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Kurzfassung 

Die Schilddrüse bildet zusammen mit dem Hypothalamus und der Hypophyse ein geregeltes 
System, den HPT Komplex, das durch die gegenseitige Beeinfussung der jeweiligen Hormo-
ne reguliert wird. Das dynamische System erh¨ orpereigenes Gleichgewicht aufrecht, alt ein k¨ 
den so genannten Set-Point, das bei jedem Menschen individuell ist. Die Bestimmung der 
richtigen Medikamentendosierung fur¨ Personen mit Schilddrüsenerkrankungen erfordert da-
her mehrere ¨ urzen undarztliche Behandlungstermine. Um den Behandlungsprozess zu verk¨ 
weitere Informationen über die Systemdynamik zu gewinnen, ist eine validierte theoreti-
sche Beschreibung des Set-Points erforderlich. Die mathematische Modellierung des HPT 
Komplexes ist daher ein wichtiges Forschungsgebiet, das mehr Informationen über die ge-
genseitige hormonelle Beeinfussung und die Bestimmung des endogenen Gleichgewichts 
liefert. 

In dieser Arbeit werden zwei ausgew¨ aher analysiert. Dar¨ahlte mathematische Modelle n¨ uber 
hinaus werden zwei theoretische Ansätze zur expliziten Bestimmung des Set-Points auf 
beide Modelle angewandt. Die beiden Ans¨ ummung atze basieren auf der maximalen Kr¨ 
der Reaktionsfunktion der Hypophyse und dem optimalen Gain-Faktor bei der Darstel-
lung des HPT Komplexes als geschlossenes Feedback-System. Da beide mathematischen 
Modelle das System in Form von Diferentialgleichungen beschreiben, wird eine qualitative 
Analyse durchgeführt, um den Set-Point mit Gleichgewichtspunkten und dem jeweiligen 
Stabilitätsverhalten in Beziehung zu setzen. In diesem Zusammenhang kann nachgewiesen 
werden, dass der Set-Point einem zugehörigen global asymptotisch stabilen Gleichgewichts-
punkt entspricht. Im Zuge der Modellkalibrierung werden die in dieser Arbeit gewonnenen 
theoretischen Erkenntnisse mit den tats¨ aufen von Patienten auf Ba-achlichen Hormonverl¨ 
sis der im AKH Wien erhobenen Daten verglichen und so das Modell validiert. Die Daten 
wurden im Zuge der Zusammenarbeit mit der Medizinischen Universität Wien (MUW) fur¨ 
diese Arbeit zur Verfügung gestellt. 





Abstract 

The hypothalamus together with the pituitary and the thyroid gland forms a controlled 
system, the HPT complex, which is regulated by the mutual infuence of the respective hor-
mones. The system maintains an endogenous equilibrium, the so-called set-point, which is 
individual for each person. Determining the correct medication dosage for patients with 
thyroid disorders therefore requires several doctoral appointments. In order to shorten the 
treatment process and gain further information about the system dynamics, a validated 
theoretical description of the set-point is required. Therefore, mathematical modeling of 
the HPT complex is an emerging feld of research that provides more information about 
the mutual hormonal infuence and the determination of the endogenous balance. 

In this work, two selected mathematical models presented in the literature are analyzed in 
more detail. In addition, two theoretical approaches for the explicit determination of the 
set-point coordinates are applied to both models. The two approaches are based on the 
maximum curvature of the pituitary response function and the optimal gain factor when 
representing the HPT complex as a closed feedback system. Since both mathematical 
models describe the system in terms of diferential equations, a qualitative analysis is 
conducted to relate the set-point to equilibrium points and the respective stability behavior. 
In this context, it can be proven that the set-point corresponds to a respective globally 
asymptotically stable equilibrium point. In the course of model calibration, the theoretical 
fndings obtained in this work are compared with the actual hormone progression of patients 
based on data collected at the Vienna General Hospital. The data was provided for this 
work in the course of a cooperation with the Medical University of Vienna (MUW). 
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1 Introduction 

According to [MPGGG14], about 11 percent of the European population sufers from thy-
roid dysfunction. The thyroid is one of the most important organs that regulates the 
metabolism including cardiovascular activity, fat burning and energy consumption among 
others. If this system is defective, the hormonal balance is disturbed resulting in fatigue, 
depression and weight variations, depending on the type of disease. The majority of peo-
ple afected by thyroid diseases sufers from hyper- or hypothyroidism, in which too much 
or too little hormone is produced. Although thyroid diseases can be treated by intake of 
respective synthetic hormones, the determination of the adequate drug dosage requires sev-
eral doctoral appointments and endocrine level measurements. In addition, the well-being 
of patients is not guaranteed, even though they may already be in the healthy range of thy-
roid hormones while taking the medication. This is due to the individual, patient-specifc 
regulation of the thyroid and the resulting non-standardizable drug therapy. 
The thyroid in combination with the pituitary and the hypothalamus forms a controlled 
system, the HPT complex. The secretion of thyrotropin-releasing hormone (TRH) by the 
hypothalamus stimulates the pituitary to release thyroid-stimulating hormone (TSH) re-
sulting in an increased production and secretion of thyroid hormones, free triiodothyronine 
(FT3) and free thyroxine (FT4). This in turn leads to a decrease in TSH and TRH and 
thus forms a negative feedback loop. 

The control of the HPT complex is not yet fully understood, so the defnition and further in-
vestigation of descriptive mathematical models in this context holds the prospect of gaining 
more information. Simulating the hormonal course in state space and time domain yields 
more in-depth explanations about the mutual infuence of the respective compartments. It 
is then possible to draw conclusions as to how the individual’s balance is physiologically 
determined and to which components it is most sensitive. In future research, this informa-
tion may be useful for the individual determination of the correct drug dosage, with the 
aim of achieving a patient-specifc hormonal equilibrium. This contributes to the reduction 
of medical appointments and blood measurements and to the increase of the patients’ well-
being. Thus, this work is concerned with the analysis of mathematical models describing 
the dynamics of the HPT complex. 

Several mathematical models of diferent complexities can be found in literature. According 
to [DTPM04], one of the frst physiologically plausible pituitary models is based on the 
Michaelis-Menten-Hill kinetics, that describes an enzymatic reaction based on one equation 
and provides a framework for many dynamic models in the feld of systems biology as 
presented in [YRFSD14]. 
Its application in modeling HPT dynamics is justifed by the resulting log-linear relationship 
between input and output signal concentration as established in [Fra13], which corresponds 
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1 Introduction 

to the mutual dependencies of TSH and thyroid hormones presented in [SLP+90]. Thus, 
approaches with the objective to describe the time-dependent dynamics of the HPT complex 
are often based on the Michaelis-Menten equation, including the models introduced in 
[PMB14], [Goe21] and [YTH+21]. It is developed further to take the infuence of other 
hormones into account, while many models focus on the description of the time-dependent 
course of TSH and FT4 according to the underlying physiology as described in chapter 2 
of this work. 
Models of higher complexities are based on up to 15 diferential equations that account not 
only for the time-dependent course of TSH and FT4, but also for other relevant factors. 
For example, the models presented in [LLXL94], [MM10] and [ESD08] additionally describe 
the behavior and contribution of other hormones infuential to the HPT complex dynamics, 
including TRH secreted by the hypothalamus, FT3, bound thyroid hormones and several 
subsystems like kidneys or the peripheral vascular system that can alter the HPT dynamics. 
Such complex models often focus on specifc thyroid diseases and require the collection 
and measurement of various patient-specifc hormonal values. In common patient datasets, 
these measurements are rarely available and therefore validation of those models is often 
not feasible. 

This work focuses on the determination and investigation of the patient-specifc hormonal 
balance. Therefore simpler models that explicitly or implicitly include the set-point, or 
present a framework for its derivation, are selected. The model presented in [Goe21] de-
scribes the time-dependent dynamics of TSH and FT4 and is developed based on previous 
publications, [LG14] and [GLS+14], introducing a mathematical framework to derive the 
set-point in explicit terms. The other model selected for this work is published in [YTH+21]. 
This approach also describes the time-dependent course of TSH and FT4 and includes a 
theoretical description of the set-point as the individual hormonal equilibrium. Thus, the 
mathematical description of the hormonal equilibrium can be further examined in the con-
text of those two models. 
Since the models are based on systems of diferential equations, they provide the possibil-
ity of theoretically determining the equilibrium points. This addresses the question of the 
validity of the set-point describing the HPT complex equilibrium. The theory established 
in this work is contextualized with the actual hormone progression of patients based on 
data collected at the Vienna General Hospital. 

The physiological foundation of the HPT complex is described in detail in chapter 2 in-
cluding the presentation of the patient data. 
In chapter 3, the methodology is presented. It covers the two approaches for the mathemat-
ical determination of the set-point and the theoretical foundations of sensitivity analysis 
and parameter identifcation. 
In chapter 4, both models are introduced and the approaches to determine the set-point are 
applied to the corresponding model functions and examined for consistency. Additionally, 
the results of the sensitivity analysis of both models are presented and the model-specifc 
parameter identifcation approaches are described. The qualitative analysis of systems of 
diferential equations provides information on local and global long-term stability behavior. 
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In chapter 5, the general equilibrium point of a system of diferential equations is thus 
determined for both models including the stability behavior. Additionally, the derived 
set-point equations are analyzed in this context. 
To contextualize the theoretical analysis with patient data, the calibration results are pre-
sented in chapter 6. It includes patient-specifc hormonal curves in state space and time do-
main resulting from parameter identifcation of diferent models and calibration approaches 
for three exemplary patients. The numerical results focusing on the fnal error are presented 
for all patients included in the data set. 
In conclusion, the following work is concerned with two selected mathematical models 
of the HPT complex based on set-point derivation, equilibrium behavior and parameter 
identifcation. 
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2 Physiological Foundation 

The hypothalamus-pituitary-thyroid complex forms a regulated system through the mu-
tual infuence by secretion of the associated hormones. This system forms the basis for 
a simulation of the thyroid hormone regulation and is therefore described with reference 
to physiological processes and associated diseases in this chapter. Since the simulation is 
based on ftting mathematical models to measurements, the patient data is also presented 
in this chapter. This includes the selection process of relevant patients, details of medical 
history and statistical parameters. 

2.1 The Hypothalamus-Pituitary-Thyroid Complex 

According to [Des91] and [Hic95], the thyroid is a butterfy shaped endocrine organ and is 
located in front of the thyroid cartilage of the larynx. It consists of two lobes connected 
by a bridge, the isthmus. The thyroid gland has a variety of efects, but mainly infuences 
the stimulation of the basal metabolic rate with the help of the hormones secreted. This 
includes energy consumption, fat burning, heat production and cardiovascular activity. 
The production and secretion of thyroid hormones is controlled by the hypothalamus 
and the pituitary. Therefore, this control circuit is referred to in the following as the 
hypothalamus-pituitary-thyroid (HPT) complex which is schematically illustrated in Fig. 
2.1. 

ThyroidHypothalamus Pituitary

TRH TSH

FT3

FT4

HP Complex

Figure 2.1: Block diagram of a general closed-loop HPT feedback system including two 
blocks. 

The main control hormone of the thyroid is the pituitary hormone thyrotropin (TSH), 
whose synthesis and release is infuenced by thyrotropin-releasing hormone (TRH) from the 
hypothalamus. An increase in the concentration of TSH has various efects on the thyroid. 
It stimulates the iodine uptake in thyroid epithelial cells, which is an important part of the 
fnal thyroid hormones. Additionally, it increases the synthesis and release of the thyroid 
hormones, thyroxine (T4) and triiodothyronine (T3), and the formation of their preliminary 
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2 Physiological Foundation 

stage, thyreoglobulin. Thyroid hormones, in turn, lead to a decreased number of TRH 
receptors on the pituitary gland, which reduces TSH and subsequently T3 and T4 secretion. 
Therefore, the HPT complex includes a negative feedback loop. The serum concentration 
of TRH is very low and, according to [Pas19], the TRH secretion is only afected to a small 
extend by the negative feedback of thyroid hormones. Since additionally the systemic 
contribution of the two compartments is similar, the hypothalamus and pituitary gland are 
combined into the HP complex when modeling their hormone regulation. 
The formation and storage of T3 and T4 takes place in the thyroid and follicular cells. 
Iodine is absorbed into the thyroid cell and after oxidation is incorporated into the thyre-
oglobulin. The compound is then transported to the follicular cells of the thyroid gland 
and stored there. Upon release, it returns to the thyroid cell where the carrier molecule 
thyroglobulin is split of and free T3 (FT3) and free T4 (FT4) are secreted into the blood. 
Only the free thyroid hormone can exert an efect. Most of the T3 hormone does not origi-
nate directly from the thyroid, but is created during mono-deiodisation, the detachment of 
an iodine atom, of T4. Therefore, the simulation of the HPT complex is mostly restricted 
to the efective, most abundant hormone in the blood, FT4. 
When the thyroid hormone balance is in equilibrium and the thyroid is in a healthy condi-
tion, it is called a state of euthyroidism. This state is indicated by hormonal concentrations 
of TSH and FT4, specifed as [TSH] and [FT4], in the normal range. The corresponding 
intervals according to [Pan11] are listed in Table 2.1. The units of [TSH] and [FT4] are not 
always consistent in the literature, but can be convertedto allow a comparison of diferent 
modling approaches, see chapter 4. The conversion factor of pg · mL−1 to pmol · L−1 for 
[FT4] is 1.2872. 

Parameter Unit Normal Range 
TSH mU · L−1 [2.5, 4] 
FT4 pg · mL−1 [7, 18] 

Table 2.1: Normal ranges of TSH and FT4. 

If the amount of thyroid hormone produced is higher or lower than the normal range, this 
is called hyper- or hypothyroidism, which are explained in detail in section 2.2. 

