
Improving Model Reviewing and
Experimentation with Tool

Support: A controlled experiment

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Dominik Kretz, BSc
Matrikelnummer 01529213

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Ass. Dipl.-Ing. Dr.techn. Dietmar Winkler
Mitwirkung: Ao.Univ.Prof. Dipl.-Ing. Mag.rer.soc.oec. Dr.techn. Stefan Biffl

Wien, 10. September 2021
Dominik Kretz Dietmar Winkler

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Improving Model Reviewing and
Experimentation with Tool

Support: A controlled experiment

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Dominik Kretz, BSc
Registration Number 01529213

to the Faculty of Informatics

at the Technical University Vienna

Advisor: Univ.Ass. Dipl.-Ing. Dr.techn. Dietmar Winkler
Assistance: Ao.Univ.Prof. Dipl.-Ing. Mag.rer.soc.oec. Dr.techn. Stefan Biffl

Vienna, 10th September, 2021
Dominik Kretz Dietmar Winkler

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Dominik Kretz, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 10. September 2021
Dominik Kretz

v

Danksagung

Ein großer Dank gilt an dieser Stelle all jenen, welche mich während meines Studiums
unterstützt haben. Allen voran möchte ich mich bei meiner Mutter und meinem 2019
verstorbenen Vater für die große Unterstützung in dieser Phase meines Lebens bedanken.

Ein weiterer Dank gilt Ao.Univ.Prof. Dipl.-Ing. Mag.rer.soc.oec. Dr.techn. Stefan Biffl
und Univ.Ass. Dipl.-Ing. Dr.techn. Dietmar Winkler für die hervorragende Betreuung
meiner Abschlussarbeit.

Wichtiger Bestandteil meines Alltags an der Technischen Universität Wien waren auch
einige Studierende, welche ich während des Studiums kennenlernen durfte und, welche
schnell zu guten Freunden wurden. Ein besonderer Dank gilt Christian Engelbrecht, BSc,
Dipl.-Ing. Alexander Prock, BSc, Christoph Burger, BSc und Mustafa Isikoglu, BSc für
die gute Zusammenarbeit und gegenseitige Motivation in den unzähligen Arbeitsstunden
während unseres Studiums.

vii

Acknowledgements

At this point, I want to thank everyone who has supported me during my study. Especially,
I thank my mother and my deceased father who passed away in 2019 for the big support
during this part of my life.

Furthermore, I wish to thank Ao.Univ.Prof. Dipl.-Ing. Mag.rer.soc.oec. Dr.techn. Stefan
Biffl and Univ.Ass. Dipl.-Ing. Dr.techn. Dietmar Winkler for the excellent supervision of
my master thesis.

Another important part of my everyday life at the Technical University Vienna were
different students that I got to know at the University and that quickly became good
friends. Therefore, I want to especially thank Christian Engelbrecht, BSc, Dipl.-Ing.
Alexander Prock, BSc, Christoph Burger, BSc und Mustafa Isikoglu, BSc for the good
cooperation and the mutual motivation in the countless working hours during our study.

ix

Kurzfassung

Der Prozess der Softwareentwicklung besteht aus mehreren verschiedenen Phasen. Um das
Problem von Fehlern in Softwaresystemen zu lösen, wird die Software-Qualitätssicherung
(SQS) angewandt. Um Fehler zu finden, werden in der Entwurfsphase des Softwaresystems
Modelle als Artefakte verwendet. Diese Modelle sind eine vereinfachte Darstellung des
realen Softwaresystems und können mit Hilfe von Modell-Reviews untersucht werden. Für
den Entwurf und die Überprüfung verschiedener Modelle gibt es jedoch nur begrenzte
Software-Unterstützung.

Häufig werden einzelne Review-Typen, Software-Unterstützungen oder allgemeine Metho-
den innerhalb einer wissenschaftlichen Studie verglichen. Die Verwaltung von Reviews
und Experimenten ist jedoch eine ressourcenintensive Aufgabe. Daher ist es unser Ziel
die derzeit begrenzte Software-Unterstützung für Modell-Reviews und die Verwaltung
von Reviews und Experimenten weiterzuentwickeln.

Wir verwenden den Model Design and Review Editor (MDRE) und erweitern diesen mit
zwei Prototyp-Komponenten. Die erste Komponente bietet Software-Unterstützung für
die Meldung von Fehlern innerhalb von Modell-Reviews. Dadurch wird die Durchführung
des Reviews verbessert und der Aufwand für die Datenerfassung reduziert. Zusätzlich
implementiert die zweite Komponente eine Software-Unterstützung für die Verwaltung
von Reviews und Experimenten. Das Hauptziel dieser zweiten Komponente ist die Bereit-
stellung von Aufgaben und die Überwachung des Fortschritts während des Experiments,
um den Verwaltungsaufwand zu reduzieren. Zur Evaluierung unserer Ergebnisse füh-
ren wir ein kontrolliertes Experiment mit ca. 80 Teilnehmern durch, in dem wir die
MDRE-Toolunterstützung mit dem traditionellen Ansatz vergleichen und die Ergebnisse
analysieren.

Die Auswertung zeigt, dass die in den MDRE implementierten Erweiterungen in allen
gemessenen Kategorien ähnliche Ergebnisse liefern wie der herkömmliche Ansatz, sowohl
bei Modell-Reviews als auch bei der Verwaltung von Experimenten und Reviews.

Der MDRE ist also in der Lage, Reviews durchzuführen, die mit dem traditionellen
Review-Ansatz vergleichbar sind. Darüber hinaus reduziert die implementierte Software-
Unterstützung den Aufwand und vereinfacht den Prozess. Daher hilft der MDRE, Review
und Experiment Managern die Planung, Durchführung und Verwaltung von Reviews und
Experimenten mit weniger Ressourcenaufwand durchzuführen.

xi

Abstract

In modern software engineering, the process of software development consists of multiple
different stages. To address the problem of defects in software systems, Software Quality
Assurance (SQA), a structured approach that aims to prevent and detect defects in
software, was defined. To find defects, models are used as artifacts during the design
stage. These models are a simplified view of the real software system and can be inspected
using model reviews to identify defects within them. However, for the design and review
of different models, there is only limited tool support available.

It is often important to compare individual review types, tool support components, or
general methods within a scientific study like an experiment. However, managing reviews
and experiments is a laborious task. Therefore, in this work, we aim to advance the
currently limited tool support for model reviews and the administration of reviews and
experiments. We use the Model Design and Review Editor (MDRE) in its initial state
and aim to extend it with two tool support prototypes. The first component provides
tool support for reporting defects within model reviews. This improves the review
execution and reduces the effort for data collection. Additionally, the second component
implements tool support for administrating reviews and experiments. The main goal of
this second component is the provision of tasks to the experiment participants and the
monitoring of their progress during the experiment to reduce the administration effort.
For the evaluation of our results, we conduct a controlled experiment with about 80
participants in which we compare the advanced MDRE tool support with the traditional
pen-and-paper-based approach and analyze the results.

The evaluation shows that the enhancements implemented into the MDRE provide
similar results compared to the traditional pen-and-paper-based approach in all measured
categories for both model reviews and the administration of experiments and reviews.
Therefore, the improved state of the MDRE is capable of performing reviews similar
to the traditional pen-and-paper inspection process. Furthermore, the implemented
tool support for the administration of reviews and experiments reduces the effort and
simplifies the process. Therefore, the MDRE helps reviewers, review managers, and
experiment managers to plan, execute and manage reviews and experiments with fewer
resources required.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Context & Motivation . 1
1.2 Problem Definition . 3
1.3 Aims & Expected Results . 5
1.4 Thesis Structure . 6

2 Related Work 9
2.1 Software Development Life Cycle . 9
2.2 Model-driven approaches . 15
2.3 Software Quality Assurance . 19
2.4 Inspections (Reviews) . 21
2.5 Software Inspection Tools . 24

3 Experimentation 33
3.1 Principles of Investigation . 35
3.2 Attributes & Types of Experiments . 38
3.3 Experiment design & execution . 39

4 Research Questions & Solution Approach 45
4.1 Design Science . 45
4.2 Prototype for tool-supported model reviewing (RQ1) 47
4.3 Review and Experimentation Process Support (RQ2) 48
4.4 Benefits and limitations of MDRE (RQ3) 49

5 Model Design & Review Editor 51
5.1 Initial State of the MDRE . 52
5.2 Tool Support AddOn for Model Reviewing (RQ1) 64
5.3 Tool Support AddOn for Experimentation (RQ2) 73

xv

6 Empirical Evaluation (RQ3) 91
6.1 Study Process . 91
6.2 Results . 105

7 Discussion & Limitation 113
7.1 Discussion . 113
7.2 Limitations . 115

8 Conclusion & Future Work 117
8.1 Conclusion . 117
8.2 Future Work . 119

List of Figures 121

List of Tables 123

Bibliography 125

Appendices 134
Appendix A: Flow chart MDRE review execution 134
Appendix B: Flow chart MDRE experiment administration 135

CHAPTER 1
Introduction

In this first chapter, we initially present the context and the motivation for this work.
We also explain the problem definition, aims, and expected results. At the end of this
section, an overview of the individual chapters is given and the structure of this work is
presented.

1.1 Context & Motivation
In modern software engineering, the process of software development starts by defining
requirements, designing the artifact, and continues with the implementation and testing.
Even after many decades of active research in this field, it does still not seem to be possible
to deliver software that is completely free of mistakes. [47] Since software developers are
also just human beings they tend to make mistakes when implementing software features,
which are called bugs or defects and often remain hidden within the software until they
are found and later corrected. [81]

To address the problem of defects in software artifacts, Software Quality Assurance (SQA)
is used. [20] SQA is a structured approach that aims to increase software quality by
preventing defects before they are implemented and tries to find and remove already
implemented defects using multiple different techniques. [11] Defects in software artifacts
can be detected either dynamically by running tests during runtime or statically by
reviewing the design artifacts or source code without running the software artifact itself.
[81] To find defects as early as possible models are used as artifacts in the design stage of
the software development. [16] These models are a simplified view of the real software
artifact that should be implemented and are therefore easy and cheap to develop. [21] With
the help of model reviews, it is possible to find defects that would be discovered earliest
during the implementation already within the design of the software artifact. Finding a
defect during the design phase is 6.5 times cheaper than during the implementation and
100 times cheaper than finding it when the software artifact is already in productive use.

1

1. Introduction

[16] Therefore, models are an important concept of the software engineering process and
are also a big part of SQA.

However, reviewing models during the software development process is not a trivial task
to perform. Many different review methods can be used to review a model. Some of these
review methods are supported by tools and others are not. However, there is only limited
tool support available for reviewing models and it can be of importance to compare
different review strategies with each other. This comparison can be achieved with the
help of a scientific study like an experiment in which two or more review methods are
compared and scientifically verified results are generated. Also, for this comparison,
there is only limited tool support available, and therefore comparing two review methods
during an experiment can be a resource-intensive task.

An illustrating use case for this work consists of an experiment at the Technical University
Vienna1 to evaluate the differences of two or more different review strategies by reviewing
one or more software artifacts for defects and comparing the results of each strategy that
is used. The experiment addresses both the scientific software engineering community
with the experiment administration and design, as well as the industry by inspecting
software artifacts for possible defects. Within such an experiment there are multiple
stakeholders involved:

• Experiment Managers: The experiment managers are part of the scientific
software engineering community. They are responsible for planning the experiment
and the executed reviews, inviting participants, and evaluating the results from the
comparison of two review strategies. The main point of interest for them is the
advantages and disadvantages of the compared review strategies to each other.

• Review Owners: The review owners are responsible for the planning of each
review and the execution of the review strategy itself. They are part of the industry
and mostly interested in the defects which are found during the reviews.

• Reviewers: They are the participants of the experiment and have to conduct
the different review tasks described in the materials which are provided with the
experiment. Every reviewer inspects one or more artifacts with one or more review
strategies during the experiment.

• Model Designers: The models that are inspected by the reviewers within the
software inspection are created by model designers. This role is responsible for
correcting the defects that have been reported by the Reviewers during their review.
After phase E5 in which the results of the experiment are packed and presented
the review managers forward the reported defects to the model designers.

1Technical University Vienna: www.tuwien.at (last visited 30.09.2021)

2

www.tuwien.at

1.2. Problem Definition

1.2 Problem Definition
The main problem of our use case which we can see in the high-level view task flow
displayed in figure 1.1 is that many different steps are involved, which are at the moment
distributed over many different platforms. As of now, data must be stored in many
different spreadsheets using solutions like Microsoft Excel2 or Google Sheet3. There
currently is only limited tool support that provides support for reviews and experiment
administration at the same time. Our main motivation is to solve these problems and
to implement a software solution that provides full tool support for most parts of the
experiment and review administration, as well as improves the review process. The tool
support which is developed should be capable to form groups and assign different tasks
to each group which have to be carried out by the participants of each experiment group.
Along with the general support for experiments and the centralization of the whole review
planning and experiment administration process into one application also existing and
new review functionalities should be integrated into the experiment administration tool
support. In the next paragraphs, we explain each challenge of this work individually.
Furthermore, the figure 1.1 shows all stages of our experiment use case and assigns the
stages to their challenges.

Challenge 1: Limited tool support for model review. The main problem domain
is the comparison of review types when used on models. There are many different review
types but there is only limited tool support available to ensure that the reviewers follow
the review method. The comparison of two or more review types can for example be
achieved by measuring different metrics like the average time until the first defect in a
model has been found, the found defects, the time until participants finished the review,
and so on. Again, there arises the problem of missing tool support for measuring the
previously mentioned metrics, which makes a comparison of review techniques difficult.

We use the Model Design and Review Editor [77] (MDRE) that is described in detail
within chapter 5. For example, the MDRE does not record any found defects as of now,
but only stores for each review if there were defects found or not by a reviewer in a
certain part of a model. But due to the MDRE being a universal platform that supports
every model from every domain by using an image of this model, advanced support
for reporting individual defects solves this shortcoming. It also opens the possibility of
supporting all kinds of different review strategies and evaluating the results from them.

Challenge 2: Limited tool support for review planning and experiment ad-
ministration. As already explained in our example use case, review type comparisons
are usually done with the help of an experiment with groups of participants needed
to perform reviews on provided base models. All groups review the same model using
different review techniques, which allows collecting and analyzing data as the foundation

2Microsoft Excel: www.microsoft.com/de-de/microsoft-365/excel (last visited 30.09.2021)
3Google Sheets: www.google.com/intl/de_at/sheets/about (last visited 30.09.2021)

3

www.microsoft.com/de-de/microsoft-365/excel
www.google.com/intl/de_at/sheets/about

1. Introduction

Figure 1.1: Reviewing and empirical study process challenges

4

1.3. Aims & Expected Results

for an overview of the pros and cons of each review type. Therefore, participants are
usually assigned to a group with a certain review type. Without tool support, the task
of splitting up the participants into individual groups with different review techniques
can quickly become time-consuming. In addition, participants often have to answer
questionnaires and fulfill other prerequisites before starting the experiment. This adds
management effort to check if all prerequisites are fulfilled.

In the current state of the MDRE, the preparation of an experiment with 50 and more
participants would quickly turn into a time-intensive task, as the MDRE currently does
not support experiment execution and planning. But the MDRE as a whole provides a
universal platform that could be used to achieve tool support for experiments. Advancing
the platform with experiment tool support should make experiments in which multiple
review methods are compared less time-consuming and easier to manage, reducing the
overall administrative overhead.

Challenge 3: Evaluation of the implemented tool support prototypes It is
important to show that our research provides benefits and limitations. For example,
practitioners from the industry need a way to find out which improvements and limitations
our new approach has before they can implement it into their industrial processes. But
also scientific researchers need the evaluation of our research results if they want to use or
enhance them within their research. Therefore, the developed tool support components
for the MDRE approach need to be evaluated.

This evaluation needs to be achieved by conducting a study in which the advanced
MDRE approach is compared to an existing review method without tool support like
the traditional pen-and-paper-based inspection process. The research results that are
collected during the study need then be evaluated and put into comparison.

1.3 Aims & Expected Results
We focus on advancing the currently limited tool support for model reviews, as well as for
review and experimentation administration. Therefore, we use the MDRE in its initial
state and aim to extend it with two tool support prototypes. The first component should
provide tool support for reporting defects within model reviews and simplifies the data
collection during the execution of these reviews. Additionally, the second component
implements tool support for administrating reviews and experiments. The main goal
of this component is to provide tasks to the experiment participants and monitor their
progress during the experiment automatically.

To verify the implemented components it is necessary to collect data and perform
an evaluation. It should be possible to execute an experiment with the MDRE in
which two different review methods are compared to each other. With the help of this
component, there should be less effort required in the setup, execution, and monitoring
of the experiment. Therefore, we conduct an experiment, with the newly implemented
experiment administration component, to evaluate the advanced MDRE approach. Finally,

5

1. Introduction

the results of the executed experiment are evaluated, put into comparison, and a conclusion
is drawn. As the main result, we expect that the further developed MDRE approach
is performing at least as well as the pen-and-paper-based approach or better in the
majority of all result categories. In figure 1.2, a summarized overview of the different
work packages and dependencies is displayed.

Figure 1.2: Overview of the work packages of the solution approach

1.4 Thesis Structure
Chapter 1 presents an overview and explains the problems, aims, and expected results,
as well as the motivation and the context. The main goal of this chapter is to provide a
general understanding of the topics and goals.

In chapter 2, the state of the art and the most important concepts about the topic are
explained. Furthermore, the related work is used to build upon this topic and to develop
the solutions for the research questions within the next chapters. In this chapter, a
basic overview of models, software quality assurance, and model-driven development
approaches are given. Additionally, various other software inspection tools are presented
and their advantages and disadvantages are explained.

Chapter 3 is another state-of-the-art explanation that especially focuses on experimen-
tation. Within this chapter, the most important details about scientific studies and
experiments are presented. The explanation of experimentation is important for the

6

1.4. Thesis Structure

upcoming chapter 6 in which an experiment is executed to evaluate the results of this
work.

Within chapter 4, the research methodology called Design Science, which is our main
methodology is explained. Furthermore, the three research questions for the development
of two tool support prototypes and the evaluation are defined. Within this definition of
the individual research questions, the solution approaches on how the research questions
are solved in detail are presented.

In chapter 5, the MDRE that is the main focus of this work is presented. Since the
MDRE has already been in development previously to this master thesis, we first explain
the initial state of the MDRE and why it has been developed. Furthermore, the two tool
support components which are developed to advance the MDRE approach are presented
afterward. The main focus of the presentation of these new components is explaining
the reason why it has been implemented by comparing the MDRE to existing software
inspection tools and presenting the functionality of each individual component.

Chapter 6 contains the evaluation of all research results. First, the study design of the
controlled experiment that is conducted to evaluate the developed tool support prototypes
is explained. After the study design is explained, the results that could be collected
during the execution of the controlled experiment are evaluated and put into comparison.
During the evaluation of every individual result category, an explanation is given that
explains which of the inspected methods performed better within the category.

In chapter 7, the results are discussed and possible limitations of the newly implemented
tool support prototypes are presented.

Within the final chapter 8, a conclusion about the results and all topics is drawn.
Furthermore, possible future work that could not be carried out but could be interesting
in the future is presented.

7

CHAPTER 2
Related Work

In this chapter, the state of the art around this topic is explained and related works are
presented. The main goal of this chapter is the definition of the research gap that we
want to address.

2.1 Software Development Life Cycle

The process of Software Engineering advanced over the last 30 years, but even with all
the achieved improvements large and complex software projects still experience several
changes during their development. Most of these changes cannot be prevented because
of constant changes in the ecosystem around the software. [48]

The changes are unpredictable and derived from several factors like constant changes in
utilized software, system requirements, business goals, market demand, work environment,
and government regulations. All these mentioned changes in the requirements can produce
significant project uncertainty and have been reported as one of the main factors why
projects become challenging. [48]

Software is designed, developed, and maintained in multiple different stages which are
part of the life-cycle of the software product. [39] This life-cycle is therefore called the
Software Development Life Cycle (SDLC). The SDLC covers all different stages in the
software development process starting with gathering requirements and designing the
product over development and testing to the productive operation of the product. [16]

The general SDLC which contains every step within the software development process
can be shown as a simplified and theoretical model as it is presented by Shylesh [63] and
by Mishra et. al. in [45].

9

2. Related Work

Figure 2.1: Steps in the SDLC [63]

The provided model, which is displayed in figure 2.1, defines the SDLC with only 6
different phases which are:

• Planning: During the planning stage requirements are analyzed along with the
customer or owner of the software system. The main outcomes of this stage are
quality assurance requirements, risk identification, and a feasibility report. [63]

• Defining Requirements: In this phase the requirements are defined in detail
and documented to get a verification from the customer. The main outcome of this
stage is the software requirement specification (SRS). [63]

• Design: In the design phase multiple software architectures are designed using
the previously created SRS as input. The best design based on risk assessment,
robustness, design modularity, time, and cost efficiency is selected. [63]

• Implementation: During the implementation phase the development of the
software product is performed according to the previously specified design. [63]
During this stage, the design documents are converted into code with the help of
one or more programming languages. The output of this stage is a working software
application in the form of program code. [37]

• Testing: In the testing phase the previously developed software product is tested
against the in the first stages created specification documents like the SRS. All
discovered software defects are reported, tracked, and fixed within this stage. [63]

10

2.1. Software Development Life Cycle

Effective testing results in high software quality, lower maintenance costs, and
reliable results, therefore this is the most important stage of the SDLC. [37]

• Deployment and Maintenance: After the testing phase has been completed
successfully the product is deployed in the destination environment and the customer
performs an acceptance test. [63] [37]

It is important to point out that this model is a simplification of the SDLC to give a
brief overview and so it is only a theoretical concept. It is not a model which would be
used as a process model in a real software development project as it is not advanced
enough. [63]. [16]

Every SDLC model consists out of several finite steps which are used during software
development. There is not just one single model implementing the SDLC in higher detail,
but there is a bigger amount of models.

Some well-known examples of models implementing the SDLC are the waterfall model,
iterative model, V-Model, rapid prototyping model, spiral model, scrum, extreme pro-
gramming (XP). [55] [15] The most important models within this list are described in
detail in the next sections.

Every individual SDLC model defines a process on how the different stakeholders shall
proceed in the different phases of a software development project. There also is not
one perfect model having an advantage over all other models, every model has its own
method with all the pros as well as cons. In some models, the modeled SDLC consists out
of 10 and more sequentially connected phases and some other models are even partially
iterative, which leads to a bigger number of different steps in the life-cycle. [58]

Currently, there are not just different SDLC models but there are also two different
SDLC methodologies to which the models belong. These two methodologies are called
traditional software development and agile software development. [41] In the next section,
we explain both methodologies and point out the differences between the individual
methodologies.

2.1.1 Traditional Software Development
In traditional software development, the SDLC models are based on a sequential series of
steps like requirements definition, solution building, testing, and deployment. An impor-
tant key aspect of this methodology is that it requires the definition and documentation
of a stable set of requirements at the start of a project, in which the requirements do not
change at all during the whole project. [41]

Therefore, the success of the whole project which is executed with the help of the tradi-
tional software development methodology relies on the knowledge of all the requirements
of the whole project before the beginning of the development in the implementation
stage. [41] A change during or after the implementation could be problematic and
lead to additional costs. On the other hand, if the requirements do not change during

11

2. Related Work

the project the traditional software development offers the possibility to determine the
costs, as well as the time and the required resources of the project easier than in other
methodologies. [41] In the next section, we describe two important models for traditional
software development namely the waterfall model and the spiral model.

Waterfall Model

The waterfall model was originally defined in 1970 and later improved in 1976 to cope
with the growing complexity of software projects. [15] Since that time the waterfall model
has not been altered much and is still mostly similar today. [6]

The waterfall model consists out of different consecutive phases that can only be completed
one after another. Moving to the next stage is only possible if the preceding stage is
completely done. This makes the waterfall model recursive because in this model every
stage can be repeated an unlimited amount of times until the produced software artifact
is perfect. [6] In figure 2.2, the different phases of the waterfall model are displayed.

Figure 2.2: Phases of the Waterfall Model [6]

The advantages of the waterfall model are that it is easy to understand and it uses
good habits like define-before-design and design-before-code. It also includes the creation
of different deliverables and the definition of milestones to highlight the major goals in
the project. [55]

On the other hand, the disadvantages are that the idealization does not match the
reality as the constantly changing environment around every software development project
is not reflected. [55] Software is delivered late in the project which delays the discovery
of critical defects in the developed software. In small teams, the waterfall model results
in overhead and increased costs for project management. [55]

12

2.1. Software Development Life Cycle

Spiral Model

The spiral model is a modified version of the waterfall model and was introduced in
1986 by NASA. [58] This model introduces several iterations that spiral out from the
center of the model, starting small and becoming larger as the progress continues, which
represents the recommended project management strategy of starting small and going
bigger as time passes. Figure 2.3 displays the process and the different stages within
the spiral model. In the spiral model, the focus is shifted from a specification-driven
approach (waterfall model) to a risk-driven one. [58]

Figure 2.3: Phases of the Spiral Model [58]

With each spiral progression, a prototype is built, verified against its requirements, and
validated through testing. This makes it possible to find defects in the developed software
earlier than in the waterfall model and offers the possibility to fix them in the next
progression of the spiral. This reduces the additional costs which arise because of the
defect. [58]

The advantages of the spiral model are the high amount of risk analysis which makes it
especially good for large and mission-critical projects. The fact that software is produced
early in the SDLC can reduce costs in the case that requirements change or defects are
discovered. [55]

The disadvantages are that it can increase the costs for the project management in

13

2. Related Work

comparison to the waterfall model. Risk analysis during the project planning requires
specific expertise and the project success highly depends on this risk analysis. This also
means that the spiral model does not work well in smaller projects. [55]

2.1.2 Agile Software Development

Agile software development combines the ideas of incremental and iterative development.
Instead of formalizing the requirements of the software product in a detailed specification
[60], this methodology revisits the phases within the SDLC over and over again which
improves the software product in every iteration of the cycle. [41] Additionally, with
every development cycle, a working software application is developed and customer
feedback is collected, which is used to improve the software in the next cycle. [41]
The production of software can be complicated, therefore the agile approach focuses
on communication, flexibility, and good analysis. [37] The Agile Manifesto defines key
principles for agile software development which are early customer involvement, iterative
development, self-organizing teams, and adaptation to change. [41]

Scrum

Scrum is a lightweight project management framework that key aspects were introduced
in 1986. [60] [37] It defines a scrum team as a group of around ten people who have
different roles. [55] In every scrum team, there exists a scrum master and a project owner.
The scrum master is responsible for the whole scrum team, although the scrum master
has no supervisor role. [60]

The scrum master role is responsible that the scrum process is adhered to, for handling
organizational aspects, and that problems that might hinder the team from developing
are eliminated. [60] The product owners are not the customers themselves but part of
the scrum team. They define the team’s development targets for the next sprint and are
responsible that valuable software is produced for the customer. All other scrum team
members are developers who implement the features which are on the agenda for the
running sprint. [60]

The sprints split the whole development process into small cycles which are usually 1-4
weeks long. After every sprint, the team has to deliver working software according to the
agile manifesto, which the customer can review. The team handles a product backlog
that contains all features for the whole software development process in a prioritized
order. [60] For every sprint, an actionable amount of features is moved from the product
backlog to the sprint backlog. All features which were moved to the sprint backlog are
then fully implemented within the upcoming sprint. [60] Figure 2.4 displays the whole
scrum development cycle in detail.

