
How to Simulate PLONK:
A Formal Security Analysis of a

zk-SNARK

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Marek Sefranek, BSc
Matrikelnummer 11779683

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Associate Prof. Dipl.-Ing. Dr. Georg Fuchsbauer

Wien, 20. September 2023
Marek Sefranek Georg Fuchsbauer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

How to Simulate PLONK:
A Formal Security Analysis of a

zk-SNARK

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Marek Sefranek, BSc
Registration Number 11779683

to the Faculty of Informatics

at the TU Wien

Advisor: Associate Prof. Dipl.-Ing. Dr. Georg Fuchsbauer

Vienna, September 20, 2023
Marek Sefranek Georg Fuchsbauer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Marek Sefranek, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 20. September 2023
Marek Sefranek

v

Acknowledgements

First, I want to thank my supervisor, Georg Fuchsbauer, for his patience and all the
invaluable feedback he provided me with throughout this project. I would not have been
able to finish this thesis without your support.

I am also very grateful for the financial support I received from the Vienna Science and
Technology Fund (WWTF) [10.47379/VRG18002] during the work on this thesis.

Furthermore, I would like to thank Ariel Gabizon for answering questions about PLONK,
as well as for discussing the vulnerability in its zero knowledge implementation and how
to fix it.

Lastly, I am deeply grateful to my family for all their support and everlasting love,
believing in me even during the most challenging moments of this journey.

vii

Kurzfassung

Zero-Knowledge-Beweise ermöglichen es, etwas zu beweisen, ohne dabei Informationen
über die Wahrheit der Aussage hinaus preiszugeben. Dieses paradoxe Konzept, welches
ursprünglich rein theoretischer Natur war, hat in den letzten Jahrzehnten eine breite
Anwendung in der Praxis gefunden. An der Spitze dieser Entwicklung stehen Beweissys-
teme, die zk-SNARKs genannt werden, was für Zero-Knowledge Succinct Non-Interactive
Argument of Knowledge steht. Sie vermeiden nicht nur, dass mehrere Runden der Interak-
tion erforderlich sind, sondern haben auch Beweise, die deutlich kürzer als die bewiesene
Aussage selbst sind, wobei einige Konstruktionen sogar Beweise mit konstanter Größe
erreichen.

Einer der aktuellsten zk-SNARKs ist “PLONK” von Gabizon, Williamson und Ciobotaru
aus dem Jahr 2019. Seine Beweise haben mit nur einem halben Kilobyte konstante Größe
und können in sublinearer Zeit verifiziert werden. Darüber hinaus müssen die erforderlichen
öffentlichen Parameter nur einmalig aufgesetzt werden, um beliebige Aussagen bis zu
einer bestimmten Länge beweisen zu können, was PLONK zu einem universellen und
zeiteffizienten zk-SNARK macht. Obwohl PLONK sehr einflussreich ist und in mehreren
realen Anwendungen eingesetzt wird, gibt es keinen formalen Sicherheitsbeweis seiner
Zero-Knowledge-Eigenschaft.

Im Rahmen dieser Arbeit zeigen wir auf, wie eine von uns gefundene Sicherheitslücke in
der Zero-Knowledge-Implementierung von PLONK behoben werden kann. Das PLONK-
Protokoll wurde bereits entsprechend ausgebessert. Unser Hauptbeitrag ist ein formaler
Sicherheitsbeweis dafür, dass die resultierende Version von PLONK statistisches Zero-
Knowledge erfüllt. Hierfür zeigen wir, wie Beweise bis auf einen exponentiell kleinen
Unterschied simuliert werden können, ohne dabei Zugriff auf die geheimen Informationen
des Beweisers zu haben. Gemäß der Standarddefinition von Zero-Knowledge folgt daraus,
dass PLONK-Beweise (statistisch) keine Informationen über die Wahrheit der Aussage
hinaus preisgeben.

Zudem führen wir eine genaue Sicherheitsanalyse des gesamten PLONK-Protokolls durch,
einschließlich des Nachweises der Sicherheit aller seiner Komponenten. Dabei beweisen
wir eine präzise obere Schranke für den Knowledge-Soundness-Fehler von PLONK im
algebraischen Gruppenmodell. Da der ursprüngliche Beweis der Knowledge-Soundness
von PLONK ebenfalls auf diesem idealisierten Modell beruht, tragen unsere Ergebnisse
zu einem allgemein besseren Verständnis der Sicherheitseigenschaften von PLONK bei.

ix

Abstract

Zero-knowledge proofs enable proving a statement without revealing any information
beyond its truth. This paradoxical notion has evolved over the last few decades from a
theoretical concept to the wide adoption of highly efficient zero-knowledge proof systems
in practice. At the forefront of this development are proof systems called zk-SNARKs,
which stands for zero-knowledge succinct non-interactive argument of knowledge. Not
only do they avoid multiple rounds of interaction, but zk-SNARKs also offer succinct
proofs whose length is much shorter than the size of the proved statement, with some
constructions even achieving constant-size proofs.

Among the most recent state-of-the-art constructions is the zk-SNARK “PLONK” by
Gabizon, Williamson, and Ciobotaru from 2019. It has constant-size proofs of only half
a kilobyte and sublinear proof verification time. Furthermore, it only requires a single
trusted setup of its public parameters to support proofs of any statement up to a certain
size bound, making PLONK a universal and fully succinct zk-SNARK. Although highly
influential and implemented in several real-world applications, there is no formal security
proof of its zero knowledge property.

In this thesis, we disclose a vulnerability found in PLONK’s implementation of zero
knowledge and propose how to fix it. As a result, the PLONK protocol has been patched
accordingly. Our primary contribution is a formal security proof establishing that the
resulting version of PLONK achieves statistical zero knowledge. Towards this goal, we
show how to simulate proofs up to an exponentially small difference without relying on
any secret information used by the prover. Following the standard definition of zero
knowledge, this implies that PLONK proofs reveal (statistically) zero information beyond
the truth of the statement.

Moreover, we conduct a rigorous security analysis of the entire PLONK protocol, proving
the security of all its underlying components. This allows us to show a precise upper
bound on PLONK’s knowledge soundness error in the algebraic group model. Since the
original proof given by the authors of PLONK relies on the same idealized model, our
results help towards a better understanding of the security guarantees of PLONK in
general.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 3
1.3 State of the Art . 4
1.4 Contributions . 5
1.5 Outline . 6

2 Preliminaries 7
2.1 Notation . 7
2.2 Cryptographic Hardness Assumptions 8
2.3 Interactive Arguments of Knowledge 9
2.4 zk-SNARKs . 12
2.5 Arithmetic Circuits . 14
2.6 Polynomial Identity Testing . 15
2.7 Lagrange Interpolation . 15
2.8 KZG Polynomial Commitments . 16
2.9 Algebraic Group Model . 18

3 The PLONK Arithmetization 19
3.1 The PLONK Constraint System . 19
3.2 Polynomial Representation . 22

4 Polynomial Commitments with Cross-Commitment Proof Aggregation 23
4.1 Definition . 23
4.2 The Construction . 25
4.3 The Case of Multiple Evaluation Points 28

xiii

5 Polynomial Protocols 31
5.1 Checking Polynomial Identities . 31
5.2 Ranged Polynomial Protocol . 34
5.3 Reducing the Number of Field Elements 40

6 Permutation Argument 43
6.1 Knowledge Soundness in the AGM . 46
6.2 Statistical Completeness . 47

7 The Full PLONK Protocol 49
7.1 The Vulnerability . 57
7.2 Statistical Zero Knowledge . 57
7.3 The PLONK zk-SNARK . 62

8 Conclusion 65

A Appendix 67
A.1 Proof of Permutation Argument . 67
A.2 Proof of Alternative Lagrange Polynomial Formula 68

List of Figures 71

List of Tables 73

Bibliography 75

CHAPTER 1
Introduction

1.1 Motivation
First introduced by Goldwasser, Micali, and Rackoff [GMR85] as a theoretical concept
in the 1980s, zero-knowledge proofs have become efficient enough to be used in practice
over the subsequent decades. Informally speaking, a zero-knowledge proof allows a party
(the “prover”) to convince another party (the “verifier”) that a statement is true, without
revealing any information beyond the validity of the statement. More precisely, given
a statement represented as a bit string x ∈ {0, 1}∗ and a formal language L ⊆ {0, 1}∗,
it enables the prover to convince the verifier that x ∈ L without leaking any other
information. For example, take an NP relation RL, where (x, w) ∈ RL if and only if w is
a witness for x ∈ L. In this case, a prover that knows such a witness is able to perform a
zero-knowledge proof of x ∈ L; however, the verifier learns no information about this
witness in the process.

Formally, a zero-knowledge proof is an interactive protocol, where both the prover and
the verifier are randomized algorithms. Furthermore, it has to satisfy three central
properties:

1. Completeness: The protocol works as expected if both parties are honest, i.e.,
given a statement x ∈ L and a witness w, the prover can convince the verifier.

2. Soundness: A malicious prover cannot convince the verifier of a false statement
x /∈ L, except with very small probability.

3. Zero knowledge: The proof does not reveal anything beyond the truth of the
statement; in particular, it does not reveal the prover’s witness w.

But what does it even mean to “not reveal anything beyond the truth of the statement”?
Intuitively, this is achieved if whatever the verifier gets to see during its interaction

1

1. Introduction

with the prover could have been generated by the verifier alone in the first place. This
notion is formally captured through the existence of a simulator, which is an efficient
algorithm capable of simulating the interaction between prover and verifier only given
the same inputs as the verifier. Crucially, it does not rely on any secret information
used by the prover, including its witness. This shows that the view of the verifier (i.e.,
its inputs, randomness, and the messages it receives from the prover) can be simulated,
which implies that its interaction with the prover reveals zero information beyond the
truth of the statement.

zk-SNARKs. One of the currently most promising approaches to make zero-knowledge
proofs as practical as possible are proof systems called zk-SNARKs [GGPR13]. This
acronym stands for zero-knowledge succinct non-interactive argument of knowledge.
An argument is a proof system between two efficient parties, i.e., both running in
probabilistic polynomial time.1 Furthermore, the prover is required to know a witness
whenever producing a valid proof (hence argument of knowledge). Non-interactive means
that only a single message, “the proof”, is sent during the protocol, as opposed to a multi-
round exchange of messages. The term succinct refers to the proof size, in particular, a
zk-SNARK proof is much shorter than the size of the proved statement, in some cases
even of constant size.

In an impossibility result, Goldreich and Oren [GO94] showed that a non-interactive
proof for a non-trivial language (i.e., one that is not decidable in probabilistic polynomial
time) cannot be both sound and zero-knowledge simultaneously. To get around this
impossibility, most zk-SNARKs rely on a trusted setup which generates a so-called
common reference string (CRS), a special public input given to both the prover and the
verifier before they start their interaction. Intuitively, a common reference string can
be thought of as a long public key which enables zk-SNARKs to have non-interactive
proofs as long as neither the prover nor the verifier knows the corresponding secret, called
the trapdoor. Since the only exchanged message is now the proof, which should not be
simulatable without a witness, the definition of zero knowledge for non-interactive proofs
changes. Instead, the simulator is allowed to set up the CRS and thus know the trapdoor,
which it uses to simulate proofs.

The applications of zk-SNARKs are vast. In principle, they can be used to prove the
validity of any statement in the complexity class NP in zero knowledge. This captures
any feasible computation, as any polynomial-time algorithm f can be modeled as an
NP relation Rf . Suppose f : {0, 1}n × {0, 1}m → {0, 1}ℓ takes a public input x, a
private input w, and outputs y, then the corresponding relation Rf can be defined as
Rf

�
(x, y), w

:= 1 if and only if f(x, w) = y. With this, a zk-SNARK can be used to

verify the computation of any polynomial-time computable function without revealing
possible private inputs. Specifically, given the (public) description of the function f , a

1The difference between a proof and an argument is essentially that in the former the prover is
unbounded, whereas in the latter the prover is efficient, i.e, runs in PPT. Throughout this thesis, we are
using the term “proof” to refer to both concepts interchangeably.

2

1.2. Problem Statement

public input x and output y, a zk-SNARK allows proving knowledge of a private input w
such that f((x, y), w) = 1 without revealing anything about w. For example, given a
collision-resistant hash function H : {0, 1}∗ → {0, 1}ℓ, we could be proving knowledge
of a preimage w of a certain hash value y such that y = H(w) without revealing it. In
addition, what makes a zk-SNARK proof so powerful is that it can be verified much
faster than the time it would take to compute f(x, w) in the first place, even when given
access to the private input w.

In summary, the two main benefits obtained by making use of zk-SNARKs are the
preservation of privacy and better scalability of distributed computation. The first goal
is achieved by enabling parties to only have to reveal the minimum amount of sensitive
information necessary. For example, consider taking out additional health insurance
whose price depends on the health status, such as the blood values of the insurance holder.
Instead of disclosing one’s complete health status to the insurance company, one could
prove to them in zero knowledge that the relevant values fall within the required range
for the specified risk category. On the other hand, zk-SNARKs can be used to improve
the scalability of distributed computation by enabling verifiable computation, i.e., by
appending a succinct proof to the result of a computation that proves its correctness
without revealing any potentially involved private parameters.

Currently, the application of zk-SNARKs predominantly takes place in blockchain tech-
nologies such as the cryptocurrencies Bitcoin and Ethereum. The most prominent of
these projects is the anonymous cryptocurrency Zcash [HBHW22]. In contrast to Bitcoin,
where the entire transaction and ledger history is transparent, Zcash uses zk-SNARKs
to enable transactions which can be verified without revealing the sender, receiver or
transaction amount, and thus provide full financial privacy.

1.2 Problem Statement
In this thesis, we conduct a security analysis of the widely used and influential zk-SNARK
named PLONK by Gabizon et al. [GWC19]. Not only does it have constant-size proofs
and sublinear proof verification time, but it or derivatives of it are also implemented in a
variety of real-world projects including Zcash2, Polygon Zero3, Aztec Network4, Dusk5,
MatterLabs6, Astar7, Mina8, Anoma9, and Espresso Systems10. The most prominent of
these projects is the anonymous cryptocurrency Zcash [HBHW22], which currently uses
Halo 2 as its zk-SNARK [Ele22], built on top of the PLONK arithmetization.

2https://z.cash/
3https://polygon.technology/
4https://aztec.network/
5https://dusk.network/
6https://matter-labs.io/
7https://astar.network/
8https://minaprotocol.com/
9https://anoma.net/

10https://www.espressosys.com/

3

https://z.cash/
https://polygon.technology/
https://aztec.network/
https://dusk.network/
https://matter-labs.io/
https://astar.network/
https://minaprotocol.com/
https://anoma.net/
https://www.espressosys.com/

1. Introduction

Unfortunately, there has been no formal proof of PLONK’s zero knowledge property.
In the original paper [GWC19, Sec. 8], this is simply claimed without giving any proof
or even defining what notion of zero knowledge the protocol is supposed to satisfy. As
a result, when trying to construct our own simulator, we discovered a vulnerability in
PLONK’s zero knowledge implementation. Subsequently, the PLONK protocol was
patched using a fix we proposed in collaboration with Ariel Gabizon, one of the authors
of PLONK. On June 30, 2022, Ariel Gabizon disclosed this security issue via Twitter.11

The main goal of this thesis is to formally prove that the patched version of PLONK
achieves zero knowledge. For this purpose, we will construct an appropriate simulator
and show that its outputs are distributed correctly, i.e., that they match the distribution
of honestly generated PLONK proofs. Beyond this main objective, we want to do a
rigorous analysis of the entire protocol, as we think that some aspects of the security
proofs given in the original PLONK paper are a bit vague, and consequently not fully
convincing. Moreover, we believe that a formal security analysis of the complete protocol,
including a rigorous proof of its knowledge soundness property, will make a contribution
towards further strengthening the validity of the security properties of PLONK.

1.3 State of the Art
The currently most efficient zk-SNARKs are constructed using an elliptic-curve group
over a prime field Fp, i.e., their proofs are composed of elliptic-curve group elements
and field elements. To prove arbitrary statements in NP, they express them in the
NP-complete language of arithmetic circuits. We explain this generalization of Boolean
circuits in more detail in Section 2.5. Furthermore, the proof size of these zk-SNARKs is
constant and independent of the size of the proved statement, which is one of the major
advances in the last decade pushing zk-SNARKs from a theoretical concept to being
implemented and used in practice.

Currently, the zk-SNARK with the shortest proof size is the construction by Groth [Gro16].
Its proofs consist of just 3 group elements (≈ 128 bytes), independent of the size of the
associated arithmetic circuit. Nevertheless, it comes with the major drawback of requiring
a special common reference string, which has to be computed for each different circuit
one wants to prove statements about separately. Since the common reference string
either has to be set up by a trusted party or in a distributed manner via a multiparty
computation (MPC) protocol, which requires considerable effort and special care, this
restriction limits the usability of this zk-SNARK in practice. To solve this issue, the
most recent development is to construct zk-SNARKs with a universal structured reference
string (SRS), i.e., once generated, it can be used to prove statements about any arithmetic
circuit up to a certain size bound.

The first promising construction with a universal SRS is Sonic by Maller et al. [MBKM19],
featuring a proof size of 20 group elements and 16 field elements (≈ 1152 bytes). Improving

11https://twitter.com/rel_Aztec/status/1542474186664210432

4

https://twitter.com/rel_Aztec/status/1542474186664210432

1.4. Contributions

Table 1.1: Comparison of succinct non-interactive zero-knowledge proof systems.

Proof system Proof size Setup
Groth16 [Gro16] ≈ 128 bytes Trusted, circuit-specific CRS
Sonic [MBKM19] ≈ 1152 bytes

Trusted, universal SRSPLONK [GWC19] ≈ 480 bytes
Marlin [CHM+20] ≈ 672 bytes
Bulletproofs [BBB+18] Logarithmic No trusted setup
zk-STARKs [BSBHR18] Polylogarithmic No trusted setup, post-quantum secure

upon the efficiency of Sonic, the PLONK construction by Gabizon et al. [GWC19], which
is the subject of study of this thesis, offers even shorter proofs consisting of only 9 group
elements and 6 field elements (≈ 480 bytes). Another prominent universal zk-SNARK
is Marlin by Chiesa et al. [CHM+20] with a proof size of 13 group elements and 8 field
elements (≈ 672 bytes). However, compared to PLONK, it has not found such a wide
adoption in practice.

Beyond that, other promising directions in constructing succinct non-interactive zero-
knowledge proofs include Bulletproofs [BBB+18] and zk-STARKs [BSBHR18], short for
zero-knowledge scalable transparent arguments of knowledge. At the cost of having
longer proofs—logarithmic (Bulletproofs) and polylogarithmic (zk-STARKs) in the size
of the proved statement—these constructions come with the advantage of not requiring
any trusted setup, i.e., they do not use a common reference string.12 On top of that,
zk-STARKs are currently considered post-quantum secure as opposed to proof systems
which rely on the hardness of the discrete logarithm problem in elliptic-curve groups.

To summarize the various approaches for constructing succinct non-interactive zero-
knowledge proofs discussed in this section, we provide a comparison in Table 1.1.

1.4 Contributions
As the main contribution of this thesis, we give a formal security proof establishing that
the current version of PLONK, which includes our suggested fix, achieves statistical zero
knowledge.13 Towards this goal, we construct a simulator for the interactive version of
PLONK in Section 7.2. By showing that it perfectly simulates the outputs of the prover
except for a negligible fraction of possible cases, we prove that the interactive PLONK
protocol achieves statistical honest-verifier zero knowledge. Then, in Section 7.3, we
extend this to the PLONK zk-SNARK, obtaining the following main result:

Theorem 1.1. The PLONK zk-SNARK is statistically zero-knowledge.

12More precisely, both rely on a collision-resistant hash function to avoid a trusted setup, with
Bulletproofs modeling it as a random oracle [BR93] and zk-STARKs using it directly.

13For a precise definition of this notion, see Definition 2.11 and the explanation that follows it.

5

1. Introduction

Furthermore, we conduct a rigorous security analysis of the entire PLONK protocol,
giving formal security proofs for all its underlying components. As a result of this modular
security analysis, we obtain a precise upper bound on PLONK’s knowledge soundness
error in the algebraic group model of Fuchsbauer et al. [FKL18] in Section 7.3. Since
the original proof of PLONK’s knowledge soundness by Gabizon et al. [GWC19, Sec. 7]
uses the same idealized model, our result helps towards better quantifying the security
guarantees provided by PLONK.

1.5 Outline
This thesis is organized as follows. We begin by presenting the necessary background
material as well as formally defining all the concepts used throughout this thesis in
Chapter 2. Then, in Chapter 3, we explain the constraint system used by PLONK for its
internal representation of arithmetic circuits. In Chapter 4, we explore how polynomial
commitments are used to build a protocol for succinctly proving the evaluations of
multiple polynomials. We also give a formal security proof of this first cryptographic
building block used in the construction of the PLONK protocol. Next, we describe and
provide security proofs for a series of protocols that build on one another to achieve
succinct proofs of statements about polynomials in Chapter 5. This culminates in the
permutation argument in Chapter 6, which is at the heart of the PLONK construction.
In Chapter 7, we finally give a detailed description of the complete PLONK protocol.
Importantly, we describe the vulnerability found in its zero knowledge implementation
and give a formal proof that the fixed version of PLONK satisfies the notion of statistical
zero knowledge by constructing an appropriate simulator. We conclude with a summary
of our contributions and by highlighting remaining open problems in Chapter 8.

6

CHAPTER 2
Preliminaries

We start by defining the notation used throughout this thesis, as well as giving all the
necessary background material the PLONK protocol is built upon.

2.1 Notation
We use λ ∈ N>0 to denote the security parameter in bits. PPT stands for probabilistic
polynomial time, e.g., PPT algorithm. We use [n] as a shorthand for the set {1, . . . , n} ⊂ N,
and (m, n] for the set {m+1, . . . , n} ⊂ N. Let Fp be a finite field of prime order p. We use
Fp[X1, . . . , Xn] to denote the set of n-variate polynomials over Fp, and F(≤d)

p [X1, . . . , Xn] to
further restrict this to polynomials of total degree1 ≤ d. We write ω to denote a primitive
n-th root of unity in Fp, i.e., a generator of an order-n subgroup ⟨ω⟩ := {ωi | i ∈ [n]} of
F∗

p. By negl(·), we mean any negligible function, i.e., a function negl : N → R+ satisfying
negl(n) < 1

poly(n) for all positive polynomials poly(·) and all sufficiently large n ∈ N.

