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Abstract

In recent years huge advances were made in the field of topological photonics. One area of
interest are photonic crystals with broken time reversal symmetry resulting in gaps in their
band structure that prevent light propagation within specific frequency ranges. These pho-
tonic crystals hold promising applications such as topological photonic insulators. In this
context, Chern numbers play an important role in characterizing the optical properties of
such components. Numerically calculating the Chern number for an energy band requires
solving a certain number of resonance problems. The amount depends on the experimental
setup and the chosen computation method.

We apply the finite element method, in combination with a reduced basis approach, to effi-
ciently obtain band structures of 2D photonic crystals. Furthermore, our approach allows
us to consider problems with nonlinear frequency-dependent permittivities and permeabil-
ities. Employing this method to compute resonance frequencies, we compare two ways of
computing Chern numbers: the first principal calculation and the Wilson loop approach.
All implementations are conducted using the high-performance multiphysics finite element
software Netgen/NGSolve.

We demonstrate that, even with significantly reduced dimensions of the system, accurate
Chern numbers can be obtained. Additionally, we are able to calculate Chern numbers for
photonic crystals with highly frequency dependent material parameters.
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during the past three years. He gave me the opportunity to get a glimpse at the scientific
work done in his department and I learned a lot from him and his colleagues. Furthermore
he was very supportive and accommodating throughout my pregnancy and later after my
son was born.

Furthermore I want to thank the entire workgroup on Computational Mathematics in En-
gineering for making me feel welcome on the third floor and always having an open ear
for my questions even at lunch time. My special thanks goes to Michael Leumüller who
proofread most of my thesis and gave me very detailed and helpful feedback.

I also want to thank Prof. Florian Libisch for taking the time to discuss some questions I
had about the physical assumptions that are commonly made in context of photonic crys-
tals. Great thanks also to my two best friends from school, Hanna and Max, who went
on to study physics and chemistry and helped a lot in understanding the general physical
background.

The time at TU Vienna studying mathematics will be always in my mind as one of the
most fun and interesting ones in my life. This is not at last due to the incredible people I
was lucky to meet and become friends with: Theresa, Thomas, Thomas, Hubert, Martin,
Lorenz and many more.

Additionally I want to thank my parents for their love and support through everything I
did in my life.

Last but not least I want to thank the love of my life who has been a wonderful partner
for over 10 years and recently did more that his fair share in caring for our son so that I
have the time to finish my studies.





Eidesstattliche Erklärung
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1 Introduction

Chern numbers were first described in the context of quantum physics. In 1982 the authors
Thouless, Kohmoto, Nightingale and Nijs managed to show, that the Hall conductance for
one energy band, arising from an electron in a periodic electron potential under a strong
perpendicular magnetic field, is a topological invariant that is always given by an integer
multiple of e2/h, where h denotes Planck constant [18]. Meanwhile, Berry discovered, that
if an eigenstate of a quantal system is slowly transported around a closed circuit in a pa-
rameter space, it will accumulate a phase factor [4]. This factor would later be known as the
Berry phase. A year later Simon managed to relate Berry’s phase and the TKNN numbers
by expressing both in terms of differential geometry. He was able to show that the Berry
phase is the holonomy in a Hermitian line bundle and the TKNN numbers are precisely the
integral invariants, called Chern numbers, of such a bundle [4]. Finally, effects analogous
to the quantum hall effect in condensed matter physics were discovered in photonic crystals
with broken time reversal symmetry [7]. Today Chern numbers play an important role in
the field of topological photonics. For more information the work of Lu, Joannopoulos and
Soljačić [13] is highly recommended.

In Chapter 2 we discuss what photonic crystals are and what kind of photonic crystals we
consider throughout this thesis. Furthermore we give a derivation of the governing equation
for transversal magnetically polarized electromagnetic waves propagating through this kind
of photonic crystals. It turns out that the light propagation mathematically comes down
to an eigenvalue problem of shape

Hku = ω2u, (1.1)

where Hk is a Hermitian operator depending on the so called wave vector k and ω turns
out to be the frequency of the electromagnetic wave. Additionally we formally introduce
Chern numbers in an abstract setting.

The overall goal of Chapter 3 is to describe the numerical methods employed to obtain
an approximation for the eigenpairs of (1.1). At first we derive a weak formulation and
show that solutions of the kind we are looking for exist. Especially, that we can expect
real valued frequencies ω. Then we apply a Galerkin discretization and justify that the
solutions of the discrete problem converge to the continuous eigenpairs. If the operator
H does not depend on ω, the discretized version of (1.1) constituted a general eigenvalue
problem for a fixed wave vector k. If however the operator does depend on the frequency,
we can instead fix ω and solve a quadratic eigenvalue problem with an eigenvalue related
to k and eigenfunction u. This happens, if the permittivity or the permeability of a mate-
rial contained in the photonic crystal is frequency dependent. Subsequently we apply the
reduced basis method as a model order reduction to both problems.
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1 Introduction

In Chapter 4 we describe the first principal calculation [24] and the Wilson loop approach
[22] to calculate Chern numbers numerically.

The results presented in Chapter 5 show, that a reduced basis space of relatively small
dimension is required to obtain accurate Chern numbers. This holds true for problems
with frequency dependent and frequency independent material parameters. Applying the
first principal calculation for problems with frequency independent material parameters
additionally yields a fast method to compute and plot Berry curvatures. Meanwhile, the
Wilson loop approach is not only generally faster, but also better compatible with our
way to deal with frequency dependent material parameters. The combination of fixing ω
and solving (1.1) for a pair (u,k) and employing the Wilson loop approach allows a fast
calculation of Chern numbers for highly frequency dependent material parameters. Another
advantage of the Wilson loop is the possibility to visually check the plausibility our results.
As a side effect we can efficiently compute band structures of photonic crystals, not only for
frequency independent material parameters, but also for permittivities and permeabilities
that depend non linearly on ω.
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2 Photonic Crystals and Chern Numbers

In this chapter we cover the basic physical and mathematical background required to un-
derstand what it is we calculate numerically.

2.1 Photonic Crystals

A photonic crystal (PC) is a periodic arrangement of macroscopic media with different
dielectric properties. The pattern in which the material is repeated is called a lattice [8]. We
will consider PCs that have a discrete translational symmetry in two dimensions (the (x, y)-
plane) and are homogeneous in the third dimension (along the z−axis). This arrangement
is called a two-dimensional PC. The crystal can be regarded as the periodic repetition of
some unit cell Ω. In our case the unit cell consists of a rod of some gyromagnetic material
in air. By gyromagnetic we mean that the material’s dielectric properties are altered by
the presence of a magnetic fields. One very prominent example is Yittrium-Iron-Garnet
(YIG) [14]. Figure 2.1 shows a schematic visualization.

Figure 2.1: 2D PC consisting of gyromagnetic rods in air with unit cell Ω.

2.1.1 Derivation of Governing Equations for 2D Photonic Crystal Modes

To derive Equation (2.8) we will follow the steps given in [8], except that in our case some
simplifications cannot be made.

3



2 Photonic Crystals and Chern Numbers

The propagation of electromagnetic waves, and therefore light, is governed by the four
macroscopic Maxwell equations

divB = 0, curlE + ∂tB = 0,

divD = ρ, curlH − ∂tD = J ,
(2.1)

where

• H is the magnetic field,

• E is the electric field,

• B is the magnetic induction (or displacement) field,

• D is the electric induction (or displacement) field,

• J is the current density and

• ρ is the free charge.

In our case there are no free charges or currents, so ρ = 0 and J = 0. The Hermitean
permittivity tensor ε0 ε relates the electric field and the electric induction by D = ε0 εE,
where ε0 ≈ 8.854×10−12 Farad/m is the vacuum permittivity. Analogously the Hermitean
permeability tensor µ0µ relates the magnetic field and the magnetic induction by B =
µ0µH, where µ0 = 4π × 10−7 Henry/m is the vacuum permeability. We are interested in
gyromagnetic photonic crystals. This means that according to [14] the ferrite permeability
tensor is given by

µ =

(( µ iκ 0
−iκ µ 0
0 0 µ3,3

)) , µ = 1 +
ωmω0

ω2
0 − ω2

, κ =
ωmω

ω2
0 − ω2

(2.2)

with ω0 = γH0 , ωm = γ4πMs and i =
√−1. The parameters are

• the gyromagnetic ratio γ [C/kg],

• the material dependent magnetic saturation Ms [T] and

• the magnetic field strength H0 [T].

For our example µ3,3 is neglectable because it will never be used, as we will see later. From
now on we assume that the inverse

µ−1 =
1

µ2 − κ2

(l
(µ −iκ 0
iκ µ 0

0 0 µ2−κ2

µ3,3

)l
) (2.3)

exits, is piecewise constant and bounded. Furthermore we impose that

µ

µ2 − κ2
> 0. (2.4)
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2.1 Photonic Crystals

The reason for that will be explained in Chapter 3. The permittivity ε is a non-negative
and piece wise constant function of r and bounded as a function of ω.

Altogether the Maxwell Equations (2.1) become

div(µ0µH) = 0, curlE + ∂t(µ0µH) = 0,

div(ε0 εE) = 0, curlH − ∂t(ε0 εE) = 0.
(2.5)

In general H and E are dependent on time and space. We assume that ε and µ are time
independent. In order to separate the space component r from the time component t,
we expand the fields into a set of harmonic modes. According to Fourier’s theorem any
solution can be build as a combination of these modes (though possibly infinitely many of
them). For a given frequency ω we assume time harmonic modes

E(r, t) = E(r)e−iωt,

H(r, t) = H(r)e−iωt.

After inserting above equations into (2.5) we can use the curl components

curlE(r) = iωµ0µH(r) (2.6)

curlH(r) = −iω ε0 εE(r). (2.7)

to relate H and E. Multiplying (2.6) with µ−1, applying curl to both sides and subse-
quently using (2.7) yields

curl(µ−1 curlE(r)) = ω2 ε0 µ0εE(r).

Now we use that the vacuum speed of light c is connected to ε0 and µ0 via the formula
1/c2 = ε0 µ0. Finally, the equation describing the modes of a PC is given by

curl
(
µ−1 curlE(r)

)
=

(ω
c

)2
εE(r). (2.8)

We have already established that our PC has a discrete translational symmetry in two
dimensions (the (x, y)-plane) and is homogeneous in the third dimension (along the z−axis).
We are interested in the propagation of light in a 2D plane throughout the PC. Therefore

we can assume that r =
(
x y 0

)T
and k =

(
kx ky 0

)T
. Provided the lattice grid is

spanned by two primitive lattice vectors a1 and a2, meaning they are the smallest vectors
pointing from one lattice point to another, any lattice vector can be written as

R = a1n1 + a2n1

where ai ∈ R2 and ni ∈ N. For some arbitrary but fixed lattice point p we define the unit
cell Ω as the rectangle with corners p, p+a1, p+a1+a2, p+a2. The boundary Γ = ∂Ω
can be split into Γ = Γb ∪ Γr ∪ Γt ∪ Γl illustrated in Figure 2.1.

Definition 2.1. A function u on Ω is called periodic on Γ if u
ˡl
Γb = u

ˡl
Γt and u

ˡl
Γl = u

ˡl
Γr .
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2 Photonic Crystals and Chern Numbers

Now, the goal is to use the symmetries of the crystal to characterise its electromagnetic
modes. The Bloch Theorem states, that we can write these modes as a planar wave eik·r

modulated by a function u(r) with the same periodicity as the PC. In this chapter we

assume that u =
(
u1 u2 u3

)T
with

uj ∈ C2
p(Ω) := {u ∈ C2(Ω) | u is periodic on Γ }.

For a wave vector k the Bloch Theorem can be written as

Ek(r) = eik·ru(r) = eik·ru(r +R).

We are only interested in the modes propagating in the (x, y)−plane, therefore we set

k =
(
kx ky 0

)T
in the equation above. This leads to a 2D wave propagating in the

(x, y)−plane.

We know that Ek is lattice periodic hence

Ek(r +R) = eik·(r+R)u(r) = eik·REk(r). (2.9)

We call a function that fulfills (2.9) k-Bloch periodic. The expression eik·R is periodic as a
function of k with value 1 if k ·R = 2πl for an integer l. The space containing all the wave
vectors is called the reciprocal lattice space. Any lattice vector G in the reciprocal space
can be written as

G = b1m1 + b2m2

where bi ∈ R2 and mi ∈ N. We want to choose suitable basis vectors bi that fulfil the
condition

G ·R = l2π

for some l ∈ N. In matrix notation this reads as

G ·R =
(
n1 n2

)(a1 · b1 a1 · b2
a2 · b1 a2 · b2

)(
m1

m2

)
= l2π.

For convenience we also want to impose ai · bi = δij2π. This yields the basis vectors

b1 =
2π

a1 × a2

(
a22
−a21

)
, b2 =

2π

a1 × a2

(−a12
a11

)
.

Now, the first Brillouin zone (BZ) can be defined as the smallest volume entirely enclosed
by planes, that are perpendicular bisectors of the basis reciprocal lattice vectors drawn
from the origin.

From now on we will assume a quadratic grid of cell length a, meaning

a1 = a

(
1
0

)
, a2 = a

(
0
1

)
, b1 =

2π

a

(
1
0

)
, b2 =

2π

a

(
0
1

)
. (2.10)
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2.1 Photonic Crystals

Figure 2.2: First BZ.

The corresponding first BZ is(
−π

a
,
π

a

)
×
(
−π

a
,
π

a

)
. (2.11)

In this case the so called irreducibly Brillouin zone is a tri-
angle with corners

Γ =

(
0
0

)
, X =

(
π
a
0

)
, M =

(
π
a
π
a ,

)
as illustrated in Figure 2.2. It is the smallest area
such that the rest of the BZ can be obtained by rota-
tion, mirror-reflection or inversion of the irreducible BZ
[8].

Furthermore we only consider k =
(
kx ky 0

)T ∈ BZ×{0}, a so called Bloch wave vector.
The associated mode

Ek(r) = eik·ru(r) (2.12)

is called the Bloch mode.

In 2D PC Bloch modes can be split into two distinct polarizations, the transversal-magnetic
(TM) and transversal-electric (TE) modes. TM modes are characterised by a z-polarized
electric fields, while TE modes have a z-polarized magnetic field. From now on we will only
consider TM modes. All calculations can be done analogously for TE modes.

We make the ansatz

Ek =

(( 0
0

eik·ru(r)

)) =:

(( 0
0
Ek

)) (2.13)

for a lattice periodic function u ∈ C2
P (Ω). Putting (2.13) into (2.8) and defining ε = ε3,3

yields

curl(µ−1 curlEk) = curl

((µ−1

(( ∂yEk

−∂xEk

0

))))
= curl

((µ−1
1,1∂yEk − µ−1

1,2∂xEk

µ−1
2,1∂yEk − µ−1

2,2∂xEk

0

))
=

(l
( 0

0

∂x

(
µ−1
2,1∂yEk − µ−1

2,2∂xEk

)
− ∂y

(
µ−1
1,1∂yEk − µ−1

1,2∂xEk

)
)l
)

(2.8)
=

(ω
c

)2

(( 0
0

εEk

))

7



2 Photonic Crystals and Chern Numbers

The x− and y−coordinates are all trivial and we only have to consider the equation in the
z−coordinate. Together with the Hermitian nature of µ−1 as defined in (2.3) we get(ω

c

)2
εEk = div

(
µ−1
2,1∂yEk − µ−1

2,2∂xEk − µ−1
1,1∂yEk + µ−1

1,2∂xEk

)
= div

(−µ−1
2,2 µ−1

2,1

µ−1
1,2 −µ−1

1,1

)(
∂xEk

∂yEk

)
= div

(−µ−1∇Ek

)
.

From now on we consider k and r to be two-dimensional vectors and µ−1 a two dimensional
matrix. Altogether we arrive at the following formulation.

Problem 2.2 (TM modes). Let k =
(
kx ky

)T ∈ BZ be an arbitrary but fixed wave
vector. Find u ∈ C2

p(Ω) and ω ∈ R such that

− div(µ−1∇(eik·ru(r))) =
(ω
c

)2
ε(r)eik·ru(r). (2.14)

2.2 An Abstract Approach to Chern Numbers

This section is built on [19]. Assuming that we have a complex vector space V with the
scalar product ⟨., .⟩, which is linear in the first and semi-linear in the second argument and
a parameter space P. The vectors (or states) u(k) ∈ V depend on the parameters k ∈ P.
Note that there is no function k →l u(k). However we impose that for one k all possible
values u(k) only differ in phase and magnitude (meaning by a factor z = |z|eiφ). Let

Γ : [0, 1] → P, t ˡ→ Γ(t)

be a closed path in the parameter space. Now we want to parallel transport one state u(k)
around that loop. Therefore we need to define what parallel means in this context.

