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Abstract

To enable higher payloads, longer ranges and lower fuel consumption, the aviation industry

is striving to reduce the weight of aircraft structures. This ambition has boosted the develop-

ment of man-made composite structures, and today modern aircraft structures already consist of

50 percent fiber-reinforced polymers. Fiber-reinforced polymers are highly susceptible to im-

pact damage, which significantly affects the mechanical properties of the composite structure.

Impact damage can cause safety-critical subsurface defects such as delaminations in the com-

posite structure. Advanced non-destructive testing methods such as active thermography are

necessary to reveal safety critical defects. The industry requires reliable and fast non-destructive

testing methods for economical part inspection. In principle, these requirements can be met by

active thermography testing, which is also a contactless non-destructive testing method. How-

ever, a drawback of this method is the significant decrease in spatial resolution with increasing

imaging depth, which results in blurred images. In addition, current active infrared thermogra-

phy methods are lacking in 3D representation of subsurface defects or do not account for lateral

heat flow.

In this thesis, a new approach for active thermography data evaluation, called the virtual

wave concept, is extended for application to anisotropic materials and for photothermal tem-

perature signals. Moreover, the degradation of spatial resolution with increasing imaging depth

is partially compensated by incorporating prior information such as positivity and sparsity into

the regularization procedure. In addition, a novel approach for the estimation of the anisotropic

thermal diffusivity tensor is proposed, which enables the rectification of the anisotropic heat

flux and a 3D visualization of subsurface defects in fiber-reinforced samples. The proposed 3D

reconstruction method is applied to carbon fiber reinforced materials with artificial defects, rep-

resented by flat bottom holes, and to real defects, represented by delaminations. To summarize,

this doctoral thesis presents a fast, easily interpretable 3D reconstruction tool for photothermal

subsurface defect detection in anisotropic media.
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Kurzfassung

Um höhere Nutzlasten, größere Reichweiten und einen geringeren Treibstoffverbrauch zu er-

zielen, ist die Luftfahrtindustrie bestrebt, das Gewicht von Flugzeugstrukturen zu reduzieren.

Dieses Bestreben hat die Entwicklung von künstlichen Verbundstrukturen vorangetrieben, und

heutzutage bestehen moderne Flugzeugstrukturen bereits zu 50 Prozent aus faserverstärkten

Kunststoffen. Faserverstärkte Kunststoffe sind sehr anfällig für Schlagschäden, da diese die me-

chanischen Eigenschaften der Verbundstruktur erheblich beeinträchtigen. Schlagschäden kön-

nen sicherheitskritische Defekte wie Delaminationen in der Verbundstruktur verursachen. Um

sicherheitskritische Defekte zu detektieren, sind hochentwickelte zerstörungsfreie Prüfmetho-

den, wie beispielsweise die aktive Thermografie, notwendig. Zur wirtschaftlichen Bauteilprü-

fung benötigt die Industrie zuverlässige und schnelle zerstörungsfreie Prüfmethoden. Grund-

sätzlich können diese Anforderungen durch die Prüfung mittels aktiver Thermografie erfüllt

werden, die zudem eine berührungslose zerstörungsfreie Prüfmethode darstellt. Ein Nachteil

dieser Prüfmethode ist jedoch die deutliche Abnahme der örtlichen Auflösung mit zunehmender

Abbildungstiefe, wodurch unscharfe Defektabbildungen entstehen. Zudem erlauben die existen-

ten Rekonstruktionsverfahren der aktiven Thermografie, insbesondere bei anisotropen Materia-

lien und unter der Berücksichtigung des lateralen Wärmeflusses, keine 3D Defektvisualisierung.

In dieser Arbeit wird ein neuer Ansatz zur aktiven Thermografie-Datenauswertung, das so-

genannte virtuelle Wellenkonzept, für die Anwendung auf anisotrope Materialien und für pho-

tothermische Temperatursignale erweitert. Darüber hinaus wird die Abnahme der räumlichen

Auflösung mit zunehmender Abbildungstiefe durch die Einbindung von Vorinformationen in

das Regularisierungsverfahren, wie zum Beispiel Positivität und Sparsity (bezeichnet dünnbe-

setzte Matrizen), teilweise kompensiert. Zudem wird ein neuartiger Ansatz für die Bestimmung

des anisotropen thermischen Diffusivitäts-Tensors vorgeschlagen, und ein mathematischer Zu-

sammenhang dieses Tensors mit dem Tensor der virtuellen Schallgeschwindigkeiten hergeleitet.

Mithilfe dieses Zusammenhanges kann der anisotrope Wärmefluss entzerrt werden, wodurch ei-

ne 3D Defektvisualisierung und Defektrekonstruktion in faserverstärkten Kunststoffen ermög-

VII



licht wird. Das vorgeschlagene 3D Rekonstruktionsverfahren wird auf kohlenstofffaserverstärk-

te Materialien mit künstlichen Defekten, abgebildet durch Flachbodenbohrungen, und auf reale

Defekte, abgebildet durch Delaminationen, angewendet. Zusammenfassend stellt diese Disser-

tation ein schnelles, leicht interpretierbares 3D Rekonstruktionswerkzeug zur photothermischen

Defekterkennung in anisotrope Materialien vor.
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1 Introduction

1.1 Motivation

Composite materials have a long tradition in the construction of aircraft structures. In the pi-

oneering phase of aircrafts, the natural composite material wood was mainly used as it pos-

sessed appropriate mechanical properties and was much cheaper and easier to process than,

for example, aluminum [1]. In the 1930s, however, aircraft composite structures were in-

creasingly replaced by metal-based structures to enable higher flight speeds and payloads [2].

In the meantime however, polymer and fiber developments enabled the processing of fiber-

reinforced polymers (FRP) with the following outstanding properties compared to metal-based

structures [1, 3, 4]:

– high stiffness to weight ratio and high strength to weight ratio,

– corrosion resistance,

– possibility of tailored material properties.

The weight savings achieved by FRP composite structures enable higher payloads, longer

ranges and lower fuel consumption [3]. Due to their favorable properties, composites started

their comeback in the 1970s in the form of FRP structures, which are increasingly replacing the

metal-based components of an civil aircraft [5]. Nowadays, FRP composites already account

for more than 50% of modern civil aircraft structures [6].

During the manufacturing process and in service, different types of defects occur in FRP

composites compared to metals, such as porosity or delamination. Especially impact damage is

a great concern because it is often not detectable by visual inspection, but can introduce con-

siderable damage in the form of e.g. delaminations which significantly affects the mechanical

properties of the FRP materials. [3]

1



1.1 Motivation 1 Introduction

Consequently, fast and reliable non-destructive subsurface defect detection methods are nec-

essary in order to reveal safety-relevant structure weaknesses rapidly and economically.

1.1.1 FRP components for aviation
FRP components typically consist of two phases, namely the matrix material, which represents

the continuous phase, and the fiber material, which represents the reinforcement phase. The

most common matrix materials used for aerospace components are thermosets such as epoxies,

polyesters or vinyl esters. Fiber materials can be carbon, glass or aramid, for example. In

modern aerospace manufacturing, prepregs, fibers that are pre-impregnated with the matrix

material, are commonly used. Prepregs are available with a UD fiber orientation or different

weave forms such as plain weave or satin weave. They are stacked in a defined manner to

meet the required mechanical properties as illustrated in Figs. 1.1a) and 1.1b). Stacking of the

prepregs can be done either automatically or by hand lay-up. Especially for small quantities and

complex components, hand lay-up is preferred to automatic lay-up for economic reasons. The

lay-up consists not only of the prepregs, but also of other constituents such as peel plies, release

films, edge bleeders and breather material, and various bagging strategies are available. Once

stacked, the prepreg collation or laminate is sealed in a vacuum bag, and after vacuum bagging,

the laminate can be cured in an autoclave, for example. Autoclave curing is commonly used for

high quality FRP components that are assembled into aircraft structures. [3]

18

Unidirectional (UD) 
prepregs

Plain weave
prepregs

Defects occurring in 
FRPs

Cross-section

Impact damage

Foreign object 
inclusionDelamination

Matrix cracking
Porosity

a) b) c)

Figure 1.1: a) Stacking of UD prepreg layers and the corresponding laminate and b) stacking of
plain weave prepreg layers and the corresponding laminate (inspired by Ref. [3]). c)
Defects that can result from the manufacturing process or that can occur in service,
for example, due to a bird strike (inspired by Ref. [7]).
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1.1 Motivation 1 Introduction

1.1.2 Defects in FRP materials
During the manufacturing process and in service, many different defects can occur in the FRP

components that affect their mechanical properties. Fig. 1.1c) shows some typical defects such

as porosity, matrix cracks, delamination, foreign object inclusions or impact damage [7, 8].

While matrix cracking belongs to the microscale dimension, porosity belongs rather to the

meso-scale dimension. Delamination and foreign object inclusions can be assigned to the meso-

scale or macro-scale dimension. [9]

Porosity can be caused by gas inclusions in the manufacturing process. Foreign object

inclusions, such as prepreg backing paper, can also be accidentally incorporated during the

manufacturing process. Impact damage generated by a bird or lightning strike can cause matrix

cracking and delamination which significantly impacts the mechanical properties of the FRP

structure. Delaminations can also be introduced during manufacturing processes such as drilling

or due to improper fastener mounting. [3]

1.1.3 Non-destructive testing of FRP components
In order to reveal safety-relevant defects in aircraft components, they have to be tested non-

destructively by standardized methods. These components are tested not only after production,

but also at specific maintenance intervals. The most commonly used non-destructive testing

(NDT) imaging method in the aviation industry is ultrasonic testing (UT) [1]. Due to its long-

term use and the corresponding experience with it, UT represents a robust and reliable method

for multi-dimensional defect identification, detection, sizing and visualization. The main dis-

advantage of conventional UT is the need for a coupling agent to properly launch the ultrasonic

waves into the sample, which can affect the sample [10]. This drawback and the change from

metal-based to composite designs boosted the application of active infrared thermography (IRT)

for the NDT of aircraft components. In contrast to UT, where acoustic wave propagation is

observed, IRT monitors the heat diffusion process. Active IRT requires an active thermal exci-

tation, i.e. a heating or cooling, of the sample under test (SUT), for instance, by a flash-lamp or

a laser. The excitation energy is absorbed by the SUT initiating a heat diffusion process there. If

the thermal diffusion process is disturbed by a subsurface defect with different thermophysical

properties compared to the bulk material, this will affect the surface temperature signal that can

be recorded using an infrared (IR) camera. Thermography testing is advantageous because it is

a contactless method and due to the focal plane array of the IR camera, a huge measurement

throughput is possible.

3



1.2 Problem statement 1 Introduction

1.2 Problem statement

In recent years active IRT shows a trend from qualitative to quantitative defect detection. Qual-

itative defect detection methods have the benefit, that they allow fast data evaluation, but addi-

tional information about subsurface defects like size and depth cannot be extracted. This limits

the application of active IRT for defect detection in aircraft components because uncertainties

in the defect characterization corresponds with higher load tolerances, weights, and costs of the

components [3].

One way to quantitatively locate and size defects is to solve an inverse heat conduction

problem (IHCP). In contrast to UT, where the wave propagation is described by the time re-

versible wave equation, thermal wave propagation, which is described by the heat equation, is

irreversible in time and hence a severely ill-posed inverse problem must be tackled. As shown

in Fig. 1.2, for practical application, the forward solution is given by the measured surface tem-

perature signal, which carries information about the structure of the subsurface of the SUT. The

inverse problem is then, for example, to calculate the initial temperature signal and secondary

boundary sources based on the measured temperature signal. Secondary boundary sources can

result from defects and the back wall of the sample. To solve such a severely ill-posed inverse

problem regularization tools, such as the truncated singular value decomposition (T-SVD), are

necessary.

Solving a multi-dimensional IHCP is related to a large-scale problem. Consequently, its

solution is computationally expensive [11]. For this reason, some research groups try to cir-

cumvent the solution of multi-dimensional IHCPs and use instead a 1D model or data driven

evaluation methods for defect sizing and localization. These approaches work well for pla-

nar defects near the surface of isotropic samples, but may be inadequate for highly anisotropic

samples and smaller and deeper defects because they do not account for lateral heat flow, thus

preventing accurate defect sizing. In addition, the interpretation of results can be challenging

compared to UT, as many thermographic evaluation methods such as the thermographic signal

reconstruction (TSR) [12] only allow 2D defect visualization for a 3D SUT (see Fig. 1.2).

One possible approach to overcome these issues is the virtual wave concept (VWC), which

is a two-step reconstruction procedure [13]. The intention of the VWC is to combine the ad-

vantages of UT and IRT to obtain a fast, non-contact and easily-interpretable reconstruction

method. In a first step, the measured temperature signal obtained from an active IRT experi-

ment is locally transformed (pixel by pixel) into a virtual wave signal. This virtual wave signal

4



1.2 Problem statement 1 Introduction

y

t0

t1

t2

tNt

pixel x

pi
xe

l y

Transient temperature 
signal

2D result representation 

pixel x

pi
xe

l y

Real 
defect size

Experimental setup
IR cameraExcitation

Evaluated 
defect size

Subsurface 
defect

Photothermal
signal detection

Postprocessing 
using, e.g., TSR

   𝐓 = 𝐊 𝐓𝟎
3D result representation

x

y

z

Linear severely ill posed 
discrete inverse problem

Measured signal

Signal of interest (unknown)
Transition kernel

IHCP

Regularization

Figure 1.2: State-of-the-art subsurface thermographic reconstruction methods. 1D thermographic
reconstruction method such as the TSR method do not take into account the lateral
heat flow and allow only for a 2D defect representation. Solving an IHCP requires
stabilization or regularization to obtain a useful solution and typically results in a
large-scale problem which are computationally expensive.

obeys the standard wave equation, and hence in a second evaluation step, well known ultrasonic

reconstruction methods, such as the time of flight (TOF) [14, 15] or the frequency/time domain

aperture focusing testing (F/T-SAFT) algorithms [16, 17], can be used for defect localization.

The current results of the VWC method for 3D defect imaging are very promising. However,

the applicability of the VWC procedure is limited to date to isotropic samples and internal heat

sources. The current state of the VWC technique is also schematically shown in Fig. 1.3a).

Similar to an IHCP, the computation of the virtual wave field requires regularization to obtain

a useful inverse solution. To date, only direct regularization methods such as T-SVD have been

used. The problem with T-SVD is that no prior information, such as sparsity, can be included

to compensate for the loss of information due to heat diffusion, which results in blurred im-

ages with increasing imaging depth. For this reason, as shown in Fig. 1.3a), after the second

reconstruction step subsurface defects appear very blurry, which impedes accurate defect sizing.
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1.3 Aim of this doctoral thesis 1 Introduction

1.3 Aim of this doctoral thesis

This doctoral thesis aims to complement the VWC procedure for 3D reconstruction and visu-

alization of subsurface defects that are embedded in anisotropic materials such as CFRPs and

for the pulse-echo configuration which is a very relevant practical active IRT set-up. To par-

tially compensate for the degradation of the spatial resolution with increasing imaging depth,

the iterative regularization method ADMM is implemented for the VWC evaluation procedure

which enables the incorporation of prior information in the form of positivity and sparsity.

Fig. 1.3b) shows schematically the further development of the VWC for the first and second

reconstruction step. To rectify the anisotropic lateral heat flow, a novel thermal diffusivity ten-

sor estimation procedure is proposed, and the second reconstruction step is modified, which

enables the incorporation of the virtual speeds of sound in the principal directions. Moreover, a

discretization criterion is proposed that drastically reduces the computational cost of the evalu-

ation procedure, as indicated by the bars at the bottom of Fig.1.3, without affecting the quality

of the defect imaging. The characteristics of the virtual wave signal, which is calculated from a

distorted surface temperature signal and carries information about subsurface defects, are also

discussed in detail.

The doctoral thesis is organized as follows: in Chapter 2 basic active IRT set-ups, some lim-

itations of active IRT and state-of-the-art thermographic signal processing methods as well as

the VWC are reviewed. Chapter 3 reviews the principles of the VWC by deriving the transfor-

mation of the temperature signal into a virtual wave signal and in terms of boundary conditions

and noise filtering capabilities. Chapter 5 provides a short summary of the research papers and

a discussion of the obtained results.

6
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Figure 1.3: a) VWC for internal heat sources and isotropic media - current research state. b)
Further development of the VWC to make it applicable for anisotropic media and
photothermal testing for the practical most relevant pulse-echo configuration. To
partially compensate for the degradation of the spatial resolution with increasing
imaging depth prior information was incorporated in the regularization process.
In this thesis also a discretization procedure was proposed which allows a fast
and easy interpretable 3D defect reconstruction and visualization.
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2 Thermographic signal processing

In contrast to UT, where acoustic wave propagation is analyzed, in active IRT heat diffusion

or thermal wave propagation is observed. Compared to an acoustic wave, a thermal wave is

strongly attenuated during propagation through the SUT. This attenuation is caused by the en-

tropy production during the heat diffusion, which is equal to information loss [18]. Therefore,

the thermal wave cannot be back-propagated like an acoustic wave. This fact leads to a sig-

nificantly limited evaluability of raw active IRT data in terms of parameter estimation, defect

localization and defect sizing. Thus, it is necessary to manipulate the raw IRT data by advanced

signal processing methods. Another signal processing task is the compensation of, for example,

non-uniform illumination or local variations in thermal emissivity or optical absorption [19].

Since in this doctoral thesis the subsurface defect detection is based on active IRT data,

this chapter explains the main active IRT set-ups and discusses some experimental limitations.

In addition, established and recent local and global thermographic signal processing methods

for active IRT and their limitations are reviewed. In contrast to local thermographic signal

processing methods, global thermographic signal methods take into account the lateral heat

flow, which becomes particularly relevant for 3D defect visualization in anisotropic materials.

Since the results and findings of this thesis are based on the global signal processing method

VWC, special attention is given to this approach in Chapter 3.

2.1 Experimental active IRT set-ups and limitations

2.1.1 Experimental set-ups
Basic experimental set-ups for active IRT consisting of a SUT, an excitation source and an

IR camera, are illustrated in Fig. 2.1. Figs. 2.1a) and 2.1b) show the configurations with an

optical excitation in reflection and transmission mode, respectively. Typical optical excitation

sources are flash lamps, halogen lamps and lasers. If the observed sample with thermophysical

8
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Figure 2.1: The most common active IRT scenarios and the corresponding characteristic transient
surface temperature signals. Test scenario a) shows the reflection configuration and
test scenario b) shows the transmission configuration. In these configurations, the heat
is introduced at the surface of the opaque sample. c) shows an exemplary test scenario
to generate internal heat sources via induction of eddy currents.

properties Ω1 is optically opaque, the excitation energy is absorbed at the stimulated surface,

which initiates thermal waves there that travel through the subsurface. If the thermal wave

propagation is disturbed by a defect with thermophysical properties Ω2, which are unequal to

Ω1, secondary thermal wave sources and sinks are introduced at the defect boundaries [20]. This

results in a two-way heat diffusion and the corresponding spatial and temporal change of the

surface temperate signal can be recorded with an IR camera. Conversely, in the transmission

configuration, Fig. 2.1b), a one-way heat diffusion process is observed. The black boxes in

Figs. 2.1a) and 2.1b), depict exemplary surface temperature signals in defect and defect-free

regions for both reflection and transmission mode, where the SUT was heated by a temporally

short optical pulse.

In contrast to Figs. 2.1a) and 2.1b), Fig. 2.1c) shows a thermography setup for generating in-

ternal heat sources in the SUT by inducing eddy currents. Here it is assumed that eddy currents

can only be induced in Ω2, thus a reasonable thermal contrast between bulk and defect material

can be achieved. Due the internal heat source, thermal waves are initiated at the defect bound-

aries. They propagate through the sample and again cause a change in the surface temperature
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signal which can be observed with an IR camera. The black box in Fig. 2.1c) shows an exemple

of surface temperature signal in a defect region. Particularly in the case of semi-transparent and

light-scattering samples, such as epoxy or biological tissue, light-absorbing subsurface struc-

tures, such as carbon fibers or blood vessels, can work as internal heat sources due to optical

excitation. Another active IRT technique that can generate internal heat sources, is vibrother-

mography (VT). VT uses mechanical vibration which cause friction in a defect region leading

to an energy conversion from mechanical to heat energy [21]. The heat energy again initiates a

thermal wave that leads to a change in the surface temperature signal. Both external and inter-

nal heating or cooling can vary in space and time. Based on the temporal excitation, active IRT

can be divided into pulsed thermography (PT) and Lockin Thermography (LT) which is also

denoted as photothermal radiometry (PTR) [22]. More precisley, PTR describes a point-by-

point photothermal imaging method (small evaluation range), while LT uses an IR camera for

photothermal imaging (large evaluation range) [23]. While in PT the transient surface tempera-

ture signal response is observed after a temporally short excitation pulse, in LT the steady-state

surface temperature signal response caused by a time-varying excitation is analyzed [22].

Several thermographic signal processing methods are based on a mathematical model in or-

der to enable, for instance, parameter estimation or the localization and sizing of defects. Hence,

the experimental set-up, i.e. initial and boundary conditions, must be designed in accordance

with the underlying mathematical model.

2.1.2 Limitations of active IRT
As mentioned before, the spatial and temporal change of the surface temperature or, more pre-

cisely, the IR radiation signal can be detected with an IR camera. The main groups of IR

detectors are represented by thermal detectors, such as bolometers, and photonic or quantum

detectors. While bolometers use the change in resistance of semiconductor materials, quantum

detectors use the internal photoelectric effect to characterize IR radiation. The advantages of

thermal detectors compared to quantum detectors include that they are relatively cheap, cover a

wide spectral range, and do not require cooling. Quantum detectors are advantageous because

they offer good detectability and allow high imaging frequencies. However, each detector ex-

hibits detector noise that results in a certain noise equivalent temperature difference (NETD) or

temperature resolution of the IR camera. [24, 25]

The characterization of the camera noise is fundamental for a successful solution of an IHCP

and therefore Beck et al. [26,27] formulated eight standard assumptions regarding measurement
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Table 2.1: Resolution limits for PT data. Δζ describes the resolution of a defect for early times
t̂ � ζ 2/α and near surface defect depths ζ , where α is the thermal diffusivity of the
observed material and m is the frame number. The maximum depth resolution ΔL, is
calculated with the sample thickness L, the material density ρ , the specific heat capacity
cp, the energy Q and the ΔTNETD which is a temperature equivalent to the IR camera
noise [25]. δres describes the resolution of two lateral extended but axial infinitesimal
small defects at a certain depth z and for a specific SNR.

Authors Limit for: Math. description Sketch

Shepard et al. [30] Early time/near surface Δζ
ζ = 1

2m
z = 0 ζ

Shepard et al. [30] Late time/maximum depth ΔL
L =−ρcpL

Q ΔTNETD
z = 0

L

Burgholzer et al. [29] Axial defect separation δres
L = z

L
π

ln(SNR)
z = 0 δres

errors. Breitwieser et al. [28] verified these assumptions for IR cameras with a quantum detector

based on the photon transfer technique with the result that they are not valid for the observed

detectors. However, for a limited temperature range, the authors argued that the variance of

the measurement signal can be considered constant which corresponds to white Gaussian noise.

The temperature resolution and excitation signal lead to a certain signal-to-noise ratio (SNR) of

the surface temperature signal, which limits the maximum defect depth and backwall resolution

as well as the defect separation capability. Limits for defect separation [18, 29] and depth

resolution as a function of NETD have been formulated specifically for PT testing, but for

subsurface defects near the plane of observation, only the imaging frequency of the IR camera

is the limiting parameter [30]. The limits, the corresponding mathematical descriptions and

sketches are listed in Tab. 2.1. The derivation of the axial defect separation limit is based on

a 1D heat diffusion process in a semi-infinite body. The near surface limit and the maximum

depth limit are also based on a 1D heat diffusion process and their derivation is based on the

following mathematical relationship [30]:

L =
√

παt, (2.1)

where α is the thermal diffusivity and L is the sample thickness.

Another limitation of PT states that the defect diameter-to-depth ratio must be greater than

two in order to detect the defect [22]. However, Almond and Pickering [31] found that this well-

known rule of thumb for defect detection is incorrect. In an analytical study, they concluded
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that the defect detection capability depends not only on the defect aspect ratio, but also on the

input energy provided by the flash lamps.

2.2 Local signal processing methods

A simple and computationally inexpensive approach to improve the image quality and the defect

visibility of PT data is to calculate a thermal contrast image. There exist various definitions of

the thermal contrast, for instance, the running contrast, the standard contrast and the differential

absolute contrast (DAC) [22, 32, 33]. The latter method is advantageous, because there is no

need for predefining a sound area (defect-free region). Predefining a sound area is challenging

because a priori defect locations in the observed sample are unknown. The DAC method was

modified by Benitez et al. [34]. They introduced the sample thickness in the DAC modelling

to extend the application for long periods after heating. Another prominent PT postprocessing

method is the pulsed phase thermography (PPT). PPT aims to combine the advantages of PT

and lockin thermography (LT), i.e. fast image recording is combined with a deeper probing and

defect-sizing capability [35]. Using PPT the PT data is Fourier transformed, which enables the

computation of an amplitude and a phase image [35, 36]. There exist several extensions of the

original PPT processing. Galmich et. al [37], for instance, used a wavelet transform instead of

the Fourier transform. Another modification, where PPT is combined with the thermographic

signal reconstruction (TSR), was reported by Maldague et al. [38]. TSR is one of the most

common postprocessing method for two-way heat diffusion. Commonly, the TSR method uses

a polynomial fit to map the raw thermography signal, which introduces a considerable data

compression because only the polynomial coefficients for each camera pixel location have to

be stored to represent the measured temperature signal [12, 39]. Due to this, the non-thermal

temporal noise produced by the IR camera can be significantly reduced and allows a simple data

manipulation, for instance, differentiation [12]. Vavilov et. al [40, 41] proposed a phenomeno-

logical method called dynamic thermal tomography (DTT), which maps the sequential thermo-

graphic signal onto a maxigram and timegram. The maxigram reflects the maximal temperature

signal and the timegram represents the corresponding optimal observation of each pixel. The

timegram can be converted with a calibration function to estimate defect depths [42]. Similar

to conventional thermal contrast methods, DTT processing requires the predefinition of a refer-

ence point. To circumvent this predefinition, thermal diffusivity estimates were supplemented

to the classical DTT method [33].
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To overcome the limitations of PT and LT in terms of maximum permissible exposure

(MPE) and depth resolution, Tuli and Mulaveesala [43] and Mulaveesala et al. [44] proposed

the use of linear frequency modulated (LFM) temporal thermal sample excitation for active IRT.

LFM excitation requires lower excitation power compared to PT and, in contrast to conventional

LT, thermal waves with multiple wavelengths are coupled into the SUT, which allows for an ef-

ficient testing procedure since no repetition with different excitation frequencies is needed to

cover the entire sample thickness [45]. Similar to LT, phase images can be evaluated, which

allows, for example, compensation for inhomogeneous illuminations or local variations of ther-

mal emissivity or optical absorption [23, 43, 46]. The earliest work of such a photothermal

wave system was published in 1986 by Mandelis et al. [47–49]. Tabatabaei and Mandelis [50]

proposed the thermal wave radar (TWR), which uses an LFM for temporal thermal excitation

and a special type of matched filter in the form of cross correlation (CC) technique for sig-

nal processing. In addition to the amplitude CC, they also evaluated the CC peak delay time,

where the delay time corresponds to the delay between the photothermal excitation and the

thermal response of the SUT. They found that by using TWR, a significantly higher SNR can

be achieved, resulting in a significant enhancement of the depth resolution dynamic range com-

pared to PTR [50]. In later work, Tabatabaei et al. [51] showed that phase CC evaluation is

even more powerful than amplitude CC, but recommended that both CCs should be evaluated

because they provide complementary information. TWR and thermal wave imaging was then

applied and adapted by various research groups, for instance for bone diagnostics [52], non-

destructive imaging of coatings and cracks [53, 54], or NDT of composite materials [55–58].

Based on the TWR idea, Tabatabaei and Mandelis [59,60] proposed thermal coherence tomog-

raphy (TCT), which allows the deconvolution of superimposed, axially discrete sources induced

by binary phase-coded (BPC) modulation of the thermal excitation source. They demonstrated

that the BPC excitation pattern reduces the side lobes of the CC peak while increasing the peak

height in a turbid medium such as biological tissue. Kaiplavil and Mandelis modified TCT and

reported a photothermal imaging method called truncated correlation photothermal coherence

tomography (TC-PCT) that enables 3D visualization of subsurface features [61]. Contrary to

TCT, TC-PCT cross-correlates the temporal thermal response signal caused by a chirped pulse

excitation with a sliced reference chirp signal. This procedure results in a depth-resolved sig-

nature in which depth information is obtained in a pixel-wise manner based on the delay time.

Tavakolian et al. [62,63] proposed enhanced TC-PCT (eTC-PCT), which uses an optimized re-

construction algorithm and system instrumentation compared to TC-PCT, resulting in improved
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axial and lateral resolution for visualization of 3D subsurface features. In recent studies, eTC-

PCT has been used for non-destructive imaging of wood inlays [64] or non-invasive 3D in-vivo

imaging of small animals [65].

2.3 Global signal processing methods

Local thermographic reconstruction methods do not consider lateral or multi-dimensional ther-

mal diffusion, which may be sufficient for example in the case of homogeneous thermal ex-

citation and defects close to the observation plane. For deeper subsurface defects with small

lateral extension, multi-dimensional thermal diffusion must be considered to allow accurate

defect sizing and localization as well as 2D/3D defect visualization, especially when they are

embedded in anisotropic materials. Fig. 2.2 illustrates the aforementioned limitations of lo-

cal thermographic signal processing methods. Figs. 2.2a-c) show a test setup with homoge-

neous thermal excitation, but only for the setup in Fig. 2.2a) the local processing is appropri-

ate. Fig. 2.2c) shows an unsuitable test setup for the detection of vertical cracks. Such cracks

provide an insufficient thermal barrier and therefore do not affect the plane thermal waves in-
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Figure 2.2: Limitations of 1D or local thermographic signal processing methods, explained on an
optically opaque material. a-c) shows thermal excitation with flash lamps inducing a
homogeneous plane thermal wave into the sample. However, only for a) local ther-
mographic signal processing may be suitable, the others require global thermographic
signal processing for accurate defect characterization. d) shows optical excitation with
a laser, where only a limited surface area is thermally excited. This configuration also
requires global thermographic processing for 3D defect visualization.
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duced at the specimen surface. Consequently, there is no change in surface temperature and the

crack is not detectable. Figs. 2.2b) and 2.2d) show configurations with spatially homogeneous

and inhomogeneous thermal excitation, respectively. An inhomogeneous thermal excitation

can be achieved, for instance, by a small laser spot. In both configurations, lateral heat diffu-

sion must be considered for accurate defect sizing and localization. There are several methods

that are based on a multi-dimensional heat diffusion model and a fitting procedure such as the

Levenberg-Marquardt algorithm to characterize defects and to estimate the corresponding heat

flux or initial temperature distribution [66]. Mendioroz et al. [67] for example, used VT data

to estimate the defect dimensions, defect depth, and corresponding heat flux of rectangular ver-

tical cracks by a fitting procedure. More recently, they used induction thermography data to

characterize tilted cracks as well [68]. Only inverse problems stabilized by regularization are

discussed in the following review, since this type of solution technique is used in this thesis for

defect characterization.