14

2.2. Model-driven approaches

Figure 2.4: Phases of the Scrum Model [60]

2.2 Model-driven approaches
Software engineering faces the challenge that it is still quite new and immature compared
to other engineering disciplines. Due to the current pressure of the software market
users often demand complex applications of which the construction of such software
systems exceeds our abilities. [61] At the same time, the complexity of software is
growing exponentially, leading to the general agreement that managing the growing
complexity can only be achieved by using appropriate methods of abstraction. [25]
Furthermore, the whole software engineering field seems to be evolving slower than any
other engineering discipline. Since the invention of the first programming languages in
the 1950s programming languages haven’t changed as much as expected. Even with
modern programming languages like Java or C++ the basic concepts like loops and
if-statements are still the same as they were more than 50 years ago. [61]

Since nowadays a big revolution in software programming languages is not expected any
longer, there is a shift from focusing on technical improvements to process improvements.
[61] This is also the main reason why the previously explained software development
life cycle models like scrum are popular nowadays. Software development, in general,
consists a lot out of expressing ideas, which is rather limited by the imagination of
the development team than by the underlying physical laws. To make sure that the
software system is not becoming too complex for our imagination they can be described
by a model-driven approach instead of just using program code, which also improves the
software development process, while the technical programming languages stay untouched.
[61]

2.2.1 Models
Models are a simplified view of the reality [21] and so they are a key concept in many
scientific contexts, e.g., when developing modern software or in physics, chemistry, and

15

2. Related Work

mathematics. [9] Furthermore, they provide an abstract view of a system and so offer
the possibility to ignore extraneous details and give engineers the ability to focus on the
relevant parts of the system. [10] Many aspects are relevant when a system is modeled,
for example, different modeling concepts, perspectives, views, and notations can be used
at any point in the time of the development by various stakeholders. In addition, the
model transformation of the different types of models is an important concept of models.
[10] For example, it can often be needed to convert different views on the same level of
abstraction, which is supported by certain model transformations. [10] In addition to the
definition of a model it must conform to the following five important key characteristics:
[21]

• Abstraction: Models must always be a reduced rendering of the system that is
represented. [21]

• Understandability: It is not enough to remove detail from the system, the
remaining parts must be in a form that can be understood. [21]

• Accuracy: The model must represent an accurate view of the modeled system’s
features of interest. [21]

• Predictiveness: The model must have the correct properties to predict the
behavior of the represented system accurately. [62]

• Inexpensiveness: A model must be a lot cheaper and easier to create than the
system which is represented by the model. [21]

In general, the whole world is full of models and the term "Everything is a model" is the
common worldview for model engineers. [21]

Therefore, models enable at least two different roles of abstraction: [9]

• Reduction feature: The model has a clear focus and only contains the relevant
parts.

• Mapping feature: The model represents an original product in an abstract and
generalized representation.

Furthermore, there are also various purposes for which a model can be used for: [9]

• Descriptive purpose: Describes a real system or context which already exists.

• Prescriptive purpose: Determining the scope and details about a problem to
study.

• Definition purpose: Defining how a planned system shall be implemented.

16

2.2. Model-driven approaches

2.2.2 Model-Driven Architecture

At the end of 2000, the Object Management Group (OMG) invented a new standard
approach called the Model-Driven Architecture (MDA). [7] The MDA paradigm invents
several models which are used to represent a software system in multiple abstraction
levels.

In the MDA approach, the first model that should be created in the software development
process is the computation independent model (CIM). [50] The CIM focuses on the
viewpoint of the system and considers the environment as well as the system requirements,
while it does not display any information about the computerization of the system. [19]

In the next abstraction level, the so-called platform-independent model (PIM) is created.
This model displays the parts of the system which are computerized but it does not define
the technological platforms that are used to deploy the software implementation. [19]

The last model in the MDA approach is the platform-specific model (PSM) which is
needed to receive a platform-specific view. In the PSM the system relying upon the
specific characteristics of the platform that it is deployed on is described. [19]

Finally, the code model is created based on the PSM. Creating the code from the start
point which is represented by the CIM model can be strenuous because there is a large
number of models which need to be created on the way to the final code. [50]

2.2.3 Model-Driven Engineering

An important principle used in many engineering disciplines is called Model-Driven
Engineering (MDE). [21] The use of models in traditional engineering disciplines like
civil engineering, for example, uses mathematical models to calculate the forces acting
within their structural design. [62] MDE also includes different model-driven approaches
in the engineering disciplines like MDA, domain-specific modeling and model integrated
computing. [25] MDE uses models as first-class entities and interprets every artifact as a
model or as a smaller part of a model (model element). [7]

The MDE approach suggests that during the design phase the developers should first
create a model of the artifact which shall be created before the actual development
process has started. During the creation phase, the resulting model from the design
phase is then be turned into a real-life product. [21]

In MDE not just the existence of models is mandatory but also the quality of the models
which are used in the creation process is of high importance. Models in the MDE approach
have two important quality criteria: [46]

• Transformability: Every model must have the ability to be transformed into
another model type, which provides a higher amount of detail to executable types
of code. [46]

17

2. Related Work

• Modifiability: In case there are changes to the artifact on which a model is based
on, the new requirements need to be rendered correctly in the model and also be
adapted to the code. [46]

2.2.4 Model-Driven Development
The Model-Driven Development (MDD) approach is a subset of MDE. MDD focuses
on the development part of the software engineering process, by providing support for
generating implementations from models. MDE in comparison supports other uses
of models within the software engineering process, for example, model-driven reverse
engineering and model-driven evolution. [73]

The idea of models, modeling, and model transformation plays an important role in the
MDD approach. In MDD models are used to argue about the problem and solution
domain in software development. [10] However, models of software are often inaccurate
because they are usually not open for abstractions. [62] Additionally, with the conversion
of models converted into code by hand, there is no formal link between the produced
software product and its models. Therefore, the model and the developed software
often drift apart, as the overhead which is required to keep the two artifacts in line is
seemingly too high for most development teams, as there is no visible value from this
work in the first place. [62] As an outcome, the models are usually incomplete and are
not trustworthy documentation of the software system. Another problem is that many
software languages, especially older ones, have weak semantic specifications, which leads
to unclear and different modeling styles. [62]

Nowadays, the main focus of the MDD approach is therefore the automatic code generation
from models, which are formally linked to the code without any further developer
interactions needed. [62] Over the past decades, technologies have evolved to fulfill the
potential of MDD. With the new improvements in MDD technology, a viable alternative
to traditional development processes has finally been found for most application domains.
[62]

The main motivation for MDD is the improvement of productivity. Therefore, there are
two important benefits which are delivered in the following way: [2]

• The short-term productivity of the software developers is improved with the help
of an increase in the software artifacts value in terms of how much functionality it
delivers. [2]

• The long-term productivity of the software developers is improved along with the
reduction of the rate at which the software artifact becomes obsolete. [2]

Model-driven development requires tool support that combines the creation and design
of models, as well as, the review of existing models to make sure that there are no hidden
defects. However, there is currently only limited tool support available that combines

18

2.3. Software Quality Assurance

the possibilities of designing and reviewing models within the same tool. Often, different
tools are used and a lot of effort is required to export and import individual models
between the used tools.

2.3 Software Quality Assurance
In this section, we present relevant information on software quality, software quality
assurance, and inspections (reviews).

2.3.1 Software Quality
Software quality is quite difficult to define and capture to its whole extent. [72] People
often see software as a simple set of instructions that form the lines of source code and
make up a software application. But a software application is only a small part of a
whole software system, which the application interacts with nonstop. [40] Therefore, it is
not sufficient to see software quality just as the quality of the source code of the software
application which is executed within the system. We need to identify all parts of the
software system and their ways of interacting to ensure high software quality. [40]

Due to the wide and often blurred scope of quality, there is not one correct definition of
(software) quality. Gaffney et. al. in [20] describe quality as conformance to requirements.
In this definition, conformance means that the product meets the needs of the users
and satisfies the performance criteria, which has been agreed upon with. The needs and
requirements of the user to the product should be provided in a written form to the
developers before the design phase in the SDLC is started. [20]

Software quality has always been a central role in the SDLC and becomes more and
more important every day because with the evolving technologies people are increasingly
affected by software systems in their everyday life. [72] Nowadays we are constantly
online on social networks like Facebook, Twitter, and Instagram. Important systems
like acceleration, steering, braking, safety systems like the airbag, navigation, etc. are
controlled by software. [72] Mistakes in software lead to unexpected/unplanned behavior
of important systems in our life, which often ended in serve consequences in the past,
like high costs, leaks of private information, and people who died. In summary, defects
in software can be traced back to bad software quality and problems within software
quality assurance. [72]

In software quality, the term defect has a general meaning and refers to some kind of
problem with the software either with its external behavior or its internal characteristics.
The term defect is split up into three different categories by the IEEE Standard 610.12
(IEEE, 1990) [69]. The meanings of these categories are related but there are important
distinctions, which we present in the following section: [47] [69]

19

2. Related Work

• Failure: When the external behavior of a system does not match the expectations
which have been prescribed within the specifications of the system we speak of a
failure. [47]

• Error: An error can lead to the failure of a system if there are no corrective actions
applied. An error is considered a possible state of the system. [47]

• Fault: The main cause behind an error is called a fault. [47]

In summary, this means that a fault is hidden in the code and can stay undetected
for a long time until it is activated by an event [47] or found during a software quality
assurance measure. In case that the fault is activated the whole software system enters
an error state and if there is no corrective action applied the software system eventually
causes a failure. The general defect chain is fault → error → failure, but a fault does not
automatically lead to an error and also an error does not lead to a failure each time. [47]

2.3.2 Software Quality Assurance
Since defects in software systems can have serve consequences it is necessary to find
and prevent them. Therefore, the field of software quality assurance (SQA) has been
invented [11], with its main focus on keeping the software quality up. [20] By definition,
the term quality assurance is defined as: "A planned and systematic pattern of all actions
necessary to provide adequate confidence that the item or project conforms to established
technical requirements". [11] However, the term SQA can be misleading because it cannot
prevent defects in every case for sure. No matter how seriously executed and advanced
SQA measures become there never can be an "assurance" to prevent defects in software
systems completely. SQA can only "assure" the quality of a software system but it cannot
give confidence. [40] To increase the software quality, SQA uses multiple activities to
deal with certain defects, which can be grouped into three different categories: [69]

• Defect prevention: The aim of this SQA activity is the prevention and avoidance
of the injection of certain defects into the source code of the software system. The
defects which are prevented in this activity are usually caused by the humans devel-
oping the system. Some examples of defect prevention are training for developers,
the introduction of formal methods, the introduction of standards and processes,
and the usage of certain tools and technologies to increase code quality. [69]

• Defect detection & reduction: This SQA activity detects and removes certain
defects which have been implemented into the software system. Defect reduction
can be achieved using processes for software verification. [13] This category contains
the two best-known SQA activities which are inspections (reviews) and software
tests. [69]

• Defect containment: In this SQA category defects are expected to appear and
so this category aims to either contain the defects to a local area so that there are

20

2.4. Inspections (Reviews)

no global consequences or to invent mechanisms that at least reduce the damage
caused by a failure in the software system. This is achieved by fault-tolerance
techniques which break the relation between faults and failures so that a fault does
not cause a global failure. Another possibility is to introduce containment measures
that prevent serious consequences like death and injuries in the case of a software
system failure. [69]

The prevention, reduction, and containment of defects, which would normally stay
undetected and be triggered later, can save a lot of costs and resources if SQA is used at
the right time within the software development process. [16] Therefore, it is important
to find defects as early as possible during the SDLC. A defect, which is not detected in
the model during the design phase, can lead to high costs, which arise from fixing the
defect during or after the implementation phase. According to Dawson et al. in [16] a
defect found during the implementation is 6.5 times more costly than one which is found
during the design and a defect found during the operation is 100 times more costly. One
example of an area in which SQA has an important role in model-driven engineering. In
this field models must be sufficiently complete and correct, i.e., the model does not have
serious issues, which would jeopardize the successful production of the artifact derived
from the model or require significant additional effort.

We focus on the SQA category of defect reduction. The aim of the defect reduction
activities is the verification of the artifact of which the quality should be increased.
Verification is an activity that is used to confirm that an artifact conforms to the
specified state which has been documented in the specifications. [13] In general, it is the
confirmation that the right product has been built. Different tools can be used to verify
an artifact like walkthroughs, inspections (reviews), and audits. [13]

2.4 Inspections (Reviews)
Inspections are part of our main focus. The procedure of an inspection is usually described
with the help of certain materials and documents (e.g. checklists and printed forms)
which are provided to the reviewers who perform the inspection tasks. [49] In these
provided materials the exact tasks are described, with the main goal that the inspection is
so careful and complete that if an inspection cannot reveal any defects the confidence that
the product performs as expected is justified. [49] Inspections can not just be applied to
check product artifacts like software applications and their source code but also to check
various design documents like models and specifications. We focus on inspections that
eliminate defects early in the SDLC which leads to a reduction of the required resources.
Therefore, inspections are an important activity in early software development. [76]

According to Laitenberger in [38] the nature of software inspection can be characterized
in four different primary dimensions which are called technical, economic, organizational,
and tools. Each primary dimension has a major goal and several different sub-dimensions.
[38] Figure 2.5 displays all possible dimensions and sub-dimensions of software inspections.

21

2. Related Work

Figure 2.5: Dimensions and sub-dimensions of software inspections [38]

• The technical dimension characterizes the differences between inspection meth-
ods to identify similarities and differences which are among them. Each inspection
approach can be characterized in different technical sub-dimensions. [38] These
subdimensions are the activities performed (process), the software product which
is inspected (product), team roles, their optimal size and the participant selection
(team roles, size, selection), and the technique used to detect defects in the product
(reading technique). [38]

• The economic dimension is needed to receive information about the project’s
effect on the inspection and vice versa. Most important for these dimensions are the

22

2.4. Inspections (Reviews)

sub-dimensions which provide information about the product quality (quality), the
project effort (effort), the project duration (duration), and the contribution to the
education of participants, as well as, the team building in general (non-quantitative
benefits). [38]

• The organizational dimension collects information about the impact of the
whole organization on the inspection and vice versa. Important sub-dimensions
in the organizational dimension are the participants of the inspection (team), the
structure of the project (project structure), and the environment around the project
(environment). [38]

• In the last dimension, the tools used to support the software inspection are
described. The sub-dimensions in the tool dimension collect information about the
purpose of the used tools (purpose) and investigate how the used tools support the
given software inspection approach (supported inspection approach). [38]

Due to the different requirements in SQA, not every inspection is performed after the
same procedure. There are different inspection techniques available that can be used
for checking an artifact on its correctness, for example, checklist-based reading and
usage-based reading [68]. Since there are many different inspection techniques it can
become necessary to compare individual methods to each other. These comparisons
are performed within scientific evaluations like experiments. However, a problem with
comparing inspection techniques within experiments is that the administration and
execution of experiments is laborious. A possible improvement to this situation is the
use of tool support that reduces the effort that is needed for executing the comparisons.
Within section 2.5 we present various tool support components for administrating and
executing inspections. In the following sections, we explain the previously mentioned
inspection techniques in detail.

2.4.1 Checklist-Based Reading
During a review that uses checklist-based reading as a review method, a checklist with
questions or imperative sentences which can be used as hints and recommendations for
finding defects is used. [22] The questions and sentences should focus the reviewers’
attention on the main key aspects of the reviewed artifact which is usually the area of
the artifact which is most defect prone according to previously collected evaluations. [68]
Checklists also make sure that the reviewer does not forget any aspects which need to be
inspected. Findings and collected data from different or the same projects are used to
develop the checklists for the reviews. But, the previously mentioned checklist type does
only give little guidance on how the reviewers should proceed with the review. [22] [81]

Therefore, an advanced and modern type of checklists can be used for checklist-based
reading, which are checklists with guidance. According to Winkler et al. in [76] checklists
that give active guidance on how a reviewer shall proceed and actively lead the reviewer
through the review are a good enhancement to checklists with only little guidance. In

23

2. Related Work

this new form of checklist-based reading, every reviewer can follow an exact procedure
with the help of the available checklist. This makes sure that there is no area of the
artifact that is up for review is left out by the reviewer and that they are looking at
the expected properties in the expected and prioritized order which was specified by the
review managers previously during the development of the checklist. [76] [81]

2.4.2 Usage-Based Reading
The previously mentioned reading techniques focus on finding as many defects as possible
in any area of the inspected artifact, without taking the importance of each area into
account. In general, the efficiency of reviews is measured by the number of defects that
have been found and usually ignores the severity of the final impacts of the found defects.
[68] To find the most critical defects, that matter for users of the inspected artifact,
usage-based reading was introduced. The main idea of usage-based reading is to define
and prioritize use cases and focus the inspection towards identifying the critical defects
within the important use cases of the artifact by providing active guidance.

A use case is a specification of an artifact that has several interaction steps that need to
be executed and specific goals which should be achieved after executing all steps defined
in the individual use case. During the review, the reviewers only inspect one use case
after another and ignore all other functionalities of the artifact which are not part of
the selected use case. [81] Due to the focus on the use cases, the understanding of the
reviewers is improved by usage-based reading and therefore reviewers are supported in
finding more important defects in the inspected artifact. [76] Two different schemes can
be employed in usage-based reading:

• Time-boxed: In this reading scheme a fixed amount of time for the whole reading
is chosen and the allocated time for every individual use case is divided according
to the priority of the use case and the severity of a defect in this use case would
have. [81]

• Rank-based: With this reading scheme the use cases are reviewed ordered by
their priority and there is no time limit per individual use case but there is a total
time limit for inspecting the combination of all use cases which are up for inspection.
[81]

2.5 Software Inspection Tools
The most common method used in software inspection to assure the quality of a developed
software artifact is code reviews. Therefore, code reviews are common in software
engineering and used by organizations and (open-source) communities as a method to
improve the quality of their software source code. [70] A code review aims to check if
the code compiles based on the internal guidelines, to find potentials defects, and to
improve faulty components. [70] These code reviewing activities result in the reduction of

24

2.5. Software Inspection Tools

broken builds, improves code quality overall, have a positive effect on the team’s dynamic
knowledge sharing, and allows an easier training of new members. [44] Reviews as a
method in software inspections are not limited to reviewing code. [70] Many different
types of artifacts can be reviewed by a group of peers, for example, documents, images,
models, tables, files, and so on.

Nowadays, modern reviews are supported by different tools, which can manage the whole
process of reviewing. [70] One of the first frameworks for review tool support is called
ISPIS and was proposed in 2004 by Kalinowski et. al. in [33]. This framework provides
the basic process steps for conducting a review with the help of a computational tool.
[33] The authors later tried to advance ISPIS to an industry readiness in 2007 [34], but
since then the development has not been continued and ISPIS has not been used in any
later works after 2007. Today, many modern tools provide the support to review certain
types of artifacts and many of them are not even focused on conducting reviews but are
normal tools of daily use. Simple and well-known examples for software providing review
functionalities are certain office and file-sharing tools. For example, in Microsoft Word
and Google Docs, it is possible to enable a change history to mark all changes within
a document and comment on certain parts within it. File sharing tools like Dropbox,
Google Drive on the other hand provide the possibility to keep a change history and
discuss the current stage via comments at the file level.

Both office and file-sharing tools usually provide review functionalities but it is not the
main focus of these tools. Therefore, the review support within the tools is sufficient
for single users or small groups but organizations need advanced reviewing tools. In the
following section, we present a set of tools that focus on the support of reviews and which
are used by groups and organizations of all sizes.

2.5.1 Review Board

Review Board1 is an application written in Python using the Django web framework. [8]
It is Open Source and published under the MIT license [8] and actively developed as the
latest version 4.0.3 was released on the 29th of June 2021.

The general workflow while using Review Board is that in case a code review is done
before a commit the review process starts when an author has made changes to the local
source tree. [8] In the first step, the author starts by creating a diff-file comparing his
changes with the codebase and submits this file to Review Board by creating a review
request. After that, the author now has to wait until enough reviewers have provided
their feedback for the change. [8] If the reviewers are satisfied with the state of the code
then the author can submit the code to the trunk and the review is closed. In case there
are changes requested by the reviewers the author needs to adapt to the changes and
submit another diff-file afterward. This process is then repeated until all reviewers accept
the change in the codebase. [8]

1Review Board: www.reviewboard.org (last visited 30.09.2021)

25

www.reviewboard.org

2. Related Work

In figure 2.6, the frontend of Review Board is displayed and in this case, shows the
side-by-side code view.

Figure 2.6: Code review in Review Board2

Review Board provides the following advantages and disadvantages:

Advantages:

• Review Board is Open Source under the MIT license [8]

• Reviews are not limited to code, images and files are also supported [57]

• Potential defects can be marked within an artifact if, for example, an image is
under review [57]

• Interacts with Git, Subversion (SVN), Perforce, and so on [57]

• Reviews can be done before and after commits [57]

• Provides unified and side-by-side diff views [70]

2Source: www.reviewboard.org (last visited 30.09.2021)

26

www.reviewboard.org

2.5. Software Inspection Tools

Disadvantages:

• Reviews are based on manually generated diff-files [57], which is not the state of
the art

• Frontend usability and appearance are outdated, as the combination of many
different bright colors being used, the browser back button not being available
sometimes and some buttons which are not recognizable instantly makes the tool
nonintuitive to use in some areas.

2.5.2 Gerrit Code Review
Gerrit3 is an Open Source tool developed in Java which is available under the Apache 2.0
license. Originally it has been developed as a fork of Rietveld by Google for the Android
project. [70] Gerrit can only be used before a commit, which means it only supports
pre-commit code reviews. [52]

Once a developer decides to push his changes from the local commit to the Gerrit server
the code review process is triggered. [52] The Gerrit server then automatically notifies the
reviewers that there are new changes to the codebase which need to be reviewed before
they are pushed to the version control system of choice. In this phase, the reviewers
now have the chance to review the code and comment on the changes, as well as to
vote in the end. [52] If the changes have not been accepted by the reviewers then the
author of the code changes needs to improve the changes and fix reported problems.
Otherwise, in case all reviewers approve the changes then the changes are sent to the
version control system and are merged to the master branch. [52] The main focus of
Gerrit is not just the improvement of code quality but also making sure that building
pipelines run through. [44] In figure 2.7, the frontend of Gerrit is displayed, in which
the code reviewing / code commenting process is shown. Gerrit provides the following
advantages and disadvantages:

Advantages:

• Gerrit is Open Source under the Apache 2.0 license [70]

• Active development by Google [70]

• Provides unified and side-by-side diff views [70]

• Integrates well with continuous integration services like Jenkins [70]

3Gerrit Code Review: www.gerritcodereview.com (last visited 30.09.2021)
4Source: gerrit-review.googlesource.com/Documentation (last visited 30.09.2021)

27

www.gerritcodereview.com
gerrit-review.googlesource.com/Documentation

2. Related Work

Figure 2.7: Code review in Gerrit4

Disadvantages:

• Can only review source code, other artifacts like images are not supported [70]

• Navigation within the frontend can be confusing [52]

• Technical problems like uncaught exceptions can appear while using Gerrit [52]

• Some error messages are uninformative and completely miss any details [52]

• Only works with Git [70]

2.5.3 Atlassian Crucible
Crucible5 is a code review application developed by the company Atlassian. [35] This
allows Crucible to provide easy integration with other Atlassian products like Bitbucket,
Jira, and other development tools of this company. [70] Crucible is a commercial tool and
therefore has a subscription-based pricing model. It also does not provide any support
for Open Source projects. [35] The main focus of Crucible is on post-commit reviews,
but it also provides support for pre-commit code reviews. [70]

The workflow in Crucible is similar to the already mentioned code review tools. Once
a component is ready for review the author can either select a group of reviewers or
individual reviewers to check the components which are up for review. [70] The reviewers
then have the chance to verify and comment on the code in the codebase and leave
feedback. Crucible only supports unified diff views which cannot display the changes in a

5Atlassian Crucible: www.atlassian.com/de/software/crucible (last visited 30.09.2021)

28

www.atlassian.com/de/software/crucible

2.5. Software Inspection Tools

side-by-side view. [70] After all reviewers have submitted their feedback, the author has
to adapt the code according to the received comments. This iteration repeats until the
reviewers accept the code. [70] Finally, when the reviewers are satisfied with the code
they approve the component and close the review. In case of a pre-commit review, the
merge can then be completed. [70] In figure 2.8, the frontend of Atlassian Crucible is
displayed which shows the unified code diff view and some posted comments.