Definition 2.3. Two states u1 and u2 are called parallel if ⟨u1,u2⟩ is real valued and
positive.

For every t ∈ [0, 1), h small with t+ h ∈ [0, 1) we impose the condition

Im ln⟨u(k(t)),u(k(t+ h))⟩ = 0

on our choices of u around the loop Γ. To get a well defined value for the complex logarithm
we need to choose a branch. From now on we restrict ln z to the interval (−π, π].

At Γ(0) = Γ(1) the original vector u(k(0)) differs from the parallel transported vector
u(k(1)) by a complex factor z ∈ C. We are only interested in the phase difference

ϕ = Im ln⟨u(k(0)),u(k(1))⟩, (2.15)

the so called Berry phase. In a nutshell the Berry phase is a phase angle accumulated
by a vector that is parallel transported around a closed loop in parameter space P.

8



2.2 An Abstract Approach to Chern Numbers

Figure 2.3: Discretized path Γ.

Now we ask ourselves how the Berry phase ϕ can
be calculated. Let k1, . . . ,kN be a discretization of
Γ as visualized in Figure 2.3. Choose some states
u1(k1), . . . ,uN (kN ) with u1 = uN . For better read-
ability we omit the explicit dependence on k for now.
The goal is to find ũ2, . . . , ũN such that ũN is the
parallel transported version of u1 around Γ. Assume
that ũj is a parallel transported version of u1 and
j + 1 ≤ N . We have

⟨ũj ,uj+1⟩ = |z|eiφ,
so by setting ũj+1 := ⟨ũj ,uj+1⟩uj+1 we get

⟨uj , ũj+1⟩ = ⟨uj ,uj+1⟩|z|2eiφe−iφ = |z|2ei0,
which is exactly the parallel transport condition we have imposed. The last vector is

ũN = ⟨u1,u2⟩⟨u2,u3⟩ . . . ⟨uN−1,uN ⟩uN .

Using the fact that u1 = uN and therefore ⟨uN ,u1⟩ > 0, the Berry phase can be written
as

ϕ = Im ln⟨u1, ũN ⟩
= − Im ln

(⟨u1,u2⟩⟨u2,u3⟩ . . . ⟨uN−1,uN ⟩)
=

N−1∑
j=1

− Im ln⟨uj ,uj+1⟩ mod 2π.

(2.16)

Note that the Berry phase is often defined as −ϕ in (2.15). However our scalar products
are conjugated in the second argument, so for consistency with (2.16) we define it like that.

We can see that the result in (2.16) does not depend on concrete choices for the phase of
the states u1, . . . ,uN . We can apply an arbitrary gauge transformation (meaning a multi-
plication with eiβj ) to all states. Each of the factors eiβj appear exactly once on the right
side of the scalar product and once on the left side. Hence all the factors cancel out.

In a next step we want to get rid of the discretization of Γ and calculate the Berry phase
in a continuous way. In a first step we assume that we have a one dimensional parameter
space with Γ = [0, 1]. We choose states u(t) on Γ such that u(0) = u(1) and t ˡ→ u(t)
is a well defined differentiable function. Note that it does not have to be continuously
differentiable. Using Taylor expansion we can write

ln⟨u(t),u(t+∆t)⟩ = ln⟨u(t),u(t) + ∆t∂tu(t) + . . .⟩
= ln (1 + ∆t⟨u(t), ∂tu(t)⟩+ . . .)

= ∆t⟨u(t), ∂tu(t)⟩+ . . . ,

9



2 Photonic Crystals and Chern Numbers

where the last equation holds because ln(1 + z) =
∑

j(−1)j+1zj/j.

Plugging that expression into (2.16) and considering the limit ∆t → 0 yields yet another
expression for the Berry phase

ϕ =

∫
Γ
− Im ⟨u(t), ∂tu(t)⟩ dt . (2.17)

The integrand

A(t) = − Im ⟨u(t), ∂tu(t)⟩ (2.18)

is called the Berry connection or Berry potential.

Lemma 2.4. The Berry potential (2.18) is not gauge invariant. The Berry phase as defined
in (2.17) is gauge invariant up to an integer multiple of 2π.

Proof. Define ũ(t) = eiβ(t)u(t) then

Ã(t) = − Im ⟨ũ(t), ∂tũ(t)⟩
= − Im ⟨eiβ(t)u(t),−iβ′(t)eiβ(t)u(t) + eiβ(t)∂tu(t)⟩
= β′(t) +A(t).

For the second statement of the lemma we calculate (2.17) for Ã. This yields∫
Γ
Ã(t) dt = β(1)− β(0) +

∫
Γ
A(t) dt .

The condition ũ(0) = ũ(1) together with ũ(t) = u(t)eiβ(t) implies that β(1)− β(0) = 2πm
with m ∈ N.

Figure 2.4: Surface S discretized by
plaquettes P .

Now let Γ be a closed path in a two–dimensional pa-
rameter space. The states depend on k = (kx, ky) ∈
Γ. The Berry potential (2.18) takes the form A =
(Ax, Ay) with

Aj = − Im ⟨u(k), ∂kju(k)⟩ (2.19)

for j ∈ {x, y}. The Berry phase (2.17) can be written
as

ϕ =

∫
Γ
A(k) · dk. (2.20)

With the same argument as before this expres-
sion is well defined up to an integer multiple of
2π.

We set Γ to be a closed loop in a two-dimensional space. Hence it encloses as surface S. We
can divide S into plaquettes P as visualized in Figure 2.4. Each P should be tiny enough
such that the Berry phase (2.20) calculated around the path ∂P is so small that no integer

10



2.2 An Abstract Approach to Chern Numbers

multiple is added. In other words the Berry phases around the paths ∂P are unambiguous.

Now we consider the sum

ΦS =
∑
P

∫
∂P

A(k) · dk. (2.21)

Every path that is not in (
U

P ∂P )∩Γ cancels out because it is integrated over exactly once
in each direction. Hence there is an m ∈ N and ϕ ∈ [0, 2π) such that∫

Γ
A(k) · dk = ϕ+ 2πm = ΦS . (2.22)

Figure 2.5: Approximate Berry phase per plaquette.

Assume that all plaquettes are axis aligned rectangles. Now let’s have a closer look at one of
the plaquettes with the lower left corner (kx, ky) and the upper right corner (kx+∆kx, ky+
∆ky) as visualized in Figure 2.5. The Berry phase per plaquette can be approximated by

ϕP

|P | ≈
Ax(kx, ky)∆kx +Ay(kx +∆kx, ky)∆ky −Ax(kx, ky +∆ky)∆kx −Ay(kx, ky)∆ky

∆kx∆ky

=
Ay(kx +∆kx, ky)−Ay(kx, ky)

∆kx
− Ax(kx, ky +∆ky)−Ax(kx, ky)

∆ky
.

Now we can approximate ΦS from (2.21) by

ΦS ≈
∑
P

(
Ay(kx +∆kx, ky)−Ay(kx, ky)

∆kx
− Ax(kx, ky +∆ky)−Ax(kx, ky)

∆ky

)
|P |.

Considering the limit ∆kx,∆ky → 0 leads to the Berry flux

ΦS =

∫
S
Ω(k)dk, (2.23)

11



2 Photonic Crystals and Chern Numbers

where the integrand Ω(k) := ∂kxAy(k)−∂kyAx(k) = curlA(k) is called the Berry curvature.
We can calculate

Ω(k) =− Im
(
⟨∂kxu, ∂kyu⟩+ ⟨u, ∂kx∂kyu⟩

+ ⟨∂kxu, ∂kyu⟩ − ⟨u, ∂kx∂kyu⟩
)

=− 2 Im ⟨∂kxu, ∂kyu⟩.

Lemma 2.5. The Berry curvature is gauge invariant.

Proof. As in proof of Lemma 2.4 we can determine the two-dimensional Berry potential
under gauge transformation Ã(k) = A(k) +∇β(k). Due to the fact that curl∇(.) = 0 we
immediately get that Ω(k) = curl Ã(k) = curlA(k).

In a next step we will investigate where the possible difference of 2πm in (2.22) comes from.
First we remember Stokes’ Theorem.

Theorem 2.6 (Stokes). Let G ⊂ R2 be open and bounded and F = (Fx, Fy) : G → R2 a
continuously differentiable vector field. Then∫

G
curlF =

∫
∂G

F .

That means we only have m = 0 in (2.22) if the Berry connection A is continuously dif-
ferentiable in S. Remember that A is not gauge invariant, meaning it depends on the
chosen gauge of the states u(k). So the real question is if we can find a smooth enough
representation of k ˡ→ u(k) that is valid everywhere on S. In general this does not have to
be the case. Actually we will later see that the interesting problems do not have a globally
smooth gauge. However locally smooth representations for u must exist everywhere on S
in order to get a well defined expression for the Berry curvature Ω(k).

Now we have everything we need to formulate and proof the Chern Theorem.

Theorem 2.7 (Chern). Let S be a closed two–dimensional manifold. Then the Berry flux
ΦS is quantized to be 2π times an integer,

ΦS =

∫
S
Ω(k)dk = 2πC

for some well defined C ∈ Z. This C is called the Chern number.

Proof. The uniqueness of ΦS follows directly from the gauge invariance of Ω(k). In the be-
ginning of the chapter we required u(k) to be unique up to a complex factor z. The Berry
connection A(k) and hence the Berry curvature Ω(k) are independent of the magnitude of
u(k). Hence we can assume z = eiφ(k), which is exactly a gauge transformation.

It remains to proof that C ∈ N. We know that A is locally continuously differentiable.
Hence we find an atlas of patches Pj with S ⊂ U

j Pj such that Aj = A
ˡl
Pj

is a continuously

12



2.2 An Abstract Approach to Chern Numbers

differentiable Berry connection on Pj and (Pj ∩ Pl) ⊂ (∂Pj ∪ ∂Pl). Now we can apply
Stokes’ Theorem 2.6 and get a unique value

Φj =

∫
Pj

Ω = ϕj +mj2π

for each patch. The manifold has no boundary. This means for every patch the boundary
is traced twice, once in each direction. The difference between these integrals must be an
integer multiple of 2π. This is exactly the Chern number C.

Remark 2.8. Non trivial Chern numbers can only arise if no gauge can be found such that
A is continuously differentiable everywhere on S. In the context of PCs that happens if
time reversal symmetry is broken. Time reversal symmetry means that if u satisfies (2.14)
the complex conjugate u is a solution as well for fixed ω and k [8]. For PCs containing
gyromagnetic materials, the breaking of time reversal symmetry can be observed in the
presence of strong magnetic fields [7].

13





3 Numerical Methods for Calculating
Photonic Crystal Modes

Throughout this Chapter we derive a weak formulation for Problem 2.2 and discuss the
existence and properties of its solutions. Subsequently we use a finite element method
to get a discretized version of the problem at hand. The latter can either be solved as
a general eigenvalue problem (GEP) or a quadratic eigenvalue problem (QEP). Hence we
describe methods to arrive at solutions for both. Last we give a quick overview over the
model order reduction method employed in this thesis. The idea of solving (2.14) as a weak
general eigenvalue problem, employing the FEM together with a model order reduction is
not new. This was already done for example in [15].

In this chapter we will use the notation ≃,≲,≳ for ”=,≤,≥ up to a constant”. Matrices
and vectors are written in bold letters. Entries are accessed as it is done in the program-
ming language Python or by subscript. For a matrix M the Hermitian is denoted as M∗.
If not stated otherwise ⟨ . , . ⟩ represents the Euclidean scalar product where the second
entry is conjugated.

All implementations are conducted using the high performance multiphysics finite element
software Netgen/NGSolve [16], [17].

3.1 Finite Element Method

Before a finite dimensional approximation of Problem 2.2 can be discussed we first have
to take a closer look at the properties of the problem itself. We derive a weak formulation
and use Galerkin discretization to arrive at a matrix form of the original problem.

3.1.1 Weak Formulation

In a first step we formulate a weak version of Problem 2.2. For that purpose let k be
fixed but arbitrary. Let Ω be the unit cell of our lattice grid with the boundary Γ = ∂Ω.
Remember the Sobolev space

H1(Ω) :=
{
u ∈ L2(Ω) | ∇u ∈ L2(Ω)

}
with the scalar product

⟨u, v⟩H1 =

∫
Ω
uv +∇u · ∇v.

15



3 Numerical Methods for Calculating Photonic Crystal Modes

We know that a solution of (2.14) must be a Bloch Bloch periodic function. Hence define
the space

H1
k(Ω) :=

{
u ∈ H1(Ω) | u is k – Bloch periodic

}
, (3.1)

with the same scalar product as for H1. In Definition 2.1 point wise evaluation of a function
u is required. This is in general not possible for functions in H1. Hence we impose the
periodicity of u in a weak sense on the trace of u. The Bloch Theorem states that all
functions φ ∈ H1

k(Ω) are of the form

φ(r) = eik·rv(r)

for some v that is periodic on Γ. Therefore it makes sense to define

H1
p(Ω) :=

{
v ∈ H1(Ω) | v is periodic on Γ

}
.

Now we have everything we need to state a candidate for a weak formulation of Problem
2.2.

Problem 3.1 (weak formulation). Let k =
(
kx ky

) ̸= 0 be an arbitrary but fixed wave
vector in the BZ. Find u ∈ H1

p(Ω) and a real λ > 0 such that

ak(u, v) = λb(u, v) ∀v ∈ H1
p(Ω) (3.2)

with

ak(u, v) =

∫
Ω
µ−1 (∇u(r) + iku(r)) · (∇v(r) + ikv(r))dr,

b(u, v) =

∫
Ω
ε u(r)v(r)dr,

λ =
(ω
c

)2
.

(3.3)

Remark 3.2. From the definition λ = (ω/c)2 for a real valued ω we immediately get that
λ must be a non-negative real number. As we will see later, this is not a restriction if ε > 0
and (2.4) holds. In this case we deal with a compact self adjoint positive operator.

We have to show that Problem 3.1 really is a well posed weak formulation of Problem 2.2.
Similar problems are discussed in [2].

Theorem 3.3. Let Ω be open and bounded and ∂Ω = Γ ∈ C1. Then the following two
statements hold.

(i) If (u, λ) is a solution for Problem 2.2 then it also solves Problem 3.1.

(ii) If (u, λ) is a solution for Problem 3.1 and additionally u ∈ C1(Ω) ∩ C2(Ω) ∩ H1
p(Ω)

then it also solves Problem 2.2.
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3.1 Finite Element Method

Proof. Ad (i): Let v ∈ H1
p(Ω) be arbitrary. Multiplying (2.14) with e−ik·rv(r) on both

sides and integrating by parts yields∫
Ω
µ−1∇

(
eik·ru(r)

)
· ∇

(
e−ik·rv(r)

)
−
∫
Γ
µ−1∇

(
eik·ru(r)

)
e−ik·rv(r) · n

=
(ω
c

)2
∫
Ω
ε u(r)v(r).

The boundary term vanishes because of the periodicity of the integrand. Hence u fulfills∫
Ω
µ−1∇

(
eik·ru(r)

)
· ∇

(
e−ik·rv(r)

)
=

(ω
c

)2
∫
Ω
ε u(r)v(r).

Applying the gradient on the left hand side yields∫
Ω
µ−1 (∇u(r) + iku(r)) ·

(
∇v(r)− ikv(r)

)
=

(ω
c

)2
∫
Ω
ε u(r)v(r).

The test function v was arbitrary, hence we have proven (i).

Ad (ii): First we choose an arbitrary real valued test function

v ∈ C∞
0 = {v ∈ C∞ | vˡl

Γ
= 0} ⊂ H1

p,

multiply the integrands in (3.3) by 1 = eik·re−ik·r and apply partial integration. Due to
our choice of test functions the boundary term vanishes and we get

0 = ak(u, v)− λb(u, v)

=

∫
Ω

(
− div

(
µ−1∇

(
eik·ru(r)

))
− λ ε eik·ru(r)

)
e−ik·rv(r)dr.

The fundamental lemma of the calculus of variations and the smoothness of u yield

0 =
(
− div

(
µ−1∇

(
eik·ru(r)

))
− λ ε eik·ru(r)

)
e−ik·r.

