

Towards weak bases of minimal relational clones on all finite sets

Mike Behrisch×*1

 $^{ imes}$ Institute of Discrete Mathematics and Geometry, Algebra Group, TU Wien

*Institute for Algebra

3rd September 2023 • (Stará Lesná, Slovakia)

¹Supported by Austrian Science Fund (FWF) grant P 33878.

Introduction

What are weak bases good for?

- tool for reductions (≤) between various types of computational problems in complexity theory
- obtaining special complexity reductions where other methods fail (e.g., incompatibility with ∃) or are too coarse,

for example:

- unique satisfiability
- surjective satisfiability
- inverse satisfiability
- counting problems under parsimonious reductions
- optimisation problems

 P_1 at most as hard as P_2

Basic notions

Clones and relational clones

Clone = set of (total) finitary functions F

- closed under composition (substitution) $x \mapsto f(g_1(x), \dots, g_n(x))$
- containing all projection operations $(x_1, \ldots, x_n) \stackrel{e_i}{\mapsto} x_i$,

$$1 \le i \le n \in \mathbb{N}_+$$

- Relational clone = set of finitary relations Q
 - containing equality relation $\Delta_A = \{(x, x) \mid x \in A\}$
 - closed under pp-definable relations (by a formula $\exists z_1 \cdots z_t : \bigwedge_{i=1}^{\ell} \varrho_i(y_{i,1}, \dots, y_{i,m_i})$)

$$\exists, \land, =$$

Preservation (compatibility)

$$f \rhd \varrho \iff \forall r_1, \ldots, r_n \in \varrho : \quad f \circ (r_1, \ldots, r_n) \in \varrho$$

$$Q \mapsto \operatorname{Pol} Q$$

 $F \mapsto \operatorname{Inv} F$

(polymorphisms, compatible functions = clone) (invariant (compatible) relations = rel. clone)

Strong partial clones and weak systems with eq.

Strong partial clone = set of $\underline{\text{partial}}$ finitary functions F

- closed under composition (substitution)
- containing all projection operations
- closed under domain restriction: $f \subseteq g \in F \implies f \in F \ [\circ, e_i, \upharpoonright]$

Weak system with equality = set of finitary relations Q

- containing equality relation $\Delta_A = \{(x,x) \mid x \in A\}$
- closed under conjunctively definable relations (by a formula $\bigwedge_{i=1}^{\ell} \varrho_i(y_{i,1},\ldots,y_{i,m_i})$)

 \land ,=

Preservation (compatibility)

$$f \rhd \varrho \iff \forall r_1, \ldots, r_n \in \varrho : \quad f \circ (r_1, \ldots, r_n) \in \varrho \text{ if defined}$$

$$Q \mapsto \mathsf{pPol}\ Q$$
 (partial polymorphisms = strong partial clone)
 $F \mapsto \mathsf{Inv}\ F$ (invariant relations = weak system with equality)

Weak bases of a relational clone Q / clone F

interval of strong partial clones covering $F = Pol_A Q < O_A$

weak systems $\ni \Delta_A$ generating $Q = \operatorname{Inv}_A F$

Weak bases of a relational clone Q / clone F

interval of strong partial clones covering $F = \text{Pol}_A Q \leq O_A$

weak systems $\ni \Delta_A$ generating $Q = \operatorname{Inv}_A F$

weak base of Q / F: a finite $W \subseteq Q$ with $[W]_{\wedge,=} = S_Q / P$ pPol W the largest strong partial clone P with $O_A \cap P = F$

Reduced weak base relations

 $\varrho \subseteq A^m$ weak base relation $\iff \{\varrho\}$ weak base

Fictitious coordinates

- *m*-th coordinate fictitious $\iff \exists \tilde{\varrho} \subseteq A^{m-1}$: $\varrho = \tilde{\varrho} \times A$
- ϱ aficitious \iff no fictitious coordinates, i.e. $\varrho \neq \tilde{\varrho} \times A$ up to permutation of arguments

Redundant pairs

- $1 \le i < j \le m$ redundant pair $\iff \forall x = (x_1, \dots, x_m) \in \varrho : x_i = x_j$
- ϱ irredundant \iff no redundant pairs

Reduced weak base relation $\varrho \subseteq A^m$

- ϱ afictitious (no fictitious coordinates)
- ϱ irredundant (no redundant pairs)
- ullet identification of any coord's $1 \leq i < j \leq m$ in arrho loses weak base