Figure 2.8: Code review in Atlassian Crucible6

Atlassian Crucible provides the following advantages and disadvantages:

Advantages:

• Interacts well with other Atlassian products like Jira, Bitbucket, etc. [70]

• Provides a timeline to view review iterations [70]

• Interacts with Git, Subversion (SVN), CVS, Perforce [70]

• Provides a frontend with a modern appearance

6Source: betterfasterhappier.medium.com (last visited 30.09.2021)

29

betterfasterhappier.medium.com

2. Related Work

Disadvantages:

• No side-by-side diff view available [70]

• Closed source, code not available for the community [35]

• Commercial tool with high license costs [35]

• Only source code reviews are possible, images are for example not supported [70]

2.5.4 GitHub
GitHub7 is an online hosting service for git repositories. In general, GitHub provides a
free version with limited features available and a subscription-based enterprise version.
[70] It is not possible to deploy GitHub on a private server unlike the other tools already
presented GitHub is an online service and therefore can only be accessed via the official
GitHub servers in the cloud. [70] This fact does not only bring disadvantages with it but
also some advantages for example that there is a big amount of skilled people available on
GitHub who can review code and request changes in Open Source projects. It would not
be possible to have so many people available on a self-hosted code review instance. [80]

GitHub offers a lot of features as it is a full git repository service, but especially its
review component is used by many developers. The review functionality of GitHub is
called Pull Requests. [80] Pull Requests are a simple concept that provides code review
functionality on diff chunks, which are views of snippets of code that has been added,
altered, or deleted. [35] Even though Pull Requests do not provide advanced review
functionalities they are widely used on GitHub. [35] The participants in the review can
comment on the code similar to the other tools that have already been mentioned but
also a basic voting functionality is available in GitHub Pull Requests. Once the author
has fixed all problems reported by the reviewers and the reviewers also accepted the
Pull Request it is automatically merged into the destination code branch. [35] In figure
2.9, the frontend of GitHub is displayed that shows the side-by-side diff view within the
code reviewing process including the comment section. GitHub provides the following
advantages and disadvantages:

Advantages:

• Provides unified and side-by-side code diff views [70]

• Easy start and no setup required because the service is hosted in the cloud [70]

• Modern frontend appearance and good usability

• Fully integrates Git in the workflows but also SVN access is available [70]
7GitHub: www.github.com (last visited 30.09.2021)
8Source: git-scm.com/book/de/v2/ (last visited 30.09.2021)

30

www.github.com
git-scm.com/book/de/v2/

2.5. Software Inspection Tools

Figure 2.9: Pull requests in GitHub8

Disadvantages:

• Closed source, code not available to the community [70]

• Only limited support for reviewing images available [70]

• All data is stored in the cloud, no self-hosting available [70]

• GitHub Pull Requests are widely used but only a relatively simple form of reviews
[35]

• Only some features are available for free [70]

2.5.5 Summary
In this section, we presented some well-known software inspection tools and mentioned
different advantages and disadvantages. Table 2.1 presents an overview of important
features and characteristics and compares the mentioned software inspection tools to
each other.

Especially, the features model/image review, review administration, and experiment
administration are the central point of focus. The inspection tool Review Board provides
the most advantages within our use case in comparison to all other presented tools.

31

2. Related Work

Feature / Characteristic Review Board Gerrit Crucible GitHub
Open Source � � – –
Non commercial (free) � � – �
Code review � � � �
Model/image review � – – –
Review administration � � � �
CVS support eg. Git, SVN � � � �
Model design – – – –
Experiment administration – – – –

Table 2.1: Comparison of advantages and disadvantages of the inspection tools

However, there are still features missing that are relevant for the research questions
which are presented in section 4. For example, RQ2 focuses on the development of a
prototype for tool-supported review and experiment administration of which experiment
administration is not available.

In summary, it can be seen in table 2.1 that there is currently no single tool available that
supports all focused features. Therefore, the model design and review editor (MDRE)
has been implemented and is presented in detail within section 5. This tool focuses on
the implementation of new features in the field of software inspection tools and has been
advanced to an environment that is capable of supporting all features that are required
to solve the research questions.

32

CHAPTER 3
Experimentation

In this chapter we explain the most important details about the topic of experimentation.
Within this work, experiments are in the central focus to solve the research questions
and therefore are needed for the understanding of later chapters.

In every mature and advanced scientific topic, there is the need to understand the given
components and the relationships between the components. [5] In the field of software
engineering researchers nowadays develop more practical solutions during their research
than ever before. The aim of their research is that practitioners should use their developed
software systems or research prototypes that they developed in the research laboratories
with the goal of the innovation of software products and processes. [42]

In the scientific software engineering community, there is a big amount of research going
on with many researchers all over the world searching for new solutions and innovations.
Researchers tend to only point out the technical benefits of their newest inventions,
without providing pieces of evidence on the usefulness of their new tool or method in
practice. [42]

Furthermore, the available technical and practical information about a newly invented
solution is not always supported by evidence that would be needed to assure the usefulness
in real processes or the applicability in business processes. Therefore, it can be hard
for practitioners to find those research solutions which achieve the best innovations and
improvements in practice and to the current state of the art. [42]

Scientific knowledge needs the validation of theories, principles, and practices to show its
correctness. A possible solution to produce evidence for scientific knowledge is empirical
studies. [42] In scientific research the term validity has many interpretations, most of
them focus on checking if the measure conforms to what it was designed to represent.
[14] In general, there are three different types of validity identified:

33

3. Experimentation

• Content validity: The content validity depends on the carefulness with which
the desired domain has been covered. [14]

• Predictive validity: This type of validity involves predicting the outcome of an
event with the help of the measurements. [14]

• Construct validity: In this validity type the focus lies on finding out how close
an operational definition results in data that is related to an abstract construct.
[14]

For conducting a validation there are two options, either the proposal has to be proven
formally, or the empirical methods have to be used to collect evidence for the research
results. Formal methods are not common in scientific software engineering research,
because it is often simply not possible. This has lead researchers to focus on empirical
methods to find evidences for their study results. [36] The different empirical methods are
either quantitative or qualitative evaluations. Quantitative methods work by measuring
certain effects, while qualitative methods are used to search for relations and reasons
behind the observed behavior. [36] Some examples of quantitative evaluations are
experiments, case studies, surveys, field studies, and meta-studies. A few examples of
qualitative evaluations are interviews and group discussions. [36]

Nowadays, most scientific research is supported by evidence which results from exper-
imentation. During the experimentation, the research purposes and measurements of
the variables involved in the phenomena are observed. [32] There are multiple common
excuses why empirical studies and especially experimentation are not used to evaluate
the found research results: [32] [36]

• Traditional scientific methods cannot be applied.

• The current level of experimentation is good enough.

• Experiments cost too much.

• Demonstrations suffice.

• You never get the results published.

All of these fallacies and some additional ones have been shown as exaggerated concerns by
Juristo et. al. in [32]. In reality, experimentation provides the basis for the improvement
in knowledge and understanding within a scientific topic. Software Engineering is one
of the fields which is a good candidate for using experimentation to gather additional
knowledge and understanding. [5] Experimentation can help to better evaluate, predict,
understand, control, and improve the software engineering process and the systems
developed within it. [5]

34

3.1. Principles of Investigation

The controlled experiment is also the method that provides the highest degree of confidence
about the results. In an experiment, researchers try to control every variable that can
influence the outcome except the variables which should be analyzed. [36]

In summary, empirical strategies rely on evaluated results that have been observed or
collected during experimentation. Experiments are an empirical strategy in software
engineering. [78] Experimentation provides a systematic, disciplined, and controlled way
for evaluating activities performed by humans. There are also other empirical strategies
for software engineering like surveys and case studies. [78]

No matter in which project or scientific field if we want to investigate the effectiveness of
a tool, technique, or method scientifically and not just rely on the "common wisdom" we
need to perform an empirical study. [54] Therefore, in the following sections, the most
important principles for scientific investigations are presented.

3.1 Principles of Investigation
There are certain principles for the investigation during an empirical study that we need
to follow, to get results that can be verified and validated scientifically. [53]

3.1.1 Hypothesis
In the first step, the exact goal of what should be investigated within the study is
formulated. The initial formulation helps to choose the best research technique in a later
step. This formulation about the goals of the research is called the hypothesis and states
what we want to know after conducting the research. [53] A hypothesis is a tentative
theory that is used to explain the behavior which should be explored. The hypothesis of
an empirical study is expressed in two different statements: [54]:

• Null hypothesis: The null hypothesis assumes that there is no significant differ-
ence between two treatments, methods, tools, techniques, environments, or other
conditions which are measured, used on the same dependent variable. [54] Pfleeger
et. al. state the following example for a null hypothesis in [54]:
There is no difference in the number of defects per thousand lines of code between
code tested using coverage measures and code tested using an operational profile.

• Alternative hypothesis: An alternative hypothesis states that there is a signif-
icant difference between two or more treatments [54]: Pfleeger et. al. state the
following example for an alternative hypothesis in [54]:
Code tested using coverage measures has a significantly different number of defects
per thousand lines of code than code tested using an operational profile.

As stated above the null hypothesis always states that there is no difference between
the different treatments. It is always assumed that the null hypothesis is correct unless

35

3. Experimentation

data can be generated during the research which can prove the difference. [54] Therefore,
every investigation within an empirical study should focus on starting from the null
hypothesis and test this hypothesis. In case there are results found during the study
which are convincing enough then the null hypothesis can be rejected. [54]

3.1.2 Investigation technique
After the hypothesis has been defined the investigation technique which either confirms
or refutes the null hypothesis must be chosen. There exist three different types of
investigation techniques:

• Survey: A survey documents the relationships and the outcomes of a situation in
the retrospective. Therefore, surveys are always performed after a certain event has
finished. [54] A survey has a wide coverage and so usually provides a clear overview
of the area of interest. [29] During the survey data is evaluated which has been
collected during an event by others or which has been recreated with the help of
the recollection of different events. [54] Scientists often ask people questions during
surveys to extract data about certain events. With the help of this information, the
researchers can find out how the products, processes, and resources were affected by
each method, tool, or technique. Another possibility within surveys is to determine
trends and relationships among the research results. [54] The biggest benefit about
surveys is that no control over a certain event or situation which is investigated
is needed. [54] Surveys tend to determine what is happening generally over large
groups in projects.

• Case Study: In a case study every aspect that should be investigated must be
decided in advance. During the activity which should be investigated the specified
data is captured and analyzed afterward. In a case study, for example, the first
key factors are identified which could affect the outputs in some way. [54] Then,
the activity’s inputs, constraints, resources, and outputs are observed and so the
specified factors and how they affect the outcomes can be documented in this step.
In a case study researchers try to avoid small scales and laboratory situations by
investigating real and typical projects instead of trying to capture every information
and all possible combinations. [54]

• Controlled Experiment: Similar to a case study also in an experiment every
aspect that should be investigated must be decided in advance. [54] The main
difference between an experiment to a case study is that the experiment requires
a great deal of control. [66] Experiments have the purpose to prove or disprove a
causal relationship between an observed attribute and the outcome of the activity
performed. [29] In an experiment, every variable within the activity which could
affect the output is under control. Since this is hard to achieve and laborious,
experiments are usually smaller than case studies and executed with only a small
number of experiment participants involved. During an experiment, a small set of
aspects from a larger problem is examined. [54]

36

3.1. Principles of Investigation

3.1.3 Control over variables
After the hypothesis is specified it must be decided which variables might affect the
outcomes of the study. For every variable, the degree of control that is possible within
the study must be determined. [53] The control of the variables is an important factor
when choosing the right technique for investigation. [66] As already presented earlier,
an experiment requires a great deal of control, while a case study is more efficient when
some or all of the relevant variables cannot be controlled. [53] For example, suppose
that we want to know whether a certain development method produces higher quality
program code than another. In case we cannot control the development method which
each participant is using then a case study is needed to collect the desired results. [53]
On the other hand, if it is possible to decide which participants are using a certain
development method then an experiment can be used to elicit the results. [53]

3.1.4 Meaningfulness
To perform meaningful investigations four different aspects need to be considered: [54]

• Confirming Theories: Often tools and certain techniques are adopted because
"conventional wisdom" or "expert judgment" suggests that these are the best options
and even whole standards can be derived in this way. The problem with this
approach is that there is little to no quantitative evidence that can support the
effectiveness or utility of the techniques, tools, and standards. [54] To provide
scientifically accepted evidence, case studies and surveys can be used to evaluate
certain claims in small environments like single organizations, and on the other
hand, experiments are used to evaluate these claims in a general way which are
also valid outside of a single environment. This evidence is valid for every possible
environment, for example, many different organizations that are not related to each
other. [54]

• Exploring Relationships: During an empirical study it is not just the goal
to find out if some tool, technique, or method is working or not, it is often
also important to investigate if which relationships between various aspects exist.
[53] The understanding of relationships is the main goal for the success of every
project. Therefore, in the investigation, the expected relationships are expressed
in a hypothesis and an experiment can be executed to test in which form the
relationship holds. [53]

• Evaluating the Accuracy of Models: In some cases models are used to predict
the outcome of an activity or to describe the usage of a tool, technique, or method.
[54] An investigation can reveal the accuracy and dependability of the model which
is achieved by comparing the predictions with the actual results. Often the design
of studies about models must be difficult because the predictions can manipulate
the outcomes. [54] The main reason for this is that usually, the predictions become
goals and so the participants may unintentionally change their behavior in favor of

37

3. Experimentation

the goals which have been set. Therefore, when designing a study the participants
should not know the predictions until the study is fully completed. [54]

• Validating Measures: During an investigation measures capture certain at-
tributes of products, processes, or resources. Measurements are valid if they match
the characteristics of an attribute under changing conditions. During every inves-
tigation, it should be made sure that a measure always represents the attribute
it claims to quantify. [54] This can be proven with the execution of a study that
validates if the measure changes appropriately as the measured attribute changes.
The study must include a model which describes how the measures relate to the
real objects and activities. [54]

3.2 Attributes & Types of Experiments
Before an experiment is executed all parameters and the whole environment are de-
scribed and fixed to the defined values. This gives experiments the advantage that the
experimenters have full control over the whole scenario and can manipulate the behavior
directly, precisely, and systematically. In an experiment, it is also possible to make the
participants use different methods to achieve the same goal. [78] Four different attributes
can be adjusted during the experiment planning or design: [4] [36] An experiment can
present the following results: [4]

• Descriptive: The relationships between variables have not been examined. Al-
though, there could be patterns within the variables, which can be examined later.
[4]

• Correlational: The variation of dependent variables is related to the variation of
independent variables. [36]

• Cause-effect: Independent variables are the only cause for a possible variation
independent variables. [36]

Every experiment can be performed with the following two different types of participants
or an even distribution of both groups: [4]

• Novice: The whole experiment is executed by only inexperienced participants, for
example, students. [4]

• Experts: The participants in the experiment have experience in the study domain.
[36]

38

3.3. Experiment design & execution

Experiments can be performed in two different environments: [4]

• In vivo: The experiment is executed in the field, which means in a real software
industry environment. This makes sure that the whole experiment is executed
under realistic conditions. [36]

• In vitro: The execution of the experiment is done fully in a laboratory under
completely controlled conditions. [4] An example of an experiment executed in
vitro is a study executed at a university. [36]

Experiments can be performed with a different level of control: [36]

• Controlled experiment: These experiments are typically performed in vitro
with inexperienced participants like students at a university. This type provides
strong statistical confidence in the results, is expensive to perform, and is difficult
to control. [36]

• Quasi-experiment: Within experiments with this level of control the execution
is usually done with experienced participants. This experiment type is typically
performed in vivo with a qualitative character. [36]

• Observational study: During an observational study there is no treatment or
control of the variables involved. There usually is no set of study variables that is
defined before the experiment is executed. [36] [64]

In general, there are not just attributes that can be adjusted in multiple experiments but
there are also two different types that an experiment can focus on:

• Human-oriented experiment: In a human-oriented experiment the participants
use different methods to achieve the goal, for example, there could be two different
inspection methods applied to test the same piece of software code.[78]

• Technology-oriented experiment: On the other hand in technology-oriented
experiments, the same methods are applied but there are different tools used to
achieve the goal of the experiment. This could for example be the usage of two
different test case generators which are applied to test the same code snippets. [78]

3.3 Experiment design & execution
Experiments are preparation-intensive tasks to execute. Therefore, it is important to
ensure that the goals of the experiments can be fulfilled, to make sure that the time
and resources put into the experiment pay off. For this purpose, the exact procedure in
planning and executing an experiment is defined by Wohlin et. al. in [78].

39

3. Experimentation

The process of an experiment has five different phases which are executed. [59] Figure
3.1 displays an overview of the experiment phases in logical order.

Figure 3.1: Phases of an experiment [78]

1. E1 - Scoping: In the first phase the experimenters define the experiment goals,
scope, object of study, and hypotheses of the experiment. [59] The foundation of
an experiment is laid by defining the goal of the experiment. An object of study
is the entity that is studied during the experiment. It can be a product, process,
resource, model, metric, or theory. [78]

2. E2 - Planning: After the scoping determined the foundation for the experiment
the experimenters plan the context of the experiment. This includes human
resources, the environment, experiment design, and hypotheses that are based on
the experiment goal. [59] Developing an exact plan for the experiment is important
to control the experiment. If an experiment is not planned properly the results of
the experiment can be disturbed or even be destroyed and so become worthless.
[78]

3. E3 - Operation: After an experiment has been scoped and planned it must
be carried out to be able to collect all the desired data which result from the
experiment. [78] During the operation of the experiment, the experimenters prepare
all materials necessary and execute the experiment according to the previously
performed planning and scoping. [59] The operation phase consists out of three
steps, the first step is the preparation in which the participants are chosen and

40

3.3. Experiment design & execution

forms, guidelines, etc. are prepared. [78] During the next step, the execution the
participants perform the tasks according to the guidelines, and data is collected.
And in the last step, the data validation is performed and all the results which
have been collected are validated. [78]

4. E4 - Analysis and Interpretation: The data collected during the experiment is
the input for the analysis. [59] The main goal of the analysis phase is to interpret
the results, to be able to draw conclusions based on this data. [78] Therefore, the
data is analyzed by the experimenters using methods like descriptive statistics,
data reduction, hypothesis testing, etc. [59]

5. E5 - Presentation and Package: After the completion of an experiment the
findings can be presented to different audiences. [78] All data collected during
the experiment is interpreted and a conclusion is drawn. The results are usually
documented and reported within a research paper or packaged for replication. [59]
There is also the possibility of publishing a technical report parallel to a possible
conference paper in case there is not enough space left in the paper to publish the
whole results. [78]

3.3.1 Realism in Experiments
An important criterion for successful experiments in any applied scientific field is the
possibility to adopt the research results into practical industrial engineering. Therefore,
it is important to achieve high homophily. Homophily is the degree to which the
innovator from the scientific field and the possible adopters from the industrial practice
conform to certain attributes like objectives, beliefs, norms, experience, and culture. [65]
The opposite of homophily is called heterophily which is one of the biggest problems
in the implementation of innovations. If the possible adopters and the scientists are
heterophyllous then a possible adoption of the innovation into the practice is not realistic
because the experiment differs too much from the reality. [65]

Therefore, the experimental environment and the real industrial environment must be
close to each other, which encourages the practitioners’ attention to the innovation. [65]
So far most studies that have realized realism are case studies. A drawback of case
studies is, as already explained, that many variables vary from one case study to another
and so the case study is often only valid for a single environment. [54] To overcome
this shortcoming, there exists the possibility to conduct a controlled experiment as a
complement case study. [65]

An experiment needs to have two different types of realism. The first type is experimental
realism, which refers to the impact of the experiment on the participants. Experimental
realism is present if the experiment appears to be real and meaningful to the participants
and the encountered perceptions in the experiment match the real world. [65] The
second realism type is called mundane realism, which refers to the relation between the
experiment situation and the real world. This means the ability to generalize results

41

3. Experimentation

from the experiment environment to the real world in industrial practice is an important
realism attribute for experiments. An experiment is realistic if the situation to the
participants is realistic and the participants react to the situation in the same way as
they would react to a situation that happens in real life during a random activity in an
industrial environment. [65] There are three main challenges when aiming for realism in
experiments:

• Realistic tasks: An important challenge is the size, complexity, and duration of
the executed experiment tasks. [65] Many experiments simplify the whole process
a lot in which experiments that are executed in only a few hours are expected to
return the same results as an observation for various months which is unrealistic.
Meaningful results need to be observed over longer time periods and can often not
be achieved within an experiment that only lasts a few hours. [65]

• Realistic subjects: To achieve results that can be generalized for industrial
environments the selection of the participants who perform the experiment tasks is
an important challenge. Since it is still unclear how well an experiment with only
students participating can be generalized to professional environments, it can be an
advantage and important to use both inexperienced and experienced participants
in an experiment. [65]

• Realistic environment: The last challenge is that the tasks should be carried
out in a realistic environment. [65] Performing experiments with realistic tasks and
participants in an unrealistic environment is a common pitfall in experiments. To
generate meaningful results, the experiment must be executed in an environment
with an infrastructure of supporting technology that includes processes, methods,
tools, and so on. [65]

3.3.2 Experiment Reporting
The number of individual empirical studies of technologies reported in scientific publica-
tions like journals at certain conferences is increasing every year. But at the same time,
there are only a few success stories in which technologies were adopted to the industrial
practice because of the evidence provided with the help of an empirical study. [27] This
problem along with all the loss of potential has for example been reported by NASA. [27]

Another example is the area of software inspections for which success stories and empirical
evidence showing their usefulness have been available for many years but they are not
widely used in industrial practice. This raised the question if the wrong type of evidence,
the wrong format, delivery to the wrong people, or communication of the evidence via
the wrong channels could be the key problems for this phenomenon. [27]

One of the main problems with integrating study results into the general knowledge
and also into the industrial practice is the heterogeneity of the study reporting. It is
often difficult to find the required information because the information is duplicated

42

3.3. Experiment design & execution

between individual sections of the study reports and the important information that
matters is often not present in the reports. [26] For example, in many study reports, the
information about the general context is reported differently while a generalization is not
taken into account. At the same time, specific information, which would be helpful for
the practitioners to find out about the overall impact of the technology on a project or
business domain, is often missing. [26]

A possible solution to avoid the heterogeneity of the reports is to define and introduce
guidelines for reporting empirical studies like experiments. [26] According to Jedlitschka
et. al. in [26] a useful experiment reporting guidelines should include the following
elements: Title of the study, authorship, structured abstract, keywords, introduction to
the topic, background, experiment planning, experiment execution, analysis, discussion,
conclusion, future work, acknowledgments, references, and appendices. [26]

In summary, the execution and administration of experiments are usually performed
manually without the help of any additional tool support. Therefore, conducting experi-
ments is laborious and requires a lot of effort. To solve this problem the implementation
of tool support for the execution and administration of experiments is an important
requirement.

43

CHAPTER 4
Research Questions & Solution

Approach

This chapter presents the methodology, all research questions which are answered, as
well as the solution approach which is used to find the answers to the research questions.

We want to improve the review cycle for reviewing models by implementing tool support
that provides the possibility to report defects in an artifact. Additionally, we also aim
to implement tool support for review and experiment administration. With the help
of such a tool support component, review methods can be compared to each other
during experiments using a qualitative or quantitative comparison. The concrete research
questions are presented in the next sections.

4.1 Design Science
We use design science as a research methodology to achieve and evaluate all goals of this
thesis. Design science is used in many different engineering disciplines [18] worldwide and
aims to change existing situations within the organizational context into preferred ones
during an engineering process. [43] This means that real-world problems are solved by
researchers who develop general knowledge in a certain area to help practitioners create
solutions in their problem contexts. [18] In this research methodology, innovations are
created that define ideas, practices, technical capabilities, and products. [24] With the
help of these innovations the analysis, design, implementation, management, and use of
new systems can be carried out effectively and efficiently. [24] [43]

There are two major components within Design Science the object of study and the
context in which the artifact resides. The selected artifacts are designed and investigated
during the design science methodology. [51] Every artifact needs to be designed to interact
with a certain problem context and improve something in this chosen context. There are

45

4. Research Questions & Solution Approach

a lot of entities that can be designed as an artifact like software and hardware systems,
organizations, business processes, services, methods, techniques, models, instantiations,
social innovations, and so on. [75] [51] For example, in software engineering, the practical
problems within the context are mostly problems in the design, implementation, or
maintenance of a software artifact. [74] Additionally, some entities cannot be artifacts
that are being studied with the help of design science like people, values, desires, fears,
goals, norms, and budgets. These elements appear in the context of artifacts but cannot
be designed by the researchers, therefore they cannot be artifacts themselves. [75] Design
science differs from the professional design of a solution in the way that in the design
science research new and for a community interesting knowledge is produced. [71] On
the other hand, in the typical industry design use case, only a new artifact is produced
but there is no focus on producing new knowledge. [71] The reason for this is that in
professional design existing knowledge is used to solve organizational problems using
artifacts that exist in the knowledge base. [23]
The produced artifact itself does not solve or improve any problems but the interaction
between the artifact and the problem context does solve certain problems. Artifacts can
interact differently with individual problem contexts, therefore they can solve different
problems in each context. [75] This means that it is important in design science that the
interactions between artifacts and problem contexts are studied by the researchers and
not the artifact itself. [75] The design science research cycles are displayed in figure 4.1.