If the real or imaginary parts of e−ik·r vanish, so do the ones of the complex conjugate
eik·r. Hence

0 = − div
(
µ−1∇

(
eik·ru(r)

))
− λ ε eik·ru(r)

everywhere in Ω. The requirement u ∈ H1
p(Ω) together with the smoothness of u guarantees

the periodicity on Γ.

Remark 3.4. Theorem 3.3 requires smooth boundaries. Remember that the boundary is
the union of the edges Γ = Γb ∪ Γr ∪ Γt ∪ Γl as is illustrated in Figure2.1. This was also
used in the proof of Theorem 3.3, so we need to justify why this is okay to do. Without
loss of generality we can assume that the unit cell Ω is placed such that the origin is in the
center. The length of one edge is assumed to be r0. Now the boundary can be described the
following way in polar coordinates

17



3 Numerical Methods for Calculating Photonic Crystal Modes

Γ = r(φ)

(
cos(φ)
sin(φ)

)
(3.4)

where

r(φ) =

{
rl,r(φ) if φ ∈ [0, π4 ) ∪ [3π4 , 5π4 ) ∪ [7π4 , 2π)

rt,b(φ) if φ ∈ [π4 ,
3π
4 ) ∪ [5π4 , 7π4 )

with

rl,r(φ) =
r0
2

√
1 + sin(φ)2,

rt,b(φ) =
r0
2

√
1 + cos(φ)2.

This parametrization is not smooth at the corners φc ∈ {π/4, 3π/4, 5π/4, 7π/4}. We choose
an arbitrary small ϵ > 0. Observe that r(φc + ϵ) = r(φc − ϵ) =: rϵ, r

′(φc − ϵ) =: sϵ and
r′(φc + ϵ) =: −sϵ . Our goal is to find a function r̃(φ) such that

r̃(φc − ϵ) = rϵ

r̃(φc + ϵ) = rϵ

r̃′(φc − ϵ) = sϵ

r̃′(φc + ϵ) = −sϵ.

(3.5)

Making the ansatz

r̃(φ) = aφ2 + bφ+ c

and using (3.5) yields

a = − sϵ
2ϵ

, b =
sφc

ϵ
, c = −sϵφ

2
c

2ϵ
+

sϵϵ

2
+ rϵ.

Replacing r(φ) with r̃(φ) in (3.4) for φ ∈ [φc − ϵ, φc + ϵ] yields a C1 approximation Γϵ of
Γ. It remains to adapt Definition 2.1 for Γϵ. A function u ∈ H1 is called periodic on Γϵ if
we identify

r(φ)

(
cos(φ)
sin(φ)

)
with r(φ)

(− cos(φ)
sin(φ)

)
for φ ∈ [0, π4 ) ∪ [3π4 , 5π4 ) ∪ [7π4 , 2π) and

r(φ)

(
cos(φ)
sin(φ)

)
with r(φ)

(
cos(φ)
− sin(φ)

)
for φ ∈ [π4 ,

3π
4 ) ∪ [5π4 , 7π4 ).

Let Ωϵ be the open set enclosed by Γϵ. Theorem 3.3 holds for every ϵ > 0 and
U

ϵΩϵ>0 = Ω.
Hence according to [5] the statement also holds for Ω. The last part of the proof was
conducted only for the limes Ω. However it can be done in the same way for Ωϵ.
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3.1 Finite Element Method

It remains to justify that we can expect real eigenvalues λ > 0 for Problem 3.1. Our goal
is to use the Spectral Theorem for self adjoint compact operators. Therefore we need an
operator setting of our problem.

Definition 3.5. The solution operator T : H1
p → H1

p is defined by

ak(Tf, v) = b(f, v) ∀f, v ∈ H1
p. (3.6)

From the definition we see that for an eigenpair (u, λ) of Problem 3.1, (u, 1/λ) is an eigenpair
of the solution operator. Hence studying T makes sense. In the course Numerics of partial
differential equations: instationary problems (101.507) we performed this analysis for a
solution operator of that kind in a real Hilbert space. The notation and line of argumenta-
tion is very similar to what we did in that course but all statements can also be found in [5].

Lemma 3.6. The sesquilinear form ak defines a scalar product on H1
p, meaning it is

(i) sesquilinear: ak(u + αv,w) = ak(u,w) + αak(v, w) and ak(u, v + αw) = ak(u, v) +
αak(u,w)

(ii) hermitian: ak(u, v) = ak(v, u)

(iii) positive definite: ak(u, u) ≥ 0 and ak(u, u) = 0 iff u = 0.

Furthermore the induced norm
√

ak(u, u) is equivalent to ∥u∥H1.

Proof. Ad (i), (ii): Follows directly from the definition and the linearity of the integral.
Ad (iii): Follows from the norm equivalence.
Ad norm equivalence: From the hermitian property we get ak(u, u) ∈ R by calculating

ak(u, u) =
1

2
(ak(u, u) + ak(u, u))

=
1

2

(
ak(u, u) + ak(u, u)

)
= Re ak(u, u).

Using the Cauchy Schwarz inequality (CS) we show continuity by estimating

|ak(u, v)| =
ˡlll∫

Ω
µ−1 (∇u(r) + iku(r)) · (∇v(r) + ikv(r))dr

ˡlll
µ−1 is bounded

≲
ˡlll∫

Ω
(∇u(r) + iku(r)) · (∇v(r) + ikv(r))dr

ˡlll
CS≤ ∥∇u+ iku∥L2 ∥∇v + ikv∥L2

triangle inequality

≲ (∥u∥L2 + ∥∇u∥L2) (∥v∥L2 + ∥∇v∥L2)

≈ ∥u∥H1∥v∥H1 .
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It remains to show ellipticity. It suffices to consider functions in C∞(Ω) ∩ H1
p(Ω) because

C∞(Ω) is dense in H1(Ω). The domain Ω is a torus so u ∈ C∞(Ω)∩H1
p(Ω) can be written

as

u =
∑

(mx,my)∈Z2

c(mx,my)e
i2π/a(mxx+myy).

For better readability we choose an arbitrary basis function

u = ei2π/a(mxx+myy) =: ei2π/a(m·r) (3.7)

and calculate

z := ∇u+ iku = iei2π/a(mr)

(
2π/amx + kx
2π/amy + ky

)
.

Remember that

µ−1 =
1

µ2 − κ2

(
µ −iκ
iκ µ

)
.

We consider the following expression

µ−1z · z =
1

µ2 − κ2

(
µ −iκ
iκ µ

)(
z1
z2

)
·
(
z1
z2

)
=

1

µ2 − κ2

(
µz1 − iκz2
iκz1 + µz2

)
·
(
z1
z2

)
=

1

µ2 − κ2
(µz1z1 − iκz2z1 + iκz1z2 + µz2z2)

=
µ

µ2 − κ2
z · z.

(3.8)

The last equality follows immediately by plugging in our definition of z. We can observe
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that assumption (2.4) is necessary for a to be elliptic. We carry on by estimating

ak(u, u) =

∫
Ω
µ−1 (∇u(r) + iku(r)) · (∇u(r) + iku(r)) dr

(3.8)≈ ⟨∇u+ iku,∇u+ iku⟩L2

= ⟨∇u,∇u⟩L2 + i⟨ku,∇u⟩L2 − i⟨∇u,ku⟩L2 + ⟨ku,ku⟩L2

= ⟨∇u,∇u⟩L2 − 2 Im ⟨ku,∇u⟩L2 + ⟨ku,ku⟩L2

(3.7)
=

4π2

a2
|m|2∥u∥2L2 + |k|2∥u∥2L2 +

4π

a
k ·m∥u∥2L2

= ∥u∥2L2

(
2π

a
mx

(
2π

a
mx + 2kx

)
+

2π

a
my

(
2π

a
my + 2ky

)
+ k2x + k2y

)
≥ ∥u∥2L2

(
2π

a
|mx|

(
2π

a
|mx| − 2|kx||mx|

)
+

2π

a
|my|

(
2π

a
|my| − 2|ky||my|

)
+ k2x + k2y

)
(∗)
≥ ∥u∥2L2

(
2π

a
|mx|2

(
2π

a
− 2π

a
+ ε

)
+

2π

a
|my|2

(
2π

a
− 2π

a
+ ε

)
+ k2x + k2y

)
= ∥u∥2L2

(
4π2

a2
|mx|2

( a

2π
ε
)
+

4π2

a2
|my|2

( a

2π
ε
)
+ k2x + k2y

)
=

a

2π
ε ∥∇u∥2L2 + |k|2∥u∥2L2

≃ ∥u∥2H1 .

Inequality (∗) holds because k is in the first BZ (2.11). Hence there is an ε > 0 such that
|kx|, |ky| ≤ π/a − ε. The constant in above estimate gets worse if k is near the boundary
of the Brillouin zone. Finally we can conclude

∥u∥2H1 ≲ ak(u, u) ≲ ∥u∥2H1 .

Lemma 3.7. The solution operator T as introduced in Definition 3.5 is well defined and
fulfills

(i) T is compact

(ii) T is self adjoint

(iii) T is positive on H1
p meaning a(Tu, u) > 0 ∀u ∈ H1

p\{0}.
Proof. Ad well definedness: From Lemma 3.6 we know that ak is a scalar product on H1

p.
Furthermore b is a bounded sesquilinear form on H1

p. Hence Lax-Milgram yields that there
is a unique continuous linear operator T : H1

p → H1
p such that

b(f, v) = ak(Tf, v) ∀f, v ∈ H1
p.

Ad (i): From Rellich Compactness Theorem we know thatH1 and thereforeH1
p is compactly

embedded in L2. Hence
T : H1

p →ˁ→ˁ L2 → H1
p
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3 Numerical Methods for Calculating Photonic Crystal Modes

is compact as a composition of a continuous and a compact operator.
Ad(ii): For arbitrary u, v ∈ H1

p there holds

ak(Tu, v) = b(u, v) = b(v, u) = ak(Tv, u) = ak(u, Tv).

Ad (iii): The statement follows directly from

ak(Tu, u) = b(u, u) =

∫
Ω
ε uu ≃ ∥u∥2L2 .

Theorem 3.8. All eigenvalues of Problem 3.1 are real valued and non-negative.

Proof. According to Lemma 3.7 the solution operator T is a compact, self adjoint, positive
operator. Hence the Spectral Theorem yields the statement.

Theorem 3.9. Let k =
(
kx ky

)T ̸= 0 be an arbitrary but fixed wave vector in the BZ.
There exists a series (un, λn)n∈N ⊂ H1

p × R that fulfills:

(i) The pairs (un, λn) solve (3.2).

(ii) The eigenvalues are real and form an unbounded sequence 0 < λ1 ≤ λ2 ≤ . . ..

(iii) The eigenvectors (un)n∈N are an orthonormal basis (ONB) of H1
p.

Proof. According to Lemma 3.7 the solution operator T is compact, self adjoint and pos-
itive. Hence the Spectral Theorem yields that the eigenvalues λ̃n of T are real valued,
positive and have 0 as their only accumulation point. Due to the fact that λn = 1/λ̃n

statement (ii) follows immediately. Let un be the corresponding eigenvectors of T , hence
(un, λn) solves (3.2). Statement (iii) is another immediate consequence of the Spectral
Theorem.

3.1.2 Galerkin Discretization

Up until now all problems are posed in an infinite dimensional space. For numerical com-
putations this setting is not suitable. Therefore we want to find a discrete problem for
which the solutions approximate the eigenpairs of Problem 3.1 reasonably well.

Problem 3.10 (Galerkin discretization). Let Vh ⊂ H1
p be a finite dimensional Hilbert

subspace. Then the Galerkin discretization of Problem 3.1 reads as follows. Find λh > 0
and uh ∈ Vh\{0} such that

ak(uh, vh) = λhb(uh, vh) ∀vh ∈ Vh. (3.9)

The associated discrete solution operator Th : Vh → V is defined as

ak(Thfh, vh) = b(f, v) ∀fh, vh ∈ Vh. (3.10)
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3.1 Finite Element Method

Next we want to talk about solutions of the weak Problem 3.1 and their relationship to
solutions of the discrete Problem 3.10. This section is based on [5]. The setting there is
described in Problem 3.11.

Problem 3.11. Let V1, V2 be complex Hilbert spaces and let a, b : V1 × V2 → C be
sesquilinear forms. They are assumed to have the following properties.

(i) a is continuous, meaning

|a(v1, v2)| ≲ ∥v1∥V1∥v2∥V2 ∀v1 ∈ V1, ∀v2 ∈ V2.

(ii) b is continuous with respect to a compact norm, meaning there exists a norm ∥ · ∥H1

such that any bounded sequence in V1 has a Cauchy subsequence with respect to
∥ · ∥H1 and

|b(v1, v2)| ≲ ∥v1∥H1∥v2∥V2 ∀v1 ∈ V1, v2 ∈ V2.

(iii) a fulfills the inf-sup condition, meaning there exists a γ > 0 such that

inf
v1∈V1

sup
v2∈V2

|a(v1, v2)|
∥v1∥V1∥v2∥V2

≥ γ,

sup
v1∈V1

|a(v1, v2)| > 0 ∀v2 ∈ V2\{0}.

Find λ ∈ C and u ∈ V1 with u ̸= 0 such that

a(u, v) = λb(u, v) ∀v ∈ V2.

Lemma 3.12. Problem 3.1 fulfills the assumptions of Problem 3.11 with V1 = V2 = H1
p,

∥u∥H1 = ∥u∥ε :=
√∫

Ω ε uudr, a = ak and b = b.

Proof. Ad (i): We have already shown continuity in the proof of Lemma 3.6.
Ad (ii): From Rellich’s compactness theorem we already know that H1 is compactly em-
bedded in L2. The boundedness of b follows with Cauchy Schwarz

|b(u, v)| =
ˡlll∫

Ω
ε u(r)v(r)dr

ˡlll
≤ ∥√εu∥L2∥v∥L2

≤ ∥u∥ε∥v∥H1 .

Ad (iii): In Lemma 3.6 we have already show that |a(u, u)| = a(u, u) is bounded from
below by γ∥u∥2H1 for some positive γ. Using that result yields that the inf-sup condition

inf
u∈H1

p

sup
v∈H1

p

|ak(u, v)|
∥u∥H1∥v∥H1

≥ inf
u∈H1

p

|ak(u, u)|
∥u∥2H1

≥ inf
u∈H1

p

γ∥u∥2H1

∥u∥2H1

= γ > 0

is fulfilled.
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3 Numerical Methods for Calculating Photonic Crystal Modes

Theorem 3.13. Assume that we choose a sequence of Hilbert subspaces Vh ⊂ H1
p such

that the discrete solution operator Th defined in (3.10) converges to the solution operator
T defined in (3.6) as h → 0. Then for a converging series of discrete eigenpairs (uh, λh) of
(3.10) exist eigenpairs (u, λ) of (3.1) such that

|λ− λh| h→0−→ 0 and ∥u− uh∥H1
p

h→0−→ 0.

Proof. Problem 3.1 fulfills the setting of Problem 3.11. Hence the convergence follows from
Babuška-Osborn theory [2] which is discussed in Chapter 9 of [5].

Assume that the Hilbert subspace Vh is spanned by basis functions {ϕ1, ..., ϕNh
}. An

eigenvector uh that fulfills (3.9) can be written as

uh =

Nh∑
j=1

ujϕj .

Problem 3.10 can then be written as find u ∈ C and λ > 0 such that

Aku = λBu, uj ∈ C (3.11)

with

Akj,l = ak(ϕj , ϕl) and Bj,l = b(ϕj , ϕl). (3.12)

The matrix Ak can be split into components independent of k =
(
kx ky

)T
. Expanding

the left-hand side of (3.2) yields(
(ikx)

2 + (iky)
2
)
ak2x,k2y(u, v) + ikxakx(u, v) + ikyaky(u, v) + a1(u, v) = λb(u, v)

with

ak2x,k2y(u, v) =

∫
Ω
−µ−1

1,1uv,

akx(u, v) =

∫
Ω
uµ−1

:,1 · ∇v −∇u · vµ−1
1,: ,

aky(u, v) =

∫
Ω
uµ−1

:,2 · ∇v −∇u · vµ−1
2,: ,

a1(u, v) =

∫
Ω
µ−1∇u · ∇v.