2.3.1 Inverse problem and regularization
To overcome the limitations of local thermographic signal processing methods, an inverse heat

conduction problem (IHCP) can be solved [27]. The IHCP requires forward modeling that ac-

counts for the multi-dimensional heat flow, as shown in Fig. 2.3. There are several approaches,

such as the separation of variables or the method of images, to solve the forward problem, i.e.,

the heat diffusion equation, to obtain the spatial and temporal temperature signal T [69, 70].

To solve the forward problem the boundary conditions, the initial temperature distribution, the

defect dimensions and the material parameters such as the thermal conductivity k, the density ρ

and the heat capacity cp must be known a priori. Considering an inverse problem, the spatial and

temporal temperature signal is known, but the a priori information is only partially available.

Assuming, for example, that the initial and boundary conditions of a thermographic experiment

and the material and geometry parameters of the SUT are known a priori, one can reconstruct

the size and location of a subsurface defect by solving an inverse problem. An IHCP can be

mathematically classified as a severely ill-posed inverse problem that is very sensitive to mea-

surement errors, i.e., small errors in the measured data can lead to large errors for the inverse

solution [71]. This is characteristic for IHCPs and can be explained by the entropy production

during heat diffusion, which leads to highly attenuated thermal waves for the forward solution

but to a high error amplification for the inverse problem. To overcome these issues and to ob-

tain a useful inverse solution, stabilization or regularization methods are necessary [72]. Popular
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Figure 2.3: Process chain for solving a severely ill-posed inverse problem based on active IRT data
and regularization (inspired by Ref. [76]). The process chain includes mathematical
modeling by the heat equation with appropriate boundary and initial conditions. The
derived model, thermographic measurements, and physical and geometric parameters
are necessary to reconstruct subsurface defects using regularization. The regulariza-
tion procedure requires the estimation of a regularization parameter and the inverse
solution can be significantly improved by incorporating prior information.

regularization methods include truncated singular value decomposition (T-SVD), Tikhonov reg-

ularization, or alternating direction method of multipliers (ADMM), where each regularization

method requires the determination of one or more regularization parameters [73, 74]. There

are several methods for estimating regularization parameters, such as the Picard plot and the

L-curve method, which is also visualized under regularization tools in Fig. 2.3 [72]. ADMM

allows the incorporation of prior information in the form of positivity and sparsity [75]. Posi-

tivity assumes that the inverse solution has only positive data points and is applicable when the

SUT is heated by, for example, flash lamps. Sparsity can be assumed when the SUT has few

defects, resulting in a sparse inverse solution. Several publications consider IHCPs for estimat-

ing initial temperature distribution, boundary heat flux, or estimating geometric and physical

parameters based on a measured temperature signal [27, 66, 77]. However, publications deal-

ing with IHCPs for multi-dimensional subsurface defect localization, sizing, and visualization,
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i.e. defect characterization, are rare. The following review focuses on such IHCPs and aims to

highlight the characteristics of the different approaches. Thereby, direct or single-stage IHCPs

are distinguished from the two-stage reconstruction method VWC.

2.3.2 One step IHCPs for defect characterization
Celorrio et al. [78] used lock-in VT to characterize vertical subsurface cracks that are embed-

ded in an isotropic material. As mentioned earlier, in VT, mechanical energy is converted to

heat energy due to friction at the defect boundaries and thus internal heat sources are induced.

By forward modeling the heat diffusion problem, the authors obtained a Fredholm integral of

the first kind and used Tikhonov and total variation (TV) regularization to solve the severely

ill-posed inverse problem and to estimate the width, height, and depth of the subsurface defect.

For this multi-dimensional defect reconstruction approach, Mendioroz et al. [21, 79] investi-

gated the influence of the defect depth and established a resolution criterion. They found that

their approach enables reconstruction of defects represented by internal heat sources with a min-

imum defect depth-to-width ratio of two. In a later work, Mendioroz et al. [80] modified their

approach and used instead of a lock-in a burst excitation signal to thermally excite the sample.

In this work, they analyzed the influence of different defect shapes, located at different depths,

on the reconstruction quality. Especially for defects with discontinuous shapes and TV regular-

ization, their results show that it is not possible to reconstruct a correct defect shape. Another

approach for 3D reconstruction of internal heat sources or subsurface defects was proposed by

Groz et al. [81]. In their forward modeling of the heat diffusion problem, the defect can be

considered as a superposition of point sources, which is appropriate since the standard heat

equation is linear. Experimentally, they realized the internal heat sources by a nickel-chromium

wire embedded in polymer. A current was applied to the wire and, due to the Joule heating

effect, electrical energy was converted to thermal energy, resulting in an internal heat source.

To optimize the quality of the inverse solution, the authors performed a parameter study and

analyzed the performance of different regularization methods. Holland and Schiefelbein [82]

proposed a model-based inversion for pulsed thermography data in reflection configuration and

anisotropic materials such as composites. Their model consists of multiple reflectors and the

lateral size of the reflectors was modified according to depth to reduce the computational cost

of the inversion procedure.

Each of the presented one-stage IHCPs for defect characterization is based on the method

of images that uses smart positioning of the fundamental solution of heat conduction to fulfill
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both sample and defect boundary conditions [83, 84]. Furthermore, these approaches are based

on a lateral infinite and axial finite or semi-infinite body. Usually, depending on the spatial

and temporal resolution of the surface temperature signal, such inversion approaches lead to a

large-scale inverse problem that can be computationally expensive.

2.3.3 Two step IHCP for defect characterization
In 2017, Burgholzer et al. [13] proposed an alternative approach, called the virtual wave concept

(VWC), for multi-dimensional defect reconstruction. Instead of the single-step reconstructions

discussed in the last section, VWC involves two reconstruction steps. In the first step, an "acous-

tic" virtual wave signal is calculated from the measured surface temperature signal. The virtual

wave signal fulfills the standard wave equation so that in the second step, established ultrasonic

reconstruction methods such as TOF or F-SAFT can be used for defect reconstruction. While

the surface temperature signal is temporally noise-filtered in the first step, spatial noise filtering

is introduced in the second step. In contrast to the wave equation, the heat equation or diffusion

equation describes an irreversible process. The first conversion of a diffusive (electromagnetic)

wave signal to a non-diffusive wave signal was proposed by Lee et al. [85, 86] and Gershen-

son [87,88] for geophysical applications. Later, Tamburrino et al. [89] used this conversion and

presented applications for 3D eddy current testing based on theoretical and numerical results.

In the last few years VWC has also been used for parameter estimation and as a feature

extraction method for machine learning approaches. For example, Mayr et al. [15] verified

the accuracy of VWC in terms of sample thickness estimation. Plasser et al. [90] estimated

the thermal diffusion time of CFRP materials in transmission and reflection configuration in

order to evaluate the porosity of the corresponding samples. A hybrid approach that combines

the temperature to virtual wave transformation with a deep learning approach was proposed by

Kovacs et al. [91, 92]. They found that the VWC is an excellent method for feature extraction

and due to this the training of the neural network can be significantly reduced compared to

the direct transformation of surface temperature to initial temperature signal. In another study,

VWC was combined with a thermograpic super-resolution approach to overcome the resolution

limit of active IRT [93–95].
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3 Principles of the Virtual Wave Concept

This chapter reviews the principles of the VWC by deriving the transformation of the temper-

ature signal into a virtual wave signal and in terms of boundary conditions and noise filtering

capabilities. As already mentioned, the VWC is a two-step reconstruction procedure. In the first

step the temperature signal T (r, t) is transformed locally (pixel by pixel) into a so-called virtual

wave signal Tvirt(r, t). The first reconstruction step eliminates the temporal noise, but the spatial

noise is still present. In addition, only the axial boundary conditions can be considered in the

first reconstruction step. The lateral boundary conditions and the heat flow from all directions

are then separated and back-projected in the second evaluation step by applying, for example,

ultrasonic reconstruction methods such as T-SAFT or F-SAFT.

3.1 First reconstruction step

In the sense of the VWC, the diffusive wave field is described by the heat equation [69]�
Δ− 1

α
∂
∂ t

�
T (r, t) =− 1

α
T0(r)δ (t). (3.1)

The heat equation describes the thermal wave propagation or temperature signal T (r, t) in an

isotropic or orthothropic solid as a function of the position vector r = (x,y,z) and the time t.

The characteristic parameter for thermal wave propagation is the thermal diffusivity α which

is assumed to be temperature-independent. When considering an orthotropic body, Eq. 3.1

also applies after a suitable coordinate transformation. However, the thermal diffusivity α =

(α11α22α33)
1/3 is calculated with the thermal diffusivities in the principal directions [83]. The

right-hand side of Eq. 3.1 depicts the source term. The temporal Dirac-Delta distribution δ (t)

ensures that the initial temperature distribution T0(r) is introduced at t = 0. Δ is the Laplace

operator that describes the second spatial derivatives of the temperature signal T (r, t). The

virtual wave propagation Tvirt(r, t) as a function of position vector r and time t can be deduced
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from the acoustic wave equation for pressure [96]�
Δ− 1

c2
∂ 2

∂ t2

�
p(r, t) =− 1

c2
∂
∂ t

p0(r)δ (t). (3.2)

The photoacoustic wave pressure p(r, t) is also a function of position vector r and time t, where

c denotes the speed of sound, which is the characteristic parameter for pressure wave propaga-

tion. The right-hand side of Eq. 3.2 denotes the source term where the temporal Dirac-Delta dis-

tribution δ (t) ensures that the initial pressure signal p0(r) is spontaneously induced. To obtain

the partial differential equation (PDE) for the virtual wave signal Tvirt(r, t), the initial pressure

signal p0(r) and the photoacoustic pressure signal p(r, t) for t > 0 are specified by [97]

p0(r) = c2ρβT0(r) (for t = 0) and p(r, t) = c2ρβTvirt(r, t) (for t > 0). (3.3)

Here ρ denotes the material density and β is the thermal expansion coefficient. By substituting

the relations of Eq. 3.3 into the acoustic wave equation for pressure, Eq. 3.2, the PDE for the

virtual wave signal Tvirt(r, t) can be written as follows [97]:

�
Δ− 1

c2
∂ 2

∂ t2

�
Tvirt(r, t) =− 1

c2
∂
∂ t

T0(r)δ (t). (3.4)

Eq. 3.4 is also valid for orthotropic bodies after a coordinate transformation. In this case the

virtual speed of sound c = (c11c22c33)
1/3 is computed with the virtual speeds of sound in the

principal directions [98].

Comparing the parabolic heat equation Eq. 3.1 with the hyperbolic virtual wave equation

Eq. 3.4, one can see that they are very similar and apart from the propagation parameters the

main difference is given by the time derivatives. To obtain a mathematical relationship between

surface temperature signal T (r, t) and virtual wave signal Tvirt(r, t) one can temporally Fourier

transform Eqs. 3.1 and 3.4. By a suitable substitution of the angular frequency ω ⇒ ω̃ , a relation

between temperature signal and virtual wave signal in the frequency domain can be obtained as

shown in Fig. 3.1. This relation must be inverse Fourier transformed to obtain the corresponding

relation in the time domain [13]:

T (r, t) =
∞�

−∞

K(t, t �)Tvirt(r, t �)dt � with K(t, t �) =
c√
παt

exp
�
−c2t �2

4αt

�
for t > 0. (3.5)

Eq. 3.5 can be classified as a Fredholm integral of the first kind, where t � is the integration
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Figure 3.1: Derivation of the temperature signal Θ(r,ω) to virtual wave signal Θvirt(r, ω̃) con-
version in the frequency domain using the heat equation Eq. 3.1 and the virtual wave
equation Eq. 3.4 according to Ref. [13]. σ(ω) denotes the complex wave number,
k(ω) denotes the real wave number, ω is the angular frequency, i is the imaginary
number and F{−} is the temporal Fourier operator.

variable. The kernel K(t, t �) contains the characteristic parameters for thermal wave and virtual

wave propagation and does not dependent on the position vector r. Thus, the surface tempera-

ture signal T (r, t) is transformed locally (pixel by pixel) into a virtual wave signal Tvirt(r, t). [13]

3.1.1 The virtual wave signal in infinite bodies
Moreover, Eq. 3.5 is very similar to a 1D IHCP problem, which involves the fundamental so-

lution of heat conduction. This can be seen by replacing ct � by the depth associated integration

variable z� and by using the 1D virtual wave signal Tvirt(z, t �) = 1/2T0δ (z− ct �) for an infinite

body (see Refs. [15, 99]) which yields:
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T (z, t) =
∞�

−∞

c√
παt

exp
�
−c2t �2

4αt

�
Tvirt(z, t �)dt � =

∞�
−∞

1√
4παt

exp
�
− z�2

4αt

�
� �� �

Fundamental solution
of heat conduction

T0δ (z− z�)� �� �
Initial

condition

dz�.(3.6)

Eq. 3.6 represents the Green’s function solution equation (GFSE) for an initial condition (IC)

that contains the fundamental solution of heat conduction and the IC (see for example Ref. [83]).

Due to the IC, the initial temperature signal T0 is introduced into the 1D infinite body by a

point-like source. The VWC procedure for this case, with discrete data (see subsection 3.1.3),

is visualized in Fig. 3.2, where the point-like source is introduced at the dimensionless depth

ẑ = z/ζ with the detector to source distance ζ . The transient temperature signal is detected

at the position z = 0. Based on the temperature signal, a virtual wave signal is obtained by

calculating the inverse solution in Eq. 3.5. As can be seen, the initial temperature signal is

approximately equivalent to the computed virtual wave signal. The small difference can be

explained by the loss of information during heat diffusion, which can be partially compensated

by including prior information such as positivity and sparsity in the regularization process.

Initial sourceDetector
Detected surface 

temperature signal
Reconstructed internal 

source signal

Figure 3.2: VWC processing for a 1D slab with infinite dimensions. The source is introduced at
the dimensionless depth ẑ = z/ζ where the distance between source and detector is ζ .
The detected temperature signal is converted to a virtual wave signal, which is equal
to the initial source signal. Parameters: thermal diffusivity α = 3.2·10−7 m2/s; virtual
speed of sound c = c̃Δz/Δt with the dimensionless virtual speed of sound c̃ = 1, the
axial spatial resolution Δz = 2.7·10−5 m and the temporal resolution Δt = 0.023 s.
The number of time steps for the surface temperature signal and the virtual wave
signal was Nt = 1000 and Ntv = 600, respectively.
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3.1.2 The virtual wave signal in finite bodies
For practical applications, the finite body assumption may be insufficient and therefore bound-

ary conditions for the propagation of the thermal wave and the virtual wave must be considered.

The conversion of the temperature signal into the virtual wave signal is independent of the po-

sition vector r, and thus only boundary conditions in the axial direction are considered in the

first reconstruction step for TOF evaluations.

Similar to heat conduction, where the Neumann and Dirichlet boundary conditions can be

fulfilled by an appropriate positioning of mirror sources that are mathematically described by

the fundamental solution of heat conduction [83], the characteristic virtual wave signal for these

boundary conditions can be deduced via the fundamental solution of virtual wave propaga-

tion [15, 99]. This solution strategy, also known as the method of images, can be used to deter-

mine the Green’s function for the semi-infinite, Neumann, and Dirichlet boundary conditions

for both the temperature signal and the virtual wave signal. Then, using these Green’s functions,

the initial conditions, and the GFSE, one can calculate the corresponding temperature signal and

virtual wave signal. A graphical representation of the method of images, following Ref. [83], is

shown in Fig. 3.3. In that figure, the positioning of the sources and sinks that are represented

by the fundamental solution of the virtual wave signal [99]

K (z− z�, t − τ) =

��������������������

1
2c

δ
�

t − τ − z− z�

c

�
for z− z� > 0� �� �

wave propagating to the right direction

1
2c

δ
�

t − τ +
z− z�

c

�
for z− z� < 0� �� �

wave propagating to the left direction

, (3.7)

is shown for the boundary cases Z11, Z12, Z21, and Z22. The designation of the boundary

cases is adopted from Ref. [83], where the numbers (1) and (2) denote Dirichlet and Neumann

boundary cases, respectively. The letter Z indicates that the corresponding Green’s function

applies to the z coordinate, which in this work is equal to the depth coordinate. The first digit

after the letter indicates the boundary condition on the front wall (z = 0) and the second digit

indicates the boundary condition on the back wall (z = Lz).

As shown in Fig. 3.3, the source is located at z�. For the boundary case Z11, the contri-

bution of the boundaries at the front wall and the back wall must be zero, which requires the

positioning of sinks and sources to satisfy the Dirichlet boundary conditions. To account for
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+ z

z’

𝐿z 𝐿z 𝐿z 𝐿z 𝐿z 𝐿z

Finite body with
source at z’

𝑍11…

𝑍12…

𝑍21…

𝑍22…

+ + + +

-

- - - -

++ + +

++ + + + ++ +

+ + ++

- -

- - - -

-

z

z − z’

z + z’2𝐿z+ z− z’2𝐿z+ z+ z’

2𝐿z− z− z’2𝐿z− z+ z’4𝐿z− z − z’

𝜕𝐺𝜕z = 0

𝜕𝐺𝜕z = 0

𝐺 = 0
𝐺 = 0

𝜕𝐺𝜕z = 0

𝜕𝐺𝜕z = 0

𝐺 = 0

𝐺 = 0

Figure 3.3: Method of images following Ref. [83]: Sources (+) and sinks (-) repre-
sented by the fundamental solution of the virtual wave signal are positioned
in a defined manner to satisfy the corresponding boundary conditions. The
various boundary cases are shown on the left-hand side, where (1) and (2)
denote Dirichlet and Neumann boundary conditions, respectively. The first
digit after the letter Z denotes the boundary condition on the front wall
(z = 0) and the second digit denotes the boundary condition on the back
wall (z = Lz).
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the infinite reflections and transmissions at the front wall and back wall, the positioning of the

mirror sources and sinks must be 2nLz-periodically extended with the running variable n, where

all sink or source locations are represented by the following equation [83]

2nLz + z+ z� for n =−∞, . . . ,−2,−1,0,1,2, . . . ,∞

2nLz + z− z� for n =−∞, . . . ,−2,−1,0,1,2, . . . ,∞. (3.8)

Finally, all mirror sources and sinks are summed up and the final Green’s function is shown

in Tab. 3.1. The other boundary cases can be derived in an analogous way. The Green’s func-

tions for the different boundary cases are listed in Tab. 3.1, where non-physical boundary cases

are also included, denoted by the digit 0. [83]

The results obtained with the method of images and the fundamental solution for the virtual

wave signal are verified as an example in the pulse-echo configuration (z = 0) for the boundary

cases Z21 and Z22 using VWC. Therefore, in a first step and according to Ref. [83], the 1D

temperature signal is calculated for the corresponding boundary conditions using the GFSE

for initial conditions. The observed rods and the boundary cases are schematically shown in

Fig. 3.4a). The initial point source with thermal energy q0 is introduced spontaneously at time

t = 0 and z = 0. Thus, the initial condition is [15, 99]

T (z, t = 0) =
q0

ρcp
δ (z), (3.9)

where ρ and cp denote the density and the specific heat capacity, respectively. The Greens

functions for heat conduction that applies for this boundary cases are [83]

GZ21(z, t|z�,τ) = 1�
4πα(t − τ)

∞

∑
n=−∞

(−1)n
�

exp
�
(2nLz + z− z�)2

4α(t − τ)

�
+ exp

�
(2nLz + z+ z�)2

4α(t − τ)

�

(3.10)

GZ22(z, t|z�,τ) = 1�
4πα(t − τ)

∞

∑
n=−∞

�
exp

�
(2nLz + z− z�)2

4α(t − τ)

�
+ exp

�
(2nLz + z+ z�)2

4α(t − τ)

�

.

(3.11)

Using the GFSE for initial conditions and Eqs. 3.9-3.11 the temporal temperature signals for

each depth position z can be calculated. Since in this case the pulse-echo configuration is
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Table 3.1: Green’s functions of the virtual wave signal for non-physical, Dirichlet, and Neumann
boundary conditions derived via the method of images and the fundamental solution of
the virtual wave signal. This presentation was originally adapted from Ref. [83] and
presented in Ref. [99].

Case Greens function

Z00 K (z− z�, t − τ) =

������������������

1
2c

δ
�

t − τ − z− z�

c

�
for z− z� > 0� �� �

wave propagating to the right direction

1
2c

δ
�

t − τ +
z− z�

c

�
for z− z� < 0� �� �

wave propagating to the left direction

Z10 K (z− z�, t − τ)−K (z+ z�, t − τ)

Z20 K (z− z�, t − τ)+K (z+ z�, t − τ)

Z11
∞
∑

n=−∞
[K (2nLz + z− z�, t − τ)−K (2nLz + z+ z�, t − τ)]

Z12
∞
∑

n=−∞
(−1)n[K (2nLz + z− z�, t − τ)−K (2nLz + z+ z�, t − τ)]

Z21
∞
∑

n=−∞
(−1)n[K (2nLz + z− z�, t − τ)+K (2nLz + z+ z�, t − τ)]

Z22
∞
∑

n=−∞
[K (2nLz + z− z�, t − τ)+K (2nLz + z+ z�, t − τ)]

observed the temporal temperature signals are evaluated at z = 0 and the corresponding signals

are given by

TZ21(z = 0, t) =
2q0√
4παt

∞

∑
n=−∞

(−1)n exp
�
(2nLz)

2

4αt

�
(3.12)

TZ22(z = 0, t) =
2q0√
4παt

∞

∑
n=−∞

exp
�
(2nLz)

2

4αt

�
. (3.13)
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A graphical representation of the corresponding discrete temperature signals as a function of

the Fourier number Fo is shown in Fig. 3.4b). The temperature signals were related to the

adiabatic temperature Ta = TZ22(z = 0,Fo = 1). Then, the temperature signals were transformed

into virtual wave signals by calculating the inverse of Eq. 3.5 using the regularization method

ADMM. The resulting virtual wave signals as function of the dimensionless depth ẑ are shown in

Fig. 3.4c). As can be seen, the positioning of the mirror sources (+) and mirror sinks (-) for both

11

Initial source

Detector

Initial source

Detector

[a
. u

.]

[a
. u

.]

∂T (z, t)
∂ z

���
z=0

= 0

a)

∂T (z, t)
∂ z

���
z=Lz

= 0

b)

∂T (z, t)
∂ z

���
z=0

= 0

c)

T (z = Lz, t) = 0

Figure 3.4: a) Rods with boundary cases Z22 and Z21, where the initial source is spontaneously
introduced at t = 0 and z = 0. The detector is located at z = 0. b) Corresponding
temperature signal for both cases on the double logarithmic scale. c) Virtual wave sig-
nal as function of dimensionless depth ẑ calculated using ADMM. As can be seen,
the positioning of the mirror sources(+) and sinks(-), with z� = 0, corresponds to
Fig. 3.3. Parameters: n = {−50,−49, . . . ,50}; Lz =2.7 mm; thermal diffusivity α =
3.2·10−7 m2/s; virtual speed of sound c = c̃Δz/Δt with the dimensionless virtual speed
of sound c̃ = 1, the axial spatial resolution Δz =2.7·10−5 m and the temporal resolu-
tion Δt =0.011 s. The number of time steps for the surface temperature signal and the
virtual wave signal was Nt = 2000 and Ntv = 600, respectively.
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cases fits very well with the graphical representation of the method of images shown in Fig. 3.3.

It is worth mentioning that the adiabatic boundary case Z22 consists only of sources. This is

plausible, since no energy can be released at the boundaries and thus no "energy sink" must be

included. For the boundary case Z21, mirror sinks must also be included to satisfy the boundary

conditions at z = Lz. However, both virtual wave signals show a decrease in the source/sink

amplitude and the corresponding full-half width. Ideally, these amplitudes should have infinitely

high amplitudes and infinitesimally small full-half-width, as represented by the fundamental

solution of the virtual wave signal (case Z00 in Tab. 3.1). The reason for the attenuation of

the mirror sources/sinks with increasing depth or number of reflections and transmissions is the

irreversibility resulting from small fluctuations in the temperature signal, which can only be

partially compensated by including prior information in the regularization [29].

3.1.3 Discrete inverse problem
In practical applications the temperature data is discrete in space and time. Due to this Eq. 3.5

must be discretized, for example by the quadrature rule [73], which result in a linear matrix

equation

T = KTvirt. (3.14)

with the matrix dimensions T ∈ RNt×q, K ∈ RNt×Ntv and Tvirt ∈ RNtv×q [13, 100]. In Eq. 3.14

the discrete Fredholm integral was notated for one spatial cross-section with pixel number q.

The number of time steps of the temperature signal and the virtual wave signal are Nt and

Ntv, respectively. Using the discrete time steps tk = kΔt and t �j = jΔt with the running variables

k = {0,1, ...,Nt −1} and j = {0,1, ...,Ntv−1}, the components of the kernel K are given by [98]

K(k, j) =
c
√

Δt√
παk

exp
�
−c2Δt j2

4αk

�
=

η√
πk

exp
�
−η2 j2

4k

�
. (3.15)

Here η = c
√

Δt/
√

α is a dimensionless number that depends on the propagation parameters c

and α and on the temporal resolution Δt .

3.1.4 Arbitrary heating function
The Fredholm integral in Eq. 3.5 is only valid for a temporal Dirac-Delta like excitation. How-

ever, due to the linear nature of the standard heat equation and standard wave equation, Eq.
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3.5 can be convolved in time (∗t) with any transient heating signal h(t) and the corresponding

relationship for the continuous case is given by [97]

Th(r, t) = T (r, t)∗t h(t) =
∞�

−∞

�
K(t, t �)∗t h(t)



Tvirt(r, t �)dt �. (3.16)

The discrete case, where the heating function is represented by the vector h ∈ RNt×1 can be

written as [97]

Th = T∗t h = KhTvirt with Kh = K∗t h, (3.17)

using Eq. 3.14. The inversion of the modified linear matrix equation Eq. 3.17, yields again the

virtual wave signal for a Dirac-Delta excitation signal.

An application of the modified temperature signal to virtual wave signal conversion, which

considers temporal arbitrary heating functions, is represented in Fig. 3.5. Fig. 3.5a) shows the

heating function h that is introduced at z = 0 in a 1D rod with adiabatic boundaries Z22 and

length Lz as function of the Fourier number Fo. The corresponding temperature signal Th,Z22

14

Front wall echo

Back wall echo

a) b) c)

Figure 3.5: a) Simulated temperature signal based on an arbitrary temporal heating function h that
is superimposed with white Gaussian noise as function of the dimensionless Fourier
number Fo. b) Corresponding virtual wave signal estimated using ADMM as regular-
ization tool as function of the dimensionless depth ẑ. c) Visualization of the temporal
noise filtering capability of the VWC. Parameters: n = {−50,−49, . . . ,50}; Lz =2.7
mm; thermal diffusivity α = 3.2·10−7 m2/s; virtual speed of sound c = c̃Δz/Δt with
c̃ = 1, Δz =2.7·10−5 m and Δt = 0.011 s. The number of time steps for the surface
temperature signal and the virtual wave signal was Nt = 2000 and Ntv = 600, respec-
tively.
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which has been related to the maximum temperature signal Tmax
h,Z22 = 3.348 K and superimposed

with white Gaussian noise with a standard deviation of σ = 25 mK, is observed at z = 0 (pulse-

echo configuration). Based on the temperature signal the virtual wave signal is calculated by

inversion of Eq. 3.17 using the regularization tool ADMM. As can be seen in Fig. 3.5b) the

computed virtual wave signal Tvirt,Z22 is again Dirac-Delta like with the initial source and the

mirror source at the dimensionless depth ẑ = 0 and ẑ = 2, respectively. Fig. 3.5c) shows the

noise filtering capability of the virtual wave concept. The filtered temperature signal Trec
h,Z22 was

obtained via the matrix multiplication of the convolved discrete kernel Kh and the virtual wave

signal Tvirt,Z22. In addition, one can see that the reconstructed filtered temperature slope Trec
h,Z22

fits the observed slope Th,Z22 very well.

3.2 Second reconstruction step

After the 1D temperature signal to virtual wave signal transformation either the sample thick-

ness Lz can be estimated by the known axial thermal diffusivity α33 or vice versa using the

virtual time of flight [15, 90]. However, subsurface defects in 2D and 3D geometries usually

cause a 2D and 3D temperature signal which leads to a 2D and 3D virtual wave signal. The first

reconstruction step of the VWC considers only local (pixel by pixel) thermal wave or virtual

wave propagation, boundaries at the front wall and back wall and performs only a temporal

noise-filtering. To separate the lateral heat flow from different directions and to take into ac-

count lateral boundary conditions and a spatial noise filtering ultrasonic reconstruction tools

such as the T-SAFT and F-SAFT can be used. The second reconstruction step is discussed for

one spatial cross-section y based on the T-SAFT method and graphics in Fig. 3.6. Figs. 3.6a)

and Fig. 3.6b) show the observed virtual wave signal that results from a point-like defect and

the region of interest (ROI) for the reconstruction of subsurface defects, respectively. Using

T-SAFT, the relationship between a potential point scatterer T0(r�) at point r� and the virtual

wave signal Tvirt(r, t), evaluated at the front wall (pulse-echo configuration), is given by [101]

T0(r�) = T0(x�,y�,z�) =
��
SM

Tvirt(x,y,0, t �)dxdy with t � =
2
c

�
(x− x�)2 +(y− y�)2 +(z− z�)2.

(3.18)

Point scatterers can be introduced at sample interfaces such as front-wall, back-wall and defects.

To compute T0(r�), in the discrete case, a mesh grid (region of interest) must be defined by the
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Figure 3.6: Sketch of T-SAFT reconstruction, which was adopted from Ref. [16]. a) B-scan of
the virtual wave signal that consists of A-scans that are computed from the given
temperature signal. b) Region of interest for the reconstruction of subsurface defects.

lateral (Δx, Δy) and axial spatial resolutions (Δz) corresponding to the lateral spatial resolution

and the temporal resolution of the IR-camera.

In the discrete case, T-SAFT can be interpreted as a matched filter or trial and error method.

In this procedure, each discrete mesh grid point r� = (x�,y�,z�) yields a hyperbola and according

to Eq. 3.18 the sum (discrete integral) along the hyperbola is evaluated. If the hyperbola of the

observed mesh grid position is caused by a defect (r�0 = r�), a high value is obtained and the

resulting value is stored in the observed mesh grid position. The evaluation of each mesh grid

point gives the final reconstruction T0(r�) of the region of interest. [16]

According to Ref. [16], T-SAFT and F-SAFT provide the same reconstruction result, but F-

SAFT is much faster than T-SAFT [102] and therefore in this thesis the second reconstruction

step is performed exclusively with F-SAFT. A disadvantage of the standard F-SAFT method is

that it can only be applied to plane surfaces [102]. With F-SAFT, one can consider Dirichlet

(sound transmitting) and Neumann (sound-reflecting) boundaries using the discrete sine and

cosine-transforms, respectively.
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3.3 Application of both reconstruction steps

In this subsection, an example result is presented where both reconstruction steps are involved.