G1, G2 and GT are groups of prime order p endowed with a pairing e : G1 × G2 → GT .
A pairing is an efficiently computable, bilinear map with the following two properties:

• Bilinearity: For all generators g1 ∈ G1, g2 ∈ G2 and all a, b ∈ Fp, we have
e(ga

1, gb
2) = e(g1, g2)ab.

• Non-degeneracy: For all generators g1 ∈ G1, g2 ∈ G2, gT := e(g1, g2) is a generator
of GT .

A statement of the form y := A(x) denotes a deterministic assignment, i.e., the variable
y is assigned the output of the deterministic algorithm A on input x, while y ← A(x)
denotes a probabilistic assignment, where the (now) probabilistic algorithm A is run

1The total degree of a multivariate polynomial is the largest sum of individual degrees in any of its
monomials.

7

2. Preliminaries

with uniform randomness on input x. We also use x ← X for sampling x uniformly at
random from the set X . We write (y; z) ← (A ∥ E)(x) when A on input x outputs y, and
E on the same input (including A’s randomness) outputs z. When running a stateful
algorithm A, we use st to denote its state, e.g., (y1, st) ← A(x1); y2 ← A(st, x2).

Furthermore, Pr
�
S1; . . . ; Sn : E

�
refers to the probability of event E after running the

experiment given by sequentially executing the statements S1, . . . , Sn. In an interactive
protocol between a prover P with input x and a verifier V with input y, we write
b ← ⟨P(x), V(y)⟩ to denote the output of the verifier; w.l.o.g., this is a bit b ∈ {0, 1} with
1 meaning accept and 0 reject.

An indexed relation R is a set of index-statement-witness triples (i, x, w) with the
corresponding indexed language LR := {(i, x) | ∃w : (i, x, w) ∈ R}. For a size bound
n ∈ N, we denote by Rn the restriction of R to triples (i, x, w) with |i| ≤ n. For example,
the indexed relation of satisfiable Boolean circuits consists of the triples where i is the
description of a Boolean circuit, x is a partial assignment to its input wires, and w is an
appropriate assignment to the remaining wires such that the circuit outputs 1.

Conventions. We implicitly assume all PPT algorithms described in this thesis run
in time polynomial in the security parameter λ. Furthermore, we assume there is an
efficient group-generation algorithm GGen which, on input 1λ (i.e., the security parameter
λ written in unary), generates appropriate (Fp,G1,G2,GT , g1, g2, gT , e) such that:

• Fp is a prime field of super-polynomial size |Fp| = λω(1), which admits certain
primitive n-th roots of unity (putting a restriction on the factorization of p − 1).

• G1, G2 and GT are groups of prime order p endowed with a pairing e : G1×G2 → GT .

• g1 ∈ G1 and g2 ∈ G2 are uniformly chosen generators, and gT = e(g1, g2).

Furthermore, when instantiating a cryptographic scheme over (Fp,G1,G2,GT , g1, g2, gT , e),
we assume that the group-generation algorithm GGen is implicitly run on input 1λ during
the setup phase, and that the outputs are publicly available to all involved parties.

2.2 Cryptographic Hardness Assumptions
For a cyclic group G of prime order p and a generator g ∈ G, the widely used discrete
logarithm assumption (DLog) states that it is hard to compute logg h given a uniformly
random element h ∈ G. More formally, this holds relative to some group-generation
algorithm which, on input 1λ, implicitly outputs an appropriate group description (G, p, g)
at the start of the following experiment:

Definition 2.1 (DLog Assumption). For all PPT adversaries A:

Pr

α ← Fp; α′ ← A(g, gα) : α′ = α

�
≤ negl(λ).

8

2.3. Interactive Arguments of Knowledge

Furthermore, in their construction of PLONK, Gabizon et al. rely on the hardness of the
d-DLog assumption in bilinear groups, which is a stronger version of discrete logarithm
assumption. For groups G1, G2 and GT of prime order p and a pairing e : G1 ×G2 → GT ,
it states that the discrete logarithm problem remains hard even when given the extended
input

�
g1, gα

1 , . . . , gαd

1 , g2, gα
2 , . . . , gαd

2
 ∈ Gd+1

1 × Gd+1
2 for d = poly(λ). We will assume

that this assumption is hard relative to GGen, i.e., for any fixed λ ∈ N>0, we implicitly
assume GGen(1λ) is run at the start of the following experiment:

Definition 2.2 (d-DLog Assumption). For all d = poly(λ) and all PPT adversaries A:

Pr


α ← Fp;

α′ ← A�
g1, gα

1 , . . . , gαd

1 , g2, gα
2 , . . . , gαd

2

:

α′ = α

 ≤ negl(λ).

2.3 Interactive Arguments of Knowledge
Before formally defining what a zk-SNARK is, we start with a weaker primitive called
an interactive argument of knowledge, which is often used as the underlying scheme of a
zk-SNARK. In fact, the PLONK zk-SNARK is obtained by first constructing a public-coin
interactive argument of knowledge and then compiling it into its non-interactive version
via the Fiat–Shamir transform [FS87]. Here, “public-coin” means that the verifier chooses
all of its messages independently and uniformly at random from a specified domain,
making its randomness public. More precisely, we will define “universal preprocessing
zero-knowledge public-coin” interactive arguments of knowledge. In the following, we
omit this lengthy nomenclature for the sake of simplicity. Also, note that our definitions
are inspired by the definitions given in [CBBZ23, Sec. 2.1] and [CHM+20, Sec. 7].

Definition 2.3. An interactive argument of knowledge for an indexed relation R is a
tuple of four PPT algorithms (Setup, Preprocess, P, V) with the following syntax:

• Setup(1λ, n) → srs : A probabilistic algorithm that, given the security parameter 1λ

and a size bound n ∈ N on indices in R, outputs a structured reference string srs.

• Preprocess(srs, i) =: (pp, vp) : A deterministic algorithm that, given the srs (with
implicit size bound n) and an index i of size ≤ n, outputs prover and verifier
parameters pp and vp, respectively.

• ⟨P(pp, x, w), V(vp, x)⟩ → b : An interactive public-coin protocol with common input
a statement x between a prover P who has prover parameters pp as well as a witness
w and a verifier V who has verifier parameters vp. The purpose of the protocol is
to convince V that (i, x, w) ∈ R, where the index i is implicit in pp and vp. At the
end of the protocol, V outputs a bit b ∈ {0, 1}, with 1 meaning accept and 0 reject.

The given definition captures a universal interactive argument of knowledge, because the
Setup algorithm generates a structured reference string srs which supports proofs of any

9

2. Preliminaries

statement in the relation R up to a selected size bound n on the index i. Moreover, an
interactive argument of knowledge consists of two phases: a non-interactive preprocessing
phase and an interactive online phase between a prover P and a verifier V. In the first
phase, anyone can use the deterministic algorithm Preprocess to publicly preprocess an
index i of size ≤ n in the relation R, resulting in prover parameters pp and verifier
parameters vp. The purpose of this step is to compress the srs and index i into a form
which contains the minimum amount of information needed by the prover and the verifier,
respectively, to check different instances x in subsequent online phases. This will enable
significant efficiency gains compared to directly using the srs and index i, especially for
the verifier. For this reason, it is also referred to as a preprocessing interactive argument
of knowledge.

Furthermore, a zero-knowledge interactive argument of knowledge has to satisfy the
following properties.

Completeness. If both parties behave honestly and follow the protocol, then the
verifier will always accept a true statement, formalized as follows:

Definition 2.4 (Completeness). For all n = poly(λ) and all (i, x, w) ∈ Rn:

Pr


srs ← Setup(1λ, n);

(pp, vp) := Preprocess(srs, i);
b ← ⟨P(pp, x, w), V(vp, x)⟩ :

b = 1

 = 1.

This is referred to as perfect completeness. It is also possible to consider a weaker notion
called statistical completeness, which is allowed to fail with negligible probability, i.e., the
probability above has to be at least 1 − negl(λ). In fact, this will be the notion achieved
by PLONK as discussed in Section 6.2.

Knowledge soundness. To motivate the stronger notion of knowledge soundness, we
start by defining soundness, which ensures that a malicious prover cannot convince the
verifier of a false statement. In the following, we give an adaptive definition of soundness,
where the adversary A that represents the malicious prover gets to choose the index i
and statement x based on the concrete structured reference string srs it sees.

Definition 2.5 (Soundness). For all n = poly(λ) and all PPT adversaries A:

Pr


srs ← Setup(1λ, n);
(i, x, st) ← A(srs);

(pp, vp) := Preprocess(srs, i);
b ← ⟨A(st), V(vp, x)⟩ :
b = 1 ∧ (i, x) /∈ LRn

 ≤ negl(λ).

10

2.3. Interactive Arguments of Knowledge

On the other hand, knowledge soundness additionally requires the prover to know a
witness whenever it makes the verifier accept a statement. This is formalized through the
existence of an extractor E , i.e., a PPT algorithm which is able to extract a witness from
the prover whenever the verifier accepts. This extractor is given the prover’s randomness
and can therefore rewind it.

Definition 2.6 (Knowledge Soundness). For all n = poly(λ) and every PPT adversary
A, there exists a PPT extractor E such that:

Pr


srs ← Setup(1λ, n);�

(i, x, st); w
 ← (A ∥ E)(srs);

(pp, vp) := Preprocess(srs, i);
b ← ⟨A(st), V(vp, x)⟩ :
b = 1 ∧ (i, x, w) /∈ Rn

 ≤ negl(λ).

We refer to the above probability as the knowledge soundness error. Moreover, we
mentioned that knowledge soundness is a stronger property than soundness. To see this,
observe that the condition (i, x) /∈ LRn means (i, x, w) /∈ Rn for any choice of the witness
w extracted by E . Hence, knowledge soundness implies soundness.

Zero knowledge. As mentioned in the introduction, zero knowledge is defined through
the existence of a simulator, i.e., a PPT algorithm capable of simulating the view of the
verifier without relying on any secret information (i.e., the witness w) used by the prover.
In the context of zk-SNARKs and, by extension, also in our definition of interactive
arguments of knowledge which are used as an underlying building block, the simulator is
given the additional power of setting up the structured reference string. We formalize this
by letting the adversary A play the role of the verifier in one of two experiments—either
being given an honestly generated srs and interacting with the real prover algorithm P,
or being given a simulated srs and interacting with the simulator S—and then having to
output a decision bit b ∈ {0, 1} for distinguishing the two scenarios.

Note that the first output of the simulator S includes a trapdoor τ , which can contain
any information used to construct the srs. This is what gives the simulator the power to
simulate correct proofs without knowledge of a witness in the first place. It also shows
why the security of these systems fails if used with a corrupted srs, highlighting the
importance of a correctly performed Setup.

Definition 2.7 (Zero Knowledge). There exists a PPT simulator S such that for all
n = poly(λ) and all PPT adversaries A:))))))))))))

Pr


srs ← Setup(1λ, n);

(i, x, w, st) ← A(srs);
(pp, vp) := Preprocess(srs, i);

b ← ⟨P(pp, x, w), A(st)⟩ :
b = 1 ∧ (i, x, w) ∈ Rn

 − Pr


(srs, τ) ← S(1λ, n);

(i, x, w, st) ← A(srs);
(pp, vp) := Preprocess(srs, i);

b ← ⟨S(τ, pp, x), A(st)⟩ :
b = 1 ∧ (i, x, w) ∈ Rn



))))))))))))
≤ negl(λ).

11

2. Preliminaries

This is also called computational zero knowledge, since the adversary runs in PPT. In
addition, there are the two increasingly stronger notions of statistical zero knowledge
and perfect zero knowledge, which have to hold even against unbounded adversaries A,
and on top of that, for perfect zero knowledge, the above probabilities have to be equal.
Moreover, we obtain the weaker notion of honest-verifier zero knowledge (HVZK) if the
adversary A is assumed to honestly follow the verifier algorithm V during the protocol
execution, except for its final output b ∈ {0, 1} (otherwise, the simulator would just need
to produce accepting protocol transcripts whenever (i, x, w) ∈ Rn, which is weaker than
zero knowledge).

2.4 zk-SNARKs
Now we are ready to define zk-SNARKs, i.e., zero-knowledge succinct non-interactive
arguments of knowledge. A (universal preprocessing) zk-SNARK is defined analogously
to an interactive argument of knowledge (Setup, Preprocess, P, V) from Definition 2.3,
except that the interactive algorithms P and V are replaced with their non-interactive
counterparts Prove and Verify as follows:

Definition 2.8 (zk-SNARK). A zk-SNARK for an indexed relation R is a tuple of four
PPT algorithms (Setup, Preprocess, Prove, Verify) with the following syntax:

• Setup(1λ, n) → srs : A probabilistic algorithm that, given the security parameter 1λ

and a size bound n ∈ N on indices in R, outputs a structured reference string srs.

• Preprocess(srs, i) =: (pp, vp) : A deterministic algorithm that, given the srs (with
implicit size bound n) and an index i of size ≤ n, outputs prover and verifier
parameters pp and vp, respectively.

• Prove(pp, x, w) → π : A probabilistic algorithm that, given pp (with implicit index
i), a statement x and a witness w, outputs a proof π for (i, x, w) ∈ R.

• Verify(vp, x, π) =: b : A deterministic algorithm that, given vp, a statement x and
a proof π, outputs a bit b ∈ {0, 1}, with 1 meaning accept and 0 reject.

Furthermore, a zk-SNARK has to satisfy the non-interactive analogues of the properties
completeness, knowledge soundness, and zero knowledge of an interactive argument of
knowledge, as defined in the previous section. For completeness, we state them below.

Definition 2.9 (Completeness). For all n = poly(λ) and all (i, x, w) ∈ Rn:

Pr


srs ← Setup(1λ, n);

(pp, vp) := Preprocess(srs, i);
π ← Prove(pp, x, w);
b := Verify(vp, x, π) :

b = 1

 = 1.

12

2.4. zk-SNARKs

Definition 2.10 (Knowledge Soundness). For all n = poly(λ) and every PPT adversary
A, there exists a PPT extractor E such that:

Pr


srs ← Setup(1λ, n);�

(i, x, π); w
 ← (A ∥ E)(srs);

(pp, vp) := Preprocess(srs, i);
b := Verify(vp, x, π) :

b = 1 ∧ (i, x, w) /∈ Rn

 ≤ negl(λ).

Definition 2.11 (Zero Knowledge). There exists a PPT simulator S such that for all
n = poly(λ) and all PPT adversaries A:))))))))))))))

Pr



srs ← Setup(1λ, n);
(i, x, w, st) ← A(srs);

(pp, vp) := Preprocess(srs, i);
π ← P(pp, x, w);

b ← A(st, π) :
b = 1 ∧ (i, x, w) ∈ Rn


− Pr



(srs, τ) ← S(1λ, n);
(i, x, w, st) ← A(srs);

(pp, vp) := Preprocess(srs, i);
π ← S(τ, pp, x);

b ← A(st, π) :
b = 1 ∧ (i, x, w) ∈ Rn



))))))))))))))
≤ negl(λ).

Again, we make a distinction between computational, statistical, and perfect zero knowl-
edge as explained below Definition 2.7. However, since the creation of a proof no longer
involves any interaction with the verifier, the notion of honest-verifier zero knowledge
becomes obsolete.

Lastly, there is one more essential property that makes zk-SNARKs so appealing in
practice: their succinctness.

Definition 2.12 (Succinctness). For all n = poly(λ) and all (i, x, w) ∈ Rn:

Pr


srs ← Setup(1λ, n);

(pp, vp) := Preprocess(srs, i);
π ← Prove(pp, x, w) :

|π| = o(|i| + |x|)

 = 1.

Put into words, this states that zk-SNARK proofs are sublinear in the size of the
proved statement (i, x). As discussed in Section 1.3, this can range anywhere from
polylogarithmic, i.e., O(logc(|i| + |x|)), to constant-size2, i.e., O(1), proofs depending on
the concrete zk-SNARK. Note that, since we are only concerned with proving statements
about languages in NP, we can (asymptotically) ignore the dependence on the size of the
corresponding witness w, assuming w.l.o.g. |w| = poly(|i| + |x|), i.e., its size is polynomial
in the size of the index-statement pair.

2Note that constant-size here means “constant in the size of the statement” ignoring the dependence
on the security parameter λ, i.e., the proof is actually of size poly(λ).

13

2. Preliminaries

Moreover, we say that a zk-SNARK is fully succinct if, in addition to the proof length,
also the proof verification time is sublinear in the size of the proved statement. Since
PLONK achieves this additional property and has a universal SRS, it is a universal and
fully succinct zk-SNARK.

2.5 Arithmetic Circuits
Most of the state-of-the-art zk-SNARK constructions, including PLONK, use the concept
of arithmetic circuits, a generalization of Boolean circuits, as their representation of the
NP relation R they are proving statements in. As discussed later in this section, the
language of satisfiable arithmetic circuits is NP-complete and can thus be used to express
all of NP.

An arithmetic circuit is a directed acyclic graph whose vertices and edges represent gates
and wires for carrying out computations in a finite field Fp, respectively. There are 5
types of gates: input and constant gates of indegree 0 and outdegree ≥ 1, output gates
of indegree 1 and outdegree 0, as well as addition and multiplication gates of indegree
≥ 2 and outdegree ≥ 1. Hence, arithmetic circuits provide a framework for computing
multivariate polynomials over a finite field Fp. For example, consider the arithmetic
circuit C : F3

p → Fp that computes the polynomial f(x1, x2, x3) := (x1 + x2) · (x2 + x3)
over Fp shown in Figure 2.1.

x1

+

x2

+

x3

×

x4

Figure 2.1: Arithmetic circuit for computing x4 := (x1 + x2) · (x2 + x3).

To motivate the choice of arithmetic circuits as a model of feasible computation, let us
examine them from a complexity-theoretic point of view. Given an arithmetic circuit C
over Fp with n inputs, the arithmetic circuit satisfiability problem asks whether there exist
inputs x1, . . . , xn ∈ Fp such that C(x1, . . . , xn) = 0, in analogy to roots of a multivariate
polynomial. It is well-known that Boolean circuit satisfiability is NP-complete via a
reduction from the SAT problem. Since Boolean circuits are just a special case of
arithmetic circuits over the field F2, the same is true for arithmetic circuit satisfiability.
Thus, it captures all efficiently computable functions. Moreover, arithmetic circuit
satisfiability can be expressed as the indexed relation containing all the triples (i, x, w),
where the index i is the description of an arithmetic circuit C, the statement x is a partial
assignment of values to its input gates, and w is an appropriate assignment to all of its
wires such that the circuit outputs 0.

14

2.6. Polynomial Identity Testing

2.6 Polynomial Identity Testing
At multiple points throughout this thesis, we will rely on the well-known Schwartz–Zippel
lemma, stated below.

Lemma 2.1 (Schwartz–Zippel). Let f ∈ Fp[X1, . . . , Xn] be a non-zero multivariate
polynomial of total degree d over Fp and S ⊆ Fp. Then

Pr

(α1, . . . , αn) ← Sn : f(α1, . . . , αn) = 0

�
≤ d

|S| .

In particular, for any point (α1, . . . , αn) ∈ Fn
p chosen uniformly at random from the whole

field, the above probability is at most n/p. The lemma is based on the fact that any
non-zero univariate polynomial of degree d has at most d roots. Informally, its corollary
states that two distinct polynomials f ̸≡ g of degree at most d differ almost everywhere,
or more precisely, that they agree on at most d points (otherwise, the non-zero, degree-d
polynomial f − g would have more than d roots).

Consequently, we can use this lemma for probabilistic polynomial identity testing. Given
two polynomials f(X1, . . . , Xn) and g(X1, . . . , Xn) over Fp, it suffices to check at a
random point (α1, . . . , αn) ∈ Fn

p whether f(α1, . . . , αn) = g(α1, . . . , αn). It f ≡ g, then
this holds with probability one. Otherwise, we can apply the Schwartz–Zippel lemma to
the non-zero polynomial f − g, telling us that the check passes with probability at most
max(d1, d2)/p, where d1 and d2 are the degrees of the two polynomials.

2.7 Lagrange Interpolation
Throughout this thesis, we will often be interested in polynomials taking specific values
over a set of distinct evaluation points S := {x1, . . . , xn} ⊆ Fp. For this purpose, we will
use Lagrange interpolation, which allows interpolating a set of n points (xi, yi)i∈[n] with
the unique polynomial f ∈ F(≤n−1)

p [X] of degree at most n − 1 such that f(xi) = yi for
all i ∈ [n].

Concretely, the interpolated polynomial is computed via the following linear combination:

f(X) :=
'
i∈[n]

yiLi(X), (2.1)

where the Li(X) := &
j∈[n],j ̸=i

X−xj

xi−xj
are Lagrange basis polynomials (or simply Lagrange

polynomials) of degree n−1. Notice that a Lagrange polynomial Li has the property that
Li(xi) = 1, but Li(xj) = 0 for all j ̸= i ∈ [n], directly yielding the desired polynomial
f via Equation (2.1). Since all of these polynomials are independent of the evaluation
values y1, . . . , yn, the set {Li}i∈[n] is referred to as a Lagrange basis for S.

Furthermore, we can rewrite the i-th Lagrange polynomial as follows:

15

2. Preliminaries

Lemma 2.2. Let S := {x1, . . . , xn} ⊆ Fp with |S| = n, Li(X) := &
j∈[n],j ̸=i

X−xj

xi−xj
, and

ZS(X) := &
i∈[n](X − xi). Then

Li(X) = ZS(X)
Z ′

S(xi)(X − xi)
,

where Z ′
S denotes the formal derivative3 of ZS.

This is also known as the barycentric form of the Lagrange polynomials [BT04]. For a
proof why it is equivalent to the original definition, see Appendix A.2.

To see the benefit of this representation, take the set H := ⟨ω⟩, where ω is a primitive
n-th root of unity in Fp. Then the polynomial ZH simply turns into Xn −1, whose formal
derivative is Z ′

H(X) = nXn−1. Evaluating at any ωi, we get Z ′
H(ωi) = n(ωi)n−1 = nω−i,

which plugged into the i-th Lagrange polynomial gives

Li(X) = ZH(X)
Z ′

H(ωi)(X − ωi) = Xn − 1
nω−i(X − ωi) = ωi(Xn − 1)

n(X − ωi) .

