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Kurzfassung

Im Bereich der Industrie 4.0 werden in modernen Fertigungssystemen und Industriezwei-
gen große Anstrengungen unternommen, um effektive Systeme zur Überwachung der
Maschinengesundheit und Prognose-Systeme zu entwickeln [KY18]. Neben verschiedenen
Methoden, wie modellbasierten oder wissensbasierten Ansätzen, gewinnen datengesteuerte
Methoden, insbesondere neuronale Netzwerke an Bedeutung aufgrund ihrer Eigenschaft,
bei großen Datenmengen eine gute Leistung zu erbringen und ihrer Fähigkeit, den
zukünftigen Status basierend auf aktuellen Informationen vorherzusagen. Nach dem
Training anhand von Zustandsdaten und Feedback können sie in integrierte Steuerungen
eingebettet werden und ermöglichen eine Echtzeit-Bewertung. Neben hochmodernen Pro-
duktionsanlagen, die mit einer großen Anzahl von Sensoren und Messungen ausgestattet
sind, gibt es Hersteller, die Messungen auf ungeordnete Weise sammeln. Während beide
danach streben, ihre Effizienz zu maximieren, unterscheiden sich die Voraussetzungen zur
Vorhersage erheblich. Die Verwendung von neuronalen Netzwerken nach dem Stand der
Technik, die für Zeitreihendaten verwendet werden, erfordert kontinuierliche Messungen
mehrerer Sensoren und die Kenntnis des Zustands, um ein Modell richtig zu trainieren. In
dieser Arbeit wird untersucht, inwieweit eine moderne neuronale Netzwerkarchitektur mit
einem Datensatz mit fehlenden Zielvariablen und unzureichender Kenntnis des wahren
Zustandes der Maschine funktioniert. Dazu werden zwei Fallstudien durchgeführt: Eine
neuronale Netzwerkarchitektur wird anhand eines genau definierten Referenz- Datensatzes
[SGSE08] implementiert, verfeinert und ausgewertet. In der zweiten Fallstudie wird das
Netzwerk anhand eines realen Datensatzes ausgewertet, der von einer Produktionslinie
stammt, jedoch nicht dezidiert für derartige Prognoseaufgaben gesammelt wurde. Implika-
tionen betreffen die Datenerfassung und Messungen zur Verbesserung der Datenqualität,
um ausreichende Daten für modernste maschinelle Lernmethoden bereitzustellen.
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Abstract

In the area of industry 4.0 in modern manufacturing systems and industries, great research
effort are made in developing effective machine health monitoring and prognosis systems
[KY18]. Among other methods like model based or knowledge based approaches, data
driven methods, especially neural networks, gain attention due to their characteristic
to perform well with large data sets and their capabilities to predict the future state
based on up-to-date information. Once trained by utilizing condition data and on site
feedback, they can be embedded on on-board controllers and enable real-time assessment.
Besides state of the art production plants which are equipped with a great amount of
sensors and measurements, there are also manufacturers that collect measurements, but
in a disordered way. While both strive to maximize their efficiency, the preconditions
differ significantly. The usage of state of the art neural networks used for time series
data requires continuous measurements of multiple sensors and the knowledge of the
state of the device to properly train a model. This thesis investigates to what extent a
neural network architecture performs on a data set with missing target variables and
inappropriate ground truth data. Therefore two case studies are conducted: A neural
network architecture is constructed, refined and evaluated on a well defined data set
[SGSE08]. In the second case study the network is evaluated on a real life data set which
was collected from a production line and was not specifically collected for forecasting
tasks. Implications concern the data acquisition and measurements to improve the data
quality to provide sufficient data for state of the art machine learning methods.
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CHAPTER 1
Introduction

Maintenance costs are a major part of the total cost of manufacturing in production plants.
Already 2002 the awareness of potential savings emerged. Mobley states in the book “An
introduction to Predictive Maintenance (Second Edition)”, that the maintenance costs
can represent between 15 and 60 percent of the cost of goods produced, depending on
the domain [Mob02]. Business approaches to maintenance management can be grouped
into three main categories [SSP+15]:

• Run-to-failure

• Preventive maintenance

• Predictive maintenance

The naive but also most cost intensive strategy is the Run-to-failure strategy. Mainte-
nance interventions are only performed after the occurrence of failures. Since this is the
simplest approach it is adopted frequently especially in small businesses, but a failure
results in the longest downtime and is usually more substantial than those associated
with planned actions.
A more cost effective approach is called preventive maintenance. To reduce downtime,
maintenance actions are carried out according to a planned schedule based on the ex-
pected life period of parts. The expected life period is determined on basis of statistical
information. By setting the maintenance interval to a point in time where the probability
for a failure is low, breakdowns are prevented with a high probability. But at that point
in time, maintenance actions are not necessary yet with an equally high probability.
By delaying maintenance actions, the efficiency increases at the cost of higher risk of a
breakdown. In practice with this strategy failures are usually prevented, but at the cost
of unnecessary maintenance actions resulting in inefficient use of resources and increased
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1. Introduction

operating costs.

The third strategy is designed to overcome the inefficiency of unnecessary maintenance
actions while still minimizeing the risk of failures by trying to estimate the health status of
parts of the equipment. Therefore, a model is built to predict the remaining useful life or
the probability for a device or parts of the device to fail in a certain time period. As stated
in chapter 2, different approaches tackle the task of generating a capable model. With
the evolution of maintenance strategies, the methodology generating such models evolved
too from engaging experts who have knowledge about the devices through education and
experience to AI based systems, and further from physics based models to data based
approaches[KY18]. While physics based approaches are focused on specific machine
types, data driven methods tend to generalize health indicators [LWZ+14]. Especially
supervised machine learning algorithms are an eligible instrument to automatically learn
such indicators. With the arising of the Industry 4.0 area neural networks, which were first
introduced by Donald Hebb 1949 [Sha86], obtained new significance. The combination
of having big amounts of data available and having enough and affordable storage and
processing power triggered extensive research in this field, as described in chapter 2.
Neural network architectures discussed in this chapter are not only capable to identify
and learn relevant features for a specific device. Due to their way of learning they have
also the potential to be able to adapt to different scenarios and therefore generalizing
to different devices. For predictive maintenance an ideal method would be sufficient to
predict failures of different types of machines with an equally high accuracy and therefore
reduce the effort to develop or adopt approaches for them. To move towards such a
generalization, two views can be identified: Either the method is able to cope with a
weakly defined task with missing target variables or inappropriate ground truth data, or
the quality of the data has to fulfill minimum requirements of the used method. These
two views are connected. If the output of two different machines, for example, has similar
features and fulfills certain quality requirements, the predictive maintenance method can
specialize on the features and the degree of quality. With variation within the output the
capability of the method of coping with the variation also has to grow. The motivation of
this thesis is to push one step towards the ideal predictive maintenance method described
above, in order to increase the efficiency of production plants.
To take this step, the following questions are identified as essential basis:

• How accurately is the remaining useful life (RUL) predicted by the proposed neural
network architecture using an benchmark data set with known target variables and
a well defined ground truth [SGSE08]?

• To what extent does the performance of the prediction degrade at the usage of a
real world data set which entails missing values and mislabeled ground truth data?

• What measures can be taken to reduce the degradation of the performance?

To answer the questions the following methodology is pursued:
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1. A comprehensive literature review of methods used to overcome different aspects
of machine health management in context of machine learning is conducted. The
analysis covers knowledge based approaches, data driven approaches especially
neural networks. Furthermore, a review of data mining and methods to overcome
the missing data problem can be found in chapter 2.

2. Chapter 3 examines a case study of a prediction method for a scientifically simulated
Run-to-failure data set with a known groundtruth. The introduced neural network
architecture is inspired by state of the art architectures with a high performance
on noisy and sparse data. The capabilities of the method are evaluated by different
metrics, with focus on noise resilience and the degradation curve using sparse data.
An outlook for potential improvements is given in the discussion.

3. A case study of a scenario with a high level of uncertainty and no known groundtruth
is described in chapter 4. An iteratively tailored CRISP-DM [She00] method is
applied to understand, prepare and model the data. Therefore, exploratory analysis,
cleansing, reverse engineering of the ground truth and preprocessing of the data for
machine learning and feature engineering steps are conducted in 6 iterations, each
concluded with feedback of domain experts of the data. Basic machine learning
algorithms are evaluated by different metrics, and discussed.

4. The performance of the network architecture on the two data sets is measured
with different metrics described in Section 3.1.1. Degradation of the performance is
implied by the distance between the metrics. Further analysis identifies potential
starting points for measures to reduce the difference of the performance of the
neural network.

5. In the discussion in chapter 5 the differences and implications for further general-
ization of the methods are analyzed.
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CHAPTER 2
State of the Art

Diagnostics and prognostics originally come from the medical field [LWZ+14]. As the
idea of machine health management grew, those two terms permeated different areas of
mechanical engineering, introducing professional instruments, such as sensors, meters, and
controllers, but also dedicated computational devices and algorithms. At first diagnostics
were introduced in a reactive manner to support decisions of the maintenance experts.
Nowadays, in order to maintain the up time of machines at the highest possible level,
the strategy shifts to proactive AI based approaches, which forecasts machine health
in different ways [KY18]. Figure 2.1 summarizes different categories of machine health
management approaches. Viewed from top to bottom, the first category focuses on the
knowledge of physic based rules and models. With those mathematical models, highly
accurate results can be achieved if an appropriate model for a system is developed.
However, it can be difficult to find the explicit mathematical model as the complexity of
the system increases and the accuracy degrades quickly with noise [KY18]. Examples
are ontology-based reasoning [ULRS11] or a model-based approach [BWES04].

The second category is summarized as probabilistic reasoning, which is already a step
towards data driven methods. Examples for the estimation procedures are the Kalman
filter [YL99] [AVR+09], hidden Markov models [TMMZT12] and Bayesian networks
[MZ09]. These two categories are specialized in specific scenarios and machines to ensure
a high accuracy. The specialization has certain disadvantages. Changes to the machine
imply effort to adopt the models, new devices require new or at least adjusted models.
Also, due to the high degree of specialization this methods are susceptible to noise.
A step towards generalization of the methods is to move away from physics based models
to the third category, which are data driven models. Data driven models can again be
classified as supervised and unsupervised methods.
Unsupervised machine learning describes a set of algorithms applied to tasks like clustering,
anomaly detection, association mining, or latent variable models to unlabeled data sets.
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2. State of the Art

Figure 2.1: Selection of the categorization of AI based methods used in system health
monitoring described by Kahn and Yairi [KY18].

That means unsupervised algorithms infer patterns with no knowledge or reference to
the outcome. In the context of predictive maintenance, unsupervised machine learning
is mainly used to cluster measurements, for example to healthy versus unhealthy data
[AG18], or for parameter reduction and noise reduction, for example with Autoencoders
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2.1. Deep Learning

[LWQM17].
Supervised machine learning is a set of learning algorithms which map an input to
an output based on a training set of input-output pairs. Therefore, a data set has to
provide data points and a corresponding label, also called groundtruth. One of the early
supervised machine learning algorithms are decision trees [Qui86]. Decision trees are
assembled to random forests, which still is a widely used algorithm for simple classification
or regression tasks [SMD17] [YDH08]. However, deep learning became a popular method
for machine health management application over the last years [KY18].

2.1 Deep Learning
Deep learning is a re-branding of artificial neural networks and has its origin back in
the 1950s, in the trial to replicate the functionality of the human brain [Sha86]. It is
typically described as the application of a neural network with more than one hidden
layer. The focus is to model high-level abstractions in data that can either be applied as
supervised or unsupervised learning. Such a network consists of a number of layers which
include neurons. Neurons between the layers are connected. The training itself is done
by adapting the weights between the neurons. Due to its ability to extract hierarchical
representation of data automatically on the one side and due to the deep architectures,
to learn complex, non linear features on the other side, deep learning has been applied to
various applications like computer vision, automatic speech recognition, natural language
processing or audio recognition. The different use cases facilitate a variety of designs.
The most commonly used architectures according to [KY18] are the following:

• Autoencoders

• Convolutional neural networks

• Recurrent neural networks

2.1.1 Autoencoders
Autoencoders are trained to attempt to copy its input to its output through a number of
hidden layers, where the number of neurons of the layers in the middle of the network is
typically smaller than the number of neurons at the input and output layers, as illustrated
in figure 2.2. The smallest layer is called bottle neck. It splits the network to an encoder
(part of the network between the input and the bottle neck) and a decoder (part of the
network between the bottle neck and the output). After the training, only the encoder is
used to reduce the number of dimensions. Therefore, the learned features are reduced
to a limited number of weights between the neurons, which compresses the data in a
way similar to PCA. That is used for parameter reduction and noise reduction. Lu et al.
introduced an autoencoder architecture for noise reduction [LWQM17]. They proposed
a stacked denoising autoencoder with 4 layers, where the number of neurons of every
subsequent layer of the encoder is n

2 , decreasing the input dimensions from 200 to 100,

7



2. State of the Art

50 and 25. By this method they increase the classification accuracy of their data set of a
vibration series generated by a bearing test-rig, by approximately 5%.

Figure 2.2: [KY18] This figure illustrates the structure of an autoencoder. Input (a) and
Output (b) have the same number of dimensions, where the hidden layers show a reduced
number of neurons.

2.1.2 Convolutional Neural Networks
A technique that evolved from high-dimensional data, such as images or time-series
data, is the convolutional neural network, or short CNN. This specially designed network
includes convolution layers as an automatic feature extractor before the classification or
regression layer. A typical architecture consists of convolution and pooling layer pairs,
as can be seen in Figure 2.3. As the name implies, the convolution layer converts the
data using the convolution operation. That means for a two dimensional convolution,
a nxm filter which is usually small in relation to the data, is convolved over the two
dimensional data. One by one, the dot product is determined and recorded in a new
two dimensional space. The pooling layer functions as an threshold and dimensionality
reduction layer. As this type of network has its origin in image processing, the operations
are conducted on two dimensional planes. To use the CNN architecture in the context of
system health management, the input is the data’s time and frequency representation
images. Janssens et al. [JSV+16] applied a CNN for monitoring a rotating machinery
condition. The input is a discrete Fourier Transform of two accelerometers. By adding
a regression layer, Babu et al. predicted the remaining useful life on the basis of the
time series data of a system [BZL16]. They are able to outperform regression with a
multilayer perceptron, the support vector regression, and the relevance vector regression.