Tools

n-th graphic of a clone

For $F \subseteq O_A$, $\varrho \subseteq A^m$, $m \in \mathbb{N}_+$

 $\Gamma_F(\varrho)$: the least F-invariant relation containing ϱ , subalg. closure

Given $n \in \mathbb{N}_+$, set $m := |A^n|$; fix a bijection $\beta \colon m = |A^n| \longrightarrow A^n$

n-th graphic of a clone $F \leq O_A$

representation of *n*-ary part $F^{(n)}$ as a relation of arity m (value tuples) $\Gamma_F(\chi_n) = \{ f \circ \beta \mid f \in F^{(n)} \}$

Example:
$$A = \{0, 1, 2\}, n = 2, m = 3^2 = 9 F^{(2)} = \{f_1, \dots, f_s\}$$

$$\beta : A \mapsto X_0 = (0,0) \\ 1 \mapsto X_1 = (0,1) \\ 2 \mapsto X_2 = (0,2) \\ 3 \mapsto X_3 = (1,0) \\ \beta : A \mapsto X_5 = (1,2) \\ 6 \mapsto X_5 = (2,0) \\ 7 \mapsto X_7 = (2,1) \\ 8 \mapsto X_8 = (2,2)$$

$$\Gamma_F(\chi_n) = \begin{cases} \begin{pmatrix} f_1(x_0) \\ f_1(x_1) \\ f_1(x_2) \\ f_1(x_3) \\ f_1(x_4) \\ f_1(x_5) \\ f_1(x_6) \\ f_1(x_7) \\ f_1(x_8) \end{pmatrix}, \dots, \begin{pmatrix} f_s(x_0) \\ f_s(x_1) \\ f_s(x_2) \\ f_s(x_3) \\ f_s(x_4) \\ f_s(x_5) \\ f_s(x_6) \\ f_s(x_7) \\ f_1(x_8) \end{pmatrix}$$

Basic tool

Getting weak bases from sizes of cores

Core of a clone $F \leq O_A$ \equiv a relation $\varrho \in R_A$ with $F = Pol_A \{ \Gamma_F(\varrho) \}$ $|\varrho|$: a core size of F

aka a (finite) generating set for a single generator of a relational clone Basic tool:

Theorem (Schnoor & Schnoor) clone $F \leq O_A$ has a core of size $n \in \mathbb{N}_+$ $\Longrightarrow \Gamma_F(\chi_n)$ weak base relation of F

Will be our starting point!

Main tool

Getting new weak bases from old ones

Main tool:

$$W \subseteq R_A$$
 weak base of $F \le O_A$
 $W' \subseteq [W]_{\wedge,=}$ and $Pol_A W' \subseteq F \implies W'$ weak base of F

Note:

- $W' \subseteq [W]_{\wedge,=} \subseteq [W]_{\mathsf{R}_A} = \mathsf{Inv}_A \, \mathsf{Pol}_A \, W$
 - $\implies \operatorname{Pol}_A W' \supseteq \operatorname{Pol}_A W \stackrel{\text{wb}}{=} F$
- $Pol_A W' \subseteq F$ ensures that $Pol_A W' = F$, i.e.,
- W' is not too simple (sufficiently rich)

Background tool

Characterisation of maximal clones

maximal clone \equiv co-atom in the clone lattice \leftrightarrow minimal relational clone

Theorem (I. Rosenberg)

$$F \leq O_A$$
 is maximal iff $\exists \varrho \in R_A \setminus Inv_A O_A$: $F = Pol_A \{\varrho\}$ and

- $\varrho = \leq \text{ partial order with top and bottom}$
- 2 $\varrho = s^{\bullet} = \{(x, s(x)) \mid x \in A\}$ for $s \in \text{Sym}(A)$ with only cycles of prime length p, no fixed points
- $\varrho = \varrho_{\mathsf{G}} = \{(x, y, u, v) \in A^4 \mid x + y = u + v\}$ for an elementary Abelian p-group $\langle A; +, 0 \rangle$, p prime
- $\Delta_A \subsetneq \varrho \subsetneq A^2$ non-trivial equivalence relation
- $\varrho \subsetneq A^m$ non-trivial central relation where $1 \leq m < |A|$

$$\varrho = \left\{ \left. \mathbf{a} \in \mathcal{A}^h \mid \varphi \circ \mathbf{a} \in \eta \right\} \land \left\langle h^m; \eta \right\rangle = \left\langle h; \iota_h \right\rangle^m \land \left| \iota_h = \left\{ \left. \mathbf{x} \in \mathcal{A}^h \mid |\text{im } \mathbf{x}| < h \right\} \right. \right)$$

