
DIPLOMARBEIT

Bayesian Estimation Using Deep

Learning-Based Feature Extraction and

Pseudo-Labels

ausgeführt zur Erlangung des akademischen Grades eines Diplom-Ingenieurs unter der

Leitung von

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Franz Hlawatsch

Dipl.-Ing. Thomas John Bucco

am

Institute of Telecommunications

eingereicht an der Technischen Universität Wien

Fakultät für Elektrotechnik und Informationstechnik

von

Michael Girsch

Wien, September 2023

© Copyright 2023 Michael Girsch

Abstract

The fields of deep learning and Bayesian estimation offer signal processing methods that

exhibit unique and contrasting capabilities. The main advantage of Bayesian estimation

methods is that they provide a detailed description of the signal processing results in

the form of the posterior distribution, which is considerably more informative than the

point estimates provided by conventional deep learning methods. On the other hand, deep

learning enjoys huge popularity across various disciplines for its ability to solve complex

tasks such as object detection and localization.

In this thesis, we present several contributions related to the combination of Bayesian

estimation and deep learning-based feature extraction. First, we propose a methodology

for solving an intractable Bayesian estimation problem for which an accurate statistical

model is unavailable. Second, we introduce three approaches for feeding back transformed

estimates produced by a Bayesian estimator as corrected features, called “pseudo-labels,”

which allow us to retrain a deep neural network in a semi-supervised way. Two of these

approaches incorporate statistical information from the Bayesian estimator in the training

of the deep neural network.

As a practical application of the proposed framework and pseudo-labeling techniques,

we consider a target tracking problem. We develop a tracking system consisting of a deep

neural network and a sequential Bayesian estimator, in particular a Kalman filter. Our

numerical results demonstrate that the proposed pseudo-labeling techniques can lead to an

improved deep neural network performance compared with a deep neural network trained

by conventional semi-supervised learning.

I

II

Kurzfassung

Deep learning und Bayessche Schätzung sind wichtige Methodiken der Signalverarbeitung,

die unterschiedliche Stärken aufweisen. Die von Bayesschen Schätzern berechneten A-

posteriori-Verteilungen sind wesentlich informativer als die von Methoden des deep learn-

ing durchgeführten Punktschätzungen. Dessen ungeachtet hat sich deep learning als ein

mächtiges Werkzeug für viele komplexe Problemstellungen erwiesen, beispielsweise zur

Objektdetektion und -lokalisierung.

In dieser Arbeit präsentieren wir eine Methodik, die Bayessche Schätzung und deep

learning-basierte Methoden zur Merkmalsextraktion verbindet. Zunächst schlagen wir ein

Verfahren zur Lösung eines Bayesschen Schätzproblems vor, für welches eine statistische

Beschreibung nicht verfügbar ist. Weiters beschreiben wir drei Methoden für die Rück-

kopplung transformierter Schätzergebnisse eines Bayesschen Schätzers als korrigierte Merk-

male. Diese korrigierten Merkmale, welche auch als
”
Pseudo-Labels“ bezeichnet werden,

erlauben ein verbessertes Training eines tiefen neuronalen Netzes auf der Grundlage von

halbüberwachtem Lernen. Zwei der vorgestellten Methoden ermöglichen die Einbindung

der vom Bayesschen Schätzer gelieferten statistischen Information in das Training des

tiefen neuronalen Netzes.

Als praktische Anwendung der vorgestellten Methodik betrachten wir ein Zielverfol-

gungsproblem, für das wir ein aus einem tiefen neuronalen Netz und einem sequentiellen

Bayesschen Schätzer (Kalman-Filter) bestehendes System entwickeln. Unsere Simulations-

ergebnisse zeigen, dass tiefe neuronale Netze mit der vorgeschlagenen
”
Pseudo-Label“-

Methodik eine bessere Leistungsfähigkeit aufweisen als tiefe neuronale Netze, die konven-

tionelles Training auf der Grundlage von halbüberwachtem Lernen verwenden.

III

IV

Acknowledgments

I would like to express my gratitude to my supervisors Ao. Univ. Prof. Franz Hlawatsch

and Dipl.-Ing. Thomas John Bucco for their continuous support, expertise, and guidance.

Furthermore, I would like to thank all colleagues at the Institute of Telecommunications

for many helpful discussions.

I am deeply thankful to my family for their love and encouragement during my studies.

Last but not least, I also want to thank the friends I made during my time at TU Wien.

V

VI

Contents

1. Introduction 1

1.1. Motivation . 1

1.2. State of the Art . 2

1.3. Contribution and Outline . 2

2. Deep Learning 5

2.1. Deep Neural Networks . 5

2.2. Supervised and Semi-Supervised Learning 7

2.3. Training . 8

3. Deep Neural Network Aided Bayesian Estimation 11

3.1. Motivation . 11

3.2. Serial Setup . 12

3.3. Feedback of Pseudo-Labels . 13

3.3.1. Hard Pseudo-Labels . 14

3.3.2. Semi-Soft Pseudo-Labels . 16

3.3.3. Soft Pseudo-Labels . 19

4. Deep Neural Network Aided Sequential Bayesian Estimation 23

4.1. State-Space Model . 23

4.2. Sequential Bayesian Estimation . 24

4.3. Kalman Filter . 25

4.3.1. Error Covariance . 27

4.4. Feedback of Pseudo-Labels . 28

4.4.1. Hard Pseudo-Labeling . 28

4.4.2. Semi-Soft Pseudo Labeling . 29

4.4.3. Soft Pseudo-Labeling . 29

5. Application to Target Tracking 31

5.1. Motion and Observation Model . 31

VII

5.2. Deep Neural Network for Position Prediction 33

5.3. Feedback of Position Estimates . 34

5.3.1. Hard Pseudo-Labels . 35

5.3.2. Semi-Soft Pseudo-Labels . 35

5.3.3. Soft Pseudo-Labels . 36

5.4. Kalman Filter for Position and Velocity Estimation 37

6. Simulations 41

6.1. DNN Localization Performance Evaluation 41

6.2. Tracking Performance . 47

6.3. Robustness Analysis . 51

6.3.1. Driving Noise and Object Shape Variation 52

6.3.2. Image Noise . 54

6.3.3. Outlier Detection . 55

7. Conclusion 57

A. Derivation of Kalman Filter 59

Bibliography 68

VIII

List of Figures

2.1. DNN with L = 5 layers, input dimension m = 3 and output dimension

n = 2. We use a modification of the LATEX code provided in [1]. 6

3.1. Block diagram of the serial setup consisting of deep learning based feature

extraction and a Bayesian estimator. 12

3.2. Bayesian network describing the statistical relationship between observation

xn, feature vector yn, and parameter θn for the ideal scenario. 13

3.3. Block diagram of the semi-supervised estimation-learning method using

feedback of hard pseudo-labels yn. 15

3.4. Block diagram of the semi-supervised estimation-learning method using

feedback of hard point estimates ŷn and transformed posterior covariance

matrices C
(Y)
n . 17

3.5. Illustration of the ellipsoid corresponding to the Mahalanobis distance for

L = 2. 18

3.6. Block diagram of the semi-supervised learning-estimation method using

feedback of the posterior distribution p(θn|yn). 20

4.1. Bayesian network of the HMM [2, Chapter 1] for the state-transition model

(4.1) and measurement model (4.2). 24

5.1. Visualzation of the nearly constant velocity model, describing the movement

of a point target along a trajectory in R2. 33

5.2. DNN architecture used for position prediction. We see the first part con-

sisting of five convolutional sub-blocks conv1 up to conv5, indicated by the

yellow cuboids. The number of filters is specified beneath. After each con-

volutional sub-block, we can see the max pooling layer, indicated by the red

cuboid. The fully connected block is given by the two purple layers fc1 and

fc2. A modification of the LATEX code provided in [3] is used. 34

IX

6.1. Synthetic sample image. The object of interest is the blue circle with coor-

dinates of the center being pl = p
(1)
l , p

(2)
l

T

. 42

6.2. Block diagram of DNN labeling. 43

6.3. Error histograms for DNN with reduced training (upper row) and using

DNN labels (lower row) . 45

6.4. Error histograms for DNN with hard pseudo-labeling (upper row), semi-soft

pseudo-labeling (middle row) and soft pseudo-labeling (lower row) 46

6.5. Tracking a sequence of 200 images using the DNN with reduced training.

For the driving noise variances we use small values: σ
(i)
u

2
= 10−4, i ∈

{1, . . . , 4}. For the position components, we compare the DNN outputs,

KF estimates, and the true position. For the velocity we only consider the

true values and the KF estimates. 47

6.6. Tracking a sequence of 200 images using the DNN with reduced training.

For the driving noise variances we use large values: σ
(1,2)
u

2
= 10 and

σ
(3,4)
u

2
= 0.1. 48

6.7. Tracking a sequence of 200 images using the DNN trained with soft pseudo-

labels. For the driving noise variances we choose small values: σ
(i)
u

2
=

10−4, i ∈ {1, . . . , 4}. 49

6.8. Tracking a sequence of 200 images using a DNN trained with soft pseudo-

labels. For the driving noise variances we choose large values: σ
(1,2)
u

2
= 10

and σ
(3,4)
u

2
= 0.1. 50

6.9. Two sample images containing ellipses with different sizes and orientations. 52

6.10. Sum of average position errors for DNN and KF, while varying driving

noise components of position and velocity. In Subfigures 6.10b and 6.10d

the object shape varies over time. 53

6.11. Varying image noise variance for hard, semi-soft, and soft-pseudo labeling.

We compare corrected DNN position predictions and KF position estimates. 54

6.12. Solid red curves are the DNN prediction with an outlier at time step 25.

The blue dashed line depicts the KF error without the outlier detection,

which shows a strong transient behavior. The yellow dashed line is the KF

error with outlier detection. The transient behavior is strongly suppressed. 55

X

List of Abbreviations

DAG Directed Acyclic Graph

DNN Deep Neural Network

GD Gradient Descent

HMM Hidden Markov Model

i.i.d. independent and identically distributed

KF Kalman Filter

MMSE Minimum Mean Squared Error

NN Neural Network

pdf probability density function

ReLU rectified linear unit

SGD Stochastic Gradient Descent

XI

XII

1. Introduction

1.1. Motivation

When using stochastic parameter estimation methods, we often face the problem that it

is difficult to describe the statistical relationship between the raw measurements and the

parameters of interest, rendering such estimation methods inaccurate or useless. For in-

stance, in image processing, formulating a statistical relationship between images and the

parameters of interest can be challenging or impossible. Therefore, we usually preprocess

the raw measurements to obtain “simplified measurements”, for which the statistical re-

lationship with the parameters of interest is known. In this work, we propose to use a

deep neural network (DNN) as a feature extraction stage that converts raw measurements

into simplified measurements. Subsequently, a Bayesian estimator is used to estimate the

parameters of interest.

Another issue addressed in this work is a lack of labeled data for the training of DNNs.

Semi-supervised learning is a powerful approach that enables the use of unlabeled data

to augment a small set of labeled data in the training of DNNs. One particular semi-

supervised learning approach is pseudo-labeling, which creates labels for the unlabeled data

using a DNN that is initially trained using only the labeled data. In the next step, the DNN

can be retrained using the unlabeled training data paired with the pseudo-labels in addition

to the labeled training data. However, using conventional DNN architectures, we cannot

determine the quality of the pseudo-labels automatically. It may happen that the DNN

trained with a small amount of labeled training data performs poorly and thus produces

pseudo-labels of low accuracy. Therefore, it would be desirable to develop methods that,

first, can make pseudo-labels more accurate and, second, weigh them in the subsequent

training according to their forecasted accuracy. Bayesian estimation methods provide a

quantitative characterization of uncertainty. Therefore, we propose to use a Bayesian

estimator that processes the DNN outputs and produces the pseudo-labels as well as a

characterization of uncertainty, which are used to retrain the DNN.

As a use case for this proposed framework combining a DNN and a Bayesian estimator,

1

we consider a target tracking problem. Concretely, a DNN is used to produce preliminary

estimates of the position of a moving target from a sequence of images (thus, the feature

extraction task here amounts to object localization). A sequential Bayesian estimator then

calculates estimates of the target position and velocity from preliminary position estimates

provided by the DNN. The estimates calculated by the sequential estimator as well as the

statistical information are processed to retrain the DNN.