As a result, we are now able to evaluate any Lagrange polynomial at an arbitrary x ∈ Fp

in O(log n) field operations as opposed to the O(n) field operations required via the
original formula. In fact, for a fixed x ∈ Fp, we only have a constant number of field
operations once the value of ZH(x) = xn − 1 is computed, which allows us to evaluate
any interpolated polynomial f(X) := (

i∈[n] yiLi(X) at the point x in O(n + log n) field
operations.

2.8 KZG Polynomial Commitments
A commitment scheme is a cryptographic primitive that allows one to commit to a
chosen value while keeping it hidden from others, with the ability to later reveal the
committed value. Crucially, it should not be possible to reveal another value than the
one originally committed to, which is known as the scheme’s binding property. Informally,
a commitment can be thought of as a digital envelope, which can only be opened by the
party that sealed it.

A key ingredient to the PLONK zk-SNARK is a polynomial commitment scheme (PCS),
which allows committing to a polynomial in a succinct manner and then later efficiently
prove evaluations of it without revealing the entire polynomial. A very prominent PCS is
the KZG polynomial commitment scheme by Kate, Zaverucha, and Goldberg [KZG10].
Although PLONK can be instantiated with any PCS, Gabizon et al. use the KZG scheme
for its efficiency. In general, there is a trade-off between efficiency and relying on a
structured reference string in current state-of-the-art PCS constructions.

3The formal derivative of a polynomial f(X) :=
(d

i=0 fiX
i ∈ Fp[X] over the finite field Fp is defined

as the polynomial f ′(X) :=
(d

i=1 ifiX
i−1, coinciding with the classical derivative from calculus.

16

2.8. KZG Polynomial Commitments

KZG is a constant-size polynomial commitment scheme for polynomials f ∈ Fp[X] of
degree ≤ d, i.e., a commitment as well as evaluation proofs are of constant size and
independent of the degree of the committed polynomial. To support commitments to
polynomials up to degree d, KZG requires a structured reference string of the form�
g1, gτ

1 , gτ2
1 , . . . , gτd

1 , g2, gτ
2

, which can be either computed by a trusted authority or via

a decentralized MPC protocol such as [BGM17] that hides the trapdoor τ . The scheme
is based on the observation that (X − x) evenly divides the polynomial f(X) − f(x) for
any x ∈ Fp. This algebraic property of polynomials is also known as the polynomial
remainder theorem, stated and proved below.

Theorem 2.1 (Polynomial Remainder Theorem). Let f ∈ Fp[X] be a polynomial of
degree d, and let x ∈ Fp. Then f(x) = y if and only if there exists a polynomial Q ∈ Fp[X]
of degree d − 1 such that f(X) − y = Q(X)(X − x).

Proof. The backward direction of the claim follows immediately by substituting x for
X in f(X) − y = Q(X)(X − x). For the forward direction, carrying out the polynomial
division of f by (X − x) yields

f(X) = Q(X)(X − x) + R(X),

where Q is the quotient polynomial of degree d − 1 and R is the remainder polynomial of
degree less than deg(X − x) = 1. So R is constant and can be written as R(X) = y′ for
some y′ ∈ Fp, leaving us with f(X) = Q(X)(X − x) + y′. Plugging in X = x, we directly
obtain y′ = y, finishing the proof.

Committing. Let f(X) := (d
i=0 fiX

i ∈ F(≤d)
p [X] be a polynomial of degree ≤ d with

coefficients f0, f1, . . . , fd in Fp. A KZG commitment to f is a single group element

c :=
d%

i=0

�
gτ i

1
 fi = g

(d

i=0 fiτ
i

1 = gf(τ)
1 ,

where the values gτ i

1 are taken from the structured reference string.

Proving evaluations. To prove that the polynomial f ∈ Fp[X] committed to in c
evaluates to y at the point x, i.e., f(x) = y, one simply commits to the unique quotient
polynomial Q(X) := f(X)−y

X−x of degree deg(f) − 1, which can be computed in O(deg f)
field operations. The proof π := gQ(τ)

1 can then be verified (in constant time) by checking
the following equation via the pairing e:

e
�
c/gy

1, g2

= e
�
π, gτ

1/gx
2

(2.2)

⇐⇒ e
�
gf(τ)−y

1 , g2

= e
�
gQ(τ)

1 , gτ−x
2

(2.3)

⇐⇒ e
�
g1, g2

 f(τ)−y = e
�
g1, g2

 Q(τ)(τ−x) (2.4)
⇐⇒ f(τ) − y = Q(τ)(τ − x) (mod p) (2.5)

17

2. Preliminaries

Importantly, an adversary should not be able to commit to a polynomial f ∈ Fp[X], and
then later open it at an incorrect evaluation y∗ ̸= f(x). We will later formalize this
notion when dealing with interactive protocols using the KZG scheme as a building block
in Chapter 4.

2.9 Algebraic Group Model
For security analysis of the PLONK protocol, Gabizon et al. use the algebraic group
model (AGM) of Fuchsbauer, Kiltz and Loss [FKL18]. This idealized model lies between
the standard model and the generic group model [Sho97, Mau05], where algorithms are
only able to use group operations in a black-box manner, not being allowed to exploit
the internal representation of the group elements. On the other hand, algorithms in
the AGM are less restricted in that they are allowed to use the concrete encoding of
group elements as long as they can explain any group element in their output as a linear
combination of the group elements they have been provided with as input.

More formally, in the context of security proofs in the AGM, we say that an adversary A
is algebraic if it runs in probabilistic polynomial time (PPT) and satisfies the following:
Whenever it outputs a group element h ∈ G, it also outputs a vector of coefficients
(a1, . . . , an) ∈ Fn

p such that h = &
i∈[n] gai

i , where g1, . . . , gn ∈ G are all the group
elements previously given to A, i.e., the vector “explains” the new group element as a
linear combination of the previously seen group elements.

This model is useful to us in that it allows to directly extract a polynomial from a KZG
commitment [KZG10], as introduced in Section 2.8. In particular, in all the protocols
considered in this thesis, the only group elements given to an adversary will be the
ones contained in the structured reference string

�
g1, gτ

1 , gτ2
1 , . . . , gτd

1 , g2, gτ
2
 ∈ Gd+1

1 ×G2
2.

So, whenever an algebraic adversary outputs a KZG commitment c ∈ G1, it must also
know a representation f1, . . . , fd ∈ Fp such that c = &d

i=0
�
gτ i

1
 fi , implicitly defining the

corresponding polynomial f(X) := (d
j=0 fjXj ∈ F(≤d)

p [X] of degree ≤ d. This will greatly
ease the construction of an appropriate extractor E when proving that a protocol relying
on KZG commitments is knowledge sound (with respect to Definition 2.6) in the AGM.

18

CHAPTER 3
The PLONK Arithmetization

In this chapter, we explore how PLONK transforms a statement about an arithmetic
circuit into an equivalent system of constraints. In the context of zero-knowledge proofs,
this preprocessing step is called arithmetization and plays an essential part in enabling
PLONK’s efficiency.

3.1 The PLONK Constraint System
Gabizon et al. introduce the following constraint system [GWC19, Sec. 6] to represent
any fan-in-two arithmetic circuit C of unlimited fan-out over Fp. Let n denote the number
of gates (without counting private input/output gates as explained later) and m the
number of wires. Let w ∈ Fm

p be the wire assignment. Let the vectors a, b, c ∈ [m]n
index the left input, right input, and output wire of every gate in C, respectively. For
example, the i-th component of a is defined as ai := j, where j ∈ [m] is the index of the
value wj assigned to the left input wire of the i-th gate.

Gate Constraints. As a first step, Gabizon et al. express the computation carried out
by each gate i ∈ [n] via a constraint of the form

(sL)i · wai + (sR)i · wbi
+ (sO)i · wci + (sM)i · wai · wbi

+ (sC)i + (sPI)i = 0, (3.1)

where sL, sR, sO, sM, sC, sPI ∈ Fn
p are selector vectors taking fixed values based on the

gate type as specified in Table 3.1.

It is easy to verify that these constraints ensure the wire assignment w ∈ Fm
p respects

each gate. For example, if the i-th gate is an addition gate, then, by the selector vector
assignment from Table 3.1, the corresponding constraint becomes wai + wbi

− wci = 0,
as required. Accordingly, they are referred to as the gate constraints.

19

3. The PLONK Arithmetization

Table 3.1: Selector vector assignment, where ci denotes the value of the respective
constant gate and xi the value of the respective public input/output gate.

Type (sL)i (sR)i (sO)i (sM)i (sC)i (sPI)i

Addition gate 1 1 −1 0 0 0
Multiplication gate 0 0 −1 1 0 0
Constant gate 1 0 0 0 −ci 0
Public input/output gate 1 0 0 0 0 −xi

Furthermore, we make a distinction between public and private input/output gates, where
only the former count towards the number of gates n. The motivation behind this is that
this constraint system is designed to be used as a relation for proving statements about
arithmetic circuits with a zk-SNARK. In this context, the prover who has the complete
wire assignment w ∈ Fm

p wants to prove it is consistent with the circuit’s gates, including
constant gates and “public” input/output gates whose values represent the verifier’s
public inputs. In particular, the values assigned to all the remaining input/output gates
can be chosen freely by the prover, representing its private inputs. In consequence, we
do not include these “private” input/output gates in the number of gates n, aligning it
with the number of actual gate constraints.

Copy Constraints. Thus far, we are treating the circuit as a collection of independent
gates, completely ignoring the wiring. To properly propagate each gate’s output along
the circuit’s wires, we additionally need to enforce certain equalities between a, b, c,
which we call the copy constraints. For example, suppose the i-th gate’s output is also
the left input to the j-th gate. Then we want the equality aj = ci to hold. To capture
the general case, let d := (a∥b∥c) ∈ [m]3n denote the concatenation of the vectors a, b, c,
and let I1, . . . , Iℓ be a partition of [3n] into ℓ disjoint subsets, each of which satisfies
dj = dk for all j, k ∈ Ii. If we then let σ : [3n] → [3n] be a permutation with ℓ cycles,
spanning one of the subsets I1, . . . , Iℓ each, the copy constraints can be written in a more
condensed form as

∀i ∈ [3n], dσ(i) = di. (3.2)

This works because each cycle in σ creates a chain of equalities for the values in its
corresponding block Ii, i.e., dj = dk for all j, k ∈ Ii.

Note that this constraint system is more general than what we have described here. As
such, it can be extended to capture gates of higher fan-in or to support custom gates.
For example, by setting sL and sR to different values in an addition gate, we can obtain
arbitrary “linear combination gates”.

Example. To better visualize the resulting constraint system, consider the arithmetic
circuit C : F3

p → Fp depicted in Figure 3.1 that computes x4 := (x1 + x2) · (x2 + x3), where
all three inputs x1, x2, x3 are private and only the output x4 is public.

20

3.1. The PLONK Constraint System

x1

+

x2

+

x3

×

x4

w1 w2 w3

w4 w5

w6

Figure 3.1: Example circuit with private inputs x1, x2, x3 and public input x4.

Ignoring the 3 private input gates, we have n = 4 gates and m = 6 wires. Note that even
though the input gate x2 is depicted with two output edges, these correspond to just
a single wire in practice which carries the same value w2. Numbering the 4 gates from
bottom left to top right and using the wire assignment w := (w1, . . . , w6) ∈ F6

p given in
Figure 3.1, the indexing vectors a, b, c ∈ [6]4 take the values

a := (1, 2, 4, 6), b := (2, 3, 5, 6), c := (4, 5, 6, 6).

For example, the first gate is the addition gate with left input wa1 = w1, right input
wb1 = w2, and output wc1 = w4. Note that the fourth gate is the public output gate,
for which, according to the definition of the selector vector assignment in Table 3.1, it is
only essential that the left input wire w6 is indexed correctly by a4 = 6, while b4 and c4
can take arbitrary values (as they are zeroed out in the resulting gate constraint). As a
result, we obtain the following 4 gate constraints:

w1 + w2 − w4 = 0 (3.3)
w2 + w3 − w5 = 0 (3.4)
w4 · w5 − w6 = 0 (3.5)

w6 − x4 = 0 (3.6)

As for the copy constraints, we want the following equalities to hold for the gate outputs
to be properly propagated along the circuit:

a3 = c1, a4 = c3, b3 = c2

Alternatively, let d := (a∥b∥c) ∈ [6]12 and rewrite the copy constraints as:

d3 = d9, d4 = d11, d7 = d10

Then, using cycle notation, define the permutation σ : [12] → [12] as

σ := (1)(2)(3 9)(4 11)(5)(6)(7 10)(8)(12),

21

3. The PLONK Arithmetization

which consists only of fixed points except for the 2-cycles (3 9), (4 11), (7 10) corresponding
to the 3 copy constraints. With this, we obtain the equivalent statement

∀i ∈ [12], dσ(i) = di

for representing the copy constraints.

3.2 Polynomial Representation
An important and very useful property of the PLONK constraint system is that it can be
expressed in its entirety via polynomials, which are the actual objects used to construct
the PLONK protocol. For this purpose, if n is the number of gates in the circuit C as
defined earlier, then let the polynomials A, B, C ∈ F(<n)

p [X] interpolate the values in w
along the vectors a, b, c such that for each i ∈ [n]

A(i) = wai , B(i) = wbi
, C(i) = wci .

Also, let SL, SR, SO, SM, SC, SPI ∈ F(<n)
p [X] interpolate sL, sR, sO, sM, sC, sPI such that for

each i ∈ [n]:

SL(i) = (sL)i, SR(i) = (sR)i, SO(i) = (sO)i,

SM(i) = (sM)i, SC(i) = (sC)i, SPI(i) = (sPI)i.

By substituting in Equation (3.1), this allows us to rewrite the i-th gate constraint as

SL(i)A(i) + SR(i)B(i) + SO(i)C(i) + SM(i)A(i)B(i) + SC(i) + SPI(i) = 0.

To obtain an appropriately adapted form of the copy constraints, let us define the
following evaluation sequence of the polynomials A, B, C for all i ∈ [3n]:

D(i) :=

����
A(i) if i ∈ [n]
B(i − n) if i ∈ (n, 2n]
C(i − 2n) if i ∈ (2n, 3n]

Now we can express the copy constraints from Equation (3.2) as

∀i ∈ [3n], D(σ(i)) = D(i). (3.7)

This representation is a preview of Chapter 6, where we take a closer look at the
permutation argument used by Gabizon et al. to efficiently prove such statements. It is
also the namesake of PLONK, which stands for Permutations over Lagrange-bases for
Oecumenical Noninteractive arguments of Knowledge.

22

CHAPTER 4
Polynomial Commitments

with Cross-Commitment
Proof Aggregation

The PLONK construction relies on a polynomial commitment scheme (PCS) with
cross-commitment proof aggregation. This primitive allows to efficiently open multiple
committed polynomials across several points. For example, the prover might need to
convince the verifier about the evaluations of multiple polynomials f1, . . . , fk ∈ Fp[X] at
a single point x ∈ Fp. Doing this the trivial way would require a number of evaluation
proofs linear in the number of polynomials. To improve on this bound, Gabizon et al.
directly extend the KZG polynomial commitment scheme [KZG10] from Section 2.8,
achieving the same with only a single aggregated evaluation proof. In general, their
construction supports opening k polynomials at ℓ points at a communication cost of ℓ
evaluation proofs.

In this chapter, we first precisely define what we mean by a PCS with cross-commitment
proof aggregation, before presenting the instantiation by Gabizon et al. and proving it
satisfies the necessary security properties.

4.1 Definition
We begin by formally defining the syntax of a polynomial commitment scheme with
cross-commitment proof aggregation.

Definition 4.1 (PCS with Cross-Commitment Proof Aggregation). A polynomial commit-
ment scheme with cross-commitment proof aggregation is a tuple of four PPT algorithms
(Setup, Commit, P, V) with the following syntax:

23

4. Polynomial Commitments with Cross-Commitment Proof Aggregation

• Setup(1λ, d) → srs : A probabilistic algorithm that, given the security parameter 1λ

and a degree bound d ∈ N, outputs a structured reference string srs.

• Commit(srs, f) =: c : A deterministic algorithm that, given a structured reference
string srs (with implicit degree bound d) and a polynomial f ∈ F(≤d)

p [X], outputs a
commitment c to f .

• ⟨P(srs, x, (fi)i∈[k]), V(srs, x, (ci)i∈[k], (yi)i∈[k])⟩ → b : An interactive public-coin pro-
tocol Open with common input srs and a point x ∈ Fp between a prover P who
has the polynomials f1, . . . , fk ∈ F(≤d)

p [X] and a verifier V who is given the alleged
commitments c1, . . . , ck to these polynomials as well as their alleged evaluations
y1, . . . , yk ∈ Fp at x. The purpose of the protocol is to convince V that fi(x) = yi

for all i ∈ [k], i.e., the given polynomial evaluations are correct with respect to their
commitments. At the end of the protocol, V outputs a bit b ∈ {0, 1}, with 1 meaning
accept and 0 reject.

Furthermore, (Setup, Commit, P, V) has to satisfy the following two properties:

Definition 4.2 (Completeness). For all d, k = poly(λ), all polynomials f1, . . . , fk ∈
F(≤d)

p [X], and every point x ∈ Fp:

Pr


srs ← Setup(1λ, d);

(c1, . . . , ck) :=
�
Commit(srs, f1), . . . , Commit(srs, fk)

;

b ← ⟨P(srs, x, (fi)i∈[k]), V(srs, x, (ci)i∈[k], (fi(x))i∈[k])⟩ :
b = 1

 = 1.

Definition 4.3 (Knowledge Soundness in the AGM). For all d = poly(λ) and every
algebraic adversary A, there exists a PPT extractor E such that:

Pr


srs ← Setup(1λ, d);�

(c1, . . . , ck, st1); (f1, . . . , fk) ∈ (F(≤d)
p [X])k

 ← (A ∥ E)(srs);�
(x, y1, . . . , yk) ∈ Fk+1

p , st2
 ← A(st1);

b ← ⟨A(st2), V(srs, x, (ci)i∈[k], (yi)i∈[k])⟩ :
b = 1 ∧ ∃i ∈ [k], yi ̸= fi(x)

 ≤ negl(λ).

Intuitively, the extractor E should be able to extract correct witness polynomials
f1, . . . , fk ∈ F(≤d)

p [X] satisfying fi(x) = yi for all i ∈ [k] from the adversary’s com-
mitments c1, . . . , ck whenever the verifier accepts at the end of the protocol run. Since we
are in the AGM and thus consider algebraic adversaries (as defined in Section 2.9), the
extractor does not only get the adversary’s randomness, but also a vector of coefficients
explaining any group element output by A as a linear combination of its previously seen
group elements. This will greatly ease the construction of an appropriate extractor in
the subsequent proofs, where we will be dealing with commitments made up of group
elements only.

24

4.2. The Construction

4.2 The Construction
Extending the KZG scheme from Section 2.8 by an appropriate Open protocol, Gabizon
et al. give the following instantiation of this definition [GWC19, Sec. 3.1]:

Construction 4.1: KZG with Cross-Commitment Proof Aggregation.

• Setup(1λ, d): Choose random τ ← Fp and output

srs :=
�
g1, gτ

1 , gτ2
1 , . . . , gτd

1 , g2, gτ
2

.

• Commit(srs, f): Given f(X) := (d
i=0 fiX

i ∈ F(≤d)
p [X], output

c :=
d%

i=0

�
gτ i

1
 fi = gf(τ)

1 .

•
�P�

srs, x, (fi)i∈[k]

, V�

srs, x, (ci)i∈[k], (yi)i∈[k]
 �

:

1. V sends a random opening challenge α ← Fp to P.
2. P computes the aggregated quotient polynomial

Q(X) :=
'
i∈[k]

αi−1 · fi(X) − fi(x)
X − x

,

and sends the commitment π := gQ(τ)
1 to V.

3. V accepts iff

e

� %
i∈[k]

�
ci/gyi

1
 αi−1

, g2

�
?= e

�
π, gτ

2/gx
2

.

4.2.1 Completeness
Completeness of the Open protocol follows directly from the following observation:

e

� %
i∈[k]

�
ci/gyi

1
 αi−1

, g2

�
= e

�
π, gτ

2/gx
2
�

(4.1)

⇐⇒ e

� %
i∈[k]

gαi−1(fi(τ)−fi(x))
1 , g2

�
= e

�
gQ(τ)

1 , gτ−x
2

�
(4.2)

⇐⇒ e
�
g1, g2

 (
i∈[k] αi−1(fi(τ)−fi(x)) = e

�
g1, g2

 Q(τ)(τ−x) (4.3)
⇐⇒

'
i∈[k]

αi−1(fi(τ) − fi(x)) = Q(τ)(τ − x) (mod p) (4.4)

25

4. Polynomial Commitments with Cross-Commitment Proof Aggregation

4.2.2 Knowledge Soundness in the AGM
We will argue knowledge soundness of the Open protocol in the AGM by describing
an appropriate PPT extractor E and analyzing the success probability of any algebraic
adversary A to win the game in Definition 4.3. Unlike the original proof given by Gabizon
et al. [GWC19, Sec. 3.1], which relies on a powerful, but informally stated d-DLog-based
lemma [GWC19, Lemma 2.2] about interactive protocols in the AGM where the verifier
output is determined by a generalization of the pairing check in Construction 4.1, we do
this via a direct reduction to the d-DLog assumption in the AGM.

Proof. Let A be an arbitrary algebraic adversary against the knowledge soundness (as
stated in Definition 4.3) of the Open protocol in Construction 4.1. Given srs, A begins
by outputting k commitments c1, . . . , ck ∈ G1. Since A is an algebraic adversary, it
also outputs coefficients fi,1, . . . , fi,d ∈ Fp such that ci = &d

j=0
�
gτ j

1
 fi,j for every i ∈ [k].

We construct a PPT extractor E which, given these coefficients, simply extracts the k
polynomials defined as

fi(X) :=
d'

j=0
fi,jXj ∈ F(≤d)

p [X].

Moreover, when A outputs the commitment π ∈ G1, it must know a representation
q1, . . . , qd ∈ Fp such that π = &d

j=0
�
gτ j

1
 qj , implicitly defining the alleged quotient

polynomial

Q(X) :=
d'

j=0
qjXj ∈ F(≤d)

p [X].