The results are based on an isotropic sample with adiabatic boundaries and a 2D transient tem-

perature signal resulting from internal heat sources. In the first reconstruction step ADMM was

used for regularization by minimizing the following cost function [75, 103]

1
2
||KTvirt −T||22 +λ ||Tvirt||1 subject to Tvirt − z = 0. (3.19)

The letter λ denotes the regularization parameter and z is an additional vector of variables [75].

Fig. 3.7 shows the results and indicates the evaluation procedure of VWC. In the left image

the initial temperature signal T0 is illustrated. The resulting transient surface temperature signal

T is detected at z = 0 and reveals the diffusive nature of heat propagation which leads to blurred

images. By calculating the inverse solution of Eq. 3.14, the detected surface temperature signal

T is transformed locally into a virtual wave signal Tvirt. The calculated virtual wave signal

Tvirt also illustrates the defect depth feature extraction capability of the VWC. Comparing the

depth
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Figure 3.7: VWC processing for simulated 2D transient surface temperature data with adiabatic
boundary conditions. To compute the virtual waves signal, the regularization tool
ADMM was used. The second reconstruction step was performed with F-SAFT. Pa-
rameters: ROI = (Detection plane × depth) = (10.8 mm × 5.4 mm); thermal dif-
fusivity α = 0.13·10−6 m2/s; virtual speed of sound c = c̃Δz/Δt with c̃ = 1, Δz =
9.8·10−5 m and Δt = 0.02 s. The number of time steps for both the surface tempera-
ture signal and the virtual wave signal was Nt = Ntv = 5000.
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"ideal" virtual wave signal Tideal
virt obtained by directly solving the standard wave equation, with

the virtual wave signal Tvirt one can see a high similarity between these signals. However, the

loss of information due to entropy production during heat diffusion cannot be fully compensated

by regularization even when using prior information in the form of positivity and sparsity and

thus the deeper depth features of the calculated virtual wave signal Tvirt differ from the "ideal"

virtual wave signal Tideal
virt . Since the calculated wave signal obeys the standard wave equation,

ultrasonic reconstruction techniques, for instance F-SAFT, can be used in the second evaluation

step to account for the lateral heat flow and to reconstruct the initial temperature signal and

secondary boundary sources Trec
0 . These secondary boundary sources can either originate from

sample or defect boundaries.

The experimental surface temperature signals are superimposed with noise, and in this case

F-SAFT also introduces spatial noise filtering, which significantly improves the SNR and defect

detection capability.
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5 Publications and Scientific contribution

Current reconstruction methods for active thermography data, monitored in the pulse-echo con-

figuration, are lacking in 3D localization and visualization of subsurface defects considering

lateral anisotropic heat propagation. This work is based on a promising 3D reconstruction ap-

Photoacoustic reconstruction from photothermal measurements 
including prior information

Gregor Thummerer, Günther Mayr, Markus Haltmeier, Peter Burgholzer

Photoacoustics · March 2020 · Volume 19 · DOI: 10.1016/j.pacs.2020.100175
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wave backpropagation

Gregor Thummerer, Günther Mayr, Philipp D. Hirsch, Mathias Ziegler,  
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Figure 5.1: Scientific contribution.
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5 Publications and Scientific contribution

proach called VWC and complements it in terms of anisotropic heat propagation observed by

transient 3D temperature signals recorded in the pulse-echo configuration. Moreover, a novel

method for estimating the anisotropic thermal diffusivity tensor based on the VWC is intro-

duced. In addition, a discretization criterion is proposed that significantly speeds up the recon-

struction process while maintaining the reconstruction quality. In summary, this work presents a

fast, readily-interpretable and efficient multi-dimensional photothermal reconstruction method

for anisotropic media developed in the course of four published peer-reviewed journal papers

and one preprint with first authorship. An overview of the publications is shown in Fig. 5.1.

The publications are presented below, preceded by a summary of the most important results

and scientific contibutions. Since the publications were prepared in collaboration with other

authors, authorship credit is given in accordance with the CRediT taxonomy1.

1Brand, A., Allen, L., Altman, M., Hlava, M. and Scott, J. (2015), Beyond authorship: attribution, contribution,
collaboration, and credit. Learned Publishing, 28: 151-155. https://doi.org/10.1087/20150211
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5 Publications and Scientific contribution

5.1 Photoacoustic reconstruction from photothermal

measurements including prior information

This work presents reconstructions of internal heat sources for 2D photothermal temperature

signals. The goal of this work was to incorporate prior information in the form of positivity and

sparsity to compensate for the degradation of spatial resolution that leads to blurred images of

deeper structures. A test specimen was prepared with graphite rods embedded in epoxy resin

at different depth positions. The graphite rods were thermally excited with a laser to introduce

internal heat sources, which initiated a 2D thermal diffusion process. Simultaneously, the sur-

face temperature signal was recorded with an IR camera. To incorporate prior information, the

iterative regularization scheme ADMM was implemented for application within the VWC. The

inclusion of the prior information sparsity is valid since typical test specimens have few defects.

To include the prior information positivity, the Abel transform was used to project the bi-modal

2D virtual wave signal onto a positive data set and the linear inverse problem was adapted

appropriately. To verify the benefits of including the prior information, the results obtained

with ADMM were compared with those obtained with the direct regularization method T-SVD.

Compared to ADMM, when using T-SVD, only the measurement errors represented by the tem-

perature resolution of the IR camera can be used to estimate the regularization parameters, but

prior information such as positivity and sparsity cannot be considered.

The main conclusion of this work is that prior information in the form of positivity and spar-

sity together with the iterative regularization tool ADMM can significantly improve the quality

of the inverse solution, thus improving the localization of internal heat sources.
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A B S T R A C T

Photothermal measurements with an infrared camera enable a fast and contactless part inspection. The main
drawback of existing reconstruction methods is the degradation of the spatial resolution with increasing imaging
depth, which results in blurred images for deeper lying structures. In this paper, we propose an efficient image
reconstruction strategy that allows prior information to be included to overcome the diffusion-based information
loss. Following the virtual wave concept, in a first step we reconstruct an acoustic wave field that satisfies the
standard wave equation. Therefore, in the second step, stable and efficient reconstruction methods developed for
photoacoustic tomography can be used. We compensate for the loss of information in thermal measurements by
incorporating the prior information positivity and sparsity. Therefore, we combine circular projections with an
iterative regularization scheme. Using simulated and experimental data, this work demonstrates that the quality
of the reconstruction from photothermal measurements can be significantly enhanced.

1. Introduction

Photoacoustic (or optoacoustic) tomography uses thermoelastic
expansion following a rapid temperature rise after the illumination of
light absorbing structures within a semitransparent and turbid material,
such as a biological tissue. Photothermal imaging belongs to the
methods of active thermography and measures directly the increased
temperature propagating by heat diffusion from the light absorbing
structures to the surface of the sample. Both methods have the same
optical absorption contrast and enable to detect hemoglobin, lipids,
water and other light-absorbing chromophores, but with greater pene-
tration depth than purely optical imaging modalities that rely on bal-
listic photons [1–3]. In photoacoustic tomography, the temporal evo-
lution of the acoustic pressure field is sampled using an array of
ultrasound detectors placed on the tissue surface or by moving a single
detector across the detection surface. From the measured pressure sig-
nals, images of the optical absorption within the tissue can be re-
constructed by time reversal and back projection methods or by solving
an inverse source problem [3–5]. In photothermal imaging the surface
temperature evolution is measured by an infrared camera.

The achievable spatial resolution for photoacoustic tomography and
photothermal imaging degrades with imaging depth, which results in
blurred images of deeper lying structures. Besides pure technical

limitations of the measurement equipment, the ultimate resolution limit
has its origin in the second law of thermodynamics: scattering, dis-
sipation or diffusion of the acoustic or “thermal” wave on its path
through the sample causes entropy production, which is equal to the
loss of information [6–8] (Fig. 1). As the information content of the
reconstructed image strongly correlates with the spatial resolution, the
higher entropy production from deeper lying structures causes a de-
gradation in resolution. Overcoming the resolution limit due to entropy
production is not trivial. Without taking into account additional
knowledge or information about the sample, no mathematical re-
construction algorithm can compensate for this information loss,
causing the degradation in resolution.

Super-resolution fluorescence imaging techniques, such as sto-
chastic optical reconstruction microscopy (STORM) [9], photoactivated
localization microscopy (PALM) [10], or super-resolution optical fluc-
tuation imaging (SOFI) [11] utilize the fact that the localization of point
sources (e.g. activated florescent molecules) is possible with a much
higher accuracy than the width of the point spread function (PSF).
Although the resolution in optical imaging has been greatly improved,
there continues to be rapid advancements in the development of high
resolution imaging methods also for many other imaging modalities.
Localization microscopy was also used to achieve super-resolution in
ultrasound imaging by using scattering microbubbles instead of
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fluorescent molecules as point sources [12,13], and recently even for in
vivo localization of single dyed droplets for photoacoustic tomography
[14]. Ultrafast localization microscopy allows for super-resolution ul-
trasound imaging of vasculature in whole organs [15].

In the field of optics, it has been known since 2007 that optical
diffusion in a strong scattering sample can be “inverted” by wavefront
shaping [16]. Coherent photons from a laser scatter in a deterministic
way (at least for a certain correlation time), which is measured point-
wise. The resulting scattering matrix is used to change the light wave
front, e.g. by a spatial light modulator in such a way that after diffusive
scattering the light is focused. For heat diffusion, phonons are not co-
herent and the propagation of phonons is highly uncorrelated in time.
Therefore, a “phonon scattering matrix” cannot be measured and used
to invert heat diffusion in time. For photoacoustic imaging in a (quasi)
diffusive regime a comprehensive overview about the advances in
super-resolution imaging was recently given by Shi et al. [17].

The degradation of spatial resolution with increasing imaging depth
in thermographic imaging could be circumvented by using structured
heating, e. g. by structured illumination patterns. For super-resolution
reconstruction out of numerous images with different illumination
patterns, we have successfully proposed a non-linear iterative joint
sparsity (IJOSP) algorithm [18,19].

These patterns can even be unknown, which is called blind struc-
tured illumination. We demonstrated this by imaging a line pattern and
a star-shaped structure through a metal sheet with a resolution that was
four times better than the resolution limit from entropy production
[19]. The structured illumination was realized using parallel slits cut in
an aluminum foil, where the excitation is carried out either by a flash
lamp, which passes through the slits in the foil, or by a high-power laser
with a line-shaped spot.

In this work, we demonstrate that even without structured illumi-
nation, just by taking into account prior information, such as positivity
and sparsity of the heated structures inside the sample and using ade-
quate iterative non-linear reconstruction algorithms, the increased
blurring with imaging depth can be reduced significantly. Positivity
comes from the fact that heating always causes a temperature increase.
By converting the temperature signal into a virtual wave, which is a
solution of the wave equation, positivity is not directly preserved for 2D
and 3D wave propagation. An initially nonnegative acoustic signal will
take negative values during propagation. In this work, we account for
this issue by calculating the circular or spherical projections, which is in
2D the Abel transformation and in 3D the time integral of the virtual
wave [20]. The circular and spherical projections preserve positivity of
the initial source. For one data point the information gain by a posi-
tivity constraint would be only a factor of two, but for a signal with n
data points this factor becomes 2n, which can be large for higher n.
More information could be gained by using also sparsity. Sparsity can
often be assumed because defects, such as cracks in samples, are usually

sparse and also in biomedical imaging the sample consists of different
types of tissues separated by “sparse” interfaces. The application of the
virtual wave concept (VWC) with prior information for a high-resolu-
tion thermographic image reconstruction is shown using 2D experi-
mental surface temperature data.

2. Virtual wave concept

The intention of the virtual wave concept is to reconstruct the initial
temperature distribution T0(r) based on temporal temperature data T(r,
t) measured at the sample surface (Fig. 2a, c). For this purpose, we
transform T(r, t) locally into a virtual wave field Tvirt(r, t) (Fig. 2d) in
order to enable the application of efficient and stable photoacoustic
image reconstruction methods. The reconstruction of the initial heat
sources is imaged in Fig. 2e.

2.1. Forward problem

The direct or forward problem is analytically given by the heat
equation

⎛⎝∇ − ∂∂ ⎞⎠ = −
α t

T t
α
T δ tr r1 ( , ) 1 ( ) ( ).2

0 (1)

The heat equation describes the heat diffusion process in a solid and
hence the temperature distribution T(r, t) as function of position vector
r=(x, y, z), where x, y, z are the Cartesian coordinates, and time t. α is
the thermal diffusivity. The right hand side of Eq. (1) represents the
source term. Herein, the temporal Dirac-Delta distribution δ(t) arranges
that the spatial temperature distribution T0(r) is introduced at time
t=0. The heat equation can be classified as parabolic partial differ-
ential equation (PDE) and describes an irreversible process. Practically
the forward problem is given by heating up the test specimen, e.g. by
absorption of optical radiation or induction of eddy current and mea-
suring the corresponding temporal temperature change at the surface.
In Fig. 2a an exemplary initial temperature distribution is illustrated.
The corresponding simulated surface temperature distribution T(y,
z=0) is imaged in Fig. 2c.

The propagation of the virtual wave Tvirt(r, t′) is based on the
acoustic wave equation for pressure [21]

⎜ ⎟⎛⎝∇ − ∂∂ ⎞⎠ = − ∂∂c t
p t

c t
p δ tr r1 ( , ) 1 ( ) ( ).2

2

2

2 2 0 (2)

Herein, p(r, t) is the photoacoustic wave pressure, p0(r) is the initial
pressure distribution and c is the speed of sound. We claim, that the
following initial pressure and temperature distribution relation holds:= = = =p t p c ρβT tr r r( , 0) ( ) ( ) for 0,0

2
0 (3)

where ρ is the material density and β is the thermal expansion

Fig. 1. Schematic sketch of the information
loss from entropy production during scattering,
dissipation, or diffusion. (a) Sample with sub-
surface structure, which should be imaged; (b)
propagation of the acoustic or “thermal” waves
to the sample surface: entropy production de-
termines the loss of information; (c) detection
of signals at the sample surface; (d) measured
signals at the detector surface as a function of
time. Due to entropy production, the signal
from the deeper structures has not only a
smaller amplitude. They are also broadened
compared to the signal from the structure just
beneath the surface.
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coefficient of the observed material. Then we define a virtual wave
field, where the above relationship is extended for times t > 0 by in-
troducing the virtual time scale t′:

′ =T t p t
c ρβ

r r( , ) ( , ) .virt 2 (4)

By substituting Eqs. (3) and (4) into the acoustic wave equation for
pressure, Eq. (2), the PDE for the virtual wave propagation yields:

⎜ ⎟⎛⎝∇ − ∂∂ ′ ⎞⎠ ′ = − ∂∂ ′ ′
c t

T t
c t

T δ tr r1 ( , ) 1 ( ) ( ).2
2

2

2 virt 2 0
(5)

Herein, c is the virtual speed of sound and t′ corresponds to the virtual
time scale. The wave equation can be classified as hyperbolic PDE and
is, in contrast to the heat equation, time reversible. The virtual wave
exhibit wave properties such as wavefront propagation, reflection and
refraction [22,23]. Frequency domain- synthetic aperture focusing
technique (F-SAFT), a well known acoustic reconstruction method, is
used to reconstruct the initial temperature distribution T r( )0

rec . T0(r) is

again the initial temperature distribution.

2.1.1. Fredholm integral equation
According to Burgholzer et al. [24] the temperature distribution T(r,

t), can be calculated based on the virtual wave field Tvirt(r, t′) and the
kernel K(t, t′) for the same position vector r, but different time scales t
and t′: ∫= ′ ′ ′−∞∞T t T t K t tr r( , ) ( , ) ( , )dtvirt (6)

with

⎜ ⎟′ = ⎛⎝− ′ ⎞⎠ >K t t c
παt

c t
αt

t( , ) exp
4

0.
2 2

(7)

The kernel, Eq. (7), contains the thermal diffusivity α and virtual speed
of sound c, which are the characteristic parameters for heat and virtual
wave propagation. Eqs. (6) and (7) are valid for a temporal Dirac-Delta
like heating h(t)= δ(t) of the specimen. To obtain Eq. (7), we have to
Fourier transform Eqs. (1) and (5) temporally. Due to the elimination of

Fig. 2. Process steps of VWC based on simulated data with internal heat sources: (a) initial temperature distribution 2D (left) and 1D (right) at y = {6.5,13,19.5} mm,
(b) spatial temperature distribution at t=1 s, (c) simulated surface temperature field, (d) virtual wave field and (e) reconstructed field.

G. Thummerer, et al. Photoacoustics 19 (2020) 100175

3



the time derivatives one can find a relationship between temperature
field and virtual wave field for the same position vector r. Applying the
inverse Fourier transformation on this relationship yields Eq. (6) and
consequently Eq. (7). Due to the linear nature of wave and diffusion
equation, Eq. (6) can be extended for any heating function h(t) via
temporal convolution [6]. The benefit of VWC compared to the direct
solution of the inverse heat conduction problem (IHCP) comes with the
application on multidimensional heat conduction problems. Here the
VWC, in contrast to IHCP where the temporal and spatial components
are treated simultaneously, solves for the temporal virtual wave field
which yields the depth information such as defect depth, front wall and
backwall. This first reconstruction step is then post processed by
acoustic reconstruction methods where again the temporal information
and the spatial components are respected.

3. Image reconstruction

3.1. Inverse problem

Our goal is to convert the measured or simulated temperature field
into a so-called virtual wave field to enable the application of photo-
acoustic reconstruction methods. As mentioned previously, a con-
sequence of entropy production during heat diffusion, characterized by
the heat equation is that information is lost. Hence, calculating Tvirt
from T is a severely ill-posed inverse problem and regularization tools
are necessary to calculate an appropriate regularized solution [25].

Usually, thermographic data is discrete in time and space. Hence, it
is convenient to write Eq. (6) in discrete matrix form with
tk =(k − 1)Δt and ′ = − ′t j( 1)Δj t=T KTvirt (8)

The matrices have the subsequent dimensions: ∈ ×T ℝm q, ∈ ×K ℝm n and∈ ×T ℝn q
virt with k={1, 2, …, m} and j={1, 2, …, n}. The variable

ℓ={1, 2, …, q}, counts for the spatial extension in y. For a Dirac-Delta
like heating function h(t)= δ(t), the components of the K-matrix are
calculated in the following manner:

⎜ ⎟

⎜ ⎟

= − ⎛⎝− −− ⎞⎠
= − ⎛⎝− −− ⎞⎠

K c
π k

c j
k

η
π k

η j
k

Δ ( 1)
exp ( 1)

4Δ ( 1)

( 1)
exp ( 1)

4( 1)
.

͠ ͠
kj

Fo

2 2

Fo

2 2

(9)

During calculation of the matrix elements Kkj the expression (1/0) oc-
curs for k=1. Hence, the first row of the Kernel-matrix is set to zero: K
(1, :)= 0. In Eq. (9), the dimensionless numbers c͠ , ΔFo and η are de-
fined as

= = =′c c α η cΔ
Δ

; Δ Δ
Δ

;
Δ

,͠ ͠t

y

t

y
Fo 2

Fo (10)

where c͠ equates to the Courant-Friedrichs-Levy (CFL) number [26], ΔFo
is the discrete Fourier number [27] and η is the ratio of these di-
mensionless numbers.

3.1.1. Reduction to circular projections
The quality of the regularized solution, i.e. the solution of the vir-

tual wave field can be enhanced if prior informations, such as positivity
or sparsity, are available. Considering the temperature distribution
based on a heating pulse, in all spatial dimensions, the temperature
distribution is always positive with respect to the ambient temperature
for each time step of the simulation or measurement data. In contrast to
this, the virtual wave field is not positive for all spatial dimensions.
Positivity of the virtual wave field can only be guaranteed if the re-
construction is based on a one dimensional heat conduction problem.
Hence, the intention is to transfer the multidimensional virtual wave
data, via circular projections into a positive data set in order to in-
corporate the additional condition positivity [20,28,29]. Therefore, we

consider the circular projection Mvirt which can be computed with the
inverse Abel transformation of the two dimensional virtual wave field
Tvirt: = −M A T .virt

1
virt (11)

Herein A−1 is the inverse Abel transformation operator with respect to
time. For the 3D wave equation, the Abel transformation is replaced by
integration with respect to the temporal variable, which results in
spherical projections of the initial 3D source [25, Appendix A].

Our goal is now to relate the positive data, i.e. the circular projected
virtual wave signal Mvirt from Eq. (11) with the temperature signal T.
For this purpose, we recapitulate the temperature field of Eq. (8), that is
based on an arbitrary heating function h(t) represented by the vector h:= =T K h T KT( * ) ¯ .virt virt (12)

Herein (*) denotes the temporal convolution operator applied to the
rows of K. Performing the inverse operation of Eq. (11) and substituting
this into Eq. (12) yields:

= = =T KT KAM KM¯ ¯ ¯̂virt virt virt (13)

= =K KA K h Awith ¯̂ ¯ ( * ) . (14)

In any dimension, the circular means of a non-negative function are
again non-negative. By solving Eq. (13) we can therefore incorporate
the known non-negativity of the circular projections of Tvirt as prior
knowledge when reconstructing Mvirt. In order to obtain the two-di-
mensional virtual wave field we can apply again the Abel transforma-
tion A to the reconstructed virtual circular projections. We apply reg-
ularization tools to solve the inverse problems Eq. (8) and Eq. (13). For
the inverse problem in Eq. (8) we use the truncated singular value
decomposition (T-SVD) for regularization. To solve the inverse problem
Eq. (13) we apply the alternating direction method of multipliers
(ADMM).

3.1.2. Regularization
In this work we use the direct regularization method truncated T-

SVD and the iterative regularization algorithm ADMM. For the sake of
simplicity, the solution strategies are described for 1D temperature
profiles of a single infrared camera pixel. The heat diffusion is still in 2D
or 3D, where the described solution strategies are applied separately to
each pixel location.

The solution using T-SVD approximates the least squares solution
and its objective function is given by [30]

−KT Tminimize 1
2

|| || .virt 2
2

(15)

Formally we have for the virtual wave solution:

∑=−
=

⊤
μ

T u Tv .
i

k
i

i
ivirt

T SVD

1 (16)

Herein, k is the regularization parameter that is estimated using the
discrete Picard plot, where the only prior information is the noise level.
ui and vi are orthonormal column vectors of the matrices U and V,
obtained via SVD.

To incorporate the prior information positivity and sparsity we
apply the ADMM algorithm, which is an efficient iterative algorithm for
constrained optimization. [31]. Using ADMM the prior information
sparsity is respected, because we assume that the virtual wave field Tvirt
is sparse. ADMM is a descendant of the Douglas-Rachford splitting
method [32,33]. The idea is to split the objective function

− + λKM T Mminimize 1
2

|| ˆ || || ||virt 2
2

virt 1 (17)

into two parts in order to obtain separate problems that are easier to
solve. Hence, the new problem is given by:
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+f gM zminimize ( ) ( )virt (18)

with = −f M KM T( ) 1/2|| ¯̂ ||virt virt 2
2, = ∥ ∥g λ(z) Mvirt 1and subject to− =M z 0.virt (19)

Then we can form the Lagrangian with respect to Eqs. (18) and (19). To
increase robustness, one adds a penalty term and an appropriate pen-
alty parameter ρ > 0 to the Lagrangian. This approach gives the aug-
mented Lagrangian and leads to the following iteration procedure to
reconstruct Mvirt [31]:

= + + −= += + −
+ ⊤ − ⊤
+ +
+ + +

ρ ρ
S

M K K I K T z u
z M u
u u M z

: ( ¯̂ ¯̂ ) [ ¯̂ ( )]
: ( )

: .

k k k

k
λ ρ

k k

k k k k

virt
1 1

1
/ virt

1

1
virt

1 1 (20)

Sλ/ρ is a threshold operator. In order to enforce positivity, we apply soft
thresholding only to the positive entries and set the negative entries to
zero. λ is a regularization parameter that is determined by the L-curve
method [34].

4. Experimental results

In this section we apply the VWC to pulse thermography data based
on internal heat sources. Based on the physical parameters, the time
resolution and the spatial resolution we can compute the kernel matrix
for T-SVD. Further, using the Abel transformation, we introduce the
prior information positivity. Then a comparison of the above presented
regularization tools is given. Finally, we apply F-SAFT to reconstruct
the initial temperature distribution. Since the information content of K̂̄
is higher than for K we expect a significant improvement of the reg-
ularized solution for ADMM compared to T-SVD. The reconstruction of
the internal heat sources is performed by F-SAFT.

4.1. Image reconstruction of internal heat sources

The test specimen is built up with graphite bars that are embedded
in epoxy resin. The geometric dimensions are shown in Fig. 3a. The

graphite bars are heated by laser excitation, where the laser has a
wavelength of 938±10 nm. As one can see in the exemplary surface
temperature profiles (Fig. 4a), the laser excitation causes a volumetric
heating of the epoxy resin and a surface heating of the graphite bars.
Hence, the epoxy resin behaves like a semi-transparent material for the
corresponding laser excitation (see Fig. 3b). The maximum power of the
diode laser is 250 W and the numerical aperture is 0.22. The raise time
is smaller than 10 μs and the bandwidth is greater than 50 kHz. In the
experiment the laser power was 250 W and the heating time was
th=200 ms. The spatial laser power distribution was homogeneous
over the laser spot. The laser spot diameter was approximately 40 mm.
The heated graphite bars work as internal heat sources. Simultaneously,
the temperature evolution is measured on the surface of the test spe-
cimen using an infrared camera. The infrared camera has an image
frequency of 106 Hz in full frame modus and the noise equivalent
temperature difference (NETD) is smaller than 25 mK. This camera has
a cooled indium antimony (InSb) sensor, that is sensitive in the spectral
range of 3.0–5.1 μm. In this spectral range the epoxy resin is opaque.
Hence, we measure the temporal surface temperature at z=0 and not
the surface temperature of the graphite bars.

The spatial resolution is Δy = 0.098 mm and the time resolution is
Δt = 0.02 s. Fig. 4a illustrates temporal temperature slopes for different
position along the graphite bars. Fig. 4b shows spatial temperature
distributions for t={20,30,50} s related to the corresponding max-
imum. For both images, the gray lines show the original data and the
black lines the spatial mean value of three-hundred surface temperature
slices normal to the graphite bars. As one can see, the deeper the steel
rod, the lower the maximal temperature signal. This behavior is a
consequence of the diffusive nature of the thermal wave.

Based on the measured surface temperature, we calculate a virtual
wave field using T-SVD and ADMM. The thermal diffusivity
α=0.13e−6 m2/s was determined using the linear diffusivity fit (LDF)
method [35]. The dimensionless speed of sound was set in the stable
regime to =c 1͠ . Using T-SVD we directly solve for the virtual wave field
and set the benchmark for ADMM. Using ADMM, we then take into
account the prior information, sparsity via the cost function Eq. (17)

Fig. 3. (a) Test specimen built up with graphite bars, that are embedded in epoxy resin. (b) Principle sketch of the measurement set-up: The graphite bars are
stimulated by laser excitation. The resulting change of the surface temperature is measured with an infrared camera.
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and positivity is introduced by the Abel transformation. Consequently,
we calculate the regularized solution for the circular projections Mvirt.
To calculate the virtual wave field Tvirt we apply the Abel transforma-
tion to the circular projections Mvirt. The ideal virtual wave field and
the virtual wave fields calculated by T-SVD and ADMM are illustrated
in Fig. 5a. For the T-SVD, k=14 singular values were respected. For
the ADMM algorithm 40 iterations with a fixed penalty parameter
ρ=0.0016 and regularization parameter λ=7.58 were performed.
One can see, that the virtual wave field based on ADMM matches much
better the ideal virtual wave field compared to T-SVD. As a consequence
the image reconstruction of the internal heat sources based on ADMM
exhibit a much better spatial resolution compared to T-SVD.

To highlight the process steps of VWC the result of ADMM reg-
ularization is again illustrated in Fig. 6. The left side of Fig. 6 show the
results in 2D and the right side shows a 1D representation of the initial
temperature field, the measured surface temperature field, the calcu-
lated virtual wave field applying ADMM, and the reconstructed initial
temperature distribution applying F-SAFT. The 1D representations were
obtained by evaluating the corresponding 2D fields at y=

{6.2,12.85,19.25} mm (see different line styles). The evaluation at y
differ from the simulation because of inaccuracy in the manufacturing
of the specimen. Especially, for the 1D representation of the virtual
wave, we see the characteristics of 2D wave propagation. Compared to
the results obtained by simulation (Fig. 2e), the experimental results
(Fig. 6d) show non-symmetric rods.

For simulated data we used a homogeneous material with a certain
spatial initial temperature distribution (Fig. 2a). In the experiment we
see an influence caused by the volumetric heating of the semi-trans-
parent material that have different thermophysical properties (epoxy
resin and graphite). Hence, we have some balancing processes at the
interface of these two materials. Consequently, we expect that the non-
proper heating in the experiment affect a symmetric reconstruction of
the rods.

5. Conclusions

In this work an application of the VWC for thermographic image
reconstruction based on multidimensional temperature data was

Fig. 4. (a) Temporal temperature distribution
for several pixel positions. Because of the par-
tially volumetric heating of the epoxy resin we
have a sudden temperature increase at t=0.
(b) Spatial temperature distribution for several
time stamps. The gray lines show the original
data and the black lines the spatial mean value
of three-hundred surface temperature slices
normal to the graphite bars.

Fig. 5. (a) Comparison of the ideal virtual wave field to the reconstructed wave fields applying F-SAFT and ADMM. (b) Comparison of the initial temperature
distribution and the reconstructed initial temperature distributions using T-SAFT and ADMM.
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shown. We emphasize that VWC is only meaningful and different to an
IHCP when the reconstruction of defects is based on a multidimensional
heat conduction problem. The main goal of this work was to illustrate
that prior information significantly improves the regularized solution
and, hence, the reconstructed field. Using T-SVD for regularization the
information about measurement noise was considered in order to esti-
mate the regularization parameter k. Using ADMM, the prior informa-
tion positivity and sparsity were incorporated. For this purpose we re-
formulated the linear severely ill-posed inverse problem. The
regularization and reconstruction results show that respecting more
information about the data significantly increases the quality of the
regularized solution. Due to the linearity of the heat and wave equation
it is possible to employ VWC for thermo-tomography for the detection
and characterization of cracks in isotropic and anisotropic media.
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5 Publications and Scientific contribution

5.2 Photothermal image reconstruction in opaque media with

virtual wave backpropagation

This publication demonstrates the application of the VWC for the reconstruction of subsurface

defects using 2D photothermal temperature signals acquired in the pulse-echo configuration.

