

x∅ =
)
E⊆M

xE =

�
5

3

$
= 10 ≡ 1 mod p

xv = 0 if v /∈ M

xv =

�
4

2

$
= 6 ≡ 0 mod p if v ∈ M

xuv = 0 if {u, v} ̸⊆ M

xuv = 3 ≡ 0 mod p if {u, v} ⊆ M.

Hence, x ∈ R, and we have shown R ̸= ∅. But if R contained a constant tuple c = (c, . . . , c)
then we would have

1 = c∅ = 35 · c ≡ −c mod p, hence c = 2,

but also
0 = cuv = 5 · c ≡ −c mod p, hence c = 0.

This yields a contradiction. Therefore, the tuple (7, 3, 3) is not loop-friendly.

Note that Counterexample 5.4.3 does not contradict Conjecture 5.4.1 as Conjecture 5.4.1
only states the loop-friendliness of tuples (n, k, p) that satisfy p ∤ n

�
n
k

#
and p > k.
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Applying our results from Section 5, we show that if A is any finite idempotent Taylor
algebra, then it contains a k-WNU term operation for k = 1 and k = 2.

Recall that to any loop condition L we can assign the relation RL associated with L.
Let A be a finite algebra, and F = FV(A)(x, y) be the free algebra over the set {x, y} in
the variety V(A) generated by A. Let RL be the

�
n
k

#
-ary relation associated with the loop

condition given by the n-ary k-WNU identities

w(

k� 	� �
y, . . . , y, y, x, x, . . . , x) =

=w(y, . . . , y, x, y, x, . . . , x) =

...

=w(x, . . . , x, x, x, y, . . . , y� �� 	
n

).

(6.1)

We obtain RL by taking the columns of the identities in (6.1), i.e.,

RL =

������
���
y
y
...
x

&&& , . . . ,

���
y
x
...

&&& ,

���
x
y
...

&&& , . . . ,

���
x
x
...
y

&&&
������ ⊆ V (nk).

Note that we have |RL| = n. By Lemma 4.2.1, the existence of a k-WNU term operation
of arity n in Clo(A) is equivalent to asking that the

�
n
k

#
-ary relation

⟨RL⟩F = {s(r1, . . . , rn) : s ∈ Clo(A), r1, . . . , rn ∈ RL}

generated by RL contains a constant tuple. RL is (n, k)-symmetric and so is ⟨RL⟩F, for it
holds that

π(s(r1, . . . , rn)) = s(π(r1), . . . , π(rn))

for any π ∈ Sn, s ∈ Clo(A), ri ∈ RL.

The existence of a WNU term operation in any finite idempotent Taylor algebra was first
shown by M. Maróti and R. McKenzie in [MM08].

Corollary 6.1: [[MM08]; see also [Zhu17; Zhu20a]] Let A be a finite idempotent Taylor
algebra of size at least 2. If n ∈ N is such that p ∤ n for all p ∈ P with p ≤ |A|, then Clo(A)
has a WNU term operation of arity n.

45



6 Existence of WNU

Proof. Let F be the free algebra with 2 generators in the variety generated by A. By
Lemma 2.5.1, we have that F ∼= Clo(A)(2). Since Clo(A)(2) ≤ AA2 ∈ SP (A), it follows
that F is finite, idempotent, and Taylor. Let R ⊆ Fn be the relation

R :=

�������
���
x
x
...
y

&&& ,

���
x
...
y
x

&&& , . . . ,

���
y
x
...
x

&&&
������
�

F

.

By definition, R is symmetric and R ∈ Inv(F). By Lemma 3.3.7, if there exists a p-affine
algebra in HSP(A), then there is also one in HS(A). In particular, if θ is a congruence on
F such that F/θ is p-affine, we must have p ≤ |A|, and it holds that p ∤ n by assumption.
By Remark 5.1.3, we may therefore apply Theorem 5.1.2 to F and R. This implies that R
contains a constant tuple (c, . . . , c). In other words, there exists w ∈ Clo(A) such that

w

���
���
x
x
...
y

&&& ,

���
x
...
y
x

&&& , . . . ,

���
y
x
...
x

&&&
&&& =

���
c
c
...
c

&&& ,

i.e., w(x, x, . . . , y) = w(x, . . . , y, x) = · · · = w(y, x, . . . , x).

The proof of Corollary 6.1 can easily be extended to show the existence of a 2-WNU
term operation.