To simplify notation, let

F (X) :=
'
i∈[k]

αi−1(fi(X) − yi) ∈ F(≤d)
p [X].

Then we can bound the probability that A wins the security game in Definition 4.3 by:

Pr
�
b = 1 ∧ ∃i ∈ [k], yi ̸= fi(x)

�
= Pr

�
b = 1 ∧ ∃i ∈ [k], yi ̸= fi(x) ∧ F (X) ≡ Q(X)(X − x)

�
+ Pr

�
b = 1 ∧ ∃i ∈ [k], yi ̸= fi(x) ∧ F (X) ̸≡ Q(X)(X − x)

�
(4.5)

≤ Pr
�
F (X) ≡ Q(X)(X − x)

)) ∃i ∈ [k], yi ̸= fi(x)
�

+ Pr
�
b = 1 ∧ F (X) ̸≡ Q(X)(X − x)

�
(4.6)

To obtain the first probability in Equation (4.6) we used the fact that Pr[A∧B] ≤ Pr[A | B]
for any two events A and B with Pr[B] ̸= 0. We proceed by showing that

Pr
�
F (X) ≡ Q(X)(X − x)

)) ∃i ∈ [k], yi ̸= fi(x)
� ≤ k − 1

p
, (4.7)

which is negligible in λ. For this purpose, assume there is some i∗ ∈ [k] such that
yi∗ ̸= fi∗(x). Observe that F (X) ≡ Q(X)(X − x) implies F (x) = 0 irrespective of A’s

26

4.2. The Construction

choice of the polynomial Q. This means α is a root of the non-zero (due to yi∗ ̸= fi∗(x)),
degree-(k − 1) polynomial

f(Y) :=
'
i∈[k]

Y i−1(fi(x) − yi),

which is the case for at most k − 1 values of α. Therefore, the probability that F (x) = 0,
and thus also the probability that F (X) ≡ Q(X)(X −x), is at most (k−1)/p, establishing
Equation (4.7).
Next, we use a reduction to the d-DLog problem (cf. Definition 2.2) to show that

Pr
�
b = 1 ∧ F (X) ̸≡ Q(X)(X − x)

� ≤ Pr
�B solves d-DLog

�
, (4.8)

where B is a PPT adversary against d-DLog defined as follows:

1. On input
�
g1, gτ

1 , . . . , gτd

1 , g2, gτ
2 , . . . , gτd

2

, define srs :=

�
g1, gτ

1 , . . . , gτd

1 , g2, gτ
2

.

2. Run A(srs), obtaining c1, . . . , ck ∈ G1 and st1. Since A is an algebraic adversary,
it also outputs coefficients fi,1, . . . , fi,d ∈ Fp such that ci = &d

j=0
�
gτ j

1
 fi,j for every

i ∈ [k]. Define the k polynomials fi(X) := (d
j=0 fi,jXj ∈ F(≤d)

p [X].

3. Run A(st1), obtaining x, y1, . . . , yk ∈ Fp and st2.

4. Run the Open protocol ⟨A(st2), B(srs, x, (ci)i∈[k], (yi)i∈[k])⟩ with A and honestly
follow the verifier algorithm V by sending a random α ← Fp. Obtain a commitment
π ∈ G1 as well as its representation q1, . . . , qd ∈ Fp with π = &d

j=0
�
gτ j

1
 qj from A.

Define the polynomial Q(X) := (d
j=0 qjXj ∈ F(≤d)

p [X].

5. Using the same check as V, i.e., Equation (4.1), compute a bit b′ ∈ {0, 1}, and let
F (X) := (

i∈[k] αi−1(fi(X) − yi) ∈ F(≤d)
p [X]. If b′ = 1 but F (X) ̸≡ Q(X)(X − x),

factor the non-zero polynomial F (X) − Q(X)(X − x) ∈ F(≤d+1)
p [X] of degree ≤ d + 1

and return a root τ ′ ∈ Fp with gτ ′
1 = gτ

1 as the solution to the given d-DLog instance.

Since factoring a polynomial over a finite field Fp can be done in time polynomial in
its degree [vzGG13], B clearly runs in PPT. Moreover, B solves d-DLog if and only
if F (τ) = Q(τ)(τ − x) and F (X) ̸≡ Q(X)(X − x), which ensures that the non-zero
polynomial F (X) − Q(X)(X − x) has a root at X = τ . Note that via the equivalence
shown in Equations (4.1) to (4.4), the first of these two conditions corresponds to the case
b′ = 1, i.e., the verifier V accepting in the Open protocol. Thus, we obtain Equation (4.8).
Combined with Equations (4.6) and (4.7), it follows that

Pr
�
b = 1 ∧ ∃i ∈ [k], yi ̸= fi(x)

� ≤ k − 1
p

+ Pr
�B solves d-DLog

�
(4.9)

≤ k − 1
p

+ ϵd-DLog, (4.10)

where ϵd-DLog (with λ implicit) is the hardness of the d-DLog problem, finishing the
proof.

27

4. Polynomial Commitments with Cross-Commitment Proof Aggregation

4.3 The Case of Multiple Evaluation Points
In the final PLONK protocol, we will need to evaluate a polynomial not just at a single
point but at two different points. The natural way to achieve this is by running the Open
protocol of the above scheme multiple times in parallel. To this end, Gabizon et al. include
one further optimization to reduce the number of expensive verifier pairing computations.
Naively, the verifier needs to evaluate two pairings per run of the Open protocol. Suppose
we want to evaluate the polynomials f1, . . . , fk at the ℓ points x1, . . . , xℓ. For the i-th
run of the protocol, let yi,1, . . . , yi,k denote the respective polynomial evaluations at xi.
Also, define Ci := &

j∈[k]
�
cj/gyi,j

1
 αj−1

i to simplify notation. Then the i-th pairing check
(see Equation (4.1)) can be rewritten as:

e

� %
j∈[k]

�
cj/gyi,j

1
 αj−1

i , g2

�
= e

�
πi, gτ

2/gxi
2

(4.11)

⇐⇒ e
�
Ci, g2

= e

�
πi, gτ

2

/e

�
πi, gxi

2

(4.12)
⇐⇒ e

�
Ci · πxi

i , g2

= e
�
πi, gτ

2

(4.13)

This enables the following method for batch randomized evaluation of pairing equations.
Instead of checking the system of ℓ pairing equations

e
�
C1 · πx1

1 , g2

= e
�
π1, gτ

2

...
e
�
Cℓ · πxℓ

ℓ , g2

= e
�
πℓ, gτ

2
 (4.14)

one by one, the verifier only checks a single randomized pairing equation of the form

e

� %
i∈[ℓ]

(Ci · πxi
i)ζi−1

, g2

�
= e

� %
i∈[ℓ]

πζi−1

i , gτ
2

�
(4.15)

over uniformly chosen ζ ∈ Fp. Looking at this as a polynomial equation in X = ζ,
it follows from the Schwartz–Zippel lemma (Lemma 2.1) that, if any of the original
equalities does not hold, then this new check holds with probability at most (ℓ − 1)/p
over the choice of ζ; in other words, it fails with overwhelming probability.

To analyze the knowledge soundness error of the resulting protocol, let us first consider
the variant without the randomized verifier check, where b = 1 denotes the event that all
ℓ verifier checks in Equation (4.14) pass. Then we have:

Pr
�
b = 1 ∧ ∃i ∈ [ℓ], j ∈ [k], yi,j ̸= fj(xi)

�
= Pr

�
. . . ∧ ∀i′ ∈ [ℓ], Fi′(X) ≡ Qi′(X)(X − xi′)

�
+ Pr

�
. . . ∧ ∃i′ ∈ [ℓ], Fi′(X) ̸≡ Qi′(X)(X − xi′)

�
(4.16)

≤ Pr
�∀i′ ∈ [ℓ], Fi′(X) ≡ Qi′(X)(X − xi′)

)) ∃i ∈ [ℓ], j ∈ [k], yi,j ̸= fj(xi)
�

+ Pr
�
b = 1 ∧ ∃i ∈ [ℓ], Fi(X) ̸≡ Qi(X)(X − xi)

�
(4.17)

28

4.3. The Case of Multiple Evaluation Points

≤ Pr
�
Fi(X) ≡ Qi(X)(X − xi)

)) ∃i ∈ [ℓ], j ∈ [k], yi,j ̸= fj(xi)
�

+ Pr
�
b = 1 ∧ ∃i ∈ [ℓ], Fi(X) ̸≡ Qi(X)(X − xi)

�
(4.18)

≤ k − 1
p

+ ϵd-DLog (4.19)

Using an analogous analysis as in the proof with just a single evaluation point x ∈ Fp

from Section 4.2.2, we are actually able to obtain the same upper bound. So overall,
including the randomized verifier check from Equation (4.15), the general variant of the
Open protocol is knowledge sound (in the AGM) with probability

Pr
�
b = 1 ∧ ∃i ∈ [ℓ], j ∈ [k], yi,j ̸= fj(xi)

� ≤ k − 1
p

+ ℓ − 1
p

+ ϵd-DLog, (4.20)

where ϵd-DLog is the hardness of the d-DLog problem.

As previously mentioned, the PLONK construction requires the opening of polynomial
commitments at no more than two points. For this reason, we describe the general Open
protocol only in the case of two distinct evaluation points x1, x2 ∈ Fp and the index sets
I1 := {i1,1, . . . , i1,k1}, I2 := {i2,1, . . . , i2,k2} with I1 ∪ I2 = [k], denoting which of the k
polynomials are evaluated at x1 and/or x2, respectively:

Construction 4.2: Open Protocol with 2 Points.�P�
srs, x1, x2, I1, I2, (fj)j∈[k]

, V�

srs, x1, x2, I1, I2, (cj)j∈[k], (y1,j)j∈[k1], (y2,j)j∈[k2]
 �

:

1. V sends two random opening challenges α1, α2 ← Fp to P.

2. P computes the aggregated quotient polynomials

Q1(X) :=
'

j∈[k1]
αj−1

1 · fi1,j (X) − fi1,j (x1)
X − x1

,

Q2(X) :=
'

j∈[k2]
αj−1

2 · fi2,j (X) − fi2,j (x2)
X − x2

,

and sends the commitments π1 := gQ1(τ)
1 , π2 := gQ2(τ)

1 to V.

3. V chooses a random multipoint evaluation challenge ζ ← Fp, computes

C1 :=
%

j∈[k1]

�
ci1,j /gy1,j

1
 αj−1

1 , C2 :=
%

j∈[k2]

�
ci2,j /gy2,j

1
 αj−1

2 ,

and accepts iff

e
�
C1 · πx1

1 · �
C2 · πx2

2
 ζ

, g2
� ?= e

�
π1 · πζ

2 , gτ
2

.

29

CHAPTER 5
Polynomial Protocols

In this chapter, we present an iterative series of protocols for proving statements about
polynomials until obtaining the actual protocol used in PLONK. As a central building
block, we rely on polynomial commitments and the interactive Open protocol from the
previous chapter to achieve the subsequent constructions.

Since completeness of all the protocols presented in this chapter follows by inspection,
we do not argue it explicitly. We also do not discuss whether these protocols are zero-
knowledge, as this will be achieved through a specific modification of the main PLONK
protocol described in Chapter 7.

5.1 Checking Polynomial Identities
As a first building block, we will consider a succinct protocol for proving polynomial
identities. For this purpose, assume there is a set of ℓ public polynomials f1, . . . , fℓ ∈ Fp[X]
and a set of t private polynomials fℓ+1, . . . , fℓ+t ∈ Fp[X], between which we want to show
that certain identities hold. For example, given two public polynomials f1, f2, we might
want to show that f2 evenly divides f1 by proving the identity f1(X) ≡ f2(X) · f3(X)
for some private witness polynomial f3. Rewritten as f1(X) − f2(X) · f3(X) ≡ 0, this
can be seen as the following polynomial identity:

F (X) := G
�
f1(X), f2(X), f3(X)

 ≡ 0,

where G ∈ Fp[X1, X2, X3] is the multivariate polynomial G(X1, X2, X3) := X1 − X2 · X3.

In general, we want to prove k polynomial identities of the form

Fi(X) := Gi
�
X, fµ(i,1)(vi,1(X)), . . . , fµ(i,Mi)(vi,Mi(X))

 ≡ 0,

where for each i ∈ [k], there are Mi = poly(λ) polynomials fµ(i,1), . . . , fµ(i,Mi) selected
from {f1, . . . , fℓ+t} according to a mapping µ : {(i, j)}i∈[k],j∈[Mi] → [ℓ + t]. Moreover,

31

5. Polynomial Protocols

the reason for not directly evaluating these polynomials at X, but instead introducing
the input selecting polynomials vi,1, . . . , vi,Mi ∈ Fp[X], is to also capture polynomial
identities such as f1(X) − f2(X + 1) ≡ 0.

Formally, let d, D, t, ℓ, k = poly(λ) and define the following indexed relation to capture
this scenario:

R(d,D,t,ℓ) :=

����������������
(i, x, w)

))))))))))))))

i =

�(G1, . . . , Gk) ∈×i∈[k] F
(≤D)
p [X, X1, . . . , XMi],

(vi,1, . . . , vi,Mi)i∈[k] ∈×i∈[k](F(≤d)
p [X])Mi ,

µ : {(i, j)}i∈[k],j∈[Mi] → [ℓ + t]

# ,

x = (f1, . . . , fℓ) ∈ (F(≤d)
p [X])ℓ,

w = (fℓ+1, . . . , fℓ+t) ∈ (F(≤d)
p [X])t,

∀i ∈ [k] : Gi
�
X, fµ(i,1)(vi,1(X)), . . . , fµ(i,Mi)(vi,Mi(X))

 ≡ 0

����������������
With this, we can finally describe the protocol introduced by Gabizon et al. for proving
statements in R(d,D,t,ℓ). It relies on the Open protocol from Construction 4.2, or more
precisely, its generalization to an arbitrary amount of evaluation points as described at
the beginning of Section 4.3.

Construction 5.1: The (d, D, t, ℓ)-Polynomial Protocol.

• Structured reference string: srs :=
�
g1, gτ

1 , gτ2
1 , . . . , gτd

1 , g2, gτ
2

.

• Preprocessed input: The public polynomials f1, . . . , fℓ ∈ F(≤d)
p [X] and their

commitments (c1, . . . , cℓ) :=
�
gf1(τ)

1 , . . . , gfℓ(τ)
1

.

•
�P�

srs, i, (fi)i∈[ℓ+t]

, V�

srs, i, (ci)i∈[ℓ]
 �

:

1. P commits to its polynomials fℓ+1, . . . , fℓ+t ∈ F(≤d)
p [X] and sends the commit-

ments (cℓ+1, . . . , cℓ+t) :=
�
gfℓ+1(τ)

1 , . . . , gfℓ+t(τ)
1

to V.

2. V chooses a random evaluation challenge δ ← Fp, computes all the unique
evaluation points in

�
vi,1(δ), . . . , vi,Mi(δ)

i∈[k], and sends δ to P.

3. P replies with all the unique evaluations contained in (yi,1, . . . , yi,Mi)i∈[k] :=�
fµ(i,1)(vi,1(δ)), . . . , fµ(i,Mi)(vi,Mi(δ))

i∈[k].

4. Using the Open protocol, V verifies the correctness of the evaluations received
from P with respect to the commitments c1, . . . , cℓ+t.

5. V accepts iff Gi(δ, yi,1, . . . , yi,Mi)
?= 0 for all i ∈ [k].

5.1.1 Knowledge Soundness in the AGM

We prove that the protocol from Construction 5.1 is knowledge sound in the AGM by
showing existence of an appropriate extractor E such that Definition 2.6 is satisfied.

32

5.1. Checking Polynomial Identities

Proof. We first argue knowledge soundness of the (d, D, t, ℓ)-polynomial protocol in the
case where V only checks a single polynomial identity

F (X) := G(X, f1(v1(X)), . . . , fM (vM (X))) ≡ 0.

When the algebraic adversary A outputs the commitments cℓ+1, . . . , cℓ+t ∈ G1, it also
returns coefficients fℓ+i,1, . . . , fℓ+i,d ∈ Fp such that cℓ+i = &d

j=0
�
gτ j

1
 fℓ+i,j for every

i ∈ [t], implicitly defining the polynomials fℓ+i(X) := (d
j=0 fℓ+i,jXj ∈ F(≤d)

p [X]. Since
the extractor is given A’s randomness, we construct a PPT extractor E which directly
extracts the polynomials fℓ+1, . . . , fℓ+t ∈ F(≤d)

p [X] from A’s commitments as the witness.

From this point on, we will show that the probability that the verifier accepts but
F (X) ̸≡ 0 is negligible. Let A ∧ B denote the event in the Open protocol that

• V accepts P’s alleged evaluations y1, . . . , yM (subevent A),

• while yi∗ ̸= fi∗(vi∗(δ)) for some i∗ ∈ [M] (subevent B).

By the knowledge soundness of the Open protocol, we have

Pr[A ∧ B] := ϵOpen ≤ negl(λ). (5.1)

Via the Schwartz–Zippel lemma, it follows that for a random δ ∈ Fp

Pr[F (δ) = 0 | F (X) ̸≡ 0] ≤ deg F

p
. (5.2)

With this, we can bound the probability that V accepts but F (X) ̸≡ 0 to finish the proof:

Pr[V accepts ∧ F (X) ̸≡ 0] = Pr[(A ∧ G(δ, y1, . . . , yM) = 0) ∧ F (X) ̸≡ 0] (5.3)

= Pr[A ∧ G(δ, y1, . . . , yM) = 0 ∧ F (X) ̸≡ 0 ∧ B]

+ Pr[A ∧ G(δ, y1, . . . , yM) = 0 ∧ F (X) ̸≡ 0 ∧ B̄] (5.4)

≤ Pr[A ∧ B] + Pr[F (δ) = 0 ∧ F (X) ̸≡ 0] (5.5)

≤ Pr[A ∧ B] + Pr[F (δ) = 0 | F (X) ̸≡ 0] (5.6)

≤ ϵOpen + deg F

p
(5.7)

≤ ϵOpen + d2D

p
(5.8)

To obtain the second probability in Equation (5.5), we used the fact that B̄, i.e.,
yi = fi(vi(δ)) for all i ∈ [M], and G(δ, y1, . . . , yM) = 0 implies F (δ) = 0. Note that the
overall probability is negligible in λ.

33

5. Polynomial Protocols

It is straightforward to adapt this analysis (and the event A ∧ B) to the case of checking
multiple polynomial identities Fi(X) ≡ 0 for i ∈ [k] in a single run of the protocol,
obtaining the same upper bound for knowledge soundness:

Pr[V accepts ∧ ∃i∗ ∈ [k], Fi∗(X) ̸≡ 0]

≤ Pr[A ∧ B] + Pr[∀i ∈ [k], Fi(δ) = 0 ∧ ∃i∗ ∈ [k], Fi∗(X) ̸≡ 0] (5.9)

≤ Pr[A ∧ B] + Pr[∀i ∈ [k], Fi(δ) = 0 | ∃i∗ ∈ [k], Fi∗(X) ̸≡ 0] (5.10)

≤ Pr[A ∧ B] + Pr[Fi∗(δ) = 0 | ∃i∗ ∈ [k], Fi∗(X) ̸≡ 0] (5.11)

≤ ϵOpen +
maxi∈[k] deg Fi

p
(5.12)

≤ ϵOpen + d2D

p
(5.13)

5.2 Ranged Polynomial Protocol
We next look into the actual primitive needed for proving statements in the PLONK
constraint system from Chapter 3. Let S ⊂ Fp be a subset of the field Fp of size
|S| ≤ d2D = poly(λ) and define the vanishing polynomial ZS(X) := &

a∈S(X − a), whose
roots are exactly given by S. Instead of proving polynomial identities of the form

F (X) := G(X, f1(v1(X)), . . . , fM (vM (X))) ≡ 0,

we want to prove that

F (a) = G(a, f1(v1(a)), . . . , fM (vM (a))) = 0 for all a ∈ S,

which we call an S-ranged polynomial identity. Note that this is equivalent to F being
divisible by ZS . Thus, one can trivially extend the protocol in the previous section to
obtain an S-ranged polynomial protocol by additionally making the prover commit to
the quotient polynomial T obtained from dividing F by ZS . Security of the resulting
protocol follows directly from the polynomial protocol, because if the polynomial identity
F (X) − T (X) · ZS(X) ≡ 0 holds for some T ∈ Fp[X], then F (a) = 0 for all a ∈ S.

In the case of checking only a single ranged polynomial identity, the required communi-
cation overhead from committing to the resulting quotient polynomial consists of one
group element, which can be considered optimal. However, using this approach to prove
multiple polynomial identities over the same range S results in a communication overhead
linear in the number of identities. To address this issue, Gabizon et al. introduce the
following lemma [GWC19, Claim 4.6], enabling a batch randomization approach that
reduces the overhead to a single commitment independent of the number of S-ranged
identities.

34

5.2. Ranged Polynomial Protocol

Lemma 5.1 (Claim 4.6). Let F1, . . . , Fk ∈ Fp[X], S ⊂ Fp, and ZS(X) := &
a∈S(X − a).

Define the polynomial F (X) := (
i∈[k] αi−1 · Fi(X) over a random α ∈ Fp. Then

Pr

ZS | F

))) ∃i∗ ∈ [k], ZS ∤ Fi∗
�

≤ k − 1
p

over the choice of α.

Proof. Assume ZS ∤ Fi∗ for some i∗ ∈ [k]. We can write Fi∗ = Q · ZS + R, where Q is
the quotient polynomial and R is the non-zero remainder polynomial of degree < deg ZS .
Let x ∈ S be such that ZS(x) = 0 but R(x) ̸= 0 (such an x must exist, since ZS ∤ R).
Then ZS | F implies F (x) = 0, giving us

F (x) =
'

i∈[k],i ̸=i∗
αi−1 · Fi(x) + αi∗−1 · R(x) = 0. (5.14)

This means α must be a root of the non-zero polynomial

f(Y) :=
'

i∈[k],i ̸=i∗
Y i−1 · Fi(x) + Y i∗−1 · R(x), (5.15)

which is the case for at most k − 1 values of α, finishing the proof.