As described in Paper 5.1, prior information in the form of positivity and sparsity was included

in the iterative regularization tool ADMM to compensate for the degradation of spatial resolu-

tion for deeper defects. However, instead of considering internal heat sources and a one-way

heat diffusion process, photothermal temperature signals obtained in the pulse-echo configu-

ration were considered, involving a two-way heat diffusion process. Since test specimens are

often accessible from only one side, the application of the VWC to photothermal temperature

signals acquired in the pulse-echo configuration is of great practical relevance. This publica-

tion also contains a detailed analytical description of the Abel transform and its application to

2D photothermal temperature signals. For experimental validation, a metallic specimen with

artificial defects at different depths and isotropic material properties was 3D printed using a

cobalt-chromium powder. To improve the thermal energy absorption at the sample surface,

the sample was coated with a diamond-like carbon. The opaque sample was thermally excited

using a vertical-cavity surface-emitting laser (VCSEL) array. Simultaneously, the resulting sur-

face temperature signal was recorded with an IR camera.

The incorporation of prior information in the form of positivity and sparsity together with

ADMM and subsequent evaluation with the ultrasonic reconstruction method F-SAFT enabled

the detection of subsurface defects with a defect width-to-defect depth ratio of up to 0.52.
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A B S T R A C T   

Thermographic reconstruction of defects that lie in the bulk of a sample is a difficult task because entropy 
production during heat diffusion leads to information loss. To reconstruct defects one has to solve an inverse heat 
conduction problem. The quality of the reconstruction is closely related to the information content of the 
observed data set that is reflected by the decreasing ability to spatially resolve a defect with growing defect 
depth. In this work we show a 2D reconstruction of rectangular slots with different width-to-depth ratios in a 
metallic sample. For this purpose, we apply the virtual wave concept and incorporate positivity and sparsity as 
prior information to overcome the diffusion-based information loss partially. The reconstruction is based on 
simulated and experimental pulse thermography data. In the first reconstruction step, we compute a virtual wave 
field from the surface temperature data. This allows us, in the second step, to use ultrasonic backpropagation 
methods for image reconstruction.   

1. Introduction 

In recent decades the number of industrial applications of the non- 
destructive testing method active thermography has significantly 
grown [1,2]. For active thermography the specimen is stimulated, e.g. 
by a flash lamp, laser or induction of eddy current, to obtain a temper
ature rise compared to the initial state. This change in temperature or 
more precisely the change in electromagnetic radiation in the infrared 
regime, is then detected on the surface of the specimen using an infrared 
(IR)-camera. Since defects like, e.g. cracks, have different physical 
properties compared to the bulk material of the specimen they can be 
detected. The advantages of active thermography are that large com
ponents can be quickly tested due to the focal plane array of the 
IR-camera. The specimen can also be inspected contactless, and the 
resulting images are readily assessable by non-experts. 

The detected surface temperature fulfils the diffusion equation. Here, 
the disadvantage of thermography becomes visible. The heat diffusion 
equation describes an irreversible process that is characterized by en
tropy production, that is directly connected to information loss [3]. This 
loss of information is responsible for the thermal detection limit. For a 
spatially homogeneous and temporally Dirac-delta-like heating of a 
specimen there exists a basic rule for the thermal detection limit that 

states: The defect diameter-to-depth ratio must be greater than 2 [1,4]. 
Otherwise, the defect cannot be detected reliably. 

In state-of-the-art thermal NDE methods, a one-dimensional (1D) 
thermal model is used for depth estimation and in some cases for the 
characterization of the thermal resistance between the bulk material and 
the defect [5,6]. These 1D approaches become inaccurate for defect 
visualization when the inspected objects have a complex shape or the 
defects have a finite or irregular boundary, taking into account that the 
anisotropic heat conduction of composites amplifies these effects [7]. To 
overcome these problems, Kaiplavil and Mandelis [8] reported a 
depth-resolved photothermal imaging modality, the so-called trunca
ted-correlation photothermal coherence tomography (TC-PCT), which 
enables a 3D visualization through the deconvolution of thermal re
sponses from axially discrete sources. This improves the depth resolu
tion to overcome image blurring limitations [9]. Another approach for 
more accuracy regarding the effects of lateral heat diffusion is the so
lution of the multi-dimensional heat conduction equation for a 
model-based image reconstruction [10]. Several studies use the 
finite-element method for the numerical solution of the heat conduction 
problems to realize the defect reconstruction [11–13]. Thermographic 
image reconstruction based on analytical solutions of the temperature 
field is applied for buried heat sources [14] and also for defects in 
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composite materials [15]. The multi-dimensional thermal wave field 
modelling always results in large-scale reconstruction problems, which 
are computationally intensive and severely ill-posed. To partly 
compensate for the information loss and to improve the quality of the 
multidimensional reconstruction, Burgholzer et al. introduced a new 
approach for thermographic imaging, the so-called virtual wave concept 
(VWC) [16]. The idea of VWC is to transform the surface temperature 
detected by an IR-camera into a virtual wave field. The first applications 
of a transformation of the diffusive electromagnetic wave into a wave 
field was shown by Lee et al. [17,18] and Gershenson [19] for 
geophysical applications. While the surface temperature fulfils the 
diffusion equation, the virtual wave field obeys the wave equation. In 
contrast to the diffusion equation, the wave equation describes a 
reversible process. Due to this fact, reconstruction methods well known 
from ultrasonic testing can be employed for 3D thermographic imaging. 
Thus, in principle VWC is a two-step inverse process. The first inverse 
problem is severely ill-posed due to information loss that is equal to the 
entropy production during heat diffusion. 

To enhance the quality of the inverse solution one can introduce 
prior information, such as positivity and sparsity [20,21]. In contrast to 
the 1D virtual wave field, the 2D acoustic virtual wave exhibits negative 
data points with respect to time, hence the additional information pos
itivity is not direct applicable. For one IR-camera pixel the information 
gain incorporating positivity is only a factor of two, but if we consider 
the n-pixel of the camera we have an information gain of 2n. In order to 
apply positivity, these data sets have to be transformed. For 3D this is 
readily done by spherical projections that correspond to a time integral 
of the 3D virtual wave. In 2D, the Abel transformation or circular pro
jection has to be applied in order to increase the information content for 
the regularization process [22,23]. Note, in the discrete case positivity is 
introduced by a simple matrix multiplication using the Abel-trafo matrix 
which has full rank. Hence, the inverse of the Abel-trafo matrix exists. 
Moreover, the prior information sparsity is introduced, because usually 
we have only a few defects in practise related specimens, e.g. de
laminations or cracks. Consequently, we have only a few point scatterers 
which leads to a sparse virtual wave field. Sparsity is introduced by an 
appropriate formulation of the objective function using L1 norm 
minimization. 

In this work we show 2D reconstructions of rectangular slots in a 
metallic sample with different defect width-to-depth ratios. An overview 
of the process steps using VWC for a 2D reconstruction problem is 
illustrated in Fig. 1. In the first section we give an overview of the reg
ularization and reconstruction tools used. We show how additional in
formation can be incorporated into the regularization process. 
Moreover, we discuss the link between the virtual wave field and its 
projection on positive data points. Heat conduction simulations with the 
Finite Element Method (FEM) and experimental investigations based on 
pulsed thermography measurements are used to validate the modified 
virtual wave concept. 

2. Virtual wave concept 

Referring to the virtual wave concept (VWC), one can compute the 
multidimensional temperature distribution Tðr; tÞ based on so-called 
virtual waves Tvirtðr; t’Þ for the same position vector r but different 
time scales t and t’, respectively. According to Ref. [16], the formal 
relationship is given by a Fredholm integral of the first kind: 

Tðr; tÞ ¼
Z∞

�∞

Kðt; t’ÞTvirtðr; t’Þ dt’

with Kðt; t’Þ ¼ cffiffiffiffiffiffiffi
παt

p exp
�
� c2t’2

4αt

�
for t > 0:

(1) 

Kðt; t’Þ is the transformation kernel between temperature and virtual 
waves. It contains the characteristic parameters thermal diffusivity α 

and virtual speed of sound c, which describes the speed of heat and 
virtual wave propagation. 

2.1. Incorporating positivity as prior information 

Thermal diffusion causes entropy production and hence information 
loss. In contrast to the 1D virtual wave field [24], the 2D and 3D virtual 
wave fields contains negative data points. To increase the information 
content in the regularization process, the data set is projected via 
spherical or circular means onto positive data points. 

In this work we consider 2D photothermal temperature data of an 
opaque material with embedded slots. Thermal waves are introduced at 
the sample surface. Simultaneously, the data is recorded on the obser
vation plane that correspond to the sample surface. The thermal waves 
propagate through the solid until their flow is perturbed by the slots. 
Consequently, secondary thermal wave sources are introduced at the 
boundaries of the slots [25]. Due to the fact that the superposition 
principle is valid for both heat and wave equation, we can imagine the 
secondary thermal wave sources as accumulation of point scatterers that 
introduce heat in the semi infinite body. According to VWC we trans
form these point scatterers into an “acoustic” virtual wave. Conse
quently, the secondary thermal waves sources exhibit the bimodal 
characteristic of a 2D photoacoustic wave form (see Fig. 1 middle-left 
box) [26]. As one can see the 2D photoacoustic wave exhibits negative 
data points. In this section, we show how the bimodal virtual waves can 

Fig. 1. Overview of the process steps using VWC for a 2D problem incorpo
rating additional information. 
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be projected onto a positive data set in order to incorporate positivity in 
the regularization process. We consider a 2D data set. The corresponding 
virtual wave field Tvirtðx; y; tÞ is described by the 2D photoacoustic wave 
equation: �

Δ2D � 1
c2

∂2

∂t’2

�
Tvirtðx; y; t’Þ¼ � 1

c2
∂

∂t’T0ðx; yÞδðt’Þ; (2)  

where T0ðx; yÞ is an initial temperature distribution. The solution of the 
wave equation is given by Ref. [27]: 
Tvirtðx; y; t’Þ ¼
∂

∂t’

"
1

2πc

ZZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�x’Þ2þðy�y’Þ2

p
<ct’

T0ðx’; y’Þ dx’dy’ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2t’2 � ðx � x’Þ2 � ðy � y’Þ2

q #
: (3) 

Now let us consider a finite number of n ¼ 1;2;…;N detection points 
ðxn; ynÞ which are positioned on a closed or open detector curve outside 
the specimen. According to Ref. [28] we can write: 

Tvirtðxn; yn; t’Þ ¼ ∂
∂t’

�1
c

Z ct’

0

rðMnT0Þðxn; yn; rÞ drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2t’2 � r2

p
�

with

ðMnT0Þðxn; yn; rÞ ¼ 1
2πr

I
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxn�x’Þ2þðyn�y’Þ2

p
¼r

T0ðx’; y’Þ dC’;

(4)  

where ðMnT0Þðxn; yn; rÞ are the circular means of T0 at detection point 
ðxn; ynÞ with radius r. Eq. (4) is of Abel-type and can be written as 

Tvirtðxn; yn; t’Þ ¼ ∂
∂t’

1
c
A fðMnT0Þðxn; yn; rÞ g

with A fðMnT0Þðxn; yn; rÞ g ¼
Zct’

0

rðMnT0Þðxn; yn; rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2t’2 � r2

p dr
(5) 

Herein, A f⋅g is the Abel transformation operator. Based on the in
verse Abel transformation the circular means ðMnT0Þðxn; yn; rÞ can be 
calculated explicitly [22,28]: 

ðMnT0Þðxn; yn; rÞ ¼ 2c
π

Zr=c

0

Tvirtðxn; yn; t’Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � c2t’2

p dt’: (6) 

Due to Eq. (5) we can see that the projection onto positive data points 
(the circular means) and the virtual wave field, which fulfils the 2D 
wave equation, are connected by the Abel transformation. The Abel 
transformation relates the computed virtual wave signals, that are a 
function of time, to its circular projection and consequently to the cir
cular integrals of a photothermal source with radius r and center point 
ðxn;ynÞ. 

2.2. Discrete data 

Let us consider the Fredholm integral of the first kind, shown Eq. (2). 
Due to the fact that thermography data is discrete in time and space, Eq. 
(2) is first discretized: 
T¼KTvirt: (7) 

The aim is to calculate Tvirt based on the measured temperature field 
T. This is a severely ill-posed inverse problem. To incorporate additional 
information the inverse problem must be reformulated. Therefore, we 
compute the circular projections of the virtual wave Tvirt with respect to 
Eq. (5) with the inverse Abel-trafo matrix A�1 in the following manner 
[22]: 
Mvirt ¼A�1Tvirt: (8) 

Consequently, we can substitute Tvirt by AMvirt in Eq. (7). This yields 

the new inverse problem 
T ¼ KAMvirt ¼ KMvirt
with K ¼ KA:

(9) 

Note, the discrete Abel-trafo matrix already respects the time de
rivative ∂

∂t’ in Eq. (5). 

2.3. Solve the inverse problem 

Computing the circular projection Mvirt with positivity constraint 
based on the linear matrix equation Eq. (9) is a severely ill posed inverse 
problem. Therefore, we need some kind of regularization to get an 
appropriate solution for Mvirt. Basically, one can distinguish direct and 
iterative regularization methods. Here we use the alternating direction 
method of multipliers (ADMM) [29,30], that is an iterative regulariza
tion scheme to incorporate the additional information sparsity. The 
intention of ADMM is to split the objective function and to introduce a 
constraint. The following objective function is minimized [21]. 
1
2

��������KMvirt � T
��������2

2
þ λ
��������Mvirt

��������
1

subject  to Mvirt � z ¼ 0
(10) 

In Eq. (10) the 2-norm represents the residual norm and the 1-norm 
represents the solution norm. The 1-norm incorporates sparsity, so we 
assume that the solution matrix is sparse. λ is a regularization parameter, 
that can be determined e.g. by the L-curve-method [31]. To get an iter
ative procedure we form the Lagrangian using the objective function and 
the constraint. The optimization of the dependent variables yields the 
subsequent iteration steps [21]: 
Mkþ1

virt :¼ ðK⊺K þ ρIÞ�1�K⊺T þ ρ
�
zk � uk��

zkþ1 :¼ Sλ=ρ
�
Mkþ1

virt þ uk�
ukþ1 :¼ uk þ Mkþ1

virt � zkþ1:

(11) 

In Eq. (11) ρ is a penalty parameter, that makes the algorithm faster 
and more robust. Sλ=ρ is a soft-threshold operator. The thresholding is 
applied only onto positive entries. Negative entries are set to zero, hence 
positivity is enforced. The u vector contains the Lagrangian multipliers. 

2.4. Image reconstruction 

The use of image reconstruction techniques is intended to simplify 
the interpretation of the measurement result and to increase the signal- 
to-noise (SNR) ratio. This makes inner structures visible, which cannot 
be found in the classic B-scan image. To improve the sensitivity and 
resolution of the virtual wave field, we use the synthetic aperture 
focusing technique (SAFT) [32,33]. The principle of time domain 
(T)-SAFT is depicted in Fig. 2. 

Thermography allows the simultaneous acquisition of a large num
ber of signals (up to 106) over the surface of a test specimen, which is 
equivalent to a large aperture. In the case of optically excited pulsed 
thermography the generation and detection of the virtual waves are 
focused on the same location on the surface (z ¼ 0). The virtual wave 
field originates from every point of the surface simultaneously as a plane 
wave. A diffraction source, e.g. the tip of a defect, is located at a position 
r’ inside the specimen (Fig. 2). This disturbance re-radiates the virtual 
wave field originating from the specimen surface with a time delay. The 
theoretical scattering hyperbola can be calculated for each voxel with 
the coordinates ðx’; y’; z’Þ if the speed of sound c is known. Along this 
curve, an integration of the scalar measurement data Tvirt is then carried 
out: 
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T0ðx’; y’; z’Þ ¼
ZZ
SM

Tvirtðx; y; 0; t’Þdx dy

with t’ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � x’Þ2 þ ðy � y’Þ2 þ ðz � z’Þ2

q
c

:

(12) 

In principle T-SAFT is a trial and error method [34]. The assumption 
is that any defect consists of a number of independent (discrete) point 
diffraction sources. So, in the first step, the reconstruction space (sample 
volume) is discretized with Δy ¼ Δz. We prescribe any discrete point r’. 
If this point is equal to r, the integral of Eq. (12), or in discrete cases, the 
sum yields a high value. Otherwise the value is low. Performing this 
operation for each point r’ gives the final reconstruction image. In this 
work we apply frequency domain (F)-SAFT. Here, the virtual wave field 
is transferred into Fourier domain for time and space. The F-SAFT pro
cedure gives the same results as T-SAFT [34], but the F-SAFT method is 
much faster than T-SAFT [35]. 

3. Numerical simulation 

To test the virtual wave concept with noisy temperature data by 
respecting prior information, numerical simulation with the FEM are 
carried out. To do this we consider the 2D model, depicted in Fig. 4 a). 
The specimen has a length of 100 mm and a height of 10 mm. All 
boundaries have adiabatic conditions. The slots of the investigated 
specimen have a width of 3 mm and a height of 0.5 mm with a horizontal 
distance of Δy ¼ 10 mm. The vertical distances with respect to the 
inspected surface ðz¼ 0Þ are zi ¼ ð1:75þiÞ mm ði ¼ 0; 1; …; 6Þ. The 
corresponding defect width-to-depth ratios are sketched in Fig. 4 a). The 
objective of the FEM simulations is the solution of the direct problem to 

determine the transient temperature field Tðy; z; tÞ in the region of the 
slots. The initial temperature Tðy; z; t¼ 0Þ is zero. The plane z ¼ 0 is 
heated with an instantaneous and locally uniform pulse. An appropriate 
simulation time was estimated by tend ¼ L2=α. The physical parameters 
are listed in Table 1. Since the virtual speed of sound c can be chosen 
arbitrarily, we prescribed the dimensionless virtual speed of sound with 
~c ¼ 1. 

The time resolution Δt was 2e-3 s. The temperature data T that is 
depicted in 4 a), was evaluated at z ¼ 0 with an equidistant grid and 
Ny ¼ 564 data points. Additionally, the surface temperature was su
perposed by white Gaussian noise with a standard deviation of σ0 ¼
0:0097 K in order to achieve the same signal to noise ratio SNR ¼
maxðTÞ=σ0 as for the experimental temperature field. Referring to Fig. 1, 
the K-matrix is set up using the physical parameters listed in Table 1 and 
the corresponding spatial and temporal resolution. This matrix has to be 
multiplied by the Abel trafo matrix A in order to incorporate the addi
tional information positivity. Next, the regularization parameter λ has to 
be estimated based on the observed temperature data. Therefore, the L- 
curve method, Fig. 3, is applied. For the preparation of the L-curve the 
toolbox of [36] was used. For the regularization process applying 
ADMM, we prescribe the penalty term ρ with 0.0039. Subsequently, the 
linear severely ill posed problem, namely the calculation of the virtual 
wave field based on temporal surface temperature data, is solved. 

The solution of the inverse problem yields the circular projection 
Mvirt of the 2D virtual wave field Tvirt. Due to this, Mvirt is multiplied by 
the Abel-trafo matrix A to obtain the physically correct 2D virtual wave. 
The resulting virtual wave field is illustrated in Fig. 4 b). The illustration 
can be interpreted as superposition of point scatterers. A point scatterer 
yields a characteristic hyperbola (see Fig. 2), that is rudimentary visible 
for the first three slots with the highest width-to-depth ratios. In Fig. 5 A- 
Scans, where virtual waves for different slot positions are represented as 
a function of depth z ¼ c⋅t’, are shown. The graphs exhibit a good 
approximation of the typical 2D wave form. 

Referring to Eq. (12), Tvirt is the input for the image reconstruction 
tool F-SAFT. Since the heat was introduced at z ¼ 0, the heat or virtual 
wave travels to the defect were it is reflected to the surface. Hence, to 
obtain the correct position of the defect we have to halve the distance or 
the dimensionless speed of sound ~c ¼ 0:5 for F-SAFT. Fig. 4 d) shows the 
final image. Let us compare the processed images using the virtual wave 
concept Fig. 4 c) and the image reconstruction Fig. 4 d). It is visible that 
F-SAFT improves both sensitivity and the lateral resolution and slots 
with a defect width-to-depth ratio of 0.52 are detectable. The defect 

Fig. 2. Principle of T-SAFT.  

Fig. 3. The regularization parameter λ is found at the edge of the L-Curve. At 
the edge the best trade off between solution norm and residual norm is located 
[37]. For the preparation of the L-curve, the Toolbox of [36] was used. 
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depths were estimated using an A-Scan based on circular projection 
Fig. 5 a). For the estimation of the defect depths the local maxima after 
the front-wall echo was evaluated, because these maxima correspond to 
the reflection at the slot boundaries. The corresponding virtual wave 
field is shown in Fig. 5 b). 

Fig. 4. a) Image reconstruction based on simulated 
data. Model of the examined specimen with the cor
responding boundary conditions. b) Running temper
ature contrast [1] based on simulated temperature 
data that is superposed with white Gaussian noise 
(standard deviation σ ¼ 0:0097). c) Dimensionless 
virtual wave field (B-Scan) computed using ADMM 
and the Abel transformation related to the maximal 
data point as function of spatial coordinates y; z. d) 
Reconstructed field computed applying F-SAFT as 
function of spatial coordinates y;z. The colorbars have 
the unit Kelvin.   

Table 1 
Physical parameters for FEM simulation.  

Parameter Value Unit 
thermal conductivity k 15 W m�1 K�1 

density ρM  7800 kg m�3 

specific heat capacity cp  500 J kg�1 K�1 

thermal diffusivity α 3.85e-06 m2 s�1  

Fig. 5. a) Waterfall plot of the circular projections based on simulated temperature data for different slot positions according to the white dashed line in Fig. 7 b). The 
numerical markers show the estimated position of the slots. b) Waterfall plot of the Abel transformed circular means or virtual wave field. At z ¼ 0 the initial pulse 
and at z ¼ L the back-wall echo occurs that is denoted by a raise of amplitude. For a defect (slot) an additional virtual wave amplitude occurs at different depths z ¼
c⋅t’. 
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4. Experimental results 

4.1. Experimental setup 

In order to test the virtual wave concept for pulsed thermography 
data, we have prepared a metallic specimen with slots representing 
defects (Fig. 6). The [100 mm � 30 mm x 10 mm] specimen was pro
duced using a cobalt-chromium alloy powder for metal additive 
manufacturing, also known as metal 3D printing. Additionally, the 
specimen was coated by diamond-like carbon (DLC). Due to this, the 
absorption of the flash light radiation and the emissivity is increased. 
The coating thickness is approximately 7 μm. Therefore, we can assume 
that the optical material properties of the specimen are homogeneous 
and isotropic. 

In addition to the sample, the experimental setup (see Fig. 6) 
essentially consists of a laser array for heating and an infrared ther
mography camera for surface temperature measurement. The laser array 
is a VCSEL (Vertical-Cavity Surface-Emitting Laser) array with a nomi
nal output power of 2.4 kW [38]. The emitting aperture was imaged 
onto the sample (x � y plane @ z ¼ 0) using a pair of lenses (distance 

laser lens approx. 155 mm, distance lens sample approx. 398 mm). The 
image was slightly defocused to achieve a homogeneous irradiance of 14 
� 1 W/cm2 of the entire sample surface, the magnification corresponds 
to approximately 2.3. The laser was controlled by Labview with pulse 
lengths of 50 ms. The actual pulse shape was measured using a photo
diode and was 50 ms. It was stored frame synchronously in the addi
tional A/D channels of the camera. The temperature-calibrated infrared 
thermography camera used (InSb-based, 2.5–5.5 μm spectral sensitivity, 
100 mm lens, 200 μs integration time) was triggered by the laser pulse 
with a pretrigger of 1000 frames via the photodiode. In each measure
ment, 21000 frames were recorded at a frame rate of 1000 Hz, i.e. 1 s 
before the laser pulse and 20 s after it. The image was taken in full frame 
mode of 640 � 512 pixels with a spatial resolution of approx. 177 μm per 
pixel. 

4.2. Experimental results 

In Fig. 7 a) the measured transient surface temperature is depicted. 
For the image reconstruction, the mean of 100 surface temperature sli
ces between the pixels 46:145 in x-direction (see Fig. 6) was calculated 
in order to improve the signal-to-noise ratio. The data set was then 
temporally downsampled, yielding an evaluation frequency of 500 Hz. 
The spatial resolution, the physical parameters and the signal to noise 
ratio SNR ¼ maxðTÞ=σM, where σM is the standard deviation of the 
measurement data, are equal to the simulated data set (Table 1). The 
process steps listed in Fig. 1 were then applied again. The corresponding 
virtual wave field Tvirt is illustrated in Fig. 7 b). Fig. 8 a) illustrates the 
circular means of the virtual waves for the different slot positions, 
indicated in Fig. 7 b) by white dashed lines. Fig. 8 b) shows the corre
sponding virtual waves. At z ¼ c⋅t’ ¼ 0 the characteristic initial pulse 
and at z ¼ L the back-wall echo occur. In the center position of the slots 
y ¼ f20;30;40;50;60g mm an additional peak occurs in the A-Scan. 
This is because the virtual wave is diffracted at the slot boundaries. The 
nominal and estimated slot depths using VWC, based on simulated and 
measurement data, are visible in Fig. 9. The black-dashed line shows the 
nominal values and is a guide for the eyes. This representation shows, 
that the slot positions can be detected well, for both simulated and 
measurement data. For the slot reconstruction based on simulated data, 

Fig. 6. Metallic specimen (100 mm � 30 mm x 10 mm) with rectangular slots 
representing defects. 

Fig. 7. Image reconstruction based on experimental data. Running temperature contrast based on measured temperature data a), calculated virtual wave field b) 
using ADMM and reconstructed field applying F-SAFT c). The colorbars have the unit Kelvin. 
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we can see a lower intensity of the secondary heat sources for deeper 
lying defects. The reason for this might result from the growing influ
ence of the back-wall, more precisely from the corresponding boundary. 
Considering, the simulated data we have adiabatic boundaries, which 
cause a stronger reflection at the back-wall than for measurement data 
were the boundaries slightly differ from adiabatic boundaries because of 
heat convection. Consequently, in contrast to the measurement data, the 
heat flow in the domain of the deeper lying slots of the simulated data is 
more affected by the back-wall reflection. We can detect the slots (de
fects) with a defect width-to-depth ratio of 0.52. Fig. 7 c) depicts the 
final reconstruction applying F-SAFT to the virtual wave field 7 b). In 
contrast to the transient virtual wave field the final reconstruction ex
hibits a much better localization of the slots (defects). 

5. Conclusion 

In this paper, we have shown an application of the virtual wave 
concept for 2D pulsed thermography data in reflection mode. Heat 
diffusion causes entropy production and hence information loss. To 
compensate the information loss partly, we have incorporated addi
tional information for the regularization process. For the incorporation 
of positivity as additional information, we have applied the Abel 
transformation. Here the 2D virtual wave is projected onto a positive 
data set. Due to this, the inverse problem was reformulated, which yields 
a new ill-posed inverse problem. 

The thermal waves were locally transformed into virtual waves 
which obey the photoacoustic wave equation. Based on this so called 
virtual waves, the depth of the slots are detectable by the application of 
the time of flight method (TOF). Further, we can apply image recon
struction methods from ultrasonic testing. Especially, the F-SAFT algo
rithm was used for defect reconstruction. The 2D heat diffusion in the 
region of the slot is respected by the integration along the scattering 
hyperbolas of the superposed point scatterers. The modified VWC 
reconstruction based on simulated data was validated with a recon
struction based on experimental data. 

Declaration of competing interest 

The authors declare that there is no conflict of interest. 

CRediT authorship contribution statement 

G. Thummerer: Conceptualization, Methodology, Software, Formal 
analysis, Validation, Investigation, Writing - original draft, Visualiza
tion. G. Mayr: Conceptualization, Methodology, Writing - original draft, 
Writing - review & editing, Visualization, Project administration, 
Funding acquisition. P.D. Hirsch: Validation, Investigation, Writing - 
original draft. M. Ziegler: Writing - review & editing. P. Burgholzer: 
Writing - review & editing, Supervision. 

Acknowledgement 

The financial support by the Austrian Federal Ministry of Science, 
Research and Economy and the National Foundation for Research, 
Technology and Development is gratefully acknowledged. Furthermore, 
this work has been supported by the project “multimodal and in-situ 
characterization of inhomogeneous materials” (MiCi), by the the fed
eral government of Upper Austria and the European Regional Devel
opment Fund (EFRE) in the framework of the EU-program IWB2020. 

Fig. 8. a) Waterfall plot of the circular projections based on experimental temperature data for different slot positions according to the white dashed line in Fig. 7 b). 
The numerical markers show the estimated position of the slots. b) Waterfall plot of the Abel transformed circular means or virtual wave field. At z ¼ 0 the initial 
pulse and at z ¼ L the back-wall echo occurs that is denoted by a raise of amplitude. For a defect (slot) an additional virtual wave amplitude occurs at different depths 
z ¼ c⋅t’. 

Fig. 9. Nominal positions versus estimated positions for the detectable slots. 
The black-dashed line indicates the nominal values and is a guide for the eyes. 
The plus sign exhibits the estimation for simulated data and the asterisk rep
resents the estimated values for the measurement. 

G. Thummerer et al.                                                                                                                                                                                                                            



NDT and E International 112 (2020) 102239

8

Gef€ordert durch die Deutsche Forschungsgemeinschaft (DFG) - 
400857558, funded by the Deutsche Forschungsgemeinschaft (DFG, 

German Research Foundation) - 400857558.  