Consequently the matrix Ak can be written as

Ak =
(
(ikx)

2 + (iky)
2
)
Ak2x,k

2
y + ikxA

kx + ikyA
ky +A1 (3.13)

with
Aα

j,l = aα(ϕj , ϕl). (3.14)
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3.2 Interpretation as General Eigenvalue Problem

Remark 3.14. Lemma 3.7 holds true for the discrete solution operator Th defined in (3.10).
Hence the same statement as in Theorem 3.9 can be made for the discrete Problem 3.10,
with the only difference that u ∈ Vh. Assume that Vh has dimension Nh. Due to the fact
that all norms are equivalent in a finite dimensional Hilbert space, there are eigenvectors
of (3.11) that constitute an ONB of CNh.

Before we go on, we want to introduce the notion of frequency bands. Let k be a wave vec-
tor in the first BZ and 0 < λmin < λmax. Assume that there are eigenvalues λ1, . . . , λm ∈
(λmin, λmax) of (3.11) with simple multiplicity for some m ∈ N and corresponding eigen-
vectors u1, . . . ,um. These are members of m different bands. According to remark 3.14
and Theorem 3.9 the eigenvectors are orthogonal. The matrix Ak in (3.11) depends con-
tinuously on the wave vector k. Hence solving (3.11) for a k̃ with ∥k̃ − k∥ small yields
eigenvalues λ̃1, . . . , λ̃m ∈ (λmin, λmax) and corresponding eigenvectors ũ1, . . . , ũm. Assume
that all eigenvectors are normalised, then we have that

⟨uj , ũj⟩ ≈ 1 ∀j ∈ {1, . . . ,m}.
We define λj and λ̃j as belonging to the same band, if there are j, l ∈ {1, . . . ,m} with j ̸= l
such that

⟨ũj , ũl⟩ ≈ 1

we say that bands j and l intersect each other. If there is no intersection of bands for all
eligible wave vectors k we say that the bands are separate.

In the following chapter we will need the definitions of three kinds of matrix eigenvalue
problems.

Definition 3.15. For H ∈ Cn×n a solution (λ,u) of the linear eigenvalue problem fulfills

Hu = λu. (3.15)

For C,G ∈ Cn×n a solution (λ,u) of the general eigenvalue problem (GEP) fulfills

Cu = λGu. (3.16)

For M ,D,K ∈ Cn×n a solution (λ,u) of the quadratic eigenvalue problem (QEP) fulfills(
λ2M + λD +K

)
u = 0. (3.17)

3.2 Interpretation as General Eigenvalue Problem

For a fixed k the Galerkin discretization of Problem 3.1 results in a GEP.

Problem 3.16. Let k =
(
kx ky

) ̸= 0 be an arbitrary but fixed wave vector in the BZ.

Find u ∈ CNh and a real λ > 0 that solve the GEP (3.16) with

C = −(k2x + k2y)A
k2x,k

2
y + ikxA

k2x + ikyA
k2y +A1,

G = B,

λ =
(ω
c

)2
,
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3 Numerical Methods for Calculating Photonic Crystal Modes

where the matrices are defined in (3.12) and (3.14).

3.2.1 LOBPCG

Problem 3.16 can be solved by using a locally optimal block preconditioned conjugate gra-
dient (LOBPCG) solver already available in Netgen/NGSolve. The LOBPCG method in
use was introduced in [10]. An earlier version is discussed in [9]. A more extensive descrip-
tion can be found in [11]. The matrices C and G must be hermitian and positive definite.
In our case that is true as we have shown in the previous section. We will now describe the
idea behind LOBPCG in a nutshell. More detailed information can be found in the papers
referenced above.

Definition 3.17. For matrices C,G ∈ CNh×Nh defined in Problem 3.16 and u ∈ CNh , the
Rayleigh quotient ρ is defined as

ρ(u) =
⟨Cu,u⟩
⟨Gu,u⟩ . (3.18)

Theorem 3.18. Let ρ be the Rayleigh quotient from Definition 3.17. Let λ1 ≤ λ2 ≤ . . .
be the eigenvalues of Problem 3.16 with corresponding eigenvectors u1,u2, . . ., then λj =
ρ(uj). Define

Em := span{u1, . . . ,um}
and

E⊥
m := {v ∈ CNh | ⟨v,w⟩ = 0 ∀w ∈ Em}.

It holds that

λ1 = min
u∈CNh

ρ(u), u = argmin
u∈CNh

ρ(u)

and for m > 1 it holds that

λm = min
u∈V ⊥

m−1

ρ(u), u = argmin
u∈V ⊥

m−1

ρ(u)

Proof. This is proven in [5]. The idea is to use Theorem 3.9 and the fact that ⟨C·, ·⟩ ≃ ⟨·, ·⟩.
We write v ∈ CNh as

v =

Nh∑
j=1

⟨Cv,uj⟩uj .

Due to Parceval’s Theorem the Rayleigh quotient takes the form

ρ(v) =

∑Nh
j=1 λj |⟨Cv,uj⟩|2∑Nh
j=1 |⟨Cv,uj⟩|2

.
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3.2 Interpretation as General Eigenvalue Problem

In a first step we are only interested in the smallest eigenvalue λ1. From Theorem 3.18 we
know that

λ1 = min
u∈CNh

ρ(u).

Hence minimization of the Rayleigh quotient seams to be a good route to determine the first
eigenvalue and an associated eigenvector. As already suggested by the name of LOBPCG
the method is a form of a conjugate gradient algorithm. The idea of this kind of iterative
procedures is the following. Let u(j) be an approximation to û := argminu∈Cn ρ(u) after
j iteration steps. The basic idea is to get the next iteration is to set

u(j+1) = u(j) + αd(j+1) (3.19)

with the condition
ρ(u(j+1)) = min

α
ρ(u(j) + αd(j+1)).

In a steepest descent algorithm the search direction d(j+1) would be simply chosen as
−∇ρ(u(j)). For a conjugate gradient algorithm we additionally impose the orthogonality

⟨Cd(j),d(j+1)⟩ = 0,

hence
d(j+1) = −∇ρ(u(j)) + βd(j).

Next we calculate the gradient

∇ρ(u) =
∇⟨Cu,u⟩⟨Gu,u⟩ − ⟨Cu,u⟩∇⟨Gu,u⟩

⟨Gu,u⟩2

=
2Cu⟨Gu,u⟩ − ⟨Cu,u⟩2Gu

⟨Gu,u⟩2

=
2

⟨Gu,u⟩ (Cu− ρ(u)Gu)

≃ r,

where r denotes the residual Cu − ρ(u)Gu. Plugging the resulting search direction into
(3.19) yields

u(j+1) = u(j) + α
(
−r(j) + βd(j)

)

The locally optimal in LOBPCG means that the parameters α and β are optimized at once,
because

min
α,β

ρ
(
u(j) + α(−r(j) + βd(j))

)
≤ min

α
ρ
(
u(j) + α(−r(j) + βd(j))

)
.

In general the pencil C − λG can be ill conditioned. To tackle that problem a precondi-
tioner P is introduced. For a linear system Ax = b a good preconditioner is one that
approximates A. For an eigenvalue problem, where λ varies it is not obvious what the
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3 Numerical Methods for Calculating Photonic Crystal Modes

optimal target should be. In [11] it is argued why a preconditioner P that approximates
C−1 is a reasonable choice.

Defining w(j) := Pr(j) the next value of the preconditioned iterative algorithm reads as

u(j+1) = u(j) + α
(
−w(j) + βd(j)

)
.

The minimum for ρ(u(j+1)) is exactly the minimal eigenvalue of the 3×3 eigenvalue problem(l
(
(l
( u(j)∗

−w(j)∗

d(j)∗

)l
)C

(
u(j) −w(j) d(j)

))l)
((τ
η
γ

)) = λ

(l
(
(l
( u(j)∗

−w(j)∗

d(j)∗

)l
)G

(
u(j) −w(j) d(j)

))l)
((τ
η
γ

))
with α = η/τ and β = γ/η.

The LOPCG method yields the smallest eigenvalue. The block version LOBPCG discussed
in [11] will return the m smallest eigenvalues. This can be made plausible by the use of
Theorem 3.18 and the fact that the vectors are orthogonalized.

3.3 Interpretation as Quadratic Eigenvalue Problem

The approach described in Section 3.2 does not work if the permeability µ or the permit-
tivity ε and therefore the matrices in Problem 3.16 depend on ω. To be able to solve this
case we choose ω arbitrary but fixed. Additionally we impose a linear relationship between
kx and ky by setting

k =

(
kx
ky

)
=

(
px
py

)
+ λ̃

(
sx
sy

)
= p+ λ̃s, (3.20)

for s,p ∈ R2.

Problem 3.19. Let ω ∈ R be arbitrary but fixed. Find u ∈ CNh and λ ∈ C that solve the
QEP (3.17) with

M = −(p2x + p2y)A
k2x,k

2
y + ipxA

k2x + ipyA
k2y +A1 −

(ω
c

)2
B

D = i2(sxpx + sypy)A
k2x,k

2
y + sxA

k2x + syA
k2y

K = (s2x + s2y)A
k2x,k

2
y .

where the matrices are defined in (3.12) and (3.14).

The algorithms we will use approximate the eigenvalues with the biggest absolute values
the best. Therefore it makes sense to solve for eigenvalue

λ := −i/λ̃. (3.21)

in Problem 3.19 instead of λ̃ as defined in (3.20).
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3.3 Interpretation as Quadratic Eigenvalue Problem

The methods described in this section were previously discussed and implemented in
Netgen/NGSolve by the author as part of the course AKNUM Seminar Computational
Mathematics (101.845).

Let the eigenpair (λ,u) be a solution of (3.17). Instead of solving a QEP of size n× n we
consider an equivalent GEP (3.16) of size 2n× 2n by defining

C =

(−D −K
I 0

)
, G =

(
M 0
0 I

)
, ũ =

(
λu
u

)
.

For G invertible the problem can further be transformed into a linear eigenvalue problem
(3.15) of size 2n× 2n by defining

H := G−1C =

(−M−1D −M−1K
I 0

)
=

(
A B
I 0

)
(3.22)

with A := −M−1D and B := −M−1K. In order to do that we need M to be invertible,
which is the case for M defined in Problem 3.19. However linearization comes with a few
drawbacks. First, the problem size is doubled. Second, the structural properties of (3.17)
are lost.

3.3.1 Rayleigh-Ritz Method

To avoid linearization of Problem (3.17) the second-order Krylov subspace is introduced,
see [3].

Definition 3.20. For H ∈ Cn×n and r ∈ Cn the N-dimensional Krylov subspace is defined
as

KN (H, r) = span{r,Hr, ..,HN−1r}.

For A,B ∈ Cn×n and r−1, r0 ∈ Cn the N-dimensional second-order Krylov subspace is
defined as

GN (A,B, r−1, r0) = span{r−1, r0, .., rN−1} (3.23)

with

rj = Arj−1 +Brj−2 for j ≥ 1.

From now on we will use the starting values r−1 = 0 and r0 = u for u ∈ Cn and denote
the corresponding second-order Krylov subspace as

GN (A,B,u) := GN (A,B,0,u).

For the choice A = −M−1D, B = −M−1K and the starting vector x = [uT ,0]T the
Krylov spaces G(A,B,u) and K(H,x) are connected. We see that
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Hx =

(
A B
I 0

)(
u
0

)
=

(
Au
u

)
=

(
r1
r0

)
H2x =

(
A2u+B

Au

)
=

(
r2
r1

)
...

Hjx =

(
rj
rj−1

)
.

Therefore we have

KN (H,x) = span

{(
r0
0

)
,

(
r1
r0

)
, . . . ,

(
rN−1

rN−2

)}
.

This means, that we can build KN (H,x) entirely with vectors contained in GN (A,B,u).
So we can expect an equally good convergence of eigenvalues, if we project (3.17) on
GN (A,B,u), as if the problem is linearised first and then projected on KN (H,x).

To describe this connection in a more general way, let V N be a matrix with basis vec-
tors {v0, ...,vN−1} of KN (H, [r0, r−1]

T ). Also denote the matrix containing basis vectors
{q0, ..., qN−1} of GN (A,B, r−1, r0) as QN . Then we have

span{V N [0 : n, :]} = span{q0, . . . , qN−1}, (3.24)

span {V N [n : 2n, :]} = span
{
q−1, . . . , qN−2

}
(3.25)

holds. Thus QN can be written as

QN = span{V N [: n, :],V N [n : 2n, :]}. (3.26)

Equation (3.26) indicates that a basis of QN could be constructed using V N . However,
this would be computationally expensive, because it would require working with a matrix
of size 2n×N to get a matrix of size n×N .

Before we discuss the construction of a good basis, we need to define two special cases.

Definition 3.21. Let Gj(A,B, r−1, r0) be the second-order Krylov subspace spanned by
{r−1, ..., rj−1}. The case

Gj(A,B, r−1, r0) = Gj+1(A,B, r−1, r0)

is called deflation. If

Gj(A,B, r−1, r0) = Gi(A,B, r−1, r0) ∀i ≥ j

a breakdown occurs.

30



3.3 Interpretation as Quadratic Eigenvalue Problem

The definition of a breakdown can be applied to the linear Krylov subspace as well.

Now a modified Rayleigh-Ritz procedure, described in Algorithm 1, can be introduced. A
huge advantage of that method is, that the structure of the original eigenvalue problem is
preserved.

Algorithm 1 Rayleigh-Ritz for QEP

Input: M ,D,K ∈ Cn×n, N ∈ N with N < n
Output: uj ∈ Cn, λj ∈ C for j ∈ {1, ..., N}

1: define A = −M−1D and B = −M−1K
2: compute an orthonormal basis QN of N-dimensional subspace G(A,B,u)
3: compute N eigenpairs {(g1, λ1), ..., (gN , λN )} of the QEP (λ2Q∗

NMQN +λQ∗
NDQN +

QT
NKQ)g = 0

4: get approximate eigenpairs (uj , λj) = (QNgj , λj)

Last but not least, we have to choose some kind of error estimate to evaluate the quality
of the eigenpairs we have calculated. As in [3] we use the relative residual norms to get a
backwards error estimate

ε =
∥(λ2M + λD +K)z∥

|λ|2∥M∥+ |λ|∥D∥+ ∥K∥ . (3.27)

The length of vectors is measured by the Euklidean norm. Hence, the naturally induced
norm for a matrix M ∈ Cn×n would be the spectral norm

∥M∥ :=
√

max{|µ| µ is eigenvalue of M∗M}.
However, the spectral norm is quite expensive to compute. Therefore, the Frobenius norm

∥M∥ :=

┌||√ n−1∑
i,j=0

|mi,j |2

is used instead.

3.3.2 Arnoldi Based Procedures to Construct a Krylov Subspace Basis

The second-order Arnoldi (SOAR) and two-level orthogonal Arnoldi (TOAR) procedures
introduced in [3] and [12] for constructing an ONB of GN (A,B,u) are both based on the
Arnoldi procedure. Hence, as a first step we are going to discuss the Arnoldi procedure
which results in an ONB of KN (H,x). We use the notation V N := (v0, . . . ,vN−1) ∈ C2n×N

where vi are basis vectors of KN (H,x) and QN := (q0, . . . , qN−1) ∈ Cn×N is a basis matrix
of GN (A,B,u).
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3 Numerical Methods for Calculating Photonic Crystal Modes

The Arnoldi procedure can be expressed as

HV m = V mT [: m, : m] + vmeTm−1tm,m−1 = V m+1T [: m+ 1, : m] (3.28)

where T is an upper Hessenberg matrix and ej is the j-th Euklidean unit vector (starting
at 0) [3]. Using that all vj are pairwise orthonormal we can calculate

V ∗
mHV m = V ∗

mV m, ,, ,
I

T [: m, : m] + V ∗
mvm, ,, ,
0

eTm−1tm,m−1 = T [: m, : m].

Therefore, the eigenvalues of H can be approximated by the ones of T , which is a Hessen-
berg matrix and allows more efficient eigenvalue computation using QR decomposition.

Algorithm 2 Arnoldi

Input: H ∈ Cn×n, x ∈ C, N ∈ N
Output: ONB V N ∈ Cn×N , Hessenberg matrix T ∈ CN×N

1: ti,j = 0 for 0 ≤ i, j ≤ N − 1
2: v0 = x/∥x∥
3: for j = 0, . . . , N − 2 do
4: w = Hvj
5: for i = 0, .., j do
6: tij = ⟨w,vi⟩
7: w = w − tijvi

8: tj+1,j = ∥w∥
9: if tj+1,j == 0 then

10: stop ▷ breakdown

11: vj+1 = w/tj+1,j

The SOAR procedure, as introduced in [3], generates an orthonormal basis (ONB) of
GN (A,B,u).

