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What are weak bases good for?

tool for reductions (≤) between
various types of computational problems in complexity theory
obtaining special complexity reductions where
other methods fail (e. g., incompatibility with ∃) or are too
coarse,
for example:

unique satisfiability
surjective satisfiability
inverse satisfiability
counting problems under parsimonious reductions
optimisation problems

P1 P2≤
‘P1 at most as hard as P2’

weak base
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Basic notions
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Clones and relational clones

Clone = set of (total) finitary functions F

closed under composition (substitution) x 7→ f (g1(x), . . . , gn(x))

containing all projection operations (x1, . . . , xn)
ei7→ xi ,

1 ≤ i ≤ n ∈ N+ ◦, ei

Relational clone = set of finitary relations Q
containing equality relation ∆A = {(x , x) | x ∈ A}
closed under pp-definable relations
(by a formula ∃z1 · · · zt :

∧ℓ
i=1 ϱi(yi ,1, . . . , yi ,mi )) ∃,∧,=

Preservation (compatibility)

f ▷ ϱ ⇐⇒ ∀r 1, . . . , r n ∈ ϱ : f ◦ (r 1, . . . , r n) ∈ ϱ

Q 7→ PolQ (polymorphisms, compatible functions = clone)
F 7→ Inv F (invariant (compatible) relations = rel. clone)
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Strong partial clones and weak systems with eq.

Strong partial clone = set of partial finitary functions F

closed under composition (substitution)
containing all projection operations
closed under domain restriction: f ⊆ g ∈ F =⇒ f ∈ F ◦, ei , ↾

Weak system with equality = set of finitary relations Q
containing equality relation ∆A = {(x , x) | x ∈ A}
closed under conjunctively definable relations
(by a formula

∧ℓ
i=1 ϱi(yi ,1, . . . , yi ,mi )) ∧,=

Preservation (compatibility)

f ▷ ϱ ⇐⇒ ∀r 1, . . . , r n ∈ ϱ : f ◦ (r 1, . . . , r n) ∈ ϱ if defined

Q 7→ pPolQ (partial polymorphisms = strong partial clone)
F 7→ Inv F (invariant relations = weak system with equality)
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Weak bases of a relational clone Q / clone F

interval of strong par-
tial clones covering
F = PolA Q ≤ OA

PF = pPolW

pPolQ = pPol InvA F

pPol S

F =
OA ∩ pPol S =
PolA S

weak systems ∋ ∆A

generating Q = InvA F

SQ = [W ]∧,=

[Q]∧,= = Q

S = [S ]∧,=

Inv Pol S = Q

weak base of Q / F : a finite W ⊆ Q with [W ]∧,= = SQ /
pPolW the largest strong partial clone P with OA ∩P = F
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Reduced weak base relations

ϱ ⊆ Am weak base relation ⇐⇒ {ϱ} weak base

Fictitious coordinates
m-th coordinate fictitious ⇐⇒ ∃ϱ̃ ⊆ Am−1 : ϱ = ϱ̃× A
ϱ aficitious ⇐⇒ no fictitious coordinates,
i.e. ϱ ̸= ϱ̃× A up to permutation of arguments

Redundant pairs
1 ≤ i < j ≤ m redundant pair ⇐⇒ ∀x=(x1, . . . , xm) ∈ ϱ : xi = xj

ϱ irredundant ⇐⇒ no redundant pairs

Reduced weak base relation ϱ ⊆ Am

ϱ afictitious (no fictitious coordinates)
ϱ irredundant (no redundant pairs)
identification of any coord’s 1 ≤ i < j ≤ m in ϱ loses weak base
prop. M. Behrisch Weak bases for minimal relational clones



Tools
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n-th graphic of a clone

For F ⊆ OA, ϱ ⊆ Am, m ∈ N+

ΓF (ϱ): the least F -invariant relation containing ϱ, subalg. closure

Given n ∈ N+, set m := |An|; fix a bijection β : m = |An| −→ An

n-th graphic of a clone F ≤ OA

representation of n-ary part F (n) as a relation of arity m (value tuples)
ΓF (χn) =