1.2. State of the Art

One approach to obtaining a quantitative characterization of uncertainty of the DNN’s

output is constituted by Bayesian neural networks [4]. Rather than producing a point esti-

mate, Bayesian neural networks produce a posterior distribution at their output. However,

it remains difficult to design efficient training algorithms for this type of DNNs.

An extensive overview of the semi-supervised learning framework can be found in [5,6].

The authors of [7] use Bayesian methods and semi-supervised learning for handwritten

character recognition. In [8], hybrid methods using both DNNs and conventional inference

methods are described. The framework proposed in this thesis belongs to the “DNN-aided

inference” category.

Many papers addressing the problem of object localization/detection and classification

using DNNs focus on the DNN architecture [9–11]. The combination of DNNs and Bayesian

estimation is a promising approach to target tracking. In [12], the combination of a Kalman

filter (KF) and a DNN is used for a 3D multi-object tracking problem. However, the DNN

is trained using conventional supervised learning, and the statistical information provided

by the KF is not used for training the DNN. The DNN that is used for object localization

is described in [13]. The work in [14] combines a DNN and a particle-based sum-product

algorithm for target tracking. For feature extraction supervised learning is used [15].

1.3. Contribution and Outline

The contributions of this thesis are as follows. We propose a combination of DNNs and

Bayesian estimators for estimation problems where an accurate statistical model relating

the measurements and the parameters of interest does not exist. We present a method

for creating pseudo-labels, i.e., corrected feature vectors, using the results of a Bayesian

estimator. Moreover, we propose a method for training a DNN in a semi-supervised way

using statistical information obtained from the Bayesian estimator. These methods are

2

then applied to the problem of tracking a single target.

The thesis is structured as follows:

• In Chapter 2, we describe the fundamentals of deep learning and certain concepts

relevant to the subsequent chapters.

• Chapter 3 presents the proposed combination of Bayesian estimation and DNN-

based feature extraction. In particular, three methods for creating pseudo-labels and

retraining the DNN in a semi-supervised way are proposed. Two of these methods

leverage statistical information provided by the Bayesian estimator for improved

DNN training.

• In Chapter 4, we consider sequential estimation and review the general Bayesian filter

as well as the KF. Then, we extend the methods from Chapter 3 to the sequential

case.

• In Chapter 5, a combination of DNN feature extraction and sequential Bayesian

estimation using a KF is applied to the problem of tracking a single target. The

proposed method is based on a modified KF.

• Chapter 6 presents and discusses simulation results for the target tracking problem

considered in Chapter 5. In particular, the DNN performance is evaluated for dif-

ferent pseudo-labeling methods, and it is shown that the estimates obtained with

the combined DNN-KF method are more robust than the estimates produced by the

DNN alone.

• Chapter 7 summarizes the main results and suggests future research directions.

3

4

2. Deep Learning

Deep learning has emerged as a powerful methodology in the area of machine learning.

Deep learning methods are capable of handling different tasks related to applications in

engineering and natural sciences, e.g., image classification [16], solving partial differential

equations [17], and protein structure prediction [18]. In this chapter, some important

concepts in the field of deep learning will be summarized. We introduce a neural network

(NN) as a parameterized function, distinguish between NNs and DNNs, and describe the

relation between DNNs and function learning. Furthermore, we describe how to optimize

the performance of DNNs, i.e., training. References for this chapter are [19–22].

2.1. Deep Neural Networks

In the most general form, an NN can be thought of as a parameterized function that

approximates another function based on a limited number of observations (data set). The

name originates from biology, where in the brain signals are transmitted and processed

via neurons. NNs allow for a representation that consists of connected nodes (neurons)

that can process information. An NN is specified by its architecture, i.e., the number of

nodes, the activation function (a nonlinear transformation), and the training routine used

to optimize the parameters for a given data set such that a good approximation of the

target function is obtained.

Let us consider a function

y = f ∗(x), (2.1)

with input space X and output space Y and their respective elements, i.e., x ∈ X and

y ∈ Y . In this text, we restrict ourselves to real-valued inputs and outputs, i.e., X ⊆ Rm

and Y ⊆ Rn. The NN is a parameterized mapping of the following form,

y = f(x;ϕ) with parameters ϕ ∈ P . (2.2)

Given an NN with fixed architecture, we solve an optimization problem to find the optimal

5

x
(1)
0

x
(2)
0

x
(3)
0

x
(1)
1

x
(1)
2

x
(1)
3

x
(1)
4

x
(2)
1

x
(2)
2

x
(2)
3

x
(2)
4

x
(2)
5

x
(3)
1

x
(3)
2

x
(3)
3

x
(3)
4

y
(1)
4

y
(2)
4

Figure 2.1.: DNN with L = 5 layers, input dimension m = 3 and output dimension
n = 2. We use a modification of the LATEX code provided in [1].

parameters ϕ∗ for which f(x;ϕ∗) best approximates the function f ∗ which is assumed to

be unknown. The parameter ϕ is a sequence of matrix-vector tuples [22, Chapter 1], i.e.,

ϕ = ϕl
L

l=1
= Wl, bl

L

l=1
∈ P , where P =

L×
l=1

RNl×Nl−1 × RNl , (2.3)

with N0 = m,NL = n, N1, . . . , NL−1 ∈ N, Wl ∈ RNl×Nl−1 , and bl ∈ RNl for l = 1, . . . , L.

The matrices Wl are called weight matrices and the vectors bl are called bias vectors. The

l-th tuple (Wl, bl) describes one layer of the NN. With an input vector x = x0 the i-th

entry of the l-th layer output xl is calculated as [19, Chapter 2]

x
(i)
l = ρ Wlxl−1

(i)
+ b

(i)
l , i = 1, . . . , NL; l = 1, . . . , L− 1, (2.4)

where ρ : R → R is a generally nonlinear activation function, whereas the output vector y

is calculated as

y = WLxL−1 + bL. (2.5)

An NN with more than one hidden layer, i.e., a layer between input and output layer,

is called a DNN. An NN can be visualized by a directed acyclic graph (DAG), as shown

in Figure 2.1.

6

2.2. Supervised and Semi-Supervised Learning

In this section, we introduce supervised and semi-supervised learning for DNNs and present

some basic notions that will be used later on.

Supervised Learning

Generally speaking, in a supervised learning [23] task we want to find an approximation f of

an unknown function f ∗ : X → Y , which is a mapping from the domain set X to the target

or label set Y . The approximation is based on a limited set of observations, also referred to

as the training data set SL, i.e., which consists of data pairs x
(labeled)
m ,y

(labeled)
m ∈ X ×Y ,

where we write x
(labeled)
m and y

(labeled)
m to indicate that the data pair is created by the

unknown function f ∗, i.e.,

y(labeled)
m = f ∗ x(labeled)

m . (2.6)

The labeled data set is

SL = x(labeled)
m ,y(labeled)

m

M

m=1
. (2.7)

The performance of the approximation or predictor f is measured using a loss function

L(f(x),y). A popular example for L(f(x),y) is the squared Euclidean norm. The loss

for the labeled data pair x
(labeled)
m ,y

(labeled)
m is given by

L f(x(labeled)
m),y(labeled)

m = ∥f(x(labeled)
m)− y(labeled)

m ∥2. (2.8)

In deep learning we try to approximate the function f ∗ by a DNN f(· ;ϕ). This is

achieved by minimizing the empirical risk. For a general training data set S = xm,ym
M

m=1

and a predictor f(· ;ϕ), the empirical risk is defined as [22, Chapter 1]

R(ϕ) =
1

M

M

m=1

L f(xm;ϕ),ym . (2.9)

In supervised learning, we consider the empirical risk over the set SL, i.e.,

R(ϕ) =
1

M

M

m=1

L f(x(labeled)
m ;ϕ),y(labeled)

m . (2.10)

The optimal predictor f(· ;ϕ) is found by minimizing the empirical risk with respect to

the parameter ϕ, i.e.,

ϕ∗ = argmin
ϕ∈P

R(ϕ). (2.11)

7

The optimal DNN exhibits good generalization ability if

f(x;ϕ∗) ≈ y, ∀ (x,y) /∈ SL s.t. y = f ∗(x). (2.12)

Semi-supervised Learning

Constructing sufficiently large labeled data sets can be costly, especially when the labeling

process requires trained personnel. Semi-supervised learning [6] tackles this problem by

using both labeled and unlabeled data. To use semi-supervised learning for DNNs, we

need the concept of pseudo-labels. Pseudo-labels were first introduced in [24] as an entropy

regularization for classification tasks, where the pseudo-label for a given unlabeled input is

simply the predicted class label, assuming a certain threshold for the prediction probability

is exceeded. In this work, we consider a regression task with a labeled data set SL =

x
(labeled)
m ,y

(labeled)
m

M

m=1
and an unlabeled set SUL = {xn}Nn=1, where N ≫ M . We train

the DNN using the labeled data set SL first, in order to obtain a provisional optimal

parameter ϕ∗. Next, the outputs of the DNN for the data vectors xn from the unlabeled

data set SUL are computed, i.e.,

yn = f(xn;ϕ
∗), n = 1, . . . , N. (2.13)

These output vectors yn are also referred to as pseudo-labels and enable us to create the

data set SPL = xn,yn

N

n=1
. Now we can augment the labeled data set by SPL to

obtain a new training data set

Snew = SL ∪ SPL. (2.14)

The DNN is then retrained using the new data set Snew. The augmented empirical risk is

given by

Rnew(ϕ) =
1

M

M

m=1

L f(x(labeled)
m ;ϕ),y(labeled)

m +
1

N

N

n=1

L f(xn;ϕ),yn . (2.15)

In order to further improve the performance, the process of augmenting the labeled data

set and retraining the DNN using the augmented data set can be repeated.

2.3. Training

Training the DNN amounts to calculating the optimal parameter ϕ. Recalling Equation

(2.3) and (2.11), we compute the entries of the weight matricesWl and bias vectors bl for all

8

l = 1, . . . , L that minimize the empirical risk R(ϕ). However, for a DNN the empirical risk

is a nonlinear function of the parameter ϕ, so that the optimization problem in Equation

(2.11) cannot be solved analytically. Thus, we resort to numerical methods. A further

difficulty is that the empirical risk can have multiple global and local minima.

In practice, one numerical technique called gradient descent (GD) [25] turned out to be

very powerful. Any (local or global) minimum of the empirical risk satisfies the equation

∇R(ϕ) = 0, (2.16)

where ∇ is the gradient with respect to ϕ, i.e., consisting of the partial derivatives of the

entries of all Wl and bl, and 0 is the zero vector. Such a minimum can be found in an

iterative manner by taking steps in the direction of the largest decrease of the empirical

risk, i.e., −∇R(ϕ). At the i-th iteration, the update equation for the new parameters

ϕ(i+1) is given by

ϕ(i+1) = ϕ(i) − η∇R(ϕ(i)), (2.17)

where η > 0 denotes the learning rate. The value of the learning rate η determines the step

size in the update equation. The gradient∇R(ϕ) can be calculated by the backpropagation

algorithm, see [26]. The algorithm starts with an initial value ϕ(0) and stops after finding

a minimum, i.e., when |∇R(ϕ(i))| < ε for some small ε > 0 or when an upper bound on

the number of iterations Tmax is reached. An important modification of gradient descent

is called stochastic gradient descent (SGD) [20]. For large data sets, i.e., a high value of

M , calculating (2.11) is computationally challenging. Therefore, the idea of SGD is to

estimate R(ϕ) by considering a small subset S ′
L ⊂ SL of size M ′ ≪ M that is randomly

chosen, i.e.,

R(ϕ) ≈ 1

M ′
m∈S′

L

L f(x(labeled)
m ;ϕ),y(labeled)

m . (2.18)

In the semi-supervised learning framework, we additionally have to use a subset S ′
PL ⊂ SPL,

with yn calculated by (2.13) and |S ′
PL| = N ′ ≪ N . The data sets of reduced size S ′

L and

S ′
PL allow us to estimate Rnew(ϕ) by

Rnew(ϕ) ≈ 1

M ′
m∈S′

L

L f(x(labeled)
m ;ϕ),y(labeled)

m +
1

N ′
n∈S′

PL

L f(xn;ϕ),yn . (2.19)

9

10

3. Deep Neural Network Aided

Bayesian Estimation

3.1. Motivation

We consider a Bayesian estimation problem where both the parameter vector θ ∈ Θ ⊆ Rp

and the data vector x ∈ X are modeled as random quantities. The goal is to find an

estimate θ̂(x) of the random vector θ given an observation x. In conventional Bayesian

estimation, we assume the following distributions to be known:

• the prior probability density function (pdf) p(θ),

• the likelihood function p(x|θ), which captures the statistical relation between the

random data x and the random parameter θ.

