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Kurzfassung

Diese Arbeit stellt zwei auf Deep Learning basierende Methoden vor: DeepRow zur Erken-
nung von Pflanzreihen und DeepStem zur Erkennung der Stammansätze einzelner Pflanzen
innerhalb von Pflanzreihen. Ein zentraler Schwerpunkt dieser Forschungsarbeit liegt auf
der Entwicklung von Trainingsdatensätzen für die DeepRow- und DeepStem-Netzwerke.
Konkret wird untersucht, ob die Leistung dieser Netzwerke durch die Ergänzung von Trai-
ningsdatensätzen, die aus realen Aufnahmen von Maisfeldern bestehen, mit synthetisch
erzeugten Bildern verbessert werden kann. Dabei wurden verschiedene Varianten von
Datensätzen mit Farmlandbildern erstellt, einschließlich solcher, die zu 100% aus realen
Bildern, zu 100% aus synthetischen Bildern oder aus gemischten Datensätzen bestehen.
Die realen Bilder wurden manuell unter Verwendung des Annotationstools LabelImage
erstellt, während zur automatisierten Erzeugung und Annotation der synthetischen Bilder
ein Modifikationstool des Computerspiels Farming Simulator 22 verwendet wurde.
Diese Studie zielt darauf ab, die Wirksamkeit synthetischer Farmlandbilder zur Steigerung
der Leistung der DeepRow- und DeepStem-Modelle zu untersuchen. Darüber hinaus
untersucht ein Teil der Studie die Auswirkungen von verschiedenen virtuellen Pflanzen-
und Bodentexturen bei der Generierung synthetischer Bilder.

Die Ergebnisse für DeepRow zeigen, dass die Ergänzung von realen Datensätzen mit
synthetischen Bildern die Leistung positiv beeinflusst. Darüber hinaus trägt der gewählte
Ansatz der Textur-Editierung positiv zur Genauigkeit der Pflanzreihen-Erkennung bei.
Konkret führte ein Datensatz, der aus 20% realen Bildern und 80% textureditierten
synthetischen Bildern bestand, zu einer Verbesserung von 9,06% bei den Metriken
Accuracy und 6,4% bei IoU, im Vergleich zu einem Datensatz, der ausschließlich aus
realen Farmlandbildern bestand.

Im Gegensatz dazu zeigte die Leistung der DeepStem-Modelle einen negativen Trend,
wenn synthetische Bilder in den Trainingsdatensatz aufgenommen wurden. Darüber
hinaus neigte der präsentierte Ansatz der Textur-Editierung dazu, die Leistungsmetriken
für DeepStem-Modelle zu reduzieren.
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Abstract

This work introduces two deep learning-based methods: DeepRow for the detection of crop
rows and DeepStem for identifying the stem bases of individual plants within crop rows. A
central focus of this research lies in the development of training datasets for the DeepRow
and DeepStem networks. Specifically, we investigate whether the performance of these
networks can be enhanced by supplementing training datasets consisting of real field
images with synthetically generated images. Various variants of farmland image datasets
were created, including those consisting of 100% real images, 100% synthetic images,
and mixed datasets. Real images were manually annotated using the LabelImage
annotation tool, while a modification tool from the computer game Farming Simulator
22 was employed for the automated generation and annotation of synthetic images. This
study aims to examine the effectiveness of synthetic farmland images in improving the
performance of the DeepRow and DeepStem models. Additionally, a part of the study
explores the effects of different virtual plant and ground textures in the generation of
synthetic images.

Regarding DeepRow, the results demonstrate that augmenting real datasets with synthetic
images positively influences performance. Furthermore, the chosen approach of texture
editing contributes positively to crop row detection accuracy. Specifically, a dataset
consisting of 20% real images and 80% texture-edited synthetic images yielded a 9.06%
improvement in Accuracy and a 6.4% improvement in IoU compared to a dataset
consisting solely of real farmland images.

In contrast, the performance of DeepStem models exhibited a negative trend when
synthetic images were added to the training set. Additionally, the proposed approach of
texture editing tended to reduce performance metrics for DeepStem models.
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CHAPTER 1
Introduction

In order to increase agricultural yields, farmers aim for low weed density on their fields.
A cheap and convenient way of achieving this is chemical weed control, i.e. the use
of herbicides. However, several studies in the past two decades revealed a significant
negative impact of herbicides and other types of pesticides on climate resilience [LBG+16],
biodiversity [PFLCO+21] and especially the abundance of pollinators [MHW+20] in
ecosystems around the world. Further, the use of herbicides in high quantities in
agriculture for food production has a negative impact on human health [BPSG04].

In 2020 the European Commission approved a set of policy initiatives, referred to as
European Green Deal [EUD22], with the aim to make Europe a net-zero emitter of
greenhouse gases by 2050. One of these initiatives is the reduction of use and risk of
chemical pesticides by 50% by 2030.

Due to the reasons mentioned above and the growing herbicide-resistance of weed [Pie10],
the demand for organic food production is increasing, which makes it necessary to find
and use alternatives to chemical weed control. One alternative approach for row crop is a
process called hoeing, where metal tools are pulled through farmland in order to remove
weed mechanically. One of the big challenges for applications like these is to make sure
that weed gets removed efficiently while the crop stays unharmed.

Figure 1.1 shows a hoeing machine with camera control on a field. The metal tools,
being pulled through the field, are mounted on a frame with a fixed spacing in between
them. The camera, which is mounted on top of the device, is part of a computer vision
system which processes farmland images in real-time in order to gather information on
the crop row alignment. Further, this information can be used to automatically adjust
the tool-frame’s linear offset normal to the driving direction of the tractor.

Up to a certain level of weed coverage and variance in crop height, state-of-the-art systems,
as shown in Figure 1.1, achieve significantly higher efficiency while enabling higher tractor
speeds compared to hoeing approaches with manual tool-frame offset adjustment. Stem
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1. Introduction

Figure 1.1: Maize hoeing with camera control. (Source: https://www.einboeck.at,
accessed on 12.10.2022)

base detection enables not only precise row guidance but also in-row weeding. With
in-row weeding, tools are mechanically moved between individual plants within a row,
allowing for even less weed coverage.

Under sub-optimal conditions however, there is still room for improvement for systems
like these when it comes to detecting crop rows. The goal of this thesis is to utilize
convolutional neural networks (CNNs) for stem base detection of row crop plants in order
to overcome these limitations.

Figure 1.2 shows examples of maize plants at different growth stages and different
intensities of weed coverage. The goal of this work is to detect the stem bases of maize
plants as shown in Figure 1.3, which shows the visualization of ground truth bounding
boxes for object detection.

1.1 Challenge
As mentioned above, state-of-the-art computer vision systems have problems detecting
crop rows correctly under sub-optimal conditions. Examples for sub-optimal conditions
in this case are the following:

a) high weed-pressure,

b) high variance in crop height,

c) similar height of crop and weed,

2
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1.1. Challenge

(a) Plans of age < 25 days with
low weed coverage.

(b) Plants of age < 25 days and
moderate weed coverage.

(c) Plants of age > 25 days and
high in-row weed coverage.

(d) Plants of age > 25 days and
low weed coverage.

Figure 1.2: Maize plants on a field at different growth stages and different levels of weed
coverage.

d) varying light conditions,

e) outliers in a crop row,

f) curved crop rows or

g) bad image quality (e.g. dusty conditions during image acquisition).

One goal of this thesis is to investigate deep learning methods to detect stem bases of
row crop plants with the goal to enable higher accuracy in crop row detection and to
tackle the limitations mentioned above.

A pain point of using CNNs in computer vision is the need for large labeled datasets.
Generating these datasets usually takes a lot of time, since every image of the set has to
be manually labeled. Thanks to continuous progress in computer graphics, there is a
growing trend to generate datasets synthetically from simulations [SHE+21] or computer
games[SLS16], which is done in this work in order to overcome the limitations mentioned
above.

3



1. Introduction

Figure 1.3: Ground truth visualization of object detection for maize plant stem bases.
Bounding boxes are shown in red.

1.2 Contributions
The goal of this work is to overcome the mentioned limitations of CNN-based methods
for crop row detection by using synthetically generated datasets in the training process.
More specifically, a state-of-the-art lane detection based (LDB) method - as imple-
mented in the PytorchAutoDrive framework[FGT+22] - as well as the PointRend
framework[KWHG19] for semantic segmentation are utilized in this work. LDB methods
(i.e. the detection of rows instead of individual plants) do not support the idea of in-row
weeding, but nevertheless, the effect of using synthetic images in the training process
shall be evaluated in this work. Further, the YOLO [RDGF15] framework is used to
evaluate the presented approach on object detection methods. PointRend and YOLO are
used for detecting individual stem bases whereas the mentioned LDB method aims to
detect crop rows.

The computer game Farming Simulator 221 comes with a tool, called Giants Editor,
to create customized maps that can be used by the players during the game. These maps
are virtual worlds where players can grow crops and perform a broad variety of other
farming tasks virtually. For this work, Giants Editor and it’s LUA scripting interface
are used to autonomously render farmland scenes showing row crop cultures and weed
plants, create screenshots of the virtual scenes and generate annotation masks, which
can be used for training neural networks.

The main software components needed by the game engine to render objects are described
in so called i3D files, which either directly contain or reference to other files that serve

1Farming Simulator 22: https://www.farming-simulator.com (accessed on May 20, 2023)
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1.3. Results preview

information about shape, dynamics and texture of the virtual object. In order to improve
the performance of this approach, the textures of the virtual plants and farmland ground
are edited according to information from real farmland imagery so that more realistic
virtual scenes can be created.

In order to compare the performance of the implementations of this work to the baseline
implementation [RNR22], real-time experiments on real farmland images are carried out.
The implementations for stem base and crop row detection are evaluated on a dataset
created from real farmland images.

The contributions in this work focus on CNN-based approaches for stem base detection
of row crop plants and the capability of synthetic datasets to improve performance for
the task of crop row and stem base detection. Additionally, investigations also focus
on the effects of virtual texture editing when generating synthetic datasets. As in the
work by Riegler-Nurscher and Rupp [RNR22], LDB methods are referred to as DeepRow,
whereas methods for individual stem base detection are called DeepStem. Each CNN
model used in this work is trained on different datasets consisting of either 100% real
images, 100% synthetic images or mixed variants. Depending on the type of dataset
the models are trained on, the methods are referred to as Real-, Synthetic- and Mixed-
DeepRow or DeepStem respectively.

1.3 Results preview
Results in this work show that the performance of LDB models for crop row detection
can be improved by augmenting datasets consisting of real farmland images only with
farmland images from synthetic datasets. Furthermore, the results in this thesis show
that increasing the variance in synthetic datasets by editing the textures of virtual maize
plants and virtual farmland ground increases performance even further. More specifically,
it is shown that for Mixed-DeepRow with a dataset consisting of 20% real images and
80% texture-edited synthetic images, the metrics Accuracy and IoU increase by 9.06%
and 6.4% respectively, compared to Real-DeepRow.