2.2 Thyroid Gland Diseases 

When the thyroid hormone system described in the previous section is in balance, it is 
called euthyroidism. If too little or too much thyroid hormone is produced, the condition is 
referred to as hypothyroidism or hyperthyroidism, respectively. Since the aim of this work 
is the simulation of the hormonal course of patients sufering from hypothyroidism, this 
section focuses on a short introduction of its etiology, disease pattern and treatment based 
on [BBG+21]. Some of the patients whose simulation results are presented in chapter 6 
were prescribed a drug dose for hyperthyroidism, so a brief description of this condition is 
provided. 
Hypothyroidism occurs when there is a defciency of thyroid hormone or insufficient action 
of thyroid hormone. Hypothyroidism is most commonly caused by autoimmune destruction 
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2.3 Data collected in a Clinical Study 

of thyroid tissue, Hashimoto’s thyroiditis. Corresponding laboratory testing often identifes 
antibodies directed against thyreoglobulin, among others. Rarely, other causes of thyroid 
destruction, e.g. tumors, are present. In Hashimoto’s thyroiditis, transient hyperthyroidism 
may occur initially. Generally, these disorders are also called primary hypothyroidism. In 
addition, secondary hypothyroidism may occur in the absence of pituitary TSH. The most 
common symptoms of hypothyroidism are weight gain, hair loss, decrease in concentration 
and sensation of cold. The most important diagnostic criterion for the assessment of thyroid 
function is the determination of TSH. In primary hypothyroidism, TSH is elevated and FT4 
is decreased in the presence of undisturbed pituitary function. Only in pituitary secondary 
hypothyroidism are both TSH and FT4 reduced. The therapy of manifest hypothyroidism 
consists in the substitution of thyroxine. The substitution is started gradually, then the 
dose is increased until euthyroid function is achieved. Usually, according to [BBG+21], 
doses of about 1.5 µg per kilogram body weight are administered. 
Hyperthyroidism describes the presence of too much thyroid hormone. The most common 
cause of this disease are various adenomas or an autoimmune disease due to antibodies 
against TSH receptors, also known as Graves’ disease. Primary hyperthyroidism is the 
most common form, secondary hyperthyroidism with causes in the pituitary gland is ex-
tremely rare. Typically found are cardiac arrhythmias, elevated body temperature, muscle 
weakness, restlessness, sleep disturbance and weight loss. The most important diagnostic 
criterion for the assessment of hyperthyroidism is also the determination of TSH, supple-
mented by the peripheral thyroid hormone values. In hyperthyroidism, TSH is decreased 
and peripheral thyroid hormone levels are increased. Therapy of manifested hyperthy-
roidism is usually only temporary thyrostatic drug therapy, long-term therapy consists 
of therapy of the underlying disease. According to [BBG+21], for short-term thyrostatic 
therapy, thiamazole with an initial dose of 15-40 mg per day is most commonly used. 

2.3 Data collected in a Clinical Study 

To build an understanding about the underlying physiological processes and to calibrate 
and verify the mathematical models presented in chapter 4, a retrospective study at Vienna 
General Hospital, conducted by the Medical University of Vienna (MUW), was performed. 
In accordance with the ethics agreement, the data was made available anonymously for 
scientifc use. Initially, 71 patients were included and data such as date of medical con-
sultation, age, diagnosis, current medication, TSH concentration in µIU/mL and FT4 
concentration in ng/dL along with other medical parameters was collected. All patients 
involved in the study sufer from diferent types of hypothyroidism and hyperthyroidism. 
The following work aims to gather more information about the mutual infuence of thyroid 
hormones, especially in the context of hypothyroidism, so patients that do not meet these 
criteria are excluded from the data set. After a subsequent removal of those patients with 
missing data points, a data base consisting of 25 patients in total remains. 
Figure 2.2 shows the data points of all patients of the data set with respect to TSH and 
FT4. The majority of the points can be found in the normal range for both TSH and FT4, 
indicated by the dotted gray lines. The fgure also indicates that the data points follow the 
log-linear relationship of TSH and FT4 presented in [SLP+90]. 
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2 Physiological Foundation 

Figure 2.2: Data points of both TSH and FT4 of the base data set consisting of 25 patients. 
The normal range is indicated by the dashed gray lines. 

Additionally, the physiological dynamics discussed in detail in section 2.1 can be observed 
in Fig. 2.2. If the TSH value of one data pair is high, the respective FT4 value can be 
found in the lower range and vice versa. For example, the maximum FT4 value of 28.05 
pmol/L corresponds to the minimum TSH value of 0.02 mU/L. 

Figure 2.3: Time of the measurements in days for the individual patients.. 
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2.3 Data collected in a Clinical Study 

All patients included in the data set have a diferent time and number of medical ap-
pointments. Additionally, the measurement dates also vary in the time interval between 
measurements, as shown in Fig. 2.3. The maximum time period for which data is available 
can be found for patient 13. The time between the frst and last data point is almost 2.85 
years. The minimum range between the frst and the last measurement is 100 days and 
can be found with patient 60. 

Figure 2.4: Distribution of the measurement points of both hormones of seven exemplary 
patients. 

Figure 2.4 shows the exemplary distributions of TSH and FT4 measurements of seven 
patients. The number of measurements per patient ranges from a minimum of three to a 
maximum of nine. 
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2 Physiological Foundation 

A maximum TSH value of 20.11 mU/L of the entire data set is found for patient 12, while 
the minimum of 0.02 mU/L was measured with patient 11. This patient also shows the 
maximum and minimum FT4 value of 28.05 and 10.65 pmol/L. While patient 12 has the 
widest range of TSH, patient 11 has the widest range of FT4, as shown in Fig. 2.4. 
The presented data and underlying physiology of the HPT complex can be used to calibrate 
and verify the models introduced in chapter 4 based on the methodology described in detail 
in the following chapter. 
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3 Mathematical Modeling and Framework 

Modeling and simulation is an important and broadly applied tool to further investigate 
correlations, gain insight and make predictions of a system. There are several defnitions of 
the phrase modeling and simulation. According to [BA19], modeling refers to the creation 
of an object, that is, a model, which is subsequently used for experimentation. A model is 
defned as a representation or abstraction of a system, and the corresponding experimen-
tation corresponds to the term simulation. With the help of such models, complex systems 
can be limited to the crucial components to enable a more detailed interpretation. 
The Hypothalamus-Pituitary-Thyroid (HPT) complex described in chapter 2.1 strongly 
depends on by the mutual infuence of its components and contains an individual hormonal 
equilibrium. This equilibrium can be mathematically derived and further investigated by 
introducing the maximum curvature theory. Additionally, it can be defned by represent-
ing the complex as a feedback system, which additionally provides the possibility to gain 
further information about the physiological behavior. To validate those approaches in cor-
respondence with the respective mathematical models, that are introduced in chapter 4, 
the procedure pursued for parameter identifcation. Those three methods including the 
theoretical background are introduced in this chapter. 

3.1 Maximum Curvature Theory and Homeostatic Set-Point 

According to [LG14], a system described by a negative feedback loop contains a reference 
point, or set-point, in normal operation. As described in detail in chapter 2.1, the HPT 
complex can be represented as a system consisting of two compartments whose mutual 
infuence is represented by a negative feedback loop. In this system, the HP complex acts 
as a controller for the thyroid gland, regulating the production of hormones into a very 
small range of healthy or euthyroid equilibrium. This framework leads to the following 
physiological defnition of the set-point. 

Defnition 1. The set-point of an intact HPT axis of a healthy euthyroid person represents 
the ideal personalized thyroid function target that results in an optimal healthy state. [LG14] 

Even the slightest deviation from this point, e.g. due to physiological variations, is regis-
tered by the HP complex. In response, the hormones are regulated back into the original 
state of equilibrium. 
Several approaches on the mathematical derivation of the set-point are introduced for a 
specifc model of the HPT complex in [LG14] and discussed in detail in 4.1. One of those 
approaches is the computation of the point of maximum curvature of the function describing 
the response of the HP complex on a specifc FT4 concentration, represented as [FT4]. This 
approach is based on the authors of the source publication [LG14] fnding that the knee 
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3 Mathematical Modeling and Framework 

region of the response function is always in the normal range for both hormones. This 
resulted in localizing the set-point at the knee region. The set-point is the point around 
which the pituitary is most sensitive to any changes in concentration of [FT4]. Therefore, 
the set-point is ultimately defned as the point of maximum curvature, which corresponds 
to the point of maximum sensitivity. 

Defnition 2. The curvature Kg of a function g : R → R, a 7→ g(a) is defned as 

d2g 
Kg = (( da2 ) 3 . (3.1)( )2 2

dg1 + da 

Based on this defnition, an explicit representation for the set-point can be given. 

Defnition 3. The set-point of the HPT complex is specifed as the unique point of the 
response function of the pituitary, f([FT4]) = [TSH], that fulflls 

dKf 
= 0. (3.2)

d[FT4] 

The established maximum curvature theory introduces the frst approach to theoretically 
determine the set-point and will be applied to selected mathematical models in the following 
work. The theoretical basis for the second defnition of the set-point is presented in the 
following section. 

3.2 Feedback Systems and Gain Factor Analysis 

To analyze the HPT behavior from a control engineering perspective, the HPT system 
described in section 2.1 is represented as a feedback control system. This approach including 
the preceding theoretical part is described in more details in this section. 
As described in detail in [AM08], control systems can be represented by block diagrams in 
combination with transfer functions. 

Defnition 4. Transfer functions describe the mapping of the input u of a control system, 
shown in Fig. 3.1, to the output v and is defned as 

v(s)
G(s) = . (3.3) 

u(s) 

G(s) vu 

Figure 3.1: Block diagram with input and output signal. 

In a system consisting of several blocks, transfer functions can be defned to link diferent 
signals by considering the transfer functions of the respective subsystems and applying the 
corresponding arithmetic rules. These principles determine the transfer function depending 
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3.2 Feedback Systems and Gain Factor Analysis 

on the way the blocks are interconnected, where transfer functions of two blocks connected 
in series are multiplied, those connected in parallel are summed. 
In a control system consisting of diferent dynamic subsystems, feedback is defned by inter-
connected subsystems, that infuence each other and thus show strongly coupled dynamics. 
A representation of a closed-loop feedback system is shown in Fig. 3.2. 

−1 

G1(s) 
∑( vuer 

G2(s) 

Figure 3.2: Block diagram of a closed-loop feedback system including two blocks. 

The output signal v is compared against the reference signal r that determines the target 
value of the control system. The overall transfer function G(s) of the system shown in 
Fig. 3.2 can be expressed explicitly using the formulas for serially connected blocks in 
combination with (3.3). It follows that 

e(s) = v(s) − r(s), u(s) = G1(s)e(s), v(s) = G2(s)u(s), 
G1(s)G2(s)⇒ v(s) = r(s). (3.4)

1 + G1(s)G2(s),( ,,( ,(
=G(s) 

The transfer function of a control system has many important properties that provide 
insights into the systems behavior, one of those is the so-called zero frequency gain or gain 
factor describing the transfer function of a steady-state system. 

Defnition 5. The zero frequency gain G is defned as the corresponding transfer function 
G(s) at s = 0 and represents the ratio of the steady-state value of the output to a step input. 
[AM08] 

The loop transfer function GL(s) was introduced by Nyquist to identify constraints on the 
occurrence of oscillations in a feedback loop. 

Defnition 6. The loop transfer function GL(s) of a feedback system is defned as the 
transfer function obtained by breaking the feedback loop. [AM08] 

As a result, the loop transfer function of the system shown in Fig. 3.2 is given as 

GL(s) = G1(s)G2(s). (3.5) 

The Hypothalamus-Pituitary-Thyroid complex described in section 2.1 can be represented 
as a closed-loop feedback system as shown in Fig. 3.3 and established in more detail in 
[GLS+14]. This statement is based on a small signal representation of the HPT complex 
around the set-point and the assumption that the characteristics of the HP complex and the 
thyroid are continuous and diferentiable and therefore fulfll the conditions for linearization 
in the region of interest. 
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−1 

GHP 
∑( [FT4][TSH]S[FT4] − [FT4]S[FT4] 

GT 

Figure 3.3: HPT complex represented as negative feedback closed-loop system. 

The HP complex controls the thyroid by the secretion of [TSH] which depends on the input 
signal S[FT4] − [FT4]. The input signal consists of the intrinsic physiological set-point S[FT4] 
as defned in section 3.1 and the feedback signal [FT4]. The thyroid complex secretes an 
amount of [FT4] in direct proportion to the input or control signal [TSH]. 
Following the defnitions 5 and 6 and [GLS+14], the loop gain of the HPT complex can 
be defned as GL = |GHP GT |. In line with defnition 3.3, both GHP and GT describe the 
gain factor as a ratio between the input and output signal. According to [GLS+14], when 
referring to the HPT complex, the interpretation refers to the measure of the variation of 
the output signal to a corresponding relatively small variation of the input signal. It follows 
that 

d[FT4]GHP = d[TSH], d[TSH]GT = d[FT4]. (3.6) 

Analogous to the description of the general feedback system shown in Fig. 3.2, the ratio 
between input and output signal is given as 

GL
[FT4] = S[FT4]. (3.7)

1 + GL 

This equation describes the expected behavior since the fraction tends to 1 for very large 
values of GL. The amount of [FT4] is therefore kept close to the intrinsic set-point value. If 
GL is smaller than unity, [FT4] will decrease against SFT 4 resulting in a loss of interaction 
between thyroid and HP complex and therefore an open loop system. 
Using the determined loop gain, points of extrema can be investigated. In line with the 
defnitions given in section 3.1, the HPT complex operates at its optimum when the amount 
of [FT4] and [TSH] correspond to the target set-point. Thus it can be derived by computing 
the extremum according to the following defnition. 