Appendix. 1. Forward problem 

The aim of the subsequent steps is to solve the forward problem in two dimensions and free space (without boundaries), based on the 3D virtual 
Greens function G3D

virtðr;tÞ, in order to get a deeper insight how the virtual wave concept works. Therefore, we use the Greens function solution equation 
(GFSE) for both, diffusion and wave equation [39]. Inserting the respective GFSEs into Eq. (1), yields for the same position vector r in 3D 

G3Dðr; tÞ ¼
Z ∞

�∞
Kðt; t’ÞG3D

virtðr; t’Þ dt’ (1)  

and 

G2Dðρ; tÞ ¼
Z ∞

�∞
Kðt; t’ÞG2D

virtðρ; t’Þ dt’ (2)  

in 2D with position vector ρ. To calculate G2Dðρ; tÞ we need the 2D virtual Greens function G2D
virtðρ; t’Þ. Hence, we start from the 3D virtual Greens 

function 

G3D
virtðr; t’jr’; τ’Þ¼ 1

4cπ
∂

∂t’
δ½cðt’ � τ’Þ � jr � r’jÞ

jr � r’j : (3) 

To get the 2D Greens function we carry out the integration with respect to z’: 

G2D
virt

�
ρ; t’jρ’; τ’Þ ¼

Z ∞

�∞
G3D

virtðr; t’jr’; τ’
�

dz’

¼ 1
4cπ

∂
∂t’

Z ∞

�∞

δ
�

cðt’ � τ’Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jρ � ρ’j2 þ z’2

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jρ � ρ’j2 þ z’2

q dz’

with jρ � ρ’j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � x’Þ2 þ ðy � y’Þ2

q
(4) 

Now substitute μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��ρ � ρ’j2 þ z’2

q
and use symmetry with respect to the z’ axes yields: 

G2D
virtðρ; t’jρ’; τ’Þ ¼ 1

2cπ
∂

∂t’

Z ∞

jρ�ρ’j

δ½cðt’ � τ’Þ � μ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 � jρ � ρ’j2

q dμ ¼ 1
2cπ

∂
∂t’

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2ðt’ � τ’Þ2 � jρ � ρ’j2

q ¼ �c2ðt’ � τ’Þ
2cπ
h
c2ðt’ � τ’Þ2 � ��ρ � ρ’j2

i3=2for t’ > τ’ � 1
c
jρ � ρ’j ¼ γ: (5) 

Inserting Eq. (5) into Eq. (2) gives: 

G2Dðρ; tjρ’; τ’Þ ¼ �π�3=2

2
ffiffiffiffiffi
αt

p
Z ∞

γ

exp
 
� c2ðt’ � τ’Þ2

4αt

!
c2ðτ’ � t’Þ dt’h

c2ðt’ � τ’Þ2 � ��ρ � ρ’j2
i3=2

¼ �
exp
 
���ρ � ρ’j2

4αt

!
2π3=2 ffiffiffiffiffi

αt
p

Z ∞

γ

exp
 
�c2ðt’ � τ’Þ2 þ ��ρ � ρ’j2

4αt

!
c2ðτ’ � t’Þ dt’h

c2ðt’ � τ’Þ2 � ��ρ � ρ’j2
i3=2 : (6) 

Now we substitute ξ2 ¼ c2ðt’ � τ’Þ2 �
���ρ� ρ’j2: 

G2Dðρ; tjρ’; τ’Þ ¼ �
exp
 
���ρ � ρ’j2

4αt

!
2π3=2 ffiffiffiffiffi

αt
p

Z ∞

0

exp
��ξ2

4αt

�
dξ

ξ2

¼ �A
Z∞

0

exp
��ξ2

4αt

�
dξ

ξ2 : (7) 

Integration by parts yields: 

G2Dðρ; tjρ’; τ’Þ
A

¼ 2
Z ∞

0

exp
��ξ2

4αt

�
4αt

dξ
¼

ffiffiffiffiffiffiffiffiffiffi
4παt

p
erf
�

ξ2ffiffiffiffiffiffiffi
4αt

p
�
j∞0 ¼

ffiffiffi
π

pffiffiffiffiffiffiffi
4αt

p (8) 

Replacing A in Eq. (8) gives: 

G2Dðρ; tjρ’; τ’Þ ¼ A
ffiffiffi
π

pffiffiffiffiffiffiffi
4αt

p ¼
exp
 
���ρ � ρ’j2

4αt

!
2π3=2 ffiffiffiffiffi

αt
p

ffiffiffi
π

pffiffiffiffiffiffiffi
4αt

p
¼ 1

4παt
exp
 
���ρ � ρ’j2

4αt

!
(9) 

This is exactly the Greens function for a 2D body with infinite extension [40]. We note, that the Greens function for heat conduction in 2D and free 
space is deductible by VWC. Applying the method of images, Eq. (9) is readily extended for Dirichlet and Neumann boundaries or a mix of them [41]. 
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5 Publications and Scientific contribution

5.3 Photothermal testing of composite materials: Virtual

wave concept with prior information for parameter

estimation and image reconstruction

In this study, the VWC was extended for 3D defect reconstruction and visualization in anisotropic

media. In contrast to the isotropic VWC procedure, where the virtual sound velocities in the

principal direction can be specified arbitrarily, the anisotropic VWC procedure requires knowl-

edge of the anisotropic material properties for the second reconstruction step. To make the

VWC applicable to anisotropic materials, a mathematical relationship between the thermal dif-

fusivity tensor and the virtual speed of sound tensor was derived. This relationship yields a

novel parameter estimation procedure for the determination of the anisotropic thermal diffusiv-

ity tensor. As in Papers 5.1 and 5.2, ADMM was used for regularization and prior information

in the form of positivity and sparsity was incorporated by computing the spherical projections

of the virtual wave signal. Simulations and thermographic experiments were performed in the

transmission configuration to verify and validate the proposed procedure. For the estimation of

the thermal diffusivity tensor, the anisotropic sample was thermally excited with a laser with

finite laser spot diameter to initiate a 3D thermal wave signal. UD CFRP samples with dif-

ferent thicknesses were analyzed for experimental validation. The samples were considered at

the macroscopic length scale and therefore effective material parameters were estimated for the

reconstruction of the initial temperature signal. Finally, the performance of the proposed VWC

method was demonstrated for 3D image reconstruction in the transmission configuration for the

UD CFRP samples.

The results clearly show that the proposed procedure allows the rectification of the anisotropic

thermal diffusion process and thus the accurate reconstruction of the initial temperature signal.
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ABSTRACT

In this paper, we propose a new parameter estimation and image reconstruction approach for the photothermal testing of composite materials.
Therefore, the full multidimensional evaluation method, virtual wave concept, is extended to estimate the orthotropic thermal diffusivity tensor
and to reconstruct the initial temperature distribution after a laser spot heating in an orthotropic material. We establish a formal relationship
between the virtual speed of sound tensor and the thermal diffusivity tensor. Furthermore, we show how prior information in the form of posi-
tivity and sparsity can be incorporated in the regularization process to improve the solution of the inverse imaging problem. In a second step,
the initial temperature distribution is reconstructed by applying ultrasonic imaging methods on the calculated 3D bimodal virtual wave field.
This new approach is validated on simulation and experimental data of a unidirectional carbon fiber reinforced polymer. The information loss
that results from entropy production during heat diffusion can be partly compensated by including prior information. This allows an accurate
parameter estimation and a high-resolution image reconstruction.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0016364

I. INTRODUCTION

In recent decades, the application of active thermography, espe-
cially photothermal testing with an infrared (IR) camera, has signifi-
cantly grown because it is a contactless non-destructive testing (NDT)
method and the focal plane array of the IR camera enables a large
measurement throughput.1,2 Nowadays, research work in the field of
thermographic testing shows a trend from qualitative defect detection
to multidimensional defect imaging. Commonly, an inverse heat con-
duction problem (IHCP) is solved for parameter estimation or defect
reconstruction.3,4 Mendioroz et al.,5 e.g., used vibrothermography for
2D defect shape and depth estimation of planar cracks. Holland and
Schiefelbein6 formulated a model-based inversion for composite mate-
rials based on Green’s functions that results in a computationally
expensive large-scale problem. For this reason, they developed a
sophisticated reflector model adapted from the method of images.

Kaiplavil and Mandelis7 introduced another approach, the so-called
truncated-correlation photothermal coherence tomography (TC-PCT),
which allows a 3D visualization of subsurface features based on the
match filtering technique that was further enhanced by Tavakolian
et al.8 to obtain higher contrast and resolution images.

A novel approach for the full multidimensional evaluation of
temperature data was introduced by Burgholzer et al.,9 called the
Virtual Wave Concept (VWC). A formal relationship between a dif-
fusive electromagnetic field and a wave field was originally published
by Lee et al. and Gershenson.10,11 In addition to these previous
studies, VWC is intended to combine the advantages of the NDT
methods, active thermography, and ultrasonic testing. In contrast to
IHCPs, the VWC is a two-step inverse problem. In a first step, the
surface temperature data are transformed locally (pixelwise) into an
“acoustic” virtual wave signal. Then, well-developed ultrasonic
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reconstruction methods, such as time of flight (TOF) and the fre-
quency domain synthetic aperture focusing technique (F-SAFT), can
be applied on photothermal data to reconstruct the initial tempera-
ture distribution and the corresponding mirror sources.12,13 In addi-
tion, defects and boundaries can be detected by ultrasonic
reconstruction methods because they introduce secondary wave
sources. Due to the local transformation, the computation of the
virtual wave signal can be readily parallelized. The second reconstruc-
tion step is performed in the frequency domain using F-SAFT.14

Consequently, the reconstruction of defects using VWC is very effi-
cient. Our recent work is based on isotropic bodies where we have
incorporated prior information in the form of positivity and sparsity
in the temperature to virtual wave inversion in order to overcome the
diffusion-based information loss.15 This approach was validated on a
metallic test specimen with rectangular notches, where 2D defects
with a defect width-to-depth ratio of 0.52 were detectable.16

The aim of the present work is to extend the virtual wave concept
for application to materials with an anisotropic thermal diffusivity
tensor, such as composite materials. In an anisotropic material, heat dif-
fuses faster, e.g., parallel to the direction of carbon fibers than perpen-
dicular to their orientation. On a macroscopic length scale, an
anisotropic thermal diffusivity tensor can describe the heat propagation
in the composite material, which can be treated as an effective medium
without any internal interfaces.17 For the virtual wave concept, accord-
ing to the varying heat conductivity in different directions, the virtual
sound speed varies in different directions. Again, we incorporate in the
first inversion step prior information in the form of positivity and spar-
sity to improve the quality of the regularized solution. We assume that
the orientation of the coordinate system is parallel to the three mutually
perpendicular preferred heat diffusion directions.18 Therefore, the pre-
sented approach is limited to applications where the thermal diffusivity
tensor is in the main axis of anisotropy. As stated by Burgholzer et al.,9

the virtual speed of sound for an isotropic material can be chosen arbi-
trarily. In the case of orthotropic virtual wave propagation, only one
entry of the orthotropic speed of sound tensor can be prescribed. The
others are unknown and must be determined to enable a correct
second reconstruction step with F-SAFT for defect detection. As
derived in this paper, there are two possibilities to determine the
unknown entries of the virtual speed of sound tensor:

• calculating the unknown entries based on a known thermal dif-
fusivity tensor or

• determining the unknown entries in a preceding step using the
virtual wave field.

The first possibility is valid for some standard materials, where
literature values or material models are available.19,20 In the
industrial manufacturing, however, the thermal diffusivity tensor
differs for each component due to production tolerances and,
therefore, the tensor has to be determined for each component
separately to ensure the precise application of F-SAFT. There are
various photothermal evaluation techniques for estimating the
anisotropic thermal diffusivity tensor. Krapez et al.21 introduced
thermal ellipsometry to determine the thermal diffusivity components.
This approach was extended by Gavérina et al.22 for applications
where the thermal diffusivity tensor is out of the main axes of
anisotropy. Salazar et al.23,24 studied different photothermal

methods such as infrared radiometry, photothermal reflectance,
and optical beam deflection. Due to theoretical considerations, they
introduced the quantity “resistivity to heat diffusion” to emphasize
that the anisotropic thermal diffusivity tensor is only equal to the
inverse of the thermal resistivity if they lie within the main axes of
anisotropy. Tralshawala et al.25 determined the thermal diffusivity
components based on the creation of thermal time of flight images
with the benefit of avoiding any sort of curve fitting.

In this paper, we propose a new method for parameter estima-
tion to determine the unknown entries of the speed of sound tensor
based on the virtual wave field. Therefore, we estimate the unknown
virtual speeds of sound by fitting the scattering hyperbolas at the
symmetry cross sections of the computed scattering hyperboloid,
which result from a point-like laser heating. Due to the estimation of
the unknown entries of the virtual speed of sound tensor, we can
reconstruct the initial temperature distribution and secondary wave
sources caused by defects using F-SAFT. As mentioned before, we
derive a formal link between the orthotropic virtual speed of sound
and the orthotropic thermal diffusivity tensor. Hence, it is possible
to determine the thermal diffusivity tensor based on the virtual
speed of sound tensor. The paper is organized as follows: in Sec. II,
we introduce the mathematical framework and derive the link
between the thermal diffusivity tensor and the virtual speed of sound
tensor. Herein, we show how prior information in the form of posi-
tivity and sparsity can be incorporated for 3D bimodal virtual wave
propagation. In Sec. III, we introduce the parameter estimation pro-
cedure to determine the virtual speed of sound and thermal diffusiv-
ity tensor. Then, the extended VWC is validated on simulated
measurement data with different signal to noise ratios (SNRs).
Finally, we verify the approach on experimental photothermal data.

II. THEORY

The virtual wave concept is characterized by a two-step inver-
sion problem. In the first step, we compute a virtual wave signal for
each detection point based on simulated or measured surface tem-
perature data. In a second step, especially for the reconstruction of
internal defects, we apply ultrasonic reconstruction methods, like
F-SAFT. The evaluation of an orthotropic composite material
requires the knowledge of the virtual speed of sound in each princi-
pal direction. In the subsequent steps, we establish a relationship
between the orthotropic temperature field and the virtual wave
field. Therefore, we transform the orthotropic heat equation and
wave equation into isotropic partial differential equations (PDEs).
In addition, we derive the relationship between the thermal diffu-
sivity tensor α and the virtual speed of sound tensor c.

A. Orthotropic heat equation

The heat conduction in an orthotropic solid, is described by
the following heat equation:

k∇ð Þ � ∇� ρcp
@

@t

	 

T(r, t) ¼ �ρcpT0(r)δ(t),

with k ¼
k11 0 0

0 k22 0

0 0 k33

0B@
1CA: (1)
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Herein, T(r, t) is the temperature as a function of position
vector r ¼ (x, y, z) and time t, k is the thermal conductivity tensor,
ρ is the density, and cp is the specific heat capacity of the material. ∇
is the spatial Nabla operator. The right-hand side of Eq. (1) contains
the source term, where T0(r) denotes the initial temperature distribu-
tion and the Dirac delta distribution in the time domain δ(t)
arranges that the heat is introduced spontaneously at t ¼ 0. We
assume that the orientation of the coordinate system is parallel to the
three mutually perpendicular preferred heat conduction directions.
Consequently, the coordinate system is orientated along the principal
axes of heat conduction. Hence, we can transform the heat conduc-
tion equation from an orthotropic problem into an isotropic
problem by stretching the coordinate axes in the following manner:26

�x ¼ x
k

k11

� �1=2

; �y ¼ y
k

k22

� �1=2

; �z ¼ z
k

k33

� �1=2

: (2)

Respecting these formal relationships in Eq. (1) yields the heat
equation similar to the isotropic body,

k∇2 � ρcp
@

@t

� �
T(�r, t) ¼ �ρcpT0(�r)δ(t): (3)

The thermal conductivity k is related to the thermal conduc-
tivities in the principal directions in the following manner:

k ¼ k11k22k33ð Þ1=3: (4)

By introducing the thermal diffusivity α ¼ k=(ρcp) into
Eq. (3), we have

∇2 � 1
α

@

@t

� �
T(�r, t) ¼ � 1

α
T0(�r)δ(t), (5)

with α ¼ α11α22α33ð Þ1=3: (6)

B. Orthotropic wave equation

The wave equation for virtual wave propagation is given by
Ref. 15,

cTc∇
� � � ∇� @2

@t02

	 

Tvirt(r, t0) ¼ � @

@t0
T0(r)δ(t

0), with

cTc ¼
c11 0 0

0 c22 0

0 0 c33

0B@
1CA c11 0 0

0 c22 0

0 0 c33

0B@
1CA ¼

c2
11 0 0

0 c2
22 0

0 0 c2
33

0B@
1CA:

(7)

Herein, ∇ is the spatial Nabla operator and Tvirt(r, t0) is the
orthotropic virtual wave field as a function of the position vector r
and the time scale t0 for virtual wave propagation. The tensor c
contains the virtual speed of sound in the principal directions.
The right-hand side of Eq. (7) characterizes the source term, where
the initial temperature field T0(r) is spontaneously introduced due
to the Dirac delta distribution in virtual time domain δ(t0). Similar

to the orthotropic heat equation, we can stretch the coordinate axes
in Eq. (7) to transform the orthotropic wave equation into an iso-
tropic PDE. This yields

�x ¼ x
c

c11
; �y ¼ y

c
c22

; �z ¼ z
c

c33
: (8)

The speed of sound c is related to the speed of sound in the
principal directions in the following manner:

c ¼ c11c22c33ð Þ1=3: (9)

Using Eqs. (7) and (8), the isotropic wave equation can be
written as

∇2 � 1
c2

@2

@t02

� �
Tvirt(�r, t0) ¼ � 1

c2

@

@t0
T0(�r)δ(t

0): (10)

C. Relation between heat and virtual wave propagation

According to Burgholzer et al.9 the virtual wave concept
relates the thermal wave to an “acoustic” virtual wave for the same
position vector �r but different time scales, t and t0,

T(�r, t) ¼
ð1
�1

Tvirt(�r, t0)K(t, t0)dt0, (11)

with K(t, t0) ¼ cffiffiffiffiffiffiffi
παt

p exp � c2t02

4αt

� �
: (12)

The kernel K(t, t0) contains the thermal diffusivity
α ¼ (α11α22α33)

1=3 and the virtual speed of sound
c ¼ (c11c22c33)

1=3, which are the characteristic parameters for heat
and virtual wave propagation. The Fredholm integral of the first
kind, Eq. (11), is valid for a temporal Dirac–Delta like heating and
describes a local 1D transformation between the temperature field
and the virtual wave field. Because the virtual wave concept is valid
for the same position vector �r or r, we can establish the subsequent
relationships based on Eqs. (2) and (8),

cffiffiffi
k

p ¼ c11ffiffiffiffiffiffi
k11

p ¼ c22ffiffiffiffiffiffi
k22

p ¼ c33ffiffiffiffiffiffi
k33

p (13)

or

cffiffiffi
α

p ¼ c11ffiffiffiffiffiffiffi
α11

p ¼ c22ffiffiffiffiffiffiffi
α22

p ¼ c33ffiffiffiffiffiffiffi
α33

p : (14)

In our study, we are not interested in c and α but in the speed
of sound and thermal diffusivity in the principal directions.
Because the VWC is a 1D transformation with respect to the axis
perpendicular to the evaluation surface (x � y plane), we substitute
the ratio c=

ffiffiffi
α

p
in Eq. (12) by c33=

ffiffiffiffiffiffiffi
α33

p
,

K(t, t0) ¼ c33ffiffiffiffiffiffiffiffiffiffiffi
πα33t

p exp � c2
33t

02

4α33t

� �
: (15)
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Using Eq. (14), prescribing c33 and assuming the thermal dif-
fusivity tensor is known, we can compute the remaining unknown
components of the virtual speed of sound tensor and vice versa,

c ¼
c11 0 0
0 c22 0
0 0 c33

0@ 1A ¼
c33

ffiffiffiffiffi
α11
α33

q
0 0

0 c33

ffiffiffiffiffi
α22
α33

q
0

0 0 c33

0BBB@
1CCCA: (16)

1. Discrete data

Because the thermographic data is discrete in time and space,
we must discretize the Fredholm integral [Eq. (11)]. With
tk ¼ (k � 1)Δt and tj ¼ (j � 1)Δt0 , we obtain a linear matrix equa-
tion for one spatial cross section of the surface temperature field T,

T ¼ KTvirt: (17)

The dimensions of the matrices are T [ Rm�q, K [ Rm�n,
and Tvirt [ Rn�q. The components of the kernel matrix K are
given by

Kkj ¼ ηffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π(k � 1)

p exp � η2(j � 1)2

4ðk � 1Þ
� �

: (18)

Herein, the dimensionless number η ¼~c=
ffiffiffiffiffiffiffi
ΔFo

p
is defined as

the ratio of the dimensionless virtual speed of sound ~c ¼ cΔt0=Δx

and the discrete Fourier number ΔFo ¼ αΔt=Δ
2
x . Δx is the spatial

resolution that is equal in each considered spatial direction.

2. Inverse problem respecting prior information

Our goal is to calculate a virtual wave signal based on a mea-
sured temperature signal. This is a severely ill-posed inverse
problem because of the entropy produced during heat diffusion,
which is equal to information loss. To enhance the quality of the
inverse solution, we incorporate prior information in the form of
positivity and sparsity. A 3D heat diffusion field causes a 3D virtual
wave field were the bimodal characteristic is visible in the A-scan in
the form of the N-shaped function (Fig. 1). To incorporate the
prior information positivity, we project the negative data points of
the 3D virtual wave field onto a positive data set.16 This is feasible
by integrating the 3D virtual wave field with respect to time, which
yields the spherical projections Mvirt of Tvirt.

27 In discrete form we
apply the time integral operator matrix R. Hence, the formal rela-
tionship between virtual wave field and spherical projections is
given by

Mvirt ¼ RTvirt, with R ¼
1 0 � � � 0
1 1 � � � 0

..

. ..
. . .

. ..
.

1 1 � � � 1

0BBB@
1CCCA [ Rn�n: (19)

Substituting Eq. (19) in Eq. (17) yields

T ¼ KTvirt ¼ KR�1Mvirt ¼ �KMvirt: (20)

The inverse of the integral operator matrix R�1 is the differen-
tial operator. Multiplication of a discretized signal matrix in time
with this operator results in a discretized version of the time
derivative of this signal. The introduction of the spherical projec-
tions results in a new inverse but also severely ill-posed inverse
problem. To solve this inverse problem, we apply the iterative regu-
larization method Alternating Direction Method of Multipliers
(ADMM).28,29 We minimize the subsequent objective function to
compute an appropriate solution for Mvirt,

1
2
jj�KMvirt � Tjj22 þ λjjMvirtjj1: (21)

To enforce positivity in this iteration scheme, we apply soft-
thresholding only on positive entries and set the negative values to
zero.15 In addition to the threshold value as one regularization
parameter, the second regularization parameter λ describes a trade-
off between the data fitting term, which is the first term in Eq. (21),
and the L1-norm of the spherical projection Mvirt. This second
term in Eq. (21) introduces sparsity, which can be assumed, as the
absorbed short laser pulse results in a delta-like spherical projection
for Mvirt (see also Fig. 1).

III. PARAMETER ESTIMATION

Let us consider the thermographic experiment depicted in
Fig. 2. The sample is heated by a short laser pulse, where the cor-
responding heat source term g(r, t) ¼ T0(r)δ(t) consists of a
spatial temperature distribution T0(r) and a temporal heating
function h(t) ¼ δ(t). The laser beam with a diameter a is
absorbed at the sample surface z ¼ 0, which causes a

FIG. 1. A-scans of the virtual wave field, where the intensity of the virtual wave
is plotted vs the propagation distance z. To incorporate the prior information
positivity, we project the bimodal virtual wave Tvirt onto its spherical means Mvirt.
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multidimensional heat flux in the specimen. The temperature
field is measured at z ¼ Lz which corresponds to the back wall of
the sample. Figure 3(a) shows a cross section at xd ¼ Lx=2 of the
measured surface temperature field T(r, t). Based on the mea-
sured temperature data, we compute the virtual wave field that
corresponds to a B-scan [Fig. 3(b)]. For the 3D case, we obtain a
characteristic scattering hyperboloid (Fig. 4) for a point-like
source. Based on the B- and C-scan, we can obtain the unknown
parameters c11 and c22 for the reconstruction of the initial tem-
perature distribution T0(r).

A. Modification of F-SAFT

Using the estimated speed of sound in the principal directions,
we can reconstruct the initial temperature distribution using
F-SAFT. Because we consider an orthotropic composite material,
we must modify the standard F-SAFT algorithm. Therefore, we
consider the homogeneous PDE of the wave equation for virtual
wave propagation:

c2
11
@2Tvirt(r, t0)

@x2
þ c2

22
@2Tvirt(r, t0)

@y2
þ c2

33
@2Tvirt(r, t0)

@z2
�@2Tvirt(r, t0)

@t02
¼ 0:

(22)

The spatial Fourier transform in x, y and the temporal Fourier
transform in t0 of Eq. (22) yields,

c2
11

c2
33
ξ2

x þ
c2
22

c2
33
ξ2

y �
1

c2
33
ω2

	 

Θ(ξx , ξy , z, ω) ¼ @2Θ(ξx , ξy , z, ω)

@z2
, (23)

wherein ξx and ξy are the spatial frequencies and ω is the temporal

FIG. 2. Principal sketch of the experiment. The gray cylinders represent the ori-
entation of the individual fibers (e.g., carbon or glass fibers) in a homogeneous
and isotropic matrix (e.g., thermosets or thermoplastics).

FIG. 3. Process steps for parameter estimation: (a) cross section of the simulated
or measured surface temperature field. Based on the temperature signal, an
“acoustic” virtual wave field is calculated, which exhibits the characteristic B-scan
(b) for an point-like source. (c) shows that the B-scan is composed of A-scans.
(d) We search for the zero crossing of the A-scans to obtain the data for parame-
ter fitting and (e) shows the fitting data and the corresponding least square fit.
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frequency. Θ(ξx , ξy , z, ω) is defined in the following manner:

Θ(ξx , ξy , z, ω) ¼
ððð1
�1

Tvirt(r, t0) e�i ξxxþξyyþωt0ð Þdx dy dt: (24)

Solving the ordinary differential equation (ODE), Eq. (23),
with the exponential approach yields,

Θ(ξx , ξy , z, ω) ¼ Θ0 exp �iz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

c2
33
ω2 � c2

11

c2
33
ξ2

x �
c2
22

c2
33
ξ2

y

s !
: (25)

In our case, Θ(ξx , ξy , z, ω) is given by the calculated virtual
wave field and Eq. (24). Hence, we must backpropagate the virtual
wave field to obtain the initial temperature distribution Θ0 or
T0. Compared to the isotropic F-SAFT backpropagation, we need
only scale the axes in the principal directions for orthotropic
materials.

B. The thermal scattering hyperbola

Figure 3(c) shows that the scattering hyperbola visible in the
B-scan consists of A-scans. Our goal is to estimate the unknown
components of the speed of sound tensor, c11 and c22 by fitting the
scattering hyperbolas

z11(x) ¼ c33

c11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2
11t

2
f þ (x � xd)

2
q

and

z22(y) ¼ c33

c22

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2
22t

2
f þ (y � yd)

2
q

:

(26)

With c11 ¼ ~c11Δx=Δt and c22 ¼ ~c22Δx=Δt we can write Eq. (26)
in discrete form,

z11(x) ¼ ~c33

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx

Δt

� �2

t2f þ
(x � xd)

2

~c2
11

s
and

z22(y) ¼ ~c33

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx

Δt

� �2

t2f þ
(y � yd)

2

~c2
22

s
:

(27)

The unknown parameters in Eq. (27) are ~c11, ~c22, and the time
of flight tf and, if the center of excitation is unidentified, xd and yd .
As mentioned before, according to VWC, we prescribe the dimen-
sionless virtual speed of sound ~c33 perpendicular to the measure-
ment surface. Reconsidering Eq. (15), we see that the axial thermal
diffusivity α33 has to be known before the speeds of sound, c11 and
c22, can be calculated. For the calculation of α33, we measure the
thickness Lm of the observed specimen mechanically. Using the
VWC, we determine α33 by the following steps:

1. Prescribe a starting value for the thermal diffusivity α̂33, e.g.,
from the literature.

2. Then, calculate the virtual wave signal based on the maximum
temperature pixel, which corresponds to the center of excitation,
and evaluate the time of flight tf between the front and the
back wall.

3. The thickness is calculated by the relationship
c33tf ¼ ~c33Δx=Δttf ¼ L̂z .

4. If the measured thickness Lm is equal to the estimated thickness
L̂z , the proposed thermal diffusivity is correct.

5. Otherwise, we must correct for the thermal diffusivity α̂33 by
α̂cor

33 ¼ α33 ¼ α̂33(Lm=L̂z)
2
(detailed derivation in Appendix B).

To obtain the fitting data for c11 and c22, we search for the zero cross-
ings of the N-shaped function, as depicted in Figs. 3(c) and 3(d).
They correspond to the maxima of the spherical means (Fig. 1).
Finally, the unknown parameters are estimated by a least square (LS)
fit of the data points, as illustrated in Fig. 3(e). We use symmetry from
the scattering hyperboloid and evaluate the cross section at yd for the
estimation of c11 and the cross section at xd for the estimation of c22.
Then, as visible in Eq. (16), we can calculate the thermal diffusivity
tensor based on the speed of sound tensor,

α ¼ α33

c2
33

c2
11 0 0

0 c2
22 0

0 0 c2
33

0B@
1CA ¼ α33

~c2
33

~c2
11 0 0

0 ~c2
22 0

0 0 ~c2
33

0B@
1CA ¼ α33

~c2
33

~cT~c:

(28)

In the penultimate step, the virtual speed of sound tensor is
written in discrete form.

C. Respecting finite laser spot diameter

The point source is not an ideal point, but can be imagined as
a superposition of point sources as depicted in Fig. 5. This is valid
because both heat equation and virtual wave equation are linear

FIG. 4. Scattering hyperboloid obtained by a point-like source.
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PDEs. Consequently, Eq. (27) becomes

z11(x) ¼
XNx=2�1

i¼�Nx=2

~c33

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx

Δt

� �2

t2f þ
(x � xd þ iΔx)

2

~c2
11

s
and

z22(y) ¼
XNy=2�1

j¼�Ny=2

~c33

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx

Δt

� �2

t2f þ
(y � yd þ jΔy)

2

~c2
22

s
:

(29)

The sum limits Nx ¼ Ny ¼ a=Δx can be calculated by the
laser spot diameter a and the spatial resolution Δx .

D. Validation on simulated data

In this section, we validate the novel approach for virtual
speed of sound and, consequently, for thermal diffusivity tensor
estimation using simulated data. For practical applications, we must
limit the laser power because otherwise the sample under test can
be damaged. This limits the signal amplitude measured by the IR
camera. The noise of the camera is given by the noise equivalent

temperature difference (NETD). These practical conditions result
in a limited signal to noise ratio (SNR). For this reason, we apply
the VWC for parameter estimation on simulated data with different
SNRs, where the SNR is defined as the ratio of maximum tempera-
ture Tmax and the corresponding standard deviation σ.

The model is described in principle by Fig. 2. We apply adiabatic
boundary conditions in each spatial dimension, whereby the radial
extensions Lx and Ly are large compared to the laser spot diameter
and the sample thickness Lz . Consequently, the boundaries in lateral
direction do not affect the heat flow. We introduce a short laser pulse
with laser spot diameter a and a top-hat beam. The chosen geometri-
cal and thermophysical parameters, as well as the temporal and spatial
resolution correspond to the parameters of the experiment and are
listed in Table I. The prescribed thermal diffusivity tensor contains
typical values for carbon fiber reinforced polymers (CFRPs).

The simulated temperature field is evaluated at the back wall
(z ¼ Lz) and is divided by the maximum temperature Tmax. For the
simulated measurement data, ten different noise levels are added to
obtain a SNR with SNR ¼ 8‘ and ‘ ¼ {1, 2, . . . , 10}.