Additional results in this thesis demonstrate that it is possible to use PointRend and
YOLO networks for detecting stem bases of maize plants in crop rows and distinguishing
maize plants from weeds on real farmland. However, in contrast to DeepRow, the
performance of DeepStem tends to decrease with the presented approach of synthetic
dataset augmentation.

1.4 Thesis outline
This thesis is divided into the chapters Background 2, Dataset Generation 3, Evaluation
and Results 4 and Conclusion 5. Chapter 2 summarizes theoretical background relevant
in the context of this work, as well as relevant literature. In Chapter 3 the process of
generating real and synthetic datasets is described. Details on the selection process of

5
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CNN architectures used in this work in addition to results and CNN inference examples
are given in Chapter 4. Finally, Chapter 5 summarizes results and provides an outlook
for possible future work.
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CHAPTER 2
Background

The following sections give details on Mechanical Weeding, which is of practical relevance
in the context of this thesis, theoretical background information on Deep Learning and
the computer game Farming Simulator 22 together with the tool Giants Editor,
which will be used for synthetic dataset generation. The last section in this chapter
summarizes the results of relevant academic work in the form of a literature review.

2.1 Mechanical Weeding
Mechanical weeding is as an alternative to chemical weed treatment, i.e. the use of
herbicides. Due to the growing resistance of weed against herbicides [Pie10] and the
negative impact of herbicides on human health and the environment, as mentioned in
Chapter 1, this alternative becomes more and more relevant in practice, especially in the
EU.

Conventional methods for mechanical weeding of row crops often relies on manual
adjustment of the weeding tools. On the other hand, modern applications include
camera guided hoeing machines as shown in Figure 1.1, but also robots like the so-
called Farmdroid1, which utilizes Real-Time Kinematics (RTK) data to remember plant
positions from the seeding procedure and uses metal tools to mechanically remove weed
plants. Another robot called Laserweeder2 uses camera based machine learning techniques
to identify weed plants and removes them using high-powered lasers.

The deep learning approach presented in this thesis could be used to design applications
like the ones mentioned above. Further, existing applications like Farmdroid could be
improved by fusing RTK data with the real-time information about crop coordinates
inferred by the deep learning algorithm.

1https://farmdroid.dk, accessed on 03.08.2023
2https://carbonrobotics.com, accessed on 03.08.2023
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2. Background

Figure 2.1: Subfields of Artificial Intelligence.

2.2 Deep Learning
Traditional image processing techniques were employed to segment regions of interest
based on color, texture, or edge information. However, these methods often struggled with
complex scenes and fine-grained details due to limited feature representations. Due to
rapidly increasing performance and falling costs in computing power, artificial intelligence
became more and more popular in various fields and especially in image analysis.

As shown in Figure 2.1, deep learning is a subfield of machine learning, which in turn
is a subfield of artificial intelligence. It is based on deep CNNs, where the term deep
originates from the fact that models of this class consist of many convolutional layers.
These deep CNNs are usually trained on a vast amount of data. Two of the most common
applications of deep learning include object detection and semantic segmentation. Both
terms are introduced in the following subsections.

2.2.1 Object Detection
Object detection is a task in computer vision that involves identifying and localizing
objects of interest within an image. It is the task of assigning class labels to objects but
also provides bounding boxes to outline their locations. Figure 2.2 shows an example of
a typical object detection problem.

Early object detection approaches were primarily based on handcrafted features and
sliding window techniques. These methods, such as Histogram of Oriented Gradients

8



2.2. Deep Learning

Figure 2.2: Example for Object Detection. (Source: https://towardsdatascience.
com, accessed on 04.08.2023)

by Dalal and Triggs [DT05] were limited by the need for shallow feature representations
and high computational costs.

State-of-the-Art Techniques

The introduction of Region-based Convolutional Neural Networks (R-CNN) by Girshick
et al. [GDDM13], marked a breakthrough in object detection. R-CNN and its variants,
such as Fast R-CNN and Faster R-CNN, brought end-to-end trainable networks that
combined region proposals and object classification.

You Only Look Once (YOLO) by Redmon et al. [RDGF15] is another pioneering
approach in object detection. YOLO treats object detection as a regression problem,
directly predicting class probabilities and bounding box coordinates in one pass through
the network, i.e. one evaluation per image. This real-time detection technique gained
popularity due to its simplicity and high inference speed.

2.2.2 Semantic Segmentation
Semantic segmentation is another fundamental task in computer vision that aims to
assign a semantic label to each pixel in an image. It plays an important role in scene
understanding, enabling machines to perceive and interpret visual information at a pixel
level.

In earlier days of computer vision, semantic segmentation was a set of traditional image
processing techniques to segment regions of interest based on color, texture, or edge

9

https://towardsdatascience.com
https://towardsdatascience.com


2. Background

Figure 2.3: Example for Semantic Segmentation, (Source: https://www.
superannotate.com, accessed on 04.08.2023)

information. However, these methods often struggled with complex scenes and fine-grained
details due to limited feature representations.

In recent years, the introduction of deep learning revolutionized semantic segmentation.
Deep learning paved the way for end-to-end trainable models capable of learning hier-
archical features from image data. This breakthrough empowered researchers to create
more sophisticated and accurate segmentation networks.

State-of-the-Art Techniques

A state-of-the-art approach in semantic segmentation is a method called Fully Convolu-
tional Networks (FCNs), which was introduced by Long et al. [LSD15]. FCNs employ
deconvolution (also referred to as backwards convolution) to upsample feature maps and
generate pixel-wise predictions. The introduction of skip connections and residual blocks
further enhanced the performance and reduced the semantic gap between feature maps
of different resolutions.

Following FCNs, various so-called encoder-decoder architectures gained popularity. In
general, the encoder part of such a model is used to extract features and put them into
feature maps at different scales. In order to end up with a pixel-wise representation
with the same dimension as the input image the decoder network uses deconvolution
to upsample the feature map representation. Another encoder-decoder model, called
U-Net (Ronneberger et al. [RFB15]), improved performance and reduced training time

10
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2.2. Deep Learning

by introducing skip connections between the encoder and decoder to combine low-level
and high-level features, achieving precise boundaries in the segmentation.

Yet another significant invention to focus on multi-scale features is called atrous convolu-
tions, which was introduced by Google researchers in the so-called DeepLab model series.
The first version of this series DeepLabv1 was introduced by Chen et al. [CPK+15]. In
contrast to standard convolution, atrous convolution uses a kernel with strides inside the
kernel window to capture multi-scale contextual information to achieve higher accuracy.
The second version DeepLabv2 [CPK+16] incorporated the idea of Spatial Pyramid Pooling
and combined it with the concept of atrous convolution. This basically means that atrous
convolution is used to put features from different scales (by using different kernel window
strides) in a feature map of a fixed size, which has proven to make feature recognition even
more scale-invariant. To incorporate global context information DeepLabv3 [CPK+18]
adds a separate channel of global average pooling on the last feature map of the model’s
backbone.

2.2.3 Metrics in Image Analysis
This subsection gives an introduction to metrics used to evaluate the performance of
object detection and semantic segmentation applications. The basis of every metric are
so-called ground-truth labels, which indicate the actual class and position of instances of
the objects of interest. In object detection this is done using bounding boxes, while for
semantic segmentation pixel-wise annotation are used for labelling.

A very common measure is Intersection over Union (IoU), which is illustrated in Figure
2.4. In the context of object detection one of the squares would correspond to the model’s
prediction and the other one to a ground truth label. For semantic segmentation the same
principle is used, but with free form pixel-wise annotations instead of fixed geometric
shapes like squares or rectangles. IoU values are usually provided in the range [0, 1],
where a value of 0 corresponds to non-overlapping predictions and ground truth labels
and 1 indicates exact overlap.

Object Detection Metrics

In the context of object detection, the IoU metric allows - together with an IoU-threshold
— - the introduction of following definitions:

• True Positive (TP): IoU Ø — with a ground truth label,

• False Positive (FP): IoU < — for all ground truth labels.

Further, a False Negative (FN) is defined as a ground truth label that has no overlap
with a prediction of IoU Ø —. Hence, the threshold — defines at which degree of overlap
between predicted bounding box and ground truth a prediction is classified as TP, FP or
FN.

11



2. Background

Figure 2.4: Calculation of Intersection over Union, (Source: https://www.
superannotate.com, accessed on 04.08.2023)

In order to determine which object class is shown in a predicted bounding box, each of
those boxes calculates a so-called confidence score for each object class, which provides a
measure for the likelihood that a certain class is present in the considered bounding box.
The object class with the highest confidence score gets select to determine the class of
the predicted object. In order to avoid predictions with low confidence scores another
threshold is introduced, the confidence-threshold. If the selected class for a predicted
bounding box has a confidence score lower than the confidence-threshold, the prediction
(i.e. the bounding box) is discarded.

TP, FP and FN allow the definition of two more common measures called Precision and
Recall. Precision is defined by the following formula

Precision = TP

TP + FP
, (2.1)

whereas Recall is defined as
Recall = TP

TP + FN
. (2.2)

In other words, precision is the ratio of correctly predicted positive instances to the total
predicted positive instances. It indicates the accuracy of positive predictions. On the
other hand, recall is the ratio of correctly predicted positive instances to the total actual
positive instances. It indicates the ability of the model to capture all relevant instances.

The metrics of precision and recall allow the definition of the so-called Precision-Recall
Curve (P-R curve). P-R curves give insight on the trade-off between precision and recall,
an example for a single object class is shown in Figure 2.5. The curve is plotted by varying
the confidence-threshold. This finally allows the definition of the Average Precision (AP)
metric, which is a value in the interval [0, 1] and equals the area under the P-R curve.
Another metric is called Mean Average Precision (mAP), which equals the mean value of
all AP values across object classes. However, since only one object class is considered in
this work, results in Chapter 4 will only pertain the AP metric.

12
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2.2. Deep Learning

Figure 2.5: Example of a Precision-Recall-Curve for a single object class. (Source:
https://github.com/ultralytics, accessed on 18.08.2023)

Semantic Segmentation Metrics

Two common metrics in the context of semantic segmentation are Accuracy and the
so-called F1 score. In order to define these metrics, the following pixel-based definitions
are necessary. In semantic segmentation a pixel is classified as

• True Positive (TP), if it is correctly classified as part of the class,

• False Positive (FP), if it is incorrectly classified as part of the class,

• True Negative (TN), if it is correctly classified as not part of the class or

• False Negative (FN), if it is incorrectly classified as not part of the class.