In many applications, it is difficult to work with the likelihood function because the

dimension of the measurement space X is too large for directly computing the estimate

θ̂(x) or it is impossible to characterize the statistical dependence between the raw data

x and the parameter θ. Therefore, we consider a lower-dimensional ”feature space” Y
(i.e., dim(Y) < dim(X)) where the statistical dependence between θ and y ∈ Y is known,

described by a simplified likelihood function p(y|θ). A DNN can then be used to extract

features y from the observation x. The Bayesian estimate θ̂(y) can then be calculated by

using the prior pdf p(θ) and the simplified likelihood function p(y|θ).
Of course, one could ask why we would not estimate θ directly from x using only a

DNN, without a Bayesian estimation stage. The main advantage of Bayesian estimation is

that the statistical model constituted by the likelihood function p(y|θ) and the prior pdf

p(θ) provides information about the parameter θ that is not leveraged by a DNN.

Secondly, when estimating θ directly from the observed data x using a DNN, typically a

more complex DNN architecture and more labeled training data are needed. We consider

scenarios where extracting simple features y with a DNN can be achieved using conven-

tional architectures and a reasonable amount of training data, whereas training a DNN

11

unlabeled data
{xn}Nn=1

DNN feature
extraction

features
{yn}Nn=1 Bayesian

estimator
estimates θ̂n

N

n=1

labeled data
SL = x

(labeled)
m ,y

(labeled)
m

M

m=1

Figure 3.1.: Block diagram of the serial setup consisting of deep learning based feature
extraction and a Bayesian estimator.

to directly infer θ from x is not feasible. To summarize, in a first step, we extract fea-

tures y from raw data x by using a DNN, and in a second step, we leverage knowledge of

the statistical behavior of these features by performing Bayesian estimation of θ from y.

References for this chapter are [27–29].

3.2. Serial Setup

Our goal is to calculate parameter estimates θ̂n for a set of observations data xn, n =

1, . . . , N . Since this is too difficult, we use a DNN f(· ;ϕ) to extract a feature vector yn

from each xn. In a first step, we employ supervised learning to train the DNN with the

labeled data set SL = x
(labeled)
m ,y

(labeled)
m

M

m=1
. Following Equation (2.10) and (2.11),

we find ϕ∗ by minimizing the empirical risk over the set SL, i.e.,

ϕ∗ = argmin
ϕ∈P

1

M

M

m=1

L f(x(labeled)
m ;ϕ),y(labeled)

m . (3.1)

Subsequently, the trained DNN (with ϕ = ϕ∗) extracts features yn from the unlabeled

observations xn, i.e.,

yn = f(xn,ϕ
∗), n = 1, . . . , N. (3.2)

After the features yn are obtained by the DNN, the remaining task is to estimate the

parameter θn given the features yn. Knowing the simplified likelihood function p(yn|θn)

and the prior distribution p(θn), the posterior pdf can be calculated by using Bayes’ rule,

12

xn yn θn

Figure 3.2.: Bayesian network describing the statistical relationship between observation
xn, feature vector yn, and parameter θn for the ideal scenario.

i.e.,

p(θn|yn) =
p(yn|θn)p(θn)

p(yn)
, (3.3)

where we call p(yn) the evidence, which can be calculated by marginalization

p(yn) =
Θ

p(yn|θn)p(θn)dθn =
Θ

p(yn,θn)dθn. (3.4)

The posterior p(θn|yn) allows to calculate any Bayesian estimator. For example, the

minimum mean squared error (MMSE) estimate θ̂n for the DNN output yn = f(xn;ϕ
∗)

is given by

θ̂n = E{θn|yn} =
Θ

θnp(θn|yn)dθn, (3.5)

where the posterior pdf p(θn|yn) can be calculated according to Equation (3.3) and (3.4).

An illustration of this setup is given in Figure 3.1.

In the ideal case, the feature yn suffices to estimate θn without the loss of any informa-

tion. This can be formalized by stating that θn is conditionally independent of xn given

yn, i.e., θn ⊥⊥ xn|yn. However, in the general case, we expect that information will be lost

by the DNN feature extraction. A Bayesian network for the ideal case is given in Figure

3.2.

3.3. Feedback of Pseudo-Labels

In Section 2.2, we saw that unlabeled data can be incorporated into the training of a DNN.

This was achieved by introducing pseudo-labels, which are the outputs of the DNN after

the initial training phase, as stated by Equation (3.2). The initial optimal parameter ϕ∗

was obtained based on labeled training data according to Equation (3.1). Finally, the

DNN is retrained with the augmented data set

Snew = x(labeled)
m ,y(labeled)

m
M

m=1
∪ xn,yn

N

n=1
. (3.6)

13

The new optimal parameter ϕ∗
new is obtained as

ϕ∗
new = argmin

ϕ∈P

1

M

M

m=1

L f(x(labeled)
m ;ϕ),y(labeled)

m +
1

N

N

n=1

L f(xn;ϕ),yn . (3.7)

Now two important questions arise. On the one hand, it may happen that the DNN

does not generalize well to unseen data due to a not sufficiently large labeled data set

SL or the optimization algorithm gets stuck in a local optimum with a high value of the

empirical risk R(ϕ∗). Retraining the DNN with pseudo-labels, which exhibit low accuracy,

is expected to lead to poor performance. Therefore, we would like to know if it is possible

to generate more accurate feature vectors ŷn by transforming the parameter estimates θ̂n.

On the other hand, we want to investigate if we can use the statistical information of

the Bayesian estimator in the training of the DNN. Potentially, this may be achieved by

using an alternative loss function, where we somehow want to weigh data pairs (xn, ŷn)

based on the statistical information of the corresponding parameter estimate θ̂n.

In the following sections, we explore three different ways of retraining the DNN. The

first option, namely hard pseudo-labeling, only tries to generate pseudo-labels ŷn which

provide a more accurate feature than the original DNN outputs yn. Second, we have semi-

soft pseudo-labeling, where we want to utilize the statistical information of the posterior

covariance matrix. This can be achieved by using the inverse of this matrix as a weighting

factor in a modified loss function. In soft pseudo-labeling, we want to use the posterior pdf

in the loss function by forming an expectation over p(θn|yn).

3.3.1. Hard Pseudo-Labels

The first possibility of retraining the DNN is using the “hard” point estimates θ̂n, hence

the name hard pseudo-labels. The Bayesian estimates θ̂n can be used to generate corrected

feature vectors ŷn by introducing a mapping from the the parameter space Θ to the feature

space Y , i.e.,

ŷn = y(θ̂n). (3.8)

We will refer to this mapping as the feedback function. Note that we use the same symbol

for the feedback function y(·) and the feature vector y. The construction of the feedback

function highly depends on the application, hence a general statement cannot be given.

An example for y(·), which we will consider in Chapter 5, is the transformation of the

four-dimensional parameter estimate θ̂n consisting of position and velocity components to

a two-dimensional feature vector ŷn consisting only of position estimates. The set of hard

14

unlabeled data
xn

N

n=1

DNN feature
extraction

features
yn

N

n=1 Bayesian
estimator

estimates θ̂n
N

n=1

labeled data
SL = x

(labeled)
m ,y

(labeled)
m

M

m=1

hard pseudo-labeling

ŷn}Nn=1

Figure 3.3.: Block diagram of the semi-supervised estimation-learning method using
feedback of hard pseudo-labels yn.

pseudo-labels is given by

SPL = xn, ŷn
N

n=1
. (3.9)

The augmented data set is given as the union of the labeled data set SL and the set of

hard pseudo-labels SPL, i.e.,

Snew = x(labeled)
m ,y(labeled)

m
M

m=1
∪ xn, ŷn

N

n=1
. (3.10)

We can retrain the DNN, similar to Equation (3.7), to obtain the parameter vector

ϕ∗
new ≜ argmin

ϕ∈P

λ

M

M

m=1

L f(x(labeled)
m ;ϕ),y(labeled)

m +
1

N

N

n=1

L f(xn;ϕ), ŷn , (3.11)

where we have an additional tuning factor λ to balance the contribution between exact

labels y
(labeled)
m and hard pseudo-labels ŷn. This can be expected to improve on the DNN

accuracy provided that the pseudo-labels ŷn are more accurate than the non-corrected

features yn. The method with feedback of hard pseudo-labels is depicted in Figure 3.3.

15

3.3.2. Semi-Soft Pseudo-Labels

In semi-soft pseudo-labeling, the basic idea is based on extending hard pseudo-labeling

by incorporating the statistical information provided by the Bayesian estimator into the

training of the DNN. This is achieved by modifying the loss function. For for the data pair

(xn, ŷn) the modified loss function is defined as

Ls f(xn;ϕ , ŷn) ≜ (f(xn;ϕ)− ŷn)
T C(Y)

n
−1
(f(xn;ϕ)− ŷn), (3.12)

with a weighting matrix C
(Y)
n . This matrix is derived from the posterior covariance matrix

Cn via a mapping

C(Y)
n = Y (Cn). (3.13)

Similarly to the feedback function y(·), also the choice of the function Y (·) is based on

the specific application considered. An example will be presented in Chapter 5, where we

reduce the dimension of a 4 × 4 matrix by extracting the left upper block matrix of size

2× 2.

For semi-soft pseudo-labeling, the set of pseudo-labels is given by

SPL = xn, ŷn,C
(Y)
n

N

n=1
. (3.14)

The empirical risk for semi-soft pseudo-labeling is

Rnew(ϕ) =
η

M

M

m=1

L f(x(labeled)
m ;ϕ),y(labeled)

m +
1

N

N

n=1

Ls(f(xn;ϕ),y(θ̂n))

=
η

M

M

m=1

L f(x(labeled)
m ;ϕ),y(labeled)

m

+
1

N

N

n=1

(f(xn;ϕ)− ŷn)
T C(Y)

n
−1
(f(xn;ϕ)− ŷn), (3.15)

with a tuning factor η, which needs to be chosen appropriately based on the entries of

C
(Y)
n

−1
. We see that we have two contributions namely, the loss due to the labeled

training data using a loss function L and the loss due to pseudo-labels using the modified

loss function Ls. For the latter, the statistical information of the Bayesian estimation stage

is utilized by a weighting matrix C
(Y)
n

−1
. The block diagram in Figure 3.4 illustrates

semi-soft pseudo labeling.

In the following, we motivate the definition of Ls in Equation (3.12) as a modified

16

unlabeled data
xn

N

n=1

DNN feature
extraction

features
yn

N

n=1 Bayesian
estimator

estimates θ̂n
N

n=1

labeled data
SL = x

(labeled)
m ,y

(labeled)
m

M

m=1

semi-soft pseudo-labeling

ŷn, C
(Y)
n

N

n=1

Figure 3.4.: Block diagram of the semi-supervised estimation-learning method using
feedback of hard point estimates ŷn and transformed posterior covariance

matrices C
(Y)
n .

loss function. We recognize that Ls has a similar structure as the squared Mahalanobis

distance, see [30,31], which for a realization x ∈ RL of a random vector with mean vector

µ and positive definite covariance matrix C is given by

d2M(x) = (x− µ)TC−1(x− µ). (3.16)

Next, we compare each component of Equation (3.12) and (3.16) and draw parallels. For

dM, we calculate the distance of a point x relative to the mean µ. In the modified loss Ls

we measure the distance relative to the pseudo-label ŷn. Choosing the MMSE estimator

for the parameter θn, we obtain the posterior mean. Since all estimates of the parameter

θn exist in Θ, we use the feedback function y(·) to transform the point estimate into

the feature space Y . We recognize that dM is centered around the mean µ, whereas Ls

is centered around a transformed posterior mean. Basically, every estimator could be

used for θn, but the analogy drawn here only holds for the MMSE estimate. Similar to the

transformation of the estimate θ̂n using the feedback function, also the posterior covariance

matrix Cn needs to be transformed, i.e., Y (Cn). We again see the similarity between the

Mahalanobis distance dM and the modified loss Ls, where the inverse of the covariance C

is used for calculating dM and the inverse of the transformed posterior covariance matrix

C
(Y)
n for the modified loss Ls.