Figure 4.1: Design science research cycles [23]

Every design science research project consists out of three different areas namely the
environment, the design activities, and the knowledge base. [23]

• Environment: The environment contains the problem which is observed during
the design science research. This means that the phenomenon of interest is observed
by the researchers within this environment. [17]

46

4.2. Prototype for tool-supported model reviewing (RQ1)

• Design science research: During the design science research an artifact is
developed which can solve problems by interacting with a problem context. This
procedure has already been explained in detail previously within this section.

• Knowledge base: The knowledge base is the environment in which all previously
documented and developed theories, methods and artifacts can be retrieved by the
researchers. [17] The knowledge base itself is usually insufficient for the development
of new artifacts. Therefore, many researchers use their own experience or go by
trial and error when designing new artifacts. [17]

In addition to the three areas, there are also three different design science research cycles,
which represent the relationships between the mentioned areas. [23]

• Relevance cycle: The relevance cycle defines the application context for the
design science research. It provides not just the requirements for the artifact which
is designed but also defines the acceptance criteria for the evaluation and research
results. [23] The iterations of the relevance cycle depend on the results from the
field testing. There are additional iterations needed if for example incorrect or
incomplete results are collected during the field tests. [23]

• Design cycle: The internal design cycle is the most important part of every design
science research project. Within this cycle each iteration loops between the design
and the evaluation of an artifact. This makes it possible to collect feedback early
in the development process and allows detecting and fixing problems during the
design. [23]

• Rigor cycle: The rigor cycle provides knowledge to the design research project
which has been published in the past and counts as state of the art. [23] An
important aspect in design science research is that the artifact must not be based
on some kind of already known design process which would result in the artifact
being a copy of an already known design. Therefore, the rigor cycle makes sure that
the researchers can research and reference the current knowledge base to guarantee
that the artifact produced is a real research contribution. [23]

4.2 Prototype for tool-supported model reviewing (RQ1)
Due to missing tool support, performing different review strategies is time-consuming
and generates an administrative overhead, as materials are provided and results are
collected using different platforms. Furthermore, the review strategy is often performed in
a traditional way using pen and paper. With the help of tool-supported model reviewing,
materials are provided using the same digital platform in which the review is performed,
reducing administration and time overhead. Therefore, we define the research question:

RQ1: How can model reviews be supported with the help of a tool support
prototype?

47

4. Research Questions & Solution Approach

To address RQ1, we implement a prototype for tool-supported model reviewing as the
foundation to increase the effectiveness of reviews. Furthermore, we make sure that
reviews can be linked to a tool-supported review administration component for a more
efficient coordination.

Our goal is the implementation of process support for different review approaches. To
achieve these goals an extension for the Model Design and Review Editor (MDRE) is
implemented. We design a process support system for inspections and reviews with
suitable methods and guidelines. Therefore, the added process support implementation
supports performing reviews in the three stages of planning, execution, and reporting of
the individual reviews. The focus of the supported reviews is the analysis and improvement
of the quality of each artifact that is under review. With the help of the implemented
process support, reviewers can execute the review technique which they were assigned to
easier, faster, and more reliable, as there is a component in place which avoids errors
and makes sure that the guidelines for the selected review type are not violated. This
is also an advantage for the review managers who are in charge of the review itself, as
there are strict guidelines that cannot be violated and so the results of the review are
less likely to be wrong. Once this research question is solved the review component of
the MDRE offers the possibility for reviewers to review artifacts within the MDRE and
report defects within them.

4.3 Review and Experimentation Process Support (RQ2)
Planning and administration of experiments are laborious since in an experiment many
different experimenters and participants need to be supported. In an experiment materials
need to be provided, prerequisites and final tasks need to be performed before and
after every experiment and the experiment itself needs to be managed. The generated
administration effort is hard to overcome without any provided tool support which assists
in managing experiments. With the help of tool support for experiment administration,
the effectiveness of experiments is increased and the effort is reduced. Therefore, we
define the research question:

RQ2: How can the administration of reviews and experiments be supported
with the help of a tool support prototype?

To address RQ2, we design a method for tool-supported review and experiment ad-
ministration. For the comparison of two or more review approaches to each other the
implementation of a review and experiment administration component is added to the
MDRE. This component supports the planning and the execution of an experiment
including the reviews which are executed within the experiment. In the planning stage,
the experiment is set up and prepared for mostly automated execution. Therefore,
participants can be imported into the MDRE and are assigned to groups of participants
with different review techniques assigned to them. For example, half of all groups perform
a pen-and-paper-based traditional review, and the other half uses the MDRE approach.
The same base model is used within one group type to make sure that the reviews

48

4.4. Benefits and limitations of MDRE (RQ3)

carried out can effectively be compared to each other. Before the participants are allowed
to execute their tasks, they need to fulfill all prerequisites. For example, the answer
of an experience questionnaire, signing a data protection form, and completing other
experiment-related tasks, which are needed to be done by the participants before the
experiment starts. Once all prerequisites are fulfilled they can start with their tasks,
additional materials, and a task description can also be provided by the experimenters
for each review type in the experiment individually. The process support for the different
review types assists the participants during the experiment execution.

The implemented component supports the evaluation of the review methods by providing
metrics about the procedures and the results of the individual reviews. Part of these
metrics is for example the total amount of errors that were found, the time until the
first error was found, location in the model where the errors were found, and so on.
These can later be used by scientists to compare review methods with each other and
find out the pros and cons of each method. Metrics also help to find out which one
is performing better when multiple review methods are used on the same base model.
After all tasks were successfully carried out by the individual groups the collected results
can be evaluated by the experimenters and a conclusion about the experiment is drawn.
The group members finish the experiment by accomplishing some smaller final tasks,
for example, answer a feedback questionnaire, hand in every hardcopy which has been
provided at the beginning, etc. All tasks, which need to be carried out, can be monitored
via a checklist in the MDRE.

4.4 Benefits and limitations of MDRE (RQ3)
Evaluating the benefits and limitations of a newly proposed solution is an important part
of scientific research. Practitioners from the industrial field need the evaluation of the
scientific results to make sure that there are benefits that they can profit from when they
introduce the proposed solution. But also other scientific researchers are interested in
the evaluated results to be able to verify the results of the research study. This means
that it is important that the results are evaluated to show the limitations and benefits of
the implemented tool support. Therefore, we define the research question:

RQ3: To what extent are the model review and experiment administration
processes improved by the two implemented tool support prototypes?

To address RQ3, we plan, design, and execute a controlled experiment in a classroom
setting. The planning of the experiment is done with the help of the implemented
experiment and review administration tool supports, which have been integrated into the
MDRE. During the experiment – along with the main task of reviewing some artifacts –
the participants also have to provide additional information like their experience and
answers to feedback questionnaires, which are collected and used in the evaluation of our
research questions.

In the experiment itself, the participants are split up into two different groups. The first

49

4. Research Questions & Solution Approach

group uses a traditional pen-and-paper-based guided review, the second group uses the
MDRE approach for inspecting the provided artifacts. At half time of the experiment,
the groups are swapped to make sure that valid and comparable data is produced during
the experiment.

For the evaluation of RQ1, we collect feedback about the improvement which is achieved
by the newly implemented tool support for the different review strategies. The data
is collected with the help of a feedback questionnaire by asking all review participants,
who used a tool-supported review strategy during the experiment, for their feedback on
the new implementation. Furthermore, the metrics that have been collected during the
reporting of the defects are compared. For example, measures like time until the first
defect has been found, the number of defects found per time unit, total defects found,
etc. can give useful evidence when the two group types are compared.

In the evaluation of the second research question RQ2 the focus is on evaluating the
resulting improvement in efficiency and administration effort provided by the implemented
experiment administration tool support. An improvement has been achieved if the data
is no longer distributed over many different locations and files but collected in one
centralized place which is the MDRE and so makes experiment data easier to setup
and manage. Furthermore, another improvement would be that the preparation before
and the cleanup after the experiment can be done quicker than without the experiment
administration tool support.

50

CHAPTER 5
Model Design & Review Editor

This chapter presents the Model Design and Review Editor (MDRE) that we use as the
base application to solve the research questions of this work. We advanced the MDRE
with two different AddOns which are also explained in the next sections.

In section 2.5, we presented existing and well-known software inspection tools. These
software inspection tools provide a variety of features to support the software inspection
process. Table 5.1 provides an overview of the features from the software inspection tools
and the aimed features of the (MDRE) at the end of this work. All important features
that are required to fulfill the research questions are marked in blue. However, as it is
shown in the comparison within table 5.1 there is currently no application available that
is capable of all features required for solving the research questions. Therefore, in the
practical part of this work, we use and improve the MDRE. Our main focus is the design
and implementation of a prototype for improved model review and experimentation

Feature / Characteristic Review
Board

Gerrit Crucible GitHub MDRE

Open Source � � – – planned
Non commercial (free) � � – � planned

Code review � � � � –
CVS support e.g., Git � � � � –

Model design – – – – �
Model / image review � – – – �
Review administration � � � � �

Experiment administration – – – – �

Table 5.1: Comparison of the MDRE with well-known software inspection tools. The
blue features are important for solving the research questions. [56]

51

5. Model Design & Review Editor

administration tool support into the MDRE. To achieve this goal the initial state of
the MDRE has to be advanced to support the required functionality. But also with
the development of additional features into the MDRE, it is not capable of all features
provided by the combination of the presented software inspection tools. However, this is
also not necessary because the MDRE is not meant to be a universal tool supporting the
whole software inspection process in one application. For example, the MDRE was never
intended to become tool support for code reviews and therefore also does not need any
CVS integration within it. It is currently sufficient for the MDRE to only support the
highlighted features that are focused on within this thesis.

To evaluate the results that have been achieved we conduct a controlled experiment with
about 80 participants who use the MDRE to evaluate the newly implemented prototype
tool supports. The evaluation is explained in detail in the next chapter. Within this
section, the initial state, as well as all improvements of the MDRE that have been
developed, are explained in detail.

5.1 Initial State of the MDRE
In this section, we present the initial state of the MDRE at the beginning of this work.

5.1.1 Introduction
The MDRE is an application that was initially developed at the Technical University
Vienna between February and August 2020. The main reason for the development of the
MDRE was the fact that in software engineering there is a variety of tools available that
aim to provide support for reviews on different artifacts like models, source code, images,
and documents. [77] However, most of the available review tools do not provide support
for designing and reviewing artifacts at the same time. Usually, there are different tools
needed for designing an artifact and later reviewing it which leads to increased overhead
and complexity of the whole model engineering process. [77] A good example for this
problem is that in the case that a certain model is designed with one specific tool which
is not capable of reviewing these models at the same time it is necessary to export and
import the model into another tool. [77] This step can be hard to achieve because most
tools are not compatible with each other because they use a completely different format
for import and export. The consequence of this problem is that before a review can start
there needs to be a lot of time and resources put into the conversion of the model from
the export format of the design tool to the import format of the review tool. [77] For
some tools, this conversion is not possible at all and often it is therefore only possible to
review an image of the artifact. Many review tools also do not provide a component to
highlight, include, exclude or comment on different areas of the model to report potential
defects, split up tasks, or mark already reviewed areas. [77]

In section 2.5 we already presented different tools which are capable of reviewing different
artifacts. The main focus in the development of the MDRE was to implement an

52

5.1. Initial State of the MDRE

ID Feature MDRE Initial state
General

F1 Projects �
F2 User management �
F3 Audit logging �

Models
F4 Model configurations �
F5 Model design �

Reviews
F6 Review assignments �
F7 Reviews �
F8 Defect reporting –

Experimentation
F9 Experiments –
F10 Normal tasks –
F11 Review tasks –
F12 Google Forms tasks –
F13 Submissions –
F14 Submission table –
F15 Task overview –

Table 5.2: Features of the MDRE in its initial state [56]

application that solves the mentioned problems, takes over the most important advantages
of the presented tools, and combines the design and review process in a single tool.
Furthermore, some disadvantages of presented review tools like the missing ability for
reviewing artifacts that are not source code like models should be solved by the MDRE.
During the software development process of the MDRE, the planned features were
collected during different workshops with domain experts. Prock et. al. in [56] collected
all required features and estimated the development effort of each feature of the MDRE.
Table 5.2 shows an overview of all features that had been implemented in the initial state
of the MDRE at the start of this work. Every individual feature available in the initial
state is explained later within this section.

5.1.2 Architecture & Technologies

The MDRE prototype is a distributed software system that is split into a backend
component, three different databases which store the backend data, and a frontend
component. [77] In figure 5.1, all individual components and the communication paths of
the MDRE are displayed.

53

5. Model Design & Review Editor

Figure 5.1: Architecture of the MDRE

Backend

The backend component of the MDRE is responsible for the communication with the
frontend. A REST API is provided by the backend which the frontend connects to via
the HTTP protocol. [77] With the help of the provided API, the backend sends and
receives data from the clients of the MDRE users and processes the received data within
its service layer. The whole communication between the backend and the frontend is
completely stateless. [77]

For authentication, Java Web Tokens (JWT) [30] are used. A JWT stores all session
information of a user which is in the case of the MDRE username, full name, all assigned
roles of the user, and the expiration date of the session. Initially, the JWT is requested by
the client to provide the username and the password of the respective user to the server.
If the credentials are correct then the server sends a new JWT with all information of
the logged-in user to the client. After the initial log in the JWT is added to each request
within the HTTP header in the authorization field as a JWT Bearer token. [30] To make
sure that the JWT cannot be manipulated and that the server can verify the correctness
it is signed with a secret by the server. [30]

The backend stores the different data entities of the MDRE in three different databases.
Data is read from or written to the correct database which is responsible for storing on a
request of an MDRE client. For persisting the data the following databases are used in
the MDRE:

54

5.1. Initial State of the MDRE

• PostgreSQL: The PostgreSQL (PSQL) database is a powerful and open-source
relational database management system (DBMS). [79] PSQL supports all functions
and standards of the SQL standard. [79] Relational databases are one of the most
popular DBMS in the world. [31] The big advantage of them is that data stored
in a relational database can be put into relation to each other which provides an
efficient and fast way of querying data. [31]

In the MDRE the relational database PSQL is used for storing projects, review
assignments, reviews, audit logs, and so on. This kind of data can be stored
efficiently in this type of database because there are many relations between these
entities and the mentioned entities always follow the same scheme.

• MongoDB: MongoDB is a high-performance and open source NoSQL database
focused on storing documents. [79] It is easy to use, easy to deploy, and especially
suitable for storing large amounts of unstructured data. [79] The biggest advantage
of MongoDB is the use of documents rather than rows which are stored in a binary
JSON format and do not have to follow a fixed database scheme like in relational
databases. [3] This type of data model is intuitive and more flexible because it does
not require joins to collect data for one entity as everything regarding an individual
entity is stored in the same document. [3]

In the backend of the MDRE MongoDB is mainly used to store entities that do
not follow the same data scheme for every single instance stored in the database.
Especially models and model configurations are highly customizable and therefore
it would be hard to use a relational database for these types of entities. Another
reason is that during the development the possible parameters of certain entities
can change, which makes a document-oriented database a good solution because
no scheme needs to be adapted on data structure changes.

• OpenLDAP: LDAP itself stands for Lightweight Directory Access Protocol and
was originally designed as a network protocol but quickly became known as a whole
directory architecture with its own specification. [12] The main focus of LDAP
is to store different kinds of information about different kinds of entities. Even
though LDAP is nowadays mostly used to store information about users it is not
limited to that. [12] In LDAP, developers can clearly define which data should be
stored in the directory. For example, a user could be defined with the first and the
last name, a birth date, an address, a telephone number, a gender, and an email
address. [12]

In the MDRE OpenLDAP, which is one of the fastest open source LDAP directory
servers in the market, is used for storing user information including their passwords
in a central directory. [12] The main advantage of using LDAP for authentication in
the MDRE is that many authentication libraries and frameworks support LDAP out
of the box. This means integrating OpenLDAP into the authentication procedure
can be as easy as connecting to an OpenLDAP server via the LDAP protocol. The

55

5. Model Design & Review Editor

bride support in the integration makes the professional user management of the
MDRE easy to accomplish.

The backend of the MDRE has been developed in the programming language Kotlin.
Kotlin is a modern programming language fully compatible with Java with various design
improvements that provide advantages over Java. [77] It is open-source and available
under the Apache 2.0 license. [28] The main goal of Kotlin is to provide a more productive
and safer alternative to Java. An important advantage of Kotlin compared to Java is
the provided safety. Certain errors which are hard to completely avoid by hand in Java
are avoided by Kotlin automatically. [28] One example for such an error would be a
NullPointerException which happens if a null object is accessed during runtime. This
could lead to the crash of the whole application in the worse case or to an unknown
error whose origin is often hard to spot. [28] Kotlin also provides various syntactical
improvements like the possibility to combine object-oriented and functional programming
code easily. [28]

The mentioned advantages over Java and further improvements led to the decision of using
Kotlin as the main programming language for the MDRE backend. To save resources
in the development process the Spring Boot framework is used. [77] Spring Boot is an
enterprise framework that provides a lot of functionality to support the developers. The
main focus of the Spring Boot framework is the separation of concerns in which the
framework takes over a lot of work from the developers. [77] For example, it comes with
implementations that provide a full REST API implementation, which just needs to be
called and customized by the developers saving the resources of implementing everything
on their own. [77]

For the build and package process of the MDRE backend, the software project man-
agement and comprehension tool Apache Maven is used. [77] Apache Maven builds
and packages applications according to the customization of the developers done in the
Maven configuration file. Another important advantage of Apache Maven is dependency
management which also is used in the MDRE backend. With the help of the Maven
dependency management, all dependencies like Kotlin and the Spring Boot Framework
are imported automatically. [77] There are no extra coding tasks involved, Maven works
based on its configuration files. [77]

Frontend

The MDRE frontend is a dedicated component that communicates with the MDRE
backend using the already presented REST API via the HTTP protocol. All information
that is displayed within the frontend is loaded from the backend at runtime.

The frontend is implemented as a single-page web application that is served via a web
server but executed only on the client-side to save server resources. [77] The reason for
choosing a framework that supports the creation of single-page web applications is that
these are becoming more popular in the last few years. [77] Well-known frameworks

56

5.1. Initial State of the MDRE

behind these single-page web applications are for example Angular, React, and VueJS.
These frameworks are known to be easy to use and assist in the creation of professional
web applications because they take over work from the developers. In particular, the
framework chosen for the implementation of the MDRE frontend is VueJS. [77] The
main reason for the usage of VueJS is that there are various SVG libraries available that
facilitate the implementation of the editing and drawing of models. [77]

VueJS itself is only a web framework that is installed via the NPM package manager and
there exists only a development web server but no production web server. [77] Therefore,
the webserver Nginx is used to distribute the compiled frontend web applications to
the clients the execution itself happens on the client-side. [77] Nginx is a well-known
and open-source web server that fulfills modern security standards and can be used in a
production environment.

Containerization

The MDRE uses many components with different technologies. Therefore, if the installa-
tion of all MDRE components on a server would be done by hand it would be a laborious
task with many steps and likely an extensive manual would be needed to be able to
deploy the MDRE on a server. To simplify this deployment process the MDRE uses the
tool, Docker. Docker is a container virtualization tool that is lightweight and does not
use as many resources as traditional virtual machines with their own operating systems
installed. [1]

During the deployment of the MDRE backend, the three databases which have already
been explained previously are deployed into their own containers. There is one container
for every individual database instance. The data which is stored within the containers
is persisted with the help of volumes and stored on the host operating system. [77] For
the deployment MDRE backend itself, a maven docker container is created which builds
and packages the backend application and copies over the compiled executable into a
separate Java runtime environment container to save space and resources. [77] In this
container, the backend application can eventually be executed. [77]

Similar to the backend also the frontend is built and deployed using Docker. First,
the frontend is built within a Node.js container. [77] Once the build is completed the
compiled files are copied to another container that runs an Nginx image. From this Nginx
container, the clients can access the frontend and execute it. [77]

With the help of docker, the deployment of all components of the MDRE can be reduced
to a few commands that need to be entered into the command line of the destination
server and only takes less than an hour to finish.

57

5. Model Design & Review Editor

5.1.3 Features & Functionality
In this section, we present the features and functionalities of the MDRE at the time
of the start of this work. Figure 5.2 displays a simplified class diagram with the most
important entities of the MDRE and their relations to each other. This diagram gives
an overview of the features and functionalities which have been implemented into the
MDRE.

Figure 5.2: Simplified class diagram of the initial MDRE

In the following sections, we present every feature (see table 5.2) in detail and explain
what the feature is used for. The initial state of the MDRE includes the features F1-F7.

General Features / Characteristics

In this section we present the MDRE features of the general category (see table 5.2).

Project (F1): After the successful login into the MDRE, the project overview as
displayed in figure 5.3 is visible. A project is created by users and offers access restrictions
to certain entities in the first place. In a MDRE project, there needs to be at least one
project owner and there also can be multiple project members. While owners can change
every setting and invite more participants to the project the abilities of project members
are limited for security reasons. In the MDRE projects are the central concept for working
with models and reviews. Within a project, a user can design different models based on
individual model configurations and open review assignments for certain parts of the
designed models. These review assignments later need to be executed by participants

58

5.1. Initial State of the MDRE

within the project by creating reviews according to the underlying assignment. Neither
models, reviews nor review assignments can exist without an underlying project, therefore
projects are an important concept in the MDRE.

Figure 5.3: Overview of projects

User management (F2) & Audit Logging (F3): The MDRE offers the possibility
of a full user management that gives administrators the possibility to add, change and
delete user accounts. Within the user management, individual users can be assigned to
different groups that provide privileges for certain features of the MDRE.

An important security feature of the MDRE is audit logging that is performed based on
the user management. During the logging, data and information is collected about certain
events which happen on the MDRE server. [67] The logs should give information about
who has logged into the MDRE and which actions have been taken by the individual
user. [67] Since the audit logging is done on the server-side there is no way for the users
to tamper or deny the collection of the actions which have been carried out by them.

Audit logs can help to investigate certain incidences in case something has gone wrong
or a user account has been compromised. In figure 5.4, the audit logging overview of
the MDRE is displayed. By default, the first actions logged are displayed and there also
exists the possibility for filtering out certain time frames which are especially of interest.

59

5. Model Design & Review Editor

Figure 5.4: Audit Logging

Model Design Features / Characteristics

In this section we present the MDRE features of the models category (see table 5.2).

Model Configuration (F4): Model configurations represent the basis of model design.
A model configuration is a JSON file of a special format in which all details for the model
design need to be specified. In such a configuration, nodes and edges must be defined by
configuring their appearance as SVG code, parameters of the entities need to be specified
and rules for the model design have to be added. An example of a common rule for
model drawing would be the specification of which edge type is allowed to connect nodes
of one type to nodes of the same or another type. In figure 5.5, the overview of a model
configuration in the MDRE is displayed showing all node and edge types including their
attributes defined within this configuration.

Model Design (F5): Designing models is one of the main features of the MDRE. As
already mentioned models do not use any kind of hard-coded designs like predefined node
or edge types, they are completely customizable using model configurations written in
JSON.

In figure 5.6, the model design editor in which models can be drawn is displayed. On the
left side of the figure the different types of nodes which can be used within this model
are shown, as well as the most important settings of the editor. This left settings pane
acts as the main menu bar of the model review editor. A new node of a certain type can
be created by dragging and dropping it from the menu bar into the editor pane. In the
center of the figure the already designed model is displayed showing both the nodes and
the edges within it.

60

5.1. Initial State of the MDRE

Figure 5.5: List of model configurations

Figure 5.6: Model design view

The main problem in designing models is that there are many different specifications of
models, for example, the UML model specification alone has a big variety of model types.
Therefore, it is not possible to support the design of every model specification that exists
in the whole world with the generic concept of the MDRE model configurations. However,

61

5. Model Design & Review Editor

to overcome this problem in the MDRE it is possible to import models which have been
drawn in a third-party tool as images. This makes it possible to at least partly support
every possible model available which can be displayed as an image which is especially
important when the specific model should be reviewed.

Model Reviewing Features / Characteristics

In this section we present the MDRE features of the reviews category (see table 5.2).

Review Assignment (F6): To review an area in a model within the MDRE review
assignments are required. A review assignment is the basis for every review which is
opened. Therefore, a review assignment has to specify all details about a planned review.
The most important parameters which need to be defined in a review assignment are
the area of the model that should be reviewed, the name of the assignment, the task
description, and the method instructions which reviewers have to follow. Furthermore,
also additional materials can be provided which are needed for conducting the review like
the specifications of the model and some tags can be added which are for example skills
or qualifications reviewers must fulfill. One example for such a tag would be that if we
review a model which is designed in Spanish every reviewer must have the tag Spanish
to be able to start a review based on the assignment.

Another important feature of the MDRE review component is the possibility of performing
a majority voting, therefore in a review assignment, a target review count needs to be
set. If for example a target count of three is specified only three different reviewers
can start a review based on this review assignment. At a target count of three, the
review assignment can either be Approved or Rejected based on what the majority of the
reviewers state. Although, the state of a review assignment can be overwritten by the
owner of the assignment which for example is also needed when there is no majority for
either of the two results. In figure 5.7, the review assignment overview within the project
details showing review assignments with all three different states possible is displayed.