Based on the definitions above Accuracy is defined as

Accuracy = TP + TN

TP + FP + TN + FN
. (2.3)

The equations for Precision (2.1) and Recall (2.2) are reused in order to define the F1
score as follows:

F1 = 2 · (Precision · Recall)
Precision + Recall

. (2.4)
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2. Background

Figure 2.6: Synthetic image of a maize field from Farming Simulator 22

2.2.4 Synthetic Datasets
As mentioned above, the basis of every metric in image analysis are ground truth labels.
Generating ground truth label masks is often a manual and time consuming task. In
many cases human experts have to annotate objects of interest by hand.

In this thesis, datasets consisting of synthetic images from the computer game Farming
Simulator 22. More specifically, the tool Giants Editor, provided by the game
developers Giants Software is used to automate the process of taking scenes from
virtual farmlands and extract stem base coordinates of maize plants from the game
engine. Further, the extracted coordinates are used to generate annotation masks in
an automated way. Figure 2.6 shows an example of screenshot taken from Farming
Simulator 22.

Besides the obvious benefit of saving time, this process also has the advantage of the
ability to parameterize the virtual environment in the simulator. This ability ranges from
deciding on types, positioning and frequency of weeds in the field to lighting conditions
by changing the suns position and other changes of physical conditions.

2.3 Farming Simulator
Farming Simulator 22 is a computer game where players take on the role of a farmer
and experience various aspects of agricultural life. The game aims to provide a realistic
farming experience, allowing players to manage a farm, cultivate crops and use a wide
range of farming machinery and equipment.

14
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Figure 2.7: Screenshot Giants Editor

The tool Giants Editor is usually used by gamers to create their own virtual maps for
the game. For this thesis it is used to automate the screenshot and labeling process. The
generated datasets are used to train the deep learning models discussed in this thesis
with synthetic images only or in addition to real farmland images.

2.3.1 Giants Editor
Figure 2.7 shows a screenshot of Giants Editor. It provides the user with a graphical
interface called the Scene Editor which can be used to arrange objects on the 3D map per
drag and various other windows to interact with the virtual environment, also referred to
as the Scene.

In the course of this thesis the most relevant way of interacting with the scene is the
LUA scripting interface. LUA scripts are utilized to automate the random arrangement
of maize and weed plants, as well as the creation of screenshots at different views of the
maize field. In addition, this interface is used to store information about the virtual maize
plants’ positions, which in turn is used in a post-processing step to create annotation
masks for training the deep learning models.

2.4 Literature Review
This section serves as an overview for relevant literature on crop row detection and
stem base or plant position estimation respectively. In the initial literature review a
significantly higher number of scientific articles on crop row detection than on stem

15



2. Background

base detection was found. This is the reason why there shall be an implementation
for crop row detection in the course of this thesis, since it enables better comparison
to existing approaches. Further, the lack of academic work in the area of stem base
detection additionally yields the need for research in this area.
Zhang et al. [ZLZ+18] introduce and apply a new vegetation index to farmland RGB
images, followed by a two-staged thresholding process in order to segment maize, weed
and background. From this segmentation a binary image is obtained with all the pixels
classified as maize. After applying a dilation process to fill gaps between maize pixels
in the binary image, feature points (i.e. maize plant positions) are extracted and the
number of crop rows is determined via two separate processes, each based on the vertical
projection method [JKDC08]. The last step of the proposed method, the detection of crop
rows, aims to find feature points belonging to the same crop row by clustering them based
on distance and angle constraints between the feature points. In order to refine the found
point sets the authors use the Floyd algorithm [Flo62] to find the shortest path from the
bottom to the top of the image for each of the sets. Finally, the least squares method is
applied on the final point sets to end up with straight-line equations representing the
detected crop rows. The proposed method shows outstanding performance under high
weed-pressure conditions and superior performance in direct comparison with the Hough
Transform method [Hou62]. The angle error between detected and ground truth crop
rows was less than 0.5°.
In [BHC18] Bah et al. use farmland images made from an unmanned aerial vehicle (UAV)
to detect crop rows in order to detect inter-row weeds. The images of detected weeds
are used to train CNNs, which can then be used to detect weeds on other fields. Like in
[ZLZ+18] the authors of this method apply a vegetation index on the RGB data as a
pre-processing step in order to segment plants and background (i.e. soil, shadows and
stones). The pixels classified as plants are transformed to binary images. The binary
images are then skeletonized before applying the Hough Transform method in order to
detect crop rows.
Haug et al. [HBMO14] apply sliding window feature extraction followed by non-maximum
suppression on multi-spectral image data in order to obtain a probability map for plant
stems in the processed image. Their implementation aims to detect both, use plant and
weed stems. The described sliding window approach calculates feature vectors, consisting
of statistical and geometrical features, from image patches which show biomass in their
center. The extracted feature vectors are passed to a Random Forest classifier to gather
stem probabilities for each patch. Their implementation was tested and evaluated with
images from a carrot farm, which resulted in an stem detection rate of 80.4% with a
mean position error of 1.88mm.
In [KJ12] Kiani et al. implement a crop detection and positioning method based on an
artificial neural network (ANN) for a mechanical weeding application. The authors apply
a vegetation index on digital camera images to segment plants and background, like in
[ZLZ+18] and [BHC18]. The dataset for training consists of 180 images from which seven
different shape features of plants have been extracted. With the help of discriminant

16



2.4. Literature Review

analysis the number of features needed for crop and weed classification is reduced from
seven to four. For the classification itself an ANN is trained to distinguish between
crop and weed. The classified crop pixels are then used to calculate corresponding
centroids, which are finally used as an estimation of the crop’s stem position. The
system’s classification accuracy reached a detection rate of 98.9%. The proposed method
achieved crop position errors of less than 1.5 cm.

Fu et al. [FXLX14] introduce a method to detect stems of potted tomato plants based
on data acquired with the stereo vision system Kinect. The depth information is used
to segment the potted plant and it’s background. The background pixels are removed
from the corresponding 2D-RGB image and the remaining pixels are skeletonized after
transforming the RGB to a binary image. Finally, the Progressive Probabilistic Hough
Transform is applied to detect plant stems in the image. The outcomes of this algorithms
are used to extract textures of the plant’s stems from the original 2D-RGB images. These
textures are then used to generate virtual 3D models of tomato plants using OpenGL.
The plant models are generated based on the L-system [PL90] algorithm.
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CHAPTER 3
Dataset Generation

This chapter covers implementation details on the generation of datasets. Real dataset
generation is described in Section 3.1, whereas synthetic dataset generation is covered in
Section 3.2.

3.1 Real Dataset
In order to create accurate annotations for real farmland images for all deep learning
frameworks mentioned in Section 1.2, one has to distinguish three different types of
annotations. These three types are annotations for

• semantic segmentation,

• object detection and

• lane detection based methods.

The dataset containing real farmland images is referred to as Real Dataset (RD) in this
work.

3.1.1 Semantic Segmentation Annotations
In this work, semantic segmentation annotations differentiate two classes: maize and
background. The maize class denotes image coordinates corresponding to the emergence of
a maize plant from the ground. These coordinates are marked with filled circles. Figure 3.1
shows a visualization of such annotations. Note that this figure shows a visualization and
not a ready-to-use annotation mask. Annotation masks used by semantic segmentation
frameworks in this work use gray scale images. The background class has a gray scale
value of 0 whereas the maize class has a value of 1.
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Figure 3.1: Example visualization of a semantic segmentation annotation.

Figure 3.2: Screenshot of the LabelImage user interface.

The research institute Josephinum Research provides the tool LabelImage to create
semantic segmentation annotation masks. Figure 3.2 shows a screenshot of this program.
It provides tools to create circular, line and other types of annotations. For each image
annotated with LabelImage, the program automatically generates a gray scale mask
with the drawn annotations. In this thesis, this program is used to create annotation
masks for a set of 250 images real farmland images, also provided by Josephinum Research.

Naturally, the stem base of a maize plant appears bigger on the image, the closer it is to
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Figure 3.3: YOLO object detection format. (Source: https://docs.ultralytics.
com/, accessed on 17.08.2023)

the camera. Due to this fact, it makes sense to annotate stem bases closer to the camera
with bigger annotations. However, in order to save time while manually annotating real
farmland images with LabelImage, all stem bases are marked with the same pencil size.
In order to account for the varying size of stem bases, a python script is used which takes
the LabelImage gray scale annotation masks as input and generates edited annotation
masks with increased annotation radii. The python script enlarges the annotations to a
maximum radius of 18 pixels and a minimum radius of 8 pixels, where the radius is bigger
the closer the corresponding stem base is to the lower end of the image. A visualization
of the resulting annotation mask is shown in Figure 3.2.

3.1.2 Object Detection Annotations

In order to train a YOLO network with the stem base dataset in this work, rectangular
object detection annotations have to be provided for each stem base in an image. For the
network training each farmland image has to be provided together with txt annotation
file, where each line corresponds to a ground truth object, given its object class as well
as the corresponding origin, height and width of the rectangular object annotation. An
example from the YOLO documentation1 can be seen in Figure 3.3.

The gray scale semantic segmentation annotation masks with enlarged radii, as described
in the previous subsection, are the starting point for the object detection annotation
masks. In contrast to the semantic segmentation annotations there is no annotation for
the background class. This is the reason why there is only one class for object detection
in this work, namely the maize class. In order to convert the semantic segmentation

1YOLO annotation documentation: https://docs.ultralytics.com/datasets/detect/,
accessed on 17.08.2023
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Figure 3.4: Example visualization of an object detection annotation.

masks to the required YOLO format, a python script is utilized. This python script
uses an OpenCV function called connectedComponentsWithStats, which provides
information on the circular annotations’ origin and radius. The circle origin and radius of
each annotation is then used to calculate a corresponding rectangle (or more specifically,
a square) origin and side lengths. The calculation results for each circular annotation are
then saved to a txt file. Figure 3.4 shows a visualization of the YOLO annotations for
a real farmland image.

3.1.3 Lane Detection Based Annotations
Like the YOLO annotation format, the LDB methods used in this work, also utilize
txt annotation files. Lane detection annotations for the real farmland images are
generated using the line annotation mode in LabelImage. The program exports a txt
file where each line corresponds to a line annotation in the image. The line annotations
are represented by points, where each point has a x and a y coordinate. This is because
one can not only annotate straight lines, but also curves with LabelImage. One line
in the txt file consists of a sequence of x and y coordinates in interchangeable fashion,
where x coordinates are equidistant with 10 pixels. Figure 3.5 shows a visualization of
such an annotation including the coordinate frame used by LabelImage.