17

1√
λ(1)

1√
λ(2)

x1

x2

v1

v2

µ

Figure 3.5.: Illustration of the ellipsoid corresponding to the Mahalanobis distance for
L = 2.

In the following, we give a graphical interpretation of the Mahalanonbis distance, [29,

Chapter 2]. Let λ(l) > 0 and ul ∈ RL denote the the l-th eigenvalue and eigenvector of

the matrix C, respectively. Inserting the eigenvalue decomposition for the inverse of the

covariance matrix C gives us

C−1 = UΛ−1UT , (3.17)

where U = [u1, . . . ,uL] and Λ = diag(λ(1), . . . , λ(L)) are the matrices consisting of all

eigenvectors and eigenvalues on the main diagonal, respectively. With the new coordinate

system v = [v(1), . . . , v(L)]T , given by

v = UT (x− µ), (3.18)

the squared Mahalanobis distance d2M(x) can be rewritten as

d2M(x) = vTΛ−1v =
L

l=1

(v(l))2

λ(l)
. (3.19)

For a fixed value d2 of the squared Mahalanobis distance, (i.e., d2 = d2M(x)), Equation

(3.19) defines an ellipsoid in the v coordinate system, with the length of the principal axes

given by

l(i) =
1√
λ(i)

. (3.20)

Figure 3.5 shows an example of such an ellipsoid for L = 2, displayed in the original (x)

coordinate system.

18

Gaussian case

For a Gaussian posterior p(θn|yn) and a linear feedback function y(·) the features will

also be Gaussian distributed according to

N (yn; ŷn,C
(Y)
n) =

1

(2π)
dim(Y)

2 det(C
(Y)
n)

1
2

exp −1

2
(yn − ŷn)

T C(Y)
n

−1
(yn − ŷn) , (3.21)

where ŷn is now the transformed MMSE estimate of θn. The Gaussian distribution (3.21)

can be rewritten by using Equation (3.19)

N (vn;0,Λn) =

dim(Y)

l=1

1

2πλ
(l)
n

1
2

exp −1

2

(v
(l)
n)2

λ
(l)
n

, (3.22)

with λ
(i)
n being the eigenvalues of C

(Y)
n . The vector vn is given by

vn = UT
n (yn − ŷn) (3.23)

with the eigenvalue decomposition of the transformed posterior covariance

C(Y)
n = UnΛnU

T
n . (3.24)

Note that λ
(i)
n represents the variance of the Gaussian distribution along the direction of

v
(i)
n . Because the λ

(i)
n ’s describe the variances along the new coordinate system, we can use

them in the loss function as weights. Intuitively speaking, a small variance means that

most parameters θn lie in a small interval which corresponds to a high precision of the

estimate. In the loss function, we want to emphasize these estimates, therefore we use the

reciprocal of the eigenvalue as a weighting factor. Conversely, a large variance means a low

precision of the estimate. Such estimates shall contribute only little to the loss which again

leads to the motivation of using the reciprocal of the eigenvalue as a weighting factor.

3.3.3. Soft Pseudo-Labels

Instead of using hard point estimates ŷn as ground truth, see Section 3.3.1 and 3.3.2,

soft pseudo-labeling follows a different approach. As for semi-soft pseudo-labeling, the

statistical information of the Bayesian estimator is incorporated into the training of the

DNN via a modified loss function. For soft pseudo-labeling Ls, is given as the posterior

19

unlabeled data
{xn}Nn=1

DNN feature
extraction

features
{yn}Nn=1 Bayesian

estimator
estimates θ̂n

N

n=1

labeled data
SL = x

(labeled)
m ,y

(labeled)
m

M

m=1

soft pseudo-labeling

Ep(θn|yn) C f(xn;ϕ),y(θn)
N

n=1

Figure 3.6.: Block diagram of the semi-supervised learning-estimation method using
feedback of the posterior distribution p(θn|yn).

expectation of some suitably chosen cost function [32], i.e.,

Ls(f(xn;ϕ),y(θn)) ≜ Ep(θn|yn) C f(xn;ϕ),y(θn) , (3.25)

with some non-negative cost function [22, Chapter 1]

C : M(X ,Y)× Y → R+
0 ,

where M(X ,Y) denotes the set of functions mapping X → Y . This is a reasonable loss

function because via the cost function C(·) we can measure the distance between the DNN

output yn = f(xn;ϕ) and the transformed estimate y(θn). In general, the cost function

should be chosen such that a large difference between f(xn;ϕ) and y(θn) will lead to large

value of C f(xn;ϕ),y(θn) . Via the expectation operator, we incorporate the posterior

distribution into the loss function. This means for highly probable values of θn we have a

larger contribution to Ls due to high values of p(θn|yn).

Calculating the expectation in Equation (3.25) can be challenging. First, we need the

posterior distribution, which can be obtained by Bayes’ rule. This involves solving, a

possibly high dimensional integral, to get the evidence p(yn). Furthermore, we need to

compute the posterior expectation of C f(xn;ϕ),y(θn) which may not be solvable in

closed form for certain choices of C(·) and feedback functions y(θn). If an analytical

20

solution for 3.25 cannot be obtained, we may use Monte Carlo methods [29, Chapter 11]

to approximate the integral, i.e.,

Ep(θn|yn) C f(xn;ϕ),y(θn) =
Θ

p(θn|yn)C f(xn;ϕ),y(θn) dθn

≈ 1

LMC

LMC

l=1

C f(xn;ϕ),y(θ
(l)
n) , (3.26)

where we draw LMC independent and identically (i.i.d.) distributed samples from the

posterior pdf, i.e., θ
(l)
n

i.i.d.∼ p(θn|yn). In Section 5.3.3 we will present an application where

we can find closed-form solutions of Equation (3.25).

For soft pseudo-labeling, the set of pseudo-labels is given as

SPL = xn,y(θn)
N

n=1
. (3.27)

The overall empirical risk is given as

Rnew(ϕ) =
µ

M

M

m=1

L f(x(labeled)
m ;ϕ),y(labeled)

m +
1

N

N

n=1

Ls(f(xn;ϕ),y(θn))

=
µ

M

M

m=1

L f(x(labeled)
m ;ϕ),y(labeled)

m +
1

N

N

n=1

Ep(θn|yn) C f(xn;ϕ),y(θn) .

with tuning factor µ, similar to 3.15, to balance the weight contribution between labeled

data and pseudo-labels. Figure 3.6 shows a block diagram for soft pseudo-labeling.

21

22

4. Deep Neural Network Aided

Sequential Bayesian Estimation

In this chapter, we want to extend the semi-supervised learning-estimation method to se-

quential Bayesian estimation. Rather than considering a set of observations {xn}, features
{yn} and parameter estimates {θ̂n} we consider sequences of observations, features, and

parameter estimates xk, yk, θ̂k, k = 1, . . . , where we have a time index k. We start by

presenting the general sequential Bayesian estimator and then specialize on the linear-

Gaussian case, namely the KF. References for this chapter are [2, 27,28].

4.1. State-Space Model

Let us consider a general state-space model [33] for a sequence of parameters θk consisting

of a state-transition model

θk = ak(θk−1,uk), k = 1, 2, . . . , (4.1)

and a measurement model

yk = hk(θk,wk), k = 1, 2, . . . , (4.2)

with generally time-dependent, nonlinear and known functions ak(· , ·) and hk(· , ·). In

Equation (4.1) we have white driving noise uk with known pdf p(uk), whereas in Equation

(4.2) we have white measurement noise wk again with known pdf p(wk). The state-

transition model is initialized with a realization of θ0 with known pdf p(θ0). Furthermore,

driving noise uk, measurement noise wk and initial parameter θ0 are independent.

Equation (4.1) and (4.2) describe a hidden Markov model (HMM) with unobserved

parameter θk, forming a Markov chain, and measurements yk. A Bayesian network of the

HMM is given in Figure 4.1.

23

θk−1 θk

yk−1 yk

Figure 4.1.: Bayesian network of the HMM [2, Chapter 1] for the state-transition model
(4.1) and measurement model (4.2).

Due to the HMM we have the following independence properties:

• For the state-transition pdf p(θk|θk−1) the following holds

p(θk|θk−1) = p(θk|θk−1,y1:k−1), (4.3)

with y1:k−1 = [yT
1 , . . . ,y

T
k−1]

T .

• For the likelihood function p(yk|θk) we have

p(yk|θk) = p(yk|θk,y1:k−1). (4.4)

4.2. Sequential Bayesian Estimation

Our goal is to derive an expression for the posterior pdf p(θk|y1:k), with y1:k ≜ [yT
1 , . . . ,y

T
k]

T ,

which can be used to calculate different Bayesian estimators, e.g. MMSE estimate

θ̂k|k =
Θ

θkp(θk|y1:k)dθk. (4.5)

The calculation of the posterior distribution p(θk|y1:k) is achieved in two steps, namely a

prediction step and an update step [2, 34]:

1. PREDICTION STEP: First, we calculate the predicted posterior p(θk|y1:k−1). Due

to Equation (4.3) we have the property

p(θk,θk−1|y1:k−1) = p(θk|θk−1,y1:k−1)p(θk−1|y1:k−1)

24

= p(θk|θk−1)p(θk−1|y1:k−1), (4.6)

where p(θk−1|y1:k−1) is the posterior pdf at time step k− 1. Marginalization of θk−1

gives the predicted posterior

p(θk|y1:k−1) =
Θ

p(θk|θk−1)p(θk−1|y1:k−1)dθk−1. (4.7)

2. UPDATE STEP: Next, the posterior pdf at time step k can be calculated by using

Bayes’ rule, i.e.,

p(θk|y1:k) = p(θk|yk,y1:k−1) =
p(yk|θk,y1:k−1)p(θk|y1:k−1)

p(yk|y1:k−1)
. (4.8)

Using Equation (4.4), the expression for the posterior in (4.8) simplifies to

p(θk|y1:k) =
p(yk|θk)p(θk|y1:k−1)

p(yk|y1:k−1)
. (4.9)

The denominator of Equation (4.9) can be expanded as

p(yk|y1:k−1) =
Θ

p(yk|θk,y1:k−1)p(θk|y1:k−1)dθk =
Θ

p(yk|θk)p(θk|y1:k−1)dθk,

(4.10)

where Equation (4.4) was used again.

4.3. Kalman Filter

The KF [27, Chapter 13] is a method for sequential MMSE estimation based on a linear-

Gaussian state-space model for the parameter vector at time k θk, involving measurements

(or in our case features) yk ∈ Rn. The state-transition model is

θk = Akθk−1 +Bkuk for k = 1, 2, 3, . . . , (4.11)

with the state-transition matrix Ak ∈ Rp×p, the driving noise vector uk ∈ Rr, and a matrix

Bk ∈ Rp×r. The measurement model is

yk = Hkθk +wk for k = 1, 2, 3, . . . , (4.12)

with a matrix Hk ∈ Rn×p and the measurement noise w ∈ Rn.

25

We make the following assumptions:

• The driving noise uk is a zero-mean and white random process, i.e.,

E{uk} = 0, cov{uk,uj} = E{(uk−E{uk})(uj−E{uj})T} = E{uku
T
j } = Cu,kδkj,

(4.13)

with δkj = 1 for k = j and δkj = 0 for k ̸= j.

• The measurement noise wk is a zero-mean and white generally non-stationary pro-

cess, i.e.,

E{wk} = 0, cov{wk,wj} = E{wkw
T
j } = Cw,kδkj. (4.14)

• The driving noise uk, the measurement noise wk and the initial parameter θ0 are

jointly Gaussian, with each of them distributed according to:

p(uk) = N (uk;0,Cu,k) (4.15)

p(wk) = N (wk;0,Cw,k) (4.16)

p(θ0) = N (θ0;µθ,Cθ) (4.17)

• The driving noise uk and the measurement noise wk are uncorrelated, i.e.,

cov{uk,wk} = E{wku
T
k } = 0 ∀k. (4.18)

• The initial state θ0 is uncorrelated withe the driving noise uk and the measurement

noise wk, i.e.,

cov{uk,θ0} = E{ukθ
T
0 } = 0 and cov{wk,θ0} = E{wkθ

T
0 } = 0. (4.19)

• For the initial parameter values θ0 we assume that the mean µθ and covariance

matrix Cθ are known.