Defnition 7. The set-point of the HPT complex represented as negative feedback closed-
loop system as in Fig. 3.3 is defned as the point where the loop gain GL = GT GHP operates 
at its optimum. Under the condition that GL depends only on one hormone concentration, 
it can be derived by setting the corresponding derivative to zero. [GLS+14] 

According to this defnition, the gain factor analysis provides the possibility to derive an 
explicit expression of the set-point. Combined with the maximum curvature theory, it can 
be applied to selected mathematical models to gain further information about the individual 
set-point coordinates. 
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3.3 Sensitivity Analysis 

In general, sensitivity analysis is used to determine the behavior of specifc dependent 
variables of a model in response to changing independent variables. According to [NEB11], 
sensitivity analysis is crucial for the determination of use and meaning of model parameters 
and thus is an important prerequisite in model identifcation and calibration. A quantitative 
sensitivity analysis based on the variance-based Sobol’ method [Sob01] described in detail 
in [Sal02] is conducted for the mathematical models introduced in chapter 4. In the course 
of this analysis, Sobol’ sensitivity indices of various orders are computed, explaining the 
proportion of variance that each dependent model parameter, or their interaction, has in 
the unconditional variance of the model output. 
In the course of the sensitivity analysis chosen for this work, the most important factor, 
which is defned as the factor resulting in the greatest reduction of in the variance V of 
the model output Y , can be determined. As presented in detail in [Sal02], the theoretical 
derivation of the Sobol’ indices is based on the mathematical model 

Y = g(X) = g(X1, X2, . . . , Xn), (3.8) 

where Y denotes the model output and some of the input variables Xi, with i ∈ 1, 2, . . . , n, 
are uncertain. Additionally, the parameters Xi are assumed to be independent and iden-
tically distributed. The Sobol’ decomposition of the model function (3.8), published in 
[Sob93] and explained in detail in [TCC20], is defned as 

n n n∑( ∑∑(
g(X) = g0 + gi(Xi) + (gij (Xi, Xj )) + . . . + g12...n(X1, X2, . . . , Xn), (3.9) 

i=1 i=1 j>i 

using the conditional expectation E and 

g0 = E(Y ), (3.10) 
gi(Xi) = E(Y |Xi) − g0, (3.11) 

gij (Xi, Xj) = E(Y |Xi, Xj ) − gi − gj − g0, . . . . (3.12) 

Based on this defnition, the general decomposition scheme established in [Sob93] can be 
applied to the total variance of the output V (Y ) resulting in ∑(

V (Y ) = V (gl(Xl)) with l ⊆ {1, ..., n} and l ̸= ∅, (3.13) 
l 

where V (gl(Xl)) denotes the conditional variance of the conditional expectation depending 
on the subset l. Thus, the Sobol’ index associated to the subset l is defned as the ratio 
between the contribution given by the interaction among the components of l for the model 
variance and the total variance itself [TCC20], i.e. 

V (gl(Xl))
Sl = . (3.14)

V (Y ) 
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The Sobol’ indices of frst order are given as 

V (gi(Xi))
Si = , i = 1, . . . , n, (3.15)

V (Y ) 

and describe the contribution of the variance of one parameter to the total model variance. 
The efect of the interaction between two parameters, that is not described by the indices 
of frst order, is determined by the Sobol’ index of second order, 

V (gij (Xi,j ))
Sij = , 1 ≤ i < j ≤ n. (3.16)

V (Y ) 

The impact on the model output variance of a specifc parameter including all its interac-
tions is described by the total Sobol’ index S12...n. 
For the sensitivity analysis of the models presented in chapter 4, the python library SAlib 
was used. Since the main focus of this work is the set-point and the equilibrium point of 
the models, respectively, the analysis was limited to the last point in time of the time-
dependent solution curve of the diferential equation system. The analysis can be extended 
to include more time points distributed over the entire time course, which requires higher 
computational costs. 

3.4 Parameter Identification 

Parameter identifcation describes the determination of an optimal parameter set which 
obtains the best ft of a model to experimental data. The problem can be formulated with 
respect to the time domain in line with [CS15] as follows. 

dThe model is defned by z̃(t, θ) = (z̃1(t, θ), ..., z̃d(t, θ)) ∈ Rd fulflling dt z̃ = f(z̃, θ) with 
z̃(t0, θ) = z̃0. The vector θ = (θ1, ..., θq) ∈ Rq contains the model parameters. Let zk,l 
denote the experimental data with k = 1, ..., d corresponding to the k-th component of z̃  
and l = 1, ..., n describing the l-th point in time. Thus, the corresponding model evaluation 
would be z̃k(tl, θ). 
The objective is thus to ft the model to the data by estimating parameters in the course 
of minimizing the error function ξ(θ). The selection of this objective function is essential 
as it determines the ft of the calibration. Here and in the following, it is defned as the 
sum of the respective normalized mean squared errors of zk following 

d n 
1 ∑∑ (z̃k(tl, θ) − zk,l)2 

ξ(θ) = . (3.17)
max minn (z − z )k,l k,l k=1 l=1 

The fnal objective of the calibration is the minimization of ξ with respect to θ. 
There are several algorithms that serve the purpose of minimizing an objective function by 
varying the model parameters. These include the diferential evolution algorithm presented 
in [SP97] and used for data-based model analysis in chapter 6. The approach represents 
a global optimization algorithm which converges faster, is robust and requires few control 
variables. The method is not gradient-based and therefore does not require the objective 
function to be diferentiable. Diferential evolution is designed as a stochastic direct search 
method based on parameter vector populations. 
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The process is briefy concluded in the following paragraph, but is described in detail in 
[SP97]. The initial population consisting of N parameter vectors is chosen randomly for 
each generation G. New vectors are then defned by manipulating and combining three 
already existing vectors in the course of a process called mutation. This operation is 
followed by the so-called selection where the new and old parameter vectors are compared 
with respect to the corresponding value of the cost function. Depending on the results of 
this competition, one of them is selected as part of the next mutation. Each vector of each 
generation is compared once following this approach. 
The hyper parameters of the diferential evolution algorithm used for the calibration were 
determined according to the default parameters of the pythons implementation summarized 
in Table 3.1. 

Parameter 
maxiter 
popsize 

tol 

Value 
1000 
15 
0.01 

Table 3.1: Hyper parameters of applied diferential evolution algorithm. 

The parameter maxiter determines the maximum number of generations and popsize in-
fuences the total population size. According to [CTZFG+21], the optimal population size 
for a problem of lower dimension is larger than 50. Concerning this problem, this is not 
realizable due to the large computation time. The relative tolerance for convergence is 
determined by the parameter tol. 
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4 Mathematical Models including a 
Homeostatic Set-Point 

The mutual infuence of thyroid hormones can be described by mathematical models that 
approximate their course in the state space and their long-term behavior. Modeling the 
thyroid complex by diferential equations furthermore ofers the possibility to investigate 
the physiological hormonal equilibrium by analyzing the mathematical equilibrium of the 
diferential equations. Two mathematical models considered in this work include a set-point 
- either explicitly or implicitly. The model introduced in [Goe21] presents an exponential 
correlation between both TSH and FT4 and includes theories for the mathematical deriva-
tion of the set-point. The system of diferential equations presented in [YTH+21] is chosen 
as comparative model to apply the set-point computation and analysis on the set-point 
explicitly described in the model. 

4.1 A Minimal Model of the Hypothalamus-Pituitary-Thyroid 
Axis 

The system of diferential equations presented in [Goe21] represents the behavior of [TSH], 
the concentration of TSH, over time in negative exponential dependence on [FT4], the 
concentration of FT4, and vice versa, according to 

d[TSH] S 
= − [TSH] ,

dt exp(φ [FT4]) 
(4.1)

d[FT4] A 
= A − − [FT4] . 

dt exp(α [TSH]) 

The model includes four parameters S, φ, A, α ∈ R+ , where φ and α represent the decay 
rate of [TSH] and [FT4], respectively. 
In [LG14], a mathematical framework is established to analytically derive the individual 
euthyroid state which corresponds to the set-point based on the maximum curvature theory 
and gain factor analysis, which are explained in detail in section 3.1 and 3.2. Those two 
theories result in explicit mathematical terms for the set-point coordinates of both hormones 
and will be presented, analyzed and combined in the following sections. Their defnition, 
however, makes it possible to evaluate its applicability to other models, such as the unifed 
model, which will be presented later in this work. 
Both approaches are based on the equilibrium state of system (4.1), which is described by 

d[TSH] d[FT4] 
= 0, = 0. (4.2)

dt dt 
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Transforming the equations (4.1) results in 

S 
[TSH] = ,

exp(φ [FT4])
(4.3) 

A 
[FT4] = A − . 

exp(α [TSH]) 
(4.4) 

In the further work, the functions (4.3) and (4.4) will be referred to as HP-function and 
T-function, respectively. 
Further establishment on the maximum curvature theory, the gain factor analysis and the 
respective combination provides the possibility to reduce the number of parameters by 
deriving a dependency on the set-point coordinates of [TSH] and [FT4]. This approach will 
also be presented and analyzed in the following sections. 
In the following sections, ([FT4] , [TSH]) will be referred to as (x, y) for readability purposes. 

4.1.1 Application of the Maximum Curvature Theory to the 
Hypothalamus-Pituitary Function 

Following the framework presented in [LG14], the maximum curvature theory, that is de-
scribed in detail in section 3.1, is applied to the HP-function. Therefore, the curvature 
(3.1) of the HP-function (4.3) is calculated, resulting in 

Sφ2 exp(−φx)
Ky (4.5)= . 

(1 − S2φ2 exp(−2Sφx)) 
3 
2 

dKyThe maximum of Ky is determined using the derivative and quotient rule resulting indx ( ) (( )(
dKy Sφ3 exp(−φx) 2S2φ2 exp(−2φx) − 1 

= 0= 5 
2dx (1 + S2φ2 exp(−2φx))(( ) (( )(

Sφ3 exp(−φx) 2S2φ2 exp(−2φx) − 1⇔ = 0 
⇔ 2S2φ2 exp(−2φx) − 1 = 0 √ 
⇔ xsp = 

ln( 2Sφ) 
. 

φ 
(4.6) 

Substituting (4.6) in (4.3) results in 

1 
ysp = √ . 

2φ 
(4.7) 

The maximum curvature theory applied to the HP-function is exemplary illustrated in Fig. 
mch mch 4.1. It can be observed that the analytically derived set-point (x , y ) can be found atsp sp 

the point where the curvature of the HP-function reaches its maximum. In addition, the 
frst and second derivatives of the curvature are plotted to verify the condition that the 
second derivative is less than zero at the point of maximum curvature. 
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Figure 4.1: HP-function and set-point computed based on the corresponding curvature 
function. 

4.1.2 Application of the Maximum Curvature Theory to the Thyroid Function 

The maximum curvature theory states that the set-point is the point of highest sensitivity 
of a function to input-variations. Therefore, the maximum curvature theory should also 
be applicable to (4.4) while not contradicting the previous results. Following the same 
framework of determining the point of maximum curvature implies 

−Aα2 exp(−αy)
Kx (4.8)= ,3 

2(1 + A2α2 exp(−2αy)) 

and ( )(( )1 
21 + A2α2 exp(−2αy) Aα3 exp(−αy) + A3α5 exp(−3αy) − 3A3α5 exp(−3αy) 

(1 + A2α2 exp(−2αy))( )(
Aα3 exp(−αy) 1 − 2A2α2 exp(−2αy) 

dKx 
= 

dy 

= 

1 
2 

(4.9). 
(1 + A2α2 exp(−2αy)) 

5 
2 

The point of maximum curvature is determined following 

dKx ( )(
= 0 ⇔ Aα3 exp(−αy) 1 − 2A2α2 exp(−2αy) = 0 

dy 
⇔ 1 − 2A2α2 exp(−2αy) = 0 √ 

ln( 2Aα)⇔ ysp = . (4.10)
α 

Substituting y in (4.4) results in 

1 
xsp = A − √ . (4.11)

2α 
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mct mctTherefore, this approach also results in an explicit representation of x and y referringsp sp 
to the set-point of [FT4] and [TSH], respectively. The approach including all respective 
functions and the set-point is shown in Fig. 4.2. This plot also shows that the second 
derivative fulflls the requirement to be unequal to zero at the point of maximum curvature. 

Figure 4.2: T-function and set-point computed based on the corresponding curvature func-
tion. 

4.1.3 Gain Factor Analysis 

The set-point can also be determined by analyzing the optimal overall gain factor G while 
referring to the system of diferential equations (4.1) as a closed-loop system as shown in 
Fig. 4.3. 

Figure 4.3: HPT model illustrated as closed-loop system. 

dvoutIn general, the gain G = is determined by fnding the quotient of the output signaldvin 
vout to the input vin as established in 3.2. It follows that the gain for the HP-Complex, 
GHP , is described by 

dy d (4.3)
GHP = = S exp(−φx) = −Sφ exp(−φx) = −φy, (4.12)

dx dx 

using a substitution of (4.3) in (4.12). The same framework can be applied to determine 
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the gain for the Thyroid-Complex, GT , following 

dx d 
GT = = (A (1 − exp(−αy)) = αA exp(−αy)) . (4.13)

dy dy 

By serially combining the two compartments, the overall gain can be determined by 

G(x, y) = |GHP GT | = Aαφy exp(−αy). (4.14) 

The overall gain only depends on y and thus G(x, y) = G(y). Therefore, the optimal value 
of G is determined using only the derivative with respect to y, which leads to 

dG d 
= 0 ⇔ Aαφy exp(−αy) = 0 

dy dy 
⇔ Aαφ exp(−αy) − Aα2φy exp(−αy) = 0 
⇔ Aαφ exp(−αy) (1 − αy) = 0 

1 ⇔ y = . (4.15)
α 

Substituting (4.15) into (4.4) results in 

x = A (1 − exp(−1)) . (4.16) 

gf gfBoth theories result in an explicit representation for xsp and ysp referring to the set-point 
of [FT4] and [TSH], respectively. The approach is represented in Fig. 4.4 with exemplary 
parameters. 

Figure 4.4: Exemplary representation of the overall gain G over y and the corresponding 
derivative using the parameters [S, φ, A, α] = [1000, 0.4, 22, 0.6]. 

The gain factor analysis ofers the possibility to explicitly calculate parameter values in 
combination with the maximum curvature theory in the original system of diferential 
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equations (4.1). Thus, A and α can be explicitly expressed in dependency on the set-point 
by 

xsp 1 
A = and α = . (4.17)

(1 − e−1) ysp 

Additionally, xsp and ysp depend solely on S and φ following (4.6) and (4.7). To illustrate 
the course of x and y in the state space with the parameters A, α substituted using equation 
(4.17), the inverse of the T-function (4.4) is calculated as ( )(

1 A − x 
y = − ln . (4.18)

α A 

The exemplary hormonal course in the phase space as a result of the previous framework 
is shown in Fig. 4.5. The identifcation of the corresponding parameters in the course of 
calibration will be explained in detail in the applied chapters. 
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Figure 4.5: Equilibrium curves, set-point and patient data with xsp = 14.22, ysp = 1.55, 
S = 1002.24, φ = 0.46, A = 22.49, α = 0.64. 