As this technique is a well established alternative, it is mentioned for the sake of a complete
overview and comparison with known approaches according to [KY18]. Methods in this
thesis however are not based on CNNs.
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2.1. Deep Learning

Figure 2.3: Structure of a CNN. [AM17]

2.1.3 Recurrent Neural Networks
Recurrent neural networks, short RNN, are developed to deal with sequential data. The
main applications are speech recognition [MGM15] [FK18] [CJL+18] and time series
analysis. Since sensor measurements for system health management typically consist
of timestamp value pairs, RNNs are a suitable candidate for predictive maintenance.
Generally, RNNs differ from simple neural networks by taking sequential information
from the past into account. In a typical neural network structure, the hidden states
h1, h2, ...hn are independent of each other. In an RNN architecture, the hidden state at
each step depends on its precursor, as shown in Figure 2.4. Therefore, the output ŷt is
influenced not only by the input at the time t, but also at the time t ≠ 1. Mathematically,
these process can be described using the transition function described in the equations
2.1 and 2.2.

ht = f(whxxt + whhht≠1) (2.1)

ŷt = f(wyhht) (2.2)

where f is an activation function. whx is the matrix of weights between the input layer and
a hidden layer and whh is the matrix of weights between a hidden layer at the time steps t
and t ≠ 1. That implies the architecture of a deep neural network with one layer per time
step and can be trained by backpropagation [MBM15]. In deep network architectures
RNNs suffer from the vanishing gradient problem: Typical activation functions have
gradients in the range (0, 1). Backpropagation computes gradients by the chain rule,
which has the effect that the gradient which is used to adapt the weights to minimize the
loss function decreases exponentially. Therefore, with deep architectures the gradient
becomes too small to sufficiently train the front layers. To overcome this problem short
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2. State of the Art

Figure 2.4: Comparison between a simple neural network (a) and the RNN structure (b).
[KY18]

term memory techniques were introduced to RNN networks. The literature distinguishes
two famous methods: the long short-term memory (LSTM) and the gated recurrent units
(GRUs) [HHAL18]. Both replace the activation function in a cell with gated cells. These
cells differ between the LSTMs and GRUs. Memory cells of an LSTM include three gates.
The forget gate regulates if information will be remembered or forgotten, the input gate
regulates the degree of significance of new information and the output gate regulates the
extent to which the value in the cell is used for the calculation for the next module of the
chain within the RNN. Gated cells of the GRU include only two gates. The update gate
functions similar to a combination of the input gate and the forget gate of the LSTM
and the reset gate regulates the extent to which past information should be forgotten,
similar to the output gate of the LSTM. Due to the smaller complexity the GRUs are
more time efficient. Yuan et al. compared the three variants RNN, GRU and LSTM
and evaluated their performance on the turbofan data set [SGSE08], concluding, that
the LSTM is the most suitable method in this setting [YWL16]. Therefore, the favored
approach in chapter 3 is based on LSTMs.

2.2 Data Mining
Machine Learning in terms of training, predicting and evaluating is only part of a bigger
process when it comes to performing data science tasks in an industrial environment
like the scenario that is investigated in the second case study of this thesis. To describe
the surrounding steps, the ’Cross industry standard for data mining’, or CRISP-DM
was introduced [She00]. CRISP-DM is an open standard for data mining. The iterative
process can be seen in Figure 2.5. It groups the data mining task to the following 6
phases:

• Business understanding

10



2.2. Data Mining

Figure 2.5: Standard process for extracting information from data, according to the
’Cross industry standard for data mining’ [She00]

In the first step, the requirements from a business perspective are analyzed. The
following tasks are performed in this step:

– Determine business objectives
– Situation assessment
– Determine data mining goal
– Produce project plan

• Data understanding
In an iterative loop back to the business understanding step, the data is collected
and analyzed. The main view concentrates on whether the data is sufficient to meet
the business goals defined in the first step. The tasks below refine the second step.

– Collect initial data
– Describe data
– Explore data
– Verify data quality

• Data preparation
With satisfactory business and data understanding the data is prepared for further
processing. The tasks below are conducted to, for example, convert the data to a
tabular format, to cope with missing values, to convert data to different types or
to scale numerical values. Especially missing values are an important subject in
thesis. Further details on that topic can be found in the following section.
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2. State of the Art

– Select data
– Clean data
– Construct data
– Integrate data
– Format data

• Modeling
In the modeling step machine learning models are selected and refined. Since
models require certain formats, finding a model and prepare the data appropriately
is an iterative process, involving the following tasks:

– Select modeling technique
– Generate test design
– Build model
– Assess model

• Evaluation
Finally three evaluation tasks are conducted. The technique is evaluated against
the business requirements defined in the first step, the process is reviewed and as
result next steps are discussed. If the results of the technique are not sufficient, the
requirements are reviewed and a new iteration of the steps above is started.

– Evaluate results
– Review process
– Determine next steps

• Deployment
Besides the further refinement of the technique the current version can be deployed
to the production environment. This step is not relevant in this thesis. Data
mining in the second case study is based on theoretical analysis and consultation
of stakeholder.

– Plan deployment
– Plan monitoring and maintenance
– Produce final report
– Review project

The CRISP-DM describes an established sequence of steps for performing qualitative data
mining tasks. Quality is achieved by the following measurements: By first understanding
the business goal and the data the further analysis steps can be executed targeted
purposefully towards the goal. Clear requirements also enable a detailed design of the

12



2.3. Missing Data

evaluation metrics. Iterations between business understanding and data understanding
increase the clarity of the requirements and the initial understanding of the data, as well
as the selective collection and verification of the data. For the exploratory analysis in
the second case study of this thesis, the iterations between data collection and analysis
steps, and the domain experts and stakeholder of the business cases are a mayor part, in
order to be able to develop approaches to meet the goals of the stakeholders.
Also the quality of the data preparation and modeling steps is increased by a feedback
loop, providing the chance to increase the quality in every iteration. After the evaluation,
the model can be deployed but the process starts with step one for the next iteration of
maximizing the quality of the performance with new additional data or improvements of
the steps. As described above, iterative improvement and feedback loops play a mayor
part for the quality of the output with the CRISP-DM process. Hence, the methodology
in this thesis focuses on them as well.

2.3 Missing Data
The third step of the CRISP-DM process is data preparation. Tasks to ensure qual-
ity within the data including data selection, cleansing, constructing, integrating and
formatting, are typically addressed by scripted procedures. One issue during the data
preparation step proposes a challenge in particular in the second case study, and therefore
is examined more in detail.
The term ’missing data’ describes missing values or continuously false values. There
are different reasons for missing data like environmental disturbances, broken sensors,
unclean implementation of the persistence of measurements and many more. Especially
in the second case study of this thesis the main reasons were slow and non synchronous
sampling frequencies between the sensors. For data mining methods, missing values
or false values may give false or insufficient results. Therefore understanding the data
to find the appropriate method for coping with missing values is an important step.
Imputation methods should both find the value closest to the true value and maintain
the data structure [BS16]. Another dimension is the complexity of the used method.
Both, time and effort have to be considered and should not extend the scope of this thesis.

According to [CFB+03], there are different strategies to handle missing data:

1. Ignore the tuples.
This is a time effective method, since no additional calculations are needed. But
useful or critical information may be lost in the process.

2. Fill the value manually.
Manually filling in values is a time consuming task, requires domain knowledge and
may not be feasible with large data sets. Also here is potential of human bias.

3. Use a global constant to fill missing values.
This is a simple method where a label for ’unknown’ is set or an integer value which

13



2. State of the Art

does not occur in the data is used as placeholder for missing values. These constant
values may have an impact on data mining methods since all missing values are
substituted by the same constant and therefore are considered interesting.

4. Use a measure of central tendency to fill the missing values, such as mean or median.
A more advanced method is to first classify the data and then determine the mean
or median for each class.

5. Use the most probable value to fill the missing values.
Values are filled by predicting the most probable value by methods such as Maximum
Likelehood predictions. These methods build models with the existing data. The
models then are used to predict the missing values.

All procedures except the first may bias the data, since the inferred values may be
wrong. That means conversely, that potentially biased data is the trade of to preserve
information. Manually filling values is not a feasible approach for this thesis due to two
reasons. First, the domain experts were only available for short discussions or questions.
Even with extensive availability, the amount of missing data was too much to be filled in
manually in the scope of this thesis. To minimize the complexity in order to focus on the
degradation of the proposed methodology, predictions for missing values are not used in
this thesis. But as stated in the conclusion, using advanced methods for data imputation
wold be an interesting approach for future work. Besides ignoring tuples, this leaves the
measure of central tendency and using a global constant. These three strategies are used
in the second case study as described in section 4.4.2.
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CHAPTER 3
Study of the Reference Data Set

C-MAPSS [SGSE08]

For the first case study, the CRISP-DM methodology is used to develop a predictive
maintenance algorithm for a widely used scientific data set with the goal to examine the
possibilities in a well defined environment. Therefore, the C-MAPSS turbo engine data
set [SGSE08] is chosen. Besides the clearly defined properties of the data set, a difference
to the second case study is that this data set is used in a variety of papers since 2008.
This provides a good entry point to different methodologies, as well as the possibility to
compare methodology and results to various publications, which is not only interesting
for drawing conclusions, but also provides a basis for further research. Further, sparsity
of the data is simulated and the degradation of the results are measured and discussed.

3.1 Methodology
As described in Section 3.2, the groundtruth for the C-MAPSS data set is known and
it is well defined. It contains data from different devices, which can directly be merged
to one data frame without further preprocessing or harmonizing steps. There are 100
run-to-failure scenarios and time series data that leads to the failure. Over all the
CRISP-DM process is followed for this case study. The objective for this case study is
to refine a method which is robust for a noisy data set which will further be used for
the second case study. The machine learning task is defined similar to the assignment in
the PHM08 challenge [SGSE08]. The underlying process used for data mining in this
thesis is CRISP-DM as described in Chapter 2. Since the data set is generated artificially
and well documented for the challenge, the data understanding step can be done by
literature review. The data preparation is reduced to format the data to suit the input
requirements of the used frameworks. Therefore, this case study focuses mainly on the
refinement iterations of data preparation, modeling and evaluation of the model, in order
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3. Study of the Reference Data Set C-MAPSS [SGSE08]

to find the most capable approach and hyperparameters for the given application. In a
last step the degradation with sparse data is evaluated.

After extensive research of state of the art architectures of neural networks, which is
summarized in the Chapter 2, a bidirectional LSTM architecture is used for this thesis.
First the hyperparameters are evaluated for a network with one hidden layer. After
that, experiments including deeper architectures and an autoencoder for noise reduction
are conducted and evaluated with the goal of refining the accuracy. To substantiate
the decisions in the refinement iterations, 4 different metrics are used. The metrics are
described in detail in Section 3.1.1. For the implementation, python version 3.6 is used
with the Keras framework [C+15]. Keras works on top of the TensorFlow framework
[AAB+15], which automatically assumes the architecture of a network given a variety of
hyperparameters.

3.1.1 Evaluation metrics
To evaluate different views of the results, four different metrics are used for the hyperpa-
rameter evaluation as well as for the evaluation of the proposed method.

Mean Absolute Error

The mean absolute error (MAE) measures the distance between two continuous variables,
as can be seen in equation 3.1. For the evaluation of the machine learning methods
used in this thesis, the distance of the predicted remaining useful life X̂ and the actual
remaining useful life X is described. n is the number of samples.

MAE = 1
n

nÿ
i=1

|X̂i ≠ Xi| (3.1)

Mean Squared Error

Another quality criterion to evaluate a regression estimator is the mean squared error
(MSE). It measures how much a point estimator scatters around the value that is
estimated. Compared to the MAE, it emphasizes large aberrations of the estimated value
compared to the ground truth by squaring their difference. If a vector of n predictions is
generated from a sample of n data points, and X is the vector of observed values of the
variable being predicted as X̂, then the MSE of the predictor is computed as can be seen
in equation 3.2.

MSE = 1
n

nÿ
i=1

(X̂i ≠ Xi)2 (3.2)
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3.1. Methodology

Coefficient of Determination

The coefficient of determination, also called R2, measures the proportion of the variance in
the predicted variable from the independent variable(s). Whereas correlation explains the
strength of the relationship between an independent and dependent variable, R-squared
explains to what extent the variance of one variable explains the variance of the second
variable. It is therefore a measurement for how well the known outcome is reproduced by
a model, based on the total proportion of the variation of predictions, as can be seen in
equation 3.3. Given a data set of n values, with a known ground truth Xi, each associated
with a predicted value X̂ and X̃ is the mean of the observed data, the coefficient of
determination is determined by as follows:

R2 = 1 ≠ SSres

SStot
(3.3)

where SSres is the sum of sqares of residuals, given by

SSres =
ÿ

i

(Xi ≠ X̂)2 (3.4)

and SStot is the total sum of squares, given by

SStot = (Xi ≠ X̃)2 (3.5)

Score

Saxena et al. [SGSE08] propose a score for the evaluation of the remaining useful life
reflecting on the key aspect for machine health prognostics being the avoidance of failure.
Therefore, for an engine degradation scenario an early prediction is preferred over late
predictions. Thus, late predictions are penalized more heavily than early predictions, as
can be seen in equation 3.6. Given

S is the computed score,
n is the number of predictions,
d is the difference (estimated RUL - true RUL),
a1 = 10 and
a2 = 13

the score is determined as follows:

s =

Y][
qn

i=1 e
≠( d

a1
) ≠ 1 for d < 0qn

i=1 e
≠( d

a2
) ≠ 1 for d Ø 0

(3.6)
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3.2 Description of the Data Set

The C-MAPSS data set is a simulated run to failure data set provided by NASA. It is
created by the simulation of a commercial aircraft engine of the 90, 000 lb thrust class. For
the purpose of failure modeling the degradation of the high pressure compressor (HPC)
is modeled. This component is one of a set of regulators and limiters of the simulation.
It prevents the static pressure from going too low. A comprehensive logic structure
integrates the components in a manner similar to that used in real engine controllers.
Additionally, an initial degradation d > 0 is added, allowing the data generation process
to start at an arbitrary point in the wear space. To consider various noise sources like
manufacturing and assembly variations, process noise, measurement noise and others, a
mixture of distributions is combined to add non-trivial noise in a realistic manner. The
data is provided in csv format. It contains the following entries:

• Unit number (ascending identifier for each of the engines)

• Ascending cycles for time measurement per engine

• 3 operational settings

• 21 sensor measurements

The purpose of the settings and measurements is not specified. The set is already split
into a training set and a test set. The training set consist of 20631 rows of data, which
contain 100 devices. For each device the operational settings and sensor measurements
are available until the engine fails. Therefore the remaining useful life is known implicitly
by backwards counting of the the cycles. The lifespans of the engines vary between 128
and 362 cycles. Table 3.1 shows some basic statistics of the data.