Let d̂ := max(d, |S|, d2D − |S|). Formally, the S-ranged protocol [GWC19, Sec. 4.2]
described in Construction 5.2 allows to prove statements in the following relation:

RS
(d,D,t,ℓ) :=

��������������������
(i, x, w)

))))))))))))))))

i =

�(G1, . . . , Gk) ∈×i∈[k] F
(≤D)
p [X, X1, . . . , XMi],

(vi,1, . . . , vi,Mi)i∈[k] ∈×i∈[k](F(≤d)
p [X])Mi ,

µ : {(i, j)}i∈[k],j∈[Mi] → [ℓ + t]

# ,

x = (f1, . . . , fℓ) ∈ (F(≤d)
p [X])ℓ,

w = (fℓ+1, . . . , fℓ+t) ∈ (F(≤d̂)
p [X])t,

∀i ∈ [k] : ∀a ∈ S, Fi(a) = 0 ∧ deg Fi ≤ d̂ + |S|, where
Fi(X) := Gi

�
X, fµ(i,1)(vi,1(X)), . . . , fµ(i,Mi)(vi,Mi(X))

��������������������
The notable difference to the previous relation is that the witness polynomials f1, . . . , ft

are now allowed to be of degree up to d̂ := max(d, |S|, d2D − |S|) as opposed to just d.
The reason for this is that we will be committing to ZS and the quotient polynomial
T :=

�(
i∈[k] αi−1 · Fi

/ZS over random α ∈ Fp, which requires an SRS of degree at least

|S| and d2D − |S|, respectively, allowing the prover to commit to witness polynomials
of the same degree. This, however, can potentially create a situation where the degree
of the quotient polynomial lies outside the range of the SRS, i.e, is greater than d̂. To
obtain a complete protocol with respect to RS

(d,D,t,ℓ), we have the additional condition
that deg Fi ≤ d̂ + |S| for all i ∈ [k], ensuring that deg T ≤ d̂ no matter the value of α.

35

5. Polynomial Protocols

Construction 5.2: S-Ranged (d, D, t, ℓ)-Polynomial Protocol.

• Structured reference string: srs :=
�
g1, gτ

1 , gτ2
1 , . . . , gτmax(d,|S|,d2D−|S|)

1 , g2, gτ
2

.

• Preprocessed input: The public polynomials f1, . . . , fℓ ∈ F(≤d)
p [X], the polynomial

ZS ∈ F(≤|S|)
p [X], and their commitments (c1, . . . , cℓ, cZ) :=

�
gf1(τ)

1 , . . . , gfℓ(τ)
1 , gZS(τ)

1

.

•
�P�

srs, i, (fi)i∈[ℓ+t]

, V�

srs, i, (ci)i∈[ℓ], cZ

 �
:

1. P commits to its polynomials fℓ+1, . . . , fℓ+t ∈ F(≤d)
p [X] and sends the commit-

ments (cℓ+1, . . . , cℓ+t) :=
�
gfℓ+1(τ)

1 , . . . , gfℓ+t(τ)
1

to V.

2. V sends a random quotient challenge α ← Fp to P.

3. P computes the quotient polynomial T (X) :=
(

i∈[k] αi−1·Fi(X)
ZS(X) ∈ F(≤d2D−|S|)

p [X]
and sends the commitment cT := gT (τ)

1 to V.
4. V chooses a random evaluation challenge δ ← Fp, computes all the unique

evaluation points in
�
vi,1(δ), . . . , vi,Mi(δ)

i∈[k], and sends δ to P.

5. P replies with yT := T (δ), yZ := ZS(δ), and all the unique evaluations in
(yi,1, . . . , yi,Mi)i∈[k] :=

�
fµ(i,1)(vi,1(δ)), . . . , fµ(i,Mi)(vi,Mi(δ))

i∈[k].

6. Using the Open protocol, V verifies the correctness of the evaluations received
from P with respect to the commitments c1, . . . , cℓ+t, cT , cZ .

7. V accepts iff (
i∈[k] αi−1 · Gi(δ, yi,1, . . . , yi,Mi)

?= yT · yZ .

5.2.1 Knowledge Soundness in the AGM
Proof. This proof follows the same structure as the proof that the (d, D, t, ℓ)-polynomial
protocol is knowledge sound given in Section 5.1.1, which is why we only discuss the
adapted parts.

The first notable difference is the size of the SRS; instead of only allowing commitments up
to degree-d polynomials, the new SRS is of degree d̂ := max(d, |S|, d2D − |S|) depending
on the choice of d, D, and |S|. This means a malicious prover A could commit to witness
polynomials of degree > d, which is accounted for in the definition of RS

(d,D,t,ℓ). After
the extractor E outputs f1, . . . , ft ∈ F(≤d̂)

p [X] as A’s witness, we will instead bound the
probability that the verifier accepts but there is an i∗ ∈ [k] such that ZS ∤ Fi∗ (which is
equivalent to Fi∗(a) ̸= 0 for some a ∈ S) or there is a j∗ ∈ [k] such that deg Fj∗ > d̂ + |S|.
Let A and B stand for the same events as before, albeit adjusted with respect to the new
protocol. Furthermore, let C denote the event that deg Fj∗ > d̂ + |S| for some j∗ ∈ [k],
and let E denote that deg

�(
i∈[k] αi−1 · Fi

> d̂ + |S|. Also, since we are in the AGM, let

T ∈ F(≤d̂)
p [X] be the alleged quotient polynomial committed to by A.

We begin by proving the following claim, bounding a certain probability over the choice

36

5.2. Ranged Polynomial Protocol

of V’s quotient challenge α ∈ Fp, which is used later in the proof.

Claim 5.1. Over the choice of α ∈ Fp, we have

Pr

 '

i∈[k]
αi−1 · Fi(δ) = T (δ) · ZS(δ) ∧ C ∧ ZS |

'
i∈[k]

αi−1 · Fi

�
≤ max(d̂dD,d̂+|S|)+k−1

p .

Proof. We derive this upper bound as follows:

Pr

 '

i∈[k]
αi−1 · Fi(δ) = T (δ) · ZS(δ) ∧ C ∧ ZS |

'
i∈[k]

αi−1 · Fi

�
= Pr

 '
i∈[k]

αi−1 · Fi(δ) = T (δ) · ZS(δ) ∧ C ∧ ZS |
'
i∈[k]

αi−1 · Fi ∧ E
�

+ Pr

 '

i∈[k]
αi−1 · Fi(δ) = T (δ) · ZS(δ) ∧ C ∧ ZS |

'
i∈[k]

αi−1 · Fi ∧ Ē
�

(5.16)

≤ Pr

 '

i∈[k]
αi−1 · Fi(δ) = T (δ) · ZS(δ) ∧

'
i∈[k]

αi−1 · Fi(X) ̸≡ T (X) · ZS(X)
�

+ Pr

C ∧ ZS |

'
i∈[k]

αi−1 · Fi ∧ Ē
�

(5.17)

≤ Pr

 '

i∈[k]
αi−1 · Fi(δ) = T (δ) · ZS(δ)

))) '
i∈[k]

αi−1 · Fi(X) ̸≡ T (X) · ZS(X)
�

+ Pr

C

))) ZS |
'
i∈[k]

αi−1 · Fi ∧ Ē
�

(5.18)

≤ deg
�(

i∈[k] αi−1 · Fi − T · ZS

p

+ k − 1
p

(5.19)

≤ max(d̂dD, d̂ + |S|) + k − 1
p

(5.20)

To obtain the first probability in Equation (5.17), we used the fact that E implies(
i∈[k] αi−1 ·Fi(X) ̸≡ T (X) ·ZS(X) for any T ∈ F(≤d̂)

p [X]. To derive the second probability
in Equation (5.19), i.e.,

Pr

C

))) ZS |
'
i∈[k]

αi−1 · Fi ∧ Ē
�

≤ k − 1
p

, (5.21)

write αi−1 · Fi = Qi · ZS + Ri for each i ∈ [k], where Qi and Ri are the respective quotient
and remainder polynomials such that deg Ri < deg ZS . Then'

i∈[k]
αi−1 · Fi =

'
i∈[k]

(Qi · ZS + Ri) = ZS ·
'
i∈[k]

Qi +
'
i∈[k]

Ri. (5.22)

37

5. Polynomial Protocols

Since ZS divides (
i∈[k] αi−1 · Fi and deg

�(
i∈[k] Ri

< deg ZS , it must be the case that(

i∈[k] Ri ≡ 0. Considering what happens if the event C also applies, we see that

deg
�(

i∈[k] Qi

�
= deg

��(
i∈[k] αi−1 · Fi

/ZS

�
≤ d̂ < deg Qj∗ , (5.23)

where the second-to-last inequality follows from Ē. Next, assuming w.l.o.g. that Qj∗

has the largest degree, let us write Qi(X) = αi−1 · (deg Qj∗
j=0 qi,jXj for every i ∈ [k].

Then, for deg
�(

i∈[k] Qi
 ≤ d̂, the following deg(Qj∗) − d̂ equations have to hold over the

randomness of α ∈ Fp:

q1,d̂+1 + α · q2,d̂+1 + · · · + αk−1 · qk,d̂+1 = 0
q1,d̂+2 + α · q2,d̂+2 + · · · + αk−1 · qk,d̂+2 = 0

...
...

...
...

q1,deg Qj∗ + α · q2,deg Qj∗ + · · · + αk−1 · qk,deg Qj∗ = 0

In either case, at least the final equation has to be satisfied, which again can be seen
as a polynomial equation in X = α and bounded by the probability (k − 1)/p, since
qj∗,deg Qj∗ ̸= 0.

With this, we are ready to bound our actual probability of interest:

Pr
�V accepts ∧ (i, x, w) /∈ RS

(d,D,t,ℓ)
�

= Pr

�

A ∧
'
i∈[k]

αi−1 · Gi(δ, yi,1, . . . , yi,Mi) = yT · yZ

 ∧ �∃i∗ ∈ [k], ZS ∤ Fi∗ ∨ C
 �

(5.24)

= Pr

A ∧

'
i∈[k]

αi−1 · Gi(δ, yi,1, . . . , yi,Mi) = yT · yZ ∧ �∃i∗ ∈ [k], ZS ∤ Fi∗ ∨ C
 ∧ B

�
+ Pr

A ∧

'
i∈[k]

αi−1 · Gi(δ, yi,1, . . . , yi,Mi) = yT · yZ ∧ �∃i∗ ∈ [k], ZS ∤ Fi∗ ∨ C
 ∧ B̄

�
(5.25)

≤ Pr[A ∧ B] + Pr

 '

i∈[k]
αi−1 · Fi(δ) = T (δ) · ZS(δ) ∧ �∃i∗ ∈ [k], ZS ∤ Fi∗ ∨ C

 �
(5.26)

The second probability in Equation (5.26) follows from the fact that the event B̄ and(
i∈[k] αi−1 · Gi(δ, yi,1, . . . , yi,Mi) = yT · yZ implies (

i∈[k] αi−1 · Fi(δ) = T (δ) · ZS(δ).

38

5.2. Ranged Polynomial Protocol

Continuing, we arrive at the following final upper bound:

Pr[A ∧ B] + Pr

 '

i∈[k]
αi−1 · Fi(δ) = T (δ) · ZS(δ) ∧ �∃i∗ ∈ [k], ZS ∤ Fi∗ ∨ C

 �
= Pr[A ∧ B]

+ Pr

 '

i∈[k]
αi−1 · Fi(δ) = T (δ) · ZS(δ) ∧ �∃i∗ ∈ [k], ZS ∤ Fi∗ ∨ C

 ∧ ZS |
'
i∈[k]

αi−1 · Fi

�
+ Pr

 '
i∈[k]

αi−1 · Fi(δ) = T (δ) · ZS(δ) ∧ �∃i∗ ∈ [k], ZS ∤ Fi∗ ∨ C
 ∧ ZS ∤

'
i∈[k]

αi−1 · Fi

�
(5.27)

≤ Pr[A ∧ B]

+ Pr

 '

i∈[k]
αi−1 · Fi(δ) = T (δ) · ZS(δ) ∧ ∃i∗ ∈ [k], ZS ∤ Fi∗ ∧ ZS |

'
i∈[k]

αi−1 · Fi

�
+ Pr

 '
i∈[k]

αi−1 · Fi(δ) = T (δ) · ZS(δ) ∧ C ∧ ZS |
'
i∈[k]

αi−1 · Fi

�
+ Pr

 '
i∈[k]

αi−1 · Fi(δ) = T (δ) · ZS(δ) ∧ �∃i∗ ∈ [k], ZS ∤ Fi∗ ∨ C
 ∧ ZS ∤

'
i∈[k]

αi−1 · Fi

�
(5.28)

≤ Pr[A ∧ B]

+ Pr

ZS |

'
i∈[k]

αi−1 · Fi

))) ∃i∗ ∈ [k], ZS ∤ Fi∗
�

+ Pr

 '

i∈[k]
αi−1 · Fi(δ) = T (δ) · ZS(δ) ∧ C ∧ ZS |

'
i∈[k]

αi−1 · Fi

�
+ Pr

 '
i∈[k]

αi−1 · Fi(δ) = T (δ) · ZS(δ)
))) ZS ∤

'
i∈[k]

αi−1 · Fi

�
(5.29)

≤ ϵOpen + k − 1
p

+ max(d̂dD, d̂ + |S|) + k − 1
p

+
deg

�(
i∈[k] αi−1 · Fi − T · ZS

p

(5.30)

≤ ϵOpen + 2 · max(d̂dD, d̂ + |S|) + k − 1
p

(5.31)

To derive the second, third, and fourth part of the probability bound in Equation (5.30),
respectively, we used Lemma 5.1, Claim 5.1, and the fact that the event ZS ∤

(
i∈[k] αi−1·Fi

is equivalent to (
i∈[k] αi−1 · Fi(X) − T (X) · ZS(X) ̸≡ 0 for any choice of T ∈ Fp[X],

which means that the probability that (
i∈[k] αi−1 · Fi(δ) = T (δ) · ZS(δ) over random

δ ∈ Fp can be bounded accordingly by the Schwartz–Zippel lemma. Since the overall
probability is negligible in λ, this concludes the proof.

On a final note, we want to remark that the maximum degree of the protocol’s SRS can be
even greater than max(d, |S|, d2D−|S|) without breaking knowledge soundness (assuming

39

5. Polynomial Protocols

this bound is adjusted accordingly in the definition of RS
(d,D,t,ℓ)). This has implications

for the reusability of an already existing, trusted SRS. To be more concrete, in our case
the parameters of the relation RS

(d,D,t,ℓ) will depend on the particular arithmetic circuit
we want to prove statements about. Nonetheless, once we fix the maximum supported
circuit size and generate an appropriate SRS, it can also be used to prove statements
about arithmetic circuits of smaller size without impairing security.

5.3 Reducing the Number of Field Elements
In the final PLONK protocol, Gabizon et al. use an optimized version of the S-ranged
polynomial protocol, which relies on a clever method suggested by Mary Maller to reduce
the number of field elements sent by the prover [GWC19, Sec. 4.2]. In the current version
of the protocol, P has to send the evaluations at δ of all the polynomials needed by V to
check if (

i∈[k] αi−1 · Fi(δ) ?= T (δ) · ZS(δ).

To see how we can do better, let us look at an illustrating example. Suppose V wants
to check the identity f1(X) − f2(X) · f3(X) ≡ 0. Instead of P sending the values
f1(δ), f2(δ), f3(δ) and V checking f1(δ) − f2(δ) · f3(δ) = 0, we can use the homomorphic
property of the KZG polynomial commitment scheme to have P only send f2(δ). V then
checks whether the polynomial L(X) := f1(X) − f2(δ) · f3(X) evaluates to zero at δ,
which can be directly integrated into the Open protocol used in step 6. The important
observation is that P does not have to commit to L, as V can compute this commitment
by itself using the commitments it already knows. In this example, V can use the
commitments c1 := gf1(τ)

1 and c3 := gf3(τ)
1 to compute

cL := c1/c
f2(δ)
3 = gf1(τ)

1 /
�
gf3(τ)

1
 f2(δ) = gf1(τ)−f2(δ)·f3(τ)

1 = gL(τ)
1 .

We refer to L as the linearization polynomial. Note that it is not a prerequisite for
this optimization to work that all the selector polynomials are of the form X as in this
example. In fact, if we instead had f1(X + 1) − f2(X) · f3(X + 1) ≡ 0, we could still use
the same linearization polynomial as before but have P prove that it evaluates to 0 at
δ + 1 rather than at δ.

For simplicity, let us assume V only checks a single S-ranged identity of the form

F (X) := G(X, f1(v1(X)), . . . , fM (vM (X))),

where F (a) = 0 supposedly holds for all a ∈ S. To describe the general method, let
IL ⊆ [M] be the largest subset of [M] such that

• vi ≡ vj for all i, j ∈ IL, and

• each monomial in G(X, X1, . . . , XM) contains at most one variable Xi with i ∈ IL.

40

5.3. Reducing the Number of Field Elements

These two conditions ensure that V can compute the commitment to the resulting
linearization polynomial

L(X) := G(δ, f1(δ1), . . . , fM (δM)) − ZS(δ) · T (X),

where δi :=
�

X if i ∈ IL

vi(δ) otherwise
.

Note that by maximizing the size of the subset IL ⊆ [M], we effectively minimize the
number of evaluations the prover has to send to V.

In summary, the optimized version of the S-ranged polynomial protocol from Construc-
tion 5.2 no longer contains step 7 and modifies steps 5–6 in the following way:

5. P replies with yZ := ZS(δ) and (yi)i∈[M]\IL
:=

�
fi(vi(δ))

i∈[M]\IL

.

6. V computes the commitment to the linearization polynomial L and uses the Open
protocol to verify the correctness of the evaluations received from P, including
L(vi(δ)) = 0 for an arbitrary i ∈ IL.

To prove this variant of the S-ranged polynomial protocol remains knowledge sound in
the AGM, we need to take into account that V accepting is now only tied to the event A,
i.e., V accepting in the Open protocol. Thus, we have:

Pr
�V accepts ∧ (i, x, w) /∈ RS

(d,D,t,ℓ)
�

= Pr
�
A ∧ �∃i∗ ∈ [k], ZS ∤ Fi∗ ∨ C

 �
(5.32)

= Pr
�
A ∧ �∃i∗ ∈ [k], ZS ∤ Fi∗ ∨ C

 ∧ B
�

+ Pr
�
A ∧ �∃i∗ ∈ [k], ZS ∤ Fi∗ ∨ C

 ∧ B̄
�

(5.33)

≤ Pr[A ∧ B] + Pr

 '

i∈[k]
αi−1 · Fi(δ) = T (δ) · ZS(δ) ∧ �∃i∗ ∈ [k], ZS ∤ Fi∗ ∨ C

 �
(5.34)

≤ ϵOpen + 2 · max(d̂dD, d̂ + |S|) + k − 1
p

(5.35)

To derive the second probability in Equation (5.34), we used the fact that B̄ implies
L(vj(δ)) = (

i∈[k] αi−1 · Fi(δ) − T (δ) · ZS(δ) = 0 for any j ∈ IL. This is the case because
B̄ means that all the evaluations sent by the prover are correct, including L(vj(δ)) = 0,
and because the commitment to L computed by the verifier is the commitment to the
correct polynomial. The final bound is then obtained via the same steps as used in the
proof of the original protocol’s knowledge soundness from Equation (5.26) on.

41

CHAPTER 6
Permutation Argument

Having established the S-ranged polynomial protocol, proving that the wire polynomials
A, B, C from Section 3.2 satisfy all the gate constraints is trivial; in fact, such a proof is
meaningless as it treats the circuit as a collection of independent gates. This is where
the copy constraints come into play, ensuring that the gate outputs are being properly
propagated along the circuit’s wires. Rather than directly proving all the necessary
equalities between the wire polynomials, recall that we can instead prove the following
equivalent statement from Equation (3.7):

∀i ∈ [3n], D(σ(i)) = D(i), (6.1)

where D(i) is the evaluation sequence of A, B, C, and σ : [3n] → [3n] is a permutation
containing certain cycles as explained in Chapter 3. Gabizon et al. describe a more
general method to achieve this goal. In the following, we explain their technique, which
is at the heart of PLONK and is referred to as the permutation argument.

Towards this goal, let f1, . . . , fk, g1, . . . , gk ∈ F(≤d)
p [X] be polynomials and σ : [kn] → [kn]

a permutation. Set H := ⟨ω⟩, where ω is a primitive n-th root of unity in Fp, i.e., n ∈ N>0
is the smallest positive integer satisfying ωn = 1. This makes H an order-n subgroup
of F∗

p, i.e, H = {ω0, ω1, . . . , ωn−1}. Recalling Section 2.7 on Lagrange interpolation, for
every i ∈ [n], we denote by Li ∈ F(<n)

p [X] the Lagrange polynomial with Li(ωi) = 1 and
Li(ωj) = 0 for all j ̸= i ∈ [n], i.e., {Li}i∈[n] is a Lagrange basis for H. Next, define the
evaluation sequences (f(1), . . . , f(kn)), (g(1), . . . , g(kn)) ∈ Fkn

p of the given polynomials over
H by

f((i−1)n+j) := fi(ωj), g((i−1)n+j) := gi(ωj) (6.2)

for all i ∈ [k], j ∈ [n]. To better visualize this notation, consider the resulting evaluation
sequence of the polynomials f1, . . . , fk:�

f(1), f(2), . . . , f(n), f(n+1), . . . , f(kn)

:=
�
f1(ω1), f1(ω2), . . . , f1(ωn), f2(ω1), . . . , fk(ωn)

.

43

6. Permutation Argument

The goal will be to show that

∀i ∈ [kn], f(σ(i)) = g(i), (6.3)

that is, permuting the values in (f(1), . . . , f(kn)) according to σ results in (g(1), . . . , g(kn)).
Note the resemblance to our original goal of proving that the copy constraints from
Equation (6.1) are satisfied.

To achieve this efficiently, we will leverage the following lemma by Gabizon et al. [GWC19,
Claim A.1], which forms the foundation of their permutation argument. We provide our
own proof of this lemma in Appendix A.1.

Lemma 6.1 (Claim A.1). Fix n distinct elements s1, . . . , sn ∈ Fp. Let σ : [n] → [n] be a
permutation, and let (a1, . . . , an), (b1, . . . , bn) ∈ Fn

p . If

Pr

 β, γ ← Fp :%
i∈[n]

(ai + β · si + γ) =
%

i∈[n]
(bi + β · sσ(i) + γ)

 >
n

p
, (6.4)

then aσ(i) = bi for all i ∈ [n].