3.2 Synthetic Dataset
One major advantage of using synthetic datasets from computer games or simulations is
the ability to control the environment. With the help of Giants Editor one can render
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Figure 3.5: Example visualization of a LDB annotation.

various plants at any, position, scale and orientation. Additionally - although not utilized
in this work - one can also control environmental conditions, e.g. varying the position of
the sun to vary shadows in a scene or changing weather conditions. Since rendering the
farmland scene, image capturing and annotation generation are automated using scripts,
another important advantage is the speed of generating new datasets.

This work focuses on extending the RD (see Section 3.1) with synthetic datasets, where
the goal is to make the synthetic datasets look as similar to the real ones as possible.
In the course of this thesis two types of synthetic datasets are generated: one dataset
without and another one with texture editing. The former will be referred to as Synthetic
Dataset (SD), whereas the latter will be referred to as Synthetic Dataset Texture Editing
(SDTE). The Sections 3.2.1, 3.2.2 and 3.2.3 will focus on generating SD and Section 3.2.4
will cover additional implementation details to generate SDTE.

SD uses all plant models as provided by Farming Simulator 22 with a few exceptions:

• The red color channel of the maize and grass model textures are reduced from a
value of 255 (Figure 3.6a) to 110 (Figure 3.6b) in order to make the virtual plant
colors appear more realistic.

• Farming Simulator 22 does not provide maize models for plants of age Æ 25
days. Since a considerable amount of images in the RD shows maize plants in this
growth stage, a part of the existing model textures, the so-called alpha map, is
edited in a way so that it only shows the lower part of the maize model, which is
ought to imitate young maize plants. Figure 3.7 shows a comparison of the original
and the edited alpha map. After applying the edited alpha map on an existing
maize model, the resulting 3D model looks as shown in Figure 3.8b.
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(a) Maize model with
original colors.

(b) Maize model where
the red color channel is
reduced from 255 to 110.

Figure 3.6: A Farming Simulator 22 maize model with different texture colors.

(a) Original alpha map. (b) Edited alpha map for early maize
growth stage.

Figure 3.7: Alpha map editing of a Farming Simulator 22 maize model.
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(a) Model with original alpha
map.

(b) Model with edited alpha
map (Figure 3.7b) for maize
plants of age Æ 25 days.

Figure 3.8: A maize plant model with two different versions of alpha maps.

3.2.1 Rendering Virtual Environments

The main tool for this and the following subsections is Giants Editor and the LUA
scripting interface for the Giants Engine (i.e. the game engine). The starting point for
the automated rendering procedure in this work is an existing virtual map from Farming
Simulator 22. This map can be opened and edited in Giants Editor, which is shown
in Figure 2.7.

Objects in the virtual scene can be nested in so-called transform groups (TGs). These
objects can be anything one has a valid i3D model for. These models can be loaded
via the LUA scripting interface and inserted into TGs in form of so-called scenes. For
example, there is a TG for maize plant scenes and another one for Rumex plant scenes
(which is a type of weed plant).

In order to get started with rendering the virtual maize field, all TGs and scenes are
removed from an existing field on the map. This is done because each maize plant in the
field shall be rendered from scratch, so that it is easier to infer the maize plant positions,
which are needed to generate the SD annotations. As an additional manual step of
preparation, the ground texture is changed to the ground texture type planted, which
comes with all the other models and textures from Farming Simulator 22. Figure 3.9
shows a selection of ground texture types.
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(a) Sown. (b) Planted. (c) Seedbed.

(d) Cultivated. (e) Direct Sown. (f) Rolled Seedbed.

Figure 3.9: Farming Simulator 22 ground texture types.

Throughout the whole rendering procedure there are two random distributions used in
various steps of the process: the uniform distribution U(a), which generates a random
integer in the interval [1, a] and the normal distribution N(µ, ‡), which generates a
real random number according to a normal distribution with mean µ and standard
distribution ‡. However, the LUA scripting interface only provides a uniform random
function. Hence, the Marsaglia Polar Method [MB64] is used to model a normal random
function using the existing uniform random function.

The LUA scripts used in this work are either used to create TGs and render its contents
(this section) or to create screenshots together with a xml file to store maize plant
coordinates (Section 3.2.2).

The rendering procedure is a multi-step process, where each step has its own LUA script.
Finally, there is one top-level LUA script that runs all the other scripts to render each
aspect of the scene. The following subsections document each step of the process.

Maize Rendering

Farming Simulator 22 makes all 3D models (in form of i3D files) and textures available
to gamers, so that they can be used for creating custom maps in Giants Editor. Also
the map file itself is a i3D file. The game provides various models for maize and weed
plants. Usually all maize models are stored in one i3D file, where each model instance
has its own TG. The same holds for weed plant models.

There are two maize plant models provided by Farming Simulator 22 that will be
used for the rendering step, one of them is shown in Figure 3.8a. In addition to the
two original maize plants, two more are generated by applying edited alpha maps (like
the one shown in Figure 3.7b) to the original models, which results in models that are
used to imitate young maize plants of age Æ 25 days (see Figure 3.8b). In order to make
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(a) Dropout segments on real farmland. (b) Dropout segments on synthetic farmland.

Figure 3.10: Maize dropout segments due to sub optimal conditions on the farmland or
while seeding.

it easier to load maize model via the LUA scripting interface they are extracted into
separate i3D files.

The LUA script for actually rendering the maize plants has two modes: Young Maize
(YM) and Old Maize (OM). This mode is chosen manually. In YM mode, the two maize
models with edited alpha maps are used and in OM mode, the two original models are
used. These maize models will be referred to as YM1/YM2 and OM1/OM2 respectively.
In each case, the maize plants are rendered in a grid with fixed spacing. However, there
are multiple random rules applied to each maize plant on the field which are described in
Tables 3.2, 3.3 and 3.4.

The length and width of the field are defined in the x and z direction of the virtual 3D
map. Hence, the height is defined in the y coordinate. In the following, the nominal
coordinates of a virtual maize plant in the field are denoted as xm, ym and zm respectively.
The maize plants rotation with respect to the y axis is denoted as —m. Finally, the maize
plant’s scale in each coordinate is denoted as sxm , sym and szm respectively, where sym is
the plant height. The origin of the field is referred to as xFO

in x direction and as zFO
in

z direction. These and other variables are described in Table 3.1.

Figure 3.10a shows a common artefact on a real maize field. Due to sub optimal conditions
on the farmland or during the seeding procedure, maize fields shows dropout segments,
where plants are either in an earlier stage of development or missing completely.

In order to model these dropout segments, an approach utilizing fourth order polynomials
is used. As shown in Figure 3.11, the fourth order polynomial is used to scale the maize
plant heights within the dropout segment. In case a maize plant has ym < ymin it is not
rendered. The length of a dropout segment DSL is calculated as

DSL = max(DSLmin, N(µDSL, ‡DSL)), (3.1)
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Variable Description Value in OM Value in YM

µsym Maize plant scaling mean in y direction. 0.2 0.14
‡sym

Maize plant scaling standard deviation
in y direction.

0.05 0.035

dropm Simulating random dropout of individual
plants using uniform distribution. One in
dropm maize plants is not rendered.

15 15

ymin Minimum maize plant height. 0.1 -
µDSL Mean length of a maize dropout segment,

see Figure 3.10b.
1.5 1.5

‡DSL Standard deviation of maize dropout
segment length.

0.5 0.5

DSLmin Minimum dropout segment length. 0.3 0.3
µNDS Mean value for number of dropout segments. 18 18
‡NDS Standard deviation value for number

of maize dropout segments.
6 6

NDS Number of dropout segments on the field. See Table 3.2
xFO

Maize field origin in x direction. -71.87 -71.87
zFO

Maize field origin in z direction. 159.25 194.25
Δxmax Maize field length in x direction. 20 20
Δzmax Maize field width in z direction. 30 30
ΔxF Field grid spacing in x direction. 0.1 0.1
ΔzF Field grid spacing in z direction. 0.3 0.3
‡xzm Standard deviation for individual maize

stem base coordinates in x and z.
0.008 0.008

xm Maize stem base coordinate in x direction. See Table 3.2
ym Maize stem base coordinate in y direction. See Table 3.2
zm Maize stem base coordinate in z direction. See Table 3.2
—m Maize rotation around y axis. See Table 3.2
sxm Maize plant scaling in x direction. See Table 3.3 and Table 3.4
sym Maize plant scaling in y direction. See Table 3.2
szm Maize plant scaling in z direction. See Table 3.3 and Table 3.4

Table 3.1: Description of maize rendering variables.

28



3.2. Synthetic Dataset

Maize rendering rules for YM and OM

Render YMX/OMX, where X ≥ U(2)
xm = xFO

+ n · ΔxF + N(0, ‡xzm), ’n œ N, 0 Æ n Æ Δxmax
ΔxF

zm = zFO
+ n · ΔzF + N(0, ‡xzm), ’n œ N, 0 Æ n Æ Δzmax

ΔzF

ym = getTerrainHeight(xm, zm)

—m = U(360)°
sym = N(µsym , ‡sym)
NDS = N(µNDS , ‡NDS)

Table 3.2: General rendering rules for generating maize fields in Giants Editor.
Note: getTerrainHeight(x, z) is a giants engine function, which takes x and z
coordinates as input and returns the (virtual) terrain height at the given coordinates.

Maize rendering rules for OM only

Don’t render plant if sym < ymin

sxm = szm = sym + 0.25 if sym < µsym else sym + 0.3

Table 3.3: Rendering rules for generating maize fields in Giants Editor applied
specifically in OM mode.

Maize rendering rules for YM only

sxm = szm = sym + 0.175 if sym < µsym else sym + 0.21

Table 3.4: Random rules for rendering maize plants in Giants Editor applied specifically
in YM mode.

based on which the number of maize plants in a segment ”m is

”m =
7

DSL

ΔxF

8
+ 1. (3.2)

The parameters for the fourth order polynomial are then calculated based on the general
polynomial equation

y = ax4 + bx3 + cx2 + dx + e (3.3)

with b = c = d = 0. Finally, a can be determined by

a = y ≠ e

x4 (3.4)
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Figure 3.11: A fourth order polynomial (blue) is used to model maize dropout segments.
The plant height sym is scaled according to the polynomial. In addition to polynomial
height scaling, random scaling is added according to N(0, ‡sym). Maize plants are shown
in green. Maize plants with ym < ymin are not rendered.

where e = ymin, y = µsym and

x = ≠” · ΔxF

2 . (3.5)

In total, NDS dropout segments are rendered on the field. The starting point of an
individual dropout segment is identified by a maize plant index, i.e. the grid index of a
maize plant, which is the first plant scaled according to the fourth order polynomial. For
each segment the initial maize plant index (crop row index and maize plant index) is
determined using the uniform distribution function.

The following subsections cover the rendering procedure of various weed plants.