Figure 3.1 shows boxplots of the C-MAPSS data set. Due to the degradation curve data
points outside the the 0, 25 and 0, 75 quartiles exist.

The data set is known to be run to failure with a provided ground truth. The degradation
can be seen in the example measurements for the first unit within the training data
set as shown in Figure 3.2. The concealment of the interpretation or meaning of the
measurements or operational settings is intentional and part of the challenge. Therefore,
there are no further analysis steps conducted towards the interpretation of the data. Also,
a reverse engineering of the groundtruth as described in the second case study is not
necessary. For the evaluation set, the groundtruth is directly provided as a file containing
the remaining useful life after the last provided measurement. The training set is a run
to failure set. Therefore, to receive the groundtruth for each cycle, the difference to
mlast + 1 has to be counted, where mlast is the last measurement before the failure.
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3.3. Base Line

attribute min max mean median standard deviation
op-s1 -8,70E-03 8,70E-03 -8,87E-06 0,00E+00 2,19E-03
op-s2 -6,00E-04 6,00E-04 2,35E-06 0,00E+00 2,93E-04
op-s3 1,00E+02 1,00E+02 1,00E+02 1,00E+02 0,00E+00
n 1 5,19E+02 5,19E+02 5,19E+02 5,19E+02 6,54E-11
n 2 6,41E+02 6,45E+02 6,43E+02 6,43E+02 5,00E-01
n 3 1,57E+03 1,62E+03 1,59E+03 1,59E+03 6,13E+00
n 4 1,38E+03 1,44E+03 1,41E+03 1,41E+03 9,00E+00
n 5 1,46E+01 1,46E+01 1,46E+01 1,46E+01 3,39E-12
n 6 2,16E+01 2,16E+01 2,16E+01 2,16E+01 1,39E-03
n 7 5,50E+02 5,56E+02 5,53E+02 5,53E+02 8,85E-01
n 8 2,39E+03 2,39E+03 2,39E+03 2,39E+03 7,10E-02
n 9 9,02E+03 9,24E+03 9,07E+03 9,06E+03 2,21E+01
n 10 1,30E+00 1,30E+00 1,30E+00 1,30E+00 4,66E-13
n 11 4,69E+01 4,85E+01 4,75E+01 4,75E+01 2,67E-01
n 12 5,19E+02 5,23E+02 5,21E+02 5,21E+02 7,38E-01
n 13 2,39E+03 2,39E+03 2,39E+03 2,39E+03 7,19E-02
n 14 8,10E+03 8,29E+03 8,14E+03 8,14E+03 1,91E+01
n 15 8,32E+04 8,58E+04 8,44E+04 8,44E+04 3,75E+02
n 16 3,00E-02 3,00E-02 3,00E-02 3,00E-02 1,56E-14
n 17 3,88E+02 4,00E+02 3,93E+02 3,93E+02 1,55E+00
n 18 2,39E+03 2,39E+03 2,39E+03 2,39E+03 0,00E+00
n 19 1,00E+02 1,00E+02 1,00E+02 1,00E+02 0,00E+00
n 20 3,81E+01 3,94E+01 3,88E+01 3,88E+01 1,81E-01
n 21 2,29E+05 2,36E+05 2,33E+05 2,33E+05 1,08E+03

Table 3.1: Statistics of the C-MAPSS data set. The first three rows are operational
settings, followed by 21 rows of sensor measurements.

3.3 Base Line

As stated at the beginning of this chapter, the results are compared with state of the art
methods which published results on the C-MAPSS data set in table 3.26. For further
comparison with a well known method that is not based on neural networks, a base line is
created by training a random forest regression algorithm. This algorithm is described as a
basic technique with high performance by Khan [KY18]. In this thesis, the random forest
is chosen as a base line algorithm due to its fast performance, deterministic characteristic
and because it can be called and evaluated easily by the scikit-learn framework [PVG+11].
To approximate a maximum for the method, five hyperparameters provided by the
framework are evaluated in a grid search. Table 3.2 shows the range in which the
evaluation was done and the parameters that enabled the best performance. The scores
reached by the algorithm after refining the hyperparameters can be seen in Table 3.3.
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3. Study of the Reference Data Set C-MAPSS [SGSE08]

Figure 3.1: Boxplots of the C-MAPSS data set.

Evaluated hyperparameter evaluated values chosen parameter
for the parameter

The Maximum depth of a tree 5, 20, 50, 80, 110, 150 150
The number of features to consider

when looking for the best split 2, 12, 24 2

The minimum number of samples
required to be at a leaf node 1, 3, 5, 7 1

The minimum number of samples
required to split an internal node 10, 24 10

The number of trees in the forest 100, 200, 300, 1000 300

Table 3.2: Grid search of the hyperparameters for the random forest regression algorithm
and the parameters with the best result.

3.4 Data preparation for Machine Learning
To prepare the training data for machine learning, the unit number and the cycles are
removed. In the next step, the data is rescaled to a range between 0 and 1 with a min-
max normalization, to allow the gradient descent to converge fast [RL16], [SOVP12].
Since the used framework requires input data to be scaled between 0 and 1, the min-max
normalization is chosen over the z-score normalization.
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3.4. Data preparation for Machine Learning

(a) Sensor 11 (b) Sensor 12

(c) Sensor 13 (d) Sensor 14

Figure 3.2: Selected sensor data of C-MAPSS data for device 1. The degradation of the
device can be seen in the curves.

MAE MSE R2 Score
23,73 995,01 0,42 22152,25

Table 3.3: Performance of the random forest prediction algorithm after the hyperparameter
evaluation. This results are produced by using the parameters of table 3.2

The data set is split into a train set and a test set. Furthermore, the training data is
split to a train set and an evaluation set by an 80:20 ratio, to evaluate the learning
progress and detect overfitting while applying the training. The structure of the data is
adapted to a format that is accepted by the Keras framework. Therefore, a window of
the size ntimesteps is convoluted over the rows of measurements, which contain 24 values
each. The content of the window is concatenated to vectors of the length 24úntimesteps,
creating vectors which contain the features of a time span of ntimesteps. The label for
each vector is the remaining useful life until the known breakdown of the last set of 24
measurements in the vector, which is the nth timestep. The generation of the feature
vector is illustrated in Figure 3.3.

After the above steps, the training set, the evaluation set and the test set are prepared
properly as input data for the LSTM provided by the Keras framework.
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Figure 3.3: Generation of a feature vector by sliding a window of the size ntimesteps over
the rows of measurement.

3.5 Hyperparameter Evaluation
To find a performance optimum for the LSTM with one hidden layer, the hyperparameters
of the network are optimized. The evaluation is not done by an over all grid search
because the duration of the experiment is not acceptable for this thesis.
To give an example: The first parameter that is evaluated are the number of rows within
the data, which are concatenated to generate one feature vector as described in Figure 3.4.
To preserve the terminology used by the creators of the data set, the number of rows used
to concatenate the feature vector is called cycles. Details of the experiment are described
in Section 3.5.1. The 20 executed rounds of training the data set and evaluation had
a duration of approximately 19 hours on an Intel(R) Core(TM) i7-7500U CPU with
2, 7GHz. To enhance the efficiency, a subset of parameters which is assumed to have a
large impact is evaluated independently or in pairs. To find an optimum, the metrics
described in Section 3.1.1 are used to evaluate the predictions. Since 4 metrics are used
(MAE, MSE, R2 and score) a ranking is created by assigning penalties to the results as
follows: The best performing parameters are penalized with 1 point. For the following
rankings, the penalty is increased by 1. That means the nth place is penalized with n
points if there are no equal results. The final ranking is the sum of the penalty points of
the different metrics.

The following parameters are evaluated:

• Number of cycles used for a feature vector

• Overlapping of the time while creating input data

• Number of epochs and the batch size
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3.5. Hyperparameter Evaluation

• Optimization algorithm

• Loss function

• Number of neurons in the hidden layer

3.5.1 Number of Cycles Used for a Feature Vector
Keras accepts the input for a LSTM in the format [samples, timesteps, features]. The
parameter samples is the number of different devices, in this case 100 including trainings
set and test set. The features value describes the number of measurements or input
variables at one data point. To do supervised machine learning with time series data, n
rows within the data, here called cycles, are concatenated to one input vector as shown in
Fgure 3.3. The parameter timesteps describes the number of cycles that are concatenated.
The values for samples and features are predefined by the data set. Therefore, the number
of cycles used to generate one vector of features is evaluated as follows. The input is
reshaped to a length of 5 to 100 cycles, increasing the length by steps of 5. The remaining
parameters which have not been evaluated at the time of the experiment are assumed by
an educated best guess as shown in Table 3.4

Parameter value
Overlapping of the time while creating input data no overlapping
Number of epochs 50
Batch size 72
Optimization algorithm adam
Loss function mae
Number of neurons in the hidden layer 50

Table 3.4: Best guesses of the remaining parameters while doing the evaluation for the
number of cycles used for the feature vectors.

The results of the evaluation can be seen In Table 3.5. The best MAE of 12, 04 is reached
with 55 cycles. With 65 cycles the best MSE (274, 94) and the best R2 (0, 85) is reached,
while the best score of 390, 33 is accomplished with 100 cycles in one batch. After the
final ranking, a number of 65 cycles is assumed best fitting for this scenario.

3.5.2 Overlapping of the Time Windows while Creating Input Data
While creating feature vectors as described in Section 3.5.1, the vectors can either be
generated cycle by cycle, or by a step of k, while k Æ nc used for one feature vector,
where nc is the number of cycles used as discussed above. If k = nc, the vectors do not
overlap. Otherwise, nc ≠ k data points overlap, as illustrated in Figure 3.4

The overlapping of 0 to 40 in steps of 10 is evaluated in Table 3.7. The other parameters
are again assigned values according to an educated best guess. The values are listed in
Table 3.6
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Number Sum of Custom MAE MSE R2 Penalty Penalty Penalty Penalty
cycles penalties score score MAE MSE R2

65 13 562,85 12,92 274,94 0,85 9 2 1 1
55 20 950,52 12,04 287,09 0,84 12 1 5 2
100 22 390,33 12,95 284,57 0,76 1 3 3 15
50 23 576,33 13,03 287,71 0,84 10 4 6 3
80 27 540,69 13,11 297,90 0,81 7 5 8 7
85 29 450,45 14,01 277,19 0,77 3 10 2 14
90 29 450,56 13,30 285,74 0,77 4 8 4 13
60 30 539,12 13,28 299,52 0,80 6 7 9 8
40 33 842,81 13,26 319,95 0,83 11 6 12 4
70 36 446,23 14,12 301,83 0,78 2 12 10 12
95 39 462,03 14,12 288,21 0,75 5 11 7 16
30 40 1685,42 13,34 332,97 0,83 13 9 13 5
75 44 548,05 14,55 318,85 0,78 8 14 11 11
35 47 3048,34 14,43 399,95 0,82 14 13 14 6
25 54 3313,01 15,36 417,96 0,79 15 15 15 9
45 59 5927,98 15,45 447,25 0,79 17 16 16 10
20 67 3520,36 17,53 529,06 0,73 16 17 17 17
15 72 7527,74 20,14 728,52 0,70 18 18 18 18
10 76 12632,93 23,72 941,29 0,61 19 19 19 19
5 80 24995,90 26,54 1158,70 0,57 20 20 20 20

Table 3.5: Metrics and the rankings for the evaluation of the number of cycles, which are
packed to one vector to create the input for the LSTM.

Parameter value
Number of cycles used for a feature vector 65
Number of epochs 50
Batch size 72
Optimization algorithm adam
Loss function mae
Number of neurons in the hidden layer 50

Table 3.6: Best guesses of the remaining parameters while doing the evaluation for the
number of cycles that are overlapping.

An overlapping of 30 cycles achieves the best results according to the MAE, MSE and
the R2 metric and therefore is also ranked best in total.

3.5.3 Number of Epochs and the Batch Size

The number of epochs for the training and the batch size are evaluated as pairs in a grid
search. The other hyperparameters are listed In Table 3.8. Table 3.9 shows the top 10
rankings with the values of the different used metrics.

It can be seen that the best ranking is achieved with a batch size of 60 and a training
over 40 epochs.
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Figure 3.4: Feature generation by overlapping windows.

Over- Sum of Custom MAE MSE R2 Penalty Penalty Penalty Penalty
lapping penalty score score MAE MSE R2

30 5 650,16 12,63 288,50 0,85 2 1 1 1
10 11 541,89 13,51 333,00 0,75 1 2 3 5
40 12 893,09 13,94 326,09 0,82 4 4 2 2
0 14 661,14 13,64 338,96 0,80 3 3 4 4
20 18 1000,94 14,81 362,47 0,81 5 5 5 3

Table 3.7: Metrics and the rankings for the evaluation of the overlapping.

Parameter value
Number of cycles used for a feature vector 65
Optimization algorithm adam
Loss function mae
Number of neurons in the hidden layer 50

Table 3.8: Best guesses of the remaining parameters while doing the grid search evaluation
for the number of epochs and the batch size.