{
f ◦ β

∣∣ f ∈ F (n)
}

Example: A = {0, 1, 2}, n = 2, m = 32 = 9 F (2) = {f1, . . . , fs}

β :

0 7→ x0 = (0, 0)
1 7→ x1 = (0, 1)
2 7→ x2 = (0, 2)
3 7→ x3 = (1, 0)
4 7→ x4 = (1, 1)
5 7→ x5 = (1, 2)
6 7→ x6 = (2, 0)
7 7→ x7 = (2, 1)
8 7→ x8 = (2, 2)

=⇒ ΓF (χn) =





f1(x0)
f1(x1)
f1(x2)
f1(x3)
f1(x4)
f1(x5)
f1(x6)
f1(x7)
f1(x8)


, . . . ,



fs(x0)
fs(x1)
fs(x2)
fs(x3)
fs(x4)
fs(x5)
fs(x6)
fs(x7)
fs(x8)




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Basic tool
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Getting weak bases from sizes of cores

Core of a clone F ≤ OA

≡ a relation ϱ ∈ RA with F = PolA{ΓF (ϱ)} |ϱ|: a core size of F

aka a (finite) generating set for a single generator of a relational clone

Basic tool:

Theorem (Schnoor & Schnoor)

clone F ≤ OA has a core of size n ∈ N+

=⇒ ΓF (χn) weak base relation of F

Will be our starting point!
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Main tool
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Getting new weak bases from old ones

Main tool:

W ⊆ RA weak base of F ≤ OA

W ′ ⊆ [W ]∧,= and PolA W ′ ⊆ F =⇒ W ′ weak base of F

Note:
W ′ ⊆ [W ]∧,= ⊆ [W ]RA

= InvA PolA W

=⇒ PolA W ′ ⊇ PolA W wb
= F

PolA W ′ ⊆ F ensures that PolA W ′ = F , i.e.,
W ′ is not too simple (sufficiently rich)
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Background tool
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Characterisation of maximal clones

maximal clone ≡ co-atom in the clone lattice ↔ minimal relational clone

Theorem (I. Rosenberg)

F ≤ OA is maximal iff ∃ϱ ∈ RA \ InvA OA : F = PolA{ϱ} and
1 ϱ = ≤ partial order with top and bottom
2 ϱ = s• = {(x , s(x)) | x ∈ A}

for s ∈ Sym(A) with only cycles of prime length p, no fixed points
3 ϱ = ϱG = {(x , y , u, v) ∈ A4 | x + y = u + v}

for an elementary Abelian p-group ⟨A; +, 0⟩, p prime
4 ∆A ⊊ ϱ ⊊ A2 non-trivial equivalence relation
5 ϱ ⊊ Am non-trivial central relation where 1 ≤ m < |A|
6 ϱ ⊊ Ah h-universal relation where 3 ≤ h < |A|

(i.e., ∃1 ≤ m ≤ logh|A| ∃ surj. φ : A −↠ hm :
ϱ =

{
a ∈ Ah

∣∣ φ ◦ a ∈ η
}
∧ ⟨hm; η⟩ = ⟨h; ιh⟩m∧

ιh =
{
x ∈ Ah

∣∣ |im x | < h
}

)
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Towards results
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Two sorts of maximal clones

2 Cases for a maximal clone F ≤ OA

2 ≤ k = |A| < ℵ0

F ⊇ O
(1)
A k = 2 =⇒ F = L clone of (affine) linear functions

k ≥ 3 =⇒ F = Uk−1 = PolA{ιk} Słupecki’s clone
(all non-surjective ops. or ess. permutations)

F ̸⊇ O
(1)
A all other maximal clones
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Maximal clones of the first sort (of type 6)

3 ≤ k = |A| < ℵ0

O
(1)
A ⊆ F , i.e., F = Uk−1 = PolA{ιk} Słupecki’s clone

∃f1 ̸= f2 ∈ O
(1)
A ⊆ F : ιk = ΓUk−1({f1 ◦ β, f2 ◦ β})

Basic tool (Schnoor & Schnoor):

=⇒ {f1 ◦ β, f2 ◦ β} is a core =⇒ ΓUk−1(χ2) is irr. weak base rel.