Corollary 6.2: Let A be a finite idempotent Taylor algebra of size at least 2. If n ∈ N is
such that p ∤ n

�
n
2

#
for all p ≤ |A| with p ∈ P, then Clo(A) has a 2-WNU-term of arity n.

Proof. Let again F be the free algebra over the set {x, y} in the variety generated by A. It

is finite, idempotent and Taylor. Let R ⊆ F(
n
2) be the relation generated by the columns

of the n-ary 2-WNU identities, i.e.,

R :=

�������
���
x
x
...
y

&&& ,

���
x
x
...
y

&&& , . . . ,

���
x
y
...
x

&&& ,

���
y
x
...
x

&&& ,

���
y
y
...
x

&&&
������
�

F

.

Then R is (n, 2)-symmetric and R ∈ Inv(F). Theorem 5.2.5 implies that R contains a
constant tuple. Thus, there exists a 2-WNU term operation of arity n.

In order to have that for every k ∈ N and for every finite idempotent Taylor algebra A
there exists a k-WNU term operation of some arity n ∈ N, it is sufficient to find conditions
under which all tuples (n, k, p) for p ∈ P with p ≤ |A| are loop-friendly.

Corollary 6.3: Let A be a finite idempotent algebra and let k ∈ N. If n ∈ N is such that
the tuples (n, k, p) are loop-friendly for all p ∈ P with p ≤ |A|, then A has a k-WNU term
operation of arity n.
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6 Existence of WNU

Proof. The proof is practically identical to the ones above. Namely, we consider the relation
R generated by the columns of the n-ary k-WNU identities in the free algebra over the set
{x, y} in the variety generated by A. By invariance and (n, k)-symmetry of R, Lemma 5.4.2
yields a constant tuple in R.
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7 Open Questions

In light of Lemma 5.4.2 and Corollary 6.3, our open questions concern conditions under
which a tuple (n, k, p) is loop-friendly. Analysing Counterexample 5.4.3, we see that a tuple
(n, k, p) will never be loop-friendly as long as there exist some 1 ≤ j ≤ k − 1 and some
k ≤ M ≤ n such that �

n− j

k − j

$
̸≡ 0 mod p, and (7.1)�

M

k

$
≡ 1 mod p, and (7.2)�

M − j

k − j

$
≡ 0 mod p. (7.3)

We raise the question whether or not these are the only conditions under which a tuple
fails to be loop-friendly.

Question 7.1: Let n, k ∈ N and p ∈ P. Assume that p ∤ n
�
n
k

#
, and there do not exist any

1 ≤ j ≤ k − 1 and k ≤ M ≤ n such that all of the conditions (7.1)-(7.3) hold. Do these
assumptions imply that the tuple (n, k, p) is loop-friendly?

Given a finite idempotent Taylor algebra A and k ∈ N, Lemma 5.4.2 and Corollary 6.3
require n ∈ N to be such that for all p ∈ P with p ≤ |A| the tuples (n, k, p) are loop-
friendly. Consequently, we are confronted with the question whether or not for all k ∈ N
and all prime numbers up to a given bound there exists n ∈ N so that the number theoretic
conditions that appear in Question 7.1 are simultaneously satisfied. For j ∈ N let pj ∈ P
denote the j-th prime number.

Question 7.2: Let k, J ∈ N. Does there exist n ∈ N such that the following conditions
hold for all j ∈ [J ]:

(i) pj ∤ n
�
n
k

#
(ii) for all 1 ≤ j ≤ k − 1 and k ≤ M ≤ n it holds that either

•
�
n−j
k−j

# ≡ 0 mod pj, or

•
�
M
k

# ̸≡ 1 mod pj, or

•
�
M−j
k−j

# ̸≡ 0 mod pj

So far, we are only able to provide a partial answer to Question 7.2. Namely, for any
k, J ∈ N there exists n ∈ N such that for all j ∈ [J ] we have pj ∤ n

�
n
k

#
. A proof of this

statement is given in Appendix A.
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7 Open Questions

In combination with Corollary 6.3, a positive answer to the questions above exhibits a
sufficient condition for the existence of k-WNU term operations for all finite idempotent
Taylor algebras.

Proposition 7.3: If Question 7.1 and Question 7.2 can be answered positively, then for
any finite idempotent Taylor algebra A and any k ∈ N there exists n ∈ N such that Clo(A)
contains a k-WNU term operation of arity n.