1. Estimation of the axial thermal diffusivity

In this section, we focus on the estimation of the axial thermal
diffusivity α33 for discrete simulated measurement data. According
to Sec. III B, the corrected axial thermal diffusivity is calculated by

α̂cor
33 ¼ α̂33

Lm

L̂z

� �2

¼ α̂33
Lm

c33tf

� �2

¼ α̂33
Lm

~c33Ntf Δz

 !2

: (30)

The index Ntf indicates the zero crossing of the virtual wave
signal (see Fig. 1). Figure 6 shows the influence of the
discretization. Herein, the estimated thickness L̂z with spatial
resolution Δz is plotted against different assumptions for
α̂33 ¼ α̂cor

33 � 0:9:α̂cor
33 =200:α̂

cor
33 � 1:1. Due to the discretization, the

resulting curve is not smooth but indicates a stepwise change in
the estimated thickness L̂z . Consequently, an infinite set of
assumed α̂33 will give the correct thickness Lm. This results in a
significant error for the estimation of α33. At this point, Eq. (30)
provides a good but improvable estimation of α33 denoted as α̂cor

33 .
To obtain a more precise estimation for α33, the following steps
are taken:

TABLE I. Simulation and evaluation parameters.

Property Unit Value

Radial extensions Lx, Ly m 100 × 10−3

Sample thickness Lz m 1.52 × 10−3

Laser spot
diameter

a m 1.52 × 10−3

Thermal
diffusivities

α m2 s−1
0:7 0 0
0 3:8 0
0 0 0:32

0@ 1A� 10�6

Temporal
resolution

Δt s 1/227

Spatial resolution Δx, Δy, Δz m Lz/30

FIG. 5. Superposition of point scatterers.
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• α̂cor
33 is estimated according to Sec. III B.

• Then, a vector of estimations α̂cor
33 � 0:9:α̂cor

33 =200:α̂
cor
33 � 1:1 is set

up and the points listed in Sec. III B are repeated for each entry
until step 4 is reached.

• The mean value of thermal diffusivities, which give the correct
thickness Lm (Fig. 6, gray background) is taken in order to

obtain the final estimation of α33. This is reasonable because
Fig. 6 shows a linear approximation of the quadratic sample
thickness to thermal diffusivity relationship due to the limited
range of estimation values for α33.

For the improved estimation of the axial thermal diffusivity,
we truncated the initial simulation time L2

m=α33 according to
Appendix A. Figure 7 shows a simulated temperature curve with
SNR ¼ 8, the corresponding reconstructed temperature slope
Trec ¼ KTvirt, and the end time tevalend for the final evaluation of α33.

Because we have a finite laser spot diameter a, we can perform
the above-mentioned evaluation for 25 pixels which proves the
repeatability of this method.

2. Estimation of speed of sound and thermal diffusivity
tensor

Due to the estimation of α33, we can calculate the scattering
hyperboloid that results from a point-like heating. Then, we evalu-
ate the symmetry cross sections at xd ¼ Lx=2 and yd ¼ Ly=2.

FIG. 6. Estimated thickness L̂z vs the vector of estimations for the axial thermal
diffusivity α̂cor

33 � 0:9:α̂cor
33 =200:α̂cor

33 � 1:1 for SNR¼8.

FIG. 7. Visualization of the simulated temperature at the center point (xd , yd ) with
SNR ¼ 8 and the corresponding reconstructed temperature slope Trec ¼ KTvirt.
For the estimation of α33, temperature values until teval

end were used (dashed line).

FIG. 8. Top: Cross section of the simulated temperature field at yd ¼ Ly=2 with
SNR ¼ 8. Middle: Corresponding cross section of the computed virtual wave
field. Bottom: Extracted data points of the virtual wave field to estimate the
dimensionless virtual speed of sound ~c11. The black dashed line is the fitted
curve.
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As described in Sec. III B, we search for the zero crossings of the
B-scan that consists of A-scans. Based on these data points, we can
perform a data fit to estimate the unknown speeds of sound
~c11 and ~c22. For both data fits, the data points until a depth of
z ¼ c33t0 ¼ 2:5mm were used. Consequently, according the find-
ings in Appendix A and Fig. 7, we considered data points until
(2:5 � 10�3=Lm)2tevalend . Figures 8 and 9 illustrate the procedure. The
top image shows the temperature field, while the image in the
middle depicts the corresponding virtual wave field and the bottom
graph exhibits the extracted data points and the corresponding
fitted curve for both evaluated cross sections. Based on the esti-
mated dimensionless speed of sound tensor, we calculated the
initial temperature distribution T0 and the unknown thermal diffu-
sivities α11 and α22.

3. Results based on simulated data

Figure 10 shows error plots representing the mean value and
standard deviation of (a) the estimated speed of sound tensor and

(b) the computed thermal diffusivity tensor, for different SNRs and
nine repetitions. As visible in plot (a), the virtual speed of sound in
the axial direction exhibits no error because it was prescribed.
Furthermore, the thermal diffusivity in the axial direction α33 can
be determined very well for all SNRs, except SNR¼ 8 for which the
mean error is smaller than +0:5%. For each SNR, the starting
value for the axial thermal diffusivity was α̂33 ¼ 2:3 � 10�6 m2=s.
The mean errors of ~c11 and ~c22 for the different SNRs lie in the
error bounds of +1:0% for each SNR. Moreover, we can see that
the standard deviation for each estimated parameter decreases with
increasing SNR. Equation (28) shows that α11 and α22 are calcu-
lated by the product of α33 and ~c2

11 and ~c2
22, respectively. It is

important to note that the quantities α33, ~c11, and ~c22 are correlated.
From a theoretical point of view, an overestimation of α33 yields an
underestimation of ~c11 and ~c22. Hence, according to the law of
error propagation, we have in the worst case a sum of the relative
errors of these quantities. However, Fig. 10(a) depicts an overesti-
mation for ~c11 and an underestimation of ~c22. As visible, the accu-
racy of the estimations for α11 and α22 mainly depends on the
accuracy of ~c11 and ~c22. Figure 11(a) depicts the reference initial
temperature curve T0 and the reconstructed temperature distribu-
tion evaluated at z ¼ 0 and the centerline in the x- and y-direction,
by applying F-SAFT and the estimated dimensionless virtual
speed of sound tensor ~c on the computed 3D virtual wave field.
Figure 11(b) shows an isosurface representation of the initial tem-
perature distribution. Due to the well estimated tensor ~c, we have a
circular area, which represents the laser spot heating.

FIG. 9. Top: Cross section of the simulated temperature field at xd ¼ Lx=2 with
SNR ¼ 8. Middle: Corresponding cross section of the computed virtual wave
field. Bottom: Extracted data points of the virtual wave field to estimate the
dimensionless virtual speed of sound ~c22. The black dashed line is the fitted
curve.

FIG. 10. (a) Error plots representing the mean value and standard deviation of
the estimated dimensionless speed of sound tensor ~c, and (b) the correspond-
ing thermal diffusivity tensor α.
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E. Experiment

For the experimental investigations, we consider two carbon
fiber reinforced polymer (CFRP) specimens with a unidirectional
fiber matrix. The lateral extensions for both specimens are Lx ¼
100mm and Ly ¼ 100mm. One specimen has 8 layers (UD8) and
a thickness of Lz ¼ 1:65mm, the other specimen has 16 layers
(UD16) and a thickness of Lz ¼ 3:27mm. The thicknesses were
measured with a micrometer. Figure 2 depicts a sketch of the speci-
mens. Figure 12 shows the experimental setup. The setup consists
of a laser system, optical lenses, specimen, dichroic mirror, and the
IR camera. The raise time of the diode laser is smaller than 10 μs

and the bandwidth is greater than 50 kHz. The maximum power is
250 W and the numerical aperture is 0.22. The IR camera has a
NEDT smaller than 25 mK. It has a cooled indium antimony
(InSb) sensor that is sensitive in the spectral range of 3:0�5:1 μm.
The laser power for the different measurements of the UD8
sample was 25 W and the heating time in the experiment was
th ¼ {0:01, 0:02, 0:03} s with a laser-spot diameter of approxi-
mately 1.5 mm. For the UD16 sample, the laser power was again

FIG. 11. (a) Line plot of the reference initial temperature distribution T0 and the
reconstructed initial temperature distribution evaluated at z ¼ 0 and the center-
line in the x- and y-direction. (b) Corresponding isosurface representation of T0.
These representations are based on simulated surface temperature data with
SNR ¼ 8, by applying F-SAFT and the estimated speed of sound tensor c on
the computed virtual wave field.

FIG. 12. Experimental setup.

FIG. 13. Visualization of virtual wave field at z� ¼ c33t� ¼ 2:32 mm. For the
ellipse fit, the function in Ref. 30 was used.
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25 W, the heating time th was 0.04 s, and the laserspot diameter
was approximately 2.5 mm. Due to the laser heating, the specimen
was thermally stimulated. Simultaneously, the temperature signal
was recorded in transmission mode. For the UD8 sample, the
image frequency of the IR camera was 227 Hz and the spatial reso-
lution was Δx ¼ 56:6 μm. For the UD16 sample, the image fre-
quency was 57 Hz and the spatial resolution was Δx ¼ 91:6 μm.

1. Parameter estimation and image reconstruction

For the estimation of the thermal diffusivity in axial direction
α33, the data evaluation was equal to the procedure for simulated
data. Furthermore, we make use of an effective medium approxi-
mation for the estimation of the thermal diffusivity. The assump-
tion is that the UD samples have no distinctive interfaces between
the single plies, because the orientation of the layers does not
change. The starting value for the axial thermal diffusivity was pre-
scribed with α̂33 ¼ 0:31 � 10�6 m2=s for each evaluation. Then, we

calculated the scattering hyberboloid using c33 and α33. Because
this approach and formalism is only valid if the main axes of the
coordinate system lie in the principal directions of heat conduction,
we checked the orientation of the main axes. For the verification,
we observed the computed scattering hyperbola at the depth
z* ¼ c33t* ¼ 2:32mm. The shape of the cross section is described
by an ellipse, as shown in Fig. 13. Hence, we can perform an ellipse
fit to check if the main axes are in the principle thermal diffusivity
direction. Furthermore, especially for experimental data, we can
determine the center of the ellipsoid and, hence, the symmetry
cross sections of the hyperboloid. Figures 14 and 15 show the eval-
uation of the dimensionless virtual speeds of sound ~c11 and ~c22 for
the UD8 sample. The top image shows the temperature signal at
the symmetry cross section. In the middle, the corresponding
virtual wave field is illustrated. The bottom graph shows the
extracted fitting data and the fitted curve. For the estimation of ~c11

and ~c22, data points until a depth of z ¼ c33t0 ¼ 2:5mm were used.
For the evaluation of the UD16 sample, data points until a depth of

FIG. 14. Top: Cross section of the measured temperature field, with
th ¼ 0:02 s, at the centerline of y. Middle: Corresponding cross section of the
computed virtual wave field. Bottom: Extracted data points of the virtual wave
field to estimate the dimensionless virtual speed of sound ~c11. The black
dashed line is the fitted curve.

FIG. 15. Top: Cross section of the measured temperature field, with
th ¼ 0:02 s, at the centerline of x. Middle: Corresponding cross section of the
computed virtual wave field. Bottom: Extracted data points of the virtual wave
field to estimate the dimensionless virtual speed of sound ~c22. The black
dashed line is the fitted curve.
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z ¼ c33t0 ¼ 5mm were used. Table II lists the results for different
heating times th and equal laser power and consequently different
SNRs. For each heating time, five measurements were performed.
Hence, the listed results consist of a mean value and the corre-
sponding standard deviation. The kernel for a Dirac–Delta like
heating K was temporally convolved with the corresponding
heating function to account for the different heating times.13 As
visible in Table II, the estimated values match well. Due to the low
SNR, only α33 was evaluable for th ¼ 0:01. Figure 16 exhibits the
reconstructed initial temperature field T0 based on measured
surface temperature data by applying F-SAFT and the estimated
dimensionless speed of sound tensor ~c on the computed virtual
wave field. As expected, the reconstruction shows a circular area as

a consequence of the point-like laser heating with finite laser spot
diameter. Furthermore, the estimated values of the UD8 and UD16
sample match well, which proves that the application of an effective
medium approximation is valid for this type of specimen. For the
axial thermal diffusivity estimations, we carried out reference evalu-
ations with the linear diffusivity fit (LDF)-method, which also
bases on measurements in transmission mode. The LDF method
bases on a 1D solution of heat equation for a semi-infinite body
and a temporal Dirac–Delta heating.31,32 Using this method and
the same evaluation domain, we obtained for the UD8 sample a
axial thermal diffusivity of α33 ¼ 3:68 � 10�7 m2/s and for the
UD16 sample α33 ¼ 3:65 � 10�7 m2=s. These results match the
values obtained via VWC very well, which proves the new evalua-
tion method additionally.

IV. CONCLUSIONS

In this work, we have extended the VWC for the 3D image
reconstruction of composite materials with an orthotropic heat
conduction tensor. The extension includes a new approach for the
estimation of the orthotropic thermal diffusivity tensor based on
the virtual scattering hyperbolas.

For this purpose, we transformed the orthotropic heat equa-
tion and wave equation into isotropic PDEs to establish a formal
relationship between the virtual speed of sound c and the thermal
diffusivity tensor α. To increase the accuracy for parameter estima-
tion and image reconstruction, we incorporated prior information
in the form of positivity and sparsity. The 3D bimodal virtual wave
signal resulting from a 3D temperature field is projected onto a
positive dataset to incorporate the prior information positivity.
We can also assume a sparse reconstruction matrix Tvirt due to the
spatial point-like and temporal short laser excitation. Based on
the calculated virtual scattering hyperboloid, we proposed an evalu-
ation procedure for the virtual speed of sound tensor. The virtual
speed of sound tensor enables a high-resolution image reconstruc-
tion of composite materials and a precise parameter estimation of
the thermal diffusivity tensor. To validate the presented approach,
we carried out finite element evaluations. In addition, we made
reference evaluations based on the LDF method to check if the
axial thermal diffusivity values obtained via VWC are plausible.
The circular reconstruction of the initial temperature distribution
shows that the estimations of the thermal diffusivities in plane are
meaningful.

The benefits of the proposed procedure are:

• 3D visualization of the orthotropic/anisotropic thermal diffusion
based on the computed scattering hyperboloid.

• The initial temperature distribution and the thermal diffusivity
tensor can be computed with the same method.

• Better defect detectability is possible because of the incorporation
of prior information positivity and sparsity and the rectification
of the anisotropic thermal diffusion.

• Due to the local transformation between temperature and virtual
wave signal, the method can be readily parallelized yielding a
computationally efficient reconstruction method.

In future work, the potential of the VWC for composite materials
should be tested on complex shaped industrial manufactured

TABLE II. Estimated parameters based on experimental data consisting of mean
value and standard deviation.

Sample UD8 UD16
Par/th (s) 0.01 0.02 0.03 0.04 Unit

~c11 … 1.25 ± 0.03 1.21 ± 0.04 1.23 ± 0.09 (…)
~c22 … 3.10 ± 0.04 3.11 ± 0.08 3.12 ± 0.16 (…)
α11 … 0.58 ± 0.03 0.54 ± 0.04 0.55 ± 0.07 (mm2/s)
α22 … 3.55 ± 0.07 3.56 ± 0.17 3.55 ± 0.31 (mm2/s)
α33 0.37 ± 0.00 0.37 ± 0.00 0.37 ± 0.00 0.36 ± 0.01 (mm2/s)

FIG. 16. Isosurface representation of the reconstructed initial temperature field T0,
based on measured surface temperature data with th ¼ 0:02 s, by applying F-SAFT
and the estimated speed of sound tensor c on the computed virtual wave field.
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components. In addition, the determination of the thermal diffu-
sivity tensor should be adapted for applications, in which the
coordinate system is not parallel to the three mutually perpendic-
ular preferred thermal diffusion directions. Furthermore, the
VWC for parameter estimation and image reconstruction should
be applied for different heating functions, e.g., a sequence of tem-
poral rectangular pulses. In contrast to an illumination with a
single pulse, this allows a higher energy input for a certain
limited maximum illumination power, and thus to increase the
SNR.
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APPENDIX A: ESTIMATION OF EVALUATION TIME

To decrease the computational cost for the estimation of the
thermal diffusivity in axial direction α33, we propose a cut-off cri-
terion regarding the observation time for simulated and mea-
sured temperature data. For this purpose, we solve the direct
problem respecting an orthotropic material. As mentioned in
Sec. II, the orthotropic heat conduction problem can be trans-
formed into an isotropic heat conduction problem, with the
thermal diffusivity α ¼ α11α22α33ð Þ1=3, by scaling the principle
axes. For the solution of the forward problem, we reconsider
Fig. 2. In the x–y plane, the sample is assumed to be extended to
infinity, because the laser spot is small compared to the lateral
dimensions. In the depth direction, we assume adiabatic boun-
dary conditions and the sample thickness Lz . The corresponding
Green’s functions are33

GXY00(�x, �y, tj�x0, �y0, τ) ¼ 1
4πα(t � τ)

� exp � (�x � �x0)2 þ (�y � �y0)2

4α(t � τ)

	 

(A1)

and

GZ22(�z, tj�z0, τ) ¼ 1
L

1 þ 2
X1
m¼1

exp �m2π2α(t � τ)
�L2

z

" #
� cos

mπ�z
�Lz

� �
cos

mπ�z0

�Lz

� �" #
: (A2)

Due to the rectangular coordinate system and the assumed boun-
dary conditions (zeroth and second kind), we can multiply
Eqs. (A1) and (A2) to obtain Green’s function for the 3D
heat conduction case. The heat source term g(�x, �y, �z, t)
¼ q0Θ(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2 þ �y2

p
)δ(�z)δ(t) is modeled with a temporal Dirac–Delta

pulse (short laser pulse) δ(t), a lateral rectangular pulse
Θ(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2 þ �y2

p
) and a Dirac–Delta pulse in depth direction δ(�z). The

laser spot has radius η and q0 [J/m2] denotes the heat flux. For the
sake of simplicity, we shifted the coordinate system into the center
of excitation (xd ¼ 0 and yd ¼ 0). For the estimation of the evalua-
tion time, we observe the temporal temperature signal at the center
point �x ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffi
α=α11

p ¼ 0 and �y ¼ y
ffiffiffiffiffiffiffiffiffiffiffiffi
α=α22

p ¼ 0. Applying Green’s
function solution equation (GFSE)26 gives the corresponding tem-
perature signal,

T(�x ¼ 0, �y ¼ 0, �z, t) ¼ α

k

ðt

0

ðη
�η

ð ffiffiffiffiffiffiffiffiffi
η2��x2

p

�
ffiffiffiffiffiffiffiffiffi
η2��x2

p
ð�Lz

0
GXY00(0, 0, tj�x0, �y0, τ)

� GZ22(�z, tj�z0, τ)g(�x0, �y0, �z0, τ) d�z d�y d�x dτ:

(A3)

The dimensionless temperature solution V(�z, t) ¼ T(�z, t)ρcp�Lz=q0

of Eq. (A3) is given by

V(�z, t) ¼ 1 � exp � η2

4αt

� �	 

� 1 þ 2

X1
m¼1

exp �m2π2αt
�L2

z

" #"
cos

mπ�z
�Lz

� �

: (A4)

In our experiment, we collect the temperature in transmission
mode. Hence, we evaluate Eq. (A4) at the stretched depth �Lz ,

V(�z ¼ �Lz , t) ¼ 1 � exp � η2

4αt

� �	 

� 1 þ 2

X1
m¼1

exp �m2π2αt
�L2

z

" #
�1ð Þm

" #
: (A5)

Furthermore, we can substitute for �Lz ¼ Lz

ffiffiffiffiffiffiffiffiffiffiffiffi
α=α33

p
and introduce

the dimensionless time u ¼ π2α33t=L2 that enables us to split the
radial from the axial temperature component,

V(�z ¼ �Lz , u)¼ 1� exp � η2π2

4�L2
zu

 !" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

radial component Vr

1þ2
X1
m¼1

exp �m2u
� � �1ð Þm

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

axial component Va

:

(A6)
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Figure 17 shows the radial temperature signal Vr , the axial tempera-
ture signal Va, and the resulting temperature curve Vr �Va as a
function of u for the laser-spot radius η¼ 0:75mm. It is visible
that with increasing time, the influence of the axial component
Va � 1 decreases, and the resulting temperature signal is approx-
imately Vr. Therefore, at a certain point in time u*, the resulting
temperature signal has no significance for the estimation of the
axial thermal diffusivity. Hence, the evaluation domain is
defined as {0, u*} (Fig. 17, gray background). We define the char-
acteristic point u* as the time step that corresponds to the local

maximum of the second derivative in the cooling domain. The
benefit of this definition is that u* can be determined without
the prior knowledge of α33. At this point, the influence of Va to
the resulting temperature curve is lower than 5%. Due to the
noisy temperature data, we use the filtered temperature signal
Trec ¼KTvirt obtained during calculation of α̂cor

33 to calculate the
observation time u*.

APPENDIX B: ANALYTICAL 3D VIRTUALWAVE SIGNAL

In this section, we deduce the analytical relationship between
temperature signal and virtual wave signal based on the same
model that is described in Appendix A. The aim of the subse-
quent steps is to provide a deeper insight into the analytical
temperature to virtual wave transformation, while on the other
hand, the proof of the formal relationship α33 ¼ α̂33(Lz=L̂z)

2

claimed in Sec. III B that may not be straightforward for
anisotropic thermal diffusion. For the sake of simplicity and in
contrast to Appendix A, we consider a point-like thermal source
g(�r, t) ¼ q0δ(�r)δ(t) and in axial direction, the adiabatic Green’s
function obtained via the method of images.33 The unit of the
instantaneous point source q0 is W s. The corresponding tempera-
ture function is

T(�r, t) ¼ 2q0

(4παt)3=2
α

k

X1
n¼�1

exp � �x2 þ �y2 þ (2n�Lz þ �z)2

4αt

" #
: (B1)

Again, we have α ¼ α11α22α33ð Þ1=3. In the next steps, we
determine the corresponding virtual wave field Tvirt(�r, t0) based on
Eqs. (11) and (15). Further, we take into account the property

ð1
�1

f (t0)
@

@t0
δ(t0 � a) dt0 ¼ � @

@t0
f (a) (B2)

of the Dirac–Delta distribution.35 We assume the correct thermal
diffusivity α33 is unknown. For this reason, we bring in an estima-
tion α̂33 for the thermal diffusivity to Eq. (15). Substituting this
into Eq. (11) yields,

2q0

(παt)3=2
α

k

X1
n¼�1

exp � �x2 þ �y2 þ (2n�Lz þ �z)2

4αt

" #

¼
ð1
�1

Tvirt(�r, t0)
c33ffiffiffiffiffiffiffiffiffiffiffi
πα̂33t

p exp � c2
33t

02

4α̂33t

� �
dt0: (B3)

From Eqs. (B2) and (B3), we can deduce the corresponding
virtual wave field,

Tvirt(�r, t0) ¼ 1
2

q0α̂33

kπc33

X1
n¼�1

@

@t0

�
δ c33t0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2 þ �y2 þ (2n�Lz þ �z)2

q ffiffiffiffiffi
α̂33
α

q	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2 þ �y2 þ (2n�Lz þ �z)2

q : (B4)

FIG. 17. Illustration of the radial component, the axial component, and the
resulting temperature signal at the center point (x ¼ 0, y ¼ 0) due to a short
laser pulse with laser spot diameter η following Ref. 34. The gray background
shows the evaluation time for the estimation of the axial thermal diffusivity. In
the exploded area, the analytical and measured temperature slopes are plotted.
The measured temperature slope corresponds to a heating time of th ¼ 0:02 s.
The analytical slope was plotted with the estimated parameters listed in Table II
(th ¼ 0:02 s.). As visible, the analytical model fits the measurement data well.
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For the estimation of α33, we consider the virtual wave field at
�x ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffi
α=α11

p ¼ 0, �y ¼ y
ffiffiffiffiffiffiffiffiffiffiffiffi
α=α22

p ¼ 0 and rescale the z-axes,

Tvirt(0, 0, z, t0) ¼ 1
2

q0α̂33

kπc33

X1
n¼�1

@

@t0

�
δ c33t0 � (2nLz þ z)

ffiffiffiffiffi
α
α33

q ffiffiffiffiffi
α̂33
α

q	 

(2nLz þ z)

ffiffiffiffiffi
α
α33

q : (B5)

For the estimation of α33, we evaluate the first mirror source. Due
to this fact, we only evaluate the term n ¼ 0 at z ¼ Lz in Eq. (B5),

Tvirt(0, 0, Lz , t0) ¼ 1
2

q0α̂33

kπc33

@

@t0
δ c33t0 � Lz

ffiffiffiffiffi
α̂33
α33

qh i
Lz

ffiffiffiffiffi
α
α33

q : (B6)

Using the time-of-flight method, we estimate the thickness
L̂z ¼ c33tf of the sample, where tf is the time of flight. If α̂ ¼ α,
the estimated thickness is equal to the correct thickness Lz .
Otherwise, as obvious in the argument of the Dirac–Delta distri-
bution, we must correct the thermal diffusivity in the following
manner:

αcor
33 ¼ α33 ¼ α̂33

Lz

L̂z

� �2

: (B7)
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5 Publications and Scientific contribution

5.4 3D photothermal imaging of subsurface defects in

composite materials

In this study, a fast, easily interpretable, and efficient 3D photothermal "pulse-echo" defect

imaging tool for nondestructive testing of anisotropic materials is presented. Here, the findings

of Paper 5.3 are applied to CFRP specimens with artificial subsurface defects. The artificial de-

fects are represented by flat bottom holes with varying defect-diameter-to-depth ratios. To opti-

mize the computation time of the VWC procedure without affecting the reconstruction quality,

a discretization criterion was proposed by a parameter study and physical-based considerations.

To obtain the evaluation data, the observed CFRP specimens were thermally excited with flash

lamps and the surface temperature signal was measured simultaneously in the pulse-echo con-

figuration. A source and sink model was proposed to explain the characteristics of the virtual

wave signal due to the disturbed thermal diffusion caused by a defect. As in the previous papers

the iterative regularization tool ADMM was used for the temperature-to-virtual wave signal

transformation.

The results of the source and sink explanation suggest that for highly anisotropic samples,

positivity as prior information can not be incorporated by calculating the spherical projection

of the virtual wave signal. In addition, the results show that when the signal-to-noise ratio is

high enough, the FBH diameter can be reconstructed well, but the depth of the FBH interfaces

can not be localized exactly. Due to the finding that subsurface defects yield a source and sink

in the virtual wave signal, their depth can be estimated. The proposed multi-dimensional re-

construction procedure is fast and the results are easy to interpret, since the same visualization

techniques as for ultrasonic reconstructions (A-scan, B-scan C-scan) can be used.
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A B S T R A C T   

In this work, we show the application of the virtual wave concept for 3D “pulse-echo” photothermal defect 
imaging in anisotropic materials. We consider a woven and a unidirectional carbon fiber reinforced material 
including flat bottom holes with varying diameter-to-depth ratios. We discuss the characteristics of the virtual 
wave signal due to disturbed heat diffusion caused by a defect and the resulting consequences for our defect 
reconstruction method regarding the incorporation of prior information. In addition, we optimize the virtual 
wave concept in terms of computation time by performing a parameter study and a physical-based derivation 
that suggest reasonable values for the temporal and spatial discretization, respectively. The paper presents a very 
fast, easily interpretable and efficient 3D reconstruction tool for active thermography testing of anisotropic 
materials.   

1. Introduction 

Large, thin-wall monolithic components made from carbon fiber 
reinforced polymers (CFRP) used in the aerospace and automotive in
dustries are predestined for non-destructive testing (NDT) with active 
thermography (AT) [1,2]. Using this contactless and fast thermal NDT 
method, the sample under test (SUT) can be subjected to an arbitrary 
heating that varies in time and space. Simultaneously, the resulting 
surface temperature signal can be recorded with an infrared(IR) camera 
in reflection (“pulse-echo”) or transmission mode. In industrial appli
cations, the reflection mode is of particular interest because the com
ponents are often only accessible from one side [3,4]. The crucial 
challenge with AT testing is the diffusive nature of thermal waves [5,6]. 
Heat diffusion causes entropy production that is equal to information 
loss and hence leads to blurred images for deeper lying structures [7]. 
The surface temperature signal and the noise equivalent temperature 
difference (NETD) from the IR camera result in a certain signal-to-noise 
ratio (SNR). This is in principle the limiting factor for maximum defect 
depth or back wall resolution and defect separation. This limitation can 
be overcome with enhanced signal processing methods including prior 
information of the experiment [8–10]. The near surface defect resolu
tion limit depends only on the camera frame rate [9]. The surface 
temperature signal contains information about possible defects or ir
regularities in the sample, which can be partially and qualitatively 
revealed by standard post processing methods such as the pulse phase 

thermography (PPT) [11] and the thermographic signal reconstruction 
(TSR) [12,13]. Mulaveesala and Tuli [14,15] proposed another 
data-based approach, called frequency-modulated thermal wave imag
ing, for non-destructive detection of subsurface defects, which uses a 
temporal frequency modulated thermal excitation signal. Later, Kai
plavil and Mandelis [16] introduced the truncated-correlation photo
thermal coherence tomography (TC-PCT). This approach uses a matched 
filtering technique to improve the lateral and axial resolution which 
enables a 3D visualization of subsurface features. Tavakolian et al. [17] 
enhanced TC-PCT by an optimized evaluation system and reconstruction 
algorithm. These 1D methods do not take into account a lateral heat flow 
and thus making a precise defect sizing difficult or impossible especially 
when testing highly anisotropic materials, like CFRP. 

Recent multidimensional approaches, which use the fundamental 
solution of heat conduction, count for the lateral heat flow in composite 
materials. For example, Groz et al. [18] introduced a model-based 
inversion procedure for an infinite body and internal heat sources, 
where a reasonable discretization of AT data was discussed in detail. 
Holland and Schiefelbein [19] proposed an inversion for thermographic 
data with a temporal short excitation pulse in reflection mode. Their 
model is constructed with multiple reflectors which are set in different 
depths with different lateral resolutions in the reconstruction domain. 
Both approaches end in a large scale problem which is in general 
computationally very expensive. 

Burgholzer et al. [20] introduced an alternative two step 
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reconstruction method, the so-called virtual wave concept (VWC). In a 
first step, the measured surface temperature signal is transformed locally 
(pixelwise) into a virtual wave signal. This virtual wave signal obeys the 
wave equation and hence, in a second step, well known ultrasonic 
reconstruction methods like the frequency domain synthetic aperture 
focusing technique (F-SAFT) [21] can be applied for defect reconstruc
tion. This reconstruction step accounts for the lateral heat flow and 
improves the SNR by integrating along scattering hyperbolas and can be 
interpreted as a matched filter method. VWC is inexpensive because the 
local surface temperature-to-virtual wave signal transformation can be 
readily parallelized and the second inversion step is performed without 
explicit regularization in the frequency domain. In a previous work, we 
have extended this method and introduced a fully multidimensional 
image reconstruction and parameter estimation procedure that enables 
the rapid and robust defect detection of composite materials [22]. This 
work applies the VWC to woven and unidirectional (UD) composite 
materials with flat bottom holes (FBHs) with varying diameter-to-depth 
ratios. Furthermore, we deduce a discretization criterion which can be 
used to optimize the evaluation performance of the virtual wave 
concept. The paper is organized as follows: In the first section, we 
introduce the mathematical framework of the virtual wave concept and 
an optimization approach by a parameter study and analytical consid
erations. We discuss the characteristics of the virtual wave signal due to 
disturbed heat diffusion, caused by a defect. In the second section we 
show the results obtained from the FBH sample for both woven and UD 
composite material. 