Figure 4.5 shows that both equilibrium curves intersect at the set-point. The HP-function 
exhibits an exponential decrease while the inverse of the T-function increases exponentially 
with increasing FT4. 
The gain factor analysis not only provides the possibility to explicitly determine the set-
point coordinates and derive dependencies of parameters, but to represent the model (4.1) 
as a closed-loop control system as shown in Fig. 4.3. 

4.1.4 Analysis of the Set-Point Equations 

All three approaches explained in detail in previous sections result in explicit expressions 
of the set-point (xsp, ysp) in dependence of either S and φ or A and α, which can be 
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summarized to 
√ 

ln( 2Sφ) 1mch gf mct x = x = A (1 − exp(−1)) x = A − √sp sp spφ 2α√ 
1 1 ln( 2Aα)mch gf mct y = √ y = y = . (4.19)sp sp sp
2φ α α 

Combining the set-point derivations explained in detail in 4.1.2 and 4.1.3 seemingly provides 
the possibility to derive an explicit expression of A and α, since both approaches result 
in terms representing xsp and ysp in dependence of those two parameters. According to 
both underlying theories, the expressions should at least not be contradicting. This can be 

2Aα 

shown by 

gfysp 
mct = ysp ⇔ 

1 
α 

= 
√ 

ln( 2Aα) 
α 

⇔ 
√ 

ln( 2Aα) = 1 ⇔ 
√ 
2Aα = exp(1), (4.20) 

and therefore (( )(
gfxsp = A 1 − √ 1 (4.20) 

= mctA (1 − exp(−1)) = xsp . (4.21) 

By additionally using ( )( √1gf mct x = x ⇔ A 1 − √ = A (1 − exp(−1)) ⇔ 2Aα = exp(1) (4.22)sp sp 
2Aα 

and the resulting relation 

(4.22) ln(exp(1)) 1mct gfy = = = y , (4.23)sp spα α 

it follows that 

gf mct gf mct x = x ⇔ y = y , (4.24)sp sp sp sp 

which, according to the previous analysis, corresponds to 
√ 

gf mct gf mct x = x ∧ y = y ⇔ 2Aα = exp(1). (4.25)sp sp sp sp 

Therefore, it was shown that the relation of the resulting set-points of both section 4.1.2 
and 4.1.3 depends solely on the parameters A and α according to (4.25), whereas there are 
infnite solutions for both parameters. 

4.1.5 Sensitivity Analysis 

The sensitivity analysis, described in detail in 3.3, is applied to the minimal model to gain 
information about the contribution of specifc parameters to the model output variance. In 
Fig. 4.6, a matrix containing the Sobol’ sensitivity indices of frst and second order with 
respect to the last point of the time-dependent trajectories of the minimal model (4.1) is 
plotted. 
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Figure 4.6: Heatmap of Sobol’ indices of frst and second order of the minimal model for 
x (left) and y (right). The entries of the diagonal correspond to the indices of 
frst order, the remaining entries represent the second order indices. 

As shown in Fig. 4.6, the maximum Sobol’ index of frst order of x is found for the parameter 
φ, thus the fnal point of the corresponding trajectory is most sensitive to the parameter φ. 
Most of the other parameters do not contribute signifcantly to the model output variance. 
Especially, there is no signifcant infuence of the interaction of any parameters according 
to the low value of the Sobol’ index of second order. Compared to φ, the Sobol’ index of 
the parameters A and α indicate a smaller infuence on the model output variance. 
In contrast to the results of x, Sobol’ indices of second order signifcantly larger than zero 
are found for the fnal point of the trajectory of y. Figure 4.6 indicates that the interaction 
between A and φ as well as A and α signifcantly contribute to the model output variance. 
Similar to the sensitivity results of x, the parameters φ, A and α have the highest Sobol’ 
index of frst order, while A has the maximum infuence on the fnal point of the y trajectory. 
The parameter S and the initial values (x0, y0) do not contribute to the model output 
variance with respect to the fnal point of both trajectories according to Sobol’ index. 
Thus, the results of the minimal model presented in 6 are expected to show a higher 
variance of the last point of the trajectories with respect to φ, A and α compared to S or 
parameter interactions. Sensitivity analysis implies the possibility to further restrict the 
interval that determines the possible range of S during parameter identifcation for runtime 
or computational cost efficiency. 

4.1.6 Parameter Identification 

The parameter values for the model are determined in the course of a calibration using 
patient data described in detail in section 2.3. Two calibration approaches are pursued. 
The frst approach refers to a direct calibration of the time-dependent course of both x(t) 
and y(t) determined by the system of diferential equations (4.1). This approach is equiv-
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alent to the procedure described in section 3.4 with z̃(t, θ) = (x(t, θ), y(t, θ)) ∈ R2 and 
θ = (S, φ, A, α) ∈ R4 . Thus, the aim of this parameter identifcation is to fnd parame-
ters with minimal deviation to the patient data and minimize the corresponding objective 
function given by (3.17). 

The second approach is based on the results presented in section 4.1.3 and describes the 
calibration of the function y(x) given by (4.3) in the state space resulting in parameters 
S and φ. Subsequently, the respective set-point coordinates are calculated based on the 
curvature of y(x) with the optimal parameters S and φ and the parameters A and α are 
then derived explicitly according to (4.17). This represents a calibration of a function that 
is not time-dependent, thus the problem formulation needs to be adapted with respect to 
the general process of parameter identifcation described in section 3.4. 
The model is given by y(x, θ) with θ = (S, φ) according to 

S 
y(x) = . (4.26)

exp(φx) 

It is determined by the equilibrium equation of model (4.1) and thus only depends implicitly 
on the system of diferential equations. The reference data used for the calibration consists 
of pairs (xl, yl) with l = 1, ..., n and the corresponding model evaluation y(xl). Since the 
calibration is based on the course of only one variable, the error does not need to be 
normalized, resulting in an objective function defned as 

ξ(θ) = 
1 n∑(

(y(xl, θ) − yl)2 . (4.27) 
n 

l=1 

Therefore, two parameters of model (4.1) are identifed by the use of a calibration algorithm 
while the other two are calculated directly based on the previously derived mathematical 
framework. 

4.2 A Unified Model of the Thyroid Hormone Regulation 

The mathematical model described by [YTH+21] is used as an additional supplementary 
and comparative description of the HPT system. In line with the model presented in 
section 4.1, it consists of two diferential equations describing the temporal change of [TSH] 
and [FT4], respectively, by including their mutual infuence as negative feedback control 
mechanism and the endogenous reduction of both hormones. In order to represent disease 
states related to the thyroid gland, the parameter G was introduced to account for the use 
of medication. Additionally, the model also includes a set-point defned as the hormonal 
equilibrium corresponding to an euthyroid state. This set-point is described explicitly by 
the parameters U for [FT4] and indirectly by p1 for [TSH], which are included directly in 
the system. 
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The model describes the HPT regulatory system in a euthyroid state by the following 
system of diferential equations 

d[TSH] 
dt 

d[FT4] 
dt 

p1([FT4] − U) 
= p1 − − d1[TSH], 

s1 + [FT4] 
p2(t)[TSH] 

= − d2[FT4] + G. 
s2 + [TSH] 

(4.28) 

The parameter G describes the amount of increased or decreased thyroxine levels per unit 
time caused by thyroid medication intake. 
In [YTH+21], the euthyroid set-point for [FT4] is considered as individual. Complementary, 
the parameter p1 is the standard rate of release of [TSH] from the pituitary gland when 
[FT4] reaches its set-point value U . For further analysis of the introduced set-point, the 
so-called TSH-secretion-function f([FT4]) is defned as 

p1([FT4] − U) s1 + U 
f([FT4]) = p1 − = p1 . (4.29) 

s1 + [FT4] s1 + [FT4] 

It follows immediately that f(U) = p1, describing a pituitary level-of at a standard release 
rate of [TSH] when the release rate of [FT4] is optimal. In addition, the pituitary gland 
secretes more [TSH] in response to a lower amount of secreted [FT4] and vice versa, thus 
depending on the ratio of [FT4] and U . The TSH-secretion-function represents this behavior 
by 

f([FT4]) < p1 if [FT4] > U, (4.30) 
f([FT4]) > p1 if [FT4] < U, (4.31) 

as the quotient in (4.29) is either smaller or larger than one. It is also assumed that the 
euthyroid set-point is equal to the model equilibrium. Therefore, for a euthyroid state, the 
model parameter p2 can be expressed by the other parameters. First, the equilibrium state 

d[FT4]for [FT4], denoted by [FT4] ∗ , is calculated by = 0 resulting indt 

p2 [TSH] ∗ 
!

[FT4] ∗ = = U. (4.32)
d2(s2 + [TSH] ∗ ) 

Analogously, the equilibrium for [TSH], denoted as [TSH] ∗ , is calculated to be 

p1(s1 + U) p1
[TSH] ∗ = = . (4.33)

d1(s1 + [FT4] ∗ ) d1 

By inserting (4.33) into (4.32) and rearrange the equation according to the objective pa-
rameter, p2 can be described explicitly as (( )(

p2 = d2U 1 + 
d1s2 

. (4.34) 
p1 
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4.2.1 Applicability of the Maximum Curvature Theory 

The previously presented maximum curvature theory, originally introduced in the context 
of model (5.1), states that the point of maximum curvature of the HP-function corresponds 
to the point of maximum sensitivity of the pituitary. Therefore, it can be used to describe 
the set-point explicitly in dependence of other model parameters. Thus, the maximum 
curvature theory is applied to the model (4.28), which is also an autonomous system of 
diferential equations. The results are compared with the explicit representation of the 
set-point of [FT4] by the parameter U and p1, the standard release rate of [TSH] at the 
set-point. In [YTH+21], the defnition of parameter p2 varies in dependence on the thyroidal 
state - euthyroid, hypothyroid or hyperthyroid. For this approach, only the euthyroid state 
is considered due to the defnition of the set-point with respect to a euthyroid state. This 
is also the reason why G = 0 is required. Here and in the following, model (4.28) is 
additionally reformulated by substituting y = [TSH] and x = [FT4] due to readability 
purposes resulting in 

dy p1(x − U) 
= p1 − − d1y, 

dt s1 + x 
(4.35)

dx p2y 
= − d2x. 

dt s2 + y 

Application of the Maximum Curvature Theory to the TSH-Function 

The TSH-function is defned equivalently to the HP-function (4.3) of model (4.1). It can 
be derived by determining the steady state equation for y defned by dy = 0 leading to thedt 
TSH-function ( )(

1 p1(s1 + U) 
y = . (4.36)

d1 (s1 + x) 

By inserting the frst and second derivative of (4.36) in (3.1), the corresponding curvature 
Ky is determined to be 

((
2 )− 3

22p1(s1 + U) p1(s1 + U)2 
Ky = 1 + . (4.37)

d1(s1 + x)3 d2(s1 + x)4 
1 

dKyThe set-point can then be calculated by dx = 0 leading to the four solutions √± ±d1p1(s1 + U) − d1s1 
x1,2,3,4 = . (4.38)

d1 

Since all included parameters are positive and the set-point candidate for x must be a 
positive real number, it follows that √

d1p1(s1 + U) − d1s1 
xsp = , (4.39)

d1 
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and furthermore √(
(4.36) p1(s1 + U) 

ysp = . (4.40)
d1 

Thus, an explicit expression of the set-point coordinates of x and y could have been derived 
and the maximum curvature theory is at least applicable to the TSH-function of model 
(4.28). 

Application of the Maximum Curvature Theory to the FT4-Function 

In line with previous approaches, the maximum curvature theory is also applied to the 
so-called FT4-function of model (4.35) in order to determine the corresponding point of 
maximum sensitivity. The FT4-function is derived by dx = 0 asdt ( )(

1 p2y 
x = . (4.41)

d2 (s2 + y) 

The curvature of x is determined using its frst and second derivative and (3.1) as 

( )2 
)− 3

22p2s2 p2s2
Kx = − 1 + . (4.42)

d2(s2 + y)3 d2(s2 + y)2 

By calculating the frst derivative of Kx with respect to y and solving the equation dd 
K
y 
x = 0, 

the candidates for the y-coordinate of the set-point can be derived as 

√ √ − d2s2 ± ±p2s2 
y1,2,3,4 = √ . (4.43)

d2 

The set-point and all the included parameters are required to be real positive numbers, 
therefore is follows that 

√ √ − d2s2 + p2s2 
ysp = √ , (4.44)

d2 

and as a consequence 

p2 s2 
xsp = − √ . (4.45)

d2 d2p2s2 

Thus, the maximum curvature theory applied to the FT4-function leads to a unique, ex-
plicit expression of the set-point. The signifcance of the theory applied to this model in 
physiological terms can be further investigated in the context of data-based simulation of 
the course of both corresponding hormones. 
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4.2.2 Closed-Loop Control System and Gain Factor Analysis 

In order to represent model (4.28) as a closed-loop system in line with Fig.4.3, the frame-
work presented in section 3.4 is applied. This not only ofers the possibility to specify the 
gain factor for both the TSH- and FT4-complexes, but according to [LG14] is an approach 
to determine an explicit representation of the set-point using the optimal overall gain factor. 
The gain GT SH is defned by the derivative of equation (4.36) with respect to x, which 
leads to 

dy p1(s1 + U)
GT SH = = − . (4.46)

dx d1(s1 + x)2 

Since the optimal gain factor in the context of set-point specifcation in [LG14] is defned 
using the derivative with respect to y, GT SH must be reformulated using 

1 (4.36) d1y 
= , (4.47)

(s1 + x) p1(s1 + U) 

and (4.36) as 

p1(s1 + U) 1 d1y
2 

GT SH = − = − . (4.48)
d1(s1 + x) (s1 + x) p1(s1 + U),( ,,( ,(

=y 

Analogously, the gain of the FT4-complex can be determined based on (4.41), the equilib-
rium equation of x, by 

dx p2s2
GFT 4 = = . (4.49)

dy d2(s2 + y)2 

Since GFT 4 depends only on y, no further transformations are necessary. Thus, based on 
these terms, the optimal overall gain factor is calculated based on dG = 0 withdy ((

2 )(
2dG d d d1y p2s2 2d1p2s2y 

= |GT SH GFT 4| = = . (4.50)
dy dy dy p1(s1 + U)d2(s2 + y)2 p1(s1 + U)d2(s2 + y)3 

Setting this equation to zero is only solvable for y = 0 leading to set-point coordinates of 
(xsp, ysp) = (0, 0), which are independent of the model parameters. This result contradicts 
the physiological defnition of the set-point being individual for every patient. Therefore, 
the theory of an optimal gain factor does not result in explicit terms of the set-point 
coordinates depending on the parameters when applied to model (4.28). The theory yet 
provides the possibility to represent the model as a closed-loop control system based on 
the calculated individual gain factors. 
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4.2.3 Sensitivity Analysis 

A sensitivity analysis provides information about the contribution of parameters to the 
modoutput variance restricted to the last point of the trajectories. 
The results of the sensitivity analysis, derived theoretically in section 3.3, applied to the 
unifed model 4.35 are shown in Fig. 4.7. 