3.5.4 Optimization Algorithm

For optimization, the framework provides 7 possibilities. The different optimization
algorithms are evaluated ranked by the metrics discussed above. Table 3.11 shows the
evaluation sorted by the best overall ranking ascending. It can be seen that the over
all best performance is achieved by the adamax optimization algorithm. The other
hyperparameters are again listed In Table 3.10.
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Number of Batch Sum of Penalty Penalty Penalty Penalty
epochs size penalty score MAE MSE R2

40 60 8 1 1 1 5
100 60 40 5 2 4 29
70 100 49 15 10 3 21
40 30 51 16 16 10 9
50 60 55 11 22 8 14
70 80 58 10 19 11 18
110 100 71 65 3 2 1
30 50 80 4 21 7 48
30 30 85 3 14 5 63
80 40 92 19 6 27 40

Table 3.9: Metrics and the rankings for the grid search of the number of epochs and the
batch size.

Parameter value
Number of cycles used for a feature vector 65
Overlapping of the time while creating input data 30
Number of epochs 40
Batch size 60
Loss function mae
Number of neurons in the hidden layer 50

Table 3.10: Best guesses of the remaining parameters while doing the evaluation for the
optimization algorithm.

Optimi- Sum of Custom MAE MSE R2 Penalty Penalty Penalty Penalty
zation penalty score score MAE MSE R2

algorithm
adamax 5 428,21 12,97 286,12 0,80 1 1 1 2
nadam 8 914,79 14,03 352,97 0,83 3 2 2 1
adadelta 14 604,19 14,82 361,38 0,72 2 3 3 6
adagrad 16 1604,63 15,12 401,85 0,79 5 4 4 3
rmsprop 19 1315,93 16,21 432,94 0,77 4 5 5 5
adam 22 1853,19 16,68 474,17 0,77 6 6 6 4
sgd 28 183188,91 38,99 2509,41 -326,87 7 7 7 7

Table 3.11: Metrics and the rankings for the evaluation of the optimization algorithm.

3.5.5 Loss Function

Table 3.13 shows the evaluation of the loss functions. It can be seen that the mean
absolute error is ranked first by every used metric, and therefore is assumed to be the
best loss function. The hyperparameters used for this evaluation run can be seen In
Table 3.12.
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Parameter value
Number of cycles used for a feature vector 65
Overlapping of the time while creating input data 30
Number of epochs 40
Batch size 60
Optimization algorithm adamax
Number of neurons in the hidden layer 50

Table 3.12: Best guesses of the remaining parameters while doing the evaluation for the
loss function.

Loss Sum of Custom MAE MSE R2 Penalty Penalty Penalty Penalty
function penalty score score MAE MSE R2

mean_absolute
_error 4 7,10E+02 1,39E+01 3,29E+02 7,83E-01 1 1 1 1

logcosh 8 8,41E+02 1,50E+01 3,58E+02 7,60E-01 2 2 2 2
mean_squared

_logarithmic_error 12 1,35E+03 1,68E+01 4,40E+02 7,52E-01 3 3 3 3

mean_squared_error 16 4,55E+03 2,35E+01 7,87E+02 5,78E-01 4 4 4 4
mean_absolute

_percentage_error 20 5,13E+05 7,44E+01 7,26E+03 -5,53E+08 5 5 5 5

categorical_hinge 24 5,16E+05 7,45E+01 7,27E+03 -3,69E+09 6 6 6 6
hinge 32 2,94E+16 2,86E+02 8,38E+04 -1,22E+11 8 8 8 8

squared_hinge 28 2,94E+16 2,86E+02 8,38E+04 -2,22E+11 7 7 7 7

Table 3.13: Metrics and the rankings for the evaluation of the loss function.

3.5.6 Number of Neurons in the Hidden Layer

For the evaluation of the number of neurons used in the hidden layer the the parameters
are initialized as listed In Table 3.14. The number of neurons is evaluated between 5
and 160. The metrics and ranking can be seen In Table 3.15. The best performance is
achieved with 155 neurons.

Parameter value
Overlapping of the time while creating input data 30
Number of cycles used for a feature vector 65
Number of epochs 40
Batch size 60
Optimization algorithm adamax
Loss function mae

Table 3.14: Best guesses of the remaining parameters while doing the evaluation for the
number of neurons used in the hidden layer.
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Number Sum of Custom MAE MSE R2 Penalty Penalty Penalty Penalty
neurons penalty score score MAE MSE R2

155 6 439,98 11,44 235,59 0,85 3 1 1 1
65 10 397,57 11,86 260,35 0,83 1 2 4 3
160 11 408,82 12,49 256,75 0,83 2 3 2 4
145 12 442,96 13,13 257,28 0,82 4 4 3 5
125 22 462,93 13,53 272,31 0,82 5 8 5 8
35 22 599,23 13,26 295,38 0,81 6 5 6 9
85 26 723,07 13,32 303,57 0,83 13 6 8 2
55 30 604,03 13,61 302,39 0,80 8 9 7 10
75 35 700,42 14,00 305,11 0,82 12 12 9 6
15 36 613,78 13,51 317,04 0,78 9 7 10 14
25 39 602,88 13,82 334,06 0,77 7 10 11 15
135 45 670,91 14,61 357,01 0,80 11 14 12 12
115 47 1274,09 13,95 379,17 0,82 17 11 16 7
105 49 664,31 14,45 369,08 0,77 10 13 14 16
45 52 998,47 15,24 372,54 0,80 14 16 15 11
95 52 1018,67 14,91 367,81 0,80 15 15 13 13
5 63 1115,00 20,19 567,95 0,40 16 17 17 17

Table 3.15: Metrics and rankings for the evaluation of the number of neurons used in the
hidden layer.

3.6 Experimental Results
After the optimization of the hyperparameters for the LSTM, the network is evaluated
and the architecture is extended step by step on the basis of state of the art literature
described in Section 2. The evaluation of the hyperparameters as well as the evaluation
of the experiments is based on 4 different metrics as described in the Section 3.1.1.

3.6.1 Experimental Expansion of the Architecture

After evaluating a set of hyperparameters, the assumed optimum is summarized in
Table 3.16. Using this set of hyperparameters, the MAE is reduced by 6, 59 compared to
the baseline set by the random forest regression. The MSE is reduced by 517, 74 and the
score is reduced by 19585, 92. The R2 increased by 0, 35. The results of the champions of
the different experiments are summarized in Table 3.20.

Stacked LSTM

As stated in Section 2, deep learning approaches were able to outperform LSTMs with
one hidden layer. Therefore, an evaluation of the optimized layer stacked to up to 10
times is conducted. The best performance is reached by 8 stacked layers. The stacking
reduces the score to 566, 92, the MAE by 0, 32 and the MSE by 4, 7, as can be seen in
Table 3.20.
Zheng et al. propose a architecture with 4 layers of LSTMs [ZRFG17]. The proposed
size of the layers is 32, 64, 16, 16 neurons. The comparison to the layers of 155 dimensions
can be seen in Table 3.17. This Table also shows that the by Zheng et al. proposed
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Parameter value
Overlapping of the time while creating input data 30
Number of cycles used for a feature vector 65
Number of epochs 40
Batch size 60
Optimization algorithm adamax
Loss function mean_absolute_error
Number of neurons in the hidden layer 155

Table 3.16: Summary of the hyperparameters, which are assumed to build an optimum
for the scenario evaluated in Section 3.5.

architecture performs slightly better than 4 hidden layers with 155 neurons. But the best
performance is achieved by 8 hidden layers with 155 dimensions each.

Description score MAE MSE R2

8 hidden layers of the size 155 566,92 12,12 269,10 0,85
4 hidden layers of the size 155 1161,83 13,64 337,45 0,83
4 hidden layers as proposed in [ZRFG17] 989,78 13,20 316,56 0,83

Table 3.17: Comparison of the performance of stacked LSTM layers.

Autoencoder for Noise Reduction

Creators of the C-MAPSS data set state that the data set is enriched with various noise
distriputions as described in Section 3.2. As stated in Section 2, the use of autoencoders is
an effective method to overcome inaccurate predictions caused by noisy data. Therefore,
different architectures of autencoders for noise reduction are evaluated for the data set.

In a first step, an autoencoder with one hidden layer of different dimensions is evaluated.
The data contains 24 input dimensions. The output is reduced by the encoder to 3, 6, 12
and 18 dimensions. The performance is evaluated after 300 epochs of training, by
evaluating the predictions of the random forest regression algorithm, which is also used
to set the baseline, as described in Section 3.3. In this experiment, the increasing of
dimensions implies better performance, as can be seen in Table 3.18.
Lu et al. propose a deep autoencoder for noise reduction in the context of machine health
prediction [LWQM17]. They use 4 hidden layers, where the number of neurons is divided
by two for each subsequent layer. For this approach a slightly modified version of the
autoencoder is used, since the performance with the proposed architecture with 4 hidden
layers with the dimensions 24, 12, 6, 3 performs badly, as can be seen in Table 3.18. An
architecture with 4 hidden layers with the dimensions 24, 18, 12, 6 outperforms the single
hidden layer architecture with 18 dimensions in the MAE and the R2 metric, but perform
worse by the score and the MSE.
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Output dimensions score MAE MSE R2

3 3083218,90 39,58 2597,21 -0,50
6 61874,74 28,37 1376,42 0,20
12 27650,15 28,85 1369,09 0,21
18 24131,15 27,08 1250,71 0,28
(24, 12, 6, 3) 822165,90 37,30 2293,40 -0,33
(24, 18, 12, 8) 31153,20 24,65 1109,51 0,36
Baseline (no noise reduction) 22152,25 23,73 995,01 0,42

Table 3.18: Comparison of different architectures of autoencoders with random forrest
prediction.

The autoencoder with 4 hidden layers of the dimensions 24, 18, 12, 8 used as noise reduction
for the input of a LSTM with 1 hidden layer and optimized parameters, produces the
following results:

Output dimensions score MAE MSE R2

(24, 18, 12, 8) 34088,69 24,50 1086,04 0,37

Table 3.19: Output of the 4 dimensional autoencoder used as noise reduction for the
LSTM with 1 hidden layer.

Therefore, the performance of all 4 metrics is lower than without noise reduction. Using
the output of the autoencoder as input for the deep LSTM consisting of 8 hidden layers,
the performance improves, but is still outperformed by the same LSTM without noise
reduction, as can be seen in Table 3.20. When it comes to the combination of the denois-
ing network and the regression network, the overall best performance is achieved by the
LSTM with 8 stacked hidden layers, which receives an 18 dimensional input from an au-
toencoder with only 1 hidden layer. This architecture produces predictions with a score of
468, 73, a MAE of 11, 88, a MSE of 257, 98 and R2 of 0, 84, as can also be seen in table 3.20.

By reducing the dimensions to 16, the results degrade rapidely. The score increases to
1170, the MAE and MSE to 20, 03 and 528, 25. The R2 reaches only 0, 42.

3.6.2 Degradation with sparse data
In order to measure the degradation of the method with sparse data, the proposed
architecture is evaluated with

• different sparse numbers of features

• different sparse numbers of devices
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Description Score MAE MSE R2

Baseline: Random Forest 22152,25 23,73 995,01 0,42
LSTM with 1 hidden layer 672,54 12,42 273,87 0,85
Stacked LSTM: 8 hidden layers 566,92 12,12 269,10 0,85
Stacked LSTM: 4 layers as proposed in [ZRFG17] 989,78 13,20 316,56 0,83
Stacked LSTM with 1 layer autoencoder of 18 dimensions 468,73 11,88 257,98 0,84
LSTM with deep autoencoder 34088,69 24,50 1086,04 0,37
Stacked LSTM with deep autoencoder 290389,70 17,59 681,30 0,73

Table 3.20: Overview of the champions of the different network architectures. It is
ordered by the complexity of the layers from simple to most complex.

which are randomly selected.

Table 3.21 shows the results of the stacked LSTM with falling number of features available
for training and prediction. The experiments are conducted with 100 devices and the
features are picked randomly. Noticeable is a spike when using 6 features.

Number of features Score MAE MSE R2

24 features 468,73 11,88 257,98 0,84
18 features 4096,41 20,83 731,10 0,04
12 features 206035,63 50,23 3106,17 -1,47
6 features 497967,67 58,537 4017,53 -4,23
3 features 156674,88 38,87 2448,68 -28,32

Table 3.21: Degradation of the results of the stacked LSTM with 1 layer autoencoder of
18 dimensions with reduced number of features for training.

Table 3.22 shows the results of the experiments with reduced number of devices. The
experiments are conducted in a range between 100 to 1 devices. The selection of the
devices is done randomly. The score is the sum of the penalties of the prediction for
a device. With decreasing number of devices the score is not comparable as such. To
make it comparable, the aliquot score for 100 devices is determined by multiplying it
with the factor x as follows: x = 100

n , where n is the number of devices. The degradation
of the results can clearly be seen in each of the metrics. Also the combination of 1 device
and 10 features is evaluated, since those are the numbers of devices and features for the
second case study.

3.7 Discussion and Potential for Future Work
Since the random forest regression is described as basic technique with high performance
by Khan [KY18], it is used as baseline against which the proposed method is evaluated.
After evaluating five hyperparameters as described in Section 3.3, the random forest
reaches a MAE of 23, 73, a MSE of 995, 01, a R2 of 0, 42 and a Score of 22152, 25. The

31



3. Study of the Reference Data Set C-MAPSS [SGSE08]

Number of devices Score Score aliquot to MAE MSE R2

100 devices
100 devices 468,73 468,73 11,88 257,98 0,84
75 devices 610,43 813,91 13,66 288,30 0,82
50 devices 920,72 1841,44 16,15 466,39 0,69
25 devices 643,18 2572,72 14,94 371,73 0,67
12 devices 2840,78 23673,17 25,92 888,79 -0,26
6 devices 134092,16 2234869,33 25,92 3223,97 -1,02
1 device 870552,64 87055264,00 44,61 3665,01 -25,35
1 device and 10 features 2325376,78 232537678,20 55,78 4681,59 -20,43

Table 3.22: Degradation of the results of the stacked LSTM with 1 layer autoencoder of
18 dimensions with reduced number of devices for training.

overall performance comparison is shown in Figure 3.5. Using a one layered LSTM with
a combination of default parameters and parameters estimated by educated best guess,
which can be seen in Table 3.23, the results improve already: The score is reduced by
529, 83, the MAE is reduced by 103, 9, the MSE drop by 662, 04 and the R2 is increased
by 0, 41, as can be seen in Figure 3.5. These results emphasize the capabilities of the
LSTM for the use case of fault detection by using time series data of machine sensors.