Clover Rendering

The first type of weed plants added to the virtual maize fields is clover. Figure 3.12
shows the i3D clover model used in Farming Simulator 22. This model is also used
for rendering clover in this work.

A work by Sommerville et al. [SSMM20] compares methods for spatial modelling of weed
plants on a field. One of them utilizes cellular automata (CA), which - in two dimensions
- can be thought of as a grid of cells, where each cell can be inactive (0) or active (1).
Each cell on the grid is randomly initialized as 0 or 1. After this, the CA approach
applies a dispersal algorithm in each simulation step. The pseudo code for the cellular
automaton algorithm used in this work is shown in Algorithm 3.1. Figure 3.13 shows an
example of results for cellular_automaton(30, 30, 5, 50).
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Algorithm 3.1: Cellular automaton algorithm (cellular_automaton) used for
spatial clover modelling.

Input: An integer width, an integer height, an integer min_iterations and an
integer min_active

Output: A matrix C
1 C Ω init(width, height, 0)
2 for x Ω 1 to width do
3 for z Ω 1 to height do
4 val Ω 0
5 u Ω uniform(0, 1) // random float between 0 and 1
6 if u < 0.45 then
7 val Ω 1
8 end
9 C[x, z] Ω val

10 end
11 end
12 i Ω 0
13 num_active_cells Ω Œ
14 while i < min_iterations or num_active_cells < min_active do
15 Ccopy Ω C
16 num_active_cells Ω 0
17 for x Ω 1 to width do
18 for z Ω 1 to height do
19 active_neighbours Ω count_active_neighbours(C, x, z)
20 if C[x, z] > 0 then
21 if active_neighbours < 2 or active_neighbours > 3 then
22 Ccopy[x, z] Ω 0
23 else
24 Ccopy[x, z] Ω 1
25 num_active_cells + +
26 end
27 else
28 if active_neighbours == 2 or active_neighbours == 3 then
29 Ccopy[x, z] Ω 1
30 num_active_cells + +
31 else
32 Ccopy[x, z] Ω 0
33 end
34 end
35 end
36 i + +
37 C Ω Ccopy

38 end
39 end
40 return C 31
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Figure 3.12: Farming Simulator 22’s clover model.

Figure 3.13: Example results for cellular_automaton(30, 30, 5, 50).

In order to model the spatial clover distributions for the synthetic datasets in this work,
the virtual maize field is divided into a grid of 500 x 336 cells. The spacial clover
distribution is then represented by clover_cells, which is generated by

clover_cells = cellular_automaton(500, 336). (3.6)

A clover plant is then planted at the center of each cell of the field, where the corresponding
element in clover_cells equals 1. In addition, random rendering rules are applied
according to Tables 3.5 and 3.6. Figure 3.14 shows the rendered clover plants on a virtual
field, distributed according to the CA approach.
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Figure 3.14: Clover distribution on the virtual field. Rendered clover plants are highlighted
in green.

Variable Description Value in OM Value in YM

µsc Clover plant scaling mean in x, y
and z direction.

0.12 0.06

‡sc Maize plant scaling standard deviation
in y direction.

0.03 0.015

xc Clover base coordinate in x direction. See Table 3.6
yc Clover base coordinate in y direction. See Table 3.6
zc Clover base coordinate in z direction. See Table 3.6
—c Clover rotation around y axis. See Table 3.6
sxc Clover plant scaling in x direction. See Table 3.6
syc Clover plant scaling in y direction. See Table 3.6
szc Clover plant scaling in z direction. See Table 3.6

Table 3.5: Description of clover rendering variables.
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Clover rendering rules for YM and OM

xc according to clover_cells

zc according to clover_cells

yc = getTerrainHeight(xc, zc)

—c = U(360)°
sxc = syc = szc = N(µsc , ‡sc)

Table 3.6: Rendering rules for rendering clover plants in Giants Editor.
Note: getTerrainHeight(x, z) is a giants engine function, which takes x and z
coordinates as input and returns the (virtual) terrain height at the given coordinates.

Figure 3.15: Farming Simulator 22’s rumex model.

Rumex Rendering

In this step of the rendering procedure, rumex plants are rendered as another type of
weed. Farming Simulator 22’s rumex i3D model is shown in Figure 3.15. As in the
case of clover rendering, there is an algorithm for modelling the spatial distribution of
rumex plants (see Algorithm 3.2). Variables for the rumex rendering sub-procedure are
defined in Table 3.7.

In order to determine the rumex plant coordinates, Algorithm 3.2 divides the ren-
dered maize field into sub-cells. The number of cells is based on a random number
num_rumex_plants = max(1, N(µnr , ‡nr)), which is also related to the number of
rumex plants planted on the field. The helper function plant_rumex in Algorithm 3.2
follows the rumex rendering rules defined in Table 3.8.
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Algorithm 3.2: Algorithm for spatial rumex modelling.
1 num_rumex_plants Ω max(1, N(µnr , ‡nr ))
2 sub_cell_side_length Ω 4

num_rumex_plants

3 x_plant Ω 0
4 z_plant Ω 0
5 while z_plant < Δzmax do
6 while x_plant < Δxmax do
7 plant_rumex(x_plant, z_plant)
8 x_plant Ω x_plant + sub_cell_side_length

9 end
10 z_plant Ω z_plant + sub_cell_side_length

11 end

Variable Description Value in OM Value in YM

µsr Rumex plant scaling mean in x, y
and z direction.

0.1 0.05

‡sr Rumex plant scaling standard deviation
in y direction.

0.05 0.025

µnr Clover plant scaling mean in x, y
and z direction.

8 8

‡nr Maize plant scaling standard deviation
in y direction.

3.2 3.2

xr Rumex base coordinate in x direction. See Table 3.8
yr Rumex base coordinate in y direction. See Table 3.8
zr Rumex base coordinate in z direction. See Table 3.8
—r Rumex rotation around y axis. See Table 3.8
sxr Rumex plant scaling in x direction. See Table 3.8
syr Rumex plant scaling in y direction. See Table 3.8
szr Rumex plant scaling in z direction. See Table 3.8

Table 3.7: Description of rumex rendering variables.
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3. Dataset Generation

Rumex rendering rules for YM and OM

xr according to x_plant in Algorithm 3.2
zr according to z_plant in Algorithm 3.2
yr = getTerrainHeight(xr, zr)

—r = U(360)°
sxr = syr = szr = N(µsr , ‡sr )

Table 3.8: Rendering rules for rendering rumex plants in Giants Editor.
Note: getTerrainHeight(x, z) is a giants engine function, which takes x and z
coordinates as input and returns the (virtual) terrain height at the given coordinates.

Grass Rendering

From a certain plant growth stage forward (age > 25 days), some maize fields show
segments of weed plants within crop rows. This effect usually shows up due to hoeing
in previous growth stages of the maize plants. An example for these segments on real
farmland is shown in Figure 3.18a. As in the case of previous subsections, this effect is
modelled on virtual farmland using random functions. However, since this phenomenon is
usually not observed for maize plants of age Æ 25 days, these segments are only rendered
in OM.
Farming Simulator 22 provides various grass models. Two of them are selected to
render the weed segments in this work. The first one shows pure grass (Figure 3.16a)
and the second one shows a mix of grass and clover (Figure 3.16b). To model the weed
segments, these grass models are rendered in random sections within the virtual crop
rows with a certain probability. Since clover plants are already modelled using the CA
approach (see previous subsection), the grass model containing clover plants is rendered
with a probability of 33.3% whereas the pure grass model is rendered with a probability
of 66.6%.
Variables used for the grass rendering process are defined in Table 3.9. Rendering rules
for these segments are defined (for OM only) in Table 3.10 and the text below.
The length of an individual grass segment GSL is calculated in the same way as the
dropout segment length. It is calculated in the form

GSL = max(GSLmin, N(µGSL, ‡GSL)), (3.7)

based on which the number of grass models in one segment ”g is

”g =
E

GSL

Δg

F
+ 1. (3.8)

On real farmland, there is either a high (local) density of grass segments or there are no
grass segments at all. Hence, the row index rGS of an individual virtual grass segments
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3.2. Synthetic Dataset

(a) Pure grass model. (b) Model with a mix of grass and clover.

Figure 3.16: Grass models provided by Farming Simulator 22.

Variable Description Value in OM

µsg Grass plant scaling mean in x, y and z direction. 0.2
‡sg Grass plant scaling standard deviation in y direction. 0.03
µrg Mean grass model rotation relative to y axis. 90°
‡rg Grass model rotation standard deviation relative to y axis. 5°

µGSL Mean length of a grass segment, see Figure 3.18b. 3.5
‡GSL Standard deviation of a grass segment length. 0.5

GSLmin Minimum grass segment length. 0.3
µNGS Mean value for number of grass segments. 48
‡NGS Standard deviation value for number of grass segments. 6

Δg Grass model spacing in x direction within a grass segment. 0.1
‡xzg Standard deviation for individual grass model coordinates in x and z. 0.02
NGS Number of grass segments on the field. See Table 3.10
xg Grass model coordinate in x direction. See Table 3.10
yg Grass model coordinate in y direction. See Table 3.10
zg Grass model coordinate in z direction. See Table 3.10
—g Grass model rotation around y axis. See Table 3.10
sxg Grass model scaling in x direction. See Table 3.10
syg Grass model scaling in y direction. See Table 3.10
szg Grass model scaling in z direction. See Table 3.10

Table 3.9: Description of grass rendering variables.
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3. Dataset Generation

Grass rendering rules for OM

xg according to (3.11)
zg = zFO

+ N(0, ‡xzg ) + rGS · ΔzF , where rGS is calculated as (3.9)
yg = getTerrainHeight(xg, zg)

—g = N(µrg , ‡rg )°
sxg = syg = szg = N(µsg , ‡sg )

Table 3.10: Rendering rules for rendering grass plants in segments in Giants Editor.
Note: getTerrainHeight(x, z) is a giants engine function, which takes x and z
coordinates as input and returns the (virtual) terrain height at the given coordinates.

is calculated according to
rGS = 29 + U(45), (3.9)

which means that rGS is drawn uniformly from the interval [30-74]. In this work, a virtual
field always has the same total number of crop rows, namely Δzmax

ΔzF
= 30

0.3 = 100.

After drawing rGS , the center of the respective grass segment cGS is calculated in the
form

cGS = xFO
+ U(ÂΔzmaxÊ · 10)

10 . (3.10)

The x coordinate of an individual grass model xg within that segment is determined by

xg = xFO
+ N(0, ‡xzg ) ≠ cg

2 + n · Δg, ’n œ N, 0 Æ n Æ ”g. (3.11)

However, a grass model is not rendered if xg < xFO
or xg > xFO

+ Δxmax, i.e. if xg is
outside the field’s boundaries in x direction.