2. Virtual wave concept 

In this section, we formulate a discretization criterion for the virtual 
wave concept (VWC) in order to speed up the evaluation procedure and 
to increase the defect detection capability. For the multidimensional 
reconstruction of defects, the following evaluation steps are performed:  

1. The change of the surface temperature signal due to the thermal 
stimulation of the SUT is recorded with an IR camera.  

2. The measured surface temperature signal is transformed into a so- 
called virtual wave signal which obeys the wave equation.  

3. Finally, ultrasonic reconstruction methods are applied for the defect 
sizing and the rectification of the anisotropic heat flow. 

In this section, we focus on the second evaluation step - the trans
formation between the surface temperature signal T(r, t) and virtual 
wave signal Tvirt(r, t′ ). The corresponding mathematical formulation is 
given by Ref. [20]. 

T(r, t) =
∫

K(t, t’)Tvirt(r, t’)dt’

with K(t, t’) = c̅̅̅ ̅̅̅̅
παt

√ exp
(
− c2t’2

4αt

) (1) 

Herein α denotes the thermal diffusivity and c is the virtual speed of 
sound. Eq. (1) shows that the kernel K is independent of the position 
vector r = (x, y, z). Therefore, Eq. (1) describes a local transformation 
between surface temperature and virtual wave signal. The Fredholm 
integral of the first kind, Eq. (1), is valid for a temporal Dirac-Delta 
thermal stimulation. Because the experimental data is discrete in 
space and time, we discretice the Fredholm integral which yields a linear 
matrix equation. Especially for one spatial cross section of the 3D SUT, 
with pixel number q, we can write: 
T = KTvirt. (2) 

The dimensions of these matrices are T ∈ RNt×q, K ∈ RNt×Ntv and 
Tvirt ∈ RNtv×q, where Nt and Ntv are the number of time steps for the 
surface temperature signal and the virtual wave signal. With the running 
variables k = {0, 1, 2, …, Nt-1} and j = {0, 1, 2, …, Ntv-1} and the 

corresponding discrete time steps tk = kΔt and t′j = jΔt, the component 
notation of the kernel K is given by 

K(k, j) = c
̅̅̅̅̅
Δt

√̅̅̅̅̅̅̅̅
παk

√ exp
(
− c2Δtj2

4αk

)
= η̅̅ ̅̅̅

πk
√ exp

(
− η2j2

4k

)
(3) 

Here, we introduced the dimensionless number η = c ̅̅̅̅̅
Δt

√
/

̅̅̅
α

√ , which 
depends on the propagation parameters c and α and on the temporal 
resolution Δt. Our goal is to compute a virtual wave signal Tvirt based on 
a known surface temperature signal T. Due to the diffusive nature of heat 
propagation, we deal with a severely ill-posed inverse problem and, 
hence, Eq. (2) cannot be inverted directly. Thus, we need regularization 
tools and the corresponding regularization parameters [23]. 

2.1. Parameter study 

As visible in Eq. (3), K depends only on the dimensionless number η 
and the number of time steps Nt and Ntv. To reduce the computational 
cost for the inversion of Eq. (2) it is desirable to keep Nt and Ntv small, 
whereby their minimum is given by the geometrical and physical pa
rameters of the SUT. If η is poorly selected, the solution of the inverse 
problem becomes worse. To determine the appropriate parameter con
figurations, we perform a parameter study and a singular value 
decomposition (SVD) of K in order to evaluate the number of significant 
singular values nϕ. Fig. 1 visualizes the singular values of K for exem
plary parameters Nt, Ntv and η. This figure shows that the singular values 
s decrease until the value of machine accuracy is reached. At this point 
the singular values do not contain significant information for the inverse 
solution and hence, they are truncated according to Fig. 1 [18]. 

In the next step, we vary the parameters η = {0 : 0.004: 10} and Ntv 
= {10 : 20: 3000} for a) Nt = 100 and b) Nt = 200 and evaluate for each 
parameter configuration the corresponding number of significant sin
gular values nϕ of K. Fig. 2 shows the result of the parameter study. 
Herein, it is visible that, for a good choice of η and Ntv and a specific Nt, 
the number of significant values nϕ can be increased. Furthermore, nϕ is 
constant for a large region of Ntv even in the domain of small η values. 
Therefore, Ntv can be strongly reduced without decreasing the quality of 
the inverse solution. The red dashed and dotted lines show the result of a 
physical-based consideration of the minimum and maximum number of 
η, which are deduced in the next section. The results of the parameter 
study offers valuable hints for good parameter configurations but is only 
valid for a specific number of time steps Nt. This parameter was limited 
because otherwise the computational cost of the parameter study be
comes unmanageable. 

0 50 100 150 200
number of singular values i

10-20

10-15

10-10

10-5

100

si
ng

ul
ar

 v
al

ue
s 

s

n

significant not significant

Fig. 1. Semi-log plot of the singular values s as function of the number of 
singular values i. The black dashed line separates the significant singular values 
nϕ from not significant singular values. 
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2.2. Physical-based limitation of η 

To circumvent the high computational cost due to high numbers of Nt 
or Ntv and consequently very large matrices K, we deduce a physical- 
based limitation for the parameter η. We reformulate η = c ̅̅̅̅̅

Δt
√

/
̅̅̅
α

√ , 
because c is a virtual speed of sound which is not physically based and, 
therefore, unknown. For this reason, we expand η by the axial spatial 
resolution Δz 

η = c
̅̅̅̅̅
Δt

√̅̅̅
α

√ Δz

Δz
= c̅̅̅̃ ̅̅̅̅̅

ΔFo
√ , (4) 

which yields the dimensionless virtual speed of sound c̃ = cΔt/ Δz 
and the discrete Fourier number ΔFo = αΔt/Δ2

z . As in previous studies, 
we prescribe ̃c = 1 instead of c and, in accordance with the time of flight 
method (TOF), we can relate the time t to the depth coordinate z in the 
following manner: 

z = ct = c̃Δz

Δt
jΔt = c̃Δzj. (5) 

On the one hand, we claim for a minimum value of η = ηmin that the 
reconstruction domain ̃cΔzNtv is large enough to detect the back wall of 
the observed sample. On the other hand we claim, for a maximum value 
of η = ηmax, that the axial spatial resolution Δz is small enough to resolve 
a defect at a certain depth or at least the back wall. 

2.2.1. Minimum value of η 
To ensure a reliable detection of the back wall, in reflection mode, we 

must claim that the detection domain is at least: 

3L=! ct = c̃
Δz

Δt
NtvΔt = c̃ΔzNtv, (6) 

whereby L is the thickness of the SUT. For the reconstruction of the 
back wall in reflection mode, an evaluation domain of 2L would be large 
enough, but we have to solve a discrete, severely ill-posed inverse 

problem and the back wall echo may occur on a wrong position due to a 
bad assumption of the thermal diffusivity α. Note, to find the back wall 
echo and the mirror source of the front wall, we consider an A-scan of 
the virtual wave [24]. Both are characterized by a local maximum in the 
A-scan, and the estimated amplitude position can be wrong in the size of 
the spatial resolution. Furthermore, for a plate the thermal diffusivtiy 
can vary for each pixel location. Consequently, the minimum evaluation 
domain is chosen with three times the sample thickness L. Based on the 
postulation in Eq. (6), we want to derive the minimum number of η that 
ensures a reasonable estimation of the back wall and the mirror source of 
the front wall. Assuming that c̃ is prescribed, we can relate η to the 
spatial resolution Δz: 

η = c̅̅̅̃ ̅̅̅̅̅
ΔFo

√ = c̃Δz̅̅̅̅̅̅̅̅
αΔt

√ →Δz = η
c̃

̅̅̅̅̅̅̅̅
αΔt

√
. (7) 

Substituting Eq. (7) in Eq. (6) yields: 

3L=! c̃
η
c̃

̅̅̅̅̅̅̅̅
αΔt

√
Ntv = η

̅̅̅̅̅̅̅̅
αΔt

√
Ntv. (8) 

In the next step, we reformulate Eq. (8) to obtain the minimum value 
for η: 

ηmin =
3

Ntv

L̅̅̅̅̅̅̅̅
αΔt

√ . (9) 

In addition, we can substitute the term αΔt based on the measure
ment time tend. The temporal resolution Δt and the measurement time 
tend are defined in the following manner: 

Δt = tend
Nt

∧ tend = L2

α → αΔt = L2

Nt
, (10) 

wherein Nt are the time steps of the measurement data. The defini
tion of tend ensures the detection of the back wall signal. Respecting this 
relationship in Eq. (9) yields the minimum number of η: 

ηmin =
3

Ntv

L̅̅̅̅̅̅̅̅
αΔt

√ = 3
Ntv

L
̅̅̅̅̅
Nt

√̅̅̅̅̅
L2

√ = 3
̅̅̅̅̅
Nt

√
Ntv

. (11) 

Eq. (11) reveals that ηmin depends only on the numbers of time steps 
Nt and Ntv. 

2.2.2. Maximum value of η 
To define the maximum value of η, we claim that a defect at a certain 

depth ζ or at least the back-wall should be detected. To avoid any 
overlapping of the minimum and maximum values of η we limit the 
value of ζ in the following manner: 

ζmin < ζ ≤ ζmax

with ζmin = 2Δz,min = 2 ηmin
c̃

̅̅̅̅̅̅̅̅
αΔt

√
∧ ζmax =

L
2.

(12) 

ζmax ensures that at least two spatial discretization points are avail
able to detect the back-wall at position L. Using Eq. (12), the maximum 
value of η is given by: 

ηmax =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ζ

2 ̅̅̅̅̅̅̅̅
αΔt

√ c̃ SUT  with  defects

L
2

̅̅̅̅̅̅̅̅
αΔt

√ c̃ = c̃
2

̅̅̅̅̅
Nt

√
defect − free  SUT.

(13) 

Herein, we have used the relations in Eq. (10) for the last step. 

2.3. Reduction of computational cost 

Using the defect depth ζ, we can compute the minimum number of 
Ntv. To sample the defect at a certain depth ζ, we claim that the spatial 
resolution is at least Δz = ζ/2, which is predefined by the user. The 
reformulation of Eq. (6) yields then the minimum number of time steps: 

Fig. 2. Parameter study: The color-bars show the number of significant singular 
values nϕ as a function of η and Ntv for a) Nt = 100 and b) Nt = 200. The red 
dashed and dotted lines are described by Eqs. (11) and (13). These lines indicate 
the limits of the minimum and maximum number of η for a defect-free SUT. 
(For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 
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Ntv,  min = 6 L
c̃ζ

= 3 L
c̃Δz

. (14) 

Eq. (7) shows that based on Δz the temporal resolution Δt or the 
frame rate (frames per second) of the IR-camera can be computed 

Δz = η
c̃

̅̅̅̅̅̅̅̅
αΔt

√
→ Δt = 1

α

(Δzc̃
η

)2
, (15) 

As mentioned before, c̃ = 1 is predefined and we suppose that the 
thermal diffusivity in axial direction α is known. The η-value between 
ηmin and ηmax is unknown. The likely easiest and most efficient approach 
to select a reasonable η-value for the calculation of Δt is given by the 
following iteration steps:  

1. Define η̂ as an estimator for η.  
2. Compute Δt from Eq. (15) and calculate tend = L2/α.  
3. Calculate Nt = tend/Δt.  
4. Based on Nt calculate ηmin and ηmax  
5. If η̂ is between these values then η̂→η and we can use the computed 

frame rate from iteration step 2.  
6. Else select a new η̂ and repeat the above steps. 

The calculated frame rate must at least cover the physical correct 
temporal surface temperature signals. For noiseless surface temperature 
signals, the limiting factors for defect detection are the maximum 
camera frame rate and the minimal lateral spatial resolution Δx,min 
which are specified by the IR camera. We want to emphasize that Δz is 
independent of Δx because we have a local (pixelwise) transformation 
between surface temperature and virtual wave signal. Hence, the 
limiting camera property for one pixel is only the frame rate or temporal 
resolution Δt. 

2.4. Application on analytical solution 

To observe the influence of the dimensionless number η on the so
lution of the inverse problem, we consider an analytical solution for a 1D 
heat conduction problem with adiabatic boundaries in reflection mode 
(z = 0). Before the thermal excitation, we assume that the SUT has 
equilibrium temperature. At time t = 0, the SUT is subjected to a short 
laser pulse. Moreover, the penetration depth of the heat source is very 
small. Therefore, the heat source can be mathematically modelled with a 
Dirac-Delta excitation both temporally and spatially. Using the corre
sponding Greens function and the Greens function solution equation 
[25], we obtain the spatial and temporal temperature distribution: 

T(z= 0, t) = 2T̂ 0̅̅̅̅̅̅̅̅̅̅
4παt

√
∑∞

n=−∞
exp

(
− (2nL)2

4αt

)
, (16) 

with T̂0 = q0/(ρcp). The parameter q0 denotes the absorbed heat 
energy density, ρ is the density and cp is the specific heat capacity. In a 
previous work [24], we demonstrated that the corresponding virtual 
wave signal can be directly deduced from Eq. (16) and is given by 

Tvirt(z= 0, t) = T̂ 0
c

∑∞

n=−∞

[
δ
(

t + 2nL
c

)
+ δ

(
t − 2nL

c

)]
(17) 

This equation yields the characteristic front-wall echo and the first 
mirror source at z = 2L. Furthermore, Eq. (17) reveals that the boundary 
echoes occur 2L periodically, but for the present considerations only the 
first mirror sources are of interest, because they describe the back wall. 
Hence, the number of sum terms was limited to n = {−2, −1, …, 2}. 
Based on Eq. (16), we calculated the surface temperature signal for the 
reflection mode. The temperature signal is visualized in Fig. 3a) on the 
double logarithmic scale.Fig. 3b) shows the corresponding virtual wave 
signal related to its maximum as function of dimensionless depth z/(2L) 
= c ⋅ t/(2L) and different η values. Due to the double way diffusion we 
respected the factor two in the dimensionless depth. The vertical black 

dashed line at z/(2L) = 1 represents the back wall position. For the 
inversion, we used the truncated singular value decomposition (T-SVD) 
[26]. Due to the different η values, we obtained different truncation or 
regularization parameters itrunc which were estimated with the 
Picard-plot. They are listed in the legend of Fig. 3b). As visible in Fig. 3b) 
the minimal value of η ensures a reconstruction domain that is large 
enough to find the back wall but compared to 2ηmin and 3ηmin the 
amplitude of the mirror source is smaller and the corresponding full half 
width is broader and hence might not be the best choice for the inver
sion. For ηmax/4 the poor spatial resolution leads to the false positioning 
of the back wall amplitude. Furthermore, the trend of the different 
truncation parameters itrunc reflects the trend of Fig. 2 and, hence, the 
result can be summarized as follows: A good choice of the dimensionless 
number η, increases the number of significant singular values that 
correspond to the truncation parameter itrunc and hence improves the 
quality of the inverse solution. 

3. Multidimensional defect reconstruction 

In Section 2, we have introduced a discretization criterion which 
enables a fast and robust temperature to virtual wave signal inversion 
and, hence, a very efficient defect detection. In this section we analyze 
the virtual wave signal evaluated on samples with artificial defects 
represented by FBHs. This defect approximation is meaningful, because:  

● FBHs are a standard defect approximation in the aerospace industry,  
● they have well defined geometries,  
● they have well defined reflection coefficients at the defect interfaces,  
● and hence the results are well reproducible. 

The FBHs in the samples have varying aspect ratios γ between defect 
diameter D and the remaining wall thickness (RWT) ζ (see Table 1). We 
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Fig. 3. a) Temporal temperature signal at z = 0 (reflection mode) as a function 
of the Fourier number Fo = αt/L2 related to the adiabatic temperature Ta. The 
thermal diffusivity was α = 0.39 ⋅ 10−6 m2/s. The temporal resolution Δt =
0.46 s was constantly maintained and the spatial resolution Δz was calculated 
according to Eq. (15) with the corresponding η value. b) Influence of different η 
values on the virtual wave signal calculated using a). The virtual wave signals 
as function of dimensionless depth z/(2L) were related to the maximum signal 
amplitudes. ηmin ensures a reconstruction domain which is large enough to find 
the back wall but is not the best choice, because for 2ηmin and 3ηmin the back 
wall amplitude increases and the corresponding full half-width decreases. 
Therefore, the back wall is easier detectable. The legend shows the corre
sponding truncation values itrunc for the T-SVD. The numbers of time steps are 
Nt = 200 and Ntv = 150. 
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apply and verify the findings on a woven and a UD CFRP test sample 
which have different values of thermal diffusivity and hence different 
virtual speeds of sound in the principal directions. A sketch of the 
samples, which have the same hole pattern, is shown in Fig. 4a). In 
contrast to Section 2, we consider anisotropic 3D samples with different 
thermal diffusivities in the principal directions. According to Ref. [22], 
we can reformulate the ratio c/ ̅̅̅

α
√ by c33/

̅̅̅̅̅̅̅α33
√ , where c33 and α33 are 

the axial virtual speed of sound and axial thermal diffusivity, respec
tively. Hence, for the anisotropic heat diffusion, the dimensionless 
number η can be reformulated by η = c̃33/

̅̅̅̅̅̅̅̅ΔFo
√ with ΔFo = α33Δt/Δ2

z . At 
this point we want to remind and emphasize that the VWC is a two-step 
reconstruction procedure. In the first step we locally transform (pixel by 
pixel) the surface temperature signal into a virtual wave signal. The 
virtual wave signal obeys the wave equation and therefore in the second 
step we can use ultrasound reconstruction techniques such as F-SAFT for 
defect imaging. In the second step, we also consider the anisotropic heat 
flow by the virtual speeds of sound, which are related to the thermal 
diffusivities in the principal directions. Furthermore, we discuss the 
applicability of prior information in the form of positivity, due to the 
perturbed virtual wave propagation in the regularization process. 

3.1. Materials 

For the experimental investigations we consider a woven and a UD 
CFRP sample. The woven fabric sample consists of 28 plain weave 
prepreg layers (CYCOM 970/HMF 5–322/70C) and the total sample 
thickness is Lz = 5.95 mm. For the layup, the plain weave prepregs were 
laid alternately in the 0-degree and 45-degree orientations. The UD 
sample consists of 42 unidirectional prepreg layers (CYCOM 5276-1/ 
G40-800 Tape) and the total sample thickness is Lz = 5.95 mm. 

We want to emphasize that for the evaluations the composite ma
terials are considered at the macroscopic length scale. Therefore, we use 
an effective medium approximation and thus effective thermophysical 
parameters are applied for the reconstructions. The effective material 
parameters which are necessary for the defect reconstruction were 
estimated using the procedure described in Ref. [22] and are listed in 
Table 2. 

3.2. Experimental setup 

In this section, we discuss the generation of surface temperature data 
by a thermography experiment. The measurement set up is visualized in 
Fig. 4c). The SUTs were insulated at the edges to avoid a decrease in the 
defect detection capability due to lateral heat flows. To avoid heating of 
the insulation it was covered by aluminum tape. Each SUT was subjected 
to a short flash lamp pulse on the surface where the FBHs are invisible. 
The heating time was th ≈ 2 ms and the electrical energy input was 
approximately 12 kJ. The resulting change in the surface temperature 
signal was measured in the “pulse-echo” configuration. The IR camera 
used has a cooled indium antimony (InSb) sensor and is sensitive in the 
spectral range of 3.0–5.1 μm. The NETD of this camera is smaller than 
25 mK. For both samples, the axial resolution of Δz = 120 μm was 
chosen, while the lateral resolution that depends on the IR camera was 
Δx = Δy = 157 μm and the temporal resolution was Δt = 0.04 s. The 
measurement time was estimated with L2

z/α33. The mean sample thick
ness for both samples is Lz = 5.95 mm. 

Table 1 
Geometrical parameters of the FBHs: γ [−] denotes the aspect ratio of FBH 
diameter D [mm] and the RWT ζ [mm] of the woven a) and the UD sample b).  

Parameter aD  ζ γ bD  ζ γ 

FBH1 4.00 1.50 2.67 4.00 1.45 2.76 
FBH2 8.30 1.50 5.53 8.30 1.50 5.53 
FBH3 11.60 1.75 6.63 11.60 2.00 5.80 
FBH4 4.00 2.95 1.36 4.00 2.65 1.51 
FBH5 8.30 3.15 2.63 8.30 2.90 2.86 
FBH6 11.60 3.10 3.74 11.60 3.10 3.74  

Fig. 4. Experimental details: a) Observed region which shows the arrangement 
of the FBHs (all dimensions are in mm), b) Cross section of FBH3 and c) photo of 
the measurement set up. 

Table 2 
Virtual speeds of sound in the principal directions and axial thermal diffusivities 
α33 of the observed samples.The parameters were estimated according to 
Ref. [22].  

Parameter c̃11 [−]  c̃22 [−]  c̃33 [−]  α33[m2/s]  

Woven 2.12 2.14 1.00 0.403 ⋅10−6 

UD 3.71 1.14 0.99 0.434 ⋅10−6  
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3.3. Perturbed heat and virtual wave propagation 

In this section, we focus on the discussion regarding the perturbed 
virtual wave propagation due to a perturbed heat flow caused by a 
defect. We observe one surface temperature pixel at the center point of 
FBH3. Fig. 4b) shows a sketch of this FBH, where D denotes the diameter 
of the FBH and ζ is the RWT of the FBH. Using the recorded temporal 
surface temperature signal, we calculate a virtual wave signal. We use 
the iterative regularization scheme ADMM (see e.g. Refs. [27,28]) in 
order to incorporate prior information in the form of sparsity. We can 
expect a sparse virtual wave signal due to the temporal short heating and 
the limited number of defect interfaces. The necessary parameters for 
defect reconstruction for both woven and UD sample are listed in Table 2 
and were estimated according to Ref. [22]. The geometrical and physical 
parameters yield a dimensionless number of η = 0.95 with ηmin = 0.72 
and ηmax = 5.91 for the woven and η = 0.91 with ηmin = 0.72 and ηmax =
5.70 for the UD sample. The number of respected time steps for the 
surface temperature signal is Nt = 2300 and the number of time steps for 
the virtual wave signal was prescribed with Ntv = 200. Fig. 5a) shows the 
corresponding surface temperature signal at the FBH center and in a 
defect-free region as function of time on the double logarithmic scale for 
the woven sample. As one can see, the FBH forms three characteristic 
regions, marked with arrows. These characteristic regions may be more 
easily interpreted with the corresponding A-Scan or virtual wave signal, 
Fig. 5b). A positive signal amplitude corresponds to a source and a 
negative signal amplitude corresponds to a sink. The first region, shows 

a source due to trapped heat caused by the FBH. As described by Almond 
et al. [29–31], this heat source causes a heat sink for equilibrium, which 
is marked by the second arrow and a negative signal amplitude in the 
virtual wave signal. 

The defect source and sink have a certain distance μ, which is caused 
by the lateral heat flow. The distance μ depends on the ratio of lateral 
thermal diffusivity and axial thermal diffusivity, the defect diameter D 
and the defect depth ζ. The distance μ has an important influence on our 
defect reconstruction procedure, because in contrast to prior studies 
[22] we cannot use positivity by computing the spherical projection. The 
spherical projection is only applicable when the distance μ is very small, 
which can be achieved, e.g, by a point-like defect. Furthermore, the 
third arrow shows a source at the back wall. Here it visible that for the 
perturbed signal the back wall echo is displaced compared to the 
defect-free signal because the heat has to “flow around” the FBH. 

In prior studies, we have shown, that the virtual wave signal can be 
computed based on the kernel K(t, t′) and a surface temperature signal 
which was obtained by the method of images [24]. Here, we want to 
reverse this approach and model the temporal temperature signal of 
Fig. 5a) using the virtual wave signal of Fig. 5b) in order to substantiate 
the above source and sink explanations for adiabatic boundaries. We 
assume that the virtual wave signal yields the exact position of the 
sources and sinks discussed above. We recall Eq. (16) at position z = 0, 
which covers the front and back wall signal. Due to this we limit the sum 
terms by n = {−1, 0, 1}. We denote the back wall position with L*, 
because the FBH causes a lateral heat flow and, hence, a shift of the back 
wall position in the A-scan. Furthermore, we introduce a heat source at 
the FBH source position ζ+ and a sink at ζ− with reflection amplitudes 
Tζ+ and Tζ− . In this model and in contrast to Ref. [31], it is not necessary 
to introduce an anisotropy factor, because the anisotropy is covered by 
the positions of the sources and sinks and the mathematical model is 
given by 

T(z = 0, t) = T̂ 0̅̅̅̅̅̅̅̅̅̅̅πα33t
√

∑1

n=−1
exp

(
− (2nL∗)2

4α33t

)

+ Tζ+̅̅̅̅̅̅̅̅̅̅̅πα33t
√ exp

(
− (2ζ+)2

4α33t

)
− Tζ−̅̅̅̅̅̅̅̅̅̅̅πα33t
√ exp

(
− (2ζ−)2

4α33t

) (18) 

Fig. 6 shows the defect surface temperature signal of Fig. 5a), a 
reconstructed defect temperature signal using Eq. (2) and the model- 
based least squares fit using Eq. (18) with fitting parameters T̂0, Tζ+
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Fig. 5. a) Double logarithmic surface temperature signal of the woven sample 
as function of time at the center of FBH3 compared to a defect-free surface 
temperature signal. b) Corresponding virtual wave signals (A-Scan) as function 
of depth z = ct. As visible in the A-Scans, the perturbed temperature signal 
causes a heat source and a heat sink with a certain distance μ, which is caused 
by lateral heat diffusion. 
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and Tζ− . As visible, the modelled surface temperature signal represents 
the measured surface temperature signal very well and hence sub
stantiates the source/sink explanation. This result may be improved by 
considering more sum terms n but, for the sake of simplicity we skipped 
this here because the shown result is already plausible. A similar 
behaviour was obtained for the UD sample. 

3.3.1. FBH detection of the woven sample 
With the findings of the previous sections, we are able to perform a 

fast and robust 3D defect reconstruction. The evaluation domain is 
marked in Fig. 4c) by a rectangle with a red dot-dashed line. The length 
and the width of the evaluation domain are Lx = 100 mm and Ly = 50 
mm, respectively. Figs. 7a) and 8a) show exemplary thermograms at t =
9.28 s and t = 17.76 s from FBH1 to FBH3 and from FBH4 to FBH6, 
respectively. Using the recorded temporal surface temperature signal, 
we calculate a virtual wave signal. Again, we use the iterative regula
rization scheme ADMM in order to incorporate prior information in the 
form of sparsity. Figs. 7b) and 8b) show the corresponding top view of 
the calculated virtual wave signals. Using the calculated virtual wave 
signals, the estimated dimensionless speeds of sound in the principal 
directions (see Table 2) and the ultrasonic reconstruction method F- 
SAFT we can reconstruct, in a second inversion step, the front wall, the 
back wall and the FBH interfaces. The reconstructed FBH interfaces from 
FBH1 to FBH3 and FBH4 to FBH6 are shown in Figs. 7c) and 8c). Figs. 9a) 
and 10a) show cross sections of the measured surface temperature signal 
along the center lines of FBH1 to FBH3 and FBH4 to FBH6. In Figs. 9b) 
and 10b) the corresponding virtual wave signals are visualized which 
show the characteristic hyperbolas. The defect reconstruction of the 
cross section is shown in Figs. 9c) and 10c). The black and white dashed 
lines indicate the correct FBH position. In Fig. 11, a 3D representation of 
the reconstructed signal along the center line FBH1 to FBH3 is visible. At 
z = 0 we see the front wall echo of the woven sample. The back wall echo 
was hidden to enable the visualization of the defect interfaces. Again, 
sources and sinks of the FBHs are visible. Due to the well estimated 
virtual speeds in the principal directions we have a rectification of the 
lateral heat flow. Furthermore, the reconstructed source interfaces met 
the FBH diameters very well. 

3.3.2. FBH detection of the UD sample 
For the UD sample, we performed the same evaluation steps and used 

the same evaluation domain size as for the woven sample. Figs. 12a) and 
13a) show exemplary thermograms at t = 7.64 s and t = 11.20 s from 
FBH1 to FBH3 and from FBH4 to FBH6, respectively. Using the recorded 
temporal surface temperature signal, we calculate a virtual wave signal. 

Fig. 7. a) Thermogram at t = 9.28 s, b) top view of the virtual wave signal and 
c) top view of the corresponding reconstructed defect signal from FBH1 to FBH3 
of the woven sample. The black dashed lines show the correct defect diameter. 
The subfigures b) and c) are isosurface plots. 

Fig. 8. a) Thermogram at t = 17.76 s, b) top view of the virtual wave signal and 
c) top view of the corresponding reconstructed defect signal from FBH4 to FBH6 
of the woven sample. The black dashed lines show the correct defect postion. 
The subfigures b) and c) are isosurface plots. 

Fig. 9. a) Cross section of the temporal surface temperature signal and b) cross 
section of the virtual wave signal along the center line FBH1 to FBH3 of the 
woven sample. The black dashed and white dashed lines show the correct defect 
size and position. 
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Figs. 12b) and 13b) show the top view of the calculated virtual wave 
signals from FBH1 to FBH3 and from FBH4 to FBH6. Using the calculated 
virtual wave signal, the estimated dimensionless speeds of sound in the 
principal directions (see Table 2) and the ultrasonic reconstruction 
method F-SAFT we can reconstruct, in a second inversion step, the 
corresponding front wall, the back wall and the FBH interfaces. In 
Figs. 12c) and 13c) the front and back wall were hidden. 

3.4. Discussion 

The reconstruction results for both the woven and UD sample show 
that, even for samples with strongly varying thermal diffusivities in the 
principal direction, the FBH interfaces can be reconstructed at least for 
FBH1 to FBH3 very well. For row FBH4 to FBH6 the reconstruction be
comes worse because the FBH interfaces lie deeper and the FBH row 

FBH1 to FBH3 cause lateral heat flows which decreases the defect 
detection capability. For both samples FBH4 cannot be detected. 
Furthermore, the reconstruction results indicate that the FBH defect 
surfaces parallel to the measurement surface introduce sources and sinks 
as described in Section 3.3. Therefore, we can not accurately determine 
the defect depth, but we can locate the defect position ζ between the 
sources and sinks caused by the FBH. The F-SAFT algorithm respects the 
lateral heat flows and increases the SNR by integrating along the 

Fig. 10. a) Cross section of the temporal surface temperature signal and b) 
cross section of the virtual wave signal along the center line FBH4 to FBH6 of the 
woven sample. The black dashed and white dashed lines show the correct defect 
size and position. 

Fig. 11. 3D representation of the reconstructed defect signal from FBH1 to 
FBH3 of the woven sample. 