Parameter value
Overlapping of the time while creating input data no overlapping
Number of epochs 50
Batch size 72
Optimization algorithm adam
Loss function mae
Number of neurons in the hidden layer 50
Number of cycles for the feature vector 30

Table 3.23: Parameters used for the first trial set by an educated best guess, as starting
point for the parameter evaluation.

The improvement gets more explicit after the hyperparameter evaluation as shown in
Figure 3.5. By using the optimized hyperparameters which can be seen in Table 3.16, the
score can be reduced to 672, which outperforms the LSTM before the optimization step by
1013, 42 and the random forest by 1543, 25. The MAE is reduced by 9, 2 compared to the
not optimized LSTM and by 113, 1 compared to the random forest. Further improvement
is provoked by introducing more LSTM layers. By stacking 8 layers of LSTMs with
the same dimensions and hyperparameters, the score can be reduced by 105, 62. The
MAE, MSE and R2 only improve slightly by 0, 3, 4, 77 and 0, 02. A comparison between
predicted remaining useful life (RUL) and the true RUL can be seen in Figure 3.7 and
Figure 3.8 before and after noise reduction by an autoencoder with 1 layer with 18
dimensions. The Figures show that the accuracy decreases with higher RUL. This implies
that the degradation of the measurements is detected and interpreted better, the closer a
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Figure 3.5: Performance of the LSTM with one hidden layer before- and after the
hyperparameter evaluation. The R2 and the MAE is scaled by a factor of 1000 and 10,
respectively for better visibility of the graph.

failure comes. In figure 3.6, it can be seen that the score gets especially high for remaining
cycles bigger than 50.
The Figures also show, that the predictions tend to predict the failures later than they
occur. The penalty while determining the score is higher if the predicted RUL is higher
than the true RUL. Therefore, those predictions especially influence the score negatively.
Looking at the scores of the predictions per device, it is noticeable that the 10 predictions
with the highest score represent 69, 49% of the total score. The worst 5 scores still
represent 56, 9% of the total score, as can be seen in Table 3.24. The table again shows
that out of those 10 predictions only 3 predict the failure before it happens.

Device Prediced RUL True RUl Score
67 121,37 77 83,54
22 154,96 111 80,13
93 32,09 85 57,57
14 147,60 107 56,98
79 101,16 63 44,44
9 141,91 111 20,99
78 136,02 107 17,21
15 110,08 83 13,99
95 97,18 128 9,7
86 112,43 89 9,41

Table 3.24: 10 predictions with the highest score of the stacked LSTM before noise
reduction.

On the basis of the work of Lu et al. [LWQM17], autoencoders are introduced for denois-
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Figure 3.6: Score of the stacked LSTM after noise reduction for the remaining cycles of
the devices.

ing and feature selection before conducting the regression step. Originally, 4 decoding
layers are proposed, where every layer reduces the previous by half. The proposed
setup increases the score by 422, 86. Also the MAE, MSE and R2 degrade. The best
performance is reached by a one layered autoencoder with 18 dimensions. The idea
of denoising autoencoders is to reduce noise by filtering data, which consists of high
frequencies by reducing the dimensionality through layers low dimensionality. Underlying
is the assumption that noise consists of high frequency data. The layer with the lowest
dimensionality is the so called bottle neck. The trade off thereby is that useful informa-
tion gets lost too. Looking at the random forest regression, the noise reduction with
autoencoders are not able to improve the results, as can be seen In Table 3.18. Using
the stacked LSTM, the results can be improved using an autoencoder with 18 output
dimensions as stated above. Therefore, the experiments suggest that a small bottle neck
of 3, 6 and 12 dimensions dismisses too much useful information.
For future work, there are different approaches for denoising which can be investigated.
One would be to not only filter high frequency data through the bottle neck of an
autoencoder, but to emphasize the robustness against noise by distortion of the input
data at the training phase of the autoencoder. This could for example be done by a small
random offset of the data or some random distribution functions.
The comparison between predicted RUL and true RUL can be seen in Figure 3.7. The
scatter plot is tilted even more to the right, which implies that the predicted RUL tend to
lie after the true failure. But according to the score that can be compensated by higher
accuracy. The by 0, 24 smaller MAE proves that assumption. Table 3.25 shows that out
of the 10 predictions with the highest score, only one predicts the RUL before the true
failure. The higher score penalty for late predictions was introduced by [SGSE08] to
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Figure 3.7: Predicted RUL on x axis versus the true RUL on the y achsis of the stacked
LSTM before and after noise reduction by an autoencoder with 1 hidden layer of 18
dimensions. The green line symbolizes the most accurate prediction.

reconstruct the business need for of predictions to be rather early than too late in order
for technicians to be able to react in time. For the use case of predictive maintenance
that outcome means one possible improvement of this method is to optimize the model
such that the predictions occur rather earlier than too late. An easy way is a linear
approach. The prediction can be shifted to an earlier cycle in a way such as prediction p
is p ≠ i, where i is optimized by minimizing the score while training.

Figure 3.8: Delta between the true RUL and the predicted RUL of the stacked LSTM
plotted along the axis of the true RUL before and after noise reduction by an autoencoder
with 1 hidden layer of 18 dimensions.
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Device Prediced RUL True RUl Score
93 32,03 85 57,82
79 103,33 63 55,44
21 95,00 57 43,70
27 100,84 66 31,59
67 111,30 77 29,88
15 112,77 83 18,63
50 108,29 79 17,71
72 77,86 50 15,02
16 108,69 84 10,80
98 82,90 59 9,91

Table 3.25: Worst 10 predictions of the stacked LSTM after noise reduction by an
autoencoder with 1 hidden layer of 18 dimensions.

In comparison to other methods, the proposed method shows comparable results. Table
3.26 shows the score, MSE and MAE of methods, which are evaluated best on the test
date set of the PHM’08 Challenge, published by Ramasso et al. [RS14]. Additionally
chosen methods published 2020 are compared below. With a score of 468, 73, the proposed
method would rank first in this table, the MSE of 257, 98 would be third and the MAE
of 11, 88 reach the fourth place.

Rank of Ramasso et al. [RS14] Score MSE MAE
1 512,12 152,71 8,67
2 740,31 224,79 10,77
3 873,36 265,62 11,47
4 1218,43 269,68 11,87
5 1218,76 331,30 13,81
6 1232,27 334,52 14,14
7 1568,98 394,46 15,37
8 1645,77 330,02 13,47
9 1816,60 359,97 13,82
10 1839,06 377,01 14,31
Method Score MSE MAE
DOS-ELM [BMK+20] 189,77 unknown unknown
Multi-scale deep convolutional neural network [LZZZ20] 196,22 unknown unknown
Proposed method 468,73 257,98 11,88

Table 3.26: Selection of metrics for the algorithms ranked best on the PHM’08 Challenge
data based on the test set published by Ramasso et al. [RS14] and other publications.

To simulate a scenario that is comparable to the second case study, the number of
available features and devices are reduced. Experimental results can be seen in table
3.21 and 3.22. Figure 3.10 shows the degradation in a graphical way. The score, MAE
and MSE increase with decreasing number of features available for the algorithm up to 6

36



3.7. Discussion and Potential for Future Work

features. With 3 features the errors decrease, but the results of individual experiments
scatter exponentially depending on which sensors are chosen randomly in the experiment.
Nevertheless, the score increases roughly by a factor of 440 between 24 and 12 available
features. Also the MAE doubles and the MSE increases by a factor of roughly 12. The
deviations of the predictions from the true failures can be seen in figure 3.9. In comparison
to the usage of all available data which can be found in figure 3.7, the predictions using
12 features scatter already around the true RUL. Predictions using 3 features are heavily
skewed to the right of the diagram. That means the predictions assume the failures of
the devices later than they actually occur. This happens especially for failures which
appear in less than 60 cycles. For the usage of predictive maintenance that is not optimal.
The goal is to be able to provide a warning before the device will fail. The importance
of a correct prediction increases the closer the failure comes, as the urgency to act in-
creases. Predicting the failure after the actual failure implies the false assumption of safety.

Figure 3.9: Predicted RUL on x axis versus the true RUL on the y achsis of the algorithm
with 12 features and 3 features. The green line symbolizes the most accurate prediction.

Looking at the degradation of the predictions with decreasing number of devices, the
score increases with decreasing number of devices available. Conversely, the learning
curve increases with increasing number of devices. The score increases by a factor of
185726 by decreasing the number of devices from 100 to 1 device. The MAE for that
example increases by 32, 73 and the MAE increases by 3407, 03. Figure 3.11 shows the
degrading predictions for the different number of devices used for the experiment. A
setup similar to the data available for the second case study is the combination of 1 device
and 10 features. The errors and the score of the experiment with the combination of
reduced data exceed those in the degradation experiments for either a decreasing number
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of features or a decreasing number of devices: The score is by 145482414, 20 higher than
the score with 1 device and 24 features and by 232380999, 32 higher than the score with
100 devices and 3 features.

Figure 3.10: Degradation of the results with decreasing number of available features. To
improve the visualization, the score is divided by 100 and the MAE is multiplied by 100.

Figure 3.11: Degradation of the results with decreasing number of available devices. To
improve the visualization, the score is divided by 100, the MAE is multiplied by 10000
and the MSE is multiplied by 100.
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CHAPTER 4
Study of a Dataset not Optimized

for Predictive Maintenance

In contrast to the widely used scientific C-MAPSS turbo engine data set analyzed in
Chapter 3, this chapter covers the application of predictive maintenance in respect of
an application with a high level of uncertainty. This case study was conducted on data
acquired from a food production line. Especially the absence of a known ground truth
necessitates an explorative approach and therefore focuses on preprocessing steps within
the CRISP-DM. Extensive involvement of domain experts was necessary, resulting in
iterative exploratory analysis. The goal was to prepare the data for the method described
in Chapter 3 to be able to evaluate the compatibility.

4.1 Methodology - Iterative Application of CRISP-DM
As stated in Capter 2, the chosen method for this thesis is CRISP-DM. This standard
describes an iterative approach with several sub- iterations. The first 6 iterations were
conducted between the first 2 steps of the CRESP-DM, Business Understanding and
Data Understanding. One iteration had a duration of roughly two weeks. At the end
of the iteration the results were presented and discussed in cooperation of a board of
stakeholders that are concerned by the presented topics. At this meeting, the business
needs were verified against the new findings and the next analysis steps were identified
to accomplish the business goals. The following analysis iterations were executed:

• First iteration

– Identification the key stakeholders
– Initial understanding of the business need
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– Data aggregation and import

– Initial understanding of the data

• Second iteration

– Statistical analysis of all features

– Analysis of the sampling rates

– Analysis of the data types

– Classification of the structure (categorical, numerical)

• Third iteration

– Analysis of the semantic meaning of the features

– Visual inspections

• Fourth iteration

– Analysis of the machine states

• Fifth iteration

– Analysis of alarms and errors

• Sixth iteration

– Assembling of the groundtruth

The next steps according to the CRISP-DM are Data Preparation and Modeling. The
preparation of the data was subdivided to data cleansing, preprocessing and feature
engineering. This steps were executed for 3 models, respectively:

• Regression of the RUL by random forest regression

• Regression of the RUL by the method discussed in the first case study

• Classification of incidents by random forest classification

• Classification of incidents by a multi layer perceptron

Each of the models was evaluated. The last step, Deployment, was not executed since
the framing conditions were academic.
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4.2 Business Objectives
Originally, the partner developed a state of the art procedure for food production lines
based on special hardware. This hardware was responsible for advantages on the market.
To ensure advantages to competitors the partner began to collect basic measurements
of the devices in order to monitor the devices and to be able to prove uptime in a first
step. The next step shall be to train models on the base of the data that are able to
predict machine outages. In the course of the analysis intermediate steps were identified
while assessing the current situation of the data as described above. The main goal of
the study is to verify to what extent a model can be trained on basis of the current data
in order to predict a critical incident of the production line. In a best case scenario,
an accurate prediction of the remaining live of a machine improves the efficiency by
optimizing maintenance intervals, while reducing the down time. In a first step a warning
30 minutes before an incident happens would give technicians the chance to react and
therefore reduce damage of the machine and down time. Translated to the data mining
goals, that means the collected data should be prepared and evaluated with simple models
for the capabilities of making predictions for the given time frame.

4.3 Data Understanding
After clarifying the business need, the next step was to iteratively refine the understanding
of the data and verify the potential of the data with the initial goal.

4.3.1 Initial Description of the Data Set
The data is provided within a SQL database dump, which contains sensor data, meta
information and data for the operating system of the control panel of the machines.
In total the dump of the device includes 764 tables. For each source of information
within one device, the data is stored to a separate table in the format timestamp, value.
These tables contain between 75 and 2212710 data points and lie in the time span from
2017/07/25 07:53:24 to 2018/04/05 01:46:49, covering a total duration of approximately
36 weeks. Entries in the column value are either numbers, strings or lists. The device
contains 682 tables in the format shown in Figure 4.1, which leaves 82 tables of additional
data, which varies strongly in size of the tables and their content. In contrast to the
scientific data set used for the first case 3, the data in the second case present a high
level of uncertainty, due to the following issues:

• The sampling rate of the data is unknown and differs between measurements

• The content of the data is not comprehensible directly

– Unites are not always persisted within the data
– It is unclear if the data is numerical, categorical or ordinal
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– Therefore, the proper interpolation between data points cannot be determined

– Data cannot intuitively be distinguished in sensor data and meta data

• The proper functionality of the sensors cannot be assumed automatically

• It is not clear whether the data contains incidents of failure of a system or a sub
system

• The environment of the devices differs and may contain interaction with humans
or other machines

• The possibility of states which the device can be in is unclear and outstrips a simple
on, off or failure model

Figure 4.1: Extract of one of the 682 tables in the format timestamp, value.

4.3.2 Exploratory Data Analysis

To prepare the preprocessing steps sound understanding of the data is necessary. Therefore
exploratory analysis with aspects of statistics, context and the structure of the data is
conducted and visualized for reporting and discussions with the domain experts. The
analysis is sharpened iteratively by intensive involvement of the experts. After the initial
aggregation of the data, analysis steps are executed and reports are prepared, which
initiate discussions that lead to decisions for further analysis. For the scope of this thesis,
six formal iterations are traversed within the exploratory analysis. Additionally, a basic
amount of collaboration is pursued between the iterations. Every iteration the focus
topic shifted towards the aggregation of the ground truth.