Finally, there is one more rendering step for weed plants, which is not automated, i.e.
these plants are not re-rendered but instead stay in the same place, even when virtual
fields are re-generated.

This layer of weed plants consists of various weed plant models as provided by Farming
Simulator 22 and is used to further increase the variety of weed types and weed density.
It is rendered in the left half of the virtual field using Giants Editor’s Terrain Editing
tool (see Figure 3.17). This layer is only rendered in OM, since the rendered weed types
usually do not exist on maize fields with pant age < 25 days.

3.2.2 Screenshot Automation
When generating a new synthetic dataset, all rendering steps described so far are executed
sequentially in order to render a new virtual maize field either in OM or YM by one
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3.2. Synthetic Dataset

Figure 3.17: Statically rendered weed plants in order to increase weed plant diversity
and density in the left half of the virtual field. Used in OM only.

(a) Dropout segments on real farmland. (b) Dropout segments on synthetic farmland.

Figure 3.18: Concentrated grass segments within the crop row due to hoeing in previous
growth stages.

top-level LUA script. In addition to rendering maize plants, the respective LUA script
also stores the stem base coordinates of all rendered maize plants in two different variants.
There is one two-dimensional array - or table, as it is called in LUA context - for storing
the exact rendering coordinates xm, ym, zm (see Table 3.2) and another two-dimensional
array to store the maize plant coordinates without the noise influence as drawn from
N(0, ‡xzm). The noise-free version of the coordinates is referred to as xÕ

m, yÕ
m and zÕ

m.

The automated screenshot generation - as described in this section - is initiated by
executing a separate LUA script. This LUA script first sets the camera (also called view
port node) position and orientation to it’s initial values and then registers a so-called
update listener. An update listener is a function that is called periodically, in a giants
engine internal time interval dt. In Giants Editor the periodic execution of registered
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3. Dataset Generation

Figure 3.19: Play button in Giants Editor to start periodic execution of registered
update listener functions.

Figure 3.20: Camera movement paths (blue arrows) when generating a new dataset in
Giants Editor. The numbers next to the camera paths represent the order in which
the paths are followed. The green dot indicates the origin coordinates of a virtual maize
field xFO

and zFO
, whereas the red dot indicates the initial position of the camera node.

update listeners can be started by clicking the play button in the top left of the editor
window (see Figure 3.19).

This functionality is usually used for physical simulations. However, in this work it is
used to move the camera along certain paths. After moving the camera, the update
listener function creates a screenshot, projects all maize stem bases onto the camera’s
current 2D view plane and saves the projected screen coordinates of all currently visible
stem bases to a xml file, i.e. there is one xml file per screenshot. Figure 3.20 shows the
field’s origin (green dot), the initial camera position (red dot) and the camera movement
paths (blue arrows).

The coordinate projection from three to two dimensions is performed using the giants
engine’s built-in project function, which takes 3D world coordinates as an input and
outputs three projected coordinates xp

m, yp
m and zp

m. In the case of noise-free coordinates,
these projections are referred to as xpÕ

m, ypÕ
m and zpÕ

m. The projected coordinates xp
m and

yp
m correspond to the screen coordinates in x and y direction of the image, whereas

the coordinate zp
m provides depth information of a projected point, since it equals the
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3.2. Synthetic Dataset

Figure 3.21: Side view of the perspective projection used to transform 3D stem base
coordinates to 2D image plane coordinates. In addition to the screen coordinates xp

m and
yp

m, the projection also outputs a depth coordinate zp
m, which equals the distance of the

3D point to the image plane. The projected coordinates are normalized to the interval
[0, 1]. The normalization in zp

m is performed with respect to the near clipping plane
and the far clipping plane. (Source: http://learnwebgl.brown37.net, accessed
on 29.08.2023)

distance of the 3D point to the image plane.

Each projected coordinate is normalized to the interval [0, 1]. xp
m and yp

m are normalized
using the width and height of the screenshot and zp

m is normalized using the near and
far clipping plane (see Figure 3.21). Both clipping planes can be configured in Giants
Editor. In order to figure out, which stem bases are currently visible on the screen, the
following check is performed: 0 Æ sx, sy, sz Æ 1, i.e. a stem base is currently visible if
each projected coordinate is within the interval [0, 1].

3.2.3 Annotation Generation

As mentioned in previous subsections, annotations for SD and SDTE are generated
from Farming Simulator 22 screenshots and xml files containing projected screen
coordinates of visible maize plant stem bases. The xml stem base coordinates are stored
in an array-like manner, in order to group stem bases by crop rows. More specifically
there are two arrays, one storing the exact rendering coordinates xm, ym, zm and another
one storing the noise-free coordinates xÕ

m, yÕ
m, zÕ

m.

In a post-processing step a python script is used in order to generate semantic segmentation
and LDB annotations from the screenshots and xml files. The semantic segmentation
annotations are generated using xp

m, yp
m, zp

m, whereas the LDB annotations are generated
using xpÕ

m, ypÕ
m, zpÕ

m. In the former case, the projected depth coordinate zp
m is used to scale

the circular stem base annotations between radius values of 18 and 8 pixels. The smaller
zp

m, the bigger the annotation radius. In the latter case, a linear system of equations
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3. Dataset Generation

(a) Semantic segmentation annotation. (b) Lane based annotation.

Figure 3.22: Visualization of semantic segmentation and lane based annotations for
synthetic datasets.

is defined and numpy’s linear algebra toolbox is utilized to calculate the least squares
solution (using numpy.linalg.lstsq2). The linear system of equations is constructed
in the form

SWWWWWWU
xpÕ

m0 1
xpÕ

m1 1
xpÕ

m2 1
...

...
xpÕ

mn
1

TXXXXXXV
C
k
d

D
=

SWWWWWWU
ypÕ

m0
ypÕ

m1
ypÕ

m2...
ypÕ

mn

TXXXXXXV
where n is the number of coordinates belonging to the currently considered line. Per-
forming linear regression using numpy.linalg.lstsq and solving for the values k and
d gives the least squares solution for the slope k and the intercept d of the line, which
is used to generated the LDB annotations. Figure 3.22 shows a visualization of both
annotation types, semantic segmentation 3.22a and lane based 3.22b.

Finally, another python script is used to generate object detection annotations from
semantic segmentation annotations. As in the case of RD this is done using an OpenCV
function called connectedComponentsWithStats. Figure 3.23 shows an example
visualization for an object detection annotation for a synthetic image.

3.2.4 Texture Editing

Subsections 3.2.1, 3.2.2 and 3.2.3 covered the generation of SD. The SDTE dataset is
generated in the same way with the only difference that ground and maize plant textures
have been edited.

2numpy.linalg.lstsq: https://numpy.org/doc/stable/reference/generated/numpy.
linalg.lstsq.html, accessed on 29.08.23
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3.2. Synthetic Dataset

Figure 3.23: Visualization of an object detection annotation for synthetic datasets.

Figure 3.24: Different textures are manually applied to the field ground in a stacked
fashion as shown in this Figure. The used textures can be seen in Figure 3.9.

Ground Texture

For ground texture editing, six different textures are applied to the virtual field ground
in a stacked fashion as shown in Figure 3.24. The ground textures used in this case are
provided by Farming Simulator 22 and shown in Figure 3.9. Ground textures are
edited for both modes, OM and YM.

Maize Plant Texture

In order to increase the variety of maize plants on the virtual field, the three following
approaches are used.
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3. Dataset Generation

Figure 3.25: Cloud rendering filter in Photoshop used to generate color variations of
existing maize plant textures.

1. 2D maize textures, more specifically the diffuse maps projected onto the 3D model,
are edited using rendering filters in Photoshop3

2. The 3D models of maize plants are deformed using deformers in Maya4.

3. The UV map (which is the mapping of a 2D texture onto a 3D model) is edited in
Maya using the UV Editor.

Photoshop offers a feature called cloud rendering filters, which allows to generate a
random 2D pattern that can be used to apply different colors with varying and randomized
intensity on an existing image. In this work, this feature is used to apply different shades
of green onto existing maize plant textures in a seemingly natural way. Figure 3.25 shows
an example of a cloud rendering filter used to create color variations based on existing
diffuse maps from virtual maize plants.

Figure 3.26 shows a comparison of the original diffuse map of both original maize models
from Farming Simulator 22 and an edited version of it using cloud rendering filters,
where Figure 3.26a shows the original version and Figure 3.26b shows the edited version
with increased intensity for better comparison in this Figure. The texture variation shown
in Figure 3.26b uses an especially dark shade of green to imitate dirt on the stem base.
Nine different variations are generated this way, which - including the original diffuse
map - gives a total number of ten diffuse maps, where each of them contains textures of
two maize plants.

A variation of 3D models is created by editing the two original models in Maya. Figure
3.27 demonstrates how twist (Figure 3.27a) and wave deformers (Figure 3.27b) can be
used to vary the shape of the 3D models.

3Photoshop: https://www.adobe.com/products/photoshop.html, accessed on 30.8.23
4https://www.autodesk.de/products/maya, accessed on 30.8.23
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3.2. Synthetic Dataset

(a) Original diffuse map from Farming Simu-
lator 22.

(b) Diffuse map edited with cloud rendering
filters.

Figure 3.26: Comparison of the original diffuse map from Farming Simulator 22 and
an edited diffuse map using cloud rendering filters in Photoshop. (The color variation
shown in the right Figure is not used in this work. It’s variation has increased intensity
for better comparison in this Figure.)

(a) The twist deformer in
this sub-figure adds increas-
ing rotation to the 3D model
around the y axis from bot-
tom to top.

(b) The wave deformer in
this sub-figure deforms the
3D model according to a verti-
cal sine wave with adjustable
amplitude and frequency.

Figure 3.27: The two Maya deformers used in this work to generate variations of the
original 3D models from Farming Simulator 22.
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3. Dataset Generation

(a) 3D model with original UV map. (b) 3D model with edited UV map.

Figure 3.28: Maya’s UV editor used to create variations of the mapping from 2D textures
onto 3D models.

Another way of creating variations in the plant models is editing the so-called UV map (see
Figure 3.28). UV maps are a technique used to map 2D texture images onto the surfaces
of 3D models. By moving the vertices of a UV map one can change the appearance of
plant model, which is shown in Figure 3.28b.

Using the approaches described in Figures 3.27 and 3.28, four variations of the original 3D
models are generated. Including the two original 3D models from Farming Simulator
22 this gives six different models in total. Together with the ten different diffuse maps 36
different combinations of 3D models and plant textures are generated, which are used for
rendering maize fields in the SDTE dataset for the OM mode. In order to render SDTE
maize fields in YM mode, the edited alpha map shown in Figure 3.7b is applied to the 36
texture-edited models.
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CHAPTER 4
Evaluation and Results

As mentioned in Section 3.2 three different datasets are generated in this work: RD, SD
and SDTE. These three datasets are used to train three different deep learning models:

• PADL (LDB method[FGT+22]),

• PointRend[KWHG19] (semantic segmentation) and

• YOLOv8[RDGF15] (object detection).