For the linear-Gaussian state-transition (4.11) and measurement model (4.12) the integrals

of the prediction (4.7) and update step (4.10) can be solved in closed form. We have the

following result (derivation in Appendix A):

1. KF Prediction step:

a) Predicted posterior mean: θ̂k|k−1 = Akθ̂k−1|k−1

26

b) Predicted posterior covariance: Ck|k−1 = AkCk−1|k−1A
T
k +BkCu,kB

T
k

2. KF Update step:

a) Kalman gain matrix: Kk = Ck|k−1H
T
k (HkCk|k−1H

T
k +Cw,k)

−1

b) Posterior mean: θ̂k|k = θ̂k|k−1 +Kk(yk −Hkθ̂k|k−1)

c) Posterior covariance: Ck|k = (I−KkHk)Ck|k−1

The KF recursion given above, performed for time steps k = 1, 2, . . . , is initialized with

θ̂0|0 = µθ and C0|0 = Cθ. (4.20)

Since θ̂0|0 and C0|0 is assumed to be known, we can precalculate Ck|k−1, Ck|k and Kk

previous to observing features/measurements yk.

4.3.1. Error Covariance

In this section, we want to calculate the predicted error covariance matrix C
(e)
k|k−1 and

the posterior error covariance matrix C
(e)
k|k. As a first step, we introduce the posterior

estimation error as

ek|k = θk − θ̂k|k, (4.21)

which allows us to write the posterior covariance as

C
(e)
k|k = E ek|k − E{ek|k} ek|k − E{ek|k} T

. (4.22)

Because the MMSE estimator is unbiased, i.e., E ek|k = 0 we have the following identity

C
(e)
k|k = E{ek|keT

k|k} = E θk − θ̂k|k θk − θ̂k|k
T

= Ck|k. (4.23)

Similar to Equation (4.21) the predicted estimation error is given by

ek|k−1 = θk − θ̂k|k−1, (4.24)

with the predicted error covariance

C
(e)
k|k−1 = E ek|k−1 − E{ek|k−1} ek|k−1 − E{ek|k−1} T

. (4.25)

27

Due to the KF equations, the predicted posterior estimate is given by

θ̂k|k−1 = Akθ̂k−1|k−1. (4.26)

Since the MMSE commutes over affine transformation, as in (4.26), θ̂k|k−1 is also a MMSE

estimator. Following the same argument as for C
(e)
k|k, we get

C
(e)
k|k−1 = Ck|k−1. (4.27)

4.4. Feedback of Pseudo-Labels

The proposed structure for feeding back pseudo-labels, as introduced in Section 3.3, can

easily be extended to sequential Bayesian estimation, e.g., using the KF. Here, we want

to calculate estimates θ̂k|k for a sequence of parameters that satisfy the state-transition

model (4.1) based on a sequence of features/measurements that satisfy the measurement

model (4.2). In order to connect a general sequential Bayesian estimator and a DNN,

each feature vector yk is associated with an observation xk. This allows us to calculate

parameter estimates θ̂k|k from observations xk. In the following sections, we specialize

hard, semi-soft, and soft pseudo-labeling to the case of sequential Bayesian estimation.

4.4.1. Hard Pseudo-Labeling

Using the feedback function y(·) we can calculate the corrected feature vector at time k

based on k measurements in the following way

ŷk|k = y(θ̂k|k). (4.28)

For a sequence of length K, we can construct the data set consisting of hard pseudo-labels

as

SPL = (xk, ŷk|k)
K

k=1
. (4.29)

Similar to Equation (3.11) we can write the empirical risk as

Rnew(ϕ) =
λ

M

M

m=1

L f(x(labeled)
m ;ϕ),y(labeled)

m +
1

K

K

k=1

L f(xk;ϕ), ŷk|k) . (4.30)

28

4.4.2. Semi-Soft Pseudo Labeling

For semi-soft pseudo-labeling, we first transform the updated posterior covariance accord-

ing to

C
(Y)
k|k = Y (Ck|k). (4.31)

In analogy to Equation (3.12) the modified loss function is then

Ls f(xk;ϕ , ŷk|k) = (f(xk;ϕ)− ŷk|k)T C
(Y)
k|k

−1
(f(xk;ϕ)− ŷk|k). (4.32)

For the set of pseudo-labels SPL = xk, ŷk|k,C
(Y)
k|k

K

k=1
, we can rewrite the empirical risk

for the sequential case

Rnew(ϕ) =
η

M

M

m=1

L f(x(labeled)
m ;ϕ),y(labeled)

m

+
1

K

K

k=1

(f(xk;ϕ)− ŷk|k)T C
(Y)
k|k

−1
(f(xk;ϕ)− ŷk|k). (4.33)

4.4.3. Soft Pseudo-Labeling

For soft pseudo-labeling, the modified loss is based on the posterior density p(θk|y1:k). We

can write Ls as

Ls(f(xk;ϕ),y(θk)) ≜ Ep(θk|y1:k) C f(xk;ϕ),y(θk) . (4.34)

For the set of soft pseudo-labels SPL = xk,y(θk)
K

k=1
, the empirical risk is given by

Rnew(ϕ) =
µ

M

M

m=1

L f(x(labeled)
m ;ϕ),y(labeled)

m +
1

K

K

k=1

Ep(θk|y1:k) C f(xk;ϕ),y(θk) .

(4.35)

29

30

5. Application to Target Tracking

We now will apply the theory presented in Chapters 3 and 4 to target tracking. More

specifically, we consider the task of estimating over time the position and velocity of an

object (or target) moving in the two-dimensional real space R2 using DNN-aided sequen-

tial Bayesian estimation. At each time step k ∈ {1, . . . , K}, an image is captured and

processed by a DNN, yielding a feature in the form of a two-dimensional “predicted posi-

tion” vector yk. This task is also referred to as object localization. The predicted position

yk is then used as the measurement vector for a KF which tries to improve the position

prediction yk obtained by the DNN, besides estimating the two-dimensional velocity of

the object. This improvement is possible because the KF, in contrast to the DNN, ex-

ploits the state-transition model describing the change of position and velocity over time as

well as the measurement model describing the process of obtaining noisy position vectors.

Furthermore, we propose a method for generating pseudo-labels based on the improved

position estimates produced by the KF, as well as a method of retraining the DNN using

the pseudo-labels and the statistical information provided by the KF.

5.1. Motion and Observation Model

We consider an object moving across the two-dimensional real plane. This movement is

represented at each time step k by the state

θk = p
(1)
k , p

(2)
k , v

(1)
k , v

(2)
k

T

, (5.1)

where p
(1)
k and p

(1)
k denote the object’s position coordinates at time k and v

(1)
k and v

(2)
k

describe the velocities in the respective directions. In the simple case of a constant-velocity

movement along a straight line, the time evolution of the two-dimensional position vector

pk = p
(1)
k , p

(2)
k

T

is described as

pk = pk−1 +∆tvk−1, (5.2)

31

where ∆t is the time period between two successive time instances k − 1 and k and

vk−1 = v
(1)
k−1, v

(2)
k−1

T

is the two-dimensional velocity vector. We can extend this model

according to

pk = pk−1 +∆tvk−1 + up,k, (5.3)

where up,k = u
(1)
p,k, u

(2)
p,k

T

is a random perturbation affecting the position. In addition,

we introduce a random perturbation uv,k = u
(1)
v,k, u

(2)
v,k

T

of the velocity vector vk, thus

obtaining the final a linear state-evolution model

θk = Aθk−1 +Buk, (5.4)

with

A ≜

1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1

 , B ≜

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , uk =

u
(1)
p,k

u
(2)
p,k

u
(1)
v,k

u
(2)
v,k

 . (5.5)

This motion model is also referred to as nearly constant-velocity model [35], with the

vector uk being the driving noise. The driving noise uk follows a zero-mean Gaussian

distribution, i.e.,

p(uk) = N (uk;0,Cu), with Cu = diag σ(1)
u

2
, . . . , σ(4)

u
2
. (5.6)

A graphical visualization can be seen in Figure 5.1.

Our measurements are the feature vectors yk produced by the DNN. In the absence of

a more pertinent model of the yk, we model them as noisy versions of the position vector

pk = p
(1)
k , p

(2)
k

T

, i.e.,

yk = pk +wk, (5.7)

with measurement noise vector wk = [w
(1)
k , w

(2)
k]T . This can be rewritten in term of the

state vector θk in (5.1) as

yk = Hθk +wk, (5.8)

with

H ≜ 1 0 0 0

0 1 0 0
. (5.9)

We see that the measurement vector yk is a linear function of the state θk. Like the driving

32

pk−1
pk

vk−1

v
(1)
k−1

v
(2)
k−1

vk

v
(1)
k

v
(2)
k

Figure 5.1.: Visualzation of the nearly constant velocity model, describing the movement
of a point target along a trajectory in R2.

noise uk, also the measurement noise wk follows a Gaussian distribution

p(wk) = N (wk;0,Cw,k), with Cw,k = diag σ
(1)
w,k

2
, σ

(2)
w,k

2
. (5.10)

5.2. Deep Neural Network for Position Prediction

To complete the position prediction task, we use a modified architecture of a previously

proposed DNN, see [11]. We use a simplified version of configuration B given in [11] in

order to achieve faster training times without sacrificing too much in prediction accuracy.

A graphical visualization of this DNN is given in Figure 5.2 where the input is an image

containing a blue circular target. The DNN predicts the coordinates of the center of this

circular target, i.e., pk = p
(1)
k , p

(2)
k

T

. The network consists of a convolutional block

of ten weight layers and a fully connected block of two layers. The convolutional block

has five sub-blocks, where each sub-block consists of two convolutional layers with the

number of filters in each sub-block specified in Figure 5.2 followed by a max pooling layer.

After the convolutional block, we have a flattening operation followed by another fully

connected layer at the output to give the two-dimensional position prediction. We set the

dropout parameter to 0.5 for regularization. The nonlinear activation function for both the

convolutional block as well as the fully connected block is the rectified linear unit (ReLU)

function, that is ρ(x) = max(0, x). In summary, we have a DNN with 12 weight layers,

specified through training. The total number of weights is 8.7 × 106. The modifications

to configuration B given in [11] are as follows. First, we decreased the number of filters

with each convolutional sub-block. That is we start with eight filters in the first two

33

Figure 5.2.: DNN architecture used for position prediction. We see the first part
consisting of five convolutional sub-blocks conv1 up to conv5, indicated by
the yellow cuboids. The number of filters is specified beneath. After each
convolutional sub-block, we can see the max pooling layer, indicated by the
red cuboid. The fully connected block is given by the two purple layers fc1

and fc2. A modification of the LATEX code provided in [3] is used.

convolutional layers, where in [11] the initial amount is 64. Second, we reduce the number

of fully connected layers by one. Furthermore, because configuration B was used for a

classification task we omit the soft-max layer at the end.

5.3. Feedback of Position Estimates

In this section, we specialize hard, semi-soft, and soft pseudo-labeling to the application of

target tracking. In view of our measurement model (5.8), yk = Hθk +wk, we here define

the feedback function y(·), (see Equation (3.8)), as

y(θk) = Hθk =
p
(1)
k

p
(2)
k

. (5.11)

We can use the KF to sequentially calculate the MMSE estimate of the state θk, i.e.,

θ̂k|k = p̂
(1)
k|k, p̂

(2)
k|k, v̂

(1)
k|k, v̂

(2)
k|k

T

(5.12)

34

and calculate corrected features

ŷk|k = Hθ̂k|k. (5.13)

5.3.1. Hard Pseudo-Labels

Let us consider the first option of feeding back corrected feature vectors, namely hard

pseudo-labeling, as introduced in Section 4.4.1. The hard pseudo-label is given in Equation

(5.12). The statistical information provided by the KF, i.e., the posterior distribution as

expressed by N (θk; θ̂k|k,Ck|k) is not used. Choosing the squared Euclidean norm for the

loss function L leads to

L f(xk;ϕ), ŷk|k = ∥ŷk|k − f(xk;ϕ)∥2

=
p̂
(1)
k|k − f (1)(xk;ϕ)

p̂
(2)
k|k − f (2)(xk;ϕ)

2

= p̂
(1)
k|k − f (1)(xk;ϕ)

2
+ p̂

(2)
k|k − f (2)(xk;ϕ)

2
, (5.14)

where f (1)(xk;ϕ) and f (2)(xk;ϕ) denote the DNN prediction’s first and second component

respectively.