4.3.3 Statistical Analysis

To localize the value ranges of the provided data and identify groups of attributes within
the same range, for every table that contains numerical data, the following statistical
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measurements are computed:

• Number of entries in the table

• Median

• Mean

• Minimum value

• Maximum value

• Quantiles (0.25,0.75)

• Standard deviation ‡

• First and last recording

• Mean sampling interval

• Median sampling interval

• Maximum interval between samplings

• Minimum interval between samplings

The sampling rate varies highly between the features. While partly the sampling rate
is constant at least for periods of time, other parts have large gaps between all entries.
Table 4.1 shows meta statistics of the time stamp analysis. The over all smallest interval
is 0, 21 seconds, the smallest median of intervals is 2 seconds. Depending on the state
the machine is in, the sampling rate of continuously recording sensors is 2 seconds, which
is reflected by the smallest median of sampling intervals. Data which is not recorded in
constant time intervals is only written within the change of a value. 659 of the 682 tables
contain only 75 data points. Thus, the intervals between the recordings are large, and
due to the large fraction in contrast to the 23 remaining features with more data points,
the median and mean is also influenced strongly. Further analysis steps show, that the
sparse tables contain operational settings and lists of constant values and can be filtered,
as described in Section 4.4.1.

4.3.4 Context Analysis of the Data
In a next step, basic semantics and the context of the data is analyzed. Therefore, the
data type of the values is selected, as well as whether there are subsequent equal entries
within a table. Subsequent values are, together with the sampling rate and the deviation
of samples from the sampling rate, an indicator whether only changes are persisted when
they happen or data is persisted periodically, independently of their status. Furthermore,
there is a mapping between the tables stored to the database and data which is displayed
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smallest overall biggest overall overall
value (s) value (s) median (s)

min(sampling interval) 0, 21 163, 53 162, 81
max(sampling interval) 3, 62e + 6 3, 62e + 6 3, 62e + 6
mean(sampling interval) 9, 91 2.93e + 5 2.93e + 5
median(sampling interval) 2 8, 01e + 4 8, 01e + 4

Table 4.1: Illustration of the boundary values of the sampling rates. The different rows
show statistics over the data tables: minimum, maximum, mean and median. Columns
summarize the statistics over all data tables: The smallest minimum of all tables, the
biggest minimum of all tables and the average minimum of all tables, and so on. It can
be seen that the interval between two samplings lies between 0, 21 seconds and 3, 62e + 6
seconds. The median of the means is 2, 93e + 11 and the median of medians is 8, 01e + 4.

in a graphical user interface. This mapping is used to extract context information about
the data. This information is used to distinguish between numerical and categorical data,
but also to generate knowledge to improve future steps like the selection of parameters
and the extraction of a ground truth for supervised machine learning and evaluation.
The tables can be categorized as follows:

• Array of values

– List of numbers
– List of boolean values

• Numerical values with a partially constant sampling rate include temperature,
different speed measurements and power consumption

• Numerical values which are stored if a change occurs consist of various tables used
for the machine state tracking

• Categorical values, such as operational settings

Another possible classification is the division of the data to what they describe. Based
on the names of the tables and their content, the following categories can be identified:

• measurements

• alarms

• operational settings

• state tracking
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4.3.5 Visual Inspections

For deeper understanding of what happens within the data, visualizations are generated
and discussed in connection with the statistical analysis and the contextual analysis
iteratively with experts of the production line. The objective is to identify sensor data
and descriptive data which reflects the representation of the machine health. This is
important to extract relevant data, but also as an entry point for the reverse engineering
of a ground truth. The reporting and discussions with the machine experts benefit from
the visible breakdown of the data too.

Figure 4.2: Batch counter of the device over the whole time period. The counter of a
fixed number of pieces in the production is normalized to obscure the actual number of
pieces that is produced. The orange bars mark weekends.

Analysis of the intervals between measurements shows gaps, which implicate the as-
sumption that the device didn’t produce to its full capacity in the observed time period.
In Figure 4.2, a representative pattern can be recognized by mapping data of a batch
counter to a central European calendar. Values are plotted blue, the orange bars mark
weekends. Besides gaps of 5 weeks during August and Septemper 2017 and approximately
1 week several times, it can be seen that the device was shut down during weekends.
In this figure a counter is plotted which counts products from 1 up to a batch size of
n before it is reset. The rate with which this counter is transmitted to the data set is
approximately 2 seconds. As long as the production street is running, this sensor writes
saw-tooth textured data to the data base, as shown in Figure 4.3. It can be seen that
the batch counter provides data for approximately 50% of the time. Also the biggest gap
between measurements of all sensors can be seen in the beginning of the recorded data,
which is 3, 62e + 6, or approximately about 6 weeks.

Figure 4.4 shows 10 remaining features for the machine health after the dimensionality
reduction described in Section 4.4.1. Since the data has no continuous sampling rate,
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Figure 4.3: Saw-tooth textured measurement of the batch counter.

values between the samples are interpolated. Again, the orange blocks mark the weekends.
This figure was the primary basis of discussions with domain experts. Correlation between
sensor 445, 446, 449, 450, 456 and 774 can be seen directly. Sensor 186 accumulates over
time, but is reset several times, which could indicate a reset of the device. The sensor
447 spikes only at certain points, which could indicate events where problems occur.
Also indicative for failure events is the sensor 456, according to the experts. This sensor
measures the temperature within the heating unit. Two different scenarios of decreasing
temperatures can be found: slow and abrupt. In a consulting session with experts, the
two patterns are interpreted as follows. Normally when the device is shut down, the
heating unit stops and the production line runs until the temperature falls below a critical
limit. Therefore, a slow decreasing of the temperature, especially in combination of a gap
in sensor 446, which shows the batch counter discussed in the Figure 4.2, is the standard
scenario for shutting down the device. However, an abrupt dropping of the temperature
shows that the heating unit was opened. Reason for that can be a maintenance action.
But the temperature alone is not sufficient to identify an incident, because the unit could
also be opened due to pollution or for other reasons.

4.3.6 Reverse Engineering of the Ground Truth
To enable supervised machine learning methods, as well as for sufficient evaluation, a
ground truth is needed. Since no ground truth is provided for this case study it has
to be created. The approach taken in this thesis is based on reverse engineering the
independent variable from sensor data by applying the iterative approach as described in
the previous section. Therefore, the machine state is analyzed as well as the occurrences
of alarms and errors within the device. With the obtained information of these analysis
steps the ground truth is reverse engineered.
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Figure 4.4: The 10 remaining features after conducting the dimensionality reduction.
The data is normalized and the table names are obscured by random ids. The orange
blocks mark weekends.

Machine State Analysis

When it comes to understanding the health condition of machines and especially for
extracting incidents of system failure or the failure of a component, knowledge about
the state the device is in makes a difference: While for example the dropping of the
temperature of a heating element is normal while the machine is stopped, it can be
evidence of a failure if the machine is running at full capacity. Therefore, special attention
is directed to collecting detailed information of the state the device is in at all times.
Within this device the states are stored by the two different strategies: States that are
needed internally for the controlling of the device and states which are used to compute
statistical measurements by definitions of the the ISA-88 standards [SS08]. There are 11
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internal states and 4 ISA-88 states.

Internal States
When an internal state changes, an identifying number is written to a table. As long as
the state stays the same, the table has no entry. There is no proper documentation of
the internal states available.

ISA-88 States
The ISA-88 states are triggered independently from the internal states. Four of the 17
orginally defined states are implemented by the device. Additionally to the undefined
state ’0’, which is not part of the official ISA-88 standard, the following states can be
found in the corresponding table:

• Clearing (ISA-88 - id: 1)

• Stopped (ISA-88 - id: 2)

• Starting (ISA-88 - id: 3)

• Holding (ISA-88 - id: 10)

Like the internal states, the changes of an ISA-88 state is stored to a table. But addi-
tionally, counters are stored which increase by 1 every minute, the machine stays in the
current state. Therefore, the ISA-88 are easily accessible for further analysis.

The larger number of internal states indicates that the ISA-88 states generalize the internal
states. But the triggers for the storage are independent. Therefore, the correlation
between the two tables is investigated further. Figure 4.6 shows the mapping between
the two state tables. Possible correlations between the states are visualized by sliding
a time frame over the ISA-88 states and counting the number of internal states within
the time frame. In Figure 4.6a, a time frame of 2 seconds is used, due to the median
of the sampling interval of 2 seconds, which can be seen in Table 4.8. Objective of this
experiment is to find data points in the tables that represent the same entry point of
a state. To emphasize the relation the total occurrences of states in the whole records
can be seen in Table 4.2. It can be seen that for states 1, 2 and 10 of the ISA-88 table
a state of the internal table can be found, which relates to the time of the occurrences
with a low number of outliers. The state 3 of the ISA-88 table is divided into state 5 and
14 of the internal states. Mentioned relations that contain over 100 occurrences of data
base entries within a time frame of 2 seconds are summarized in Table 4.3.

Furthermore, the window size is increased by 2 and 4 seconds. Figure 4.6b and 4.6c show
the results for the sliding window analysis for 4 and 6 seconds total, respectively. One
thing that can be noticed is the increase within the time frame of 4 seconds of states
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State ID of total occurrences State ID of total occurrences
internal state of the state ISA-88 state of the state
0 341 0 57
2 388 1 394
5 205 2 345
11 48 3 547
12 74 10 764
13 821
14 630
15 285
16 285
17 170
18 3

Table 4.2: Number of occurrences of the states.

ISA-88 internal occurrences occurrences within within within
state state in ISA-88 in internal 2 seconds 4 seconds 6 seconds
0 11 57 48 25 47 47
1 2 394 388 226 387 387
2 0 345 341 228 336 336
3 5 547 205 127 193 193
3 14 547 630 228 347 347
10 13 764 821 479 740 740

Table 4.3: Connection between ISA-88 and internal states, which occur together within a
time frame of 2 seconds over 100 times.

whose relation is found by the time frame of 2 seconds. The number of correlations
doesn’t change in the experiments with the 6 second time frame. That indicates that
the trigger mechanisms of the states have an offset of Æ 4 seconds. Further increasing
of the window size makes the result intransparent to an extent where the correlations
cannot be interpreted. One pattern can be found repeatedly. It is shown in Figure 4.5.
The ISA-88 state 3 marks the start of the production street. With the start, the device
traverses the internal states 14, 15, 16 and 17, while the cummulative counter for the
ISA-88 state called starting starts to increase by one every minute. Since the ISA-88
execute state is not implemented, it is assumed that the machine is executing after it
reaches the internal state 17 within the starting sequence.

To investigate at which time the production street is in a producing state, the ISA-88
states are plotted over the production speed and the production temperature of the
production line, which can be seen in Figure 4.7. Figure 4.7a shows the production speed
over the whole time span of the recordings. Since the recording starts with the launching
of the device, it is not producing at the beginning. Except for approximately the last
third of the recording, the machine is either in the stopped state or the clearing state
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Figure 4.5: The starting sequence which can be found repeatedly in the data.

ISA-88 state mean duration (sec) median duration (sec)
Undefined (0) 1714,00 131
Clearing (ISA-88 - id: 1) 4793,51 63
Stopped (ISA-88 - id: 2) 5035,02 19
Starting (ISA-88 - id: 3) 2102,97 67
Holding (ISA-88 - id: 10) 677,01 35

Table 4.4: Mean and median duration of the ISA-88 states.

over large periods of time. While in the state stopped, the production speed equals zero,
as expected. For clearing and holding no clear behavior can be seen, but within the state
starting, the production speed returns approximately a constant speed, as can be seen
more clearly in Figure 4.7b. Figure 4.7c shows that the production temperature of the
heating unit is at an approximately constant value bigger than zero too, within the state
starting. Therefore, the state starting is assumed as evidence that the machine is in a
producing state.
The mean and median duration of the states can be seen in Table 4.4. While the median
duration of the states is only between 19 and 131 seconds, the mean is between 677, 01
and 5035, 02 seconds. The difference reflects short changes which are partially part of
the set up process of the production street, but also occur later in the life time of the
machine for unknown reasons. The device stays within the state starting no longer than
67 seconds in 50% of the number of startings that are assumed. It continues running
longer than 120 seconds 34% of the assumed startings and for 8% it produces longer than
one hour.

Analysis of Alarms and Errors

For the reverse engineering of the ground truth, important information is not only the
knowledge of the machine state, but also alarm data, which is displayed at the graphical
user interface. Besides informational announcements which are irrelevant for the machine

50



4.3. Data Understanding

(a) Correlation between internally used states and the ISA-88 states. The correlation is measured
by a sliding window method with a time frame of 2 seconds.

(b) Correlation between internally used states and the ISA-88 states. The time frame for this
Table is expanded to 4 seconds.

(c) Correlation between internally used states and the ISA-88 states. The time frame for this
Table is expanded to 6 seconds.

Figure 4.6: Correlation between internally used states and the ISA-88 states. To measure
the simultaneous occurrences of the states, a time frame is slid over the ISA-88 states
and the occurrences of the internal states within the frame are counted. The number of
occurrences is emphasized by the size of the font.

health, the system provides a number of alarms that indicate problems within components.
In combination with the machine state, these messages and their time stamps build the
basis for the reverse engineering of incidents which have happened in the past. In total,
there are 1962 alarms and 295 errors. Figure 4.8 shows the occurrences of alarms and
errors. For visualization purposes they are plotted over the production speed (Sensor
450) and the production temperature (Sensor 456).

Errors
Errors are either lists of Boolean values, which are a one hot indicator for a list of
predefined errors, or a single value. Neither the lists, nor the values can be mapped to
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(a) The production speed over the full recordings. The red square marks the time span that is
brought out in more detail in the plots 4.7b and 4.7c.

(b) A view to a shorter period of time. The correlation between the state starting in red and the
production at constant speed can be seen more clearly.

(c) In this Figure the states are painted over the temperature of the heating unit. It can be seen
that the temperature stays approximately the same within the state starting.