Fixing kn distinct elements s1, . . . , skn ∈ Fp, and letting our two evaluations sequences
(f(i))i∈[kn] and (g(i))i∈[kn] take the place of the vectors (a1, . . . , akn), (b1, . . . , bkn) ∈ Fkn

p ,
respectively, this lemma motivates the following approach: First, we let the verifier
challenge the prover with uniformly sampled β, γ ∈ Fp, and then the prover has to show
that the equality in Equation (6.4) holds, i.e.,

%
i∈[kn]

(f(i) + β · si + γ) =
%

i∈[kn]
(g(i) + β · sσ(i) + γ), (6.5)

implying the originally desired statement from Equation (6.3) with high probability.

To this end, define the following two polynomials for every i ∈ [k], representing the values
s1, . . . , skn ∈ Fp in their original order and permuted according to σ, respectively:

Sid,i(X) :=
'

j∈[n]
s(i−1)n+j · Lj(X), Sσ,i(X) :=

'
j∈[n]

sσ((i−1)n+j) · Lj(X)

Also, let

f(X) :=
%

i∈[k]
(fi(X) + β · Sid,i(X) + γ), g(X) :=

%
i∈[k]

(gi(X) + β · Sσ,i(X) + γ).

44

This allows us to rewrite Equation (6.5) in terms of our initial polynomials f1, . . . , fk,
g1, . . . , gk ∈ F(≤d)

p [X] as: %
i∈[kn]

(f(i) + β · si + γ) =
%

i∈[kn]
(g(i) + β · sσ(i) + γ) (6.6)

⇐⇒
%

i∈[k]

%
j∈[n]

�
f((i−1)n+j) + β · s(i−1)n+j + γ

=

%
i∈[k]

%
j∈[n]

�
g((i−1)n+j) + β · sσ((i−1)n+j) + γ

(6.7)

⇐⇒
%

i∈[k]

%
j∈[n]

�
fi(ωj) + β · Sid,i(ωj) + γ

=

%
i∈[k]

%
j∈[n]

�
gi(ωj) + β · Sσ,i(ωj) + γ

(6.8)

⇐⇒
%

j∈[n]

%
i∈[k]

�
fi(ωj) + β · Sid,i(ωj) + γ

=

%
j∈[n]

%
i∈[k]

�
gi(ωj) + β · Sσ,i(ωj) + γ

(6.9)

⇐⇒
%

j∈[n]
f(ωj) =

%
j∈[n]

g(ωj) (6.10)

Next, Gabizon et al. introduce a special polynomial Φ ∈ F(<n)
p [X], called the permutation

check polynomial, enabling the verifier to succinctly check the above equation via two
H-ranged identities. It is recursively defined as:

1. Φ(ω) = 1,

2. Φ(ωi+1) = Φ(ωi) · f(ωi)
g(ωi) , ∀i ∈ [n].

(6.11)

Unfolding the recursion, we get:

Φ(ωn+1) = Φ(ω) ·
%

j∈[n]

f(ωj)
g(ωj)

Since ωn+1 = ω (because ω is a primitive n-root of unity) and Φ(ω) = 1, it follows that

%
j∈[n]

f(ωj)
g(ωj) = Φ(ωn+1) = Φ(ω) = 1, (6.12)

which, by the previously shown equivalences, implies Equation (6.5).

So all that needs to be checked is that the polynomial Φ ∈ F(<n)
p [X] is of the correct

form as defined above. To achieve this, Gabizon et al. express each of the two conditions
defining Φ as an H-ranged polynomial identity and then leverage the H-ranged polynomial
protocol from Construction 5.2 to obtain the following protocol [GWC19, Sec. 5.1] for
proving statements like the one in Equation (6.3):

45

6. Permutation Argument

Construction 6.1: Permutation Check Protocol.

• Structured reference string: srs :=
�
g1, gτ

1 , gτ2
1 , . . . , gτmax(d,n,kd−1,k(n−1)−1)

1 , g2, gτ
2

.

• Preprocessed input: For every i ∈ [k], the two permutation polynomials

Sid,i(X) :=
'

j∈[n]
s(i−1)n+j · Lj(X), Sσ,i(X) :=

'
j∈[n]

sσ((i−1)n+j) · Lj(X),

and their commitments cSid,i
:= gSid,i(τ)

1 , cSσ,i := gSσ,i(τ)
1 .

•
�P�

srs, (Sid,i, Sσ,i)i∈[k], (fi, gi)i∈[k]

, V�

srs, (cSid,i
, cSσ,i)i∈[k]

 �
:

1. P commits to the polynomials f1, . . . , fk, g1, . . . , gk ∈ F(≤d)
p [X] and sends the

commitments (c1, . . . , ck, c′
1, . . . , c′

k) :=
�
gf1(τ)

1 , . . . , gfk(τ)
1 , gg1(τ)

1 , . . . , ggk(τ)
1

to V .

2. V sends the random permutation challenges β, γ ← Fp to P.
3. Define the polynomials

f(X) :=
%

i∈[k]
(fi(X) + β · Sid,i(X) + γ), g(X) :=

%
i∈[k]

(gi(X) + β · Sσ,i(X) + γ).

P computes the permutation check polynomial Φ ∈ F(<n)
p [X] such that Φ(ω) = 1

and ∀i ∈ [n], Φ(ωi+1) = Φ(ωi) · f(ωi)
g(ωi) , and sends the commitment cΦ := gΦ(τ)

1
to V.

4. Using the H-ranged polynomial protocol from Construction 5.2, V checks the
following two H-ranged identities for all a ∈ H:
(a) Φ(a)f(a) − Φ(a · ω)g(a) = 0,
(b) L1(a)(Φ(a) − 1) = 0.

6.1 Knowledge Soundness in the AGM
Having given the intuition for the security of the protocol, we now formally argue why
the permutation check protocol is knowledge sound in the AGM. The first check (a) in
step 4 of Construction 6.1 ensures that Φ(ωi+1) = Φ(ωi) · f(ωi)

g(ωi) for all i ∈ [n]. The second
check (b) is equivalent to Φ(ω) = 1, as L1(ω) = 1 and L1(ωi) = 0 for all i ̸= 1 ∈ [n]. As
discussed when establishing Equation (6.12), together these two conditions ensure that:

%
j∈[n]

f(ωj)
g(ωj) = 1 (6.13)

⇐⇒
%

i∈[kn]
(f(i) + β · si + γ) =

%
i∈[kn]

(g(i) + β · sσ(i) + γ) (6.14)

46

6.2. Statistical Completeness

By contraposition of Lemma 6.1, we know that if there exists an i∗ ∈ [kn] such that
f(σ(i∗)) ≠ g(i∗), then Equation (6.14) only holds with negligible probability over the choice
of β and γ, establishing the soundness of this procedure. More formally, if Equation (6.3)
is not satisfied, then the probability that the H-ranged identities (a) and (b) hold is at
most kn/p, and if they do not hold, then by the knowledge soundness of the H-ranged
polynomial protocol, the probability of V accepting is negligible:

Pr
�V accepts ∧ ∃i∗ ∈ [kn], f(σ(i)) ̸= g(i)

�
= Pr

�V accepts ∧ ∃i∗ ∈ [kn], f(σ(i)) ̸= g(i) ∧ (a) ∧ (b)
�

+ Pr
�V accepts ∧ ∃i∗ ∈ [kn], f(σ(i)) ̸= g(i) ∧ ¬�

(a) ∧ (b)
 �

(6.15)

≤ Pr
�
(a) ∧ (b)

)) ∃i∗ ∈ [kn], f(σ(i)) ̸= g(i)
�

+ Pr
�V accepts ∧ ¬�

(a) ∧ (b)
 �

(6.16)

≤ kn

p
+ ϵH-Ranged, (6.17)

where ϵH-Ranged is the knowledge soundness error of the H-ranged polynomial protocol
from Construction 5.2.

6.2 Statistical Completeness
An important point we have ignored so far, is that it is possible that one of the denom-
inators g(ωi∗) = 0 for some i∗ ∈ [n], which renders the permutation check polynomial
Φ undefined and as such impossible to compute. In this case, P would have to abort,
ruining the perfect completeness of the protocol. Fortunately, this event only happens
with negligible probability over the choice of γ ∈ Fp. To see this, consider the polynomial

G(Y) :=
%

i∈[n]
g(ωi) =

%
i∈[n]

%
j∈[k]

(gj(ωi) + β · Sσ,j(ωi) + Y). (6.18)

Clearly, it has at most kn roots, so the probability that G(γ) = 0 is at most kn/p, which
is negligible in λ. Overall, we attain a protocol with statistical completeness.

47

CHAPTER 7
The Full PLONK Protocol

Having established all the necessary tools, we can finally present the full PLONK protocol.
For this purpose, let C be the arithmetic circuit with fan-in two and unlimited fan-out
over Fp for which we want to prove knowledge of a satisfying wire assignment. Suppose
C has ℓ public inputs/outputs. Not counting the private inputs/outputs as described
in Section 3.1, let n = poly(λ) be the number of gates and m ≤ 3n the number of
wires. Without loss of generality, assume the public inputs are associated with the first
ℓ gates. Using the PLONK constraint system from Chapter 3, we can model C via a
combination of gate and copy constraints as written in Equations (3.1) and (3.2). Let
(sL, sR, sO, sM, sC) :=

�
(sLi)i∈[n], (sRi)i∈[n], (sOi)i∈[n], (sMi)i∈[n], (sCi)i∈[n]

 ∈ F5n
p denote

all the gate constraints, and let σ : [3n] → [3n] be a permutation with appropriate
cycles capturing all the copy constraints of C. Formally, we want to prove statements of
knowledge in the following indexed relation:

RPLONK :=��������������������
(i, x, w)

))))))))))))))))

i =
�

(sL, sR, sO, sM, sC) ∈ F5n
p ,

σ : [3n] → [3n]

�
,

x = (x1, . . . , xℓ) ∈ Fℓ
p,

w = (w1, . . . , w3n) ∈ F3n
p ,

∀i ∈ [ℓ] : sLiwi + sRiwn+i + sOiw2n+i + sMiwiwn+i + sCi − xi = 0,
∀i ∈ (ℓ, n] : sLiwi + sRiwn+i + sOiw2n+i + sMiwiwn+i + sCi = 0,
∀i ∈ [3n] : wσ(i) = wi

��������������������
,

where the index i is the specification of the arithmetic circuit C (expressed in the PLONK
constraint system from Section 3.1), the statement x is the specific values assigned to
the public inputs/output gates of C, and the witness w is an assignment of values to
all the wires of the circuit such that they are consistent with x and all the internal
addition/multiplication gates of C.

49

7. The Full PLONK Protocol

Note that we have made the following two changes compared to our initial presentation
of the PLONK constraint system in Section 3.1:

1. For simplicity of notation, w ∈ F3n
p is now a redundant value assignment to the m

wires of C, representing the wires from the point of view of each gate. For example,
the output wire of gate i could be the same as the left input wire to another gate j,
but we include two separate values w2n+i and wj in w. This correctly captures the
fact that the gate constraints model the circuit as a collection of independent gates.
Equivalences such as w2n+i = wj are exactly what we use the copy constraints for,
i.e., an appropriate choice of the permutation σ would in this case include a cycle
containing both indices 2n + i and j.

2. We have omitted the selector vector sPI in its entirety from the definition of
RPLONK, which is responsible for enforcing the public inputs/outputs as introduced
in Section 3.1. Since the concrete values of sPI directly depend on x, it cannot
be part of the index i, unlike the other selector vectors. But more importantly,
this has the benefit of decoupling the concrete choice of public inputs from the
preprocessing phase, i.e., once the circuit C is preprocessed, P can prove knowledge
of a satisfying wire assignment for any choice of public inputs (xi)i∈[ℓ] ∈ Fℓ

p.

Next, we will express the relation RPLONK via an equivalent set of polynomials as already
previewed in Section 3.2. Towards this goal, we assume the existence of a primitive n-th
root of unity ω in Fp, so that we can use the multiplicative order-n subgroup H := ⟨ω⟩ for
proving all the necessary constraints as H-ranged polynomial identities. The particular
choice of H comes with several advantages, the most important of which being the succinct
representation of the resulting divisor polynomial ZH , making it efficiently computable.
This allows to shift the evaluations of some simple public polynomials to V , resulting in
a shorter proof. In particular, as explained in Section 2.7, the divisor polynomial and the
i-th Lagrange polynomial become ZH(X) = Xn − 1 and Li(X) = ωi(Xn−1)

n(X−ωi) , respectively,
both of which can be evaluated in a polylogarithmic number of field operations in n.

Let SL, SR, SO, SM, SC ∈ Fp[X] be the constraint polynomials defined for each i ∈ [n] by

SL(ωi) := sLi, SR(ωi) := sRi, SO(ωi) := sOi, SM(ωi) := sMi, SC(ωi) := sCi.

In addition, to handle the public inputs/outputs, Gabizon et al. introduce the public
input polynomial

SPI(X) :=
'
i∈[ℓ]

−xiLi(X),

which will be incorporated as a final summand into each gate constraint taking the
place of the corresponding selector vector sPI. Note that this polynomial has the desired
property that SPI(ωi) = −xi for all i ∈ [ℓ] and SPI(ωi) = 0 otherwise, just as the vector
sPI is defined in Table 3.1.

Let A, B, C ∈ Fp[X] be the left input, right input, and output wire polynomials satisfying

A(ωi) := wi, B(ωi) := wn+i, C(ωi) := w2n+i

50

for all i ∈ [n]. Also, define the following two polynomials used in the permutation
argument:

f(X) := (A(X) + β · Sid,1(X) + γ)(B(X) + β · Sid,2(X) + γ)(C(X) + β · Sid,3(X) + γ),
g(X) := (A(X) + β · Sσ,1(X) + γ)(B(X) + β · Sσ,2(X) + γ)(C(X) + β · Sσ,3(X) + γ),

where Sid,1, Sid,2, Sid,3, Sσ,1, Sσ,2, Sσ,3 ∈ Fp[X] are the respective permutation polynomials
from Chapter 6, and β, γ ∈ Fp are the permutation challenges chosen by the verifier.
Lastly, let Φ ∈ Fp[X] be the permutation check polynomial defined in terms of f, g as
specified in Equation (6.11).

With this, proving knowledge of a triple (i, x, w) ∈ RPLONK is equivalent to proving that
the following three H-ranged polynomial identities hold for all a ∈ H:

1. SL(a)A(a) + SR(a)B(a) + SO(a)C(a) + SM(a)A(a)B(a) + SC(a) + SPI(a) = 0,

2. Φ(a)f(a) − Φ(a · ω)g(a) = 0,

3. L1(a)(Φ(a) − 1) = 0.

The first identity represents the gate constraints, and the second and third ensure that
the copy constraints hold via the permutation argument from Chapter 6.

Next, we need to fix 3n distinct elements from Fp as required by Lemma 6.1 for the
permutation argument. This is where Gabizon et al. use an optimization suggested
by Vitalik Buterin [GWC19, Sec. 8] to represent the identity permutation polynomi-
als Sid,1, Sid,2, Sid,3 via degree-1 polynomials, so that their evaluations can be directly
computed by the verifier. To this end, define the set

H ′ := H ∪ (k1 · H) ∪ (k2 · H),

where k1, k2 ∈ F∗
p are chosen such that H , k1 ·H , k2 ·H are distinct cosets of H consisting

of 3n elements in total. Furthermore, extend the permutation σ : [3n] → [3n] onto H ′ by
defining σ∗ : [3n] → H ′ as

σ∗(i) :=

����
ωσ(i) if σ(i) ∈ [n]
k1 · ωσ(i) if σ(i) ∈ (n, 2n]
k2 · ωσ(i) if σ(i) ∈ (2n, 3n]

.

Then the identity permutation polynomials simply turn out to be

Sid,1(X) := X, Sid,2(X) := k1X, Sid,3(X) := k2X.

A simple method for picking appropriate k1, k2 ∈ F∗
p is to take an arbitrary value in

F∗
p \ H as k1 and then take any value not contained in H ∪ (k1 · H) as k2. To see why this

works, let g be a generator of F∗
p such that ω = gr with r := (p − 1)/n and recall that H

51

7. The Full PLONK Protocol

can be expressed as {g0, gr, g2r, . . . , g(n−1)r}. If we then let k1 := ga and k2 := gb, we see
that as long as both a, b ̸= 0 (mod r) and a ̸= b (mod r), we have that H , k1 · H , k2 · H
are pairwise disjoint as required. These two conditions are met exactly when choosing
k1, k2 as described above.

In summary, there are 14 public polynomials in PLONK. Out of these, V can evaluate
SPI, Sid,1, Sid,2, Sid,3, ZH , L1 at any point x ∈ Fp in polylogarithmic time. In addition to
that, Gabizon et al. save the evaluations of SL, SR, SO, SM, SC, Sσ,3 via the optimization
by Maller from Section 5.3. This just leaves the evaluation of the two public polynomials
Sid,1, Sid,2 to the prover.

As a final step, Gabizon et al. make the PLONK protocol zero-knowledge by adding
random multiples of ZH to the prover’s witness polynomials. This does not ruin satis-
fiability, while creating a situation where all values in the proof are either completely
uniform or determined by verifier equations. We defer a detailed discussion of PLONK’s
zero knowledge, including the demonstration of an adequate simulator, to Section 7.2.

Having established all of this, we are finally ready to present the full PLONK protocol:

Construction 7.1: The PLONK Protocol.

• Setup(1λ, n): Choose random τ ← Fp and output

srs :=
�
g1, gτ

1 , gτ2
1 , . . . , gτn+2

1 , g2, gτ
2

.

• Preprocess(srs, i): Given the circuit size n, the wire permutation σ∗, and the gate
constraints (sLi, sRi, sOi, sMi, sCi)i∈[n], compute the constraint polynomials

SL(X) :=
'

i∈[n]
sLiLi(X), SR(X) :=

'
i∈[n]

sRiLi(X),

SO(X) :=
'

i∈[n]
sOiLi(X), SM(X) :=

'
i∈[n]

sMiLi(X),

SC(X) :=
'

i∈[n]
sCiLi(X),

the permutation polynomials

Sσ,1(X) :=
'

i∈[n]
σ∗(i)Li(X),

Sσ,2(X) :=
'

i∈[n]
σ∗(n + i)Li(X),

Sσ,3(X) :=
'

i∈[n]
σ∗(2n + i)Li(X),

and their commitments

cSL := gSL(τ)
1 , cSR := gSR(τ)

1 , cSO := gSO(τ)
1 , cSM := gSM(τ)

1 ,

cSC := gSC(τ)
1 , cSσ,1 := gSσ,1(τ)

1 , cSσ,2 := gSσ,2(τ)
1 , cSσ,3 := gSσ,3(τ)

1 .

52

Output the prover and verifier parameters

pp :=
�
srs, n, σ∗, SL, SR, SO, SM, SC, Sσ,1, Sσ,2, Sσ,3

,

vp :=
�
g1, g2, gτ

2 , n, cSL , cSR , cSO , cSM , cSC , cSσ,1 , cSσ,2 , cSσ,3

.

•
�P�

pp, (xi)i∈[ℓ], (wi)i∈[3n]

, V�

vp, (xi)i∈[ℓ]
 �

:

1. P chooses random blinding scalars ρ1, . . . , ρ6 ← Fp and computes the wire
polynomials

A(X) := (ρ1X + ρ2)ZH(X) +
'

i∈[n]
wiLi(X),

B(X) := (ρ3X + ρ4)ZH(X) +
'

i∈[n]
wn+iLi(X),

C(X) := (ρ5X + ρ6)ZH(X) +
'

i∈[n]
w2n+iLi(X).

The first output of P are the commitments

cA := gA(τ)
1 , cB := gB(τ)

1 , cC := gC(τ)
1 .

2. V sends the random permutation challenges β, γ ← Fp to P.
3. Define the polynomials

f(X) := (A(X)+βSid,1(X)+γ)(B(X)+βSid,2(X)+γ)(C(X)+βSid,3(X)+γ),
g(X) := (A(X)+βSσ,1(X)+γ)(B(X)+βSσ,2(X)+γ)(C(X)+βSσ,3(X)+γ).

P chooses random blinding scalars ρ7, ρ8, ρ9 ← Fp and computes the permuta-
tion check polynomial

Φ(X) := (ρ7X2 + ρ8X + ρ9)ZH(X) +
'
i∈[n]

Li(X)
i−1%
j=1

f(ωj)
g(ωj) ,

where f(ωj)
g(ωj) = (wj+βωj+γ)(wn+j+βk1ωj+γ)(w2n+j+βk2ωj+γ)

(wj+βσ∗(j)+γ)(wn+j+βσ∗(n+j)+γ)(w2n+j+βσ∗(2n+j)+γ) .

The second output of P is the commitmenta

cΦ := gΦ(τ)
1 .

4. V sends a random quotient challenge α ← Fp to P.

53

7. The Full PLONK Protocol

5. Define the polynomials

gates(X) :=
�

SL(X)A(X) + SR(X)B(X) + SO(X)C(X)
+ SM(X)A(X)B(X) + SC(X) + SPI(X)

�
,

copy1(X) := Φ(X)f(X) − Φ(Xω)g(X),
copy2(X) := L1(X)(Φ(X) − 1).

P computes the quotient polynomial of degree ≤ 3n + 5

T (X) := gates(X) + α · copy1(X) + α2 · copy2(X)
ZH(X) ,

and splits it into the three unique polynomials T ′
1, T ′

2, T ′
3 ∈ F(≤n+1)

p [X] satisfying

T (X) = T ′
1(X) + Xn+2 · T ′

2(X) + X2n+4 · T ′
3(X).

Then, P chooses random blinding scalars ρ10, ρ11 ← Fp and defines

T1(X) := T ′
1(X) + ρ10Xn+2,

T2(X) := T ′
2(X) − ρ10 + ρ11Xn+2,

T3(X) := T ′
3(X) − ρ11.

Note that these polynomials still satisfy

T (X) = T1(X) + Xn+2 · T2(X) + X2n+4 · T3(X).

The third output of P are the commitmentsb

cT1 := gT1(τ)
1 , cT2 := gT2(τ)

1 , cT3 := gT3(τ)
1 .