Figure 5.7: List of review assignments

62

5.1. Initial State of the MDRE

Review (F7): In the case that a review assignment is in the state In Process and the
reviewer has not opened a review for this assignment yet it is possible for him to open a
new review. Figure 5.8 displays the view for conducting reviews that are opened after
a new review is created. The screen during the process of performing a review is split
into three different sections. In the left section (1) all details of the review assignment
are displayed. This information provides instructions about how the review should be
conducted and which tasks should be fulfilled during the whole process.
The main part in the center of the screen (2) shows the model under inspection. Within
this model view the area of the model which should be reviewed is marked in yellow, this
area is defined during the review assignment creation. The model view is used to inspect
the area of the model under review, it additionally provides the possibility to mark
certain parts of the model with different markers. Markers have the main functionality of
providing the reviewer the possibility to mark his progress to keep the overview. There
are four different markers available checkmark (Ok), crossmark (Defect), question mark
(Unclear), flag (Possible improvement). In the right pane of the screen (3) the reviewers
can leave a comment and close the review with a specific state. Defects can only be
reported by describing them in detail using the comment functionality.
Reviews can either be closed as Approved, Rejected, or Unclear. In case there is no defect
found the reviewer would use the Approved state and the Rejected in case there are
important defects that need to be fixed. If the review or the model area under review is
not clear to the reviewer then the Unclear state should be used to close the review. All
results of the reviews count to the majority voting of the underlying review assignment
as already explained previously. However, the Unclear state is of course neither positive
nor negative and therefore considered as a neutral result.

Figure 5.8: Model review view [77]

63

5. Model Design & Review Editor

5.2 Tool Support AddOn for Model Reviewing (RQ1)
In this section, we present the tool support AddOn for model reviewing within the MDRE
that has been implemented.

5.2.1 Introduction
Within section 5.1.3 we already explained the functionality of the model review tool sup-
port in the MDRE that was already available at the start of this work. The functionality
of the state of the MDRE at the beginning did not provide any possibility for marking
and reporting defects within models. It was only possible to mention and describe found
defects in the comments and set the result of the review to Rejected to request a fix.
However, even if the description of the defect within the comment section was detailed
the owner of the review assignment could still overlook the report or fail to find the
defect within the model in case of a bigger model.

The main requirement that was formulated in the RQ1 was to implement tool support that
offers the possibility to provide detailed model defect reports to the review assignment
owners within the MDRE. Therefore, we advanced the already existing tool support for
model reviews and implemented a possibility for the reviewers to highlight and describe
defects within the reviewed models by simply marking them within the model view.
Once a defect has been reported it is persisted on the server within the backend and
can be accessed by all review assignment owners. The owners can after the review has
been finished browse through all reported defects and check each defect individually. In
case a reported defect is not a false-positive and therefore a real defect then the review
assignment owners can analyze this defect and decide if it needs to be fixed and within
which time frame a fix needs to be applied depending on the severity of the defect.

In the following section, we present all features of the MDRE model review AddOn
component. Table 5.3 shows a comparison between the features that have been available in
the initial state of the MDRE and all features that have been added with the development
of this additional component for model review tool support.

5.2.2 Features & Functionality
In this section, we present the features and functionalities which are offered by the AddOn
component for model review tool support. Figure 5.10 displays a simplified class diagram
with the most important entities of the MDRE and their relations to each other after the
AddOn for model review tool support was implemented. The diagram shows all entities
which had already been implemented into the MDRE before the start of this work with
the color white. Additionally, all entities that belong to the AddOn for model review
tool support and that have been implemented are displayed with the color green. The
model review AddOn component of the MDRE includes the feature F8.

Figure 5.9 shows a flow chart diagram that presents the process of creating, executing,
and administrating reviews within the MDRE. A more detailed version of this flow

64

5.2. Tool Support AddOn for Model Reviewing (RQ1)

ID Feature Initial state Review AddOn
General

F1 Projects � �
F2 User management � �
F3 Audit logging � �

Models
F4 Model configurations � �
F5 Model design � �

Reviews
F6 Review assignments � �
F7 Reviews � �
F8 Defect reporting – �

Experimentation
F9 Experiments – –
F10 Normal tasks – –
F11 Review tasks – –
F12 Google Forms tasks – –
F13 Submissions – –
F14 Submission table – –
F15 Task overview – –

Table 5.3: Feature level comparison of the MDRE (after model review AddOn). All
features are displayed in figure 5.10. Newly added features are displayed in green.

chart can be found in appendix A of this work. Within the flow chart we distinguish
between the two roles of review owners and reviewers. Review owners start with stage
1 by choosing an area (scope) within a model that should be reviewed. After that in
stage 2, they set up a review assignment for the selected scope and enter the full review
description and the review guidelines for the reviewers. Once all reviewers closed their
review at the end the review owners are responsible for evaluating all reported defects
within stage 3.

The reviewers execute the review assignment description and report possible defects
within the selected model scope. Therefore, each reviewer opens a review at the beginning
within stage 4. Once the review is opened the reviewers follow the review assignment
instructions in stage 5 and report possible defects to the review owners in stage 6. These
two stages are repeated until every part of the model scope is checked. In the end, the
reviewers close their reviews within stage 7.

65

5. Model Design & Review Editor

Figure 5.9: MDRE Review execution flow chart

Figure 5.10: Simplified class diagram of the MDRE with the AddOn for tool-supported
model reviews (green)

66

5.2. Tool Support AddOn for Model Reviewing (RQ1)

Figure 5.11: Review view of the MDRE (Stage 5 in flow chart 5.9)

Model Reviewing Features / Characteristics

In this section we present the feature of the model review AddOn component of the
reviews category (see table 5.3).

Defect reporting (F8):

In figure 5.11, we see the already presented review view of the MDRE with a model in
which parents of students are mapped to a certain amount of contacts that can be used
to get in touch with the parents. Additionally, an enum for contact types is defined which
states the type of the contact that is stored for every individual contact of a parent. It
can be observed that the enum and the parent entity are highlighted in yellow which
means that both highlighted entities should be inspected within this review.

The reviewer working on the review displayed in figure 5.11 already placed some markers
to label which parts of the model area should be inspected has already been checked by
him. However, as we already mentioned in the previous section these markers have only
the task to assist the reviewers during their inspections. None of the used markers are
persisted within the backend on the server and therefore are lost in case the browser
cache would be emptied on the client.

It is of obvious importance that defects are persisted within the backend and that details
can be added to every individual defect. Within the example model which we already
presented there has been an error added into the parent entity. Within this entity, the
gender attribute which should define the gender of each parent is missing. Therefore, this
is a (potential) defect and needs to be reported using the implemented model review tool
support AddOn. In figure 5.12, the process to report a defect is displayed. To report a

67

5. Model Design & Review Editor

Figure 5.12: Highlighting a defect within the review view of the MDRE (Stage 6 in flow
chart 5.9)

defect within the review view the inspector can simply hold down the left mouse button
and draw a rectangle selection box around the area that contains a defect. The reviewer
must highlight a potential defect as precisely as possible to make sure that the review
assignment owners can later locate the exact position of the defect without any additional
effort.

Once the rectangle selection box is drawn by releasing the left mouse button the defect
report form is automatically opened. Within this form, the reviewer can describe all
details of the defect and send the report to the backend. In figure 5.13, the defect reporting
form of the MDRE is shown. Within this form there are the following individual details
that a defect report needs to contain:

• Defect description: This field should contain a short but detailed description
of the defect. The description mentions in which form and why the selected area
marks a defect including all details to its appearance. The only way to communicate
the background of the defect to the review assignment owners is by providing a
good and accurate defect description.

• Position in specification: Usually, models are based on some kind of specification
like a PDF document that specifies the exact scenario and details that the model
should map. The position of a defect within the specification is important because
it helps the review assignment owners to understand why the reported area could

68

5.2. Tool Support AddOn for Model Reviewing (RQ1)

be a defect. Therefore, in this field an accurate line number in the document
referencing the location where the specification is different from the model.

• Defect type: The type of the defect describes what kind of defect we are dealing
with. There currently can be four different types of defects selected in the MDRE
defect reporting form:

– Missing: The reported area does not contain details that are described in the
specification.

– Wrong: In the selected area there is a component that does not match with
its description in the specification documents.

– Unclear: The reviewer does not understand the selected area in the model
and therefore cannot check if it matches the specification. This type does not
need to be a real defect but can point to areas of the model which need to be
improved and made more clear.

– Superfluous: Within the reported area of the model there are details displayed
that are not part of the specifications documents and therefore are superfluous
and can likely be removed by the review assignment owners.

• Defect severity: The defect severity specifies the level of the impact a defect can
have on the whole artifact according to the reviewer and therefore how important it
needs to be fixed. With higher importance, it is necessary to fix a defect faster and
invest more resources into the fix than with lower severity defects. In the MDRE
defect reporting form there are currently three different severity categories that can
be chosen for a defect that should be reported:

– Minor: A minor defect that does not have much impact on the design and
operation of the artifact. Therefore it does not require urgent fixing or a lot
of resources that need to be put into fixing this defect.

– Important: The severity category important marks defects which should be
fixed quite soon and the fix itself should also be focused to avoid new defects
resulting out of the fix.

– Critical: Critical defects must be fixed as fast as possible as they can have
severe impacts on the whole artifact which is under review. The fix should be
carried out immediately and needs a maximum of attention to make sure that
the defect is removed and there are no new problems that were invented as a
result of the applied fix.

Once the defect is reported by clicking on the Save button all details including the position
of the defect are sent to the backend. In figure 5.14, the filled-out defect reporting form
for the example defect which has been explained previously is displayed. Because of the
missing data in the model we have set the defect severity of this defect to Important.

69

5. Model Design & Review Editor

Figure 5.13: Defect reporting form (Stage 6 in flow chart 5.9)

Figure 5.14: Defect reporting form with example input (Stage 6 in flow chart 5.9)

70

5.2. Tool Support AddOn for Model Reviewing (RQ1)

This should make sure that the review assignment owners who are responsible for the
review focus on a prioritized fix of this defect.

After a defect has been successfully reported to the backend it is displayed in the right
sidebar of the review view within the MDRE. Figure 5.15 shows the previously reported
defect that states the missing gender attribute of the parent entity that has been specified
in line 4 of the specification for the example model. The two buttons on the right side
of a defect provide support for editing the defect further or in case it was reported by
accident also the deletion of a defect is possible. Within this sidebar, it is as mentioned
also possible to leave a comment and to save the review result via the button just below
the comment field.

Figure 5.15: List of reported defects and review finalization (Stage 7 in flow chart 5.9)

Saving a review was already possible at the beginning of this work but along with the
improvements for reporting defects in models during a review, we also improved the
appearance and usability of the save review dialog that is used to close / complete reviews.
Figure 5.16 shows the new and improved dialog to save reviews in the MDRE with the
three possible outcomes a review can have after it was completed. It is also important
that a review does not need to be closed instantly but also can be left open and be
continued later. Previously, the feature of selecting one of the 3 different states or leaving

71

5. Model Design & Review Editor

Figure 5.16: Dialog to save and close a review (Stage 7 in flow chart 5.9)

the review open was realized by one button and a drop-down selection with the four
mentioned possibilities. This was described as confusing by some users and so the whole
dialog needed an update. The new version of the dialog for this feature is an improvement
and makes it easier to use by the inspector because now each outcome has its own button
and therefore the selection of the correct state can no longer be missed out.

Once a review has been closed it is shown in the review assignment details and can also
be accessed again by the owner of the review but no longer edited. Also, all owners of the
review assignment can access closed reviews without the possibility of editing them, they
also can see the reported defects of all reviewers and therefore can investigate them. To
avoid that other reviewers are biased by already completed reviews they are not allowed
to access any reviews not owned by them. In figure 5.17, our example review has been
closed in the state rejected as the missing gender within the parent entity needs to be
fixed before the model is used further in the development of an artifact according to the
MDD approach which was already presented in section 2.2.4.

As it was already presented at the beginning of this section in figure 5.10 we not
just implemented the functionality of reporting review defects but we also created the
possibility of evaluating the reported defects within the backend of the MDRE. Currently,
this evaluation which offers the possibility for the review assignment owner to comment
and link reported defects to a defect list is only available to the backend.

At the moment, no user interface component makes it possible to evaluate reported
defects in the web browser available in the MDRE frontend. The reason for this is that
the evaluation of defects within the MDRE was no requirement that was formulated.
However, the possibility has now been implemented within the backend which makes
sure that in case that this requirement exists in the future it can easily be introduced in

72

5.3. Tool Support AddOn for Experimentation (RQ2)

Figure 5.17: Rejected review in the review assignment overview

the MDRE frontend during a possible future work.

5.3 Tool Support AddOn for Experimentation (RQ2)
In this section, we present the tool support AddOn for experimentation within the MDRE
that has been implemented.

5.3.1 Introduction
We presented in the previously displayed table 5.1, that there are many different software
inspection tools with various features available. Each tool listed within this table is
explained in detail within section 2.5. There is currently no software inspection tool
available that supports both review and experiment administration as well as reviewing
of models or images at the same time. Therefore, it is needed to use the MDRE as an
application that provides tool support for review and experiment administration based
on the existing features for model reviewing within it.

We explained the theoretical background of experimentation in section 3. Within
subsection 3.3 we presented that every experiment consists out of five different phases
which lead from phase E1 - scoping of the experiment to phase E5 - presentation and
packaging of all data which has been collected during the experiment. Not each of the
five phases can be supported with the help of a tool since tasks like the analysis and the
interpretation of collected data are something that can hardly be automated with an
application like the MDRE. However, all phases which require a lot of administration
offer the possibility to automate the majority of all tasks within these phases with the
help of tool support. It would for example be relatively easy to automate the allocation
of different tasks for individual participants and to provide materials that are needed by
all experiment participants to execute their tasks within the experiment.

73

5. Model Design & Review Editor

The main requirement that was formulated in the RQ2 was to implement tool support
that offers the possibility to support the administration and execution of reviews and
experimentation within the MDRE. Within section 5.1.3 we already presented the
functionality of the MDRE that was already available at the start of this work in
detail. The functionality of the state of the MDRE at the beginning did not provide
any possibilities for supporting and executing experimentation. Therefore, we analyzed
every phase within experimentation and searched for tasks within all experiment phases
that can be automated with the help of such an AddOn that provides tool support
for experimentation in the MDRE. Along with the analysis different features that this
tool support component should be capable of were formulated and collected for the
implementation into the MDRE.

The main focus of the planned features for the experiment administration component
supports the phases E2 experiment planning and E3 experiment operation. Both phases
include a lot of administrative tasks as we already explained based on our use case diagram
in section 1.1. These administrative tasks need to either be executed by the experiment
managers or by the participants themselves. Therefore, providing tool support for these
administrative tasks is important and saves time and resources before, during, and after
experiments and the saved resources can later be used in different studies instead. As
we also explained in section 1.1, without tool support experiments are executed with
materials, tasks, and information spread over various platforms. With the tool support
as many resources as possible are available in a single platform which is in this case the
MDRE and the experiment participants are guided through all tasks with the possibility
to see their overall progress within the experiment live. Especially the active guidance
of all experiment participants is important to support the success of the experiment by
avoiding that participants forget to execute tasks which would result in missing data
within the experiment results.

In the following section, we present all features of the MDRE review and experiment
administration AddOn component. Table 5.4 shows a comparison between the features
that have been available in the initial state of the MDRE and all features that have been
added with the development of the two additional AddOn components. Figure 5.18 shows
a flow chart diagram that presents the process of creating, executing, and administrating
experiments within the MDRE. A more detailed version of this flow chart can be found in
appendix B of this work. Within this flow chart we distinguish between two different roles
the experiment managers and the experiment participants. The experiment managers
create the experiment within stage 1 and add different tasks to the experiment within
stage 2. There are multiple different tasks available that can be added to an experiment,
e.g., questionnaires, review tasks, and so on. During the execution of the experiment the
experiment managers monitor the state of every participant within stage 3. At the end
of the experiment all collected results are evaluated during stage 4.

The experiment participants first open their task dashboard within stage 5 and execute
every task displayed that has been added to their dashboard during stage 6. They repeat
stage 5 and stage 6 until all tasks have been completed. Finally, they complete the

74

5.3. Tool Support AddOn for Experimentation (RQ2)

Figure 5.18: MDRE Review execution flow chart

experiment in stage 7 by handing in all materials.

5.3.2 Features & Functionality
In this section, we present the features and functionalities which are offered by the MDRE
AddOn for experimentation tool support. Figure 5.19 displays a simplified class diagram
with the most important entities of the MDRE and their relations to each other after the
AddOn for model review tool support and the AddOn for review and experimentation
administration tool support were implemented. The diagram shows all entities which
had already been implemented into the MDRE before the start of this work with the
color white. All entities that belong to the AddOn for model review tool support are
displayed with the color grey. Furthermore, the entities that belong to the AddOn for
review and experimentation administration tool support and that have been implemented
are displayed in the color green. The MDRE component AddOn for experiment and
review administration includes the features F9-F15.

75

5. Model Design & Review Editor

Figure 5.19: Simplified class diagram of the MDRE with the AddOn for tool-supported
experimentation (green)

76

5.3. Tool Support AddOn for Experimentation (RQ2)

ID Feature Initial state Review AddOn Exp. AddOn
General

F1 Projects � � �
F2 User management � � �
F3 Audit logging � � �

Models
F4 Model configurations � � �
F5 Model design � � �

Reviews
F6 Review assignments � � �
F7 Reviews � � �
F8 Defect reporting – � �

Experimentation
F9 Experiments – – �
F10 Normal tasks – – �
F11 Review tasks – – �
F12 Google Forms tasks – – �
F13 Submissions – – �
F14 Submission table – – �
F15 Task overview – – �

Table 5.4: Feature level comparison of the MDRE (after experimentation AddOn). All
features are displayed in figure 5.19. Newly added features are displayed in green.

Experimentation Features / Characteristics

In this section we present the features of the experiment and review administration
AddOn component within the experimentation category (see table 5.4).

Experiments (F9)
In the tool support AddOn for experiment and review administration experiments are the
main entities that contain all other for this AddOn relevant entities within them. This
can also be seen in the already presented class diagram in figure 5.19. Experiments can
be created by MDRE administrators and offer the possibility to assign tasks to individual
experiment participants who are part of this experiment which takes place at a certain
time. Every experiment stores the following types of information:

• Experiment name: The name of the experiment is the main identification for
the experiment within the MDRE. It is displayed to both experiment participants
and MDRE administrative users.

• Description: The experiment description can include additional information on
the experiment for the participants. It is visible to the participants in case it is
filled out but it is optional and does not have to be entered.

77

5. Model Design & Review Editor

• Start time: After the start time the experiment is visible to the participants and
the participants can start to work on the individual tasks within the experiment.

• End time: Between the start and end time experiments are visible and tasks can
be worked on. However, after the end time, the experiment becomes invisible for
the participants and all started tasks can be finished but no new tasks can be
started anymore.

• Experiment participants: The experiment participants are MDRE users that
have been assigned to the experiment. Every participant can view the experiments
he is assigned to and can work on tasks that are part of these experiments.

• Tasks: Within an experiment tasks are stored which need to be worked on by
every participant of the experiment. Tasks can have different types depending on
the work which needs to be done to fulfill them. Currently, the MDRE offers the
following types of tasks: Normal tasks, review tasks, and Google Forms tasks. The
different task types which are available in the MDRE are described in detail later
within this section.

Figure 5.20 shows the dialog that is used to add experiments to the MDRE. In our
example, we added an experiment called "Test Experiment" which takes place on the
27th of July 2021 between 6 pm and 7 pm. Once the user clicks on the green save button
the experiment is sent to the backend and is persisted there in case all validation checks
are passed.

Figure 5.20: Form to add an experiment (Stage 1 in flow chart 5.18)

78

5.3. Tool Support AddOn for Experimentation (RQ2)

Figure 5.21: Overview of all experiments

Once the experiment has been persisted within the backend it can be accessed in the
overview of the experiment. The experiment overview is displayed in figure 5.21 and
already shows the previously added example experiment. In this overview there exists
the possibility to add more experiments and also to edit or delete the already existing
experiments. From this overview, it is also possible to navigate to the submission table
that gives an overview of all experiments currently running in the MDRE including a list
of submissions that have been handed in by the experiment participants of the individual
experiment. The submission table is explained in detail later within this section.

If an experiment has already been added and is later edited it is also possible to assign
participants to this experiment. Only the MDRE users with the administrator role and
all participants can view and work on an experiment. For all standard MDRE users who
have not been added as participants, it is not possible to view the experiment nor to work
on the tasks assigned to it. In figure 5.22, the list of participants who have been added
to the experiment is displayed. To support the experiment managers and to increase the
usability of the MDRE participants can either be added to an experiment by selecting
them out of a list of all MDRE users or it is also possible to upload a CSV file that
contains all usernames that should be added as participants. This feature is especially
important for bigger experiments with many different groups of participants that should
be added to different experiments in the MDRE. In this case for every group, a CSV file
can be prepared and uploaded to the MDRE, this makes sure that it is not possible to
forget to add participants or to add them to the wrong experiment. Within the list of
all participants there also exists an option to remove MDRE users from the list of the
experiment participants.

Tasks

Every task is part of an experiment and specified work packages that have to be fulfilled
by the participants. As already mentioned there are different types of tasks called
Normal tasks, review tasks, and Google Forms tasks. Every of the listed types has special
attributes and its own purpose but there are similarities in the attributes which are shared
among all three task types. All properties that are similar overall task types are mapped
by a superclass that is called SuperTask within the MDRE. The whole generalization
mapping is presented in the class diagram that is displayed in figure 5.19. All three task
types share the following attributes among each other:

79

5. Model Design & Review Editor

Figure 5.22: Experiment participants overview

• Task name: The task name becomes the main identification of the whole task. It
is displayed to all experiment participants and the MDRE administrative users.

• Submissions: Every task stores multiple submissions of experiment participants.
For every participant who starts or completes a task, an individual submission is
stored. Submissions are explained in detail later within this section.

• Short name: Within the submission table that is explained later in this section a
table showing all submissions of all tasks in an experiment is displayed. As this
table would require too much space if the full name would be used every task has
its own short name which consists out of a maximum of five characters. The short
name is therefore only relevant for the MDRE administrative users and is never
displayed to the experiment participants.

• Description: In the task description the participants receive exact details about
what they have to do during this task. It should be as exact as possible and provide
detailed information about the task, it is also possible to use URLs to external
services for example for downloading materials within the description.

• Maximum Points: If a task is completed by a participant a submission is added
to the task, these submissions that are explained later in this section can be graded.
To be able to grade the task there must be a maximum amount of points specified
that can be achieved within this task and may not be exceeded by an experiment
manager who performs the grading.

• Automated grading: There is also the possibility of enabling automated grading.
If this option is enabled within a task then every submission that is fully completed
is automatically graded with the maximum points value. This feature is helpful for

80

5.3. Tool Support AddOn for Experimentation (RQ2)

example with simple tasks that do not require any point deductions like the upload
of some materials which can either be done or not.

• Task order: The task order of a task is important for ordering the tasks on the
dashboard for the participants. In the task dashboard that is explained later in this
section, the user can see the upcoming tasks ordered by the task order in ascending
direction. This value is helpful in case some tasks need to be fulfilled in a specific
order.

In the next sections, we describe the individual task types and detail and what distin-
guishes them from each other.

Normal Tasks (F10): A normal task which is just called a task in the frontend of the
MDRE is a task type that is not performing any kind of automated submission collection.
Unlike the other tasks types, this type is not capable of automatically checking if an
experiment participant has already started or completed a task. However, this task type
is still important and useful because it can be used for many different kinds of tasks.
An example of such a task would be the download of some kind of additional materials
to support the experiment process from an external site as is displayed in figure 5.23.
Another good reason to choose this type of task would be that the MDRE cannot support
every third-party tool available because there are simply too many tools that could be
relevant within an experiment. Therefore, a normal task tells the participants what they
have to do within the third-party tool. The experiment managers then can manually
check the third-party tool for the progress of the participants and add the submissions
into the MDRE by hand. This does not work as efficiently as the other tasks type but it
is a good solution in case there is no support in the MDRE available for the third party
tool and this tool is needed necessarily.

This type of task has only one simple special attribute which is the possibility of setting
the whole task to a placeholder. In case the placeholder option is enabled the task can
no longer have any submissions. This is for example useful in case that the task only
advises the participants to download some file as it is often not possible to check if an
individual participant downloaded the material and also grading a download task does
not seem to be necessary.

Review Tasks (F11): Within review tasks, the participants of an experiment are
advised to execute an already in the MDRE available review assignment of a model.
Therefore, the task is linked to the selected review assignment. The permissions to
view the model and work on the review assignment are automatically granted for all
experiment participants once the review task is created. Submissions for this task type
are added automatically, for example when the review for the review assignment of this
task is opened then a submission is created and is later updated when the review is set
to completed by the participant. In case the automated grading option is enabled the
maximum points for these tasks are automatically awarded once the review is completed,
otherwise, the experiment managers can grade the submissions manually.

81

5. Model Design & Review Editor

Figure 5.23: Form to add a normal task in an experiment (Stage 2 in flow chart 5.18)

Figure 5.24 shows an example of a review task with the two attributes that are special
within this task type. The following two special attributes need to be set for this task
type:

• Project: The project that contains the model and the review assignment that the
review should be based on.

• Review Assignment: The review assignment for which a review should be created
by the experiment participants during this experiment.

Google Forms Tasks (F12): In a Google Forms task, the participants of an experiment
are advised to answer a questionnaire that is already available on Google Forms. Therefore,
the task is linked to the Google Forms questionnaire. Questionnaires in experiments can
be of importance for collecting the experience or feedback of participants which are later
used to evaluate the results of the experiment. Submissions for this task type are added
automatically when a participant has answered the questionnaire. This is done with the
help of the MDRE backend which polls the Google Forms every few minutes and checks
for new answers on the questionnaires. In case the automated grading option is enabled
the maximum points for these tasks are automatically awarded once the questionnaire has
been answered, otherwise, the experiment managers can grade the submissions manually.

Figure 5.25 shows an example of a Google Forms task with the three attributes that are
special within this task type. The following three special attributes need to be set for
this task type:

82

5.3. Tool Support AddOn for Experimentation (RQ2)

Figure 5.24: Form to add a review task in an experiment (Stage 2 in flow chart 5.18)

• Google Forms ID: The Google Forms ID represents the unique ID of the whole
form and is used to navigate the participants to the correct Google Form.