To describe the algorithm, we first assume that neither a breakdown nor deflation occurs.
These cases are discussed later. Similar to the Arnoldi procedure the SOAR Algortihm 3
produces an upper Hessenberg matrix T ∈ CN×N . Let Pm be the matrix consisting of the
helping vectors {p0, . . . ,pm} as columns. The m-th Euklidean unit vector is denoted by
em (starting at 0). The following equations

AQm +BPm = QmT [: m, : m] + qmeTm−1tm,m−1, (3.29)

Qm = PmT [: m, : m] + pmeTm−1tm,m−1 (3.30)

hold. By definition p0 = 0 and therefore (3.30) can be written as
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3.3 Interpretation as Quadratic Eigenvalue Problem

Algorithm 3 SOAR – simple version

Input: A,B ∈ Cn×n, u ∈ Cn

Output: ONB Q ∈ Cn×N , Hessenberg matrix T ∈ CN×N

1: ti,j = 0 for 0 ≤ i, j ≤ N − 1
2: q0 = u/∥u∥
3: p0 = 0
4: for j = 0, .., N − 2 do
5: r = Aqj +Bpj

6: s = qj
7: for i = 0, .., j do
8: tij = ⟨r, qi⟩
9: r = r − tijqi

10: s = s− tijpi

11: tj+1,j = ∥r∥
12: if tj+1,j == 0 then
13: if s ∈ span{pi | i : qi = 0, 0 ≤ i ≤ j} then
14: stop ▷ breakdown
15: else
16: reset tj+1,j = 1 ▷ deflation
17: qj+1 = 0
18: pj+1 = s

19: qj+1 = r/tj+1,j

20: pj+1 = s/tj+1,j
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Qm = Pm[:, 1 :]T [1 : m, : m] + pmeTm−1tm,m−1

= Pm+1[:, 1 :]T [1 : m+ 1, : m].

Using that relation the helping vectors pj in (3.29) can be eliminated entirely by

Pm =
(
0 Qm−1T [1 : m, : m− 1]−1

)
= Qm

(
0 T [1 : m, : m− 1]−1

0 0T

)
=: QmSm.

Plugging that into (3.29) leads to

AQm +BQmSm = QmT [: m, : m] + qmeTm−1tm,m−1. (3.31)

Now we can extract qm from (3.31) by calculating(
0 . . . 0 qm

)
tm,m−1 = AQm +BQm−1

(
0 T [1 : m, : m− 1]−1

)−QmTm[: m, : m]

hence

qm =
1

tm,m−1

(l
(lAqm−1 +BQm−1T [1 : m, : m− 1]−1[:,m− 2], ,, ,

=:f

−QmT [:,m− 1], ,, ,∑m−1
i=0 qitj,m−1

)l
)l .

This results in a more efficient version of SOAR described in Algorithm 4.

Note that T [1 : m, : m − 1] is an upper triangular matrix and can as such be inverted in
O(m2) using backward substitution. However, the matrix might be ill conditioned. Sub-
sequently, the algorithm is not always numerically stable. The TOAR procedure described
in [12] later resolves that issue.

According to [3] Algorithm 3 breaks down at a step j if and only if Algorithm 2 breaks
down at the same step j. We know that this is the case if

vj ∈ span

{(
qi
pi

)
| 0 ≤ i < j

}
.

This requires, that

0 = r −
j−1∑
i=0

⟨r,vi⟩vi

with r defined as in line 5 in Algorithm 3 or line 5 in Algorithm 4. This results in qj = 0.
It remains to check if

vj [n :] ∈ span {pi | i : qi = 0, 0 ≤ i < j} .
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3.3 Interpretation as Quadratic Eigenvalue Problem

Algorithm 4 SOAR – efficient version

Input: A,B ∈ Cn×n, u ∈ Cn

Output: ONB V ∈ Cn×N , Hessenberg matrix T ∈ CN×N

1: ti,j = 0 for 0 ≤ i, j ≤ N − 1
2: q0 = u/∥u∥
3: f = 0
4: for j = 0, .., N − 2 do
5: r = Aqj +Bf
6: for i = 0, .., j do
7: tij = ⟨r, qi⟩
8: r = r − tijqi

9: tj+1,j = ∥r∥
10: if tj+1,j == 0 then
11: reset tj+1,j = 1
12: qj+1 = 0
13: f = QjT [1 : j + 1, : j]−1[:, j − 1]
14: save f and check deflation and breakdown (see lines 14-16 in Algorithm 3)
15: else
16: qj+1 = r/tj+1,j

17: f = QjT [1 : j + 1, : j]−1[:, j − 1]

As mentioned before, the SOAR algorithm can become numerically unstable due to invert-
ing a potentially ill conditioned upper triangular matrix in Equation (3.31). To cure that
problem the two-level orthogonal Arnoldi procedure is introduced in [12]. It creates not
only an orthonormal basis Qm of Gm(A,B,u), but it also ensures the orthonormality of the
column vectors of the basis matrix V m of the corresponding linear Krylov space Km(H,x).

Equations (3.24) and (3.25) justify the representation

V m =

(
V m[0 : n, :]
V m[n : 2n, :]

)
=

(
QmUm,0

QmUm,1

)
=

(
Qm

Qm

)(
Um,0

Um,1

)
=: Q[m]Um (3.32)

where Um,0 and Um,1 are upper triangle matrices. The goal is that Qm as well as V m

have orthonormal columns. Therefore, Um needs to be orthonormal as well. In contrast
to [12] we assume r−1 = 0 and r0 from the beginning. As before we think about deflation
and breakdown later and first assume that none of the two occur.

For m = 1 we have

V 1 =
1

∥u∥
(
u
0

)
=

(
u

∥u∥ 0

0 u
∥u∥

)(
1
0

)
=

(
Q1 0
0 Q1

)(
U1,0

U1,1

)
= Q[1]U1.

Assume, that Qj , U j and thus V j are computed for j ≤ m. In a fist step we want to
calculate qm.
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Algorithm 5 TOAR

Input: A,B ∈ Cn×n, u ∈ Cn

Output: ONB V ∈ Cn×N

1: ti,j = 0 for 0 ≤ i, j ≤ N − 1
2: q0 = u/∥u∥
3: U0,1 = 1
4: U0,1 = 0
5: η0 = 1
6: for j = 0, .., N − 2 do
7: r = A

(
QjU j,0[:, j]

)
+B(QjU j,1[:, j])

8: for i = 0, . . . , ηj − 1 do
9: si = ⟨r, qi⟩

10: r = r − siqi
11: α = ∥r∥
12: s = (s0, . . . , sηj−1)
13: w = U j,0[:, j]
14: for i = 0, . . . , j do
15: ti,j = ⟨s,U j,0[:, i]⟩+ ⟨w,U j,1[:, i]⟩
16: s = s− ti,jU j,0[:, i]
17: w = w − ti,jU j,1[:, i]

18: tj+1,j = (α2 + ∥s∥2 + ∥w∥2) 1
2

19: if tj+1,j == 0 then
20: stop ▷ breakdown

21: if α == 0 then
22: ηj+1 = ηj ▷ deflation
23: Qj+1 = Qj

24: U j+1,0 =
(
U j,0 s/tj+1,j

)
25: U j+1,1 =

(
U j,1 w/tj+1,j

)
26: else
27: ηj+1 = ηj
28: Qj+1 =

(
Qj r/α

)
29: U j+1,0 =

(
U j,0 s/tj+1,j

0 α/tj+1,j

)
30: U j+1,1 =

(
U j,1 w/tj+1,j

0 0

)

From Lemma 3.1 in [12] we know, that

span{q0, . . . , qm} = span{q0, . . . , qm−1, r}

with

r = AQmUm,0[:,m− 1] +BQmUm,1[:,m− 1] (3.33)
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3.3 Interpretation as Quadratic Eigenvalue Problem

Thus, qm can be computed by orthogonalizing r against Qm and subsequent normalization.
That yields

qm = (I −QmQ∗
m)r/α (3.34)

with α ∈ R, such that ∥qm∥ = 1. This step is done in lines 7 – 12 and 31 in Algorithm 5.
It remains to calculate Um+1,0 and Um+1,1, such that Um+1 is orthonormal.
From (3.24) and (3.25) we know that

vm =

(
vm[: n]

vm[n : 2n]

)
∈
(

span{q0, . . . , qm}
span{q0, . . . , qm−1}

)
.

Hence, we can write

V m+1 =
(
V m vm

)
=

(
QmUm,0 Qms+ βqm
QmUm,1 Qmw

)

=

(
Qm+1 0

0 Qm+1

)(l
(l

Um,0 s
0T β

}
= Um+1,0

Um,1 w
0T 0

}
= Um+1,1

)l
)l

= Q[m+1]Um+1

with β ̸= 0, if no deflation occurs and β = 0 otherwise.

The calculation of s,w and β is now based on the Arnoldi decomposition (3.28). Defining
Tm+1 = T [: m+ 1, : m] and plugging (3.32) into (3.28) yields

HQ[m]Um = Q[m+1]Um+1Tm+1. (3.35)

Expanding the left-hand side and only considering column m− 1 we get

HQ[m]Um[:,m− 1]
(3.22)
=

(
(AQmUm,0 +BQmUm,1)[:,m− 1]

QmUm,0[:,m− 1]

)
(3.33)
=

(
r

QmUm,0[:,m− 1]

)
.

The last column of the right-hand and side of (3.35) can be written as

Q[m+1]Um+1Tm+1[:,m− 1] = Q[m+1]

(l
(l
Um,0 s
0T β

Um,1 w
0T 0

)l
)lTm+1[:,m− 1]

= Q[m+1]

(l
(l
(l
(l
Um,0

0T

Um,1

0T

)l
)lT [: m,m− 1] +

(l
(l

s
β
w
0

)l
)l tm,m−1

)l
)l .
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3 Numerical Methods for Calculating Photonic Crystal Modes

Using the fact that Q[m+1] is an orthogonal matrix, we can calculate(l
(l

s
β
w
0

)l
)l tm,m−1 =

(
Q∗

m+1r
Q∗

m+1QmUm,0[:,m− 1]

)
−

(l
(l
Um,0

0T

Um,1

0T

)l
)lT [: m,m− 1]

where tm,m−1 is chosen such that ∥ (sT β wT 0
)T ∥ = 1. Furthermore the vector(

sT β wT 0
)T

needs to be orthogonalized against V m. This is done in lines 15-18
of Algorithm 5.
In contrast to the SOAR procedure, TOAR as described in Algorithm 5 generates an ONB
for K(H,x) as well. Therefore, a breakdown in step j occurs if vj = 0. This is checked in
line 21.
As in SOAR, a deflation is characterised by qi = 0. In Algorithm 5 this case corresponds
to α = 0 and is dealt with in lines 25-28.

3.3.3 Selection of Eligible Values

In our scenario the matrices in Problem 3.19 depend on ω. Hence Algorithm 1 returns N
values for every single value of ω. However we are only interested in eigenpairs where λ
fulfills certain criterions.

The first thing we know is that the components of k must be real valued. From Equation
(3.20) together with (3.21) follows that we can ignore all eigenpairs (uj , λj) with |Reλj |
bigger than a certain threshold.

To enforce any criterion that restrict k to a certain area, we only have to consider either
kx or ky due to the linear connection of the two components. Without loss of generality
we can assume that λ ˡ→ kx is not constant. Otherwise just do the exact same calculations
for ky.
Assume that we want k to be in the first BZ. Then there exist values a, b ∈ R such that
kx ∈ [a, b]. Again using Equations (3.20) and (3.21) we only consider eigenpairs (uj , λj)
with

Im λj ∈
[

sx
b− px

,
sx

a− px

]
.

Of course we can restrict the values of interest even further by defining a = a1 < . . . <
aL = b and only considering eigenpairs (uj , λj) with

Im λj ∈
L−1U
l=1

[
sx

al+1 − px
,

sx
al − px

]
.

For later application purposes we also want to consider a third selection criterion. Re-
member that the matrices in Problem (3.19) depend on ω. Assume that we solve it for
many different values ω in the frequency range [ωmin, ωmax]. Allowing all kx ∈ [a, b] we can
expect to see different frequency bands as discussed in Section 3.1.2. Examles of such band
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3.3 Interpretation as Quadratic Eigenvalue Problem

structures can be seen in Chapter 5.

Algorithm 6 Choose values near kx

Input:
Pω = [ω1, . . . , ωR]
Pλ = [λ1, . . . , λL]

Output: vecs, lams, omegas

1: vecs, lams, omegas = [ [ ], . . . , [ ], ,, ,
L–times

]

2: for ω in Pω do
3: update ω−dependent matrices in Problem 3.19
4: solve Problem 3.19 using Algorithm 1 and get eigenpairs EP :=[

(u1, λ1), . . . , (uN , λN )
]

5: for (u, λ) in EP do
6: λ = −i/λ
7: if Im λ > δimag or Reλ < minPω − δth or Reλ > maxPω + δth then
8: continue
9: j = argmin |Pλ − λ|

10: if |Pλ[j]− λ| < δth then
11: lams[j].append(λ)
12: vecs[j].append(u)
13: omegas[j].append(ω)

14: for l ∈ {1, . . . L} do
15: if lams[l] == [ ] then
16: continue
17: sort vecs[l], lams[l], omegas[l] simultaneously in ascending order such that

|lams[l][j]− Pλ[l]| < |lams[l][j + 1]− Pλ[l]| for all j with lams[l][j + 1] exists
18: j = 2
19: while j ≤ len(vecs[l]) do
20: for c in {1, . . . , j − 1} do
21: if ⟨vecs[l][j], vecs[l][c]⟩ > δ⊥ then
22: delete lams[l][c], vecs[l][c], omegas[l][c] from respective lists
23: break
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3 Numerical Methods for Calculating Photonic Crystal Modes

Algorithm 7 Sort into bands

Input:
eigenpairs with associated frequency EP :=

[
(u1, λ1, ω1), . . . , (uN , λN , ωN )

]
Output: vecs, lams, omegas = [ [ ], . . . , [ ], ,, ,

amount of bands times

]

1: sort EP along λ
2: srt vecs = [u1, . . .uN ]
3: srt lams = [λ1, . . . λN ]
4: srt omegas = [ω1, . . . ωN ]
5: bands = [[0]]
6: dist = 0
7: for i = 1, . . . , len(EP) do
8: nearest band = None

9: for j = 1, . . . , len(bands) do
10: b = bands[j]
11: if |⟨srt vecs[b[−1]], srt vecs[i]⟩| > dist then
12: nearest band = b
13: dist = |⟨srt vecs[b[−1]], srt vecs[i]⟩|
14: if dist < th then
15: bands.append([i])
16: else
17: nearest band.append(i)

18: vecs, lams, omegas = [ ]
19: for b in bands do
20: vecs.append(srt vecs[b])

21: lams.append(srt lams[b])

22: omegas.append(srt omegas[b])

23: sort order of bands by mean frequency of the bands

Assume that we have a set of discrete values {k1x, . . . , kLx }. For each point kjx in the set and
each band in the frequency range we want to find one kx such that |kjx − kx| is as small as
possible.
To this end we need a method to automatically separate the bands independent of how
broad the band gap is or if a band gap exists at all. Consider two solutions (u1, λ1) and
(u2, λ2) of problems with respective frequencies ω1, ω2. Further assume that λ1 ≈ λ2. As
already discussed in Section 3.1.2 (u1, ω1) and (u2, ω2) can be interpreted as eigenpairs of
(3.11). For ∥u1∥ = ∥u2∥ = 1 and a threshold δ⊥ > 0 , we get the simple criterion

|u1 · u2| ≤ δ⊥ ⇒ u1, u2 belong to different bands,

|u1 · u2| > δ⊥ ⇒ u1, u2 belong to the same band.

Above considerations are summarized in Algorithm 6. A modified version that just sorts
existing solutions into a priorly unknown amount of bands is described in Algorithm 7
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3.4 Reduced Basis

3.4 Reduced Basis

In this section we will cover the basics of a reduced basis (RB) method as described in [1]
and apply it to Problems 3.16 and 3.19. First define the following generic problem.