6. V sends a random evaluation challenge δ ← Fp to P.
7. The fourth output of P are the evaluations

aδ := A(δ), bδ := B(δ), cδ := C(δ),
sσ1,δ := Sσ,1(δ), sσ2,δ := Sσ,2(δ), ϕδω := Φ(δω).

8. V sends a random opening challenge ε ← Fp to P.

54

9. Define the linearized polynomials

Lgates(X) :=
�

SL(X)A(δ) + SR(X)B(δ) + SO(X)C(δ)
+ SM(X)A(δ)B(δ) + SC(X) + SPI(δ)

�
,

Lcopy1(X) :=
� Φ(X)(A(δ)+βδ+γ)(B(δ)+βk1δ+γ)(C(δ)+βk2δ+γ)

−Φ(δω)(A(δ)+βSσ,1(δ)+γ)(B(δ)+βSσ,2(δ)+γ)(C(δ)+βSσ,3(X)+γ)

�
,

Lcopy2(X) := L1(δ)(Φ(X) − 1),
Ldivision(X) := ZH(δ)

�
T1(X) + δn+2T2(X) + δ2n+4T3(X)

�
.

P computes the linearization polynomial

L(X) := Lgates(X) + α · Lcopy1(X) + α2 · Lcopy2(X) − Ldivision(X),

and the aggregated quotient polynomials

Q1(X) := 1
X − δ

�
L(X)+ε

�
A(X)−A(δ)

�
+ε2

�
B(X)−B(δ)

�
+ε3

�
C(X)−C(δ)

�
+ε4

�
Sσ,1(X)−Sσ,1(δ)

�
+ε5

�
Sσ,2(X)−Sσ,2(δ)

� �
,

Q2(X) := Φ(X) − Φ(δω)
X − δω

.

The fifth output of P are the commitments

π1 := gQ1(τ)
1 , π2 := gQ2(τ)

1 .

The full output of P is

πPLONK :=
�

cA, cB, cC , cΦ, cT1 , cT2 , cT3 , π1, π2,
aδ, bδ, cδ, sσ1,δ, sσ2,δ, ϕδω

�
∈ G9

1 × F6
p.

10. V computes the commitments

cLgates := cSL
aδ · cSR

bδ · cSO
cδ · cSM

aδbδ · cSC · gSPI(δ)
1 ,

cLcopy1
:= cΦ

(aδ+βδ+γ)(bδ+βk1δ+γ)(cδ+βk2δ+γ)�
cSσ,3

β · gcδ+γ
1

�ϕδω(aδ+βsσ1,δ+γ)(bδ+βsσ2,δ+γ) ,

cLcopy2
:=

�
cΦ/g1

 L1(δ)
,

cLdivision :=
�
cT1 · cT2

δn+2 · cT3
δ2n+4�ZH(δ)

,

where ZH(δ) = δn − 1, L1(δ) = ω(δn − 1)
n(δ − ω) , SPI(δ) =

'
i∈[ℓ]

−xiLi(δ).

55

7. The Full PLONK Protocol

With this, V computes the commitment to the linearization polynomial L as

cL := cLgates · (cLcopy1
)α · (cLcopy2

)α2 · (cLdivision)−1.

Then, V chooses a random multipoint evaluation challenge ζ ← Fp, computes

C1 := cL ·
�

cA

gaδ
1

!ε

·
�

cB

gbδ
1

�ε2

·
�

cC

gcδ
1

!ε3

·
�

cSσ,1

gsσ1,δ

1

�ε4

·
�

cSσ,2

gsσ2,δ

1

�ε5

, C2 := cΦ

gϕδω
1

,

and accepts iff

e
�
C1 · π1

δ · �
C2 · π2

δω ζ
, g2

� ?= e
�
π1 · π2

ζ , gτ
2

.

aNote that when f(ωj)
g(ωj) is undefined due to one of its denominators being zero, P has to abort

the protocol. This can only happen with negligible probability, as discussed in Section 6.2.
bIn a previous version of PLONK, P used to directly commit to T ′

1, T ′
2, T ′

3, which broke the
protocol’s zero knowledge and was fixed as a result of this work. We discuss this issue in more detail
in Section 7.2.

In this full version of the PLONK protocol, Gabizon et al. employ several optimizations
which are not directly part of the general primitives described in the previous chapters.
The most prominent modification is that in step 5 of the protocol, P does not directly
commit to the quotient polynomial T but instead splits it into three polynomials T1, T2, T3
such that T (X) = T1(X) + Xn+2 · T2(X) + X2n+4 · T3(X). The reason for this is to
maintain a minimal SRS size at the cost of increasing the proof length by two group
elements. Without this optimization, the prover would need an SRS of degree 3n + 5 to
commit to the resulting quotient polynomial in step 5. Hence, this trade-off effectively
reduces the SRS size from 3n + 5 to n + 2, which can be considered optimal.

To see why this variant of the H-ranged polynomial protocol still remains knowledge
sound in the AGM, we can apply a similar analysis as in Section 5.2.1. To this end, let
T ∗

1 , T ∗
2 , T ∗

3 ∈ F(≤n+2)
p [X] be the actual polynomials committed to by the adversary and

define the degree-(n + 2) polynomial

T ∗(X) := T ∗
1 (X) + δn+2 · T ∗

2 (X) + δ2n+4 · T ∗
3 (X).

Recall that in the proof from Section 5.2.1 we argued over an arbitrary choice of
T ∈ F(≤d̂)

p [X] by the adversary, where d̂ is the largest degree of a polynomial supported
by the SRS, i.e., n + 2 in PLONK. Since the only difference to the original protocol is
that in step 10 the verifier uses gT ∗(τ)

1 = gT ∗
1 (τ)

1 · �
gT ∗

2 (τ)
1

 δn+2 · �
gT ∗

3 (τ)
1

 δ2n+4
instead of

just gT (τ)
1 to compute the commitment to the linearization polynomial L, we can simply

replace the quotient polynomial T by T ∗ in our analysis, resulting in the same upper
bound for knowledge soundness as in Equation (5.35).

On a final note, we want to highlight a difference between our description of PLONK and
the original by Gabizon et al. [GWC19, Sec. 8.3], which uses a different approach to split

56

7.1. The Vulnerability

the quotient polynomial T of degree ≤ 3n + 5 into T ′
1, T ′

2, T ′
3. Instead of using the unique

degree-(n + 1) polynomials satisfying T (X) = T ′
1(X) + Xn+2 · T ′

2(X) + X2n+4 · T ′
3(X),

they restrict T ′
1 and T ′

2 to be of degree < n while letting T ′
3 have degree n + 5 such

that T (X) = T ′
1(X) + Xn · T ′

2(X) + X2n · T ′
3(X), resulting in an SRS of degree n + 5 as

opposed to the n + 2 achieved in our version of PLONK.

7.1 The Vulnerability
Since the authors of PLONK never constructed a simulator to formally verify that
PLONK is zero-knowledge, our attempt to devise such a simulator led to the discovery of
a vulnerability in their original implementation of step 5 in Construction 7.1. It should
be stressed that the version of PLONK presented in Construction 7.1 already includes
our suggested fix.

In this step, the prover decomposes the computed quotient polynomial T ∈ Fp[X] of degree
≤ 3n + 5 into three lower-degree polynomials as an optimization that keeps the SRS size
minimal with respect to the circuit size n. However, in the previous version of PLONK, the
prover directly commits to the deterministic polynomials T ′

1, T ′
2, T ′

3 ∈ F(≤n+1)
p [X] instead

of the randomized polynomials T1, T2, T3 ∈ F(≤n+2)
p . The problem with this approach is

that even though a simulator is able to compute the correct evaluation of T (τ), it does
not have enough information to compute the correct values T ′

1(τ), T ′
2(τ), T ′

3(τ) satisfying
T (τ) = T ′

1(τ) + τn+2 · T ′
2(τ) + τ2n+4 · T ′

3(τ). While there are p2 possible triples of values
in F3

p satisfying this equation, only one of them corresponds to the correct distribution of
T ′

1(τ), T ′
2(τ), T ′

3(τ) in the execution of the real protocol.

We fixed this issue in collaboration with the authors of PLONK by randomizing these
three polynomials in a way that preserves their composition of T while enabling a correct
simulation. We discuss this fix in more detail in the next section, where we present our
simulator.

7.2 Statistical Zero Knowledge
To show that PLONK is statistically zero-knowledge, we will rely on the following lemma,
which explains why the prover’s witness polynomials are randomized by adding the
product of a random blinding polynomial and ZH .

Lemma 7.1. Let S ⊂ Fp and ZS(X) := &
a∈S(X − a). Fix a polynomial f ∈ Fp[X] and

any distinct values x1, . . . , xk ∈ Fp \ S. Then the following distribution is uniform in Fk
p:

1. Choose random blinding scalars ρ0, . . . , ρk−1 ← Fp and define the polynomial

f̃(X) := f(X) + ZS(X)
�
ρ0 + ρ1X + · · · + ρk−1Xk−1

.

2. Output
�
f̃(x1), . . . , f̃(xk)

 ∈ Fk
p.

57

7. The Full PLONK Protocol

Proof. Define the blinding polynomial ρ(X) := (k−1
i=0 ρiX

i. For all i ∈ [k], we have

f̃(xi) = f(xi) + ZS(xi)ρ(xi),

where the values f(xi), ZS(xi) are fixed and ZS(xi) ̸= 0 (due to xi ∈ Fp \ S). Since the
product of any fixed a ∈ F∗

p and random b ∈ Fp is uniform in Fp, all we need to show is
that the values ρ(x1), . . . , ρ(xk) are distributed independently and uniformly in Fp, which
is a well-known claim for any random degree-(k − 1) polynomial such as ρ ∈ F(≤k−1)

p [X].
One way to see this, is by fixing any distinct x1, . . . , xk ∈ Fp and observing that for any
choice of y1, . . . , yk ∈ Fp there is a unique degree-(k − 1) polynomial interpolating the
points (x1, y1), . . . , (xk, yk). Formally, there are pk distinct degree-(k − 1) polynomials
over Fp, which corresponds to the number of choices for y1, . . . , yk ∈ Fp. Furthermore,
there cannot be any two distinct polynomials f1 ̸≡ f2 ∈ F(≤k−1)

p [X] interpolating the same
set of points (x1, y1), . . . , (xk, yk), since otherwise the non-zero, degree-(k − 1) polynomial
f1 − f2 would have at least k roots, which is a contradiction.

As a consequence, the number of independent and uniform evaluations of a polynomial
randomized in this way depends on the degree of the used blinding polynomial (

i ρiX
i,

i.e., a constant blinding polynomial allows for just a single evaluation, a linear polynomial
for two, and so forth. This also explains why the wire polynomials A, B, C are randomized
using linear blinding polynomials, while the permutation check polynomial Φ uses a
quadratic blinding polynomial. More specifically, A, B, C, and Φ have to account for their
commitments (which equate to evaluations at τ) as well as the openings at the evaluation
challenge δ (respectively δω in the case of Φ), but Φ additionally has to compensate the
commitment to the quotient polynomial T (or its decomposition into T1, T2, T3), since
the value of T (τ) depends on Φ(τω) (cf. step 5 in Construction 7.1).

An important condition of the lemma is that the evaluation points come from Fp \ H,
which means that both the SRS trapdoor τ and the evaluation challenge δ must not be
in H. Since H := ⟨ω⟩ = {ω1, ω2, . . . , ωn} with n = poly(λ), we have |H| / |Fp| = negl(λ),
i.e., we will be able to ignore this case when constructing a simulator for PLONK and
still obtain statistical zero knowledge. Also, since H is a multiplicative order-n subgroup
of Fp, this ensures that the remaining evaluation points τω and δω come from Fp \ H
as well. To see this, let g be a generator of F∗

p such that ω = gr with r := (p − 1)/n.
Then the set H can be rewritten as {g0, gr, g2r, . . . , g(n−1)r}. Ignoring the case τ = 0,
which immediately results in τω /∈ H, we have τ = gs for some s ∈ Zp−1 with s ̸= 0
(mod r). Thus, we get τω = gs · gr = gs+r, but s + r ̸= 0 (mod r), which implies τω /∈ H
as required. Analogously, we get δω /∈ H. This means that, as long as τ, δ ∈ Fp \ H, the
commitments to the witness polynomials A, B, C, Φ using evaluations at τ as well as the
evaluations of these polynomials at the points δ and δω are distributed independently
and uniformly in Fp, hiding any information about the prover’s witness.

A Simulator for PLONK. With all the necessary tools established, we are now
ready to present our simulator S for PLONK. Note that we construct a simulator for the

58

7.2. Statistical Zero Knowledge

interactive PLONK protocol described in Construction 7.1. As discussed in more detail
in the next section, using the Fiat–Shamir heuristic [FS87] it can be trivially transformed
into a simulator for the non-interactive variant in the random oracle model [BR93]. We
will assume that both the SRS trapdoor τ and the evaluation challenge δ come from
Fp \ H. In this case, S perfectly simulates PLONK when ignoring the aborts caused by
denominators being zero in the computation of the permutation check polynomial Φ (cf.
step 3 in Construction 7.1) as well as the cases when δ = τ or δω = τ , which is why
we attain statistical zero knowledge. Furthermore, we only give the second part of the
simulator from Definition 2.7, implicitly assuming it runs the Setup algorithm to create a
well-formed srs with a uniform trapdoor τ ∈ Fp \ H as its first output.

Construction 7.2: Simulator for PLONK.

S�
τ, pp, (xi)i∈[ℓ]

:

1. Choose random aτ , bτ , cτ ← Fp and send the commitments cA := gaτ
1 , cB := gbτ

1 ,
cC := gcτ

1 to V.

2. Receive the permutation challenges β, γ ∈ Fp from V.

3. Choose random ϕτ ← Fp and send the commitment cΦ := gϕτ
1 to V.

4. Receive the quotient challenge α ∈ Fp from V.

5. Choose random ϕτω ← Fp (if τ = 0, set ϕτω := ϕτ instead) and compute the
simulated evaluation of the quotient polynomial T at τ as

tτ := 1
ZH(τ)

��
�
SL(τ)aτ +SR(τ)bτ +SO(τ)cτ +SM(τ)aτ bτ +SC(τ)+SPI(τ)

�
+α

ϕτ (aτ +βτ+γ)(bτ +βk1τ+γ)(cτ +βk2τ+γ)

−ϕτω(aτ +βSσ,1(τ)+γ)(bτ +βSσ,2(τ)+γ)(cτ +βSσ,3(τ)+γ)

�
+α2

�
L1(τ)(ϕτ −1)

�
##.

Choose random t2, t3 ← Fp and compute

t1 := tτ − τn+2 · t2 − τ2n+4 · t3

such that tτ = t1 + τn+2 · t2 + τ2n+4 · t3. Send the commitments cT1 := gt1
1 ,

cT2 := gt2
1 , cT3 := gt3

1 to V.

6. Receive the evaluation challenge δ ∈ Fp \ H from V.

7. If δ = τ or δω = τ , abort. Otherwise, choose random aδ, bδ, cδ, ϕδω ← Fp and
send the values aδ, bδ, cδ, sσ1,δ := Sσ,1(δ), sσ2,δ := Sσ,2(δ), ϕδω to V.

8. Receive the opening challenge ε ∈ Fp from V.

59

7. The Full PLONK Protocol

9. Compute the simulated evaluation of the linearization polynomial L at τ as

lτ :=

��
�
aδSL(τ)+bδSR(τ)+cδSO(τ)+aδbδSM(τ)+SC(τ)+SPI(δ)

�
+α

ϕτ (aδ+βδ+γ)(bδ+βk1δ+γ)(cδ+βk2δ+γ)

−ϕδω(aδ+βSσ,1(δ)+γ)(bδ+βSσ,2(δ)+γ)(cδ+βSσ,3(τ)+γ)

�
+α2

�
L1(δ)(ϕτ −1)

�
−ZH(δ)

�
t1+δn+2t2+δ2n+4t3

�
##.

Then, compute the simulated opening proofs

π1 := g
1

τ−δ

�
lτ +ε(aτ −aδ)+ε2(bτ −bδ)+ε3(cτ −cδ)

+ε4(Sσ,1(τ)−Sσ,1(δ))+ε5(Sσ,2(τ)−Sσ,2(δ))

�
1 ,

π2 := g(ϕτ −ϕδω)/(τ−δω)
1 ,

and send π1, π2 to V. The full output of S is

π̃PLONK :=
�

cA, cB, cC , cΦ, cT1 , cT2 , cT3 , π1, π2,
aδ, bδ, cδ, sσ1,δ, sσ2,δ, ϕδω

�
∈ G9

1 × F6
p.

Proof. We now argue why S perfectly simulates PLONK when ignoring the aborts caused
by denominators in the computation of the permutation check polynomial Φ (in step 3 of
Construction 7.1) being zero, as well as the cases δ = τ or δω = τ . Specifically, we will
show that in this case all the elements in a real PLONK proof πPLONK are either uniform
random or determined by the verifier equations, and that a proof π̃PLONK generated by
our simulator S has exactly the same distribution.

To this end, we begin by analyzing the distribution of all the elements contained in a
real PLONK proof

πPLONK :=
�

gA(τ)
1 , gB(τ)

1 , gC(τ)
1 , gΦ(τ)

1 , gT1(τ)
1 , gT2(τ)

1 , gT3(τ)
1 , gQ1(τ)

1 , gQ2(τ)
1 ,

A(δ), B(δ), C(δ), Sσ,1(δ), Sσ,2(δ), Φ(δω)

�
∈ G9

1 × F6
p.

Note that the values Sσ,1(δ), Sσ,2(δ) are just the evaluations of the public permuta-
tion polynomials Sσ,1, Sσ,1 at the evaluation challenge δ, and hence correctly simu-
lated by default. Furthermore, gA(τ)

1 , gB(τ)
1 , gC(τ)

1 , gΦ(τ)
1 , A(δ), B(δ), C(δ), Φ(δω) are just

uniform group/field elements due to the randomization of the polynomials A, B, C, Φ
according to Lemma 7.1. More precisely, by our assumption that τ, δ ∈ Fp \ H, it
follows from Lemma 7.1 as well as the subsequent explanations that the evaluations
A(τ), B(τ), C(τ), Φ(τ) are distributed independently and uniformly in Fp. This is exactly
how S chooses aτ , bτ , cτ , ϕτ ∈ Fp in steps 1 and 3 to produce the commitments to the
polynomials A, B, C, Φ. The same is true in step 7, where S again outputs uniform values
aδ, bδ, cδ, ϕδω ∈ Fp as the evaluations A(δ), B(δ), C(δ), Φ(δω).

Directly simulating the commitment to the quotient polynomial gT (τ)
1 in step 5 is simple,

as T (τ) is a deterministic function in τ with all the necessary inputs known to the
simulator (cf. the computation of tτ in step 5 of S). On the contrary, simulating the

60

7.2. Statistical Zero Knowledge

commitments to the decomposed polynomials T1, T2, T3 satisfying

T (X) = T1(X) + Xn+2 · T2(X) + X2n+4 · T3(X)

is much more delicate. As explained in the previous section, this is exactly where the
specification of PLONK prior to our fix, which instead commits to the deterministic
polynomials T ′

1, T ′
2, T ′

3, leaks information about the prover’s witness polynomials, and
thus cannot be perfectly simulated. But let us instead argue why S correctly simulates the
commitments to the now randomized polynomials T1, T2, T3 in step 5. By the randomness
of ρ10, ρ11 ∈ Fp, both T2(τ) = T ′

2(τ) − ρ10 + ρ11 · τn+2 and T3(τ) = T ′
3(τ) − ρ11 are

distributed independently and uniformly in Fp. The value of T1(τ) = T ′
1(τ) + ρ10 · τn+2

is then uniquely determined by the equality T (τ) = T1(τ) + τn+2 · T2(τ) + τ2n+4 · T3(τ),
which is exactly how S chooses t1, t2, t3 to compute its commitments cT1 := gt1

1 , cT2 := gt2
1 ,

cT3 := gt3
1 .

Finally, S also correctly simulates the opening proofs gQ1(τ)
1 , gQ2(τ)

1 in step 9 when δ ̸= τ
and δω ̸= τ , since both of them are deterministic functions in τ in this case with all the
necessary inputs known to the simulator. For example, see how S computes the value lτ ,
which is the evaluation of the linearization polynomial L(τ) required for gQ1(τ)

1 .

Having established that S perfectly simulates PLONK conditioned on τ, δ ∈ Fp \ H,
τ ̸= δ, τ ̸= δω, and Φ being well-defined, i.e., Φ ∈ Fp[X], we can turn this into a formal
proof of statistical (honest-verifier) zero knowledge as defined in Definition 2.7. Recall
from Section 6.2 that the abort probability due to Φ being undefined can be bounded
by kn/p, which corresponds to 3n/p in the actual PLONK protocol. Let F denote the
event in which our simulator S is unable to produce correctly distributed proofs. This is
the case with probability at most

Pr[F] = Pr
�
τ ∈ H ∨ δ ∈ H ∨ τ = δ ∨ τ = δω ∨ Φ /∈ Fp[X]

�
(7.1)

≤ n + n + 1 + 1 + 3n

p
= 5n + 2

p
. (7.2)

With this, we can show that the difference of the two probabilities from Definition 2.7 is
negligible as well. Using IP and IS to denote the event b = 1 ∧ (i, x, w) ∈ RPLONKn when
the adversary interacts with the honest prover P and with our simulator S, respectively,
we have Pr[IP ∧ F̄] = Pr[IS ∧ F̄] by the arguments laid out above. Then:))Pr[IP] − Pr[IS]

)) =
))�Pr[IP ∧ F] + Pr[IP ∧ F̄]

 − �
Pr[IS ∧ F] + Pr[IS ∧ F̄]

)) (7.3)
=

))Pr[IP ∧ F] − Pr[IS ∧ F]
)) (7.4)

≤ 5n + 2
p

= negl(λ) (7.5)

The final inequality follows from the fact that both Pr[IP ∧ F] and Pr[IS ∧ F] are at most
Pr[F], and so their difference cannot be any larger. This finishes the proof of PLONK’s
statistical honest-verifier zero knowledge.