4.1 Dataset Definitions
The RD dataset is generated as described in Section 3.1. It consists of 250 real farmland
images that show maize plants in different growth stages. Both synthetic datasets SD
and SDTE are generated as described in Section 3.2, where the former uses original
textures (as provided by Farming Simulator 22) and the latter uses textures edited
using Photoshop and Maya. Table 4.1 shows the numbers of the datasplit in train and
test data for RD, SD and SDTE. Figures 4.1, 4.2 and 4.3 shows example images for each
of the three datasets respectively.

Dataset Train Images Test Images

RD 200 50
SD 1706 426
SDTE 1706 426

Table 4.1: Datasplit in train and test data for RD, SD and SDTE.
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Figure 4.1: Example images from the RD dataset.

The datasets RD, SD and SDTE either contain real farmland images only or synthetic
farmland images only. In addition to those three datasets, six more datasets are generated
by mixing real and synthetic images:

• 20% real images from RD and 80% synthetic images from SD (called MD20r80s)

• 50% real images from RD and 50% synthetic images from SD (called MD50r50s)

• 80% real images from RD and 20% synthetic images from SD (called MD80r20s)

• 20% real images from RD and 80% synthetic images from SDTE (called MD20r80sTE)

• 50% real images from RD and 50% synthetic images from SDTE (called MD50r50sTE)

• 80% real images from RD and 20% synthetic images from SDTE (called MD80r20sTE)

Table 4.2 shows the split of the six mixed datasets into train and test images and also
separates these numbers by its original datasets RD, SD and SDTE.
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Figure 4.2: Example images from the SD dataset.

4.2 Study of Deep Learning Methods
This section summarizes the research that lead to choosing the CNN techniques used for
DeepRow and DeepStem in this work:

• a lane detection based model as implemented in the PytorchAutoDrive framework[FGT+22]
(referred to as PADL) for DeepRow,

• a semantic segmentation model called PointRend[KWHG19] for DeepStem and

• an object detection model called YOLOv8 [RDGF15] for DeepStem.

4.2.1 Lane Detection Based Method
Feng et al.[FGT+22] presented a novel approach for vision based lane detection in the con-
text of autonomous driving and created the open-source framework PytorchAutoDrive
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Figure 4.3: Example images from the SDTE dataset.

for lane detection based on their work. Riegler-Nurscher and Rupp[RNR22] examined
the capability of various semantic segmentation CNN architectures for crop row detection
utilizing PytorchAutoDrive. The baseline architectures used by Riegler-Nurscher
and Rupp use ResNet[HZRS16] as backbone and DeepLab for up-sampling. Their results
show that lane detection methods based on PytorchAutoDrive can successfully be
utilized for the task of crop row detection and that especially Spatial CNN [PSL+17] and
Recurrent Feature Shift Aggregator [ZFZ+20] modules on top of the baseline architecture
can improve detection accuracy. The PytorchAutoDrive architecture with ResNet18
backbone and DeepLabv2 as top-module is used as crop row detection approach in this
work and results shall be compared to [RNR22].

4.2.2 PointRend

PointRend was introduced by Kirillov et al.[KWHG19] in 2019. The PointRend CNN
module views semantic segmentation as a rendering problem and draws analogies to the
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Dataset
Train Images Test Images

RD SD SDTE RD SD SDTE

MD20r80s 200 800 0 50 200 0
MD50r50s 200 200 0 50 50 0
MD80r20s 200 50 0 50 13 0
MD20r80sTE 200 0 800 50 0 200
MD50r50sTE 200 0 200 50 0 50
MD80r20sTE 200 0 50 50 0 13

Table 4.2: Datasplit for the mixed datasets. In addition to the split in train and test
images, the image count is also split by it’s original dataset.

problem of over- and under-sampling in computer graphics. Instead of making predictions
for every pixel in the image, PointRend does so by selecting specific points in the image
and making predictions based on the information at those selected points. These selected
points are chosen in a way that adapts to the characteristics of the image. As shown by
the authors, the presented approach performs especially well when it comes to accurately
detecting object boundaries and masking fine-grained details in images (e.g. human
fingers). Since multiple stem bases of maize plants appear as small objects in the dataset
images of this work, the capability of PointRend to detect individual stem bases shall be
examined in this work.

4.2.3 YOLOv8

Since it’s initial publication by Redmon et al.[RDGF15] in 2015, YOLO has established
as a state-of-the art object detection framework with multiple versions since it’s inception.
The first version YOLOv1 introduced the concept of single-pass object detection. It
divides the image into a grid and predicted bounding boxes and class probabilities.
However, it has issues with small object detection and precise localization. Since YOLOv1
various improvements like anchor boxes[RF17], batch normalization, several architectural
changes (especially for the backbone part of the network), focal loss instead of cross-
entropy loss functions (which promises better detection for small object classes) and
spatial pyramid pooling[NB09] have been added to the framework, resulting in it’s latest
version YOLOv8, released by Ultralytics1.

YOLO is a single-shot object detection framework, which means that the processed
image is passed through the network only once. In contrast, two-shot architectures like
R-CNN[GDDM13] and it’s variants pass images through the network twice to refine
predictions. While single-shot techniques tend to be faster (in terms inference time),

1https://docs.ultralytics.com/, accessed on 05.09.2023
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CNN Model Number of Epochs

PADL 120
PointRend 120
YOLOv8 100

Table 4.3: Number of epoch for training PADL, PointRend and YOLOv8 models in this
work.

two-shot techniques tend to be more accurate. Given the context that this work focuses
on real-time application and due to the ease of use of YOLOv8, YOLO is chosen as the
object detection method for this thesis. Further, FE-YOLO (a variant of YOLOv3) has
successfully been used in a similar application to count maize seedlings on UAV imagery
as presented by Zhang et al.[ZFH+21].

4.3 Evaluation on Deep Learning Models
All nine datasets are used to train the three deep learning models mentioned above. The
metrics used to evaluate each approach are described in Section 2.2.3. The number of
epochs for training each CNN model type is chosen individually based on validation loss
convergence. These numbers are shown in Table 4.3.

4.3.1 Lane Detection Based Model
The PADL model is evaluated based on the metrics Accuracy and IoU. In case of this
model the ground truth segmentation mask consists of lines with a width of 16 pixels
annotating crop rows in the farmland scenes. Table 4.4 shows the results for PADL
evaluated on the generated datasets. Each line in the Table lists result for a model
that was trained on a specific dataset, where the column Primary Testset shows results
evaluated on the testset of the respective dataset and the column RD Testset shows
results of the same model but evaluated on the test images of the RD dataset.

The results in Table 4.4 show that mixed datasets perform best for the task of crop
row detection when evaluated on the RD testset. The model trained on the RD dataset
shows comparable performance on the RD testset, although the metrics are slightly lower
compared to the average mixed dataset. The metrics for the purely synthetic datasets SD
and SDTE are comparatively poor when compared to the rest of the generated datasets
when evaluated on RD. However, when evaluated on Primary Testset the synthetic
datasets perform best, which can be explained by the high number of images in the train-
and testset for SD and SDTE (see Table 4.1).

Another notable observation is that - among mixed datasets - the dataset MD20r80sTE
clearly outperforms the rest of the mixed datasets with an Accuracy of 64.74 and an
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Dataset Type Dataset Name
Primary Testset RD Testset
Accuracy IoU Accuracy IoU

Real RD 59.36 38.13 59.36 38.13

Synthetic
SD 78.58 54.13 8.66 7.53
SDTE 77.83 52.28 17.73 14.06

Mixed

MD20r80s 73.25 48.44 61.36 39.57
MD50r50s 67.47 42.94 61.18 39.01
MD80r20s 61.79 39.35 62.43 39.54
MD20r80sTE 71.82 46.12 64.74 40.57
MD50r50sTE 62.01 38.51 61.03 38.35
MD80r20sTE 59.56 37.40 61.70 38.69

Table 4.4: Results of the PADL model evaluated on the generated datasets. The column
Primary Testset contains results of the model evaluated on the respective test images of
the dataset and the column RD Testset shows results for the same model but evaluated
on the RD testset. Note: Values in this table are multiplied by 100.

IoU of 40.57. MD20r80sTE is a dataset containing 20% real images and 80% synthetic
images from SDTE. Additionally, when comparing the metrics of datasets without texture
editing, MD20r80s performs slightly better than MD50r50s and MD80r20s. Based on
this, it can be concluded that both, a high percentage in synthetic images and texture
editing contribute positively to the performance of the investigated LDB model, when it
comes to detecting crop rows on real farmland.

In this context, it should also be noted that there is an inconsistency when comparing
the metrics for MD50r50s, MD80r20s, MD50r50sTE and MD80r20sTE. MD80r20s and
MD80r20sTE (the mixed datasets with lowest percentage of synthetic images) show a
marginal increase in performance compared to MD50r50s and MD50r50sTE respectively,
when evaluated on RD. This means that - in that specific case - a higher percentage of
synthetic images slightly lowers the metrics, although the difference is marginal. However,
one might explain this inconsistency by the fact that the number of synthetic train
images in MD50r50s and MD50r50sTE (200) is only four times higher as compared
to MD80r20s and MD80r20sTE (50), whereas the number of synthetic train images is
sixteen times higher when comparing MD20r80s and MD20r80sTE (800) to MD80r20s
and MD80r20sTE (see Table 4.2). The synthetic images added to the mixed datasets
are picked randomly from SD and SDTE. Hence, the performance of models trained
on mixed datasets also depends on which specific synthetic images have been selected.
It should also be noted that approximately 1% of variation in metrics is due to the
random selection of images for each batch when training the network. Repeating these
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experiments with a higher number of synthetic images is necessary to investigate this
inconsistency in more detail.

The results shown in Table 4.4 can be compared to the results of the baseline implemen-
tation in the work by Riegler-Nurscher and Rupp [RNR22]. As in this work, the authors
use a CNN architecture with ResNet18 backend and a DeepLab network for up-sampling
as provided by the PytorchAutoDrive framework. The most performant variant on
real farmland images in this work achieves an Accuracy of 64.74 and IoU of 40.57. In
[RNR22] the respective reference model achieves an Accuracy of 66.83 and IoU of 44.07,
meaning the reference model outperforms the most performant PADL model in this work.
However, the discrepancy in performance can partially be explained by the larger dataset
used in [RNR22]. The dataset used by the authors consists of 3475 real farmland images
for training and 395 for testing.