Fig. 12. a) Thermogram at t = 7.64 s, b) top view of the virtual wave signal and 
c) top view of the corresponding reconstructed defect signal from FBH1 to FBH3 
of the UD sample. The black dashed lines show the correct defect diameter.The 
subfigures b) and c) are isosurface plots. 

Fig. 13. a) Thermogram at t = 11.20 s, b) top view of the virtual wave signal 
and c) top view of the corresponding reconstructed defect signal from FBH4 to 
FBH6 of the UD sample. The black dashed lines show the correct defect diam
eter. The subfigures b) and c) are isosurface plots. 
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scattering hyperbolas which introduces a spatial noise filtering and 
hence improves the defect size estimation considerable. A very attrac
tive feature of the presented two-step reconstruction approach is the 
very low computational cost for defect reconstruction. Due to the find
ings in Section 2, we are able to limit the number of time steps Ntv = 200 
and Nt = 2300, which strongly reduces the computational cost without 
affecting the reconstruction quality. The computation time for both 
inversion steps and one FBH row with an evaluation domain of 100 × 25 
mm2 and 50 ADMM iterations is only 53s. The computations were 
performed on a standard computer with RAM = 32 GB and a processor 
with 4 cores and 8 threads. 

4. Conclusions 

In this paper, we presented a very fast, well interpretable and effi
cient reconstruction procedure for composite materials with strongly 
differing thermal diffusivities in the principal directions. We introduced 
a physical-based discretization criterion which ensures reliable and fast 
defect reconstruction. Furthermore, we discussed the features of a per
turbed virtual wave signal caused by a perturbed heat flow due to an 
artificial defect and the findings are:  

● we cannot incorporate the prior information positivity in our 
reconstruction procedure and  

● we cannot accurately detect the defect depth position, but we can 
locate it because it lies in between the source and sink amplitude. 

In future work, we will apply heating that varies in time and space, to 
increase the defect detection capability of deeper lying defects. More
over, we will also consider foreign object inclusions (e.g. foil, paper) that 
have a finite lateral and axial extension and varying reflection co
efficients at the defect interfaces and, hence, better representing real 
defects, such as delaminations. 
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5 Publications and Scientific contribution

5.5 3D photothermal imaging of real subsurface defects in

anisotropic media

This manuscript uses the findings of Paper 5.4 and presents an application to 3D photother-

mal imaging of real subsurface defects represented by a delamination in an anisotropic media,

where temperature signals were recorded in the pulse-echo configuration. The delamination

was caused by a defined impact that introduced microcracks, macrocracks, and delaminations.

In this preprint, only the delamination is considered for defect imaging.

In addition, an alternative temperature contrast imaging approach based on the VWC was

presented. In contrast to state-of-the-art temperature contrast imaging techniques such as dif-

ferentiated absolute contrast (DAC) and corrected DAC, the VWC provides a temporally noise-

free representation of the temperature contrast signal. Due to the feature extraction capability of

the temperature-to-virtual wave signal transformation, the front wall feature and the back wall

feature can be separated from the defect features.

Furthermore, the reconstruction results of 3D photothermal imaging using VWC with F-

SAFT, were compared with those of X-ray computed tomography (XCT). In general, the results

for the spatial cross-sectional images evaluated perpendicular to the observation plane agree

well. However, the defect images obtained with XCT show that the impact caused a non-planar

observation surface for thermographic inspection. In addition, the special prepreg stacking of

the observed CFRP specimen requires a depth adaptation of the virtual speed of sound tensor.

However, when using F-SAFT for 3D photothermal testing, a flat observation surface is re-

quired and the virtual speed tensor cannot be adopted for different depths. Therefore, in future

work, it is planned to use alternative ultrasound reconstruction tools such as the time reversal

algorithms to overcome these issues.
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A B S T R A C T
In this paper, we present a 3D photothermal imaging tool to detect subsurface defects in anisotropic
media using the virtual wave concept. In addition, we propose a novel approach to compute the tem-
perature contrast using a virtual wave signal, which enables a temporal noise-free representation of the
contrast temperature signal. The results obtained with the proposed imaging tool are compared with
those obtained using computed tomography for a carbon fiber reinforced polymer sample containing
a delamination caused by a defined impact. To sum up, this work presents a fast, easily interpretable
and efficient 3D photothermal defect reconstruction and visualization tool.

1. Introduction
The increasing replacement of metal-based aircraft com-

ponents with structures made of carbon fiber-reinforced
polymers (CFRP) has boosted the use of active infrared ther-
mography (IRT) for nondestructive testing (NDT) in the
aerospace industry. Active IRT requires heating or cooling
of the specimen under test (SUT) to obtain information about
potential defects below the specimen surface, which can be
detected with an infrared (IR) camera [1, 2, 3]. In this work,
we use a subcategory of active IRT, called pulsed thermog-
raphy (PT), in which a short temporal heating pulse (Dirac
Delta-like) thermally excites the SUT.

The principle limits for near-surface and maximum-
depth defect or back-wall detection from PT data were in-
vestigated by Shepard et al. [4] based on a 1D heat diffusion
process in a finite body. Another principal limitation, the
defect separability of PT data, was discussed by Burgholzer
et al. [5]. These studies show, for a Dirac Delta-like heating
in time, that the near-surface defect detection limit depends
on the camera frame rate and the maximum defect depth de-
tection limit as well as the defect separation limit depend on
the noise equivalent temperature difference (NETD) of the
IR camera and the introduced heating energy.

The major challenge with active IRT is entropy produc-
tion during heat diffusion, which leads to blurred images for
deeper defect structures [6, 7]. This effect is even more am-
plified for materials with a large ratio of in-plane to through-
plane thermal diffusivity, such as anisotropic CFRP mate-
rials. Therefore, active IRT data requires further processing
to improve defect imaging. One of the most computationally
favorable methods to improve the quality of defect imaging
are thermal contrast techniques such as running temperature
contrast and differential absolute contrast (DAC) [1, 8]. An-
other prominent post-processing tool is the thermal signal re-
construction (TSR), which provides temporal noise filtering
of the measured transient temperature signal [9, 10]. Using

Gregor.Thummerer@fh-wels.at (G. Thummerer)
ORCID(s):

the TSR, for example with a polynomial fit, the original data
cube can be greatly reduced since each pixel can be repre-
sented by the estimated polynomials. Pulsed phase thermog-
raphy (PPT) is also commonly applied to compensate for the
blurring caused by heat diffusion by using a transient Fourier
transform and surface temperature signals obtained via a PT
experiment [11, 12].

Due to the heterogeneous material composition of CFRP
materials, subsurface defects such as delaminations occur,
which are a great concern for their mechanical integrity [13].
The anisotropic material properties make it difficult to cor-
rectly size subsurface defects using the above mentioned
thermographic post-processing tools, because they do not
take into account the lateral heat flow. In particular, for small
defect diameter-to-depth ratios and high in-plane to through-
plane thermal diffusivity ratios, the ability to correctly size
defects decreases.

The conventional way to account for lateral heat flow is
to solve an inverse heat transfer problem (IHTP), which re-
quires regularization or stabilization to compute a useful in-
verse solution and allow 3D visualization of subsurface de-
fects [14, 15]. Mendioroz et al. proposed, for example, an
inversion procedure for a one-way heat diffusion process ini-
tiated by mechanical friction at defect interfaces in isotropic
samples to reconstruct subsurface defects [16, 17]. Another
inversion method for anisotropic samples and a one-way heat
diffusion process that can be modeled by the fundamental
solution of heat conduction and the method of images was
discussed by Groz et al. [18]. Holland and Schiefelbein [19]
modeled and tackled an IHTP for anisotropic samples and
PT data acquired in the pulse-echo configuration (two-way
heat diffusion process). Their approach requires the solu-
tion of a large-scale problem and therefore they proposed
a depth-adapted discretization to reduce the computational
cost of their inversion procedure.

Burgholzer et al. [20] suggested an alternative approach,
the so-called virtual wave concept (VWC), which involves
two reconstruction steps to account for the multidimensional
heat diffusion process. In the first step, the measured sur-
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face temperature is transformed locally (pixel by pixel) into
an "acoustic" virtual wave signal. The virtual wave sig-
nal obeys the wave equation and therefore ultrasound recon-
struction methods such as time of flight (TOF) [21, 22] or
frequency domain synthetic aperture focusing technique (F-
SAFT) [23, 24] can be used in the second reconstruction
step. In recent work, the VWC has been extended for appli-
cation to anisotropic materials, the properties of the virtual
wave signal due to a perturbed surface temperature signal
have been discussed, and the computational cost has been
significantly reduced [25, 26].

In this paper, we present results of 3D photothermal
imaging based on the virtual wave concept for real subsur-
face defects such as delaminations embedded in composite
materials. In addition, we propose an alternative method
for calculating the temperature contrast based on the VWC,
which has the advantage that it can be used for arbitrary ex-
citation signals. Moreover, the proposed method enables a
temporal noise-free representation of the contrast temper-
ature signal. To sum up, this work presents a fast, easily
interpretable and efficient multi-dimensional reconstruction
method.

The paper is organized as follows: Section 2 discusses
the materials, methods and parameters used. Also, the ther-
mal contrast calculation using VWC are introduced. In Sec-
tion 3, the imaging results are presented and discussed.

2. Materials and Methods
2.1. Materials

The observed carbon fiber reinforced polymer (CFRP)
sample consists of 18 unidirectional prepreg layers (CY-
COM G40-800/5276-1) with the stacking sequence

[03∕904∕ + 45∕ − 45]�=1. (1)
It was cured at 350 °F for 120 min. The sample is depicted
in Fig. 1 and has a thickness of �� = 2.6 mm. The spec-
imen has an impact damage caused by a steel ball with an
imprint on the front side reaching a diameter of approxi-
mately 3.5 mm. The impact introduced micro- and macroc-
racks as well as delaminations into the specimen.

In this work, only interlaminar delaminations are ob-
served, since the test setup is unsuitable for the detection of
intralaminar cracks.
2.2. Photothermal testing

To obtain information about the internal structure of the
observed sample, it was heated with flash lamps and the
corresponding surface temperature signal was recorded in
pulse-echo configuration. The corresponding experimental
setup is shown in Fig. 1. The sample was insulated to ensure
lateral adiabatic boundary conditions. In addition, the insu-
lation was covered by aluminum tape to avoid lateral heat
fluxes due to thermal excitation of the insulation material.
Each flash lamp provides 6 kJ of electrical energy with a
heating time of approximately 2 ms. The used IR camera is
sensitive in the spectral range of 3.0-5.1 �m and the noise

equivalent temperature difference (NETD) is approximately
25 mK. The lateral resolution was Δ
 = 141 �m and the
temporal resolution was Δ� = 0.01 s. Fig. 1 shows also
the observed region of the sample and the impact damage
schematically. The observed region is (100 × 25) mm2.

IR-camera

Flash lamps

Sample Aluminum tapeInsulation

Observedregion

Impact damage

x, ǁ𝑐11
y, ǁ𝑐22z, ǁ𝑐33

Figure 1: Experimental active IRT setup for the detection of
the subsurface delamination in the CFRP sample.

2.2.1. Virtual wave concept
The aim of this work is to present an alternative method

for calculating thermal contrast images and to present 3D
photothermal defect images calculated based on VWC.
Therefore the following steps are necessary:

1. Record the change of the surface temperature signal
caused by thermal stimulation with an IR camera.

2. Then transform the surface temperature signal into a
virtual wave signal in the first reconstruction step.

3. The virtual wave signal obeys the wave equation, thus
ultrasonic reconstruction methods can be applied in
the second reconstruction step.

The transformation between surface temperature � (�, �)
and virtual wave signal �virt(�, �′) is given by:

� (�, �) = ∫ �(�, �′)�virt(�, �′)d�′ (2)

with �(�, �′) = �√
���

exp
(
−�2�′2

4��

)
.

Herein � denotes the thermal diffusivity and � is the virtual
speed of sound. Since the measured surface temperature sig-
nal is discrete in space and time, Eq. 2 is discretized. The
transformation between surface temperature � (�, �) and vir-
tual wave signal �virt(�, �′) for one spatial cross-section of
the 3D SUT with pixel number 
 is given in discrete form
by:

� = ��virt, (3)
with the discrete temperature signal � ∈ ℝ��×
 , the discrete
kernel � ∈ ℝ��×�tv and the discrete virtual wave signal
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�virt ∈ ℝ�tv×
 . With �	 = 	Δ� and �′� = �Δ�′ the component
notation of the discrete kernel � is given by [26]:

�(	, �) = �̃√
�ΔFo	

exp
(
− �̃2�2

4ΔFo	

)
(4)

= �√
�	

exp
(
−�2�2

4	

)
,

with the dimensionless speed of sound �̃ = �Δ�∕Δ�, the
discrete Fourier number ΔFo = �Δ�∕Δ2

�, the dimensionless
number � = �̃∕

√
ΔFo, the axial spatial resolution Δ� and the

temporal resolution Δ� = Δ�′ . To compute a useful virtual
wave signal based on a surface temperature signal, we must
solve a severely ill-posed inverse problem. Hence, we need
stabilization or regularization methods [27]. In this work we
use the alternating direction method of multipliers (ADMM)
for regularization [28, 29].
2.2.2. Estimation of speed of sound tensor

Because we deal with an anisotropic composite material,
we have different thermal diffusivities and virtual speeds of
sound in the principal directions. Therefore, we must esti-
mate a virtual speed of sound tensor. This is necessary for
the application of the F-SAFT procedure in the second re-
construction step. The dimensionless speed of sound tensor

�̃ =
⎛⎜⎜⎝
�̃11 0 0
0 �̃22 0
0 0 �̃33

⎞⎟⎟⎠ =
⎛⎜⎜⎝
2.99 0 0
0 2.56 0
0 0 1.00

⎞⎟⎟⎠ . (5)

was estimated by applying the procedure proposed in
Ref. [25]. Also the thermal diffusivity in axial direction
�33 = 4.47 ⋅ 10−7 m2/s was estimated with this procedure.
For the estimation of �33, the temporal resolution was Δ� =
0.01 s and the axial spatial resolution was Δ� = 70 �m. For
the estimation of the dimensionless virtual sound velocities
�̃11 and �̃22, the temporal resolution was Δ� = 0.02 s and the
spatial resolutions were Δ
 = Δ� = Δ� = 161 �m. The di-
ameter of the laser spot was approximately 2.7 mm.

We want to emphasize that the estimation procedure
from Ref. [25] only allows an approximate estimation of
the virtual sound velocity tensor for the specific stacking
configuration of the observed sample. Using this estimation
procedure the observed sample is considered as an effective
medium.
2.2.3. Temperature contrast imaging with VWC

In this section we propose a procedure to compute a tem-
poral noise-free representation of the temperature contrast
signal based on the VWC. Therefore, we compute in the first
step the virtual wave signal �virt using the measured surface
temperature signal �meas. For this reason we calculate the
inverse of the subsequent linear matrix equation:

�meas = ��virt. (6)
Exemplary measured surface temperature signals in the

defect region (
, �) = (336,86) px and defect-free region

as well as the corresponding A-scans are represented in
Figs. 2a) and 2b), respectively. The axial spatial resolu-
tion was Δ� = 50 �m. Based on Δ� the temporal reso-
lution Δ� = (Δ��̃33)2∕(�33�2) = 0.02 s was calculated ac-
cording to Ref. [26] with � = 0.5267. The evaluation time
�eval = 15.68 s was estimated with �2

�∕�33, which results in
�� = 784 time steps for the temperature signal. The number
of time steps for the virtual wave signal was �tv = 350. As
visible in Fig. 2b) the delamination interface causes a source
and a sink in the A-scan. In addition, the A-scan shows a
source at � = 0 mm, which represents the observation plane,
and a source at � ≈ 2.6 mm, which represents the back-wall
echo.
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Figure 2: a) Measured surface temperature signals in the de-
fect region (
, �) = (336,86) px and defect-free region (
, �) =
(85,20) px. b) Corresponding virtual wave signals computed
with the regularization tool ADMM. The temporal resolution
and the axial spatial resolution was Δ� = 0.02 s and Δ� =
50 �m, respectively. Note, the product �33 ⋅ � was halved due
to the double-way heat diffusion.

Consequently, the virtual wave signal allows to distin-
guish between observation plane feature, defect features and
back-wall feature, which enables the calculation of the tem-
poral noise-free temperature contrast for both defect features
plus back-wall feature �db

c,VWC and the defect feature �d
c,VWC.

Mathematically, the computation of the temperature con-
trasts, using Eq. 6, can be expressed in the following manner:

�db
c,VWC = ��db

virt,c and �d
c,VWC = ��d

virt,c, (7)
where �db

virt,c includes the defect source and sink as well
as the back-wall source and �d

virt,c only includes the defect
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source and sink. This means that for the computation of both
temperature contrast images the source due to the observa-
tion plane is set equal to zero.

0 2 4 6 8 10 12 14 16

time [s]

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

C
o

n
tr

a
s
t 

te
m

p
e

ra
tu

re
 s

ig
n

a
l 
[K

]

Figure 3: Contrast surface temperature signals �c,DAC and
�corr

c,DAC obtained by using the DAC and the corrected DAC
method, respectively computed according to Ref. [30]. Also
the temporal noise-filtered contrast temperatures signals com-
puted with VWC are shown. While �db

c,VWC includes the defect
source and sink as well as the back-wall source, �d

c,VWC only re-
spects the defect source and sink.The temporal resolution and
the axial spatial resolution was Δ� = 0.02 s and Δ� = 50 �m,
respectively.

Fig. 3 shows exemplary temperature contrast signals for
the same defect pixel-position as in Fig. 2. To allow a
comparison, temperature contrast signals �c,DAC and �corr

c,DACwere computed with DAC and the corrected DAC, respec-
tively. These contrast temperature signals were calculated
according to Ref. [30]. In contrast to DAC, the corrected
DAC accounts for the sample thickness ��. Fig. 3 clearly
shows that �c,DAC follows the curve of �db

c,VWC and �corr
c,DAC

follows the curve of �d
c,VWC, but the curves computed with

VWC allow for a temporal noise-free representation of the
contrast temperature signals. Therefore, this representation
enables proper additional evaluation steps such as differen-
tiation.

3. Imaging results
In this section, we compare the imaging results obtained

with the proposed thermal contrast method with the results
obtained with the state-of-the-art thermal contrast calcula-
tion method DAC. In addition, we apply VWC for multidi-
mensional defect imaging and compare the obtained results
with those obtained with 3D-X-ray computed tomography
(XCT). For the computation of the virtual wave signal from
the measured surface temperature signal, the same parame-
ters as in Sec. 2.2.3 were used.

3.1. Thermal contrast imaging
Fig. 4 compares a maximum defect thermogram and

XCT evaluations with thermal contrast images. The max-
imum defect thermogram was evaluated from the offset cor-
rected measured surface temperature signal �meas at � =
0.54 s and is shown in Fig. 4a). Fig. 4b) shows the mean
thermal contrast image that was computed with DAC and
evaluated in the time sequence Δ� ∶ Δ� ∶ �. The time �DACwhich describes the time between flash pulse and the time
where the delamination becomes visible, was determined
according to Ref. [30]. Fig. 4c) shows the mean thermal
contrast image that was computed with VWC and evaluated
in the time sequence Δ� ∶ Δ� ∶ �. The defect image re-
sulting from XCT measurements is shown in Fig. 4d). The
temporal resolution of the measured surface temperature sig-
nal was Δ� = 0.02 s and the axial spatial resolution for the
VWC evaluation was Δ� = 50 �m. For the XCT measure-
ments a Phoenix/X-Ray Nanotom 180 computer tomograph,
equipped with a 180 kV nanofocus X-ray source and a 2300
PX × 2300 PX array Hamamatsu detector was utilized. The
tube voltage was 60 kV, the tube amperage was 350 �A, the
integration time was 700 ms and the spatial resolution was
15 �m.

Each defect image clearly shows the delamination. How-
ever, compared to the XCT evaluations, the results obtained
based on photothermal data indicate a distortion of the de-
fect due to the anisotropic heat flow. Comparing the contrast
images from Figs. 4 b) and c) the contrast image obtained us-
ing VWC is less blurry than the contrast image obtained via
DAC. However, both evaluations do not allow a depth fea-
ture extraction for a multi-dimensional visualization of the
delamination.
3.2. Multi-dimensional defect imaging

To enable a 3D visualization of the delaminations for the
measured surface temperature signal, we compute the con-
trast temperature signal �db

c,VWC using VWC and the proce-
dure proposed in sec. 2.2.3. Using �db

c,VWC, we calculate the
contrast virtual wave signal �db

virt,c, which shows now only
sources and sinks due to the delamination and the back-wall
in the defect region, because the source due to observation
plane was eliminated.

Fig. 5 shows a comparison of the thermal contrast image
obtained via VWC, the virtual wave signal, and the recon-
structed defect signal calculated with F-SAFT. The thermal
contrast image from Fig. 5a) was evaluated like the con-
trast signal in Fig. 4c). To obtain a defect image from the
virtual wave signal the mean value of the depth-sequence
(400 ∶ Δ� ∶ 950) �m was evaluated and the result is rep-
resented in Fig. 5b). For the evaluation of the saft-image
the mean of the depth-sequence (400 ∶ Δ� ∶ 950) �m of
the reconstructed defect signal �saft was evaluated. For the
calculation of �saft the dimensionless speed of sound tensor
from Eq. 5 was used to rectify the anisotropic heat flow and
the absolute value of the reconstructed signal was taken to
improve the defect visualization.

Each visualization clearly indicates the delamination.
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a)

b)

c)

d)

Figure 4: a) Maximum defect thermogram evaluated at � =
0.54 s. b) Mean thermal contrast image computed with DAC
and evaluated for the time sequence Δ� ∶ Δ� ∶ �. c) Mean
thermal contrast image computed with VWC and evaluated
for the time sequence Δ� ∶ Δ� ∶ �. The axial spatial resolution
was Δ� = 50 �m. d) Defect image reconstructed using XCT
data.

However, the �db
c,VWC image and the �db

virt,c image clearly
show a distortion caused by the lateral anisotropic heat flow.
Due to F-SAFT, that respects the speeds of sound in the prin-
cipal direction of heat diffusion or virtual wave propagation,
the defect image can be rectified.

Fig. 6 shows a comparison between �db
c,VWC, �db

virt,c, �saftand the defect image reconstructed using XCT data for the
cross-sections at x = 336 px and at y = 86 px. The corre-
sponding cross-sections positions are also indicated in Fig.
5 by red-dashed lines. For the �db

c,VWC images the subsurface
defect depth and the sample thickness cannot be extracted.
The �db

virt,c images clearly show the defect and depth feature
extraction capability of the VWC. In the �saft image that was
computed with F-SAFT and the virtual speeds of sound in
the principle direction, the lateral anisotropic heat flow was
respected, which significantly rectifies the anisotropic heat
flow.

Figs. 7 and 8 show 3D isosurface representations of the
reconstructed defect signal �saft which clearly show the de-
lamination.

As discussed in Sec. 2.2.3, the delamination introduces
a source and a sink and hence the defect can be localized
and the source due to the defect interface is in accordance
with the correct depth that is indicated by a white dashed
line in Fig. 6. The correct defect depth can be extracted

a)

b)

c)

d)

Figure 5: a) Mean thermal contrast image computed with
VWC and evaluated for the time sequence Δ� ∶ Δ� ∶ �. b)
Mean virtual wave image evaluated for the depth sequence
(400 ∶ Δ� ∶ 950) �m. c) Mean saft-image evaluated for the
depth sequence (400 ∶ Δ� ∶ 950) �m. The axial spatial resolu-
tion is Δ� = 50 �m. d) Defect image reconstructed using XCT
data. The red-dashed lines indicate the position of the cross
section, which are presented in Fig. 6.

from the XCT images, where the delamination occurs be-
tween prepreg layer three and four. Furthermore, a correct
application of F-SAFT requires a plane observation surface.
As can be seen in the XCT images, the observed sample sur-
face deviates from this requirement in the delamination area,
which degrades the reconstruction quality, however the re-
construction quality is still good. The observed sample and
its stacking sequence indicates another limitation for the ap-
plication of F-SAFT and the parameter estimation procedure
proposed in Ref. [25]. Due to the stacking sequence the vir-
tual speeds of sound in the principal directions depends on
depth position and therefore the estimation of the speed of
sound tensor in Sec. 2.2.2 is an approximate estimation.

4. Conclusion and Outlook
In this work we presented an alternative approach to cal-

culate thermal contrast images using the VWC. In contrast to
state-of-the-art methods the proposed contrast method can
be applied for arbitrary heating patterns, because the pat-
terns can be readily respected by a temporal convolution with
the transformation kernel �. However, the computation us-
ing, for example, DAC is faster because only basic computer
operations are required. But the defect visualization is less
accurate than visualization obtained with the proposed con-
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26

Contrast 
temperature

signal

Virtual wave 
signal

Reconstructed
defect signal

XCT-Images 𝐿z 𝐿z

a) b)

Figure 6: a) Cross-section images of �db
c,VWC, �db

virt,c, �saft at x = 322 px compared with the
corresponding XCT image. b) Cross-section images of �db

c,VWC, �db
virt,c, �saft at y = 84 px

compared with the corresponding XCT image. The temporal resolution was Δ� = 0.02 s,
the lateral axial resolution was Δ
 = Δ� = 141 �m and the axial lateral resolution was
Δ� = 50 �m for the VWC reconstruction. The voxel size for the XCT results is 15 �m.

Figure 7: �saft (top view) showing the isosurface representa-
tion of the delamination.

trast method and the proposed method allows for a temporal
noise-free representation of the thermal contrast signal.

In addition we performed 3D photothermal imaging of
a real subsurface defect represented by a delamination. F-
SAFT was used for the rectification of the anisotropic heat
flow. It turned out that the use of F-SAFT allows only for
approximate defect estimations because:

Figure 8: �saft (isometric view) showing the isosurface repre-
sentation of the delamination.

• the observation surface is not plane due to the impact
and

• the virtual speed of sound tensor depends on sample
depth due to the stacking sequence of the sample.
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To overcome these issues it is planned to use alternative ul-
trasonic reconstruction method such as time reversal algo-
rithms, that allow a prepreg and layer related definition of
the virtual speed of sound, in future research work. In addi-
tion, the proposed thermal contrast method will be applied
for different heating patterns.
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5.6 Summary

CFRP structures are increasingly replacing metal-based aircraft structures. This, in turn, boosts

the application of active infrared thermography (IRT) for non-destructive testing of aircraft

structures, as it is a fast and non-contact measurement technique, thus enabling economical

testing of highly integrated composite components. Active IRT requires thermal excitation of

the specimen under test, and the excitation pattern can vary in space and time. A major issue

and challenge with active IRT data is multidimensional defect reconstruction and visualization.

For this task, an inverse heat conduction problem (IHCP) can be tackled. IHCPs are severely

ill-posed inverse problems, due to the strong attenuation of the thermal waves, and therefore

regularization and stabilization methods are required to compute a useful inverse solution.

In this doctoral thesis, the virtual wave concept (VWC), a promising multidimensional de-

fect reconstruction method, has been extended for application to anisotropic materials such as

composites and for photothermal data acquired in the pulse-echo configuration. VWC repre-

sents an IHCP and therefore requires the solution of a severely ill-posed inverse problem for de-

fect reconstruction. To compensate for the degradation of spatial resolution that leads to blurred

images of deeper structures and to improve the quality of the inverse solution, the iterative reg-

ularization technique alternating direction method of multipliers (ADMM) was implemented

that allows the incorporation of prior information in the form of positivity and sparsity. The in-

clusion of sparsity is reasonable because samples usually have few defects, resulting in a sparse

inverse solution or virtual wave signal. Only for adiabatic boundary conditions, 1D thermal

diffusion, and defect-free samples a direct incorporation of positivity is possible. One possible

application under these conditions is to estimate the thermal diffusion time perpendicular to

the observation plane. Otherwise, the bi-modal virtual wave signal must be projected onto a

positive data set using the circular projections in 2D and the spherical projections in 3D to in-

corporate the prior information positivity. The use of these projections works well for samples

with internal heat sources and boundary point sources. However, for highly anisotropic samples

containing defects with lateral extension at a certain depth, it was found that the circular and

spherical projections are not applicable, especially for the pulse-echo configuration.

Moreover, a mathematical relationship of the thermal diffusivity tensor and the virtual speed

of sound tensor was derived to enable the rectification of the anisotropic heat flow. Using this

relationship, a novel method for estimating the thermal diffusivity tensor was proposed. To

account for the different virtual speeds of sound in the principal directions, the second recon-
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struction step was modified. Using the findings from Paper 5.3, the modified VWC was applied

to anisotropic samples with artificial defects and photothermal data acquired in the pulse-echo

configuration. To speed up the defect reconstruction, the reconstruction domain was signifi-

cantly reduced based on parameter studies and physical-based considerations. In addition, the

properties of a virtual wave signal resulting from a perturbed defect temperature signal were

discussed in detail. The discussions show that using the VWC together with ADMM one can

proper distinguish between front-wall feature, back-wall feature and defect feature. Finally, the

modified VWC method was applied to 3D photothermal imaging of real defects represented

by delaminations in a CFRP sample. It was found that the application of frequency-synthetic

aperture focusing technique (F-SAFT) is inappropriate for accurate defect reconstruction due

to the specific stacking sequence of the sample. Therefore, the use of alternative ultrasonic re-

construction methods such as the time reversal algorithm was suggested. In this context, VWC

was adopted for thermal contrast imaging, which allows the calculation of temporally noise-free

thermal contrast images for different heating patterns. In summary, this doctoral thesis presents

a rapid, easily interpretable, and efficient 3D photothermal imaging tool for anisotropic media.
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5.7 Outlook

To date, only 3D photothermal surface temperature signals acquired in the pulse-echo configura-

tion and based on a temporal Dirac Delta-like, temporally rectangular or spatially homogeneous

heating pulse have been converted into a virtual wave signal. To improve the signal-to-noise

ratio of the transient temperature signal and to comply with the maximum allowable exposure

of the observed sample, time-varying heating, such as a linear frequency-modulated excitation

signal, will be used in future research. The defect detection capability for cracks oriented per-

pendicular to the excitation surface could also be improved by spatially varying heating pulses

in combination with the VWC reconstruction procedure.

Another future research aspect related to the VWC reconstruction procedure is the investi-

gation of the influence of non-adiabatic boundary conditions, e.g. due to convective heat losses,

on the reconstruction quality.

The current state of research of VWC in conjunction with F-SAFT requires an approxi-

mately flat observation surface. Moreover, only global propagation parameters can be included

with F-SAFT for defect reconstruction. However, some stacking sequences of CFRP samples

require depth adjustment of the propagation parameters. Therefore, another research focus

could be to complement VWC for non-planar, complex-shaped anisotropic specimen geome-

tries and arbitrary stacking sequences, by alternative ultrasound reconstruction methods such as

time reversal algorithms.

Another possible research direction could be the application of Deep Learning approaches

to a virtual wave signal obtained from a 3D photothermal temperature signal recorded in the

pulse-echo configuration.
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