Figure 4.7: Heatmap of Sobol’ indices of frst and second order of the unifed model for x 
(left) and y (right). The entries of the diagonal correspond to the indices of 
frst order, the remaining entries represent the second order indices. 

The Sobol’s indices indicate that the parameter U contributes most to the variance of the 
fnal point of the x trajectory in correspondence to the defnition of U . In line with this 
result, the maximum Sobol’ index of the y trajectory is associated with the parameter p1. 
All other parameters or pairwise interactions do not show a signifcant infuence on the 
model output variance. Thus, the largest contribution to the variance of last point of both 
trajectories is associated with the parameters determining the set-point of both curves. 

4.2.4 Parameter Identification 

In order to obtain more information about the model, the previous theoretical analysis is 
extended to the practical approach of calibration to patient data, which is presented in 
chapter 6. As a basis, the problem must be formulated in terms of parameter identifcation 
as described in detail in section 3.4. 
The approach corresponds a direct calibration of the time-dependent course of both x(t) and 
y(t) determined by the system of diferential equations (4.35). This approach is equivalent 
to the procedure described in section 3.4 with 

z̃(t, θ) = (x(t, θ), y(t, θ)) ∈ R2 and θ = (p1, s1, U) ∈ R3 . (4.51) 

Thus, the aim of this parameter identifcation is to minimize the corresponding objective 
function given by (3.17). 
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4.2 A Unified Model of the Thyroid Hormone Regulation 

The values for the remaining parameters are fxed based on their description resulting 
in s2 = 0.0021, d1 = 16.635, d2 = 0.09921 and the respective values are determined in 
[YTH+21] as well as in [Pan11]. The parameter p2 can be calculated depending on the 
others. 
The calibration of the models presented in this chapter provides more information about 
the system dynamics and especially the set-point. In addition to the explicit equations of 
the set-point coordinates, it is contextualized with stability behavior of the models in the 
course of a qualitative analysis. 
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5 Qualitative Analysis 

An analytical investigation of mathematical models allows statements to be made about the 
general short- and long-term behavior, stability and robustness before they are calibrated 
in the course of a parameter identifcation. In this chapter, the two models presented 
in chapter 4 are analyzed in terms of equilibrium points and the corresponding local and 
global stability by means of theoretical and graphical approaches. In order to obtain further 
information on the correlation of the set-point equations of the model presented in section 
4.1, which were derived using maximum curvature theory and gain factor analysis, the 
stability of these explicit set-point equations is also considered. 

5.1 Stability Analysis of the Minimal Model of the HPT Axis 

Direction felds show the general long-term course of trajectories of a system of diferential 
equations. Thus, in the course of a graphical analysis, equilibrium points and their local 
and global stability can be identifed. 
An exemplary direction feld of the system of diferential equations (4.1) including two 
sample trajectories, shown in Fig. 5.1, suggests the existence of an asymptotically stable 
equilibrium point. 
The system (4.1) is a nonlinear 2-dimensional autonomous system given by 

dx A 
= A − − x := f1(x, y),

dt exp(αy) 
(5.1)

dy S 
= − y := f2(x, y). 

dt exp(φx) 

5.1.1 Local Stability Analysis 

This section is concerned with the local stability analysis of an autonomous system, 

u ′ (t) = f(u(t)), (5.2) 

with f : D → Rd and D ⊆ Rd , based on the analysis of the Jacobian matrix J in the course 
of the principle of linearized stability. The mathematical framework, introduced shortly in 
this section, is based on and explained in more detail in [HD19]. 

∗Defnition 8. A point u ∈ D with f(u ∗) = 0 is called a critical or equilibrium point of f . 

The stability of an autonomous system around an equilibrium point can then be analyzed 
by linearization of the respective system using the Taylor series expansion of frst order 
around the equilibrium as a development point. 
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Figure 5.1: Direction feld of model (4.1) including two sample trajectories. The initial 
value for trajectory 1 is [7, 2] and for trajectory 2 it is [17, 8]. The exemplary 
parameter set was chosen with [S, φ, A, α] = [1000, 0.4, 22, 0.6]. 

By omitting the remainders obtained during the Taylor series expansion, this approach 
leads to the linear system of diferential equations with constant coefficients 

u ′ (t) ≈ Jf (u ∗ )u(t). (5.3) 

Depending on the characteristics of the Jacobian matrix Jf (u ∗) of f evaluated at the 
∗equilibrium point u , its stability properties can be derived based on the trace according 

to the following theorem. 

Theorem 1. (Principle of linearized stability) Let D ⊆ Rd be an open set and a 
∗function f ∈ C1(D, Rd). If u is a critical point of f , then it holds that 

∗1. If tr(Jf (u ∗)) < 0, then u is asymptotically stable. 

∗2. If tr(Jf (u ∗)) > 0, then u is unstable. 

In line with [Heu91], equilibrium points of a 2-dimensional system of diferential equations 
can be further classifed according to the eigenvalues λ1, λ2 of the Jacobian Jf (u ∗) due to 
the following lemma. It is reduced to cases where λ1, λ2 ∈ C as only such cases are present 
within the models considered in this work. 
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Lemma 1. Let λ1,2 = α ± iβ be conjugated complex eigenvalues of Jf (u ∗). 
∗ ° If α < 0 and β ̸= 0, u is an asymptotically stable spiral. 
∗ ° If α > 0 and β ̸= 0, u is an unstable spiral. 
∗ ° If α = 0 and β ̸= 0, u is a stable center. 

The local qualitative analysis of model (5.1) is based on several approaches including the 
determination of the general equilibrium point and the set-point equations derived in section 
4.1. Following the general approach to determine the equilibrium point of (5.1) results in 

dy ∗ = 0 ⇒ y = S exp(−φx ∗ )
dt ( ) (( )( (5.4)
dx 1 1∗ = 0 ⇒ x = A 1 − = A 1 − . 
dt exp(αy∗)) exp(αS exp(−φx∗)) 

∗These equations cannot be solved analytically to obtain an explicit expression for both x 
∗and y , but the previously derived equations for the set-point can be analyzed in the same 

context. 

To analyze the qualitative behavior of the system of diferential equations (5.1) with respect 
to the derived set-point, it must be assumed that all equations summarized in (4.19) equally 
represent the same set-point. Otherwise, the theoretical analysis could not be applied since 
the diferential equation for x depends on A and α while the diferential equation for y 
depends on S and φ. This implies that the set-point expression including the respective two 
matching parameters has to be chosen in order to apply the previously described framework 
for a qualitative analysis of (5.1). This assumption corresponds to the analysis performed in 
section 4.1.4 and the defnition of the set-point to represent the unique individual hormonal 
equilibrium. 
For readability purposes, the set-point equations, derived based on the maximum curvature 
theory applied to the HP- and the T-function and the gain factor analysis are repeated in 
this section. They are given as 

√ 
ln( 2Sφ) 1mch gf mct x = x = A (1 − exp(−1)) x = A − √sp sp spφ 2α√ 
1 1 ln( 2Aα)mch gf mct ysp = √ y = ysp = . (5.5)
2φ sp α α 

Proposition 1. The set-point, derived in section 4.1.1 and 4.1.3 using the maximum cur-
vature theory applied to the HP-function and the gain factor analysis, is an asymptotically 
stable equilibrium of (5.1). 

Proof. First, the set-point is an equilibrium of (5.1) according to 

dx A 
= A − − xsp 

gf = A (1 − exp(−1)) − A (1 − exp(−1)) = 0,
gfdt exp(αysp) 

(5.6)
dy S mch S 1 

= − ysp = √ − √ = 0. 
dt exp(φxmch exp(ln( 2Sφ)) 2φsp ) 
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For the stability analysis, the Jacobian matrix is computed. It can be derived and evaluated 
at (xsp, ysp) following (( ) ( )(

mch gf −1 Aα exp(−αy) −1 Aα exp(−1)
J(xsp , ysp) = = √ . (5.7)

Sφ exp(−φx) −1 gf − 2 −1(xmch 
spsp ,y ) 

To fnally analyze the stability, the corresponding eigenvalues are calculated by 
√ 

|J − λE| = (1 + λ)2 + αA 2 exp(−1) = 0. (5.8) 

It follows that √ √√ √ 
λ1,2 = −1± −αA 2 exp(−1) = −1 ± i αA 2 exp(−1) ∈ C. (5.9) 

Thus, the eigenvalues of the Jacobian matrix are complex since A,α > 0 with Re(λ1,2) < 0. 
This leads to the conclusion that the set-point is a spiral sink and therefore asymptotically 
stable, which corresponds to the behavior that can be observed in the phase portrait shown 
in Fig. 5.1. 

To further evaluate the assumption of an equal set-point representation, the same frame-
work is analogously applied to the results of 4.1.1 and 4.1.2. 

Proposition 2. The set-point, derived as a result of 4.1.1 and 4.1.2, is an asymptotically 
stable equilibrium of (5.1). 

mch mch mct mctProof. Substituting x and y by the formulas for (x , y ) and (x , y ) in systemsp sp sp sp 
(5.1), respectively, likewise results in an equilibrium equation according to ( )(

dx A mct A 1 
= A − − xsp = A − √ − A − √ = 0,

dt exp(αymct)sp exp(ln( 2Aα)) 2α 
(5.10)

dy S mch = − ysp = 0. 
dt exp(φxmch 

sp ) 

The Jacobian is evaluated at (xsp, ysp) as (( ) (( √ )(−1 Aα exp(−αy) −1 2mch mctJ(xsp , ysp ) = = √ . (5.11)
Sφ exp(−φx) −1 mch,ymct − 2 −1(xsp )sp 

The corresponding eigenvalues are then calculated based on the characteristic polynomial 
following 

|J − λE| = λ2 + 2λ + 3 = 0. (5.12) 

Solving this equation leads to 
√ √ 

λ1,2 = −1 ± −2 = −1 ± i 2 ∈ C. (5.13) 

According to the complex eigenvalues, the equilibrium points is corresponds to an asymp-
totically stable spiral sink. Therefore, it can be concluded that this representation of the 
set-point is also an equilibrium point of the system of diferential equations exhibiting the 
same stability characteristics. 
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5.1.2 Global Stability Analysis 

Since the previous analysis only proves the local stability, the following approach is used 
to furthermore prove the existence of an equilibrium and its global stability based on the 
Dulac-Bendixon-Criterion and the Poincaré-Bendixon-Theorem. For this approach, the 
overall framework presented in [YTH+21] is applied to model (5.1). 

Theorem 2. (Dulac-Bendixon-Criterion) 
Let Z ⊆ X be open and simply connected. Assume the following: 

1. The functions f1 and f2 are continuously diferentiable on Z. 

2. There exists a function D : Z → R, continuously diferentiable on Z, such that 

∂(Df1) ∂(Df2)
+ (5.14)

∂x ∂y 

is either strictly positive almost everywhere on Z or strictly negative almost every-
where on Z. 
Then Z contains no periodic orbits or graphics. [Mar15] 

Theorem 2 is applied to system (5.1) in the following Lemma 2. 

Lemma 2. The system (5.1) has no periodic orbits or graphics in R2
+. 

Proof. Let Z = R+
2 that is open and simply connected. By choosing D ≡ 1, it follows that 

∂(Df1) ∂(Df2)
+ = −2 < 0. (5.15)

∂x ∂y 

Thus, according to the Dulac-Bendixon-Criterion, the model has neither periodic orbits 
nor graphics. 

This preliminary work will be used in combination with the Poincaré-Bendixon-Theorem 
given in Theorem 3, for which the additional Defnition 9 is needed. Let u(t) = (x(t), y(t)) 
be a solution curve with initial condition u0 = (x(0), y(0)). 

Defnition 9. The omega limit set of the point u0, denoted by ω(u0), consists of all points 
a ∈ R2 for which there is a sequence tj , j = 1, 2, ..., such that u(tj ) → a for tj → ∞. 
[Mar15] 

Theorem 3. (Poincaré-Bendixon-Theorem) Assume that X ⊆ R2 , where X is an 
open set, contains only fnitely many equilibria. Let u(t) be a solution in X that is defned 
and bounded on [0, ∞) with ω(u0) ⊆ X. Then one of the following holds: 

1. ω(u0) consists of an equilibrium. 

2. ω(u0) is a periodic orbit. 

3. ω(u0) a graphic. [Mar15] 

39 



5 Qualitative Analysis 

Lemma 3. All trajectories of the model (5.1) are constrained in a bounded region of R2
+. 

Proof. The model given in (5.1) can be rewritten as 

−α(y+φ)d
(x + α) = A − Ae e αφ − (x + α) + α, 

dt (5.16) 
−φ(x+α)d

(y + φ) = Se e αφ − (y + φ) + φ. 
dt 

Substituting the variables u = y + φ and v = x + α results in 

dv 
= A − Ae −αu e αφ − v + α, (5.17)

dt 
du −φv αφ − u + φ.= Se e (5.18)
dt 

It will now be shown that lim inf v(t) > 0 and lim inf u(t) > 0 and the limes superior is 
t→∞ t→∞ 

restricted for both u(t), v(t) and t → ∞. 