Towards results

Two sorts of maximal clones

2 Cases for a maximal clone $F \leq O_A$

$$2 \le k = |A| < \aleph_0$$
 $F \supseteq O_A^{(1)} \quad k = 2 \implies F = L \text{ clone of (affine) linear functions}$
 $k \ge 3 \implies F = U_{k-1} = \operatorname{Pol}_A\{\iota_k\}$ Słupecki's clone
(all non-surjective ops. or ess. permutations)

 $F \not\supseteq O_A^{(1)}$ all other maximal clones

Maximal clones of the first sort (of type 6)

$$3 \leq k = |A| < \aleph_0$$

$$O_A^{(1)} \subseteq F$$
, i.e., $F = U_{k-1} = Pol_A\{\iota_k\}$ Słupecki's clone

$$\exists f_1 \neq f_2 \in \mathsf{O}_A^{(1)} \subseteq F : \quad \iota_k = \Gamma_{U_{k-1}}(\{f_1 \circ \beta, f_2 \circ \beta\})$$

Basic tool (Schnoor & Schnoor):

$$\implies \{f_1 \circ \beta, f_2 \circ \beta\}$$
 is a core $\implies \Gamma_{U_{k-1}}(\chi_2)$ is irr. weak base rel.

Simplification with the main tool

$$\iota_k = \{(x_1, \dots, x_k) \mid (x_1, \dots, x_k, \dots, x_k) \in \Gamma_{U_{k-1}}(\chi_2)\} \in [\{\Gamma_{U_{k-1}}(\chi_2)\}]_{\wedge,=}$$
 and $\text{Pol}_A\{\iota_k\} = F$ $\Longrightarrow \iota_k$ reduced weak base relation

$$3 \leq k = |A| < \aleph_0$$

$$\chi_1 = \{ \mathsf{id}_A \, \circ \beta \}$$

$$U_{k-1} \neq F \leq O_A$$

F has core size 1,

•
$$F \neq U_{k-1} \implies F^{(1)} \subsetneq O_A^{(1)}$$

$$3 \le k = |A| < \aleph_0$$

$$\chi_1 = \{ \mathsf{id}_A \, \circ \beta \}$$

$$U_{k-1} \neq F \leq O_A$$

F has core size 1,

- $F \neq U_{k-1} \Longrightarrow F^{(1)} \subsetneq O_A^{(1)}$
- for $f \in O_A^{(1)}$:

$$f \in F^{(1)} \iff f \circ \beta \in \Gamma_F(\chi_1) \iff f \in Pol_A\{\Gamma_F(\chi_1)\}$$

$$3 \leq k = |A| < \aleph_0$$

$$\chi_1 = \{ \mathsf{id}_A \, \circ \beta \}$$

$$U_{k-1} \neq F \leq O_A$$

F has core size 1,

- $F \neq U_{k-1} \Longrightarrow F^{(1)} \subsetneq O_A^{(1)}$
- for $f \in \mathcal{O}_A^{(1)}$: $f \in F^{(1)} \iff f \circ \beta \in \Gamma_F(\chi_1) \iff f \in \mathsf{Pol}_A\{\Gamma_F(\chi_1)\}$
- $Pol_A^{(1)}\{\Gamma_F(\chi_1)\}=F^{(1)}\subsetneq O_A^{(1)}.$

$$3 \leq k = |A| < \aleph_0$$

$$\chi_1 = \{ \mathsf{id}_A \, \circ \beta \}$$

$$U_{k-1} \neq F \leq O_A$$

F has core size 1,

- $F \neq U_{k-1} \Longrightarrow F^{(1)} \subsetneq O_A^{(1)}$
- for $f \in \mathcal{O}_A^{(1)}$: $f \in F^{(1)} \iff f \circ \beta \in \Gamma_F(\chi_1) \iff f \in \mathsf{Pol}_A\{\Gamma_F(\chi_1)\}$
- $Pol_A^{(1)}\{\Gamma_F(\chi_1)\}=F^{(1)}\subsetneq O_A^{(1)}.$
- $\Longrightarrow F \subseteq Pol_A\{\Gamma_F(\chi_1)\} \subsetneq O_A$