5.3.2. Semi-Soft Pseudo-Labels

For semi-soft pseudo-labeling as introduced in Section 4.4.2, we use the point estimates

ŷk|k and the inverse of a transformed posterior covariance matrix as a weighting matrix

in the modified loss Ls, see Equation (4.32). The matrix C
(Y)
k|k involved in Ls is obtained

from the posterior covariance matrix Ck|k by

C
(Y)
k|k = Y (Ck|k) = HCk|kHT (5.15)

which results in extracting the upper left matrix of size 2× 2. The modified loss function

is then

Ls f(xk;ϕ), ŷk|k = f(xk;ϕ)− ŷk|k
T

C
(Y)
k|k

−1
f(xk;ϕ)− ŷk|k

= f (1)(xk;ϕ)− p̂
(1)
k|k, f

(2)(xk;ϕ)− p̂
(2)
k|k

T
HCk|kHT −1 f (1)(xk;ϕ)− p̂

(1)
k|k

f (2)(xk;ϕ)− p̂
(2)
k|k

.

(5.16)

35

5.3.3. Soft Pseudo-Labels

For soft pseudo-labeling, as introduced in Section 4.4.3, we choose the squared Euclidean

norm as the cost function C(·) in Equation (4.34). Thus, we have to calculate the expected

cost of

∥y(θk)− f(xk;ϕ)∥2 = (p
(1)
k − f (1)(xk;ϕ))

2 + (p
(2)
k − f (2)(xk;ϕ))

2, (5.17)

over the posterior distribution p(θk|y1:k). This results in the loss function

Ls f(xk;ϕ),y(θk) = Ep(θk|y1:k) ∥y(θk)− f(xk;ϕ))∥2 . (5.18)

We obtain

Ls f(xk;ϕ),y(θk) = Ep(θk|y1:k) θ
(1)
k − f (1)(xk;ϕ)

2
+ θ

(2)
k − f (2)(xk;ϕ)

2

=
Θ

θ
(1)
k − f (1)(xk;ϕ)

2
p(θk|y1:k)dθk +

Θ

θ
(2)
k − f (2)(xk;ϕ)

2
p(θk|y1:k)dθk

=
Θ

θ
(1)
k

2
p(θk|y1:k)dθk − 2f (1)(xk;ϕ)

Θ

θ
(1)
k p(θk|y1:k)dθk

+ f (1)(xk;ϕ)
2

Θ

p(θk|y1:k)dθk + θ
(2)
k

2
p(θk|y1:k)dθk

− 2f (2)(xk;ϕ)
Θ

θ
(2)
k p(θk|y1:k)dθk + f (2)(xk;ϕ)

2

Θ

p(θk|y1:k)dθk

=
Θ

θ
(1)
k

2
p(θk|y1:k)dθk − 2f (1)(xk;ϕ)θ̂

(1)
k|k + f (1)(xk;ϕ)

2

+
Θ

θ
(2)
k

2
p(θk|y1:k)dθk − 2f (2)(xk;ϕ)θ̂

(2)
k|k + f (2)(xk;ϕ)

2
,

(5.19)

with

θ̂
(1)
k|k =

Θ

θ
(1)
k p(θk|y1:k)dθk and θ̂

(2)
k|k =

Θ

θ
(2)
k p(θk|y1:k)dθk. (5.20)

The loss function Ls f(xk;ϕ),y(θk) forms part of the empirical risk Rnew(ϕ), according

to (4.35). During retraining of the DNN, we minimize Rnew(ϕ), which involves calculating

the gradient with respect to the parameter vector ϕ. Therefore, in Equation (5.19), we

can omit terms that do not depend on ϕ, yielding the following contribution to the overall

36

loss

Ls f(xk;ϕ),y(θk) = f (1)(xk;ϕ)(f
(1)(xk;ϕ)−2θ̂

(1)
k|k)+f (2)(xk;ϕ)(f

(2)(xk;ϕ)−2θ̂
(2)
k|k)+c,

(5.21)

where c is a constant (not depending on ϕ). We note that θ̂
(1)
k|k and θ̂

(2)
k|k are provided by

the KF. Using (5.21) the gradient of Ls f(xk;ϕ),y(θk) with respect to ϕ is obtained as

∇ϕLs f(xk;ϕ),y(θk) = ∇ϕ f (1)(xk;ϕ)(f
(1)(xk;ϕ)−2θ̂

(1)
k|k) +∇ϕ f (2)(xk;ϕ)(f

(2)(xk;ϕ)−2θ̂
(2)
k|k) .

(5.22)

Thus, calculating∇ϕLs f(xk;ϕ),y(θk) reduces to calculating∇ϕf
(1)(xk;ϕ) and∇ϕf

(2)(xk;ϕ).

5.4. Kalman Filter for Position and Velocity Estimation

In this section, we present two heuristics for a modified KF. These modifications allow us

to partly compensate the simplified measurement model given by Equation (5.8), estimate

the unknown matrix Cw,k, and detect outliers among the sequence of position predictions

obtained by the DNN. We use the state-transition model as given by Equation (5.4). The

driving noise covariance matrix Cu is assumed to be known whereas the measurement

covariance matrix Cw,k is unknown.

Mean and Covariance Estimation

We recall the measurement noise in (5.10) was assumed to be a zero mean Gaussian

distribution. If the DNN introduces a systematic offset, this assumption is not satisfied

anymore. Therefore we have to estimate the average deviation of the DNN prediction yk

compared to the true position pk. For a sequence of images xk and DNN outputs yk for

k = 1, . . . , K with known parameter values θk we can solve Equation (5.8) for wk

wk = yk −Hθk, (5.23)

and calculate the mean as

µ̂w =
1

K

K

k=1

wk. (5.24)

The sample covariance matrix can be calculated as

Ĉw =
1

K

K

k=1

(wk − µ̂w)(wk − µ̂w)
T . (5.25)

37

For sequences, with unknown state vectors θk we can use µ̂w to create corrected measure-

ments

yk,corr = f(xk;ϕ)− µ̂w = yk − µ̂w. (5.26)

Outlier Detection

We can use the predicted posterior mean θ̂k|k−1 to evaluate the accuracy of the DNN

output yk. This can be achieved by computing the predicted error

êk|k−1 = yk,corr −Hθ̂k|k−1 , (5.27)

where | · | is applied component-wise and therefore yielding

êk|k−1 =
ê
(1)
k|k−1

ê
(2)
k|k−1

=
y
(1)
k,corr − p̂

(1)
k|k−1

y
(2)
k,corr − p̂

(2)
k|k−1

. (5.28)

If the predicted error component ê
(i)
k|k−1 exceeds a certain threshold this means, that with

a high probability, the DNN output yk,corr has low accuracy corresponding to a large noise

variance along that component. Therefore we introduce a function, that allows to adjust

the measurement noise variances over time, i.e.,

σ
(i)
w,k new

=

C, ê
(i)
k|k−1 ≥ σthreshold

σ
(i)
w,k, else.

(5.29)

The time dependent estimate of the measurement covariance matrix Ĉw,k is given by

Ĉw,k ≜
σ
(1)
w,k

2

new
0

0 σ
(2)
w,k

2

new

. (5.30)

38

The modified KF equations are given by:

1. KF Prediction step:

a) Predicted posterior mean: θ̂k|k−1 = Aθ̂k−1|k−1

b) Predicted posterior covariance: Ck|k−1 = ACk−1|k−1A
T +BCuB

T

2. KF Update step:

a) Kalman gain matrix: Kk = Ck|k−1H
T (HCk|k−1H

T + Ĉw,k)
−1

b) Posterior mean: θ̂k|k = θ̂k|k−1 +Kk(yk,corr −Hθ̂k|k−1)

c) Posterior covariance: Ck|k = (I−KkH)Ck|k−1

39

40

6. Simulations

In this chapter, we evaluate the performance of DNN aided-sequential Bayesian estimation

for a single target tracking scenario including a comparison between hard, semi-soft, and

soft pseudo-labeling. The target or object of interest is a circle moving across an image.

Such image data is the input to a DNN, which performs the feature extraction task in

our case object localization, where the DNN output is a position prediction of the circle’s

center. We compare the performance between five different training setups. First, we have

a DNN and a KF (see Figure 3.1). Here the DNN is trained using only labeled training

data. Second, a DNN where pseudo-labels are directly created by the DNN. Additionally,

we have a DNN and a KF where the DNN is trained using the pseudo-labeling schemes

shown in Figures 3.3, 3.4, and 3.6. In Section 6.1, we show that incorporating statistical

information into the training process can lead to DNNs with improved performance. In

Section 6.2, we present some tracking results over time using different driving noise values.

In Section 6.3, we address the question of tracking robustness, i.e., a comparison between

DNN and KF position estimates under different image variations.

6.1. DNN Localization Performance Evaluation

In this section, we evaluate the accuracy of the DNN by calculating the average component

error

e
(i)
DNN =

1

L

L

l=1

f (i)(xl;ϕ)− p
(i)
l , i ∈ {1, 2}, (6.1)

and the average Euclidean distance

eeuc =
1

L

L

l=1

f (1)(xl;ϕ)− p
(1)
l

2
+ f (2)(xl;ϕ)− p

(2)
l

2
, (6.2)

between the center of the object and the prediction of the DNN for a sample size of L. In

Equation (6.1) and (6.2) p
(i)
l denotes the circle’s center position in the i-th component of

the l-th sample and xl being the l-th image. The input image is of size 128× 128 pixels.

41

1st comp.

2nd comp.

p
(1)
l

p
(2)
l

Figure 6.1.: Synthetic sample image. The object of interest is the blue circle with

coordinates of the center being pl = p
(1)
l , p

(2)
l

T

.

The background image without the target was taken from [36]. An example image that is

used at the input of the DNN is shown in Figure 6.1.

For the minimization of the empirical risk R(ϕ), we use a modification of SGD [37].

According to [38], smaller batch sizes lead to better generalizing DNNs. Testing different

values shows that a batch size of eight leads to a good DNN performance for our target

tracking scenario. The number of epochs is 20. Each DNN is retrained three times and the

DNN with the best-performing weights is used for the comparison. The DNN architecture

used in this chapter is described in Section 5.2.

Evaluation Procedure

As a baseline for comparison with our novel pseudo-labeling techniques, we consider a

conventional pseudo-labeling approach where pseudo-labels are created directly by using

the output of the DNN. For this setup, we will use the name DNN labeling, which is

depicted in Figure 6.2.

To evaluate the effect of the different pseudo-labeling schemes shown in Figure 3.3, 3.4,

3.6, and 6.2 on the performance of the DNN-based position predictor we use the following

procedure.

42

unlabeled data
{xk}Kk=1

DNN feature
extraction

features
{yk}Kk=1

labeled data
SL = x

(labeled)
m ,y

(labeled)
m

M

m=1

Figure 6.2.: Block diagram of DNN labeling.

1. We train the DNN-based feature extractor using labeled training data. For our

simulations, we use a labeled training data set SL consisting of M = 1000 images.

In the labeled training data, the object is uniformly distributed over the image.

2. We create an unlabeled training sequence according to the state-transition model

given in Equation (5.4) with driving noise σ
(i)
u

2
= 10−4. This sequence consists of

K = 2000 images and is used to create the set of pseudo-labels SPL.

3. We create pseudo-labels according to Figure 3.3, 3.4, 3.6, and 6.2. We note that the

DNN position predictions are mean corrected as introduced in Section 5.4.

4. We retrain the DNN using labeled training data from step 1 and pseudo-labels from

step 3.

5. We evaluate the performance of the five different DNNs: (1) trained with only labeled

data, (2) trained with pseudo-labels obtained from the DNN, (3) trained with hard

pseudo-labels, (4) trained with semi-soft pseudo-labels, and (5) trained with soft

pseudo-labels. This evaluation is performed using L = 10000 images as test data,

where the object is uniformly distributed over the image. We calculate the average

component error e
(i)
DNN and the average Euclidean distance eeuc between the center of

the target and the output of the DNN, see Equation (6.1) and (6.2).

43

reduced
training

DNN
labeling

hard
pseudo-
labeling

semi-soft
pseudo-
labeling

soft
pseudo-
labeling

e
(1)
DNN 2.47 2.39 2.48 1.53 1.56

e
(2)
DNN 2.83 2.15 1.62 1.57 1.96

eeuc 4.32 3.35 3.19 2.34 2.84

Table 6.1.: Table comparing the error of the same DNN architecture, but using different
training data. The test sample size is L = 10000.