Figure 4.4 shows example evaluations of PADL models trained on RD, SD and MD20r80sTE.
The intensity of the annotated lines indicates the certainty of the respective model. All
models shown in Figure 4.4 show passable results for the first example image (first row).
The image shown in the second row is seemingly the hardest example in terms of accurate
crop row detection. The model trained on RD does not detect crop rows in the right
half of that image. Interestingly, the SDTE model shows high confidence values and
seemingly accurate results for those crop rows. In contrast, the SDTE model clearly
shows the poorest performance for the example image in the third row.

4.3.2 PointRend
Table 4.5 shows results for the PointRend model. The metrics used to evaluate this
model are the F1 score and IoU. Like PADL, the PointRend model is trained on each of
the nine generated datasets and metrics are calculated on the testset of the respective
dataset and on the RD testset.

As in the case of the PADL model, the PointRend models trained on purely synthetic
datasets perform best on the testset of their respective datasets, but show the poorest
performance on the RD testset. Again, the former circumstance can be explained by the
high total image numbers of SD and SDTE, whereas the latter circumstance is attributed
to the fact that SD and SDTE do not contain real images, which means that the respective
CNNs are confronted with real farmland images for the first time at inference on RD.

The best performance is shown by PointRend models trained on RD. Models trained on
mixed datasets show a decrease in performance as the percentage of synthetic images
increases. With regard to texture editing it can be said that the performance tends to
decrease further when images from SDTE instead of SD are used. The only exception in
that context can be seen when comparing results for MD80r20s and MD80r20sTE, where
metrics only differ in the second decimal place.

Example evaluations of the PointRend model trained on RD, SDTE and MD20r80sTE
are shown in Figure 4.5. With regard to the results shown in the first row it can be
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Ground Truth RD SDTE MD20r80sTE

Figure 4.4: Evaluation examples of the PADL model trained on different datasets on
real farmland images. The first column shows the ground truth annotations, whereas
the following columns show results for training on RD, SDTE and MD20r80sTE. The
intensity of the annotated lines indicates the certainty of the model.

said that both, the RD and the MD20r80sTE model accurately detect some of the stem
bases, especially to the left and right of the central crop row. The models clearly have
difficulties detecting stem bases in the central row, since stems in that row are partially
covering each other. It should also be noted that the RD and MD20r80sTE results in the
last row of the Figure indicate that the models are capable of distinguishing young maize
plants from weeds. In general, the SDTE model seems over-confident and produces too
many cluttered annotations.

4.3.3 YOLOv8
As described in Section 2.2.3, the Average Precision (AP) metric is used for the evaluation
of YOLOv8 models. Table 4.6 shows AP values for the resulting models trained on each
of the generated datasets. The listed AP values are given for a confidence-threshold of
0.5.

Table 4.6 shows that the YOLOv8 model trained on RD shows the best performance
on the RD testset, followed by MD80r20sTE with a marginal difference in AP. As in
the case of PADL and PointRend results, the models trained on SD and SDTE clearly
show the highest metrics evaluated on their respective testset (Primary Testset), but the
poorest performance evaluated on the RD testset. Like the PointRend metrics (Table
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Dataset Type Dataset Name
Primary Testset RD Testset

F1 IoU F1 IoU

Real RD 50.30 33.60 50.30 33.60

Synthetic
SD 82.06 69.58 13.66 7.33
SDTE 79.55 66.03 17.40 9.53

Mixed

MD20r80s 75.52 60.66 39.49 24.61
MD50r50s 64.13 47.20 46.44 30.24
MD80r20s 56.71 39.58 48.38 31.91
MD20r80sTE 71.91 56.14 38.72 24.01
MD50r50sTE 62.98 45.97 45.04 29.07
MD80r20sTE 56.36 39.24 48.40 31.93

Table 4.5: PointRend results: The column Primary Testset contains results of the model
evaluated on the respective test images of the dataset and the column RD Testset shows
results for the same model but evaluated on the RD testset. Note: Values in this table
are multiplied by 100.

Dataset Type Dataset Name AP (Primary Testset) AP (RD Testset)

Real RD 31.9 31.9

Synthetic
SD 90.6 1.3
SDTE 87.5 1.1

Mixed

MD20r80s 80.1 28.7
MD50r50s 59.2 29.4
MD80r20s 44.8 29.8
MD20r80sTE 76.9 28.5
MD50r50sTE 58.7 26.9
MD80r20sTE 46.5 31.8

Table 4.6: YOLOv8 results: AP values at a confidence-threshold of 0.5. The column AP
(Primary Testset) contains results of the model evaluated on the respective test images
of the dataset and the column AP (RD Testset) shows results for the same model but
evaluated on the RD testset. Note: Values in this table are multiplied by 100.
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Ground Truth RD SDTE MD20r80sTE

Figure 4.5: Evaluation examples of the PointRend model trained on different datasets on
real farmland images. The first column shows the ground truth annotations, whereas the
following columns show results for training on RD, SDTE and MD20r80sTE.

4.5), the AP metric tends to decrease with increasing percentage of synthetic image.
Again, performance tends to decrease even more when synthetic images from SDTE
instead of SD are used. One exception in this context can be seen for the MD80r20sTE
model in the AP (RD Testset) column, where AP indicates comparable performance to
the RD model. This inconsistency might be explained by the low percentage (20%) of
synthetic images in MD80r20sTE. Hence, the results of this model highly depend on the
random selection of images from SDTE. However, in order to give a definite answer in
this context, further investigation is necessary.

Figure 4.6 shows example evaluations of YOLOv8 trained on RD, SDTE and MD20r80sTE.
As in the case of PointRend evaluations (Figure 4.5), results in the first row indicate that
the RD and MD20r80sTE models have difficulties accurately detecting stem bases in the
central row. Results in the second row show that all models have difficulties detecting
stem bases when they are covered by in-row weeds. The evaluations on the last example
image (last row) show that - like the PointRend models - YOLOv8 models are capable
of distinguishing young maize plants from weeds. At least for the third example image,
none of the given models confuses maize plants with weeds. This is especially worth
noting for the SDTE case, since PADL and PointRend models trained on SDTE usually
seem to be over-confident and produce false positives.
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Ground Truth RD SDTE MD20r80sTE

Figure 4.6: Evaluation examples of the YOLOv8 model trained on different datasets on
real farmland images. The first column shows the ground truth annotations, whereas the
following columns show results for training on RD, SDTE and MD20r80sTE.
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CHAPTER 5
Conclusion

The presented methods DeepRow and DeepStem examined the capability of synthetic
farmland images generated from the computer game Farming Simulator 22 to increase
detection accuracy of CNN-based approaches for crop row detection and the detection of
individual stem bases on farmland. Depending on the type of dataset the models are
trained on, the CNN methods are referred to as Real-, Synthetic- and Mixed-DeepRow or
DeepStem respectively.

5.1 Results
Comparing the results of all nine datasets for crop row detection showed that the average
Mixed-DeepRow model outperformed Synthetic-DeepRow and Real-DeepRow, where
the model trained on MD20r80sTE (20% real and 80% texture-edited synthetic images)
performed best when evaluated on the RD testset. More specifically, it was shown
that the PADL performance metrics Accuracy and IoU increased by 9.06% and 6.4%
respectively, compared to the model trained on RD. An inconsistency showed up when
comparing the PADL metrics for MD50r50s, MD80r20s, MD50r50sTE and MD80r20sTE.
MD80r20s and MD80r20sTE showed a marginal increase in performance compared to
MD50r50s and MD50r50sTE respectively, when evaluated on RD, which indicates that -
in this case - a lower percentage of synthetic images increases performance.

When evaluating individual stem base detection models, it was observed that Real-
DeepStem outperformed Synthetic-DeepStem and Mixed-DeepStem when assessed using
RD test images. For both, PointRend and YOLOv8, performance metrics for the
RD testset decreased with increasing percentage of synthetic images. With a few
exceptions, the metrics tended to decrease further when using synthetic images from
SDTE instead of SD. In the case of PointRend the best Mixed-DeepStem approach
(trained on MD80r20sTE) yielded a decrease of 3.78% and 4.97% for F1 score and IoU
respectively. Evidently, PointRend models trained on purely synthetic datasets showed
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overconfidence in detecting stem bases, which is apparent from the cluttered detection
results in Figure 4.5 (SDTE column). For YOLOv8, one exception to this trend was the
model trained on MD80r20sTE, which showed similar performance to the model trained
on RD.

One possible reason for the variability in results observed among models trained on
mixed datasets is the random selection of images from SD and SDTE. In the case of
models trained on MD80r20s and MD80r20sTE, which only contain 50 synthetic images,
the performance outcome highly depends on the specific selection of synthetic images.
Additionally, it’s noteworthy that a minor variation of approximately 1% in inference
metrics is attributed to the random selection of images for each batch while training the
network. However, to properly address these inconsistencies, further investigations are
necessary, including experiments conducted with more extensive datasets.

Challenges in the implementation of the DeepStem approach became evident during the
visualization of inference examples for PointRend and YOLOv8. Examination of the
first two rows of images in Figures 4.5 and 4.6 reveals that both DeepStem approaches
encounter difficulties in accurately detecting stem bases within the central crop row of
each image. This can be attributed to the challenge presented by partial occlusion of
stem bases, particularly evident in images of plants aged approximately 25 days and
older. This occlusion makes annotating stem bases in RD images more demanding and
consequently hinders accurate detection on real farmland images.

Based on these findings, it can be concluded that generating synthetic datasets that
enhance the performance of DeepRow models is a relatively simpler task compared to
DeepStem models. This difference can be attributed to the fact that stem base detection
is a task which relies more heavily on capturing texture details in an image, compared to
the task of crop row detection.

5.2 Future Work
Virtual 3D models of young maize plants (see Figure 3.8b) posed a specific challenge,
which primarily arose from the thinness of their leaves when viewed from above. The
thinness of these leaves became an issue due to their important role in the accurate
detection of crop rows and the identification of stem bases. This issue could be addressed
by refining the 3D models of maize plants in future research.

As previously mentioned, one of the challenges encountered when annotating stem bases
in real farmland images is the partial occlusion of these bases. An alternative approach
could opt to annotate only non-overlapping plant stems. However, for synthetic images,
a notable challenge would arise from determining which plant stems are overlapping and
which are not.

In order to generate more realistic synthetic images, the SimGAN approach proposed
by Shrivastava et al. [SPT+16] could be utilized. In this approach, a Discriminator and
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a Refiner network collaboratively generate improved versions of the original synthetic
images by leveraging both real and synthetic images as references.

As a general direction for future research, it is advisable to repeat the experiments
outlined in this work using larger datasets. This approach aims to address discrepancies
in performance metrics, as described in Section 5.1.
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