• ID of the participant number field: An important requirement to enable the
mapping of MDRE users to Google Forms answers is the participant number of the
experiment participants. All participants need to enter their participant number to
make a mapping between their MDRE user and their answer possible. The ID of
the participant number field is needed to find the participant number among all
other fields within a single answer.

• ID of the answer spreadsheet: Google Forms itself does not provide any API to
read answers from a form. However, Google Spreadsheet does offer the possibility
of accessing spreadsheets via an API. Google Forms can be automatically synced
to Google Spreadsheets which offers the possibility to access Google Forms answers
via an API through Google Spreadsheets. Therefore, the public Google Spreadsheet
ID is needed in the MDRE to define the location from which the backend can load
the answers.

All tasks are listed within the experiment details. This list also provides the possibility
of deleting and editing all tasks stored within the selected experiment. Figure 5.26 shows
the example tasks that have been added previously in this section.

83

5. Model Design & Review Editor

Figure 5.25: Form to add a Google Forms task in an experiment (Stage 2 in flow chart
5.18)

Figure 5.26: Overview of all tasks in an experiment

84

5.3. Tool Support AddOn for Experimentation (RQ2)

Figure 5.27: Adding / editing of a submission

Submissions (F13) Once a task is started or completed by an experiment participant
a submission is added to the task. For every task, there can be one submission per
experiment participant. Submissions are a quite simple concept and only have three
different attributes which define them. The following three attributes are stored for every
submission:

• User: The user field maps the submission to the MDRE user. Once a submission
has been added the user mapping can no longer be changed afterward. An MDRE
user can only be added to a submission in case that he is added as a participant in
the experiment itself. In case that a user is not a participant of the experiment, it
is also not possible to add any submissions to the task by this user.

• Task completed: A submission can be set to complete. Once a task is started a
submission is automatically be added. If the submission is not set to complete it is
considered as started. In case that the experiment participant has not started a
task then there is also no submission available for the task at all.

• Points: Submissions provide the possibility to be graded optionally. The experi-
ment managers can award points for certain submissions. However, in case that
automated grading is enabled within the task, submissions that are in the state
completed are automatically awarded the maximum amount of points defined in
the task.

Figure 5.27 displays an example submission for the normal task that has been created
previously. This submission has been done by the MDRE user called workshop01 and is
completed. Therefore, the submission was automatically awarded the maximum amount
of points of the task which is 50 points.

All submissions of a task are displayed in a list within the task details. Figure 5.28
displays a list of all submissions that have been added to an example task previously.
Submission can also be deleted or edited by experiment managers. The list shows two

85

5. Model Design & Review Editor

Figure 5.28: Overview of all submissions in a task

different submissions the first one has not been completed and therefore also has no
points awarded. However, the second submission is the submission previously added in
this section that is completed and has been awarded 50 points.

Submission Table (F14) For experiment managers, it is not efficient to check the
progress of all participants during the experiment by browsing task by task in every
experiment. This would take a lot of time and could hardly provide a good live overview
of the progress of all participants. Therefore, an important requirement is the implemen-
tation of an overview that displays the progress of all participants live and without any
additional actions needed to be performed by the experiment managers. In the MDRE
this feature is called submission table and can be accessed via the experiment overview
that was already presented in this section.

Figure 5.29 presents an example of the live view of an experiment within the submission
table. For every task in an experiment, there is one column available showing the current
state of all submissions. In general, all tasks are displayed within this table the only
exceptions are the normal tasks that are set to placeholder because these types of tasks
cannot have any submissions as already explained previously. Every user is represented in
the table by an individual row. The three individual states of a submission are displayed
by three different symbols. In case that the task has not been started by the user then
this is indicated by a red cross mark if a task has been started two blue arrows are
displayed and for completed submission, a green checkmark is shown. The number next
to the symbols for submissions of review tasks represents the number of defects that
the participant has already reported within the review. This offers the possibility of
being able to view the live progress of each participant even during a review which
usually takes more time than other task types. Without this feature there only would be
the indication that a participant has started the review. As long as the review is not
completed experiment managers would have no possibility of knowing if the participant
is progressing on the review or is just stuck.

The submission table also offers the possibility to manually edit the submissions of

86

5.3. Tool Support AddOn for Experimentation (RQ2)

Figure 5.29: Table of submissions within an experiment (Stage 3 in flow chart 5.18)

Figure 5.30: Manual submission control within the submission table

participants for individual tasks. Therefore, it is only necessary to click on the symbol
of the solution in the correct row and column according to the user and task for which
the submission should be edited. After the click on one of the submission symbols that
indicates the state of the submission for a user, a dialog is opened. This dialog is displayed
in figure 5.30 and shows the buttons that trigger the state change. In this example there
is no submission available for the selected task, therefore it is only possible to set the
submission to solved or started via the buttons in the center of the dialog. This feature is
important for experiment managers in case there are any problems with the automated
submission check or if there are tasks that need to be checked by hand because they are
not supported by the MDRE.

Figure 5.31 again presents the submission table of the previously introduced example
experiment. However, this time the figure displays the submission table of the example
experiment in a later state. Some of the participants already started and completed some
of the tasks and there are already submissions available. For example, the MDRE user
workshop01 has already completed the experience Google Forms questionnaire (ExpQ)
and the first review (RevM1) in which he reported five defects. He also has started the
second review (RevM2) and already reported two defects within it. On the next line,
the user workshop02 has completed the first review with three reported defects and he

87

5. Model Design & Review Editor

Figure 5.31: Table of submissions with advanced progress (Stage 3 in flow chart 5.18)

also has started the second review with one defect reported. However, he seems to have
forgotten to answer the experience questionnaire which the experiment managers need
for the evaluation at the end of this experiment. The user workshop03 does not seem
to have started the experiment yet and might be stuck, this could be the sign for an
experiment manager to check if this user is stuck or needs some kind of assistance.

Task Overview (Dashboard) (F15) An important feature for the experiment par-
ticipants is the task overview or dashboard. This dashboard has the purpose to list
all experiments to which the participant is assigned on the main project overview page
within the MDRE. After the login into the MDRE, the user can immediately see all his
experiments and task which need to be solved by him on the main page.

In figure 5.32, the dashboard that shows all tasks of the example experiment that has
been added in this section is displayed. On top of the dashboard, the name of the
experiment as well as the start and the end time are visible to the user. Within this time
the participants need to complete all tasks of the experiment. The first line within the
experiment view shows the description of the experiment which gives the participants
additional information. This experiment description is followed by a list of all tasks that
need to be completed during the experiment.

The first task in the list called the experience questionnaire is a task in which a Google
Forms questionnaire needs to be answered. On the right side of the task, there is a
button that links the user to the correct Google Form, so the participant does not need
to navigate to any location by himself. The state indicator on the left side indicates the
progress that has already been accomplished within the task. In case all state indicators
of all tasks show as solved then the participant knows that he has completed all tasks
successfully. This feedback is delivered live every few minutes to the user and is an
important feature to support the user’s progress on the experiment. The second task is
a normal task set as a placeholder. This means that there are no submissions possible
and therefore there also is no state indicator that shows the progress of the task as there
simply is none. In the example, the task is just used to provide extra information to the
participants in form of materials that can be downloaded by the users under the specified
URL. The third task is a review task in which the participants have to review a model

88

5.3. Tool Support AddOn for Experimentation (RQ2)

Figure 5.32: Task overview (dashboard) for all participants of an experiment (Stage 5 in
flow chart 5.18)

based on a predefined review assignment. Submissions are checked in this type of review
similar to the submissions of the already explained Google Forms tasks. Once the review
is started the state indicator on the left side shows the progress as "started" (eg. task
four) and in this example, the review is completed, therefore it displays the progress as
"solved". The review itself can either be started by navigating to the assignments via the
project details or by simply clicking on the start/resume review button on the right side
of the task.

89

CHAPTER 6
Empirical Evaluation (RQ3)

In this chapter, we present the evaluation of this work. For the evaluation of the tool
support components that were added to the MDRE, we conduct a controlled experiment
with about 80 participants which is explained in the following section. Finally, the results
of our research are presented and put into comparison to provide scientific evidence for
our work.

6.1 Study Process

We performed an experimental study to evaluate our research results that are described
in this section. The goal of this experiment is the evaluation of the two tool support
components for model reviews and experiment administration for the MDRE that have
been developed. In detail, this experiment is executed as a controlled experiment in a
classroom setting with 78 participants at the Technical University Vienna. The goal of
the controlled experiment focuses on the comparison of the advanced MDRE approach
(i.e., treatment group) and a traditional pen-and-paper-based review process without
tool support (i.e., control group).

In chapter 3, we already presented the most important information about experimentation
in software engineering. Within this chapter, we presented the five different phases of
an experiment and explained the most important tasks that are executed within them.
According to Wohlin et. al. in [78], these five steps include the experiment scoping (E1),
planning (E2), operation (E3), analysis (E4), and presentation / packaging (E5). In
the following section, we explain the experiment conducted in detail based on these five
different phases (see figure 3.1).

91

6. Empirical Evaluation (RQ3)

6.1.1 Experiment phase - Scoping (E1)
During the experiment scoping the goals and the objects of the study are defined. As
already mentioned the main object within this study is the advanced MDRE approach
that should be investigated. Within this investigation, the focus is especially on the two
new tool support components that have been implemented into the MDRE. The main
goal of this experiment is therefore to find out if there are any differences in effectiveness,
efficiency, and false-positives between the advanced MDRE approach and the traditional
pen-and-paper-based review process.

Variables: In experimentation, we distinguish between two types of variables i.e.,
independent and dependent variables. Within this experiment, the independent variables
include the group assignment and the list of added defects per modeled scenario. The
dependent variables are effort, efficiency, effectiveness, reported defects, true defects, and
false-positives.

In detail, the effort is the amount of time that a participant needed from the beginning
to the end of his inspection. Efficiency refers to the number of defects that are found
within a certain time interval for example defects found per hour. Therefore, the amount
of true defects found by every participant is divided by the total time in minutes that
the participant needed and is then multiplied by 60 minutes. The effectiveness is the
percentage of how many true defects have been found from the list of total defects that
were added to each modeled scenario. Reported defects are simply the amount of all
defects that a participant reported. True defects on the other hand are the number of
real defects that a participant found out of all reported defects. False-positive defects
are the percentage of how many false-positives a participant reported from the list of all
reported defects.

Hypotheses: The main goal of the implemented tool support components is to improve
the whole process for model reviewing. Within the results, we are especially interested in
how the performance of the improved MDRE approach is compared to the traditional
pen-and-paper-based inspection process. We do not expect the MDRE approach to show
an improvement in performance compared to the traditional review method because the
MDRE does not automate any parts of the review process itself. The benefit of the
MDRE is the organizational and administrative support that is provided which helps
reviewers, review managers, and experiment managers. Therefore, we define the following
hypotheses for this experiment:

Null hypothesis:

H1.0: There is no difference in the effectiveness when inspecting models of varying types
with the advanced MDRE or pen-and-paper-based approach. We do not expect the MDRE
approach to have better effectiveness during the model reviews, because the process of
the MDRE is strongly inspired by the pen-and-paper-based review approach.

92

6.1. Study Process

Alternative hypothesis:

H1.1: The advanced MDRE approach is more effective compared to the pen-and-paper
review process. The MDRE approach could provide better guidance with the help of
different features that have been implemented into the tool support component. One
example is a task dashboard that shows the participants which tasks they already solved
and which are still unsolved.

Null hypothesis:

H2.0: There is no difference in the efficiency when inspecting models of varying types
with the advanced MDRE or pen-and-paper-based approach. We do not expect the MDRE
approach to have a better efficiency during the model reviews because of the same reasons
we already mentioned for the first null hypothesis.

Alternative hypothesis:

H2.1: The advanced MDRE approach provides a better efficiency compared to the pen-
and-paper review process. The MDRE approach could provide better efficiency with the
help of the features that we already mentioned in the first alternative hypothesis.

Null hypothesis:

H3.0: There is no difference regarding false-positives when inspecting models of varying
types with the advanced MDRE or pen-and-paper-based approach. We do not expect the
MDRE approach to result in fewer false-positives during the model reviews because of
the same reasons we already mentioned for the first null hypothesis.

Alternative hypothesis:

H3.1: The advanced MDRE approach will report fewer false-positives in comparison
to the pen-and-paper-based review process. The MDRE approach could result in fewer
false-positives because with the help of the tool support defects in models can be marked
more precisely.

During the experiment, feedback is collected to receive insights into the opinion of the
participants to find out how they feel about working with the improved MDRE. The
feedback also helps to advance the MDRE further and provides detailed information
about possible problems with the usability of this application.

6.1.2 Experiment phase - Planning (E2)
During the planning phase of the experiment the study design, materials, the participants,
and the execution of the experiment are defined. In general, this experiment is planned
as a controlled experiment that is executed in vitro under fully controlled conditions with
novice participants doing technology-oriented tasks. Figure 6.1 presents an overview of
the experiment design as it is executed by the participants.

93

6. Empirical Evaluation (RQ3)

Figure 6.1: Overview of the experiment design in cross-over design

Experiment Design: There are three different phases within this experiment. The first
phase is the tutorial phase lasting about 60 minutes. During this time the participants
receive a tutorial about the experiment itself. It is explained to them what tasks needed
to be performed by them and how the tasks are executed correctly. Another important
part of the tutorial is the introduction to the MDRE. None of the participants has worked
with the MDRE application before and therefore a tutorial about all features they can or
need to use during this experiment is mandatory. In the second part of the tutorial, the
main work for the participants starts.

For the experiment execution phase, all participants are split up into two different groups
with a focus on different applications (cross-over design). We applied two different
application domains that focus on typical scenarios of (a) an ATM and (b) school
management processes. Given that there are two different groups it is still an individual
work, therefore every participant must work on his own.

Both groups focus on similar models in each part of the experiment, i.e., ATM processes
and school management processes. The only difference between the groups is that group
A inspects the ATM model with the advanced MDRE approach, while the second group
B reviews the same model with the traditional pen-and-paper-based review process. Also
within this part, the participants are allowed to work for about 60 minutes.

In the last part of the experiment that also takes 60 minutes the roles change and another
model is used. Within this part of the experiment, the model of a school management is
used that the participants need to inspect. This time group A, which has performed the
last review with the advanced MDRE approach, reviews this model with the traditional
pen-and-paper-based review process. Therefore, group B reviews the model in this last
part with the advanced MDRE approach. Splitting up all participants of the experiment
into these two groups is important to receive a control group that later enables the
evaluation of the collected results.

94

6.1. Study Process

Participants: For this experiment, we recruited 80 participants of which 78 completed
the experiment successfully. All participants are undergraduate bachelor students and
therefore novice users. The students attended a course on Software Quality Assurance at
the Technical University Vienna in the summer term of 2021. During the experiment
planning phase, all participants have been split up randomly into two groups to make
sure that there is an equal distribution between both groups.

Before the start of the main tasks of the experiment, we collected the experience of
each participant using a Google Forms questionnaire1. This questionnaire evaluated the
experience of the participants given the five different categories: Software Development,
Model Application, Model Creation, Model Review, and Domain Experience. Within the

Experience in ..

Level No. % No. % No. % No. % No. %
Less 13 17 14 18 28 36 36 46 13 17

Medium 47 60 48 62 43 55 36 46 32 41
High 18 23 16 20 7 9 6 8 33 42

Total 78 100 78 100 78 100 78 100 78 100

Domain
Experience

Software
Development

Model
Application Model Creation Model Review

Table 6.1: Experience levels of the participants

questionnaire, the experience was collected based on a 6-point Likert scale that we mapped
into three different experience levels which are less experience, medium experience, and
high experience. We applied equal importance to all experience categories. Table 6.1
presents the distribution of the experiment participants based on their experience level in
the five mentioned categories. The majority of all participants (>50%) could be assigned
to the medium or high experience level for all five categories.

Models: Within the experiment, there are two different models, assigned to two different
application domains, used during the reviews. To avoid specific limitations because of
limited domain knowledge, it is important to use well-known artifacts for the review
tasks. Therefore, two application use cases of daily uses have been selected that every
participant should be aware of.

The first application use case applies a UML state chart for an ATM. We expect that
every participant has used an ATM at least once in his life and therefore knows the
scenario well. The statechart defines the process of withdrawing or depositing cash at an
ATM and consists of 22 different states. We included 28 seeded defects in the statechart
that need to be identified by the participants.

The second application use case focuses on a UML class diagram of a school management
system. Since all participants study Software Engineering at the Technical University
Vienna it is safe to assume that every participant has attended a school before and
therefore knows the most important entities in the school system. The class diagram

1Experience questionnaire: forms.gle/19FpPSLQakZdpETeA (last visited 30.09.2021)

95

forms.gle/19FpPSLQakZdpETeA

6. Empirical Evaluation (RQ3)

defines the most important entities for storing students, parents, teachers, employees,
and rooms within a school. This diagram consists of 21 different entities that are defined
within it. There are 28 seeded defects in the class diagram which participants have
to identify and report during their inspection in the last part of the experiment. All
defects inserted into the models were distributed over the usual defect categories that
can be observed during the daily use of models. The seeded defects are based on software
engineering experience and typical defects in common software engineering projects.
These defect categories are missing, wrong, and superfluous. Table 6.2 gives an overview
of the distribution of the three defect types within the models. Furthermore, every defect
was classified based on its risk using the categories critical, important, and minor.

No. % No. %
Missing 12 43 12 43
Wrong 12 43 13 46

Superfluous 4 14 3 11
Total 28 100 28 100

Defect Type
ATM School Management

Table 6.2: Distribution of seeded defects and defect types within the models

Materials: In addition to the models that are provided to the experiment participants
also a bunch of other materials are required to fulfill all tasks in the experiment. The
MDRE is also used for the experiment management and not just for the review tool
support within this controlled experiment. All files are distributed via the experiment
administration component AddOn of the MDRE that has been described within chapter
5. Therefore, for all participants in every group type the experiment guidelines and the
model specifications are provided. Depending on the group of the participants the models
are either provided as PDF files for pen-and-paper-based groups or directly within the
MDRE for the tool-supported groups. The experiment guidelines are defined within a
PDF document that is approximately two pages long. Within this document, the most
important rules are defined and the whole experiment process from the beginning to the
end is explained in detail. These guidelines can be used as a backup in case that the
experimentation dashboard of the MDRE would fail. The model specifications are also
of importance because they define the whole artifact as it should be displayed within the
model. Therefore, the specifications represent the actual state that the model should
represent. We consider the specification to be correct. Every state or entity within the
model that does not match the specifications within this document precisely is a defect
and needs to be reported by the participants.

We used an experience questionnaire to capture the background experience of the
participants and feedback questionnaires after every experiment part to collect feedback
on the applied method. Additionally, the participants of the group that is using the
traditional pen-and-paper-based review strategy have another document that is provided
to them via the materials. This document is the defect reporting sheet, a spreadsheet that

96

6.1. Study Process

is used by the participants to report defects within the model when they are working
with the pen-and-paper-based review process. Within the spreadsheet one line represents
one defect and every defect needs to be described and rated based on the severity and the
type similar to the defect reporting within the MDRE that was explained in chapter 5.
Furthermore, we also record the exact times when a defect is found during the experiment.
This provides the possibility to calculate interesting metrics like the time until the first
defect was found, found defects per hour, etc. that can be relevant for the evaluation
of this experiment. Because the defect reporting is included in the MDRE with the
newly added model review component AddOn this spreadsheet is only required for the
pen-and-paper-based reviews.

6.1.3 Experiment phase - Operation (E3)

The experiment was executed on two different days to offer the possibility for the
participants to choose an appointment that fits best in their weekly schedule. Both
appointments for this experiment were conducted in the same week. The first appointment
for the experiment has been carried out on Monday, 17th May 2021 between 1 pm and 5
pm, the second appointment took place on Thursday, 20th May 2021 between the same
time as the first one. All 80 participants were officially invited to the experiment about
two months before the first appointment and had to sign up for their desired appointment.
In the end 78 of 80 signed up participants completed all tasks of the experiment. Due
to the COVID-19 pandemic, the Technical University Vienna fully switched to distance
learning for the summer semester of 2021 and therefore the experiment could not be
executed on site but had to be held remotely with the help of online meeting applications.
Since the MDRE approach is especially suitable for situations in which people do not
work on-site the experiment was never influenced negatively. The operation phase of the
experiment is split into three individual sections:

Preparation:

At the start of the experiment, all participants were advised to join a Zoom2 online
meeting session. The participants needed to keep connected to the online meeting session
for the whole duration of the experiment. This online meeting session utilized different
meeting rooms. The first room was the main room for communication between the
experiment managers and the participants. For the second room, a breakout session
was used which the participants could join independently. Within this breakout session,
there was the possibility to ask questions to the experiment managers in case there were
any problems. Questions in the main room with all participants connected to it would
disturb the attention and could interfere with the results of the experiment negatively.
Therefore, using a separate room for questions is of importance for the success of the
experiment.

2Zoom: www.zoom.us/ (last visited 30.09.2021)

97

www.zoom.us/

6. Empirical Evaluation (RQ3)

During the preparation for the experiment, the most important details about the experi-
ment were explained to the participants. The experiment managers presented the study
design and the main goals of this experiment. In the second step, the new and advanced
MDRE approach was explained to the participants. The majority of all participants
have never worked with the MDRE before and therefore the MDRE was covered within
the experiment tutorial. Furthermore, the participants had the chance to ask questions
during and after the tutorial. The preparation for this experiment took about 60 minutes
in total. After a short break of about 15 minutes, the participants started with the
execution of the experiment and began solving their tasks.

Execution:

In the first step for the execution of this experiment all participants had to log into the
MDRE. Since the whole experiment administration is performed with the help of the
developed experimentation AddOn for the MDRE both groups (MDRE and pen-and-
paper-based review) had to use the MDRE from the beginning. The reason for this is
that the tasks for all participants are visible within the MDRE. Figure 6.2 shows the
task dashboard of all individual participants during the experiment.

This dashboard was already presented in detail within section 5.3. The participants can
see their progress within each task on the left side of the dashboard. After the login, all
participants can immediately see their tasks within this experiment. In the first task of
the experiment, the experience of the participants was collected. The resulting data is
needed for the evaluation of this experiment so that the participants can be classified
according to their experience. Therefore, an experience questionnaire was setup with the
help of Google Forms. The participants then had to answer this questionnaire before
they continued with any later tasks and the MDRE automatically collected the results of
the questionnaires and indicated if a questionnaire was answered. Within figure 6.3, the
Google Forms experience questionnaire is displayed.

In the next part of the experiment, the review of a UML state chart of a modeled ATM
had to be executed by the participants. The participants are split up into two different
groups as previously mentioned. Group A conducted the review of the ATM with the
advanced MDRE approach. Therefore, the model specifications and the experiment
guidelines were provided for this group as additional materials that should help the
participants to execute the review. Once the participants of group A downloaded all
materials as advised they could simply start the review process with one button click
from the experiment dashboard. Group A did not need any kind of spreadsheet for
reporting defects within it because the model review AddOn component enables the
support for reporting defects within the MDRE. Figure 6.4 shows the defect reporting
form of the MDRE which is an important component for the data collection within this
experiment. Within section 5.1.3, the process of reporting defects within the MDRE has
already been explained in detail.

Group B conducted the same review of the ATM model with the traditional pen-and-

98

6.1. Study Process

Figure 6.2: Experiment dashboard shows all tasks that need to be solved

paper-based review approach. For this review, the participants of this group needed
more materials than group A. In addition to the experiment guidelines and the model
specifications they also needed the model itself and a defect reporting spreadsheet. All
materials except the defect reporting sheet were delivered as simple PDF documents for
both groups. The defect reporting spreadsheet is the alternative solution for the defect
reporting form that is only available for reviews conducted within the MDRE. It is a
simple spreadsheet that is available as a Microsoft Excel file and is displayed within
figure 6.5. In general, this spreadsheet collects the same data that is also collected by
the MDRE defect reporting form.

The participants had about 60 minutes to conduct the review of the ATM within this
part of the experiment. At the end of this part, an individual feedback questionnaire had
to be answered by all participants via Google Forms. Additionally, materials like the
defect reporting spreadsheet, the annotated specification as well as the annotated model
were handed in. The form of the questionnaires was similar to the already explained
experience questionnaire that has been explained previously. For each of the two groups,

99

6. Empirical Evaluation (RQ3)

Figure 6.3: Google Forms experience questionnaire

an individual feedback questionnaire that focuses either on the MDRE approach or on
the pen-and-paper-based approach was provided.

After a break of about 15 minutes, the next part of the experiment started. Within
the next part of the experiment, another review had to be conducted. The scenario
within this part was a UML class diagram that represents the entities and relations of
a school management system. For the next part of the experiment, the groups were
switched to get representative results from the experiment. Therefore, in this part of
the experiment, group A reviewed the model of the school management system with the
traditional pen-and-paper-based review process similar to group B in the last part. For
this review analogical materials matching the new scenario were provided via the MDRE.
The participants solved their tasks after the same method as in the previous part. At
the end of this part, the individual feedback questionnaires were answered again by the
experiment participants of each group, and materials like the defect reporting sheet, the
annotated specification, as well as the annotated model were handed in.

100

6.1. Study Process

Figure 6.4: Defect reporting form in the MDRE

Figure 6.5: Spreadsheet for defect reporting for pen-and-paper-based reviews

101

6. Empirical Evaluation (RQ3)

Data collection & Cleanup:

During the whole experiment execution, important data was collected that can be
evaluated and turned into results of the study. In detail the following materials were
collected during the experiment:

• Defect reports/Defect reporting spreadsheet: As already explained all de-
fects were collected with the help of simple defect reports in the MDRE that were
persisted in the database for the groups that used the MDRE approach. For the
pen-and-paper-based traditional reviews, the defects were collected within a simple
spreadsheet that was uploaded by the participants at the end of the experiment.
The contents of a defect report have been explained within section 5.1.3.