1. It will be shown that lim sup v(t) ≤ A + α < ∞. Based on the product rule, equation 
t→∞ 

(5.17) can be rewritten as 

−αu+αφ+td 
(et v(t)) = −Ae + e t(A + α). (5.19)

dt 

By integrating the equation with respect to t, it follows that ∫ ∫t αφ+s t 
t Ae 
e v(t) − v(0) = − ds + e s(A + α) ds (5.20)

αue∫0 0 
t αφ+s 

= − 
Ae

ds + e t(A + α)(1 − e −t) (5.21)
αue0 

< e t(A + α)(1 − e −t). (5.22) 

Thus, 

−t v(t) < (A + α)(1 − e −t) + e v(0), (5.23) 

which implies 

∗ v := lim sup v(t) ≤ A + α < ∞. (5.24) 
t→∞ 

2. Analogously, it can be proven that lim inf u(t) ≥ φ > 0 by reformulating equation 
t→∞ 

(5.18) such that 

−φv+αφ+td 
(et u(t)) = Se + e tφ. (5.25)

dt 
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By again integrating both sides of the equation with respect to t, it follows that 

t e u(t) − u(0) = 
∫(t 
0 

αφ+sSe
φve

∫(t 
ds + e sφ ds 

0 
(5.26) 

−t).> e tφ(1 − e (5.27) 

Therefore, 

−t u(t) > φ(1 − e −t) + e u(0), (5.28) 

which fnally leads to 

u∗ := lim inf u(t) ≥ φ > 0. (5.29) 
t→∞ 

3. To show that v∗ := lim inf v(t) > 0, let O := {(v(t), u(t) : 0 ≤ t < ∞)} be an orbit 
t→∞ 

lying in the frst quadrant. Let Z := {0 ≤ t1 < t2 < ... < tn < ...} be the sequence of 
points in [0, ∞) such that v̇(tj ) = 0 for j = 1, 2, .... 
It holds that inft≥0 v(t) = min{v(0), v(t1), ..., v(tn), ...}. Since the equilibrium is a 
spiral point, Z is an infnite set which implies that (tn) is an increasing sequence 
tending to ∞. 
Additionally, let there be an ϵ > 0 close to zero such that φ − ϵ < φ ≤ u∗. Such an ϵ 
exists since φ > 0. Therefore, let ū be chosen such that φ − ϵ < ū < u∗ and let v̄ be 

−αu αφthe intersection of the vertical line u = ū and the hyperbola v = −Ae e + A + α. 
Since ū > φ − ϵ, it follows that 

−αū αφ −α(φ−ϵ) αφ αϵ v̄ = −Ae e + A + α > −Ae e + A + α = −Ae + A + α (5.30) 

The parameter α defnes the decay rate with respect to equation (5.17). Therefore, 
it holds that α < 1 and additionally 

αϵ v̄ > −Ae + A + α −→ α > 0. (5.31)
ϵ→0 

Since ū < u∗, there exists an t̄  such that u(t) > ū, ∀tj ≥ t̄. This implies that the 
orbit O¯ := {(v(t), u(t)) : t ≤ t < ∞} lies on the right hand side of the vertical ¯ 

t 
line u = ū. Therefore it follows that the intersections of O¯ and the hyperbola t 

−αu αφv = −Ae e + A + α all have their v-coordinates greater than v̄. Thus, 

v(tj ) ≥ v̄ ∀tj ≥ t.̄ (5.32) 

Let j0 be an index chosen such that tj ≥ t̄  ∀j ≥ j0. Then it can be concluded that 

inf v(t) = min {v(0), v(t1), ..., v(tj0 )} > ȳ  > 0. (5.33) 
t≥0 

4. Finally, it can be shown that lim sup u(t) < ∞ by using the already proven properties. 
t→∞ ∗ ∗Since v∗ > 0 and v < ∞, v0 can be chosen such that 0 < v0 < v is fulflled. 
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5 Qualitative Analysis 

Thus, there exists some t ∗ such that ∀t ≥ t ∗ : v0 < v(t). Similar to previous ap-
proaches, u(t) can be estimated following 

−φv+αφ+td 
(et u(t)) = Se + e tφ (5.34)

dt ∫ ∫t αφ+s t 
t Se ⇔ e u(t) = u(0) + ds + e sφ ds (5.35)

φve0 0∫(t ∗ ∫ ∫αφ+s t αφ+s tSet Se ⇔ e u(t) = u(0) + ds + ds + e sφ ds. (5.36)
φv φv 

0 e t ∗ e 0 

v0According to the prior considerations, by using e < ev(t) for t ≥ t ∗ since the ex-
ponential function is strictly monotonously increasing, u(t) can be further estimated 
following ∫(t ∗ ∫ ∫(tαφ+s t αφ+s 

t Se Se 
e u(t) < u(0) + ds + ds + e sφ ds (5.37)

φv φv0e e0 t ∗ 0∫(t ∗ αφ+sSe t −t+t ∗ 
= u(0) + ds + Se e φ(α−v0)(1 − e ) + e tφ(1 − e −t). (5.38)

φve0 

Thus, ∫(t ∗ αφ+sSe −t), −t −t −t+t ∗ 
u(t) < e u(0) + e ds +Se φ(α−v0)(1 − e ) + φ(1 − e (5.39)

φve0,( ,,( ,(
<∞ 

and fnally 

lim sup u(t) < Se φ(α−v0)(1 − e t ∗ 
) + φ (5.40),,,,

t→∞ 
<∞ 

φ(α−v0)< Se + φ < ∞. (5.41) 

Proposition 3. Model (5.1) contains an equilibrium point which is globally asymptotically 
stable. 

Proof. In Section 5.1.1 it is proven that the set-point is an equilibrium point independent 
of the individually derived set-point equations. More specifcally, the set-point is a locally 
asymptotically stable spiral point. 
Lemma 3 proves that all trajectories of model (5.1) are constrained in a bounded region of 
R2 and therefore, according to the Poincaré-Bendixon Theorem, the set-point is globally+ 
asymptotically stable since Lemma 2 rules out periodic orbits and graphics. 

5.2 Equilibrium Behavior of the Unified Model of the Thyroid 
Hormone Regulation 

Following the same mathematical procedure as applied in 5.1 it can be proven that the 
trajectories of the model presented in 4.2 converge to the steady state (TSH∗, FT 4∗). 
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5.2 Equilibrium Behavior of the Unified Model of the Thyroid Hormone Regulation 

Proposition 4. Model (4.28) contains an equilibrium point which is positive, unique and 
globally asymptotically stable. 

Proof. The proof of this theorem is given only in outline and can be found in detail in the 
appendix of [YTH+21]. 
First, it is shown that the thyroid model (4.28) contains a unique positive state by setting 
the equations to zero and solving them for the corresponding variable. The property of 
local asymptotic stability of this equilibrium point is proven using the eigenvalues of the 
Jacobian matrix. Using Dulac’s Criterion (2) and the Poincaré-Bendixon Theorem (3) it is 
shown that the steady state is also globally stable by rewriting the system and analyze the 
limes superior and inferior of the corresponding trajectories of both hormones. Therefore 
it can be deduced that all trajectories of the model converge to this unique equilibrium 
point. 

Figure 5.2: Direction feld of model (4.28) including two sample trajectories. The equilib-
rium point is given as [FT 4∗, T SH∗] = [12.5, 3]. The initial value for trajectory 
1 is [7, 2] and for trajectory 2 it is [17, 8]. The exemplary parameter set was cho-
sen to be [p1, s1, s2, d1, d2, U, G] = [50, 0.0434, 0.0021, 16.6355, 0.099021, 12.5, 0] 
given in [YTH+21]. 

The existence of a globally asymptotically stable equilibrium point can also be observed in 
Fig. 5.2. 
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5 Qualitative Analysis 

The equilibrium was not classifed during the theoretical qualitative analysis since the 
analytic expression does not allow for an explicit determination of the eigenvalues of the 
Jacobian matrix. The direction feld allows the point to be classifed as a stable node since 
the arrows are slightly tilted towards it. 
Furthermore, the trajectories converge directly to the equilibrium point if they start on 
the exponentially shaped zero change line, which is marked by almost unobserved arrows 
in the direction feld. The trajectories converge to the equilibrium point regardless of their 
initial value, whereby it can be observed that frst the TSH value is adjusted until the zero 
change line is reached, while the FT4 value then controls the convergence to the respective 
steady state. 
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6 Data-Based Model Analysis 

The models described in the last chapters can now be used to simulate the course of 
thyroid hormones in the state space and time domain. Based on the patient data presented 
in section 2.3, the parameter identifcation is conducted as generally described in section 
3.4. The two models analyzed in detail in chapter 4 form the foundation for the simulation. 
Corresponding details and results of those two models including several approaches will be 
presented and discussed in the following sections. 

6.1 Calibration 

To simulate the course of the hormone concentration [TSH] and [FT4], the minimal model of 
the HPT axis introduced in section 4.1 is combined with the corresponding mathematical 
analysis presented in chapter 4. There are two approaches focusing on the simulation 
of the long-term behavior of the HPT complex, which will be described in detail in the 
following subsections. Both approaches require the parameter identifcation of two or four 
parameters, respectively. The bounds used for the calibration are presented in Table 6.1. 

Parameter Bounds 
S [1000, 1500] 
φ [0.2, 0.5] 
A [20, 100] 
α [0.1, 0.4] 

Table 6.1: Calibrated parameters and corresponding bounds of the minimal model (4.1). 

The parameters included in Table 6.1 do not possess a physiological meaning. Thus, the 
determined bounds are chosen based on previous calibrations conducted in [LG14]. 
In Fig. 6.1, the resulting distribution of the four parameters of model (4.1) for both state 
space and direct calibration is presented. 
It shows that while each parameter of the state space ft contains at least one outlier, the 
values obtained from the direct calibration do not. The only parameter including more 
than one outlier is S, where the outliers show very close values. The parameters φ and A 
determined by the state space calibration have a signifcantly lower range compared to the 
time domain calibration. 
The range of the parameter values of S, φ and A resulting from the calibration in the time 
domain contains the entire range of the same parameters from the state space calibration, 
except for an outlier of S. In contrast to this observation, the range of the parameter α 
overlaps in both approaches only at one value, which is an outlier with respect to the state 
space calibration. The parameter α also shows a similar width of distribution for both 
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6 Data-Based Model Analysis 

Figure 6.1: Boxplots of the calibrated parameters of model (4.1) for both state space and 
time domain calibration. 

approaches. In general, a broader distribution can be observed for most of the parameters 
for the calibration in the time domain. 

The frst modeling approach is based on the calibration of the HP-function in the state 
space as described in section 4.1.6. This provides a parameter identifcation of S and φ, 
which then allows for computing the set-point applying the maximum curvature theory as 
presented in section 4.1.1. Based on the set-point values of [TSH] and [FT4], the remaining 
parameters A and α can be determined by using the results of the gain factor analysis 
developed in section 4.1.3. Thus, the time-dependent course is simulated based on the 
state space calibration. 
The second calibration approach relies on the identifcation of the course of both hormones 
and is described in section 4.1.6. The approach is based on an identifcation of all parame-
ters S, φ, A and α in the time domain with respect to the corresponding course of [TSH] and 
[FT4]. Based on the identifed parameters, the state space curves can also be determined, 
which provides the possibility to compare the respective hormonal course. 

The time-dependent course of both hormones can also be simulated using the unifed model 
of the thyroid hormone regulation presented in section 4.2. The corresponding parameter 
identifcation is described in detail in section 4.2.4. The model includes several parameters, 
four physiologically determined and two requiring parameter identifcation. Table 6.2 shows 
the values of the parameters that are taken from the literature. 

Parameter Unit Value 
d1 day−1 16.6355 
d2 day−1 0.099021 
s1 pg · mL−1 0.0434 
s2 mU · L−1 0.0021 

Table 6.2: Physiologically determined parameter values of the unifed model (4.28) based 
on the description given in [Pan11]. 
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6.1 Calibration 

Table 6.3 contains the remaining parameters that are determined during the parameter 
identifcation. 

Parameter Unit Bounds 
p1 
U 

mU · L−1 · day−1 

pg · mL−1 
[0.001, 1000] 

[7, 18] 

Table 6.3: Calibrated parameters and corresponding bounds of the unifed model (4.28). 

The boundary interval for U was chosen according to its defnition of the set-point value 
of [FT4], and thus corresponds to the normal range of [FT4] as given in section 2.1. Since 
p1 corresponds to the standard release rate of [TSH] from the pituitary gland when [FT4] 
is at the euthyroid set-point value, the bounds cannot be derived physiologically resulting 
in a broader interval. 
Figure 6.2 shows the distribution of both parameters of the unifed model (4.28) resulting 
from a calibration of the time-dependent hormonal course. 

Figure 6.2: Boxplots of the calibrated parameters of the unifed model (4.28). 

While the parameter U does not contain any outlier, p1 includes one. It is noticeable that 
the range of the value of p1 is very large which is attributable to the corresponding bound-
ary interval. Almost 50 percent of the values of p1 can be found between almost 0 and 43 
mU · L−1 · day−1 , the remaining percentage is between 43 and about 98 mU · L−1 · day−1 . 
The values of parameter U extend over almost the entire possible range determined by the 
boundary interval. 

Figure 6.3 shows an exemplary course of the value of the corresponding objective function 
with respect to the diferent calibrations and steps of the optimizer diferential evolution, 
described in detail in section 3.4. 
In the course of the state space calibration of the minimal model, the optimal parameter 
values of the HP-function are determined, as described in detail in section 4.1.6. Therefore, 
the value of the objective function of this approach does not correspond to the NMSE with 
respect to the time domain as for the other curves. Thus, its NMSE is lower since only the 
HP-curve is ftted to the corresponding data points. 
In both approaches of the minimal model, the error hardly decreases during the optimiza-
tion, which leads to the conclusion that the initial parameter set has already resulted in an 
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6 Data-Based Model Analysis 

Figure 6.3: Exemplary course of the objective function during the optimizing steps of dif-
ferential evolution with respect to both models and corresponding approaches. 

adequate ft. The NMSE curve of the unifed model shows a decrease between the second 
and third optimization step before it remains almost constant. In addition, the optimal 
parameters of the unifed model were determined with a smaller number of optimization 
steps, while almost twice as many steps were required to ft the minimum model in the 
time domain. 
It can be concluded that the solution curves obtained by the initial set of parameters of 
the calibration almost fulfll the requirements given by the diferential evolution algorithm. 