61

7. The Full PLONK Protocol

7.3 The PLONK zk-SNARK
So far, we have only dealt with interactive public-coin protocols, including our description
of the PLONK protocol in Construction 7.1. To turn PLONK non-interactive, Gabizon
et al. apply the Fiat–Shamir transformation [FS87], allowing the prover to obtain random
challenges without interacting with the verifier. For this purpose, let H : {0, 1}∗ → Fp

be a collision-resistant hash function modeled as a random oracle [BR93] for the sake
of proving security of this non-interactive variant. Furthermore, let inputs denote the
concatenation of the SRS, the common preprocessed input and all the public inputs
(xi)i∈[ℓ]. Each challenge is then computed by evaluating H on the concatenation of inputs
and all the proof elements written by the prover up to that point in time. Note that
including all of this information in inputs is crucial to prevent certain attacks allowing a
malicious prover to forge proofs for statements without knowing a witness as explained
in [Mil22], effectively breaking PLONKS’s knowledge soundness.

As a result, we finally obtain the PLONK zk-SNARK:

Construction 7.3: The PLONK zk-SNARK.

• Setup(1λ, n): Same as in Construction 7.1.

• Preprocess(srs, i): Same as in Construction 7.1.

• Prove
�
pp, (xi)i∈[ℓ], (wi)i∈[3n]

:

1. Same as step 1 in Construction 7.1.
2. Compute the permutation challenges β, γ ∈ Fp as

β := H(inputs, cA, cB, cC , 0), γ := H(inputs, cA, cB, cC , 1).

3. Same as step 3 in Construction 7.1.
4. Compute the quotient challenge α ∈ Fp as

α := H(inputs, cA, cB, cC , cΦ).

5. Same as step 5 in Construction 7.1.
6. Compute the evaluation challenge δ ∈ Fp as

δ := H(inputs, cA, cB, cC , cΦ, cT1 , cT2 , cT3).

7. Same as step 7 in Construction 7.1.
8. Compute the opening challenge ε ∈ Fp as

ε := H(inputs, cA, cB, cC , cΦ, cT1 , cT2 , cT3 , aδ, bδ, cδ, sσ1,δ, sσ2,δ, ϕδω).

62

7.3. The PLONK zk-SNARK

9. Same as step 9 in Construction 7.1.
10. Output the full proof

πPLONK :=
�

cA, cB, cC , cΦ, cT1 , cT2 , cT3 , π1, π2,
aδ, bδ, cδ, sσ1,δ, sσ2,δ, ϕδω

�
∈ G9

1 × F6
p.

• Verify
�
vp, (xi)i∈[ℓ], πPLONK

: Same as step 10 in Construction 7.1, except that

the multipoint evaluation challenge ζ ∈ Fp is computed deterministically as

ζ := H(inputs, cA, cB, cC , cΦ, cT1 , cT2 , cT3 , aδ, bδ, cδ, sσ1,δ, sσ2,δ, ϕδω, π1, π2).

Regarding the succinctness property stated in Definition 2.12, for a fixed value of the
security parameter λ, the PLONK zk-SNARK achieves constant-size proofs composed of
only 9 group elements and 6 field elements, independent of the size of the proved statement.
In practice, this amounts to approximately 480 bytes, as stated in the introduction.

Note that, unlike the final probabilistic verification check in Construction 7.1, where
V samples a random multipoint evaluation challenge ζ ← Fp, this step has now been
made deterministic by applying the Fiat–Shamir heuristic one more time to obtain ζ.
This has the advantage of keeping the verification algorithm Verify fully deterministic (as
required by our definition of zk-SNARK, see Definition 2.8), which is necessary in certain
applications such as smart contracts and proofs of verification (e.g., when modeling the
verifier algorithm as an arithmetic circuit to obtain a recursive zk-SNARK).

Finally, we are ready to obtain the main result of this thesis, as stated in Theorem 1.1:

The PLONK zk-SNARK is statistically zero-knowledge.

By applying the Fiat–Shamir transform to the simulator S in Construction 7.2 and then
using the same arguments as in Section 7.2, we obtain a simulator which statistically
simulates proofs of the PLONK zk-SNARK, yielding the theorem.

As a final contribution, combining the results of all our security proofs in this thesis,
we will derive a precise upper bound on PLONK’s knowledge soundness error in the
algebraic group model (AGM). First, we unfold the knowledge soundness error obtained
in Section 6.1 for the general permutation argument protocol from Construction 6.1.
Using the results of Sections 4.3 and 5.2.1, it holds that:

kn

p
+ ϵH-Ranged ≤ kn

p
+ 2 · max(d̂dD, d̂ + |H|) + k′ − 1

p
+ ϵOpen (7.6)

≤ kn

p
+ 2 · max(d̂dD, d̂ + n) + k′ − 1

p
+ k′′ − 1

p
+ ℓ − 1

p
+ ϵd′-DLog,

(7.7)

63

7. The Full PLONK Protocol

where n is the size of the range H and k is the number of polynomials in the permutation
argument; d̂, d, D are specified by the relation RH

(d,D,t,ℓ) from Section 5.2 and k′ is
the number of checked H-ranged polynomial identities; k′′ and ℓ are the number of
evaluated polynomials and the number of distinct evaluation points in the Open protocol,
respectively; and ϵd′-DLog is the hardness of the d′-DLog problem, where d′ is the degree
of the used SRS.

Plugging in all the respective values of the PLONK protocol, i.e.,

k = 3, d̂ = n + 2, d = 1, D = 4, k′ = 3, k′′ = 7, ℓ = 2, d′ = n + 2,

we arrive at the following upper bound on the knowledge soundness error of PLONK:

ϵPLONK ≤ 3n

p
+ 2 · max

�
4(n + 2), 2n + 2

+ 2

p
+ 6

p
+ 1

p
+ ϵ(n+2)-DLog (7.8)

= 11n + 27
p

+ ϵ(n+2)-DLog (7.9)

Assuming hardness of the (n + 2)-DLog problem and n = poly(λ), the overall bound is
negligible in the security parameter λ with a linear dependence on the circuit size n.
We stress that this bound is obtained in the algebraic group model, and thus does not
necessarily reflect the actual level of security offered by PLONK in the real world. In
particular, it only holds up against adversarial strategies which behave according to the
rules of this model, i.e., algebraic adversaries which can only derive new group elements
as linear combinations of the group elements contained in PLONK’s structured reference
string. We leave a more in-depth discussion of this issue as an open problem.

64

CHAPTER 8
Conclusion

In this thesis, we conducted a formal security analysis of the universal and fully-succinct
zk-SNARK PLONK introduced by Gabizon et al. [GWC19]. Even though this influential
state-of-the-art construction is implemented in several real-world applications, there was
no formal security proof of its zero knowledge property. Consequently, we were able to
discover a vulnerability in PLONK’s zero knowledge implementation. Our subsequent
disclosure and proposed fix of this vulnerability led to a security patch of the PLONK
protocol.

As the main contribution of this thesis, we gave a formal security proof establishing that
the resulting version of PLONK achieves statistical zero knowledge. Towards this goal, we
showed how to construct a simulator capable of generating proofs which are distributed
identically to PLONK proofs up to a negligible statistical difference.

Furthermore, our modular security analysis of all the building blocks involved in the
construction of the PLONK protocol, including formal security proofs for each of them,
allowed us to establish a precise upper bound on PLONK’s knowledge soundness error in
the algebraic group model of Fuchsbauer et al. [FKL18]. Since this is the idealized model
used in the original proof of PLONK’s knowledge soundness, our result helps towards a
better understanding of the security guarantees of PLONK. Overall, the work in this
thesis highlights the importance of rigorous definitions and formal security proofs.

We gave a positive result by proving that the patched version of PLONK achieves zero
knowledge. We leave the negative result of formally disproving that the previous version
of PLONK is zero-knowledge to future work. It remains an open problem to devise
an attack which exploits the vulnerability we found in PLONK’s old zero knowledge
implementation. We are confident that one can show it does not even satisfy witness
indistinguishability. In this weaker notion, the adversary defines a statement with two
different witnesses and is given a proof computed under one of them chosen at random.
Its goal is then to determine which witness was used.

65

APPENDIX A
Appendix

A.1 Proof of Permutation Argument
We provide our own proof1 of Lemma 6.1 from [GWC19, Claim A.1], which is the
foundation of PLONK’s permutation argument.

Proof. Suppose Equation (6.4) from the lemma is true, i.e.,%
i∈[n]

(ai + β · si + γ) =
%

i∈[n]
(bi + β · sσ(i) + γ) (A.1)

holds with probability greater than n/p over the choice of β, γ ∈ Fp. Let us express both
sides of the equality as the following two bivariate polynomials, each of total degree n:

f(X, Y) :=
%

i∈[n]
(ai + X · si + Y), g(X, Y) :=

%
i∈[n]

(bi + X · sσ(i) + Y).

Observe that their sets of roots are
��

β, −(a1 + βs1)

, . . . ,

�
β, −(an + βsn)

)) β ∈ Fp
	

and
��

β, −(b1 + βsσ(1))

, . . . ,

�
β, −(bn + βsσ(n))

)) β ∈ Fp
	
, respectively. Then, since

Equation (A.1) is assumed to hold with probability greater than n/p, it follows from
the Schwartz–Zippel lemma (Lemma 2.1) that these sets of roots must be the same.
This means that for any fixed value of β, the values (a1 + βs1), . . . , (an + βsn) and
(b1 + βsσ(1)), . . . , (bn + βsσ(n)) are equal, but not necessarily in this order.

Now, assume aσ(i∗) ̸= bi∗ for some i∗ ∈ [n]. Then, by the previous observation, for every
β ∈ Fp there must be some j ∈ [n] such that aσ(i∗) + βsσ(i∗) = bj + βsσ(j), or equivalently

aσ(i∗) − bj + β(sσ(i∗) − sσ(j)) = 0. (A.2)

1At the time of writing this proof, the original proof of Claim A.1 given by Gabizon et al. was not
fully satisfactory. In the most recent version of the PLONK paper [GWC19, Appendix A], a proof by
Tohru Kohrita is used instead which is even simpler and more elegant than ours.

67

A. Appendix

Furthermore, we know that j ̸= i∗, since aσ(i∗) ̸= bi∗ . Fixing j and looking at this
as a polynomial equation in X = β, we see that, unless the left-hand side is the zero
polynomial (which cannot be the case here due to j ̸= i∗), there is at most one value of
β for which the equality holds. The same argument applies to any of the n − 1 values of
j ̸= σ(i∗) ∈ [n], that is, there are at most n − 1 values of β satisfying Equation (A.2).
Since n − 1 < |Fp|, this in turn contradicts our assumption that aσ(i∗) ̸= bi∗ .

A.2 Proof of Alternative Lagrange Polynomial Formula
Let S := {x1, . . . , xn} ⊆ Fp be a set of n distinct elements, and ZS(X) := &

i∈[n](X − xi).
In Lemma 2.2, we stated that the i-th Lagrange polynomial Li(X) := &

j∈[n],j ̸=i
X−xj

xi−xj

can then be rewritten as
Li(X) = ZS(X)

Z ′
S(xi)(X − xi)

,

where Z ′
S is the formal derivative of the polynomial ZS . Recall that the formal derivative

of a polynomial f(X) := (d
i=0 fiX

i ∈ Fp[X] is simply defined as f ′(X) := (d
i=1 ifiX

i−1.

We now prove Lemma 2.2, showing that the above substitution is indeed correct.

Proof. Since ZS(X)/(X −xi) = &
j∈[n],j ̸=i(X −xj), all that remains to be shown to verify

the correctness of this substitution is

Z ′
S(xi) =

%
j∈[n],j ̸=i

(xi − xj). (A.3)

For this purpose, we will adapt the general product rule from real analysis to the setting
of formal derivatives. Given n polynomials f1, . . . , fn ∈ Fp[X], it states:

� %
j∈[n]

fj

�′
=

'
j∈[n]

f ′
j ·

%
k∈[n],k ̸=j

fk (A.4)

Applying this to ZS(X) = &
j∈[n](X − xj), we obtain:

Z ′
S(X) =

� %
j∈[n]

(X − xj)
�′

=
'

j∈[n]
(X − xj)′ ·

%
k∈[n],k ̸=j

(X − xk) =
'

j∈[n]
ZS\{xj}(X)

Observe that when evaluating (
j∈[n] ZS\{xj}(X) at X = xi, each summand except for

ZS\{xi}(xi) contains the factor (xi − xi) = 0 and hence vanishes, yielding Equation (A.3)
as required.

Product rule for formal derivatives. For completeness, we also give a proof of the
general product rule for formal derivatives stated in Equation (A.4).

68

A.2. Proof of Alternative Lagrange Polynomial Formula

Proof. First, we show that the simple product rule (uv)′ = u′v + uv′ also holds for formal
derivatives. Let u, v ∈ Fp[X] be two polynomials of degree du and dv, respectively. Then:

(uv)′ =
��

du'
i=0

uiX
i

��
dv'

i=0
viX

i

��′
=

�
du'
i=0

dv'
j=0

uivjXi+j

�′

=
du'
i=0

dv'
j=0

�
uivjXi+j ′ =

du'
i=0

dv'
j=0

(i + j)uivjXi+j−1

=
�

du'
i=1

dv'
j=0

iuivjXi+j−1
�

+
�

du'
i=0

dv'
j=1

juivjXi+j−1
�

=
�

du'
i=1

iuiX
i−1

��
dv'

i=0
viX

i

�
+

�
du'
i=0

uiX
i

��
dv'

i=1
iviX

i−1
�

= u′v + uv′

Having established the simple product rule, we proceed by proving the general product
rule for formal derivatives via induction on the number of polynomials n.

• Base case: n = 2.� %
i∈[2]

fi

�′
=

�
f1f2

 ′ = f ′
1f2 + f1f ′

2 =
'
i∈[2]

f ′
i ·

%
j∈[2],j ̸=i

fj

• Induction step: Suppose Equation (A.4) holds for n ≥ 2 polynomials.� %
i∈[n+1]

fi

�′
=

� %
i∈[n]

fi · fn+1

�′

=
� %

i∈[n]
fi

�′
fn+1 +

� %
i∈[n]

fi

�
f ′

n+1

=
� '

i∈[n]
f ′

i ·
%

j∈[n],
j ̸=i

fj

�
fn+1 + f ′

n+1 ·
%

i∈[n]
fi

=
'
i∈[n]

f ′
i ·

%
j∈[n+1],

j ̸=i

fj + f ′
n+1 ·

%
j∈[n+1],
j ̸=n+1

fj

=
'

i∈[n+1]
f ′

i ·
%

j∈[n+1],
j ̸=i

fj

This finishes the proof by induction.

69

List of Figures

2.1 Arithmetic circuit for computing x4 := (x1 + x2) · (x2 + x3). 14

3.1 Example circuit with private inputs x1, x2, x3 and public input x4. 21

71

List of Tables

1.1 Comparison of succinct non-interactive zero-knowledge proof systems. . . 5

3.1 Selector vector assignment. 20

73

Bibliography

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Greg Maxwell. Bulletproofs: Short Proofs for Confidential
Transactions and More. In 2018 IEEE Symposium on Security and Privacy,
pages 315–334, 2018. https://doi.org/10.1109/SP.2018.00020.

[BGM17] Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable Multi-party Computation
for zk-SNARK Parameters in the Random Beacon Model. Cryptology ePrint
Archive, Paper 2017/1050, 2017. https://eprint.iacr.org/2017/1
050.

[BR93] Mihir Bellare and Phillip Rogaway. Random Oracles Are Practical: A
Paradigm for Designing Efficient Protocols. In Proceedings of the 1st ACM
Conference on Computer and Communications Security, CCS ’93, pages
62–73. Association for Computing Machinery, 1993. https://doi.org/
10.1145/168588.168596.

[BSBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable,
transparent, and post-quantum secure computational integrity. Cryptology
ePrint Archive, Paper 2018/046, 2018. https://eprint.iacr.org/20
18/046.

[BT04] Jean-Paul Berrut and Lloyd N. Trefethen. Barycentric Lagrange Interpola-
tion. SIAM Review, 46(3):501–517, 2004. https://doi.org/10.1137/
S0036144502417715.

[CBBZ23] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. HyperPlonk:
Plonk with Linear-Time Prover and High-Degree Custom Gates. In Advances
in Cryptology – EUROCRYPT 2023, volume 14005 of LNCS, pages 499–530.
Springer, 2023. https://doi.org/10.1007/978-3-031-30617-4
_17.

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely,
and Nicholas Ward. Marlin: Preprocessing zkSNARKs with Universal and
Updatable SRS. In Advances in Cryptology – EUROCRYPT 2020, volume
12105 of LNCS, pages 738–768. Springer, 2020. https://doi.org/10.1
007/978-3-030-45721-1_26.

75

https://doi.org/10.1109/SP.2018.00020
https://eprint.iacr.org/2017/1050
https://eprint.iacr.org/2017/1050
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2018/046
https://doi.org/10.1137/S0036144502417715
https://doi.org/10.1137/S0036144502417715
https://doi.org/10.1007/978-3-031-30617-4_17
https://doi.org/10.1007/978-3-031-30617-4_17
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/978-3-030-45721-1_26

[Ele22] Electric Coin Company. The halo2 Book, 2022. https://zcash.gith
ub.io/halo2/index.html.

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The Algebraic Group Model
and its Applications. In Advances in Cryptology – CRYPTO 2018, volume
10992 of LNCS, pages 33–62. Springer, 2018. https://doi.org/10.1
007/978-3-319-96881-0_2.

[FS87] Amos Fiat and Adi Shamir. How To Prove Yourself: Practical Solutions
to Identification and Signature Problems. In Advances in Cryptology –
CRYPTO ’86, volume 263 of LNCS, pages 186–194. Springer, 1987. https:
//doi.org/10.1007/3-540-47721-7_12.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
Quadratic Span Programs and Succinct NIZKs without PCPs. In Ad-
vances in Cryptology – EUROCRYPT 2013, volume 7881 of LNCS, pages
626–645. Springer, 2013. https://doi.org/10.1007/978-3-642-3
8348-9_37.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The Knowledge
Complexity of Interactive Proof-Systems. In Proceedings of the Seventeenth
Annual ACM Symposium on Theory of Computing, STOC ’85, pages 291–304.
Association for Computing Machinery, 1985. https://doi.org/10.114
5/22145.22178.

[GO94] Oded Goldreich and Yair Oren. Definitions and Properties of Zero-Knowledge
Proof Systems. Journal of Cryptology, 7(1):1–32, 1994. https://doi.or
g/10.1007/BF00195207.

[Gro16] Jens Groth. On the Size of Pairing-Based Non-interactive Arguments. In
Advances in Cryptology – EUROCRYPT 2016, volume 9666 of LNCS, pages
305–326. Springer, 2016. https://doi.org/10.1007/978-3-662-4
9896-5_11.

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK:
Permutations over Lagrange-bases for Oecumenical Noninteractive arguments
of Knowledge. Cryptology ePrint Archive, Paper 2019/953, 2019. https:
//eprint.iacr.org/2019/953.

[HBHW22] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. Zcash
Protocol Specification. Technical report, Electric Coin Company, 2022.
https://zips.z.cash/protocol/protocol.pdf.

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-Size
Commitments to Polynomials and Their Applications. In Advances in
Cryptology – ASIACRYPT 2010, volume 6477 of LNCS, pages 177–194.
Springer, 2010. https://doi.org/10.1007/978-3-642-17373-8
_11.

76

https://zcash.github.io/halo2/index.html
https://zcash.github.io/halo2/index.html
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1145/22145.22178
https://doi.org/10.1145/22145.22178
https://doi.org/10.1007/BF00195207
https://doi.org/10.1007/BF00195207
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://zips.z.cash/protocol/protocol.pdf
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11

[Mau05] Ueli Maurer. Abstract Models of Computation in Cryptography. In 10th IMA
International Conference on Cryptography and Coding, volume 3796 of LNCS,
pages 1–12. Springer, 2005. https://doi.org/10.1007/11586821_1.

[MBKM19] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic:
Zero-Knowledge SNARKs from Linear-Size Universal and Updatable Struc-
tured Reference Strings. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’19, pages 2111–2128. As-
sociation for Computing Machinery, 2019. https://doi.org/10.1145/
3319535.3339817.

[Mil22] Jim Miller. The Frozen Heart vulnerability in PlonK, 2022. https:
//blog.trailofbits.com/2022/04/18/the-frozen-heart-vul
nerability-in-plonk/.

[Sho97] Victor Shoup. Lower Bounds for Discrete Logarithms and Related Problems.
In Advances in Cryptology – EUROCRYPT ’97, volume 1233 of LNCS, pages
256–266. Springer, 1997. https://doi.org/10.1007/3-540-69053
-0_18.

[vzGG13] Joachim von zur Gathen and Jürgen Gerhard. Factoring polynomials over
finite fields. In Modern Computer Algebra, chapter 14, pages 377–432.
Cambridge University Press, 3rd edition, 2013. https://doi.org/10.1
017/CBO9781139856065.018.

77

https://doi.org/10.1007/11586821_1
https://doi.org/10.1145/3319535.3339817
https://doi.org/10.1145/3319535.3339817
https://blog.trailofbits.com/2022/04/18/the-frozen-heart-vulnerability-in-plonk/
https://blog.trailofbits.com/2022/04/18/the-frozen-heart-vulnerability-in-plonk/
https://blog.trailofbits.com/2022/04/18/the-frozen-heart-vulnerability-in-plonk/
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1017/CBO9781139856065.018
https://doi.org/10.1017/CBO9781139856065.018

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	State of the Art
	Contributions
	Outline

	Preliminaries
	Notation
	Cryptographic Hardness Assumptions
	Interactive Arguments of Knowledge
	zk-SNARKs
	Arithmetic Circuits
	Polynomial Identity Testing
	Lagrange Interpolation
	KZG Polynomial Commitments
	Algebraic Group Model

	The PLONK Arithmetization
	The PLONK Constraint System
	Polynomial Representation

	Polynomial Commitments with Cross-Commitment Proof Aggregation
	Definition
	The Construction
	The Case of Multiple Evaluation Points

	Polynomial Protocols
	Checking Polynomial Identities
	Ranged Polynomial Protocol
	Reducing the Number of Field Elements

	Permutation Argument
	Knowledge Soundness in the AGM
	Statistical Completeness

	The Full PLONK Protocol
	The Vulnerability
	Statistical Zero Knowledge
	The PLONK zk-SNARK

	Conclusion
	Appendix
	Proof of Permutation Argument
	Proof of Alternative Lagrange Polynomial Formula

	List of Figures
	List of Tables
	Bibliography