$$3 \le k = |A| < \aleph_0$$

$$\chi_1 = \{ \mathsf{id}_A \, \circ \beta \}$$

$$U_{k-1} \neq F \leq O_A$$

F has core size 1,

- $F \neq U_{k-1} \Longrightarrow F^{(1)} \subsetneq O_A^{(1)}$
- for $f \in \mathcal{O}_A^{(1)}$: $f \in F^{(1)} \iff f \circ \beta \in \Gamma_F(\chi_1) \iff f \in \mathsf{Pol}_A\{\Gamma_F(\chi_1)\}$
- $Pol_A^{(1)}\{\Gamma_F(\chi_1)\} = F^{(1)} \subsetneq O_A^{(1)}$.
- $\Longrightarrow F \subseteq Pol_A\{\Gamma_F(\chi_1)\} \subsetneq O_A$
- $F = Pol_A\{\Gamma_F(\chi_1)\}$ by maximality of F

$$3 \leq k = |A| < \aleph_0$$

$$\chi_1 = \{ \mathsf{id}_A \, \circ \beta \}$$

$$U_{k-1} \neq F \leq O_A$$

F has core size 1,

- $F \neq U_{k-1} \Longrightarrow F^{(1)} \subsetneq O_A^{(1)}$
- for $f \in \mathcal{O}_A^{(1)}$: $f \in F^{(1)} \iff f \circ \beta \in \Gamma_F(\chi_1) \iff f \in \mathsf{Pol}_A\{\Gamma_F(\chi_1)\}$
- $Pol_A^{(1)}\{\Gamma_F(\chi_1)\}=F^{(1)}\subsetneq O_A^{(1)}.$
- $\Longrightarrow F \subseteq Pol_A\{\Gamma_F(\chi_1)\} \subsetneq O_A$
- $F = Pol_A\{\Gamma_F(\chi_1)\}$ by maximality of F
- $\chi_1 = \{ id_A \circ \beta \}$ core of F with 1 element

$$3 \leq k = |A| < \aleph_0$$

$$\chi_1 = \{ \mathsf{id}_A \, \circ \beta \}$$

$$U_{k-1} \neq F \leq O_A$$

F has core size 1,

- $F \neq U_{k-1} \Longrightarrow F^{(1)} \subsetneq O_A^{(1)}$
- for $f \in \mathcal{O}_A^{(1)}$: $f \in F^{(1)} \iff f \circ \beta \in \Gamma_F(\chi_1) \iff f \in \mathsf{Pol}_A\{\Gamma_F(\chi_1)\}$
- $\operatorname{Pol}_A^{(1)}\{\Gamma_F(\chi_1)\}=F^{(1)}\subsetneq O_A^{(1)}$.
- $\Longrightarrow F \subseteq Pol_A\{\Gamma_F(\chi_1)\} \subsetneq O_A$
- $F = Pol_A\{\Gamma_F(\chi_1)\}$ by maximality of F
- $\chi_1 = \{ id_A \circ \beta \}$ core of F with 1 element
- basic tool (Schnoor & Schnoor): $\Gamma_F(\chi_1)$ weak base relation

$$3 \leq k = |A| < \aleph_0$$

$$\chi_1 = \{ \mathsf{id}_A \, \circ \beta \}$$

$$U_{k-1} \neq F \leq O_A$$

F has core size 1,

thus $\Gamma_F(\chi_1)$ irr. weak base rel. for F

- $F \neq U_{k-1} \Longrightarrow F^{(1)} \subsetneq O_A^{(1)}$
- for $f \in \mathcal{O}_A^{(1)}$: $f \in F^{(1)} \iff f \circ \beta \in \Gamma_F(\chi_1) \iff f \in \mathsf{Pol}_A\{\Gamma_F(\chi_1)\}$
- $\mathsf{Pol}_A^{(1)} \{ \Gamma_F(\chi_1) \} = F^{(1)} \subsetneq \mathsf{O}_A^{(1)}.$
- $\Longrightarrow F \subseteq \operatorname{Pol}_A\{\Gamma_F(\chi_1)\} \subsetneq \operatorname{O}_A$ • $F = \operatorname{Pol}_A\{\Gamma_F(\chi_1)\}$ by maximality of F
- $\chi_1 = \{ id_A \circ \beta \}$ core of F with 1 element
- basic tool (Schnoor & Schnoor): $\Gamma_F(\chi_1)$ weak base relation