6.2 Simulation Results 

After calibrating the models, the course of both [TSH] and [FT4] can be simulated. Three 
exemplary patients are selected to describe the behavior and the diferences of the presented 
models. 

Patient 11 sufers from autoimmunthyreoiditis and is 60 years old at the time of the frst 
measurement. In total, eight measurements are included in the data set and the corre-
sponding time span extends over 74 weeks. During this time, the patient was prescribed a 
certain dose of thiamazole before receiving T4 instead. The maximum TSH and minimum 
FT4 concentrations can be observed during the administration of thiamazole. 
Figure 6.4 shows the calibration results in state space including the corresponding data 
points of patient 11. 
The data set of patient 11 includes measurements which show very diferent magnitudes 
of the hormones, as shown in Fig. 6.4. In correspondence with the physiological behavior 
presented in 2.1, the maximum value of [TSH] is associated with the minimum [FT4] con-
centration. The highest [FT4] measurements also correspond to the lowest [TSH]. 
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6.2 Simulation Results 

Figure 6.4: Patient 11 - Simulation of the course of [TSH] and [FT4] in state space resulting 
from both calibration approaches of the minimal model (4.1) including the 
calculated set-point and measured data. 

Figure 6.4 additionally shows that the HP-function (4.3), calibrated using the state space 
ft described in section 4.1.6, represents the data points of patient 11. Especially the data 
points containing the lowest and highest [FT4] concentrations are located almost directly on 
the curve. The set-point is the point of maximum curvature of the HP-function according 
to section 4.1.1 and can be found very close to one of the measurement points. Additionally, 
it represents the points of intersection between the inverse thyroid function (4.18) and the 
HP-function (4.3). 
The HP-function and thyroid function, determined using the parameter identifcation in 
the time domain described in section 4.1.6, are also included in Fig. 6.4. Compared to 
the state space ft, the blue dotted HP curve is shifted to the left and intersects only the 
measurement point with the maximum [FT4] concentration. The red dotted thyroid curve 
shows a fatter course and intersects the corresponding HP curve at a point of higher [TSH] 
and [FT4] concentration than the set-point. 
The blue HP curve indicates that a low [FT4] value leads to a high release of [TSH] by the 
HP complex and vice versa due to the negative feedback loop. The red inverse thyroid curve 
on the other hand refects a high secretion of [FT4] by the thyroid complex in response to 
a high [TSH] concentration according to the stimulation by the HP complex. Independent 
of the approach, both functions can be considered as response curves. 
Figure 6.5 shows the corresponding time-dependent course of patient 11 of both approaches. 
Additionally, the resulting curves of the unifed model described in section 4.2 are included. 
As shown in Fig. 6.5, the state space calibration yields a time-dependent course of [TSH] 
and [FT4] representing a dynamic behavior during the frst fve weeks prior to reaching an 
equilibrium. It can be seen that the corresponding [FT4] curve decreases, increases and 
decreases again before leveling of at the equilibrium. On the other hand, the [TSH] curve 
increases in response to the decreasing [FT4] concentration before minimally decreasing 
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6 Data-Based Model Analysis 

Figure 6.5: Patient 11 - Simulation of the time-dependent course of [TSH] and [FT4] result-
ing from calibration of the unifed model (4.28) and both calibration approaches 
of the minimal model (4.1) including measured data. 

again and reaching the equilibrium. Therefore, the represented dynamics accurately refect 
the physiological behavior of the HPT complex. Both hormonal curves intersect with one 
data point of a measurement point pair while they have already reached the equilibrium. 
The dotted curves resulting from the calibration in the time domain show a similar dynamic 
behavior during the frst six weeks before leveling of at an equilibrium. The course of the 
[FT4] curve starts with a short steep decrease in concentration before rapidly increasing 
resulting in a [FT4] value larger than the starting point. The equilibrium is reached after 
a smaller decrease followed by a minor increase in concentration. The starting dynamics 
of the [TSH] curve can be found in a shorter time interval than the corresponding [FT4] 
curve. In response to the rapid decrease of [FT4], [TSH] increases at frst before decreasing 
and leveling of at the equilibrium in line with the underlying physiological dynamics. In 
contrast to the state space ft, the time domain ftted curves do not intersect any mea-
surement points. Additionally, both curves result in an equilibrium of higher hormonal 
concentration compared to the frst approach. 
The resulting hormonal courses of the calibration of the unifed model (4.28), described 
in section 4.2.4, are also included in Fig. 6.5. Both hormonal concentrations reach an 
equilibrium after approximately 30 weeks. This equilibrium is close to the continuous 
curve for [FT4] and almost the same as the curve for [TSH]. During the frst 30 weeks, a 
continuous decrease in the concentration of [FT4] can be observed. During the same time 
span, the [TSH] concentration increases until the equilibrium is reached. 
The corresponding determined parameters and the resulting value of the objective function 
for both models are presented in Table 6.4. 
It can be observed that the two approaches to calibrate the minimal model lead to difer-
ences in all four parameters. The smaller value of the parameter φ for the time domain 
calibration approach results in the right-shifted HP curve shown in Fig. 6.4 due to a slower 
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6.2 Simulation Results 

Minimal Model [FT4]sp [TSH]sp S φ A α NMSE 
State Space Fit 
Time Domain Fit 

15.31 1.7 1000.81 
1286.21 

0.42 
0.35 

24.22 
66.94 

0.59 
0.1 

2.97 
2.6 

Unifed Model U p1 NMSE 
14.75 52.04 2.32 

Table 6.4: Patient 11 - Numerical results including parameters, set-point and NMSE. 

decrease. The parameter S is found in the same order of magnitude in both approaches. 
The smaller value of α results in a fatter curve of the inverse thyroid function while the 
right-shift is caused by the increased parameter A. 
Both models include a set-point value for [FT4], listed in Table 6.4 as [FT4]sp and U , 
respectively. The set-point value of the minimal model, [FT4]sp, is slightly larger than the 
respective value of U for the unifed model, but both can be found close to 15 pmol/L. 
These values represent the equilibrium states reached by the corresponding [FT4] curves 
shown in Fig. 6.5. 
The lowest NMSE for patient 11 is found for the unifed model with a magnitude of 2.32. 
The maximum of 2.97 is reached when identifying the parameters based on the state space 
calibration of the minimal model. Due to two pairs of measurements that deviate signif-
cantly from the other values, the minimum NMSE is still high compared to the results of 
other patients, who are presented in the following. 

Patient 18 was diagnosed with Hashimoto autoimmune thyreoiditis and is 23 years old 
during the time of the data acquisition. The data set includes fve measurements collected 
over a time period of 37 weeks. Patient 18 received thiamazole upon the frst visit and T4 
upon the last visit. No thyroid medication was prescribed between these two visits. The 
calibration results for patient 18 are presented in the following. 
Figure 6.6 shows the course of [TSH] and [FT4] in state space including the corresponding 
data points. 
The HP-function of the state space ft intersects with the point of maximum [TSH] and 
decreases almost centered between the remaining data points. It intersects the correspond-
ing inverse thyroid function at the set-point, which lies outside the data point cloud and 
is determined by a lower [TSH] and higher [FT4] compared to the measurements. The 
HP-functions of the two calibration methods are almost identical. In contrast, the inverse 
thyroid function of the time domain ft shows a steeper increase than the resulting curve of 
the state space ft. It intersects the HP-function at a point with a higher [TSH] and lower 
[FT4] compared to the set-point. In addition, this point of intersection is in the middle of 
the data point cloud, unlike the set-point. 
The corresponding time-dependent hormonal course of both approaches is shown in Fig. 
6.7. The time-dependent course of both [TSH] and [FT4] of the state space ft shows a 
dynamic behavior during the frst seven weeks before reaching an equilibrium. The high 
initial value of [TSH] results in an increasing [FT4] at the beginning. As [TSH] decreases, 
[FT4] shows the same behavior after a certain delay. Both hormones rise and fall slightly 
before leveling of at the equilibrium. 
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6 Data-Based Model Analysis 

Figure 6.6: Patient 18 - Simulation of the course of [TSH] and [FT4] in state space resulting 
from both calibration approaches of the minimal model (4.1) including the 
calculated set-point and measured data. 

The [FT4] and [TSH] state space calibration curves are located above and below the cor-
responding data points, respectively. 
Compared to the state space ft, the dynamic behavior of the curves resulting from the 
time domain calibration is found in a shorter time interval. Additionally, no slope of the 
same magnitude can be observed for either of the two curves during this time interval. The 
steady state of both curves lies within the measuring points for [TSH] as well as [FT4]. 

Figure 6.7: Patient 18 - Simulation of the time-dependent course of [TSH] and [FT4] result-
ing from calibration of the unifed model (4.28) and both calibration approaches 
of the minimal model (4.1) including measured data. 
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6.2 Simulation Results 

The course of [FT4] determined by the unifed model increases during the frst 30 weeks 
and intersects with the second measurement point before reaching an equilibrium. This 
equilibrium point is found close to the steady state of the [FT4] curve of the state space 
calibration of the minimal model. In contrast, the [TSH] curve of the unifed model de-
creases during the same time, but levels of at an equilibrium close to the [TSH] course 
determined by the time domain ft of the minimal model. 
The corresponding parameters including the NMSE are presented in Table 6.5. 

Minimal Model [FT4]sp [TSH]sp S φ A α NMSE 
State Space Fit 
Time Domain Fit 

18.23 2.09 1000.95 
1150.68 

0.34 
0.35 

28.83 
25.37 

0.48 
0.17 

4.99 
0.85 

Unifed Model U p1 NMSE 
17.86 81.75 0.88 

Table 6.5: Patient 18 - Numerical results including parameters, set-point and NMSE. 

The parameters S and φ do not difer much for both calibration approaches of the minimal 
model resulting in the almost identical curves of the HP-function in Fig. 6.6. The value 
of α is smaller for the time domain ft resulting in a steeper increase of the corresponding 
inverse thyroid function although A does not difer much for both approaches. 
The NMSE of the state space ft is almost six times as high as for the time domain calibra-
tion. This result is also shown in Fig. 6.7 as the corresponding curves of both hormones 
lie outside the respective data points. The set-point coordinate of [FT4] of the minimal 
and the unifed model to not difer much, which corresponds to the close equilibrium of 
the [FT4] curves shown in Fig. 6.7. The lowest error is achieved for the calibration of the 
minimal model in the time domain, closely followed by the unifed model. 

Patient 65 sufers from latent hypothyroidism with serological evidence of autoimmune 
thyreoiditis and is 30 years old at the time of the frst measurement. At this time she is also 
in the ninth week of pregnancy. The corresponding data set contains fve measurements in 
total, collected over a time period of 38 weeks. The prescribed dose of T4 remains constant 
over the period of available measurements. No other medication use is recorded. In her 
diagnosis it was additionally noted that she is sufficiently thyroxine-treated. 
The state space and time dependent hormonal course resulting from the diferent ap-
proaches of parameter identifcation are presented below. 
Figure 6.8 shows the course of [TSH] and [FT4] for patient 65 in the state space including 
the corresponding data points. Almost all of the measurements can be found in a similar 
range. Only one point, which corresponds to the frst measurement available in the data set 
of patient 65, deviates from the others. Both state space and time dependent calibration 
result in a very similar curve for HP-function represented in blue. It intersects with the red 
inverse thyroid function at the set-point that can be found very close to the majority of the 
data points. In contrast to the HP-function, the inverse thyroid function difers for both 
approaches. A steeper increase of the curve can be observed for the state space calibration 
than for the time domain ft. 
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Figure 6.8: Patient 65 - Simulation of the course of [TSH] and [FT4] in state space resulting 
from both calibration approaches of the minimal model (4.1) including the 
calculated set-point and measured data. 

The corresponding time-dependent hormonal course and determined parameters are pre-
sented in Fig. 6.9. 
The hormonal courses for the minimal model for both approaches show a dynamic behavior 
during the frst eight weeks which corresponds to the time until the second measurement. 
For both state space and time domain ft, a decrease in concentration followed by an 
increase can be observed for [TSH] and [FT4]. After a small decrease, the equilibrium state 
is reached. 

Figure 6.9: Patient 65 - Simulation of the time-dependent course of [TSH] and [FT4] result-
ing from calibration of the unifed model (4.28) and both calibration approaches 
of the minimal model (4.1) including measured data. 
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6.2 Simulation Results 

The curves for [TSH] and [FT4] for state space and time domain ft are very close to 
each other both during the time interval of the dynamic behavior and when equilibrium is 
reached. The equilibrium can be found close to the average of the data points excluding 
the starting value. 
For [TSH] this equilibrium is also very close to the corresponding curve of the unifed 
model. The [TSH] curve resulting from this model shows a steep increased during a very 
small time interval at the beginning before leveling of at the equilibrium. In contrast to this 
behavior, the corresponding [FT4] curve difers signifcantly from the results of the minimal 
model. The whole course of [FT4] can be found in an interval of larger concentration values 
including the fnal equilibrium. It takes about 30 weeks to reach an equilibrium. During 
this time the [FT4] concentration decreases. 
The corresponding parameters including the normalized mean squared error of all ap-
proaches are presented in Table 6.6. 

Minimal Model [FT4]sp [TSH]sp S φ A α NMSE 
State Space Fit 
Time Domain Fit 

14.21 1.55 1000.53 
1419.06 

0.45 
0.47 

22.49 
48.17 

0.64 
0.23 

0.313 
0.305 

Unifed Model U p1 NMSE 
16.62 24.51 0.64 

Table 6.6: Patient 65 - Numerical results including parameters, set-point and NMSE. 