Performance comparison

In Table 6.1 the average component error e
(i)
DNN and the average Euclidean distance eeuc

are shown for all five possibilities of training the DNN described in this text. The column

with the name “reduced training” corresponds to training the DNN with only labeled

data and no pseudo-labels. For the average error in the 1st component e
(1)
DNN, we see that

retraining with pseudo-labels created by the DNN increases the prediction accuracy of

the first component. We also observe that hard pseudo-labeling does not lead to better

prediction performance but incorporating the statistical information gives higher accuracy,

as semi-soft and soft pseudo-labeling performs best. For the average error in the 2nd

component e
(2)
DNN, retraining the DNN with hard pseudo-labels leads to higher prediction

accuracy compared to the DNN trained with reduced training and pseudo-labels created

by the DNN. Again, as for e
(1)
DNN, incorporating statistical information into the training

results in reducing the average component error, but we see that hard pseudo-labeling has

a lower average component error than soft pseudo-labeling. When the average Euclidean

distance is compared, we see that semi-soft pseudo-labeling gives the best result, followed

by soft and hard pseudo-labeling. Moreover, hard pseudo-labeling performs better than

DNN labeling and reduced training. In summary, we see that higher prediction accuracy

is achieved by feature correction performed by a sequential Bayesian estimator and that

incorporating statistical information in the training gives an additional performance gain.

In Figure 6.3 and 6.4, error histograms evaluated for 10000 images of test data are given.

For Figure 6.3, we do not use a Bayesian estimator for feature correction, i.e., we have

the DNN with reduced training and DNN labeling. In Figure 6.4, we see the histograms

for hard, semi-soft, and soft pseudo-labeling. When we compare Figures 6.3a and 6.3c, we

recognize that retraining with DNN labels gives us higher frequency in low error events.

44

(a) 1st component error histogram (reduced
training)

(b) 2nd component error histogram (reduced
training)

(c) 1st component error histogram (DNN
labeling)

(d) 2nd component error histogram (DNN
labeling)

Figure 6.3.: Error histograms for DNN with reduced training (upper row) and using
DNN labels (lower row)

However, the tails behave similarly. When comparing Figures 6.3b and 6.3d, we observe

that Figure 6.3d has a shorter tail than the histogram given in Figure 6.3b, meaning fewer

occurrences of high error events but also fewer occurrences of low error events.

Next, we compare the histograms of the DNN outputs for hard, semi-soft, and soft

pseudo-labeling. Starting with the 1st component average error, Figure 6.3a, 6.4c and

6.4e, we see that for soft pseudo-labeling we have the most occurrences of close-to-zero

error events, whereas semi-soft pseudo-labeling gives the shortest tail. For the error along

the 2nd component, Figure 6.4b, 6.4d and 6.4f, the amount of low-error events is similar

for all three cases but we see that semi-soft pseudo labeling gives the strongest decay in

regard to higher-error events.

45

(a) 1st component error histogram (hard
pseudo-labeling)

(b) 2nd component error histogram (hard
pseudo-labeling)

(c) 1st component error histogram (semi-soft
pseudo labeling)

(d) 2nd component error histogram (semi-soft
pseudo labeling)

(e) 1st component error histogram (soft
pseudo-labeling)

(f) 2nd component error histogram (soft
pseudo-labeling)

Figure 6.4.: Error histograms for DNN with hard pseudo-labeling (upper row), semi-soft
pseudo-labeling (middle row) and soft pseudo-labeling (lower row)

46

(a) estimation of 1st position component (b) estimation of 2nd position component

(c) estimation of 1st velocity component (d) estimation of 2nd velocity component

Figure 6.5.: Tracking a sequence of 200 images using the DNN with reduced training. For
the driving noise variances we use small values:

σ
(i)
u

2
= 10−4, i ∈ {1, . . . , 4}. For the position components, we compare the

DNN outputs, KF estimates, and the true position. For the velocity we only
consider the true values and the KF estimates.

6.2. Tracking Performance

In this section, we present and discuss simulation results for a single target scenario. The

target maneuvers according to a modified variant of the state-transition model given in

Equation (5.4). Whenever the object reaches the image edge, a new random direction

will be assigned. We will consider different values for the driving noise covariance matrix

entries σ
(i)
u

2
and compare position predictions from the DNN, position estimates from

the KF, and the true position of the object in the test data. The DNN position predictions

are mean corrected according to Section 5.4. Furthermore, we discuss velocity estimation

of the KF compared to the true velocity. In order to see the feature correction of the KF,

we will first track sequences of images using the DNN with reduced training. To check if

47

(a) estimation of 1st position component (b) estimation of 2nd position component

(c) estimation of 1st velocity component (d) estimation of 2nd velocity component

Figure 6.6.: Tracking a sequence of 200 images using the DNN with reduced training. For

the driving noise variances we use large values: σ
(1,2)
u

2
= 10 and

σ
(3,4)
u

2
= 0.1.

the KF can improve the DNN position prediction for retrained DNNs, we also consider

sequences where the DNN trained with soft pseudo-labels is used.

In Figure 6.5, we see position and velocity estimates over time for a sequence of K = 200

images. Here, we use the DNN with reduced training. The variance of the driving noise for

each component is σ
(i)
u

2
= 10−4. For the majority of time steps, we see a good consensus

among the true position, the corrected DNN predictions, and KF estimates. However,

the DNN accuracy is lower when the object moves towards the boundaries of the image.

For the velocity curves, we only compare the KF estimates and the true velocity, since

the DNN architecture described in Section 5.2 is only able to provide position predictions.

We see an almost piecewise constant function since the driving noise value is low. Positive

velocities correspond to moving in the positive direction of the respective coordinate, while

a negative velocity means moving in the opposite direction of that coordinate.

48

(a) estimation of 1st position component (b) estimation of 2nd position component

(c) estimation of 1st velocity component (d) estimation of 2nd velocity component

Figure 6.7.: Tracking a sequence of 200 images using the DNN trained with soft
pseudo-labels. For the driving noise variances we choose small values:

σ
(i)
u

2
= 10−4, i ∈ {1, . . . , 4}.

The posterior covariance of the KF Ck|k needs to be reinitialized, when the object hits

the boundary, otherwise the KF would not be able to accurately estimate the position and

velocity. Whenever the velocity vector is changed, we see a transient behavior of the KF

estimates in the velocity components and a sharp bend in the position components.

In Figure 6.6, we again consider a sequence of 200 images created according to the

modified state-transition model in Equation (5.4). As before, we use the DNN with reduced

training. However, this time we choose higher values for the driving noise, specifically

σ
(1,2)
u

2
= 10 and σ

(3,4)
u

2
= 0.1. The motivation for using different values between

position and velocity components of the driving noise comes from the direction changes

when the object hits the image boundary. For even higher driving noise values we were

not able to control the object’s trajectory such that it stays within the image boundaries.

49

(a) estimation of 1st position component (b) estimation of 2nd position component

(c) estimation of 1st velocity component (d) estimation of 2nd velocity component

Figure 6.8.: Tracking a sequence of 200 images using a DNN trained with soft
pseudo-labels. For the driving noise variances we choose large values:

σ
(1,2)
u

2
= 10 and σ

(3,4)
u

2
= 0.1.

Due to the high variance in the position predictions, a very clear trajectory as given in

Figure 6.5 is not visible anymore. For the velocity predictions, we also see that the true

velocity is not piecewise constant anymore and that the error of the KF is higher compared

to Figure 6.5.

Figure 6.7 shows tracking results using a DNN that was trained using soft pseudo-

labeling. The driving noise variance is σ
(i)
u

2
= 10−4. We see a strong consensus among

the true position, the corrected DNN predictions, and KF estimates. Also, the KF velocity

estimates show high accuracy after the transients. Finally, Figure 6.8 provides the position

and velocity comparison for a DNN trained with soft pseudo-labeling with driving noise

values chosen as σ
(1,2)
u

2
= 10 and σ

(3,4)
u

2
= 0.1.

50

reduced
training/

small σ
(i)
u

reduced
training/

large σ
(i)
u

soft pseudo-
labeling/

small σ
(i)
u

soft pseudo-
labeling/

large σ
(i)
u

e
(1)
DNN,corr/e

(1)
KF 2.22/2.14 2.28/2.43 1.40/1.77 1.45/1.53

e
(2)
DNN,corr/e

(2)
KF 2.28/2.14 2.23/2.29 1.29/1.41 1.45/1.55

Table 6.2.: Table comparing the DNN and KF error for sequences of 200 images.

For the sequences depicted in Figures 6.5, 6.6, 6.7, and 6.8 we calculate the average

component error between the corrected DNN output and the true position, i.e.,

e
(i)
DNN,corr =

1

K

K

k=1

y
(i)
k,corr − p

(i)
k , i ∈ {1, 2}, (6.3)

where y
(i)
k,corr is the i-th component of the corrected feature vector according to Equation

5.26. Additionally, we calculate the average component error between the KF position

estimate and the true position

e
(i)
KF =

1

K

K

k=1

θ̂
(i)
k|k − p

(i)
k , i ∈ {1, 2}, (6.4)

with the posterior mean θ̂k|k which can be obtained by the KF update step 2b) of the

modified KF, see Section 5.4. The error results are depicted in Table 6.2. We see that for

the DNN with reduced training and low values of the driving noise variance σ
(i)
u

2
= 10−4,

the KF is able to correct the DNN position predictions, as e
(i)
KF is smaller than e

(i)
DNN,corr.

However, for the DNN with reduced training and high values of σ
(i)
u

2
the KF feature

correction fails. Regardless of the driving noise values σ
(i)
u

2
, for the DNN using soft

pseudo-labeling, the KF is not able to provide more accurate position estimates θ̂
(1,2)
k|k than

the corrected DNN predictions y
(1,2)
k,corr.

6.3. Robustness Analysis

A further question we would like to address is if the KF can introduce robustness to the

object localization. In particular, we will consider three aspects. First, changing the shape

of the object in a way such that it was not present during training. Second, varying the

51

Figure 6.9.: Two sample images containing ellipses with different sizes and orientations.

image noise variance. Finally, we will test the outlier detection introduced in Section 5.4

6.3.1. Driving Noise and Object Shape Variation

In this section, we will study the effects on tracking accuracy by changing the driving

noise matrix and varying the object shape over time. For this, we calculate the sum of

the average DNN component errors e
(i)
DNN,corr and average KF component errors e

(i)
KF for a

sequence of 10000 images. Again, we use the motion model provided in Equation (5.4).

In Figure 6.10a, we show the effect of changing the position components of the driving

noise on the tracking performance. In order to only study the influence of the position noise,

the velocity components of the driving noise are set to a small value of σ
(3,4)
u

2
= 10−4.

The object shape for this figure is the same as given in the training process. First of

all, we see that the DNN with the reduced amount of training data, i.e., solid red curve,

gives the lowest accuracy. The feature correction by the KF gives better tracking results,

which is represented by the dashed red line lying below the solid red one. Retraining the

DNN using pseudo-labels and statistical information gives a large performance gain. For

DNNs trained with hard, semi-soft, and soft pseudo-labels the DNN error is much smaller

compared to the model with reduced training. However, the KF in this case is not able to

improve the performance further by doing feature correction, as the dashed lines lie above

the solid ones. Moreover, for tracking objects according to the motion model in Equation

(5.4), we note that the mean correction, as given in Equation (5.26), seems to work best

for hard pseudo-labeling as it gives the best overall performance.

Figure 6.10b shows tracking results for again varying the position components of the

driving noise, but additionally, the shape of the object varies over time. In the labeled

training data, the object shape is a blue circle with a fixed radius. Now, we track a

52

(a) Varying position components of driving
noise without object shape changes

(b) Varying position components of driving
noise with object shape changes

(c) Varying velocity components of driving
noise without object shape changes

(d) Varying velocity components of driving
noise with object shape changes

Figure 6.10.: Sum of average position errors for DNN and KF, while varying driving noise
components of position and velocity. In Subfigures 6.10b and 6.10d the

object shape varies over time.

sequence of a rotating ellipse with changing lengths of the principal axes over time as well.

Two example images are depicted in Figure 6.9. First of all, we note that the overall

error gets higher as for all curves we have larger error values. For the DNN with reduced

training, the gap between the KF and the DNN gets wider, meaning the KF can give a

larger improvement. In the previously described case (see Figure 6.10a) the KF could not

improve the tracking performance of the retrained models. This time we see that for hard,

semi-soft, and soft pseudo-labeling, the dashed lines lie below the solid lines, meaning KF

feature correction gives additional performance gain. We note that for tracking objects

with shapes different from those presented to the DNN during training, the KF can improve

tracking performance and therefore makes the tracking system more robust.