• Annotated specification: The annotated specification is the specification docu-
ment that has been provided with additional annotations added by the participants.
This document is collected to motivate the participants to annotate their specifica-
tions to help them to ensure that they do not forget any details.

• Annotated model: Similar to the annotated specification the annotated model
is the model that has been provided via the MDRE or as a PDF document with
annotations added by the participants. The motivation behind the annotated model
is the same as with the annotated specification.

Based on the data collected within this experiment the results will be evaluated and
presented within section 6.2. At the end of the experiment, a short cleanup session was
performed. This session ensures that no participant leaves too early before all tasks
were solved and every material was handed in. This cleanup session is supported by the
MDRE experimentation AddOn and provides the experiment managers a live overview of
the current state of all tasks. Some tasks require the experiment managers to manually
tick certain tasks like the hand-in of files as there is no API available that can be used by
the MDRE. Other tasks like reviews and Google Form questionnaires are automatically
checked by the MDRE and do not require any manual work performed by the experiment
managers. The main overview that is provided by the MDRE is called the submission
table that was already explained within section 5.3. Within it, the current state of every
task of every participant can be checked and altered manually if required.

Figure 6.6 shows the submission table as it was displayed in the early phases of the
experiment. It can be seen that at this time the participants of this group already had
some progress except one participant that did not attend the experiment in the end. As
it can be seen the experiment managers have a good overview of all participants that is
updated live and therefore helpful for administrating the experiment. In the second figure
6.7, a later state of the experiment is shown in which one participant already finished
the experiment and some others also were close to completing the experiment. This view
is also a good indicator for the experiment managers to find out early if a participant
forgot to complete some task.

102

6.1. Study Process

Figure 6.6: Early state of the submission table for experiment managers

Figure 6.7: Later state of the submission table for experiment managers

103

6. Empirical Evaluation (RQ3)

With the help of the new experiment administration AddOn in the MDRE, it was possible
to conduct the whole experiment with less time and resource effort in the administration
than in previous experiments. Therefore, the experiment administration proofed its
reliableness as there were no problems or errors encountered during the whole experiment.
This component also helped us saving time for the participants as the cleanup session
was finished in less than 30 minutes and all participants had left the experiment by that
time. In previous experiments, the cleanup session took significantly longer because every
submission including the Google Forms spreadsheets had to be manually checked by
hand and entered into a spreadsheet solution. The experiment administration AddOn
automates most of these manual procedures and provides a clean and easy overview in
which submissions can be altered manually if required.

6.1.4 Experiment phase - Analysis and Interpretation (E4)

After the experiment operation, a quality check of the collected data was performed
and the completeness of the data was assured. This step has been supported by the
experimentation AddOn of the MDRE. The analysis and interpretation of the within
this experiment collected data and results are performed after the quality check.

The evaluation of the data is performed with the help of different tools. After the
experiment is completed, one experiment manager manually maps all reported defects
to the defect list of each model in case of a true defect. The experiment management
team performs a quality check of the mapped results. Then the data is collected within
Microsoft Excel. This data includes the reported defects, true defects, start and end time
of all reviews performed by every participant of the experiment. With Microsoft Excel,
the effort, efficiency, and effectiveness of the participants within each experiment part
are calculated. For the data of every review type, the minimum, maximum, mean, and
standard deviation are calculated per experiment part. This data can then be used to
compare the different review types with each other.

To test if some of the results are statistically significant the single-sided Mann-Whitney
test at a significance level of 95% is used on all results. In case there is any significance
in the results the respective null hypothesis can be rejected. In the last step, all collected
and calculated data is then exported and imported into R3, a software environment for
statistical computation and graphics. In R for all individual data categories, a box plot
is generated and exported as an image.

We will present the evaluation of all data and results within section 6.2. In detail, we
especially interpret and analyze the collected results based on the dependent variables
which are effort, efficiency, effectiveness, reported defects, and false-positives.

3R-Project: www.r-project.org (last visited 30.09.2021)

104

www.r-project.org

6.2. Results

6.1.5 Experiment phase - Presentation and Package (E5)
The experiment and the analyzed results are packaged and presented within this work. In
this chapter, we already presented the study design in detail and explained all information
needed to reproduce this experiment. Within section 6.2, we analyze and interpret the
collected data and results. Furthermore, the results of the analysis are presented in detail.
In the chapters 7 and 8, we discuss and conclude the results from this experiment and we
present possible future works that arise from limitations that were discovered during this
experiment. A few days after the experiment all participants received feedback telling
them the percentage of true defects they found and how their performance within the
experiment was compared to the mean of all other participants.

6.2 Results
In this section, we analyze and interpret the results that were collected during the
experiment which we conducted to evaluate the outcomes of this work. During the
individual parts of the experiment, two different models are used. Therefore, the two
parts of the experiment are considered independently of each other. For the statistical
evaluation, the single-sided Mann-Whitney test at a significance level of 95% is used.

Effort

The defect detection phase of each part of the experiment is scheduled for up to 60
minutes that the participants can use. All participants had to report their start and end
time for the defect detection in each part. While time data has been collected manually
for the groups that used the traditional pen-and-paper-based review strategy, the MDRE
collected the data automatically without any input needed from the participants. For
the evaluation of the effort of this experiment, the reported start and end times are
used to calculate the total amount of minutes that the participants have worked on
each part of the experiment. The average duration for the review process of the first
part in which the modeled ATM state chart was reviewed is 48.5 min (SD: 7.60) for the
MDRE and 50.6 min (SD: 8.92) for the traditional pen-and-paper inspection method.
In the second part in which the school management class diagram was inspected the
average review duration is 45.2 min (SD: 9.33) for the MDRE and 45.1 min (SD: 9.97)
for the traditional inspection. The evaluation of the experiment effort does not show
any significant differences. In part 1 the MDRE delivers a slightly better result than the
traditional inspection, however, we could not confirm this result in part 2. Table 6.3 and
the box plot displayed in figure 6.8 summarize the results of the evaluation of the effort
that participants have put into solving the tasks of this experiment. The Mann-Whitney
test at a significance level of 95% (single-sided) results in the p-value of 0.1325 (-) for
part 1 and 0.485 (-) for part 2. Therefore, there are also no significant differences shown
by this test.

105

6. Empirical Evaluation (RQ3)

Min Mean SD Max p-value
MDRE 26,5 48,5 7,60 59,6

Pen and Paper 32,0 50,7 8,92 60,0
MDRE 24,6 45,2 9,33 60,0

Pen and Paper 27,0 45,1 9,97 60,0

Part 1
(ATM) 0,1325 (-)

Part 2
(School Management) 0,4850 (-)

Effort [minutes]

Table 6.3: Effort of the defect detection [minutes] (MDRE effort automatically captured
by the tool support component)

Figure 6.8: Effort of the defect detection [minutes]

Reported Defects

At the end of the experiment, all reported defects of each group and experiment part
were collected. The mean values of the number of reported defects for part 1 are 18.7
(SD: 5.28) for the MDRE and 18.0 (SD: 5.66) within the traditional inspection. For
part 2 the mean values are 23.7 (SD: 5.57) for the MDRE and 23.7 (SD: 4.20) for the
pen-and-paper-based inspection process. Within the first part, there are slightly more
defects reported for the MDRE and vice versa for the second part of the experiment.
Therefore, there are no significant differences in defect reporting numbers between these
two methods. Table 6.4 and the box plot displayed in figure 6.9 summarize the results of
the evaluation of the number of reported defects within the two parts of the experiment.
Furthermore, applying the Mann-Whitney Test at a significance level of 95% (single-sided)
results in the p-value of 0.2623 (-) for part 1 and a p-value of 0.4608 (-) for part 2. This
shows that there are also no significant differences measured by this test.

106

6.2. Results

Min Mean SD Max
MDRE 4 18,7 5,28 28

Pen and Paper 4 18,0 5,66 29
MDRE 10 23,7 5,57 35

Pen and Paper 10 23,7 4,20 30

Number of Reported Defects
Part 1
(ATM)
Part 2

(School Management)

Table 6.4: Reported defects within the experiment

Figure 6.9: Reported defects within the experiment

True Defects

The participants inspected two different models during the controlled experiment. In
each of the models, a bunch of defects was added by the experiment managers. To elicit
the number of true defects out of the total number of reported defects all reports have
been verified and mapped to the list of defects for each model in case of a true defect.
The result from this step is the amount of reported true defects of each participant. The
mean values of the number of true defects reported for part 1 are 18.2 (SD: 5.17) for the
MDRE and 17.3 (SD: 5.43) for the traditional pen-and-paper-based inspection process.
For part 2 the mean values are 21.6 (SD: 4.15) for the MDRE and 22.3 (SD: 3.69) for
the pen-and-paper-based review approach. Again, the MDRE provides slightly better
results than the pen-and-paper-based review approach in part 1 and vice versa in part
2. Therefore, there is no significant difference between these two approaches. Table 6.5
and the box plot displayed in figure 6.10 summarize the results of the evaluation of the

107

6. Empirical Evaluation (RQ3)

number of true defects reported within the two parts of the experiment. Furthermore,
applying the Mann-Whitney Test at a significance level of 95% (single-sided) results in
the p-value of 0.1839 (-) for part 1 and a p-value of 0.1533 (-) for part 2. This means
that also this statistical test does not show any noticeable differences between the two
methods.

Min Mean SD Max
MDRE 2 18,2 5,17 26

Pen and Paper 4 17,3 5,43 25
MDRE 10 21,6 4,15 27

Pen and Paper 9 22,3 3,69 26
Part 2

(School Management)

Number of True Defects
Part 1
(ATM)

Table 6.5: True defects reported during the experiment

Figure 6.10: True defects reported during the experiment

108

6.2. Results

Effectiveness

The effectiveness of an experiment group that is either using the MDRE or pen-and-
paper-based approach is determined by the percentage of true defects found from the
total amount of defects per model. In part 1 the mean of the effectiveness is 65.1%
(SD: 18.45) for the MDRE and 61.6% (SD: 19.39) for the pen-and-paper-based review
process. For part 2 the mean values of the effectiveness are 77.0% (SD: 14.82) for the
MDRE and 79.7% (SD: 13.19) for the traditional review approach. Therefore, the MDRE
also shows better results in comparison within this category during part 1 and slightly
worse results in part 2. The evaluation can not show any significant differences between
both approaches. Additionally, the Mann-Whitney Test at a significance level of 95%
(single-sided) results in the p-value 0.158 (-) for part 1 and 0.2102 (-) for part 2 and
therefore also can not show any significant difference. This means that the hypothesis
H1.0 (similar defect detection effectiveness), which is defined in section 6.1, cannot be
rejected. Table 6.6 and the box plot displayed in figure 6.11 summarize the results of the
evaluation of the effectiveness of the experiment.

Min Mean SD Max
MDRE 7,1 65,1 18,45 92,9

Pen and Paper 14,3 61,6 19,39 89,3
MDRE 35,7 77,0 14,82 96,4

Pen and Paper 32,1 79,7 13,19 92,9

Effectiveness in %

Part 2
(School Management)

Part 1
(ATM)

Table 6.6: Effectiveness of the experiment [%]

Figure 6.11: Effectiveness of the experiment [%]

109

6. Empirical Evaluation (RQ3)

Efficiency

The efficiency of a review type is evaluated by the reported number of true defects per
time interval (e.g. reported true defects per hour). The mean values of the efficiency
for part 1 of this experiment are 22.8 defects per hour (dph) (SD: 7.09) for the MDRE
and 21.5 dph (SD: 8.30) for the traditional pen-and-paper-based review process. In part
2 the mean values are 30.0 dph (SD: 9.17) for the MDRE and 31.4 dph (SD: 9.61) for
the pen-and-paper-based approach. In both parts, the MDRE approach has slightly
less efficiency but the differences are so small that they do not seem to be significant.
Furthermore, applying the Mann-Whitney Test at a significance level of 95% (single-sided)
resulted in a p-value of 0.2112 (-) for part 1 and a p-value of 0.2772 (-) for part 2. This
means that also this statistical test does not show any noticeable differences between the
two methods. Therefore, also the hypothesis H2.0 (similar defect detection efficiency),
which is defined in section 6.1, cannot be rejected. Table 6.7 and the box plot displayed
in figure 6.12 summarize the results of the efficiency evaluation of the inspection types
used in this experiment.

Min Mean SD Max p-value
MDRE 4,5 22,8 7,09 38,4

Pen and Paper 4,0 21,5 8,30 36,0
MDRE 12,6 30,0 9,17 58,6

Pen and Paper 9,8 31,4 9,61 55,6

Efficiency [defects per hour]
Part 1
(ATM) 0,2112 (-)

Part 2
(School Management) 0,2772 (-)

Table 6.7: Efficiency of the experiment [defects per hour]

Figure 6.12: Efficiency of the experiment [defects per hour]

110

6.2. Results

False-positives

With the same method as for the evaluation of the number of true defects reported by
the participants also the number of false-positives reported can be evaluated. The mean
values of the amount of false-positive defects reported within part 1 are 1.7% (SD: 3.12)
for the MDRE and 2.6% (SD: 3.79) for the pen-and-paper-based inspection. For part
2 the mean values are 7.5% (SD: 10.90) for the MDRE and 5.1% (SD: 6.61) for the
traditional inspection approach. Therefore, the MDRE again shows better results in part
1 and slightly worse in part 2 compared to the pen-and-paper-based inspection. Table 6.8
and the box plot displayed in figure 6.13 summarize the results of the evaluation of the
number of false-positive defects reported within the two parts of the experiment. In the
box plot, the MDRE shows some bigger statistical outliers in part 2, this could be related
to the simplified process for reporting defects compared to the pen-and-paper-based
approach. Some participants using the MDRE approach seem to report more defects of
which they are unsure if they are true defects in comparison. However, this fact does not
need to be negative, because reporting a potential defect that is a false-positive is better
than not reporting a defect that turns out to be a true defect. Furthermore, applying the
Mann-Whitney Test at a significance level of 95% (single-sided) results in the p-value
of 0.1232 (-) for part 1 and a p-value of 0.0603 (-) for part 2. This means that also
this statistical test does not show any noticeable differences between the two methods.
Therefore, the hypothesis H3.0 (similar false-positive detection rates), which is defined
in section 6.1, cannot be rejected.

Min Mean SD Max
MDRE 0 1,7 3,12 14,3

Pen and Paper 0 2,6 3,79 17,9
MDRE 0 7,5 10,90 42,9

Pen and Paper 0 5,1 6,61 21,4

False Positives in %
Part 1
(ATM)
Part 2

(School Management)

Table 6.8: False-positive reports [%]

111

6. Empirical Evaluation (RQ3)

Figure 6.13: False-positive reports [%]

112

CHAPTER 7
Discussion & Limitation

In this chapter, we discuss the individual results that have been collected and analyzed
during the controlled experiment that has been executed. Therefore, every research
question is discussed separately during this chapter. Furthermore, the limitations of our
work are presented and explained.

7.1 Discussion
During our study, we focused on advancing the currently limited tool support for model
reviews, as well as for review and experimentation administration. We used the MDRE in
its initial state and extended it with two tool support prototypes. Therefore, we defined
and answered the following three research questions within our study:

7.1.1 Prototype for tool-supported model reviewing (RQ1)
Missing tool support made performing reviews time-consuming and generates a lot of
administrative overhead. The MDRE provided only basic review capabilities in its initial
state. For example, defects had to be reported in the comments section of a review.
However, the comment section does not provide the possibility to structure defect reports
within it and there is also no way to link a defect report to its location in the model.
Another way of reporting reviews with the MDRE would have been a spreadsheet that is
filled out using a third-party tool. This solution comes with other pitfalls like increased
management effort that is needed for collecting and evaluating all spreadsheets that are
handed in. Therefore, we defined the research question:

RQ1: How can model reviews be supported with the help of a model review
tool support component?
To solve this research question we implemented a new prototype component for the
MDRE that acts as an AddOn and provides improved model review functionalities. With

113

7. Discussion & Limitation

the help of this component, it is possible to mark the area in which a potential defect is
found and to report this area with all details in a unified form. This reduces the overhead
in defect reporting and makes it easier for the review managers to process the reported
defects. The implemented component is described in detail within section 5.1.3.

The results that have been evaluated within section 6.2 have shown that the implemented
tool support component support reviews well. According to the calculated efficiency and
effectiveness values, there is no significant difference in using the MDRE compared to
the pen-and-paper-based traditional review process. This means that we could confirm
the expected results and improve the review capabilities of the MDRE.

7.1.2 Review and Experimentation Process Support (RQ2)

Planning, executing, and administrating reviews and experiments can be laborious with
only limited tool support available that could support this process. Our use case that has
been defined in chapter 1 is an experiment that compares two different review methods
with each other. In this use case, not just the experiment itself must be supported with
tool support but also support for conducting reviews must be provided. Therefore, it
was one of the main goals of our study to implement and link experiment and review
administration together. The initial state of the MDRE did not provide any tool support
for experiment administration at all, therefore we defined the research question:

RQ2: How can the administration of reviews and experiments be supported
with the help of a tool support component?

To solve this research question we implemented a new prototype component for the MDRE
that acts as an AddOn and provides extended support for review and experimentation
administration. The component is also connected to the AddOn that was implemented
to solve RQ1 and therefore interacts well with the model review tool support. With this
new component, the MDRE provides the possibility of creating different tasks and assign
them to groups of experiment participants, as well as monitor their progress for each task.
This experiment administration AddOn has been explained in detail within section 5.3.

The experiment that has been conducted as a part of the evaluation is described in
section 6.1. For this study, the experimentation administration component of the MDRE
was used to compare two different review methods with each other. The experiment was
a success and all required data could be collected, therefore the AddOn that has been
implemented to solve this research question worked well, and also the interaction with
the component developed to solve RQ1 worked flawlessly. Especially, the submission
table that made it possible to view the state of every participant live was a big advantage
along with the support to collect certain submissions (e.g. Google Forms questionnaires)
automatically. Winkler et. al. in [77] executed a similar experiment with the MDRE
previously to our study and the comparison shows that also the time that is needed for
the experiment preparation and the data collection at the end is reduced.

114

7.2. Limitations

7.1.3 Benefits and limitations of MDRE (RQ3)
It is important to evaluate the benefits and limitations of the implemented tool support.
This is especially useful for practitioners who want to introduce the solutions of this
study within their industrial use cases. On the other hand, also scientific researchers
need the evaluation in case they want to use or extend our work within their research.
Therefore, we defined the research question:

RQ3: To what extent are the model review and experiment administration
processes improved by the two implemented tool support prototypes?

This evaluation was done with the help of the controlled experiment that has been
executed within our study and is presented in chapter 6. Our evaluation shows that with
the help of the new tool support components the MDRE is now almost equal in terms
of effort, efficiency, and effectiveness compared to the traditional pen-and-paper-based
approach. In some categories, the MDRE even shows slightly better results in comparison.
To evaluate the performance of the advanced MDRE compared to the pen-and-paper-
based traditional approach during the controlled experiment we defined three hypotheses.
Within these hypotheses the performance measures of the defect detection effectiveness
(H1.0), efficiency (H2.0), and the number of false-positive defects reported (H3.0) are
used. During the evaluation of the results from the executed experiment, neither of the
three hypotheses could be rejected because we could not find any significant differences
between the two approaches. This means that the main goal of our research has been
reached and therefore the MDRE can now be used in practice without any disadvantages
over the traditional inspection process.

7.2 Limitations
It is important to point out that there are different limitations within our study. During
our research we identified the following threats to validity:

Internal validity threats are negative influences that can affect the causality of independent
variables. [78] These threats can affect the conclusion about a possible relationship
between treatment and outcome. [78] In our research, we used experiment scenarios that
are modeled as UML statecharts and UML class diagrams. The experiment results could
be different in case there are other models used that are for example more advanced
and therefore harder to review for the participants of the experiment. Another internal
validity threat of our experiment is the number of defects that have been added to each
model by the experiment managers. There was a sum of 56 different defects added into
the two models that were reviewed during the experiment. However, there is no guarantee
that there are no further defects hidden in the models that have been overlooked by the
experiment managers.

External validity threats are conditions that limit the generalization of our experiment
results in industrial practice. [78] Our research was conducted with the help of novice users
who are all students of a Software Quality Assurance course at the Technical University

115

7. Discussion & Limitation

Vienna. Therefore, our research results can be different in case the experiment is repeated
with domain experts. In general, we are aware of the problems that experiments conducted
with students can have. [78] Another possible limitation is the scenarios we used because
our participants only consisting out of novice users. The models only consisted out of
well-known and simple scenarios like the ATM and the school management in which
every user has a good domain experience. Using special industrial scenarios for which
the participants do not have any domain experience can affect our results negatively.

Conclusion validity threats affect the ability to draw the correct conclusion about relations
that are observed between the treatment and the outcome of an experiment. [78] The
previously mentioned external validity threat about using only students within an
experiment can also become a conclusion validity threat. In general, the participants
in an experiment should be homogeneous to avoid any random variations because of
individual differences. However, students at universities even if picked from the same
course can be heterogeneous as there is a variation in students. Some students could
already be older or they are just working harder than others and therefore have more
experience. This means that even using students from another course could affect our
results and is, therefore, a threat to the validity.

Construct validity threats are concerns in which the results of the experiment cannot be
generalized to the concept or theory behind the experiment. [78] A potential threat to the
validity of our results can be that we executed the experiment in a laboratory environment
where all variables have been controlled by the experiment managers. The environment
in which we executed our experiment cannot be generalized to other environments.
Therefore, if this experiment is repeated in a real industrial environment the results could
differ from our observations and evaluations.

116

CHAPTER 8
Conclusion & Future Work

In this chapter, we conclude our work and present the solutions that were achieved
within our study. Therefore, we explain our aims again and explain how the developed
solutions fulfill the expected results. Furthermore, we present some tasks that could not
be implemented within this thesis and can therefore be the base for possible future works.

8.1 Conclusion
The main goal of our research was the improvement of the only limited tool support
that was available for reviewing models and administrating reviews and experiments.
During our research, we used and advanced the MDRE that had only limited review and
administration capabilities in its initial state. To solve our research questions, we aimed
for an improvement of the MDRE with the development of two tool support prototypes
that were implemented as AddOns into the MDRE. These additional components have the
task to provide extended capabilities for model reviews and support the administration
of experiments and reviews within the MDRE. The second part of our main goal was
the evaluation of the two tool support components that have been added. An evaluation
is an important part of our research as it is necessary to prove and validate our results.
Evaluated results are important for stakeholders from an industrial area. In case they
want to adopt the MDRE within their industrial use cases they need to know the benefits
and limitations of the MDRE. But also scientific researchers require a detailed evaluation
in case they want to use or extend our research within their studies.

The first component that has been implemented into the MDRE provides additional tool
support for model reviews within the MDRE. Before our research started, the initial
state of the MDRE did not support defect reporting in a standardized format. Therefore,
defects in models had to be reported in plain text with the review comment section of
the MDRE, or a third-party application that generates a spreadsheet had to be used.
Previously to our work, it was difficult for the review managers to collect all reported

117

8. Conclusion & Future Work

defects within the MDRE and convert them into one single destination format. This task
also needed a lot of resources and so the main motivation of our study was to reduce
the overhead of model reviewing. With the help of the tool support AddOn for model
reviewing it is now possible to report defects in a standardized format within the MDRE
by simply drawing a rectangle around the area that contains the defect and add the
details to it.
The second component that has been implemented into the MDRE provides extended
capabilities for supporting the administration of reviews and experiments. Managing
an experiment is a time-consuming task that contains a lot of different steps which
need to be executed. Therefore, with the only limited tool support that was available
when we started our research the administration of an experiment contained a lot of
overhead. With the new tool support component that has been added to MDRE, it is
now possible to administrate experiments and reviews faster than before. Especially, the
preparation phase before the experiment and the data collection after the experiment
can be performed faster and with fewer resources than without tool support. Another
important improvement could be achieved in the experiment monitoring. As both
implemented components were designed to interact with each other the experiment
managers now have the possibility of a live overview that shows the progress of all
participants within each task they have to perform.
The expected result of our research is that the MDRE should be advanced so its efficiency
and effectiveness when reviewing models are similar to the traditional pen-and-paper-
based approach. Within the controlled experiment that was planned and executed to
evaluate our research results the effort, efficiency, effectiveness, and the number of true
defects found of the MDRE and the pen-and-paper-based approach were collected. The
evaluation has proven that with the help of the new prototype components that were
implemented into the MDRE all categories for which data was collected do not show
any significant differences between the two methods. This means that we achieved the
expected results and improved the MDRE to a state in which it is equal to the traditional
inspection approach.
Furthermore, we also collected feedback from the experiment participants. Within this
feedback, we asked about the experience that the participants had while using the
MDRE. Especially, different usability questions are in the central point of focus for this
questionnaire. The results of the feedback are displayed in table 8.1 and within the bar
chart that is displayed in figure 8.1.
We asked all participants the questions if they needed to learn a lot before using the
MDRE, if the MDRE is self-explanatory, if the MDRE is easy to use, and if they would
like to use the MDRE in the future again. The results of the feedback show positive
results. About 91% of all participants disagreed or strongly disagreed that they needed
to learn a lot before they could use the MDRE. Furthermore, 89% of the participants
from our experiment agree or strongly agree that the MDRE is self-explanatory. That the
MDRE is easy to use is agreed or strongly agreed by 60% of all experiment participants.
About 41% of all participants agree or strongly agree to use the MDRE in the future.