Figure 4.7: Production speed and the production temperature of the heating unit
overlapped with the ISA-88 states the production street is in. The normalized production
speed is plotted as a function and the states clearing, stopped starting and holding are
painted as green, orange, red and yellow blocks.

known information in retrospect. Errors are designed only for live occurrence. Therefore,
the only known information of the errors is the time of their occurrence. Figure 4.9a
shows all errors over the full time span of the recordings. The errors are stored in 3 tables.
Since the semantic meaning is not accessible, this is redundant information. Furthermore,
the time stamps are equal in 2 of the tables, and a sub set in the third. As can be seen
errors often occur at the change of state of the production street. This is, according
to experts, not necessarily a failure in the machine. For example, certain errors are
provoked by thresholds, such as the target temperature. When the device switches from a
producing state to being stopped, the temperature decreases slowly. But the limit for the
target temperature is set within the state. Therefore, an error is triggered, which doesn’t
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Figure 4.8: Production speed (450) and the production temperature of the heating
element (456). The orange bars mark weekends. Occurrences of alarms are marked with
green lines and errors are marked in red.

State Number of errors Number of alarms
Undefined (0) 71 132
Clearing (1) 142 444
Stopped (2) 50 118
Starting (3) 11 695
Holding (10) 21 573

Table 4.5: Number of errors and alarms in the particular states.

indicate a problem in terms of machine health. Figure 4.9b shows a more detailed view
of a time period of approximately 6 weeks. It can be seen that errors occur in this period
while the production street is running at the highest observed capacity. In this case it
is more likely that a critical event occurred. Table 4.5 shows the number of occurring
errors for each ISA-88 state.

Alarms
Alarms are stored in lists of Integers which can be mapped to messages that are displayed
on the graphical user interface of the production street. So each of the 1962 data points
in the alarm table contains a list of 0 to 32 alarms. A list with the length n indicates that
n alarms are triggered at the same time. The alarms appear in different states of the
production street. The number of occurrences can be seen in Table 4.5. 695 alarm lists are
triggered in the state starting, which are the most interesting for the reverse engineering
of incidents that are critical for the machine health as described in Section 4.3.6. Alarms
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(a) Occurrence of errors over the full time span of the recordings.

(b) Occurrence of errors in a time frame from 2018/01/26 to 2018/03/12.

Figure 4.9: Function of the production speed. The occurrence of errors is marked with
red lines on the bottom of the plot. The ISA-88 states clearing, stopped, starting and
holding are painted as green, orange, red and yellow blocks.

can be identified as machine relevant, such as described in Table 4.6, and humen health
critical, such as open doors or triggered light barriers.

Assembling of the Ground Truth

Since for the scope of this thesis there is neither a manual service book that contains
information about maintenance efforts, nor a sufficient digital recording of failures or
incidents, the ground truth has to be reverse engineered. This is done by combining the
results of the analysis steps above and with the involvement of domain experts. Criteria
for defining irregularities within the machine health, whose prediction is an advantage
for the business partner, is based on alarm messages, errors, the machine state, and
knowledge of qualified personal.
For measuring the status of the production street the ISA-88 states are used. The decision
against using internal states is made for to two reasons. First, only errors which occur
while the machine is producing are used as critical incidents. The producing state is
documented well by the ISA-88 state starting, as discussed in Section 4.3.6. Seconds, the
interpretation of the internal states is partly possible as discussed in Section 4.3.6, but
also contains potential for misinterpretation. Therefore, the simpler and safer variant for
state measurement is used for the extraction of critical incidents.

Incidents Based on Errors
Table 4.5 shows the relation of errors to the state of their occurrence. 11 of the errors
are triggered while the production street is in the state starting, which is assumed to be

54



4.4. Data Preparation

the state where the machine is actually producing, according to Section 4.3.6. The errors
occur between approximately 11 and 23 hours after reaching that state. Within the 11
errors, 3 times 3 different errors and 1 time 2 different errors appear within one second.
Those errors are considered indicators for the same incident, respectively. Therefore, 4
failure incidents are detected while the production street is in the state starting. Errors
in other states are ignored for the ground truth, because incidents that trigger errors,
but do not actually concern the machine health cannot be distinguished from incidents
that are in fact critical for the machine health.

Incidents Based on Alarms
According to the experts alarms in states other than starting are mostly triggered by
manual actions as well. Therefore, they are ignored for the location of critical accidents.
That leaves 695 of the total 1962 alarms, as can be seen in Table 4.5. The remaining
alarms are filtered successively after the following criteria:

• (talarm ≠ tstarting) < 1800 seconds:
The mean duration without interruption of the producing state is approximately
35 minutes, while the median is only 67 seconds 4.4. To filter out alarms that
occur due to bad synchronization in the starting phase of the machine, any alarms
that occur in the first 30 minutes after the production street switches to the state
starting are dismissed, accepting the downside of dismissing incidents in the first
batch of data. Therefore, 426 alarms are are dropped, leaving 269 alarms.

• Semantic meaning of the associated message, which is displayed on the graphical
user interface. Alarms regarding issues which are not relevant for the machine
health like human safety for example, are dismissed. This alarms reflect open
doors and light barriers. By this technique another 213 alarms are dismissed. The
remaining messages can be seen in Table 4.6

The incidents extracted by analyzing the errors are combined with those that are
reverse engineered by alarm analysis. Again, incidents which appear within 2 second
are generalized as the same event. Hereby another reduction by 23 alarms is done. The
steps above result in a ground truth of 33 events over the whole recording period that
are considered critical for the machine health.

4.4 Data Preparation
4.4.1 Data Cleansing and Dimensionality Reduction
After the six iterations of analysis and discussions with domain experts of the device,
the data is reduced to meaningful features by the following steps of data cleansing. The
initially 764 tables contain 82 tables in various sizes and formats, which represent data
that supports the operating system and the graphical user interface of the device. Except
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Alarm: 49 MAIN DRIVE - INVERTER 1402T1-3
Alarm: 31 GAS PRESSURE TOP PLATE 1508S2
Alarm: 55 FAULT SUPPLY SERVO DRIVES
Alarm: 119 SAFETY FUNCTION MAIN DRIVE ACTIVE 1402T1-3
Alarm: 134 SAFETY FUNCTION FEEDING BELT ACTIVE
Alarm: 51 BATTER PUMP - INVERTER 1402T1-4
Alarm: 21 EXHAUST SYSTEM - PRESSURE SWITCH MINIMUM 1507S2
Alarm: 32 MIXTURE PRESSURE TOP 1508S5
Alarm: 34 FLAME MONITORING FRONT, TOP 1514A5
Alarm: 33 PRESSURE SWITCH GAS MAX. 1507S5
Alarm: 35 FLAME MONITORING FRONT, BOTTOM 1514A7
Alarm: 29 OVERTEMPERATURE

Table 4.6: Semantics of the relevant remaining alarms.

Figure 4.10: Final incidents which are considered critical for the machine health. The
incidents are marked red. The the production speed is plotted in blue.

for one table, the included information is identified to be not relevant by discussions with
domain experts. One remaining table contains information which maps the IDs of the
tables to context information as stated in Section 4.3.4. The other tables are not used
for further analysis.
682 tables of the initial data base feature the same two columns timestamp, value. The
dimensionality of this data is reduced by the following criteria:

• Statistical criteria: empty tables, or features with ‡ = 0, are not considered for
further analysis.

• Expert feedback: is identified by context analysis and with the help of expert
knowledge. This semantic criteria involves data which holds redundant information
or information which doesn’t concern the machine health, as well as data which
is identified to hold faulty information or dummy information for enabling future
development.

Dimensionality Reduction by Statistical Criteria

Regarding the statistical analysis, special attention is directed to the standard deviation
‡. For every device the number of relevant features n is determined as described in
Equation 4.1:
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n = |A|, where A = {‡i|‡i > 0} (4.1)

Features with ‡ = 0 are dropped for further work, since they don’t hold relevant
information. By this strategy the originally 682 tables are reduced to 36 features, which
equals a compression factor of approximately 19.

Parameter Reduction by Expert Feedback

Besides the rejection of features on the basis of statistical considerations, the data is split
into two subsets. One holds information and measurements which are directly connected
to the machine health status and will be used as training data set for machine learning
methods. The other set contains meta information which is useful to reverse engineer
the state of the machine and finally the ground truth. It will not be used as input for
automated health detection.

As mentioned in Section 4.3.2, the statistics of the recording intervals is influenced
strongly by sparse data. After the reduction of features by the described steps, 10
dimensions of measurements remain. This dimensions can be clustered to 4 topics as
shown in figure 4.11.

The updated statistics on the sampling rates can be seen in Table 4.8. The maximum of
the interval between two recordings stays the same, which indicates a long period without
recordings where the device was standing idle. The median of the means and medians is
reduced by approximately the factor 2570 and 40050. In the updated table, the median
of the medians of the sampling rate reflects average sampling rate of approximately 2
seconds, which can be seen in intervals of the measurements when the machine is in a
producing state. The larger mean is a result of the gaps where the device is in an idle
state and no entries are written. Compared to the initial sampling rates in Table 4.1, the
idle times of the sensors are reduced.

Table 4.7 shows the normalized statistics of 10 remaining measurements for the machine
health after the reduction steps described in this section. The statistics include:

• The number of total data points in the table num_entries

• Mean and median of all measurements of the sensors

• The smallest and biggest measurement within the table min_val, max_val

• 0, 25 and 0, 75 quantiles

• Variance
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Figure 4.11: Remaining 10 dimensions after parameter reduction.

Table 4.7: Normalized statistics of the 10 remaining indicators of the machine health.
The names of the sensors are obscured by random IDs.

Furthermore, basic data cleansing is applied to the remaining features. Therefore,
arbitrary data formats are translated to standardized formats. For example the expression
’T#0ms’ is converted to zero of the unit milliseconds. Generally, all units of stored
numbers are removed as well as brackets and other strings which surround the measured
values. Numerical values are converted to python floats or integers depending on wether
decimal digits are present. Strings which contain Boolean expressions are converted to
standard python Boolean values.
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smallest overall biggest overall overall
value (s) value (s) median (s)

min(sampling interval) 0, 21 2 1, 73
max(sampling interval) 3, 62e + 6 3, 62e + 6 3, 62e + 6
mean(sampling interval) 9, 91 1, 01e + 5 114, 57
median(sampling interval) 2 396 2

Table 4.8: Updated statistics of the sampling interval of measurements after the data set
is reduced by statistical criteria and expert feedback.

1 if the time stamp exists in the runtime:
copy time stamp and value

2 else: map the time stamp by minimizing the
distance to the next entry in the runtime

3 if more than one measurement of one sensor
point to one time stamp in the runtime:

average the value
4 if an entry in the runtime is empty after

applying the rules above:
fill it with the over all average of the sensor

Table 4.9: Rules for mapping measurements to the runtime.

4.4.2 Preprocessing of the Data for Machine Learning
To apply a machine learning method, there are still obstacles to overcome:

1. The machine is in a non producing state over 50% of the time. The behavior of
sensors varies strongly between different states, which biases the prediction of small
changes caused by degradation. The machine learning algorithms are influenced
strongly by the heavy changes of the sensors.

2. Measurements are not continuous, but vary between approximately 1.5 seconds
and 46 days.

For machine learning methods to work properly, the data has to be normalized to be
independent from the obstacles above. Therefore, the following strategy is pursued.

First, a continuous time axis is created. It covers the whole time span of the device from
the first time stamp to the end of the record. The sampling rate is normalized to 30
seconds. Second, each sensor is mapped to the continuous time line, which henceforth
will be referred to as runtime. The mapping is based on the rules in Table 4.9.

Third, the alarms are concatenated to the runtime by mapping the occurrences to the
nearest time stamp. Also, the time spans in which the machine is considered to be not in
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a producing state are dropped. The decision if the device is running or not is based on
the ISA-88 state as mentioned in Section 4.3.6.

4.4.3 Feature Engineering
To evaluate the performance of the neural network described in Chapter 3, the data set
is prepared for regression for comparison of the metrics. As stated in Chapter 1, machine
health can be predicted by two different approaches: classification and regression. The
data in this case study does not enable the differentiation between a true failure and
incidents which result not necessarily in total failure. To be able to provide a warning
30 minutes before an incident occurs independent of whether it is a failure or another
incident, additionally a classification analysis is evaluated.

Feature Engineering for Regression

Similar to the preparation steps in the first case study described in Section 3.4 a window
of ntimesteps is convoluted over the rows of measurements, which contain 10 values each.
Therefore the content of the window is concatenated to vectors of the length 10úntimesteps,
creating vectors which contain the features of a time span of ntimesteps. The label for
each vector is the remaining useful live of the nth timestep in cycles, where for this data
set one cycle equals 30 seconds.

Feature Engineering for Classification

The properties of the classification are developed by discussing reasonable use in produc-
tion. It was decided to grant an engineer 30 minutes of reaction time before a predicted
event occurs. The properties result in the following features.

• A positive incident describes a point t in time, for which applies: in t + 30 minutes
an anomaly occurs.

• A negative incident describes a point in time t, for which applies: in t + 30 minutes
no anomaly occurs.

To create features, a window is convoluted over the runtime of the the 10 sensors which
remain after the dimensionality reduction described in Section 4.4.1. The window size is
varied in 1, 5, 10, 20, which is equivalent to data of 30, 150, 300, 600 seconds. The different
window sizes are evaluated together with the hyper parameters of the algorithm with
a grid search in the sections below. The values of each point in time in the windows
are concatenated to a feature vector, representing the time frame, with a distance of 30
minutes to a positive or negative incident. Figure 4.12 shows the generation of a feature
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Figure 4.12: Process of generating a feature vector from a time frame of 10 minutes for a
critical event, which occurs 30 minutes after the window.

vector for one positive event.

For the evaluation, the data is split by an 80 by 20 ratio, where the test set consists of
20% of the data. The split is done randomly under consideration of an aliquot number of
positive incidents in each set, resulting in a train set of 69098 samples and a test set of
17275 samples.