As shown in Table 6.6, the parameter S is found in the same order of magnitude for 
both state space and time domain ft. In contrast, the parameter φ only difers minimally 
resulting the very close curves for the HP-function shown in Fig. 6.8. The smaller value 
of A and larger value of α for the state space ft results in a steeper course of the inverse 
thyroid function. The set-point values of the unifed and the minimal model difer by about 
2.4 pmol/L and correspond to the equilibrium reached by the corresponding [FT4] curves 
in Fig. 6.9. 
The minimum NMSE resulting from the fnal evaluation of the objective function can be 
found with the time domain ft of the minimal model and does not difer signifcantly from 
the state space calibration approach. The simulation based on the unifed model results in 
a NMSE twice as high as both approaches of the minimal model. 

In Table 6.7, the resulting NMSE of each calibration approach with respect to the individual 
patient data set is presented. The mean and standard deviation of the NMSE for each 
approach is included for an overall comparison. 
The maximum NMSE of the state space calibration of the minimal model is found for 
patient 66. This patient is also associated with the maximum NMSE of the unifed model. 
Patient 11 has the highest NMSE of the time domain ft of the minimal model, which is 
signifcantly lower than the maximum value of the other two approaches. 
The minimum NMSE of the state space ft is achieved for patient 65, whose calibration 
results are presented in detail above. For this patient also the other two approaches result 
in a low NMSE. In contrast, while the lowest NMSE of the time domain ft is found for 
patient 60, the NMSE of the other two approaches is signifcantly larger. 
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Patient MM - State Space MM - Time Domain UM 
2 1.03 0.76 1.05 
3 3.99 0.80 3.65 
5 1.05 0.68 0.83 
11 2.97 2.60 2.32 
12 1.08 0.38 0.35 
13 3.17 0.69 0.86 
18 4.99 0.85 0.88 
22 2.76 1.21 1.39 
33 1.75 0.54 1.32 
35 2.40 1.15 1.18 
37 0.96 0.14 3.40 
53 0.80 0.70 1.42 
54 1.11 0.78 1.13 
55 0.91 0.69 0.83 
56 1.19 1.13 1.25 
57 0.92 0.47 0.63 
59 0.81 0.32 0.90 
60 3.42 0.13 3.79 
61 2.35 2.03 1.67 
62 0.42 0.37 0.73 
63 1.49 1.07 1.12 
64 0.56 0.41 1.03 
65 0.31 0.31 0.64 
66 5.28 1.22 5.65 
71 1.65 1.05 0.86 

mean 
std 

1.90 
1.37 

0.82 
0.55 

1.53 
1.16 

Table 6.7: Normalized mean squared error of each calibration for all of the patients included 
in the base data set. The mean and standard deviation of the results are added 
for each model and calibration approach, respectively. 

Patient 12 has the minimum NMSE of the unifed model that is close to the NMSE of the 
time domain calibration of the minimal model. In contrast, the NMSE of the state space 
calibration of this patient is about three times as high. 
The time domain ft of the minimal model results in the lowest mean NMSE and standard 
deviation over all included patients. In comparison, the mean NMSE and standard devia-
tion of the calibration of the unifed model is about twice as high. The largest mean NMSE 
and standard deviation are found for the state space ft of the unifed model. 
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7 Discussion 

In this work two mathematical models describing the HPT complex using a system of dif-
ferential equations were analyzed in terms of individual set-point, stability behavior and 
ability to refect patient data in the course of a simulation. Mathematical modeling of the 
HPT complex provides insight into the mutual infuence of the individual compartments, 
which is not yet fully understood, especially with regard to the patient-specifc hormonal 
equilibrium. 

In the publications [LG14] and [Goe21], the so-called minimal model is presented includ-
ing two approaches to theoretically derive the set-point. The maximum curvature theory 
describes the set-point as the point around which the pituitary is most sensitive to any 
changes in concentration of [FT4]. It is thus determined as the point where the derivative 
of the curvature of the HP-function, the equilibrium function of the diferential equation of 
[TSH] of this model, is zero. Since the set-point is defned as the hormonal equilibrium and 
the secretion of thyroid hormones is based on the mutual infuence of the compartments, 
the thyroid gland is analogously most sensitive to changes in [TSH] around this point. To 
analyze the general applicability of the maximum curvature theory, it is therefore applied 
to the thyroid function, the equilibrium function of the diferential equation of [FT4] of this 
model. Both applications result in an explicit expression of the set-point of both [TSH] 
and [FT4]. 

The gain factor analysis is the second approach to derive an explicit expression for the 
set-point. It is defned as the point at which the HPT complex, or more precisely the loop 
gain when represented as a negative feedback closed-loop system, operates optimally. 
These two mathematical theories result in three equations for the set-point coordinate of 
[TSH] and [FT4], respectively. Additionally, the maximum curvature theory applied to 
the thyroid function and the gain factor analysis describe both set-points in dependence 
on the same two parameters. This leads to a two-dimensional system of equations with 
two unknowns and seemingly provides the possibility to describe those parameters inde-
pendently of the set-point. The system is not explicitly solvable, but the expressions are 
non-contradictory subject to a condition on the parameters. Thus, in this work, it is shown 
that the maximum curvature theory is not only applicable to the function in whose context 
it was published, but also leads to an explicit expression for the set-point that does not 
contradict the previously published results when applied to the thyroid function. 

Another model of the time-dependent dynamics of the HPT complex is presented in 
[YTH+21]. In line with the minimal model, this so-called unifed model consists of a system 
of two diferential equations for [TSH] and [FT4] and includes the set-point as individual 
hormonal equilibrium. In contrast to the minimal model, the set-point is not derived by 
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7 Discussion 

mathematical approaches but explicitly included as parameters. Thus, in this work it is 
used as a comparative model. The maximum curvature theory and the gain factor analysis, 
originally introduced for the minimal model, are applied to the unifed mode to fulfll the 
aim of this work of analyzing their general validity. While the maximum curvature theory 
applied to both corresponding equilibrium functions of [TSH] and [FT4] results in an ex-
plicit expression for the set-point, the computation of the maximum loop gain determines 
it as the zero point, which is contradictory to its defnition of the patient-specifc hormonal 
equilibrium. Nevertheless, in the course of the gain factor analysis the unifed model is 
represented as a closed loop system by deriving the gain factors of the compartments rep-
resenting the HP complex and the thyroid. It is shown that the maximum curvature theory 
and the gain factor analysis, although originally introduced for another model, are appli-
cable in the context of the unifed model. The maximum curvature theory even results in 
explicit terms for the set-point in line with the results presented for the minimal model. 

Both models describe the HPT complex based on a system of diferential equations. Until 
this point, the set-point is described using mathematical theories or by explicitly including 
it in the model as parameters. The representation as systems of diferential equations pro-
vides the possibility to contextualize the set-point with the stability behavior of the system 
and theoretical equilibrium points. This allows for a conclusion about the relationship 
between theoretical and endogenous hormonal equilibrium. Thus, a qualitative analysis is 
conducted for both models. The equilibrium point of the minimal model cannot be explic-
itly determined due to coupled functions, but it can be shown that the previously derived 
set-point equations represent locally stable equilibrium points. For this analysis, the system 
is linearized and by the use of properties of the respective Jacobian matrix eigenvalues, the 
local stability behavior is determined. The global asymptotic stability is shown by prov-
ing that the Dulac-Bendixon-Criterion and the Poincaré-Bendixon-Theorem apply to the 
minimal model. The combination of both implications allows for the conclusion that all 
trajectories of the model tend to the set-point with increasing time, which is also shown 
in the corresponding phase plot. As a result, the set-point, derived by mathematical theo-
ries, can be classifed as a globally asymptotically stable point of the corresponding system. 

In [YTH+21], the existence of a unique equilibrium point, which is globally asymptotically 
stable, is already shown in the corresponding publication. Thus, a short summary of the 
proof, which is based on the same theories applied to the minimal model, is given. The 
qualitative analysis is motivated by the corresponding phase plot, which shows that the 
value of [TSH] of trajectories is changed very fast during the frst time steps, while [FT4] 
is nearly constant. Only after the zero change line is reached, the trajectory signifcantly 
converges towards the equilibrium point. This result verifes the stability behavior refect-
ing the underlying physiology, since [TSH] has a much smaller half-time than [FT4]. 

The theoretical results are contextualized with patient data collected at the Vienna Gen-
eral Hospital during a study conducted by the Medical University of Vienna (MUW) in the 
course of a simulation of the models. Two approaches are pursued to simulate the time-
dependent course using the minimal model. The state space ft is based on a parameter 
identifcation of the HP-function in the state space and a subsequent calculation of the 
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remaining parameters based on the set-point equations. In the course of the time domain 
ft, all parameters are identifed with respect to the time domain. The resulting curves in 
both state space and time domain are presented for three exemplary patients. 

In the state space plots, it is shown that the HP and the inverse thyroid function, considered 
as response functions, accurately represent the physiological dynamics. In line with the 
stimulating efect of [TSH] on the thyroid, a high [TSH] leads to a high release of [FT4], 
which is represented by the inverse thyroid function. In correspondence to the negative 
feedback loop, a high value of [FT4] leads to a low secretion of [TSH] by the HP complex. 
This behavior can be observed on the curve of the HP-function. 
The HP-function resulting from the state space ft accurately represents the data points 
of all exemplary patients. In contrast, the HP-function determined by the time domain 
calibration does not ft all data, but can be very similar to the corresponding function of 
the state space ft. Even if both HP-functions are nearly equal, a diferent course of the 
resulting curves of inverse thyroid function can be observed. Independent of the calibration 
approach, the set-point corresponds to the point of intersection of both HP and thyroid 
function. The location of the set-point with respect to the patients measurements difers. 
For some patients, it is found close to the center of the data point cloud. For others, it is 
not placed within the point cloud, because the measurements do not lie around the knee 
region of the HP-function. The set-point coordinates of both approaches are not equal. In 
most cases the value of the respective [TSH] value of the time domain ft is larger compared 
to the state space ft. 

In the time domain, the resulting time-dependent solution curves of both models and 
corresponding approaches are computed. The course of both [TSH] and [FT4] determined 
by the minimal model show a dynamic behavior during the frst 5 weeks before reaching 
an equilibrium. This dynamic accurately represents the physiological mutual infuence 
of both hormones. If the [FT4] curve decreases, the [TSH] curve increases after a small 
time delay and vice versa until the equilibrium is reached. The duration of the dynamic 

¨ behavior of [FT4] corresponds to its endogenous decomposition. According to [AOO+18], 
the half-life of [FT4] is around 7 days and the it takes about 5 half-times until [FT4] reaches 
its steady state. This corresponds to the fndings presented in [AER+21] stating that an 
[FT4] equilibrium can be observed during 4 to 6 weeks after medication intake. For this 
reasons, blood samples of patients sufering from thyroid diseases are drawn after a time 
span of about 5 weeks to determine the accurate medication dosage. The equilibrium of 
the time-dependent curves for [TSH] and [FT4] corresponds to the set-point coordinates. 
In addition to the stability analysis discussed above, it is now not only theoretically shown, 
that the set-point is globally asymptotically stable. The simulated time-dependent curves 
level of at the set-point and do not deviate from it with increasing time, which verifes 
the theoretical results numerically. According to the sensitivity analysis, the sensitivity 
of set-point of [FT4] is dominated by only one parameter, while the [TSH] component is 
sensitive to three parameters. The set-point of [TSH] is most sensitive to a parameter that 
is not included in the explicitly derived set-point equations used. 
Similar to the minimal model, the solution curves of the unifed model show a dynamic be-
havior during the frst 30 weeks after reaching an equilibrium. Usually, a shorter dynamic 
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can be observed for [TSH]. This corresponds to the respective phase plot showing that 
the value of [TSH] is adjusted prior to [FT4]. Additionally, this behavior is in line with 
the endogenous decomposition of both hormones since the half-time of [TSH] is about 65 
minutes and therefore much shorter compared to [FT4] explaining the faster convergence 
to the steady state. The equilibrium point is only sensitive to the corresponding parameter 
determining the set-point state of the respective hormone. 

In general, the time domain ft of the minimal model results in the lowest normalized mean 
squared error for the time-dependent hormonal course with respect to the whole data set 
used for calibration. The respective state space calibration leads to the largest overall error 
but shows a good ft of the HP-function to patient data in the state space. It has to be con-
sidered that the main purpose of this model is the theoretical description of the set-point 
and the representation of patient data in the state space. The set-point of the state space 
ft is found in a physiologically healthy hormonal range and the time-dependent description 
provides the possibility to contextualize it with the equilibrium behavior. The advantage 
of the time-dependent ft is that no additional calculations are needed to determine all pa-
rameters while it still results in the lowest error with respect to the time-dependent course. 

Although none of the models or approaches really refects the dynamics and data in the 
time domain, the dynamic behavior of the trajectories until the equilibrium is reached 
corresponds to the endogenous regulation of both hormones. Additionally, it is shown 
theoretically and quantitatively that the set-point corresponds to the equilibrium in time 
domain which is always reached after a certain time span. It can therefore be concluded, 
that the models suit the purpose of describing the hormonal course when focusing on a 
physiological individual hormonal equilibrium. 

There are several possibilities to further develop the models based on the fndings of this 
work. The main objective during the medical treatment of patients sufering from hy-
pothyroidism is to determine the accurate drug dosage for [TSH] and [FT4] to be in their 
individual equilibrium. Thus, the medication intake could be included as a model input 
to analyze its infuence on the set-point. Since the models describe the time-dependent 
hormonal course among others, the time span between medical appointments and the cor-
responding adjustment of the drug dosage can also be included in the analysis. This 
approach would contribute to decreasing the number of medical appointments needed to 
defne the accurate individual drug dosage. Additionally, the models described in this work 
can be used in the future to predict a patients HPT behavior. Using the calibrated model 
parameters and setting them in context with patient specifc data, such as age, sex and 
medical history, the computation of the patients hormonal equilibrium and the respective 
optimal medication will be possible. 
In conclusion, the overall goal is a valid predication of the patient specifc equilibrium, 
which is verifed numerically and theoretically as the set-point in the course of this work, 
to fnally conclude the optimal medication. 
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