Type 3: affine
$$F = L_G$$
 for $G = \langle A; +, 0 \rangle$

 $\Gamma_{L_{\mathsf{G}}}(\chi_1)$ reduced weak base relation for L_{G}

Further simplification using our main tool

Type 1: bounded orders

 $\Gamma_F(\chi_1) \leadsto \leq \text{reduced weak base relation}$

Type 2: graphs of prime permutations s

 $\Gamma_F(\chi_1) \leadsto \{(a,s(a),s^2(a),\ldots,s^{p-1}(a)) \mid a \in A\} \text{ red. weak base rel.}$

Type 4: equivalence relations θ

 $\Gamma_F(\chi_1) \leadsto \theta$ reduced weak base relation

Type 5: central relations $\varrho_a \subsetneq A^m$, $1 \leq m < |A|$

 $\Gamma_F(\chi_1) \leadsto \varrho_a$ reduced weak base relation

Type 6: h-universal relations $\varrho' \subsetneq A^h$, $3 \leq h < |A|$, $Pol_A \{ \varrho' \} \neq U_{k-1}$:

 $\Gamma_F(\chi_1) \leadsto \varrho'$ reduced weak base relation

Example: clone $Pol_A\{\leq\}$ of monotone operations

$F = Pol_A\{\leq\}$ with $\forall x \in A : 0 \leq x \leq 1$

- $\Gamma_F(\chi_1)$ irredundant weak base relation
- identify arguments:

$$\varrho := \{(x,y) \in A^2 \mid (x,y,\ldots,y) \in \Gamma_F(\chi_1)\} \in [\{\Gamma_F(\chi_1)\}]_{\wedge,=}$$
 (identified indices depend on a suitable choice of β)

- prove: $\varrho = \leq$
- hence: $\leq \in [\{\Gamma_F(\chi_1)\}]_{\wedge,=}$ and clearly $Pol_A\{\leq\} = F$
- main tool $\implies W' = \{<\}$ weak base

Example: clone $Pol_A\{\theta\}$ of θ -compatible op's

$F = Pol_A\{\theta\}$

- $\Gamma_F(\chi_1)$ irredundant weak base relation
- identify arguments:

$$\varrho := \{(x,y) \in A^2 \mid (x,y,\ldots,y) \in \Gamma_F(\chi_1)\} \in [\{\Gamma_F(\chi_1)\}]_{\wedge,=}$$
 (identified indices depend on a suitable choice of β)

- prove: $\varrho = \theta$
- hence: $\theta \in [\{\Gamma_F(\chi_1)\}]_{\wedge,=}$ and clearly $Pol_A\{\theta\} = F$
- main tool $\implies W' = \{\theta\}$ weak base

Example: clone $Pol_A\{s^{\bullet}\}$ of s-self-dual op's

$F = Pol_A\{s^{\bullet}\}, s \in Sym(A)$ with d cycles of length p

- $\Gamma_F(\chi_1)$ irredundant weak base relation
- identify arguments:

$$\varrho := \{ (x_1, x_2, \dots, x_p) \in A^p \mid (x_1, \dots, x_p, x_1, \dots, x_p, \dots, x_1, \dots, x_p) \in \Gamma_F(\chi_1) \}$$

$$\in [\{ \Gamma_F(\chi_1) \}]_{\wedge,=}$$
(identified indices depend on a suitable choice of β)

- prove: $\varrho = \{(a, s(a), \dots, s^{p-1}(a)) \mid a \in A\}$
- hence: $\{(a, s(a), \dots, s^{p-1}(a)) \mid a \in A\} \in [\{\Gamma_F(\chi_1)\}]_{\wedge,=}$ and even $\mathsf{Pol}_A\{\varrho\} = F$
- main tool $\implies \{(a, s(a), \dots, s^{p-1}(a)) \mid a \in A\}$ weak base rel.