Problem 3.22. Let P = {ν1, . . . , νL} be a set of parameters and ν ∈ P. Find u ∈ CNh

and λ ∈ C such that

A(λ, ν)u = 0 (3.36)

with

A(λ, ν) =

mA∑
q=1

Φq
A(λ)Θ

q
A(ν)A

q ∈ CNh×Nh . (3.37)

Maybe we also want to impose some restrictions that indicate which solutions (u, λ) are
eligible. Problem 3.22 should be solved for a huge set of parameters P. This can be
computationally quite expensive since in general Nh can be very large. This is why it
makes sense to instead look for a smaller problem, the so called reduced problem

.A(λ, ν).u = 0 (3.38)

with .A ∈ C
,N× ,N such that the so called reduced solution (.u, λ) ∈ C

,N ×C is still a good
enough approximation to the solution of our original problem and .N ≪ Nh. Note that the
matrices A, .A and therefore the solutions u, .u depend on the parameter ν. We leave out
that dependence for better readability, but it is important to keep in mind.

Now we are going to construct such a reduced problem. The idea is to choose so called

snapshot parameters {ν1, ..., ν ,N} and calculate the associated solutions {u1, ...,u
,N}. They

span a subspace V ,N ⊂ CNh . To get a good basis {ζ1, ..., ζ ,N} of V ,N we are going to orthog-

onalize {u1, ...,u
,N} by applying the Gram-Schmidt process. Using these ζj as columns of

a matrix, we get the transformation matrix Q ∈ CN× ,N . For a solution .u of the reduced
problem the vector Q.u should be a good approximation for a solution of the original prob-
lem 3.22.

What we need is a notion of what a good approximation is. Therefore we define the residual
vector

ρ(.u, λ) = A(λ, ν)QN̂ .u (3.39)

and further the residual as

res(.u, λ) = ∥ρ(.u, λ)∥2. (3.40)

Note that ρ depends on ν, .u and λ. One way to obtain (3.38) is to force the residual vector
to be orthogonal to the subspace V ,N . Or in other words the orthogonal projection of ρ on
V ,N has to vanish. In matrix form this criterion can be written as

Q∗AQ.u = 0.

Hence the reduced matrix in (3.38) is Â = Q∗AQ.
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3 Numerical Methods for Calculating Photonic Crystal Modes

There has been little progress so far: Although solving the reduced Problem (3.38) is much
cheaper than solving the big Problem (3.36), the matrix .A must be assembled for every
parameter ν. This calculation still depends on the large dimension Nh.

Taking a closer look at the matrix A as defined in (3.37) we see that it is affine parametric
dependent. Meaning θqA(ν) and Φq

A(λ) are scalar functions and the Aq are independent of
the parameter ν. The reduced version is the following.

Problem 3.23. Find .u ∈ CN̂ and λ ∈ C such that

.A(λ, ν).u(ν) = 0,

with .A(λ, ν) =

mA∑
q=1

Φq
A(λ)Θ

q
A(ν)

.Aq

and the matrices .Aq = Q∗,NAqQ ,N .

The reduced problem has to be built only once in a possibly expensive offline stage and
allows a rapid assembly during a cheap online stage of the calculation.

Remark 3.24. In our calculation we consider a reduced basis matrix Q ∈ RNh×2 ,N instead

of Q ∈ CNh× ,N .

3.4.1 A Greedy Choice of Snapshots

In this subsection we are going to explore how to construct a projection matrix Q. To that

end we need a method to choose good snapshots correspondent to parameters {ν, . . . , ν ,N}.
In the literature one can find different approaches to that problem. One very popular ap-
proach to construct a RB space is to use a so called greedy algorithm [1]. In a nutshell the
idea of a greedy construction of a RB space is to iteratively add new basis vectors at each
step that fulfil some kind of local optimality criterion.

Assume that we already have the RB space V ,N = span{u1
h, . . . ,u

,N} with orthonormalized

basis vectors {ζ1, . . . , ζ ,N} which constitute the columns of QN̂ .

We ask ourselves which vector u
,N+1
h should be added to the set of basis vectors that will

span V ,N+1
. A simple answer would be to solve the reduced Problem 3.23 for all ν ∈ P.

This yields a set of solutions S = {(.u1, λ1), . . . , (.uL, λL)}. Now we choose the ν belonging
to

(.uN+1, λN+1) := argmax
(,u,λ)∈S res(.u, λ).

For this parameter ν we solve (3.36). It could have more than one eligible solution. There-
fore we only choose u as a snapshot solution if the associated λ is in close proximity to
λN+1. Besides we want to avoid adding redundant information to our basis matrix Q ,N .
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Assume that ∥u∥ = 1 and let up be the projection of u onto the space spanned by the
columns of Q ,N . If ∥u−up∥ is smaller than a certain threshold, we also refrain from adding
it.

However this version of a greedy algorithm would make the RB construction very expensive
for two reasons. First solving (3.23) has to be done for every parameter ν in the potentially
very large set P. Additionally the residual has to be calculated for each eligible solution.
There can be none, one or even more such solutions for every ν ∈ P. Second, the cost of
calculating the residual for one value (.u, λ) is in O(N2

h
.N). How expensive it is to calculate

a solution depends on the exact problem. However alone the overall calculation of the
residual can be expected to be in O(N2

h
.NL) for each newly added snapshot.

The second problem can be addressed by choosing a random subset P,L ⊆ P of size

|P,L| = .L ≪ L = |PL|
in each iteration. This brings a significant speedup, but can lead to worse results and not
deterministic behaviour of the algorithm.
To reduce the computational costs of the residual we write (3.40) as

res(.u, λ)2 = ∥ρ(.u, λ)∥2
= ⟨ρ(.u, λ),ρ(.u, λ)⟩
(3.39)
= ⟨A(λ, ν)Q ,N .u,A(λ, ν)Q ,N .u⟩

ONB
= ⟨A(λ, ν)

,N∑
j=1

.ujζj ,A(λ, ν)

,N∑
k=1

.ukζk⟩
=

,N∑
j,k=1

.uj.uk⟨A(λ, ν)ζj ,A(λ, ν)ζk⟩

(3.37)
=

,N∑
j,k=1

.uj.uk⟨mA∑
q=1

Φq
A(λ)Θ

q
A(ν)A

qζj ,

mA∑
p=1

Φp
A(λ)Θ

p
A(ν)A

pζk⟩

=

mA∑
q,p=1

Φq
A(λ)Θ

q
A(ν)Φ

p
A(λ)Θ

p
A(ν)

,N∑
j,k=1

.uj.uk⟨Aqζj ,A
pζk⟩

=

mA∑
q,p=1

Φq
A(λ)Θ

q
A(ν)Φ

p
A(λ)Θ

p
A(ν).u∗Rq,p.u

(3.41)

with

Rq,p
j,k =

,N∑
j,k=1

⟨Aqζj ,A
pζk⟩.

The matrices Rq,p have to be calculated once in the offline stage and can subsequently be
used to calculate the residual online for all values ν ∈ P. Note that Rp,q = Rq,p∗, so only
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3 Numerical Methods for Calculating Photonic Crystal Modes

(mA+1)mA/2 matrices have to be calculated and stored. We will call the residual in form
(3.41) the cheap residual.

All together the adapted greedy procedure to build a RB space is summarized in Algorithm
8.

Algorithm 8 greedy RB space

Input:
set of parameters P
amount of randomly chosen parameters .L
initial RB space base vectors stored in columns of matrix Q0

Output: RB space base vectors stored in columns of matrix Q

1: for j ∈ {0, ...,MAX-ITER} do
2: build the reduced Problem 3.23 for Qj

3: build the cheap residual (3.41) for Qj

4: randomly choose subset P,L ⊆ P with |P,L| = .L
5: solve Problem 3.23 for all ν ∈ P,L
6: store the solutions in .S := [(ν1, .u1, λ1), (ν2, .u2, λ2), . . .] such that res((.u1, λ1) ≥

res((.u2, λ2) ≥ . . . and ∥û∥ = 1 ▷ note that it could be νl = νl+1

7: if res((.u1, λ1) < THRESHOLD then break

8: for (ν, .u, λ) ∈ .S do
9: snapshot added = False

10: solve Problem 3.22 for ν
11: store the solutions (λν ,uν) with ∥uν∥ = 1 in Sν ▷ Sν could also be empty
12: for (λν ,uν) ∈ Sν do
13: if |λ− λν | > δ1 then continue

14: define u⊥
ν as uν orthogonalized against the columns of Qj

15: if ∥uν − u⊥
ν ∥ < δ2 then continue

16: set Qj+1[:, : j + 1] = Q and Qj+1[:, j + 1] = u⊥
ν /∥u⊥

ν ∥
17: snapshot added = True

18: if snapshot added then
19: return Qj+1

3.4.2 A Reduced Version of the GEP and QEP

Problem 3.16 consists of two matrices C,G ∈ CNh×Nh . The first one is affine parametric
dependent on parameter k and the second does not depend on any parameter. Hence it
fits the structure of Problem 3.22.

In Problem 3.19 the matrix M depends on the parameter ω. If the material parameters
ε and µ do not depend on ω the matrix M , D and K are affine parametric dependent.
Otherwise we have a look at (3.3) again. In a first step assume that the permeability µ is
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frequency independent. The permittivity ε only appears in

b(u, v) =

∫
Ω
ε(ω, r)u(r)v(r).

We know that Ω consists of two separate materials, the integration area is composed of
Ω = Ωinner ∪ Ωouter. The outer material is air, so its relative permittivity is 1. The inner
material is homogeneous, hence the permittivity is a function independent of the position
r. This means we can split up the integral

b(u, v) =

∫
ω
ε(ω, r)u(r)v(r)

= ε(ω)

∫
Ωinner

u(r)v(r) +

∫
Ωouter

u(r)v(r)

= ε(ω)

∫
Ω

1Ωinneru(r)v(r) +

∫
Ω

1Ωouteru(r)v(r)

=: ε(ω)b–inner(u, v) + b–outer(u, v).

That is how we arrive at an affine parametric version for the matrix M . For a frequency
dependent permeability we repeat that process for the sesquilinear forms containing µ.
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4 Numerical Methods for Calculating Chern
Numbers

In Section 2.2 we stated the Chern Theorem 2.7 in the abstract setting that the states u
belong to the complex vector space V with scalar product ⟨., .⟩. The integration area S was
a closed two dimensional manifold.

In our case S is the first BZ which is a torus and hence a closed manifold. As vector space
we choose Vh ⊂ H1

p from Section 3.1.2. The corresponding scalar product is

⟨uk1 , uk2⟩ =
∫
B
ε(ω, r)ei(k

1−k2)·ru(r)v(r)dr

where ε is the permittivity.
We will only compute Chern numbers of frequency bands that are separated. What that
means can be seen in Section 3.1.2. From now all eigenvectors are assumed to belong to
the same frequency band.

4.1 First Principal Calculation

The first principal calculation of Chern numbers was proposed in [24]. The idea is to
approximate the Berry flux (2.23) by discretizing the BZ into a finite amount of square
shaped patches. Each patch P has corners k1

P ,k
2
P ,k

3
P ,k

4
P . The area |P | should be small

enough such that the Berry phase around the boundary ∂P is unambiguous. This is the
same approach as in (2.21). For better readability we define a link as

U
kj
P→kl

P
:=

⟨u
kj
P
, ukl

P
⟩

|⟨u
kj
P
, ukl

P
⟩| .

To approximate the Berry phase around one patch we calculate

ϕP = Im ln
(
Uk1

P→k2
P
Uk2

P→k3
P
Uk3

P→k4
P
Uk4

P→k1
P

)
only using the states at the corners. The normalisation is not relevant for the overall result.
It is only done for numerical stability. Note that the values on the boundary only have to
be computed either for Γl and Γr or Γb and Γt because u

ˡl
Γt = u

ˡl
Γb and u

ˡl
Γl = u

ˡl
Γr .

The Berry flux (2.23) can now be computed as

ΦS =
∑
P

ϕP .
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According to the Chern Theorem 2.7 the Chern number C is defined as the integer

C =
ΦS

2π
.

4.2 Wilson Loop Approach

The Wilson loop approach is detailed described in [22] and implemented in [20]. As already
discussed in Section 2.2 the presence of non trivial Chern numbers means that no gauge
can be chosen that is continuously differentiable everywhere on S. However for a fixed
ky we can choose a smooth gauge representation that is periodic along the direction kx.
Consequently for the first BZ (2.11) we can calculate the Berry flux (2.23) as

ΦS =

∫ π/a

−π/a

∫ π/a

−π/a
Ω(k)dkxdky

=

∫ π/a

−π/a

∫ π/a

−π/a
∂kxAy(k)− ∂kyAx(k)dkxdky

=

∫ π/a

−π/a

∫ π/a

−π/a
∂kxAy(k)dkx, ,, ,

=0 because of smooth gauge

−
∫ π/a

−π/a
∂kyAx(k)dkxdky

=

∫ π/a

−π/a

∫ π/a

−π/a
∂ky Im ⟨uk, ∂kxuk⟩dkxdky

=

∫ π/a

−π/a
∂ky

∫ π/a

−π/a
Im ⟨uk, ∂kxuk⟩dkxdky

=

∫ π/a

−π/a
∂kyϕ(ky)dky.

When approximating ∂kyϕ(ky)dky we have to remember that the Berry phase is only unique
up to an integer multiple of 2π. Assume that we restrict ϕ on the interval [−π, π). Now we
consider a small change ∆ky. Instead of approximating the corresponding change in the
Berry phase ∆ϕ with ∆ϕ ≈ ϕ(ky +∆ky)− ϕ(ky) we define

dm(ky, ky +∆ky) = ϕ(ky +∆ky) + 2πm− ϕ(ky).

For two neighbouring approximation points k1y, k
2
y we choose m such that

m = argmin
m∈{−1,0,1}

|dm(k1y, k
2
y)|.

For a discretization −π/a = k1y < k2y < . . . < kly < π/a we can approximate the Berry flux
as

ΦS =
l−1∑
j=1

dm(kjy, k
j+1
y )

kj+1 − kj
(kj+1 − kj) =

l−1∑
j=1

dm(kjy, k
j+1
y ).
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4.2 Wilson Loop Approach

Again the Chern Theorem 2.7 yields a Chern number C that is defined as

C =
ΦS

2π
.

This approach allows an interesting topological interpretation: the Chern numbers corre-
spond to the winding number of the Barry phases around the Torus. More information on
that topic can be found in [22].
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5 Results

In this chapter we first define four model problems for which we calculate band structures
and, if possible, Chern numbers. Two of them are already benchmarked in the literature.
Hence we use them to verify the correctness of our methods. Furthermore we discuss the
speedup that we gain from employing a reduced basis model order reduction. Additionally
we investigate what role the degreed of freedom of the FEM space and the the accuracy
of the RB approximation play in calculating correct Chern numbers. Last we compare the
WLA and FPC for different use cases.

The source code for all numerical experiments conducted for this thesis (and more) can be
found in https://github.com/huberamanda/dispersion.git.

5.1 Model Problems

In this section we discuss which parameters we choose for Problem 2.2. The variable
parameters are

• the radius r of the rod inside the unit cell Ω as depicted in Figure 2.1,

• the permittivity ε(ω) and

• the permeability tensor µ(ω).

Having a closer look at the form of µ as defined in (2.2) we see that it actually depends on
the the gyromagnetic ratio γ, the material dependent magnetic saturationMs, and the mag-
netic field strength H0. All of them depend on the material or the magnetic field.According
to [14] γ can be chosen as 1.759 × 1011. However, we will set γ = 1.75784 × 1011 to get
the same values µ and κ as in the benchmark problem used in [21], [24] and [20]. In these
papers a dispersion free version of the permeability tensor is considered, meaning that the
dependency of (2.2) on ω is ignored. Instead, a constant frequency ω̃ of the magnetic field
is introduced. The permeability is then given as defined in (2.2) just with ω̃ instead of ω.

Experiment I consists of Yittrium-Iron-Garnet rods in air. It is examined in [21], [24] and
[20]. According model parameters can be found in [14].

Experiment II is benchmarked in [23]. It serves as a control problem to check if our imple-
mentation is correct for frequency dependent material parameters.

Experiment III consists of the same YIG rods as I. The only difference is that we now con-
sider the permeability tensor (2.2) for a variable frequency. In our setup we have always
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5 Results

I II III IV

r [m] 0.11a 0.2a 0.11a 0.11a

ε(ω) [F/m] 15 1− (1914×2π1012)2

ω2−iω8.34×2π1012
15 15 + 8 sin(−π

2 + 2πω
c )

ω̃ [Hz] 4.28× 2π109 0 200ω 4.28× 2π109

H0 [T] 0.16 0 0.16 0.16
4πMs [T] 0.178 – 0.178 0.178

Table 5.1: Parameters for different experiments.

considered a unit cell length of a = 1. However the frequency scales with the length of the
unit cell. So actually III models a PC with a = 0.005 meters.