118

8.2. Future Work

No. % No. % No. % No. %
Strong Disagree 45 58% 0 0% 3 4% 9 12%

Disagree 26 33% 3 4% 12 15% 10 13%
Neutral 5 6% 6 8% 16 21% 27 35%

Agree 2 3% 13 17% 33 42% 26 33%
Strong Agree 0 0% 56 72% 14 18% 6 8%

Total 78 100% 78 100% 78 100% 78 100%

Feedback
Need to Learn

beforehand
MDRE is

self-explain.
MDRE is

easy to use
Use MDRE

in the future

Table 8.1: MDRE Feedback from experiment participants

Figure 8.1: MDRE Feedback from experiment participants

However, this is the only category in which there is no clear majority visible in the results.
The biggest group that is about 35% answers neutrally to the question if they would like
to use the MDRE in the future. In summary, the feedback provided by the experiment
participants was overall positive.

8.2 Future Work

Within our research there exist multiple topics that could not be worked on during our
study. Therefore, in this section, we present different tasks and topics that can be the
basis for possible future works as they would advance the research field further.

The first example for a possible future work is that currently only the area in which a
defect is in can be marked within a review in the MDRE. There is no possibility to mark
an element itself within a defect report. The highlighting of an area is a solution that is
practical but not ideal.

119

8. Conclusion & Future Work

Another example is the environment in which our controlled experiment was executed.
We experimented within a laboratory environment where all parameters have been
controlled by the experiment managers. Furthermore, only 78 participants attended and
small models were reviewed during the experiment. In a possible future work, scientists
could execute the experiment in an industrial environment with larger models and more
participants to verify the functionality of the MDRE in different and larger environments.

Furthermore, the MDRE currently does not support any kind of team reviews, this means
that all reviewers only can work on their own at the moment. Due to the COVID-19
pandemic many people are working remotely nowadays and will continue to work from
home in the future. Therefore, performing team reviews could become an important
requirement for the MDRE in the future.

120

List of Figures

1.1 Reviewing and empirical study process challenges 4
1.2 Overview of the work packages of the solution approach 6

2.1 Steps in the SDLC [63] . 10
2.2 Phases of the Waterfall Model [6] . 12
2.3 Phases of the Spiral Model [58] . 13
2.4 Phases of the Scrum Model [60] . 15
2.5 Dimensions and sub-dimensions of software inspections [38] 22
2.6 Code review in Review Board . 26
2.7 Code review in Gerrit . 28
2.8 Code review in Atlassian Crucible . 29
2.9 Pull requests in GitHub . 31

3.1 Phases of an experiment [78] . 40

4.1 Design science research cycles [23] . 46

5.1 Architecture of the MDRE . 54
5.2 Simplified class diagram of the initial MDRE 58
5.3 Overview of projects . 59
5.4 Audit Logging . 60
5.5 List of model configurations . 61
5.6 Model design view . 61
5.7 List of review assignments . 62
5.8 Model review view [77] . 63
5.9 MDRE Review execution flow chart . 66
5.10 Class diagram MDRE - model review AddOn 66
5.11 Review view of the MDRE . 67
5.12 Highlighting a defect within the review view of the MDRE 68
5.13 Defect reporting form . 70
5.14 Defect reporting form with example input 70
5.15 List of reported defects and review finalization 71
5.16 Dialog to save and close a review . 72
5.17 Rejected review in the review assignment overview 73
5.18 MDRE Review execution flow chart . 75

121

5.19 Class diagram MDRE - experiment and review administration AddOn . . 76
5.20 Form to add an experiment . 78
5.21 Overview of all experiments . 79
5.22 Experiment participants overview . 80
5.23 Form to add a normal task in an experiment 82
5.24 Form to add a review task in an experiment 83
5.25 Form to add a Google Forms task in an experiment 84
5.26 Overview of all tasks in an experiment . 84
5.27 Adding / editing of a submission . 85
5.28 Overview of all submissions in a task . 86
5.29 Table of submissions within an experiment 87
5.30 Manual submission control within the submission table 87
5.31 Table of submissions with advanced progress 88
5.32 Task overview (dashboard) for all participants of an experiment 89

6.1 Overview of the experiment design in cross-over design 94
6.2 Experiment dashboard shows all tasks that need to be solved 99
6.3 Google Forms experience questionnaire . 100
6.4 Defect reporting form in the MDRE . 101
6.5 Spreadsheet for defect reporting for pen-and-paper-based reviews 101
6.6 Early state of the submission table for experiment managers 103
6.7 Later state of the submission table for experiment managers 103
6.8 Effort of the defect detection [minutes] . 106
6.9 Reported defects within the experiment 107
6.10 True defects reported during the experiment 108
6.11 Effectiveness of the experiment [%] . 109
6.12 Efficiency of the experiment [defects per hour] 110
6.13 False-positive reports [%] . 112

8.1 MDRE Feedback from experiment participants 119

122

List of Tables

2.1 Comparison of advantages and disadvantages of the inspection tools . . . 32

5.1 Comparison of the MDRE with well-known software inspection tools 51
5.2 Features of the MDRE in its initial state [56] 53
5.3 Feature level comparison of the MDRE (after model review AddOn) . . . 65
5.4 Feature level comparison of the MDRE (after experimentation AddOn) . 77

6.1 Experience levels of the participants . 95
6.2 Distribution of seeded defects and defect types within the models 96
6.3 Effort of the defect detection . 106
6.4 Reported defects within the experiment 107
6.5 True defects reported during the experiment 108
6.6 Effectiveness of the experiment [%] . 109
6.7 Efficiency of the experiment [defects per hour] 110
6.8 False-positive reports [%] . 111

8.1 MDRE Feedback from experiment participants 119

123

Bibliography

[1] C. Anderson. Docker [software engineering]. IEEE Software, 32(3):102–c3, 2015.
doi:10.1109/MS.2015.62.

[2] C. Atkinson and T. Kuhne. Model-driven development: a metamodeling foundation.
IEEE Software, 20(5):36–41, 2003. doi:10.1109/MS.2003.1231149.

[3] K. Banker, P. Bakkum, and T. Hawkins. MongoDB in Action. Manning Publications,
2016.

[4] V. R. Basili. The role of experimentation in software engineering: past, current,
and future. In Proceedings of IEEE 18th International Conference on Software
Engineering, pages 442–449, 1996. doi:10.1109/ICSE.1996.493439.

[5] V. R. Basili, R. W. Selby, and D. H. Hutchens. Experimentation in software
engineering. IEEE Transactions on Software Engineering, SE-12(7):733–743, 1986.
doi:10.1109/TSE.1986.6312975.

[6] Y. Bassil. A simulation model for the waterfall software development life cy-
cle. CoRR, abs/1205.6904, 2012. URL: http://arxiv.org/abs/1205.6904,
arXiv:1205.6904.

[7] J. Bézivin. Model Driven Engineering: An Emerging Technical Space, pages 36–64.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2006. doi:10.1007/11877028_2.

[8] A. Bosu and J. C. Carver. Peer code review in open source communitiesusing
reviewboard. In Proceedings of the ACM 4th Annual Workshop on Evaluation and
Usability of Programming Languages and Tools, PLATEAU ’12, page 17–24, New
York, NY, USA, 2012. Association for Computing Machinery. doi:10.1145/
2414721.2414726.

[9] M. Brambilla, J. Cabot, and M. Wimmer. Model-Driven Software Engineering in
Practice. Morgan & Claypool, 2012.

[10] A. W. Brown, J. Conallen, and D. Tropeano. Introduction: Models, Modeling, and
Model-Driven Architecture (MDA), pages 1–16. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2005. doi:10.1007/3-540-28554-7_1.

125

https://doi.org/10.1109/MS.2015.62
https://doi.org/10.1109/MS.2003.1231149
https://doi.org/10.1109/ICSE.1996.493439
https://doi.org/10.1109/TSE.1986.6312975
http://arxiv.org/abs/1205.6904
http://arxiv.org/abs/1205.6904
https://doi.org/10.1007/11877028_2
https://doi.org/10.1145/2414721.2414726
https://doi.org/10.1145/2414721.2414726
https://doi.org/10.1007/3-540-28554-7_1

[11] F. J. Buckley and R. Poston. Software quality assurance. IEEE Transactions on
Software Engineering, SE-10(1):36–41, 1984. doi:10.1109/TSE.1984.5010196.

[12] M. Butcher. Mastering OpenLDAP: Configuring, Securing and Integrating Directory
Services. Packt Publishing, 2007.

[13] M. Chemuturi. Mastering Software Quality Assurance: Best Practices, Tools and
Techniques for Software Developers. J. Ross Publishing, Inc., 2010.

[14] B. Curtis. Measurement and experimentation in software engineering. Proceedings
of the IEEE, 68(9):1144–1157, 1980. doi:10.1109/PROC.1980.11813.

[15] A. Davis, E. Bersoff, and E. Comer. A strategy for comparing alternative software
development life cycle models. IEEE Trans. Software Eng., 14:1453–1461, 1988.

[16] M. Dawson, D. Burrell, E. Rahim, and S. Brewster. Integrating software assurance
into the software development life cycle (sdlc). Journal of Information Systems
Technology and Planning, 3:49–53, 01 2010.

[17] A. Dresch, D. P. Lacerda, and J. A. V. Antunes. Design Science Research. 2014.
doi:10.1007/978-3-319-07374-3.

[18] E. Engström, M. Storey, P. Runeson, M. Höst, and M. Baldassarre. How software
engineering research aligns with design science: a review. Empirical Software
Engineering, 25, 07 2020. doi:10.1007/s10664-020-09818-7.

[19] R. France and B. Rumpe. Model-driven development of complex software: A
research roadmap. In Future of Software Engineering (FOSE ’07), pages 37–54,
2007. doi:10.1109/FOSE.2007.14.

[20] J. E. Gaffney. Metrics in software quality assurance. In Proceedings of the ACM
’81 Conference, ACM 81, page 126–130, New York, NY, USA, 1981. Association for
Computing Machinery. doi:10.1145/800175.809854.

[21] D. Gaševic, D. Djuric, and V. Devedžic. Model Driven Engineering, pages 125–
155. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009. doi:10.1007/
978-3-642-00282-3_4.

[22] M. Halling, S. Biffl, T. Grechenig, and M. Kohle. Using reading techniques to focus
inspection performance. In Proceedings 27th EUROMICRO Conference. 2001: A
Net Odyssey, pages 248–257, 2001. doi:10.1109/EURMIC.2001.952461.

[23] A. Hevner and S. Chatterjee. Design Research in Information Systems: Theory and
Practice. Springer US, Boston, MA, 2010. doi:10.1007/978-1-4419-5653-8_
1.

[24] A. Hevner, S. T. March, J. Park, and S. Ram. Design science in information systems
research. Management Information Systems Quarterly, 28:75–, 03 2004.

126

https://doi.org/10.1109/TSE.1984.5010196
https://doi.org/10.1109/PROC.1980.11813
https://doi.org/10.1007/978-3-319-07374-3
https://doi.org/10.1007/s10664-020-09818-7
https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1145/800175.809854
https://doi.org/10.1007/978-3-642-00282-3_4
https://doi.org/10.1007/978-3-642-00282-3_4
https://doi.org/10.1109/EURMIC.2001.952461
https://doi.org/10.1007/978-1-4419-5653-8_1
https://doi.org/10.1007/978-1-4419-5653-8_1

[25] J. Hutchinson, M. Rouncefield, and J. Whittle. Model-driven engineering prac-
tices in industry. In Proceedings of the 33rd International Conference on Software
Engineering, ICSE ’11, page 633–642, New York, NY, USA, 2011. Association for
Computing Machinery. doi:10.1145/1985793.1985882.

[26] A. Jedlitschka, M. Ciolkowski, and D. Pfahl. Reporting Experiments in Software
Engineering, pages 201–228. Springer London, London, 2008. doi:10.1007/
978-1-84800-044-5_8.

[27] A. Jedlitschka, N. Juristo, and D. Rombach. Reporting experiments to satisfy
professionals’ information needs. Empirical Software Engineering, 19(6):1921–1955,
2014. doi:10.1007/s10664-013-9268-6.

[28] D. Jemerov and S. Isakova. Kotlin in Action. Manning Publications, New York,
2017.

[29] P. Johannesson and E. Perjons. An Introduction to Design Science. 07 2014.
doi:10.1007/978-3-319-10632-8.

[30] M. Jones, B. Campbell, and C. Mortimore. Json web token (jwt) pro-
file for oauth 2.0 client authentication and authorization grants. Available:
https://tools.ietf.org/html/rfc7523, 05 2015.

[31] S. Juba, A. Vannahme, and A. Volkov. Learning PostgreSQL. Packt Publishing, 11
2015.

[32] N. Juristo and A. M. Moreno. Basics of Software Engineering Experimentation.
Springer Publishing Company, Incorporated, 1st edition, 2010. doi:10.5555/
1965114.

[33] M. Kalinowski and G. H. Travassos. Ispis: A framework supporting software inspec-
tion processes. pages 392–393, 01 2004. doi:10.1109/ASE.2004.1342772.

[34] M. Kalinowski and G. H. Travassos. Ispis: From conception towards industry
readiness. In XXVI International Conference of the Chilean Society of Computer
Science (SCCC’07), pages 132–141, 2007. doi:10.1109/SCCC.2007.9.

[35] A. Kalyan, M. Chiam, J. Sun, and S. Manoharan. A collaborative code review
platform for github. pages 191–196, 11 2016. doi:10.1109/ICECCS.2016.032.

[36] H. Koziolek. The role of experimentation in software engineering. In Seminar
“Research Methods”, Summer Term. Citeseer, 2005.

[37] S. Kumar and P. Dubey. Software developmnt life cycle (sdlc) analytical comparison
and survey on traditional and agile methodology. Abhinav National Monthly Refereed
Journal of Research in Science and Technology, 2:22–30, 08 2013.

127

https://doi.org/10.1145/1985793.1985882
https://doi.org/10.1007/978-1-84800-044-5_8
https://doi.org/10.1007/978-1-84800-044-5_8
https://doi.org/10.1007/s10664-013-9268-6
https://doi.org/10.1007/978-3-319-10632-8
https://doi.org/10.5555/1965114
https://doi.org/10.5555/1965114
https://doi.org/10.1109/ASE.2004.1342772
https://doi.org/10.1109/SCCC.2007.9
https://doi.org/10.1109/ICECCS.2016.032

[38] O. Laitenberger. A survey of software inspection technologies. 08 2001. doi:
10.1142/9789812389701_0023.

[39] O. Laitenberger and J. DeBaud. Encompassing life cycle centric survey of software
inspection. Journal of Systems and Software, 50:5–31, 2000. doi:10.1016/
S0164-1212(99)00073-4.

[40] C. Laporte and A. April. Software Quality Assurance. 12 2017. doi:10.1002/
9781119312451.

[41] Y. Leau, W. K. Loo, W. Y. Tham, and S. F. Tan. Software development life cycle
agile vs traditional approaches. volume 37, 02 2012.

[42] A. Lucia, F. Ferrucci, and G. Tortora. Emerging Methods, Technologies and Process
Management in Software Engineering. 03 2008. doi:10.1002/9780470238103.

[43] S. March and V. Storey. Design science in the information systems discipline: An
introduction to the special issue on design science research. MIS Quarterly, 32, 12
2008. doi:10.2307/25148869.

[44] L. Milanesio. Learning Gerrit Code Review. Community experience distilled. Packt
Publishing, 2013.

[45] A. Mishra. A comparative study of different software development life cycle models in
different scenarios. International Journal of Advance Research in Computer Science
and Management Studies, 1:64–69, 10 2013.

[46] P. Mohagheghi and J. Aagedal. Evaluating quality in model-driven engineering.
In International Workshop on Modeling in Software Engineering (MISE’07: ICSE
Workshop 2007), pages 6–6, 2007. doi:10.1109/MISE.2007.6.

[47] S. Naik. Software Testing and Quality Assurance. John Wiley & Sons, Inc., Hoboken,
NJ, USA, 2007. doi:10.1002/9780470382844.

[48] N. Nurmuliani, D. Zowghi, and S. Powell. Analysis of requirements volatility during
software development life cycle. In 2004 Australian Software Engineering Conference.
Proceedings., pages 28–37, 2004. doi:10.1109/ASWEC.2004.1290455.

[49] D. L. Parnas and M. Lawford. The role of inspection in software quality assurance.
IEEE Transactions on Software Engineering, 29(8):674–676, 2003. doi:10.1109/
TSE.2003.1223642.

[50] O. Pastor, S. España, J. I. Panach, and N. Aquino. Model-driven devel-
opment. Informatik-Spektrum, 31(5):394–407, Oct 2008. doi:10.1007/
s00287-008-0275-8.

[51] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee. A design science
research methodology for information systems research. Journal of Management
Information Systems, 24(3):45–77, 2007. doi:10.2753/MIS0742-1222240302.

128

https://doi.org/10.1142/9789812389701_0023
https://doi.org/10.1142/9789812389701_0023
https://doi.org/10.1016/S0164-1212(99)00073-4
https://doi.org/10.1016/S0164-1212(99)00073-4
https://doi.org/10.1002/9781119312451
https://doi.org/10.1002/9781119312451
https://doi.org/10.1002/9780470238103
https://doi.org/10.2307/25148869
https://doi.org/10.1109/MISE.2007.6
https://doi.org/10.1002/9780470382844
https://doi.org/10.1109/ASWEC.2004.1290455
https://doi.org/10.1109/TSE.2003.1223642
https://doi.org/10.1109/TSE.2003.1223642
https://doi.org/10.1007/s00287-008-0275-8
https://doi.org/10.1007/s00287-008-0275-8
https://doi.org/10.2753/MIS0742-1222240302

[52] P. Permien. Distributed code-reviews using gerrit, 2012.

[53] S. L. Pfleeger. Experimental design and analysis in software engineering. Annals of
Software Engineering, 1(1):219–253, Dec 1995. doi:10.1007/BF02249052.

[54] S. L. Pfleeger. Experimentation in software engineering. Adv. Comput., 44:127–167,
1997.

[55] S. Prabaharan and T. Bhuvaneswari. A survey on software development life cycle
models. International Journal of Computer Science and Mobile Computing, 05 2013.

[56] A. Prock, C. Engelbrecht, Isikoglu M., C. Burger, and D. Kretz. Model design and
review editor: Featureliste. Technical report cdl-sqi 2021-12, TU Wien, Vienna,
Austria, September 2021.

[57] S. Rawat. Getting Started with Review Board. Packt Publishing, 2014.

[58] N. B. Ruparelia. Software development lifecycle models. SIGSOFT Softw. Eng.
Notes, 35(3):8–13, May 2010. doi:10.1145/1764810.1764814.

[59] M. Sabou, D. Winkler, and S. Biffl. Empirical Software Engineering Experimentation
with Human Computation, pages 173–215. Springer International Publishing, Cham,
2020. doi:10.1007/978-3-030-32489-6_7.

[60] C. Schmidt. Agile Software Development, pages 7–35. Springer International
Publishing, Cham, 2016. doi:10.1007/978-3-319-26057-0_2.

[61] B. Selic. The pragmatics of model-driven development. IEEE Software, 20(5):19–25,
2003. doi:10.1109/MS.2003.1231146.

[62] B. Selic. Model-driven development: its essence and opportunities. In Ninth IEEE
International Symposium on Object and Component-Oriented Real-Time Distributed
Computing (ISORC’06), page 7 pp., 2006. doi:10.1109/ISORC.2006.54.

[63] S. Shylesh. A study of software development life cycle process models. Social Science
Research Network, 2017. doi:10.2139/ssrn.2988291.

[64] D. I. K. Sjoeberg, J. E. Hannay, O. Hansen, V. B. Kampenes, A. Karahasanovic,
N.-K. Liborg, and A. C. Rekdal. A survey of controlled experiments in software
engineering. IEEE Transactions on Software Engineering, 31(9):733–753, 2005.
doi:10.1109/TSE.2005.97.

[65] D. Sjøberg, B. Anda, E. Arisholm, T. Dybå, M. Jørgensen, A. Karahasanovic,
E. Koren, and M. Vokác. Conducting realistic experiments in software engineering.
pages 17 – 26, 02 2002. doi:10.1109/ISESE.2002.1166921.

[66] K.-J. Stol and B. Fitzgerald. Guidelines for Conducting Software Engineering
Research, pages 27–62. Springer International Publishing, Cham, 2020. doi:
10.1007/978-3-030-32489-6_2.

129

https://doi.org/10.1007/BF02249052
https://doi.org/10.1145/1764810.1764814
https://doi.org/10.1007/978-3-030-32489-6_7
https://doi.org/10.1007/978-3-319-26057-0_2
https://doi.org/10.1109/MS.2003.1231146
https://doi.org/10.1109/ISORC.2006.54
https://doi.org/10.2139/ssrn.2988291
https://doi.org/10.1109/TSE.2005.97
https://doi.org/10.1109/ISESE.2002.1166921
https://doi.org/10.1007/978-3-030-32489-6_2
https://doi.org/10.1007/978-3-030-32489-6_2

[67] O. Söderström and E. Moradian. Secure audit log management. Procedia Computer
Science, 22:1249–1258, 2013. 17th International Conference in Knowledge Based
and Intelligent Information and Engineering Systems - KES2013. doi:10.1016/
j.procs.2013.09.212.

[68] T. Thelin, P. Runeson, and C. Wohlin. An experimental comparison of usage-
based and checklist-based reading. IEEE Transactions on Software Engineering,
29(8):687–704, 2003. doi:10.1109/TSE.2003.1223644.

[69] J. Tian. Software Quality Engineering: Testing, Quality Assurance, and Quantifiable
Improvement. 02 2005.

[70] Y. Tymchuk, A. Mocci, and M. Lanza. Code review: Veni, vidi, vici. In 2015 IEEE
22nd International Conference on Software Analysis, Evolution, and Reengineering
(SANER), pages 151–160, 2015. doi:10.1109/SANER.2015.7081825.

[71] V. K. Vaishnavi and Jr. W. Kuechler. Design Science Research Methods and Patterns:
Innovating Information and Communication Technology. Auerbach Publications,
USA, 1st edition, 2007.

[72] N. Walkinshaw. Software Quality Assurance: Consistency in the Face of Complexity
and Change. 01 2017. doi:10.1007/978-3-319-64822-4.

[73] J. Whittle, J. Hutchinson, and M. Rouncefield. The state of practice in model-driven
engineering. IEEE Software, 31(3):79–85, 2014. doi:10.1109/MS.2013.65.

[74] R. J. Wieringa. Design science methodology: principles and practice. In 2010
ACM/IEEE 32nd International Conference on Software Engineering, volume 2,
pages 493–494, 2010. doi:10.1145/1810295.1810446.

[75] R. J. Wieringa. Design science methodology for information systems and software
engineering. Springer, 2014. doi:10.1007/978-3-662-43839-8.

[76] D. Winkler, S. Biffl, and B. Thurnher. Investigating the impact of active guidance
on design inspection. volume 3547, pages 117–163, 06 2005. doi:10.1007/
11497455_36.

[77] D. Winkler, K. Meixner, D. Kretz, A. Zweckstetter, and S. Biffl. A controlled
experiment on distributed model reviewing with tool support. Technical report
cdl-sqi 2021-06, TU Wien, Vienna, Austria, May 2021. submitted to ESEM 2021.

[78] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and A. Wesslen.
Experimentation in software engineering. Springer Science and Business Media, 2012.
doi:10.1007/978-3-642-29044-2.

[79] C. Yinyi, Z. Kefa, and W. Jinlin. Performance analysis of postgresql and mongodb
databases for unstructured data. In Proceedings of the 2019 International Conference
on Mathematics, Big Data Analysis and Simulation and Modelling (MBDASM 2019),
pages 60–62. Atlantis Press, 10 2019. doi:10.2991/mbdasm-19.2019.14.

130

https://doi.org/10.1016/j.procs.2013.09.212
https://doi.org/10.1016/j.procs.2013.09.212
https://doi.org/10.1109/TSE.2003.1223644
https://doi.org/10.1109/SANER.2015.7081825
https://doi.org/10.1007/978-3-319-64822-4
https://doi.org/10.1109/MS.2013.65
https://doi.org/10.1145/1810295.1810446
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1007/11497455_36
https://doi.org/10.1007/11497455_36
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.2991/mbdasm-19.2019.14

[80] Y. Yu. Reviewer recommender of pull-request in github. 09 2014. doi:10.1109/
ICSME.2014.107.

[81] Y. Zhu. Software Reading Techniques: Twenty Techniques for More Effective
Software Review and Inspection. Apress, Berkeley, CA, 2016. doi:10.1007/
978-1-4842-2346-8.

131

https://doi.org/10.1109/ICSME.2014.107
https://doi.org/10.1109/ICSME.2014.107
https://doi.org/10.1007/978-1-4842-2346-8
https://doi.org/10.1007/978-1-4842-2346-8

133

Appendices

Appendix A: Flow chart MDRE review execution

134

Appendix B: Flow chart MDRE experiment administration

135

	Kurzfassung
	Abstract
	Contents
	Introduction
	Context & Motivation
	Problem Definition
	Aims & Expected Results
	Thesis Structure

	Related Work
	Software Development Life Cycle
	Model-driven approaches
	Software Quality Assurance
	Inspections (Reviews)
	Software Inspection Tools

	Experimentation
	Principles of Investigation
	Attributes & Types of Experiments
	Experiment design & execution

	Research Questions & Solution Approach
	Design Science
	Prototype for tool-supported model reviewing (RQ1)
	Review and Experimentation Process Support (RQ2)
	Benefits and limitations of MDRE (RQ3)

	Model Design & Review Editor
	Initial State of the MDRE
	Tool Support AddOn for Model Reviewing (RQ1)
	Tool Support AddOn for Experimentation (RQ2)

	Empirical Evaluation (RQ3)
	Study Process
	Results

	Discussion & Limitation
	Discussion
	Limitations

	Conclusion & Future Work
	Conclusion
	Future Work

	List of Figures
	List of Tables
	Bibliography
	Appendices
	Appendix A: Flow chart MDRE review execution
	Appendix B: Flow chart MDRE experiment administration