Simplification with the main tool

ιk=
{
(x1, . . . , xk)

∣∣(x1, . . . , xk , . . . , xk) ∈ ΓUk−1(χ2)
}
∈
[{
ΓUk−1(χ2)

}]
∧,=

and PolA{ιk} = F
=⇒ ιk reduced weak base relation
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Maximal clones of the second sort (F ⊉ O
(1)
A )

3 ≤ k = |A| < ℵ0 χ1 = {idA ◦β}
Uk−1 ̸= F ≤ OA

F has core size 1, thus ΓF (χ1) irr. weak base rel. for F

F ̸= Uk−1 =⇒ F (1) ⊊ O
(1)
A

for f ∈ O
(1)
A :

f ∈ F (1) ⇐⇒ f ◦ β ∈ ΓF (χ1) ⇐⇒ f ∈ PolA{ΓF (χ1)}
Pol

(1)
A {ΓF (χ1)} = F (1) ⊊ O

(1)
A .

=⇒ F ⊆ PolA{ΓF (χ1)} ⊊ OA

F = PolA{ΓF (χ1)} by maximality of F
χ1 = {idA ◦β} core of F with 1 element
basic tool (Schnoor & Schnoor): ΓF (χ1) weak base relation

Type 3: affine F = LG for G = ⟨A; +, 0⟩
ΓLG(χ1) reduced weak base relation for LG
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Further simplification using our main tool

Type 1: bounded orders
ΓF (χ1)⇝ ≤ reduced weak base relation

Type 2: graphs of prime permutations s

ΓF (χ1)⇝ {(a, s(a), s2(a), . . . , sp−1(a)) | a ∈ A} red. weak base rel.

Type 4: equivalence relations θ
ΓF (χ1)⇝ θ reduced weak base relation

Type 5: central relations ϱa ⊊ Am, 1 ≤ m < |A|
ΓF (χ1)⇝ ϱa reduced weak base relation

Type 6: h-universal relations ϱ′ ⊊ Ah, 3 ≤ h < |A|, PolA{ϱ′} ≠ Uk−1:

ΓF (χ1)⇝ ϱ′ reduced weak base relation
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Example: clone PolA{≤} of monotone operations

F = PolA{≤} with ∀x ∈ A : 0 ≤ x ≤ 1

ΓF (χ1) irredundant weak base relation
identify arguments:
ϱ := {(x , y) ∈ A2 | (x , y , . . . , y) ∈ ΓF (χ1)} ∈ [{ΓF (χ1)}]∧,=

(identified indices depend on a suitable choice of β)

prove: ϱ = ≤
hence: ≤ ∈ [{ΓF (χ1)}]∧,= and clearly PolA{≤} = F
main tool =⇒ W ′ = {≤} weak base

M. Behrisch Weak bases for minimal relational clones



Example: clone PolA{θ} of θ-compatible op’s

F = PolA{θ}
ΓF (χ1) irredundant weak base relation
identify arguments:
ϱ := {(x , y) ∈ A2 | (x , y , . . . , y) ∈ ΓF (χ1)} ∈ [{ΓF (χ1)}]∧,=

(identified indices depend on a suitable choice of β)

prove: ϱ = θ

hence: θ ∈ [{ΓF (χ1)}]∧,= and clearly PolA{θ} = F
main tool =⇒ W ′ = {θ} weak base
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Example: clone PolA{s•} of s-self-dual op’s

F = PolA{s•}, s ∈ Sym(A) with d cycles of length p

ΓF (χ1) irredundant weak base relation
identify arguments:

ϱ := {(x1, x2, . . . , xp) ∈ Ap | (x1, 1. . ., xp, x1, 2. . ., xp, . . . , x1, d. . ., xp) ∈ ΓF (χ1)}
∈ [{ΓF (χ1)}]∧,=

(identified indices depend on a suitable choice of β)

prove: ϱ = {(a, s(a), . . . , sp−1(a)) | a ∈ A}
hence: {(a, s(a), . . . , sp−1(a)) | a ∈ A} ∈ [{ΓF (χ1)}]∧,=

and even PolA{ϱ} = F
main tool =⇒ {(a, s(a), . . . , sp−1(a)) | a ∈ A} weak base rel.
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Example: clone PolA{ϱa} of ϱa-preserving op’s

F = PolA{ϱa}, ϱa ⊊ Am with central element a

ΓF (χ1) irredundant weak base relation
identify arguments:
ϱ := {(x1, . . . , xm) ∈ Am | (x1, . . . , xm, xm, . . . , xm) ∈ ΓF (χ1)}

∈ [{ΓF (χ1)}]∧,=
(identified indices depend on a suitable choice of β)

prove: ϱ = ϱa

hence: ϱa ∈ [{ΓF (χ1)}]∧,= and clearly PolA{ϱa} = F
main tool =⇒ ϱa weak base relation
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Example: clone PolA{ϱ′} ≠ Uk−1 of
ϱ′-preserving op’s, not Słupecki’s clone

Uk−1 ̸= F = PolA{ϱ′}, ϱ′ = (φ◦)−1
[
ι⊗m
h

]
⊊ Ah h-universal

ΓF (χ1) irredundant weak base relation
identify arguments:
ϱ :=

{
(x1, . . . , xh) ∈ Ah

∣∣ (x1, . . . , xh, xh, . . . , xh) ∈ ΓF (χ1)
}

∈ [{ΓF (χ1)}]∧,=
(identified indices depend on a suitable choice of β)

prove: ϱ = ϱ′ (using F ̸= Uk−1)

hence: ϱ′ ∈ [{ΓF (χ1)}]∧,= and clearly PolA{ϱ′} = F
main tool =⇒ ϱ′ weak base relation
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Summary

Theorem (for 3 ≤ |A| < ℵ0)

F = PolA{ϱ} ≤ OA maximal clone, ϱ a Rosenberg rel.
F affine linear op’s =⇒ ΓF (χ1) reduced weak base rel.
F s-self-dual op’s

=⇒ {(a, s(a), . . . , sp−1(a)) | a ∈ A} reduced weak base rel.
other F =⇒ ϱ reduced weak base rel.
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Example: The set A = {0, 1, 2}
18 maximal clones have the following reduced weak base relations:

L clone of affine operations w.r.t. ⟨Z3; +, 0⟩:
ϱ = ΓL(χ1) =


012001122
012120201
012212010


s = (0 1 2) cyclic shift: F = PolA{s•} self-dual operations

ϱ =


012
120
201


all other 16 maximal clones F = PolA{ϱ}:
ϱ as in Rosenberg’s theorem.

3 clones of monotone operations
3 clones of partition preserving operations
3 + 3 clones of subset preserving operations
3 clones of operations preserving binary central relations
1 clone preserving ι3 = U2 (Słupecki’s clone)
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Final remarks / next steps

F = PolA{ϱ} = PolA{ΓF (χn)} with n ≤ 2 maximal clone
ϱ from Rosenberg’s theorem
InvA F = [{ϱ}]RA

= [{ΓF (χn)}]RA
minimal relational clone

any non-trivial σ ∈ InvA F = [{ΓF (χn)}]RA
satisfies

InvA F = [{σ}]RA
, i.e., PolA{σ} = F

σ ∈ [{ΓF (χn)}]∃,∧,=
is a potential weak base relation (also ϱ is a candidate),
depending on σ ∈ [{ΓF (χn)}]∧,= (by the main tool)

Future work
complexity perspective:
weak bases for other (e.g., minimal) clones also interesting
also more challenging: finite relatedness problem
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