4.5 Modeling
To compare the results to the first case study, the RUL is estimated by the random forest
regression and the in the first case study described neural network. Additionally, the
performance of a classification task is evaluated to further support the objective of giving
a warning 30 minutes before an incident happens. By a grid search, the optimum of the
hyper parameters of the random forest and the neural network proposed in the first case
study are evaluated similarly as described in the first case study. The hyper parameter
evaluation of the multi layer perceptron is described in Section 4.5.1

The following models are optimized by hyper parameter evaluation, trained and evaluated:
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• Regression

– Ramdom forest regression
– Regression of the method described in the first case study

• Classification

– Ramdom forest classification
– Multi layer perceptron classification

4.5.1 Hyper Parameter Evaluation of the Multi Layer Perceptron
Classification Algorithm

With a window size of 20, hyper parameters for the multi layer perceptron classifier are
evaluated by a grid search, which 200 epochs for each trial, for the parameters below.
This way the optimal configuration is estimated by a constant learning rate, hidden layer
size of 100, 1, batch sizes of 10 and the logistic activation function.

• Learning_rate: constant, invscaling, adaptive

• Hidden layer sizes: (100, 1), (100, 2), (100, 3)

• Batch sizes: 10, 50, 100, 200

• Activation functions: logistic, relu

4.6 Evaluation
To evaluate to what extend the RUL can be predicted on the given data set, the regression
task is evaluated on basis of the metrics described in Section 3.1.1. For the classification
of predicting whether an incident will occur in 30 minutes or not, the evaluation metrics
is a confusion matrix and further the accuracy and sensitivity.

4.6.1 Results of the RUL Detection
First the baseline is set by the random forest regression as in the first case study. Due to
the difference in quality of the data the score degrades by a factor of roughly 3, 3e62 in
comparison to the experiments on the benchmarc data set. The MAE and MSE degrade
by the factor of 82 and 5102. R2 only decreases by 0, 04. Using the neural network
described in the first case study, instead of the random forest regression algorithm, the
score increases by a factor of 9, 5e53. Also the MAE and MSE increase by a factor of 20
and 4, 8, R2 by 0, 27. Comparing the performance of the state of the art neural network
described in Chapter 3 between the benchmark data set and the sparse data set of the
second case study, it can be seen that the score differs by 349911510, 3. In the first case
study the MAE is smaller by a factor of roughly 8 and the MSE by a factor of roughly
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4084. The R2 increases by 0, 19. To approximate the degradation of the data, the devices
and features are reduced as described in Section 3.6.2. The comparison of the RUL
regressions can be seen in Table 4.10. The score of the predictions for the second case
study exceeds the score of the predictions for the first case study by 117374300, 8. The
MAE and MSE of the predictions in the second case study are by 41, 18 and 1048976, 41
higher than those in the sparse data set of the first case study.

Description score MAE MSE R2

First case study:
Random Forest 22152,25 23,73 995,01 0,42

Stacked LSTM with deep autoencoder 468,73 11,88 257,98 0,84

Stacked LSTM with deep autoencoder 232537678,20 55,78 4681,59 -20,43
with 1 device and 10 features
Second case study:
Random forest regression 3,3e62 1957,8 5076501,9 0,38

Regression of the neural network 349911979,00 96,96 1053658,0 0,65
described in Chapter 3

Table 4.10: Experimental results of the regression algorithms.

4.6.2 Results of the Automated Anomaly Detection Method
Table 4.11 shows the confusion matrix for the prediction of the test set. It can be seen
that all samples are predicted to be negative. Since the test set contains only 7 positive
events the accuracy is 9.99, but the sensitivity is 0.0.

Algorithm True True False False
negatives positives negatives positives

Random Forrest 17268 0 7 0
Multi layer perceptron 17268 0 7 0

Table 4.11: Confusion matrix for the prediction of the test set of the data.

4.7 Discussion
In this section the results of the evaluation are compared and discussed and potential
future work is pointed out.

Figure 4.14 shows the score of the random forest algorithm and the proposed neural
network. The differing quality of the data sets results in highly varying results. The
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biggest difference can be identified comparing the random forest algorithm which was used
as baseline for both case studies. Looking at the neural network approach, a significant
improvement can be seen in both case studies. A detailed view of the improvements can
be seen in figure 4.13.

Figure 4.13: Performance comparison of the the neural network to the random forest
method

Figure 4.14: Comparison of the score of the first and the second case study

To make the results comparable, the data of the first case study is reduced to the same
amount of devices and features available for the second case study. The comparison
of the predictions by the neural network can be seen in figure 4.15. The results of the
algorithm discussed in the fist case study degrades significantly with increasing sparsity
of the data, as is discussion in section 3.7. Nevertheless, the score, MAE and MSE are
still higher when applying the algorithm to the data of the food production line data set.

For the second case study the sampling rate was normalized to 30 seconds. With the mean
absolute error of 96, 96 the prediction deviates from the true failure by roughly 49 minutes.
Provided the fuzziness of this result, the business goal to provide 30 minutes of reaction
time can not be met. Still from a business perspective value can be provided. By adding
buffer time to the actual prediction and purposely skew the predictions to a point in time
before the actual failure. That way outages can be reduced but regular maintenance
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Figure 4.15: Comparison of the results achieved by the neural network in the first case
study with the degraded data set and the second case study.

can still be avoided. This offers an entry point to a more flexible maintenance model,
but improvements are still possible and necessary for future work. Starting points are
described below.

Looking at the classification task, the applied machine learning methods are not able to
identify a critical event within the given data as can be seen in Table 4.11. This result
can be assembled to the following reasons:

First, the number of features used for learning and classification are sparse. At the
dimensionality reduction described in Section 4.4.1, features which are not relevant for
further processing due to statistical properties or their semantic content are eliminated.
After the elimination 10 features remain. These 10 features partly depend on each other
or describe the same underlying value. For example one feature is the batch counter
and another feature measures the production speed, which directly relates to the batch
counter. Therefore, the features can be clustered to 3 dimensions, which summarize the
features that depend directly, as follows:

1. Speed

2. Temperature

3. Power consumption

65



4. Study of a Dataset not Optimized for Predictive Maintenance

Furthermore, speed and power consumption features are values which are configured
by the user. The only values that are measured by a sensor are the temperature of
the heating unit and the batch counter. Although the influence of the other features
to machine health prediction is not eliminated, they are not typical health indicators
according to the literature discussed in Chapter 2.
Besides the low number of features, after the preprocessing steps and the creation of
the runtime described in Section 4.4.2, the actual time span which is used for machine
learning is approximately 700 hours, which corresponds to approximately 86350 data
points. The life span of a production line, according to domain experts, is bigger than
10 years. Maintenance statistics were not available, but the probability of a failure or
even breakdown within the captured data is evaluated as small. This raises the most
important issue, which is the insufficient groundtruth.
Only 33 of the approximately 86350 data points are identified as critical events. These
critical events are composed of a variety of different alarms and errors as described in
Section 4.3.6. Therefore, the build up to the incidents cannot be assumed to be similar.
In other words, the behavior of the features before an unknown number of the 33 incidents
is probable to be variable. Due to the validation, a split of the data was conducted by a
80:20 ratio, leaving 26 randomly selected events for the training of the algorithms and 7
critical events for evaluation. Given the variety of events that can occur, it is possible
that events are in the evaluation batch which are not in the trainings batch.

To overcome these shortcomings, two possible paths are identified:

• Improve the data

• Improve the methodology

The obvious implication for the lack of sufficient data is to improve the quality and
quantity of the data. For supervised classification methods to learn the properties of a
set of categories, further called clusters, three things are needed:

• clusters of data which are similar within the cluster but vary at least in one feature
to other clusters

• depending on the variation of the data, the number of clusters and the used method:
a minimum of data for the learning mechanisms to respond

• labels for the data

The first shortcoming is the overall quantity of the data. The most simple way to increase
the amount of data is to increase the time span in which the data is measured. A more
effective way is the extension of the number of monitored devices. There are already
several devices monitored, but it is not possible to merge the data directly, due to the
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lack of harmonization. Some parameters cannot be harmonized due to environmental
or customer specific circumstances. For example measurements of the temperature
which vary heavily with different locations of the production line and seasonal changes.
Also customization of features of the devices for customers influence the measurements.
Examples are the recipe and shape of the processed food. But the standardization
of machine states, an overall identification for sensors and a differentiation between
measurements and control or interface data within the database would decrease the effort
for merging the data of different devices drastically. Another way to increase data is to
increase the number of measurements. Additionally to the existing measurements the
following possibilities to add sensors are identified: Multiple measurements of critical
parts of the production line increase the fragmentation of the monitoring and allow to
predict the failure of specific parts. Different dimensions of measurements increase the
probability to detect the degradation of parts. State of the art measurements include
vibration, temperature, power consumption, revolution counting and domain specific
wearing measurements like strain gauge. Experiments with degradation of features in the
first case study indicate to use at least 18 features for 100 devices to be able to predict a
failure with an mean absolute error of 30 minutes. [LWQM17] strongly recommend the
usage of vibration sensors.
But an increased number of data points only increases the data quality if the corre-
sponding labels are sufficient. Therefore, an appropriate strategy for assembling the
ground truth is needed. A first step would be to increase the intelligibility of already
captured incidents. This can be achieved directly by meaningful alarm and error messages.
Furthermore, a designated separation between incidents regarding the machine health
and other errors and warnings which concern human security, the product itself, or other
issues would simplify the reverse engineering of critical incidents or failures. To be able to
distinguish between different kinds of incidents, the segmentation can also reach further
to document which part is affected or categorize the incident in an appropriate way. This
strategy must still be equal at all devices, while respecting the subdivision between errors,
alarms and warnings.

Besides the internal documentation of incidents, an addition is an external maintenance
documentation. At the failure of a device, the state it is in is not stable. Therefore, an
internal documentation can easily fail or be faulty. In that case a manual maintenance
protocol can complement the missing data. The protocol can either be a book where the
exact date and incident is documented, or a separate small system which for example only
allows the maintenance worker to restart the production line if a summary of the incident
is entered. Another approach would be to sell a full service contract in combination with
the device, where maintenance is only conducted by known personnel which is instructed
to document all actions properly. A more sophisticated method is to launch run to failure
experiments with a production line. This would have several advantages. On one hand
data can be collected and documented meticulously. The data captures the whole span
of degradation up to the failure. At the same time, typical weak points of the device can
be identified. This information can be used to place additional sensors in strategically
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optimized places.

Besides improving the data, the second approach is to improve the methodology, which is
also an interesting topic for future work. The iterative exploratory approach proved to be
very useful. At each iteration, we were able to recover new information. The alternation
between analysis and expert feedback supported and complemented the process in both
directions: The understanding of the data for machine learning and the improvement of
the data for the domain experts. A possible enhancement for the iterative process is to
start earlier in the development process of a product, to identify possible improvements
in the designing phase and thus reduce the cost for changes.
Regarding machine learning, it was shown that the used methods are not sufficient
to predict failures with the available data. One approach to automatically simulate a
higher quantity of data is to train generative neural networks to generate simulated
incidents. Additionally more extensive experiments can be conducted to optimize network
architectures which can handle sparse data.
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CHAPTER 5
Conclusions

In this thesis two different settings are studied, in order to think about a suitable
methodology for predicting the remaining useful life of a machine that can cope with
the different preconditions that the settings implicate. In the first case study, the data
is well defined and the groundtruth is known. In the second case study, a high level of
uncertainty is present and the groundturth has to be reverse engineered to create the
training and evaluation data set. Looking at the CRISP-DM methodology, the data
preparation and modeling in the first case study can start immediately. The missing
groundtruth request further steps of analyzing and disassembling to be able to reverse
engineer incidents, which can further be marked for the training and evaluation of the
data set. Another difference is the the data of the first case study is a run to failure data
set. This means the incidents of failure can be assumed to be absolutely true and there
is a periodic recording of measurements of the degradation that leads to a failure. That
implies three different parts of information:

1. A number of measurements where no failure occurred

2. A number of incidents or failures which are known

3. Measurements of the degradation that lead to a failure

In contrast, in the second case study, the incidents are an assumption due to findings
within the analysis of the data. Data where no incident is assumed automatically is
suspected to include degradation that leads to the next assumed incident. Also the
recording of the data is only partly periodic. To create a constant time series, it has
to be interpolated and organized, and therefore modified. These distortions of the
data potentially hinders the machine learning algorithm to perform at its optimum, as
discussed in the comparison in Section 4.7.
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The above differences between the case studies have an impact on the performance of
the used machine learning algorithms, but are not considered by the algorithms itself.
The methodology that leads to the usage of the machine learning algorithms however is
influenced highly. Thinking of the whole process leading to the results, the potential of
rising the degree of automation including both scenarios are identified in three strategies:

• Automation of the date preparation steps

• Refining the algorithm to be able to cope with variations that come with different
scenarios like degree of sparsity of incidents

• Optimize the aggregation of the data to reduce the diversity between the scenarios

To simplify the analysis steps necessary in the second case study, parts of the engineering
can be automated and conducted with their own intelligence. For the automated feature
detection, a whole field of research exists [HA04]. Also for data amputation problems dif-
ferent approaches already exist and are refined [CFB+03]. By joining these methods to a
semi automated or automated pipeline, the efficiency of data preparation can be increased.

The focus on this thesis was to conduct experiments on two different scenarios with one
neural network architecture. Although the results of the measured metrics differ, the
difference is larger by a factor of approximately 2e52 compared to the random forest
algorithm which was assumed as baseline. Further refinement of the architecture of the
neural network appears promising for future work. Especially noise reduction seems to
be a promising topic for future work: With a one layered autoencoder the results of the
first case study increased slightly as discussed in Chapter 3. Deep autoencoder weren’t
able to improve the final results. Further techniques used in state of the art methods
include variational autoencoders [FvA14], which also would be an interesting next step
for further investigations. Aside from that the noise reduction could also be improved
in a next step by adding randomized, distributed noise to the input of an autoencoder.
With this technique the smoothing of the encoder would increase, which potentially has
a good effect for further processing.

Another way would be to properly record incidents from the beginning or create a run
to failure data set in a test environment. But running a machine until its failure for
the purpose of data acquisition is difficult in a commercial environment and according
to experts not an accepted scenario. Therefore, for the future, data driven approaches
connected to management methods which introduce a clean collection of measurements
have great potential to converge the possibilities and results of real world scenarios similar
to the second case study of this thesis.
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