Proof. Let A be a finite idempotent Taylor algebra and let k ∈ N. If n ∈ N is such that
the conditions (i) and (ii) formulated in Question 7.2 hold for all p ∈ P with p ≤ |A|,
then a positive answer to Question 7.1 yields the loop-friendliness of all tuples (n, k, p). By
Corollary 6.3, this implies that A has a k-WNU term operation of arity n.

In view of Proposition 7.3, future lines of enquiry may include the comprehensive char-
acterisation of all loop-friendly tuples (n, k, p).
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8 Appendix A

The following lemma provides a partial answer to Question 7.2. It shows that the first
condition formulated in the question is always satisfiable. In the following, for j ∈ N we
denote the j-th prime number by pj .

Lemma 8.1: For any k, J ∈ N there exist infinitely many n ∈ N such that for all j ∈ [J ]
it holds that pj ∤ n

�
n
k

#
.

Proof. For every l ∈ [k] let its prime factorisation be given by the tuple (lj)j∈N where lj
is the multiplicity of the j-th prime number pj in the prime factorisation of l. For every
j ∈ [J ] we set

kj := max
1≤l≤k

lj + 1.

Now, define
n := pk11 · · · pkJJ − 1.

It follows that pj ∤ n for all 1 ≤ j ≤ J since otherwise we would have pj | 1. In order to see
that also pj ∤

�
n
k

#
, observe that�

n

k

$
=

(pk11 · · · pkJJ − 1) · · · (pk11 · · · pkJJ − k)

k!
=

=

�
pk11 · · · pkJJ

1
− 1

"�
pk11 · · · pkJJ

2
− 1

"
· · ·

�
pk11 · · · pkJJ

k
− 1

"
.

For all j ∈ [J ] and l ∈ [k] the multiplicity of pj in l is not greater than kj − 1, hence

pj | p
k1
1 ···pkJJ

l . It follows that pj ∤ p
k1
1 ···pkJJ

l − 1 and therefore pj ∤
�
n
k

#
as required. By the

same arguments, all numbers of the form m(n + 1) − 1 for positive integers m satisfy our
assumptions.
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9 Appendix B

The following code checks identity (5.9) for values k ≤ 10 and n ≤ 30. It can, however,
easily be adapted for higher values.

from math import comb
from math import f a c t o r i a l
from math import prod
import numpy as np

def M( i , l , r ) :
L1=l i s t ( )
L2=l i s t ( )

i f n−2∗(k−r)−r < 0 :
return 0

else :
for j in range (1 , i +1):

L1 . append (2∗ j −1)
for j in range (1 , l−k+r−i +1):

L2 . append (2∗ j −1)
return f a c t o r i a l (k−r )∗ prod (L1)∗ prod (L2)∗comb( r , 2∗ i )∗

comb(n−2∗(k−r)−r , 2∗( l−k+r−i ) )∗ f a c t o r i a l ( l )

def a ( l , r ) :
L=l i s t ( )
for i in range ( l−k+r +1):

L . append (M( i , l , r ) )
return sum(L)

def T( l ) :
i f l ==0:

return 1
else :

L=l i s t ( )
for j in range ( l ) :

L . append (comb(n−2∗ j , 2 ) )
return prod (L)

def r e s ( x ) :
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9 Appendix B

L=l i s t ( )
for j in range ( k ) :

L . append (x [ j ]∗T( j ) )
L . append (T(k ) )
return sum(L)

def s o l v e upp e r t r i ma t r i x (M, b , k ) :
x = np . z e r o s ( k+1, dtype=object )
for i in range (k , −1, −1):

i f i == k :
x [ k ] = 1

else :
tmp = np . dot (M[ i ] , x )
x [ i ] = (b [ i ]−tmp) // M[ i ] [ i ]

return x

for k in range (7 , 1 1 ) :
for n in range (2∗k+1, 3 1 ) :

C=np . z e r o s ( ( k+1, k+1) , dtype=object )
for i in range ( k+1):

for j in range ( i , k+1):
C[ i ] [ j ]=a ( j , k−i )

b=np . array ( [ f a c t o r i a l ( k )∗ f a c t o r i a l ( k ) ] ∗ ( k+1) , dtype=object )
x = s o l v e upp e r t r i ma t r i x (C, b , k )

print ( ’n=’+str (n)+” , k=”+ str ( k)+” , r e s=”+
str ( r e s ( x)−(comb(n , k )∗ f a c t o r i a l ( k )∗ f a c t o r i a l ( k ) ) ) )
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