Experiment IV again considers the same YIG rods as I except for a frequncy dependence
of the permittivity ε that is completely made up for demonstration purposes.

We will conduct our calculations with different values for the following parameters

• ndof: number of degrees of freedom for the FEM space,

• nparam: amount of parameters P in Algorithm 8,

• th res: threshold for residual in Algorithm 8,

• nval: L̂ in Algorithm 8.

The ndof depend on the maximum height maxh of the triangles in the triangulation and
the order of the FEM space.

5.2 Band Structures

In the literature the bands for wave vectors along the irreducible BZ, as illustrated in Figure
2.2, are called the band structure of a PC [8]. Remember that for a quadratic Brillouin
zone the boundary of the irreducible Brillouin zone is the triangle connecting the points

Γ =

(
0
0

)
, X =

(
π
a
0

)
, M =

(
π
a
π
a

)
.

5.2.1 Frequency Independent Material Parameters

We want to compare the construction of the band structure by solving GEPs as described
in Section 3.2 to solving QEPs as described in Section 3.3. The only problem in Table 5.1
where both methods can be employed is I. As parameters P we choose equidistant points
along the irreducible Brillouin zone for the GEP and equidistant values between a minimal
and maximal scaled frequency for the QEP.

52



5.2 Band Structures

(a) Solutions of GEPs. The greedy algorithm
terminated after 3.94 seconds and produced a RB
space of dimension 30. The online calculation
time amounted to 0.50 seconds.

(b) Solutions of QEPs. The greedy algorithm
terminated after 15.77 seconds and produced a
RB space of dimension 30. The online calculation
time amounted to 4.71 seconds.

Figure 5.1: Band structures of the first 3 frequency bands for parameters ndof = 1296
(maxh = 0.1, order = 3), nparam = 100, th res = 10−3 and nval = 50. The red stars
indicate the snapshot parameters.

As can be seen in Figure 5.1 the results in 5.1a are not only better than the ones in 5.1b,
but the online and the offline phases are significantly faster. The visual quality of the band
structures differ that much because the slope of each band is steeper as a function of ω
than as a function of k. It is worth mentioning that technically there is no function that
represents one band as a function of ω because there can be more values for one ω, but
by restricting the range, a local representation can be found. There are several reasons
for the longer computation times. To illustrate that we consider the online stage of the
computation. A linear connection (3.20) between kx and ky is required. Hence, for each
side of the triangle nparam QEPs have to be solved. In contrast to the LOBPCG algorithm
more eigenvalues then the ones we want are computed by the TOAR procedure. This is
necessary to get the desired precision. To arrive at a band structure of similar density than
in Figure 5.1a we need nval to be about 10000, as can be seen in Figure 5.2. Less pa-
rameters are necessary if they are not chosen equidistantly but denser in range of flat bands.

Another advantage of solving a GEP is that the amount of desired bands is an input param-
eter of LOBPCG. If a QEP is solved, we can only specify a range of parameters ω. If bands
we are not interested in cross that range, the greedy algorithm will choose a basis that is
optimized for them too, which results in larger reduced systems than necessary. This be-
haviour can be observed when calculating the first 4 bands for I as can be seen in Figure 5.3.

In Figure 5.4 we investigate the computational advantage gained from performing a model
order reduction.
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5 Results

Figure 5.2: Band structure calculated with the same RB space as in Fig-
ure 5.1b for parameters np.concatenate([np.linspace(1e-4, 0.35, 2000),

np.linspace(0.42, 0.625, 8000)]). The online computation time amounted to
446.15 seconds.

(a) Solutions of GEPs. The greedy algorithm
terminated after 3.76 seconds and produced a RB
space of dimension 23.

(b) Solutions of QEPs. The greedy algorithm
terminated after 87.44 seconds and produced a
RB space of dimension 26.

Figure 5.3: Band structure for the first 4 frequency bands of I. The RB space is built for
parameters ndof = 328 (maxh = 0.2, order = 2), nparam = 100, th res = 10−3 and
nval = 50. The red stars indicate the snapshot parameters. The online calculation for the
QEP is done for 10000 not equidistant parameters.
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5.2 Band Structures

Figure 5.4: Computation times, dimension of RB space and residual for calculation of
the same band structure as displayed in Figure 5.3 with nparam = 500, nval = 50 and
th res = 1e − 3. The parameters were chosen equidistantly. The figures on the left side
show the results for solving a GEP, on the right side the results for solving a QEP are
displayed.

The band structure for I concurs with the benchmarks in [21], [24] and [20].
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5.2.2 Frequency Dependent Material Parameters

We saw that calculating PC modes by solving GEPs has many benefits over solving QEPs.
However for frequency dependent material parameters this can not be done with the meth-
ods described in Section 3.2. Hence we resort to employing the methods of Section 3.3.

Figure 5.5: Band structure of II. The RB space is built for parameters ndof = 909 (maxh =
0.1, order = 3), nparam = 10000, th res = 10−3 and nval = 100. The red stars indicate
the snapshot parameters. The greedy algorithm terminated after 464.816 seconds and
produced a RB space of dimension 102. The parameters were chosen as equidistantly
between ωmin = 0.5 and ωmax = 1.6. The online computation time amounted to 3202.68
seconds.

To test the correctness of our algorithm for dispersive materials we calculate the band
structure of II and compare it to Figure 2a in [23]. Our results are plotted in Figure 5.5
and concur with the reference data. Furthermore we see that every band, except the one
belonging to the ground state, intersects at least one other band. Also, we can observe
that there are 6 bands in the chosen frequency range, hence a relatively large RB space is
necessary to get values of the desired accuracy.

In addition to calculating the band structure of III, which can be seen in Figure 5.7, we
investigate how the permeability tensor changes dependent on the scaled frequency. From
(2.2) we see that µ has a singularity at ω = ω0/200, which happens at ωa/2πc ≈ 0.075. In
Figure 5.6 we plot the entries of 2D permeability tensor over the range of frequencies we
are interested in. Note that in the displayed range criterion (2.4) is still met.
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5.2 Band Structures

Figure 5.6: Parameters of the permeability tensor (2.2) for III.

Figure 5.7: Band structure of III. The RB space is built for parameters ndof =
1296 (maxh = 0.1, order = 3), nparam = 2000, th res = 10−3 and
nval = 100. The red stars indicate the snapshot parameters. The greedy al-
gorithm terminated after 39.44 seconds and produced a RB space of dimension 34.
The parameters were chosen as np.concatenate([np.linspace(0.2, 0.38, 500),

np.linspace(0.49, 0.875, 1500)]). The online computation time amounted to 157.30
seconds.
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Finally we look at the band structure for IV. The results can be seen in Figure 5.8. The very
flat bands require a fine resolution of parameters to avoid an incomplete band structure.
Also we see that modulating the permittivity yields a visibly different behaviour. As we
will discover later the band structures of I and IV are also topologically distinct, meaning
they do not have the same Chern numbers.

Figure 5.8: Band structure of IV. The RB space is built for parameters ndof =
1296 (maxh = 0.1, order = 3), nparam = 2000, th res = 10−3 and
nval = 100. The red stars indicate the snapshot parameters. The greedy algo-
rithm terminated after 49.169 seconds and produced a RB space of dimension 36.
The parameters were chosen as np.concatenate([np.linspace(1e-4, 0.32, 500),

np.linspace(0.4, 0.71, 1500)]). The online computation time amounted to 138.56
seconds.
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5.3 Chern Numbers

5.3 Chern Numbers

In this section we investigate the employment of the FPC and the WLA for the calculation
of Chern numbers for problems with frequency dependent and frequency independent ma-
terial parameters. In contrast to the band structure calculation no residuals are computed
in the offline phase of the computation of PC modes to ensure time efficiency.

In summary it can be concluded that the RB model order reduction in combination with
FEM is very suitable for the calculation of Chern numbers. In general the WLA will be
the superior method over the FPC, especially for PCs with frequency dependent material
parameters. One exception might be if explicit values for the Berry curvature, as visualized
in Figure 5.14, are desired. Furthermore it can be said that the choice of parameters and
fine enough discretization for ky are crucial to get accurate and fast results.

5.3.1 Frequency Independent Material Parameters

From the calculation of band structures we already know that solving a GEP should be
preferred over solving a QEP. In case of frequency independent material parameters this
is possible. Hence for this section we calculate all modes as described in Section 3.2.

Figure 5.9: Brillouin zone
discretized by a 4× 4 grid

For the calculation of CNs for I we want to com-
pare the first principal calculation (FPC) described in
Section 4.1 with the Wilson loop approach (WLA) de-
scribed in Section 4.2. Therefore we discretize the
BZ using a grid of size ngrid × ngrid. Note that
we only need to calculate data for points either on
the right or the left side and on the top or bottom
side of the BZ because of the periodic boundary con-
ditions. This is visualized for a 4 × 4 grid in Figure
5.9. We will calculate the required eigenpairs by solv-
ing a GEP. As already established in Section 5.2 this ap-
proach needs significantly less computation time than solving
a QEP.

As can be seen in Table 5.2 the accuracy of the FEM approximation and the residual of the
RB method can be chosen quite imprecisely. But even with this small amount of degrees
of freedom the model order reduction is beneficial. We ask ourselves if even a smaller RB
could be enough to still arrive at accurate Chern numbers. The experiments conducted for
Table 5.3 show that this is not the case. Hence we will stick with a threshold residual of
10−2 for the construction of the reduced basis from now on.

Furthermore we can observe in Table 5.2 that the WLA takes significantly less time to
compute for the same amount of data points. For a grid of size ngrid × ngrid the WLA
requires the computation of ngrid Berry phases, while ngrid2 Berry phases are needed for
the FPC. However a finer discretization of the BZ is necessary to get accurate results for
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ngrid
dim RB
space

time [s]
values

time [s]
CNs

method
CN

band 1
CN

band 2
CN

band 3
CN

band 4

2 None 0.348 0.037 FPC 0 0 0 0
2 25 1.045 0.039 FPC 0 0 0 0
2 None 0.348 0.011 WLA 0 0 0 0
2 25 1.045 0.012 WLA 0 0 0 0
3 None 0.442 0.087 FPC 0 1 -2 -1

3 27 0.179 0.087 FPC 0 1 -2 -1

3 None 0.442 0.022 WLA 0 1 0 -1
3 27 0.179 0.017 WLA 0 1 0 -1
4 None 0.719 0.150 FPC 0 1 -2 -1
4 29 0.272 0.124 FPC 0 1 -2 -1
4 None 0.719 0.031 WLA 0 1 0 -1
4 29 0.272 0.033 WLA 0 1 0 -1
5 None 1.124 0.178 FPC 0 1 -2 -1
5 31 0.459 0.175 FPC 0 1 -2 -1
5 None 1.124 0.053 WLA 0 1 0 -1
5 31 0.459 0.048 WLA 0 1 0 -1
6 None 1.641 0.253 FPC 0 1 -2 -1
6 31 0.613 0.252 FPC 0 1 -2 -1
6 None 1.641 0.071 WLA 0 1 -1 -1
6 31 0.613 0.077 WLA 0 1 -1 -1
7 None 2.741 0.317 FPC 0 1 -2 -1
7 33 0.837 0.341 FPC 0 1 -2 -1
7 None 2.741 0.109 WLA 0 1 -2 -1

7 33 0.837 0.108 WLA 0 1 -2 -1

8 None 3.730 0.531 FPC 0 1 -2 -1
8 33 0.582 0.151 FPC 0 1 -2 -1
8 None 3.730 0.470 WLA 0 1 -2 -1
8 33 0.582 0.122 WLA 0 1 -2 -1

Table 5.2: Chern numbers for 4 bands calculated by solving a GEP problem. If the dimen-
sion of the RB space is None the calculation is done without using a model order reduction.
The calculation time of the values is the sum of the online and offline phase, meaning it
includes building the RB space, if a model order reduction is applied. The desired accu-
racy th res for Algorithm 8 is 10−2. All parameters are used for construction of the RB
space (nval = ngrid× ngrid). The FEM space has 328 degrees of freedom ( maxh = 0.2,
order = 2). The coloured rows indicate the optimal results for both methods.
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5.3 Chern Numbers

ngrid
dim RB
space

time [s]
values

time [s]
CNs

method
CN

band 1
CN

band 2
CN

band 3
CN

band 4

2 13 0.841 0.036 FPC 0 0 0 0
2 13 0.841 0.008 WLA 0 0 0 0
3 13 0.062 0.059 FPC 0 1 -2 0
3 13 0.062 0.014 WLA 0 1 0 0
4 13 0.119 0.101 FPC 0 1 -2 0
4 13 0.119 0.024 WLA 0 1 0 0
5 13 0.160 0.153 FPC 0 1 -2 0
5 13 0.160 0.037 WLA 0 1 0 0
6 13 0.216 0.218 FPC 0 1 -2 0
6 13 0.216 0.053 WLA 0 1 -1 0
7 13 0.277 0.297 FPC 0 1 -2 0
7 13 0.277 0.072 WLA 0 1 -1 0
8 13 0.363 0.384 FPC 0 1 -2 0
8 13 0.363 0.096 WLA 0 1 -2 0

Table 5.3: Chern numbers for 4 bands calculated by solving a GEP problem. The calculation
time of the values is the sum of the online and offline phase, meaning it includes building
the RB space. The desired accuracy th res for Algorithm 8 is 10−1. All parameters are
used for construction of the RB space (nval = ngrid × ngrid). The FEM space has 328
degrees of freedom ( maxh = 0.2, order = 2).

the WLA, so in sum it takes more time to compute. If we look at the derivation in Section
4.2 we can guess that maybe less data points are required to calculate the Berry phase (up
to an integer multiple of 2π) of a fixed ky than we are using when considering ngrid×ngrid

values. We can test this by discretizing the Brillouin zone with a ngrid x× ngrid y grid,
where ngrid x ≤ ngrid y. Indeed this yields correct results for ngrid x ≥ 3. As can be
seen by comparing the optimal results for the FPC in Table 5.2 to the optimal results in
Table 5.4, this makes the WLA faster than the FPC, at least for our example.

If large CNs can be expected, the WLA might be inferior to a FPC. To make that plausible
we can observe that the BZ is nothing else than a torus because of its periodic boundary
conditions. Now we can regard the CN as a winding number around the torus as it is done
in [20]. For large CNs it is nessecary to have a high ngrid y so not to ”miss” a winding
around the torus. This is even better visible if we just plot the Berry phases for each fixed
ky in the flat BZ as can be seen in Figures 5.10, 5.11, 5.12 and 5.13.

Another advantage of the FPC is that an approximation of the Berry curvature is calculated
for each band. The curvature over the first BZ, discretized by a 100× 100 grid, is plotted
in Figure 5.14. Remember that we concluded in Section 2.2 that non trivial chern numbers
can only arise if the Berry potential is not continuously differentiable, which would lead to
singularities in the Berry curvature. This is exactly what we can observe in Figures 5.14b,
5.14c and 5.14d.
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ngrid x
dim RB
space

time [s]
values

time [s]
CNs

CN
band 1

CN
band 2

CN
band 3

CN
band 4

2 None 0.938 0.026 0 0 0 0
2 28 2.266 0.027 0 0 0 0
3 None 1.066 0.051 0 1 -2 -1

3 28 0.149 0.042 0 1 -2 -1

4 None 1.352 0.054 0 1 -2 -1
4 30 0.491 0.052 0 1 -2 -1

Table 5.4: Chern numbers for 4 bands calculated by solving a GEP problem. The param-
eters are the same as in Table 5.2 except that only the WLA is applied and the Brillouin
zone is discretized by a ngrid x× ngrid y grid with ngrid y = 7.

Figure 5.10: Band 1 of I with CN 0.

Figure 5.11: Band 2 of I with CN 1.
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5.3 Chern Numbers

Figure 5.12: Band 3 of I with CN -2.

Figure 5.13: Band 4 of I with CN -1.
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5 Results

The results for the CNs of the first 3 bands concur with the results in [21], [20] and [24].
The CN for the 4th band is only calculated in [21]. However we get a CN of −1 while the
value in [21] is given as 1. In [6] the same benchmark problem is considered. Their results
are the same as ours.