Example: clone $Pol_A\{\varrho_a\}$ of ϱ_a -preserving op's

$F = Pol_A \{ \varrho_a \}, \ \varrho_a \subsetneq A^m$ with central element a

- $\Gamma_F(\chi_1)$ irredundant weak base relation
- identify arguments:

$$\varrho := \{ (x_1, \dots, x_m) \in A^m \mid (x_1, \dots, x_m, x_m, \dots, x_m) \in \Gamma_F(\chi_1) \} \\ \in [\{ \Gamma_F(\chi_1) \}]_{\wedge,=}$$
 (identified indices depend on a suitable choice of β)

- prove: $\varrho = \varrho_a$
- hence: $\varrho_a \in [\{\Gamma_F(\chi_1)\}]_{\wedge,=}$ and clearly $Pol_A\{\varrho_a\} = F$
- main tool $\implies \varrho_a$ weak base relation

Example: clone $Pol_A\{\varrho'\} \neq U_{k-1}$ of ϱ' -preserving op's, not Słupecki's clone

$$U_{k-1} \neq F = \text{Pol}_A\{\varrho'\}, \ \varrho' = (\varphi \circ)^{-1} [\iota_h^{\otimes m}] \subsetneq A^h \ h$$
-universal

- $\Gamma_F(\chi_1)$ irredundant weak base relation
- identify arguments:

$$\varrho := \left\{ (x_1, \dots, x_h) \in A^h \mid (x_1, \dots, x_h, x_h, \dots, x_h) \in \Gamma_F(\chi_1) \right\} \\ \in \left[\left\{ \Gamma_F(\chi_1) \right\} \right]_{\wedge,=}$$
 (identified indices depend on a suitable choice of β)

- prove: $\varrho = \varrho'$ (using $F \neq U_{k-1}$)
- hence: $\varrho' \in [\{\Gamma_F(\chi_1)\}]_{\wedge,=}$ and clearly $\operatorname{Pol}_A\{\varrho'\} = F$
- main tool $\implies \rho'$ weak base relation

Summary

Theorem (for $3 \leq |A| < \aleph_0$)

 $F = Pol_A\{\varrho\} \le O_A$ maximal clone, ϱ a Rosenberg rel.

- F affine linear op's $\Longrightarrow \Gamma_F(\chi_1)$ reduced weak base rel.
- F s-self-dual op's

$$\implies \{(a, s(a), \dots, s^{p-1}(a)) \mid a \in A\}$$
 reduced weak base rel.

• other F $\Longrightarrow \varrho$ reduced weak base rel.

Example: The set $A = \{0, 1, 2\}$

18 maximal clones have the following reduced weak base relations:

• *L* clone of affine operations w.r.t. $\langle \mathbb{Z}_3; +, 0 \rangle$:

$$\varrho = \Gamma_L(\chi_1) = \begin{cases} 012001122\\012120201\\012212010 \end{cases}$$

• s = (012) cyclic shift: $F = Pol_A\{s^{\bullet}\}$ self-dual operations

$$\varrho = \left\{ \begin{array}{c} 012 \\ 120 \\ 201 \end{array} \right\}$$

- all other 16 maximal clones $F = Pol_A\{\varrho\}$:
 - ϱ as in Rosenberg's theorem.
 - 3 clones of monotone operations
 - 3 clones of partition preserving operations
 - \bullet 3 + 3 clones of subset preserving operations
 - 3 clones of operations preserving binary central relations
 - 1 clone preserving $\iota_3 = U_2$ (Słupecki's clone)

Final remarks / next steps

- $F = \operatorname{Pol}_A\{\varrho\} = \operatorname{Pol}_A\{\Gamma_F(\chi_n)\}$ with $n \leq 2$ maximal clone ϱ from Rosenberg's theorem
- $\operatorname{Inv}_A F = [\{\varrho\}]_{\mathsf{R}_A} = [\{\Gamma_F(\chi_n)\}]_{\mathsf{R}_A}$ minimal relational clone
- any non-trivial $\sigma \in \operatorname{Inv}_A F = [\{\Gamma_F(\chi_n)\}]_{\mathsf{R}_A}$ satisfies
 - $\operatorname{Inv}_A F = [\{\sigma\}]_{R_A}$, i.e., $\operatorname{Pol}_A \{\sigma\} = F$
 - $\sigma \in [\{\Gamma_F(\chi_n)\}]_{\exists,\wedge,=}$

is a potential weak base relation (also ϱ is a candidate), depending on $\sigma \in [\{\Gamma_F(\chi_n)\}]_{\wedge,=}$ (by the main tool)

Future work

complexity perspective:

weak bases for other (e.g., minimal) clones also interesting also more challenging: finite relatedness problem