(a) Band 1 of I with CN 0. (b) Band 2 of I with CN 1.

(c) Band 3 of I with CN -2. (d) Band 4 of I with CN -1.

Figure 5.14: Approximate Berry curvature of the first 4 bands of I. The Brillouin zone is
discretized by a 100× 100 grid. The calculation was done solving a GEP.

5.3.2 Frequency Dependent Material Parameters

In contrast to problems with frequency independent material parameters, we are going to
solve a QEP in this section. To get comparable results we first solve I as a QEP and
subsequently calculate the CNs for III and IV. It does not make sense to consider CNs for
II because no bands above the ground state are separated.

Not regarding (2.14) as a GEP brings a few drawbacks. As discussed in Section 5.2 the
problem has to be solved for a lot more parameters ω to get a band structure with enough
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5.3 Chern Numbers

data points. Another drawback of solving a QEP is that the bands have to be separated
after calculating all the eigenpairs. This is done as described in Algorithm 7.

From the experiments documented in Table 5.4 we already know that ngrid y = 7 is
sufficient to get correct CNs of I for some value ngrid x. Hence for the WLA we consider
ngrid y = 7. When solving a QEP we want to know how many parameters ω are needed
for each path

Γky : (0, 1) → BZ, s ˡ→
(−π

a + s2πa
ky

)
(5.1)

with

ky = −π

a
+m

2π

ngrid y a
for m ∈ {0, . . . , ngrid y− 1}.

If we prescribe equidistant parameters ω not only the quantity of the parameters matters,
but also if the chosen frequencies lie on the relatively flat bands. This can be observed
in Table 5.5. Different CNs are calculated correctly for a different amount of equidistant
parameters. Fortunately the WLA allows a visual interpretation of the calculated CN as
the winding number around the torus. This means we have an easy way of checking the
plausibility of our results.
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nparam
dim RB
space

time [s]
values

time [s]
CNs

CN
band 1

CN
band 2

CN
band 3

CN
band 4

100 34 22.318 0.225 0 0 0 -1
110 34 25.096 0.223 0 1 0 0
120 34 26.722 0.248 0 0 -2 0
130 34 29.759 0.276 0 1 -2 0
140 34 31.369 0.308 0 1 0 -1
150 34 34.287 0.303 0 1 -2 -1
160 34 33.857 0.324 0 1 -2 0
170 34 39.074 0.350 0 1 -2 -1
180 34 41.810 0.747 0 1 -2 -1
190 34 40.268 0.385 0 1 -2 -1
200 36 49.988 0.401 0 1 -2 -1
210 36 48.660 0.413 0 1 -2 -1
220 36 48.329 0.427 0 1 -2 -1
230 36 50.297 0.468 0 1 -2 -1
240 36 57.411 0.480 0 1 -2 -1
250 36 64.245 0.556 0 1 -2 -1

Table 5.5: Chern numbers for 4 bands for I calculated by solving a QEP problem and using
the WLA for ngrid y = 7. The calculation time of the values is the sum of the online and
offline phase and the sorting of values into their bands by application of Algorithm 7. The
desired accuracy th res for Algorithm 8 is 10−2. The parameters are chosen equidistantly
between ωmin = 10−4 and ωmax = 0.71. All parameters are used for construction of the
RB space (nval = nparam). The FEM space has 328 degrees of freedom ( maxh = 0.2,
order = 2).

This fact is especially beneficial if we have no prior knowledge of the correct CNs. Hence,
before investigating their convergence for III and IV we calculate the Berry phases for a
lot of paths (3.4). The results can be seen in Figures 5.15 and 5.16. The calculated CNs
concur with what we would expect by looking at the plots of the Berry phases around the
respective paths Γky .
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nparam
dim RB
space

time [s]
values

time [s]
CNs

CN
band 1

CN
band 2

CN
band 3

CN
band 4

100 16 14.623 0.301 0 0 -2 1
110 16 13.682 0.193 0 1 -2 0
120 16 13.123 0.258 0 0 -1 0
130 16 13.978 0.238 0 1 -2 0
140 16 14.604 0.242 0 1 -2 1
150 16 15.076 0.251 0 1 -2 -1
160 16 17.101 0.435 0 1 -2 0
170 16 18.604 0.291 0 1 -2 -1
180 16 18.010 0.678 0 1 -2 -1
190 16 22.302 0.463 0 1 -2 0
200 16 23.251 0.399 0 1 -2 0
210 16 23.879 0.440 0 1 -2 -1
220 16 23.471 0.490 0 1 -2 -1
230 16 23.097 0.445 0 1 -2 -1
240 16 26.687 0.626 0 1 -2 -1
250 16 26.103 0.477 0 1 -2 -1

Table 5.6: Chern numbers for 4 bands for I calculated by solving a QEP problem and using
the WLA for ngrid y = 7. The calculation time of the values is the sum of the online and
offline phase and the sorting of values into their bands by application of Algorithm 7. The
desired accuracy th res for Algorithm 8 is 10−1. The parameters are chosen equidistantly
between ωmin = 10−4 and ωmax = 0.71. All parameters are used for construction of the
RB space (nval = nparam). The FEM space has 328 degrees of freedom ( maxh = 0.2,
order = 2).

67



5 Results

(a) Band 1 of III with CN 0. (b) Band 2 of III with CN -1.

(c) Band 3 of III with CN 0. (d) Band 4 of III with CN 3.

Figure 5.15: Chern number of the first 4 bands of III. The calculation was done solving a
QEP and using the WLA. 50 equidistant values ky where chosen.
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(a) Band 1 of IV with CN 0. (b) Band 2 of IV with CN 1.

(c) Band 3 of IV with CN -2. (d) Band 4 of IV with CN 1.

Figure 5.16: Chern number of the first 4 bands of IV. The calculation was done solving a
QEP and using the WLA. 50 equidistant values ky where chosen.
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ngrid
CN

band 1
CN

band 2
CN

band 3
CN

band 4

4 0 -1 0 -1
5 0 -1 0 -2
6 0 -1 0 1
7 0 -1 0 1
8 0 -1 0 1

9 0 -1 0 3

10 0 -1 0 3

Table 5.7: Chern numbers for 4 bands of III calculated by solving a QEP problem. The
desired accuracy th res for Algorithm 8 is 10−2. The RB space was constructed for
nparam = 2000 values and nval = 400. The FEM space has 328 degrees of freedom (
maxh = 0.2, order = 2).

Before we investigate how big we have to choose nparam, we first determine the necessary
amount of Berry phases to calculate. We have already established that the accuracy of
the FEM and the RB space play minor roles so we choose the same residual thereshold
and number of degrees of freedom for the FEM as in the frequency independent case. The
results are written down in Tables 5.7 and 5.8.

ngrid
CN

band 1
CN

band 2
CN

band 3
CN

band 4

4 0 1 0 1

5 0 1 -2 1

6 0 1 -2 1

Table 5.8: Chern numbers for 4 bands of IV calculated by solving a QEP problem. The
desired accuracy th res for Algorithm 8 is 10−2. The RB space was constructed for
nparam = 2000 values and nval = 400. The FEM space has 328 degrees of freedom (
maxh = 0.2, order = 2).

High values for nparam and nval are prescribed so it is very unlikely to miss crucial points
of some bands. Additionally to that we can visually check the results for plausibility. How-
ever, the plots associated with the experiments in Tables 5.7 and 5.8 are not shown here.
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nparam
dim RB
space

time [s]
values

time [s]
CNs

CN
band 1

CN
band 2

CN
band 3

CN
band 4

100 28 33.210 0.593 0 -1 0 -
110 28 32.518 0.435 0 -1 0 1
120 30 37.576 0.467 0 -1 0 3
130 30 38.653 0.509 0 -1 0 1
140 30 43.134 0.544 0 -1 0 1
150 30 44.275 0.677 0 -1 0 1
160 30 49.003 0.619 0 -1 0 1
170 30 50.290 0.665 0 -1 0 3
180 30 57.883 0.711 0 -1 0 3
190 30 60.884 0.762 0 -1 0 1
200 30 62.520 0.837 0 -1 0 1
210 30 67.069 0.994 0 -1 0 1
220 30 67.446 0.856 0 -1 0 3
230 30 72.661 0.896 0 -1 0 3
240 30 72.754 0.941 0 -1 0 3
250 32 79.964 1.014 0 -1 0 1
260 32 85.736 1.011 0 -1 0 1
270 32 90.257 1.188 0 -1 0 3
280 32 97.101 1.339 0 -1 0 3
290 32 97.880 1.241 0 -1 0 3
300 32 98.531 1.186 0 -1 0 3

Table 5.9: Chern numbers for 4 bands of III calculated by solving a QEP problem and using
the WLA for ngrid y = 9. The calculation time of the values is the sum of the online and
offline phase and the sorting of values into their bands by application of Algorithm 7. The
desired accuracy th res for Algorithm 8 is 10−2. The parameters are chosen equidistantly
between ωmin = 0.2 and ωmax = 0.875. All parameters are used for construction of the
RB space (nval = nparam). The FEM space has 328 degrees of freedom ( maxh = 0.2,
order = 2). No results for CNs indicate that the respective bands were not found.

Subsequently we calculate the CNs for the minimum amount of ky and a varying quan-
tity nparam of equidistant parameters per path Γk. To get deterministic results we choose
nval = nparam. As we can see in Tables 5.9 and 5.10 significantly more parameters are
needed for IV than for III in order to get reliable results for the first 3 bands. The reason
is that these bands of IV are very flat, which can also be observed in Figure 5.8.
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nparam
dim RB
space

time [s]
values

time [s]
CNs

CN
band 1

CN
band 2

CN
band 3

CN
band 4

300 48 217.641 0.656 0 1 0 1
330 62 156.188 0.645 0 1 0 1
360 62 139.347 0.713 0 1 0 1
390 62 156.276 0.899 0 1 0 1
420 62 172.221 0.939 0 1 0 1
450 62 182.655 0.945 0 1 0 1
460 44 180.054 0.957 0 1 0 1
470 40 107.647 0.965 0 1 0 1
480 62 195.174 1.025 0 1 -2 1
490 40 111.912 0.958 0 1 -2 1
500 40 114.410 0.974 0 1 -2 1
510 62 208.391 1.027 0 1 -2 1
520 40 121.582 1.078 0 1 -2 1
530 40 132.643 1.083 0 1 -2 1
540 62 224.107 1.150 0 1 -2 1
550 40 129.392 1.118 0 1 -2 1
560 40 130.671 1.088 0 1 -2 1
570 62 235.080 1.206 0 1 -2 1
600 62 252.183 1.209 0 1 -2 1

Table 5.10: Chern numbers for 4 bands of IV calculated by solving a QEP problem and using
the WLA for ngrid y = 5. The calculation time of the values is the sum of the online and
offline phase and the sorting of values into their bands by application of Algorithm 7. The
desired accuracy th res for Algorithm 8 is 10−2. The parameters are chosen equidistantly
between ωmin = 10−4 and ωmax = 0.71. All parameters are used for construction of the
RB space (nval = nparam). The FEM space has 328 degrees of freedom ( maxh = 0.2,
order = 2).

In remains to investigate the FPC in combination with solving a QEP. To employ that
method we need specific wave vectors k, hence a very fine sample of frequencies ω is re-
quired. The computational effort can be mitigated by estimating at which frequencies ω
we can expect to find the desired wave vectors k. So for a grid of size ngrid x× ngrid y

it makes sense to first look at the band structure along (5.1).
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5.3 Chern Numbers

nparam
dim RB
space

time [s]
values

time [s]
CNs

CN
band 1

CN
band 2

CN
band 3

500 30 - - - - -
600 30 63.042 0.086 0 1 -2
700 30 65.885 0.093 0 1 -2
800 30 - - - - -
900 30 83.703 0.087 0 1 -2
1000 30 92.861 0.085 0 1 -2
1100 30 102.098 0.087 0 1 -2
1200 30 111.150 0.084 0 1 -2
1300 30 120.615 0.086 0 1 -2
1400 30 129.595 0.084 0 1 -2
1500 30 138.212 0.087 0 1 -2
1600 30 - - - - -
1700 30 - - - - -
1800 30 - - - - -
1900 30 - - - - -
2000 30 - - - - -
2100 30 - - - - -
2200 30 - - - - -
2300 30 - - - - -
2400 30 - - - - -
2500 30 - - - - -
2600 30 - - - - -
2700 30 245.171 0.084 0 1 -2
2800 30 254.713 0.082 0 1 -2
2900 30 263.619 0.082 0 1 -2
3000 30 273.225 0.085 0 1 -2
3100 30 281.824 0.088 0 1 -2
3200 30 291.175 0.092 0 1 -2
3300 30 300.190 0.083 0 1 -2
3400 30 309.017 0.086 0 1 -2
3500 30 318.336 0.087 0 1 -2

Table 5.11: Chern numbers for 3 bands calculated by solving a QEP problem and using
the FPC with equidistant parameters ω between ωmin = 1e − 4 and ωmax = 0.625. The
calculation time of the values is the sum of the online and offline phase and the sorting
of values into their bands. The desired accuracy th res for Algorithm 8 is 10−2. All
parameters are used for construction of the RB space (nval = nparam). The FEM space
has 328 degrees of freedom ( maxh = 0.2, order = 2). The Brillouin zone is discretized by a
4× 4 grid. The accuracy threshold δth in Algorithm 6 is chosen as 2π/(3.5 ngrid). If there
are no entries for the times and CNs when Algorithm 6 was not able to find the required
amount of frequencies for each wave vector k on the grid.

In a second step we only have to sample frequencies around certain ω̃. However this ap-

73



5 Results

proach requires some manual effort or prior knowledge about the band structures and is
still relatively time consuming. It gets even more messy if there is no interval [ω1, ω2] for
every band such that no other band is in that range, as it is the case in Figure 5.3. For
that reason we only calculate Chern numbers of the first 3 bands of I employing the FPC.
Table 5.11 shows the results and computation times for different amounts of parameters
ω if no initial guess is used. As can be seen in Table 5.12 even with very good initial
guesses relatively many parameters ω need to be considered to get the desired result. For
deterministic behaviour in both cases all parameters are used when building the RB space.

nparam δ nparam
dim RB
space

time [s]
values

time [s]
CNs

CN
band 1

CN
band 2

CN
band 3

15 180 30 - - - - -
17 204 30 - - - - -
19 228 30 - - - - -
21 252 30 41.720 0.092 0 1 -2
23 276 30 41.242 0.099 0 1 -2
25 300 30 44.669 0.093 0 1 -2
27 324 30 49.287 0.097 0 1 -2
29 348 30 52.129 0.097 0 1 -2
31 372 30 55.512 0.093 0 1 -2
33 396 30 59.139 0.091 0 1 -2
35 420 30 62.785 0.092 0 1 -2
37 444 30 66.664 0.095 0 1 -2
39 468 30 70.073 0.089 0 1 -2
41 492 30 72.139 0.090 0 1 -2
43 516 30 76.210 0.099 0 1 -2

Table 5.12: Calculation for the same parameters as in Table 5.11, but with parameters
ω chosen around initial guesses ω̃ (calculated by solving a GEP). The variable nparam δ
indicates the amount of parameters per δ–environment around each ω̃, where δ = 0.005.
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Acronyms

BZ Brillouin zone. 6–8, 16, 21, 22, 25, 38, 47, 48, 52, 59, 61, 65

CN Chern number. 59–74

FEM finite element method. 15, 51, 52, 59–61, 66, 67, 70–73

FPC first principal calculation. 51, 59–61, 72–74

GEP general eigenvalue problem. i, 15, 25, 29, 44, 52–56, 59, 64, 74

LOBPCG locally optimal block preconditioned conjugate gradient. i, 26–28, 53

ONB orthonormal basis. 22, 25, 31–33, 35, 36, 38

PC photonic crystal. 3, 5–7, 13, 52, 56, 59

QEP quadratic eigenvalue problem. i, 15, 25, 28, 29, 31, 44, 52–56, 59, 64, 65, 68, 69, 72

RB reduced basis. 41–44, 51, 53–62, 66, 67, 70–74

SOAR second-order Arnoldi. 31, 32, 34, 38

TE transversal-electric. 7

TM transversal-magnetic. 7, 8

TOAR two-level orthogonal Arnoldi. 31, 34, 38, 53

WLA Wilson loop approach. 51, 59–62, 65–69, 71, 72

YIG Yittrium-Iron-Garnet. 3, 51, 52
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