When changing the velocity components of the driving noise, while position components

53

(a) Example image with noise variance value
of 20.

(b) Error plot for varying image noise
variance.

Figure 6.11.: Varying image noise variance for hard, semi-soft, and soft-pseudo labeling.
We compare corrected DNN position predictions and KF position estimates.

remain at σ
(i)
u

2
= 10−4, we can make similar observations. In Figure 6.10c, we see

again that retraining the DNN gives a large increase in performance. But still, hard

pseudo-labeling seems to perform best for tracking. Figure 6.10d confirms that for tracking

sequences with object shape variations over time, which are not present in the training

data, the KF feature correction gives better results than corrected DNN-based position

prediction on its own.

6.3.2. Image Noise

In the next step of doing a robustness analysis of DNN-aided sequential Bayesian estimation

for the single target tracking problem, we will add Gaussian noise to each test image and

track again a sequence of 10000 images. As before, the motion model in Equation (5.4),

modified so that the target does not leave the boundaries of the image, is used. The sum

of the average DNN component errors e
(i)
DNN,corr and the sum of the average KF component

errors e
(i)
KF for different image noise variances is depicted in Figure 6.11b. We see that

the DNN trained with hard pseudo-labels gives the most robust results. For soft pseudo-

labeling, the DNN does not give reliable position predictions for image noise variances

exceeding values of 60. Semi-soft pseudo-labeling gives the least accurate predictions. For

hard and soft pseudo-labeling the KF gives a very small increase in accuracy compared to

the corrected DNN predictions. However, this improvement is negligible.

54

(a) 25th image with red circle as the target. (b) Error plot over time.

Figure 6.12.: Solid red curves are the DNN prediction with an outlier at time step 25.
The blue dashed line depicts the KF error without the outlier detection,

which shows a strong transient behavior. The yellow dashed line is the KF
error with outlier detection. The transient behavior is strongly suppressed.

6.3.3. Outlier Detection

In order to test the outlier detection proposed in Section 5.4, the color of the object is

changed to a color that was not present in the training data. This is done so at the 25th

image in the sequence, see Figure 6.12a. The error plot is given in Figure 6.12b. At time

step 25, we have an error value of 50.2. Until this time step, the curves of the KF with and

without the outlier detection overlap perfectly. The KF without outlier detection treats

every DNN prediction in the same way, which leads to the transient behavior seen by the

blue line in Figure 6.12b. We see that for a time interval of over 10 time steps, the KF

error for the KF without outlier detection is higher than the DNN error. The KF with

outlier detection changes the value of the measurement covariance matrix Ĉw,k according

to Equation (5.29). For the KF with outlier detection, we only have slightly larger errors

than the DNN directly after the outlier and we do not observe the transient behavior.

Thus, the KF with outlier detection improves the robustness of the tracking system.

55

56

7. Conclusion

Summary of Main Results

In this work, we developed an estimation framework that combines DNN feature extraction

with Bayesian estimation. Our basic approach is to consider the output of the DNN as

measurements for a non-sequential or sequential Bayesian estimator. We proposed three

different methods for retraining the DNN using pseudo-labels generated by the Bayesian

estimator. In the hard pseudo-labeling method, the Bayesian estimator calculates corrected

features. In the semi-soft pseudo-labeling method, statistical information provided by the

Bayesian estimator is incorporated into DNN training via the posterior covariance matrix.

In the soft pseudo-labeling method, DNN training involves a posterior expectation.

As an application, we considered a simplified target tracking scenario where the task

was to estimate the position and velocity of a circle moving across an image. In our

simulations, the DNN was a simplified version of an architecture proposed in [11], and the

sequential Bayesian estimator was a KF. We found that the KF can improve the DNN

position predictions. Therefore, the KF produces more accurate pseudo-labels than the

DNN, resulting in an improved feature extraction performance of the DNN when retrained

using the pseudo-labels.

Next, by considering a more challenging tracking scenario we demonstrated that the

proposed DNN-KF combination increases the robustness of the target tracking relative to

DNN position predictions. This was shown by tracking sequences where the shape of the

object varies over time in a way that is not represented in the training data. Finally, we

showed that the use of the KF allows the detection of outliers.

Future Work

The work presented in this thesis can be continued and extended in several directions,

including the following:

• The linear measurement model used in this work may be too simplistic for more

realistic tracking scenarios or different DNN architectures. Therefore, more advanced

57

estimators that are not limited to linear-Gaussian models, such as the particle filter,

are of interest.

• In the current form, the DNN is retrained using labeled data and pseudo-labels. For

more sophisticated DNN architectures, which usually require much more training

data than the architectures considered in this work, it would be desirable to retrain

the DNN using only pseudo-labels and initialize the weights of the DNN with those

obtained from the initial training process using labeled data. However, retraining

the DNN by using only pseudo-labels that are created from sequences where the

object shape differs from that in the labeled training will lead to the problem of

catastrophic forgetting, i.e., the DNN will perform poorly on test data that is similar

to the labeled data. One method to tackle this problem is presented in [39], where a

regularizing term is added to the loss function.

• An extension of our method to the tracking of multiple targets would be of practical

interest. The task of the DNN would then be to predict the number of targets in

addition to their locations, and the subsequent Bayesian estimation stage would track

the states of all targets.

• For a more conclusive assessment of the proposed DNN-aided Bayesian estimation

framework a performance evaluation using real data rather than synthetic data would

be desirable.

• Developing applications of the proposed framework to other estimation problems

besides target tracking would be interesting.

• Finally, a theoretical analysis of the serial setup can be expected to yield valuable

insights. In particular, it would be interesting to investigate the influence of the

DNN-based feature extraction stage on the error of the Bayesian estimator. This can

possibly be achieved by considering approximation bounds such as those presented

in [40–42].

58

A. Derivation of Kalman Filter

In the following, we derive the KF equations stated in Section 4.3. We will use [27,28,34].

We recall from 4.2 that sequential Bayesian filtering consists of the following two steps:

1. PREDICTION STEP: We want to calculate the predicted posterior distribution

p(θk|y1:k−1) according to

p(θk|y1:k−1) =
Θ

p(θk|θk−1)p(θk−1|y1:k−1)dθk−1. (A.1)

2. UPDATE STEP: We update the predicted posterior distribution to obtain the pos-

terior

p(θk|y1:k) =
p(yk|θk)p(θk|y1:k−1)

p(yk|y1:k−1)
, (A.2)

where the denominator can be expanded as

p(yk|y1:k−1) =
Θ

p(yk|θk)p(θk|y1:k−1)dθk. (A.3)

PREDICTION STEP

To calculate p(θk|y1:k−1) in Equation A.1, we need expressions of p(θk|θk−1) and p(θk−1|y1:k−1).

Due to the state-transition (4.11), the Gaussianity of the driving noise according to Equa-

tion (4.15), and the independence of uk and θk−1, the state-transition pdf p(θk|θk−1) is

given by

p(θk|θk−1) = N (θk;Akθk−1,BkCu,kB
T
k). (A.4)

Later we will prove that the posterior pdf p(θk|y1:k) is Gaussian under a Gaussian initial-

ization. Therefore, we can assume that the posterior at time k − 1, i.e. p(θk−1|y1:k−1), is

also Gaussian distributed according to

p(θk−1|y1:k−1) = N (θk−1; θ̂k−1|k−1,Ck−1|k−1), (A.5)

59

with the posterior mean θ̂k−1|k−1 and posterior covariance matrix Ck−1|k−1. We will need

the following identity several times, [28, Appendix D],

N (r;Hx,R)N (x;p,P) = N (r;Hp,C)N (x; e,E) (A.6)

with

E = (P−1 +HTR−1H)−1, (A.7)

e = E(P−1p+HTR−1r), (A.8)

C = R+HPHT . (A.9)

Inserting Equation (A.4) and (A.5) into (A.1), we obtain

p(θk|y1:k−1) =
Θ

N (θk;Akθk−1,BkCu,kB
T
k)N (θk−1; θ̂k−1|k−1,Ck−1|k−1)dθk−1. (A.10)

Next, using the identity in (A.6), with r = θk, H = Ak, x = θk−1, R = BkCu,kB
T
k , p =

θ̂k−1|k−1, and P = Ck−1|k−1, the predicted posterior is given by

p(θk|y1:k−1) =
Θ

N (θk;Akθ̂k−1|k−1,BkCu,kB
T
k +AkCk−1|k−1A

T
k)N (θk−1; eθk−1

,Eθk−1
)dθk−1

= N (θk;Akθ̂k−1|k−1,BkCu,kB
T
k +AkCk−1|k−1A

T
k)

Θ

N (θk−1; eθk−1
,Eθk−1

)dθk−1

= N (θk;Akθ̂k−1|k−1,BkCu,kB
T
k +AkCk−1|k−1A

T
k), (A.11)

with a mean vector eθk−1
and a covariance matrix Eθk−1

which do not depend on θk−1, i.e.,

eθk−1
= Eθk−1

C−1
k−1|k−1θ̂k−1|k−1 +AT

k (BkCu,kB
T
k)

−1θk , (A.12)

Eθk−1
= C−1

k−1|k−1 +AT
k (BkCu,kB

T
k)

−1Ak
−1
. (A.13)

We can rewrite Equation (A.11) as

p(θk|y1:k−1) = N (θk; θ̂k|k−1,Ck|k−1), (A.14)

with the predicted mean

θ̂k|k−1 ≜ Akθ̂k−1|k−1, (A.15)

60

and the predicted covariance matrix

Ck|k−1 ≜ BkCu,kB
T
k +AkCk−1|k−1A

T
k . (A.16)

UPDATE STEP

Next, we calculate p(θk|y1:k) according to Equation (A.2). The missing pdfs in (A.2)

are the likelihood function p(yk|θk) and the denominator p(yk|y1:k−1). Because of the

measurement model in (4.12), the Gaussianity of the measurement noise according to

(4.16), and the independence of θk and wk, the likelihood function is given by

p(yk|θk) = N (yk;Hkθk,Cw,k). (A.17)

Inserting (A.14) and (A.17) we can write the numerator of (A.2) as

p(yk|θk)p(θk|y1:k−1) = N (yk;Hkθk,Cw,k)N (θk; θ̂k|k−1,Ck|k−1). (A.18)

Applying the identity in Equation (A.6) with r = yk, H = Hk, x = θk, R = Cw,k, p =

θ̂k|k−1, and P = Ck|k−1 gives

p(yk|θk)p(θk|y1:k−1) = N (yk;Hkθ̂k|k−1,Cw,k +HkCk|k−1H
T
k)N (θk; θ̂k|k,Ck|k), (A.19)

with

θ̂k|k = Ck|k C−1
k|k−1θ̂k|k−1 +HT

k C
−1
w,kyk , (A.20)

Ck|k = C−1
k|k−1 +HT

k C
−1
w,kHk

−1
. (A.21)

Next, we consider the denominator of (A.2) as given by (A.3). Inserting expression (A.19)

into (A.3) gives

p(yk|y1:k−1) =
Θ

N (yk;Hkθ̂k|k−1,Cw,k +HkCk|k−1H
T
k)N (θk; θ̂k|k,Ck|k)dθk

= N (yk;Hkθ̂k|k−1,Cw,k +HkCk|k−1H
T
k)

Θ

N (θk; θ̂k|k,Ck|k)dθk

= N (yk;Hkθ̂k|k−1,Cw,k +HkCk|k−1H
T
k). (A.22)

61

Inserting the result for the numerator in (A.19) and the result for the denominator in

(A.22) into (A.2) gives the Gaussian posterior pdf

p(θk|y1:k) =
N (yk;Hkθ̂k|k−1,Cw,k +HkCk|k−1H

T
k)N (θk; θ̂k|k,Ck|k)

N (yk;Hkθ̂k|k−1,Cw,k +HkCk|k−1HT
k)

= N (θk; θ̂k|k,Ck|k).

(A.23)

The expressions (A.20) for the posterior mean θ̂k|k and (A.21) for the posterior covariance

matrix Ck|k can be put in a different form. Indeed, an alternative expression for the

posterior covariance matrix Ck|k can be obtained by applying the matrix inversion lemma

[43],

(A+UBV)−1 = A−1 −A−1U (B−1 + V A−1U)−1V A−1 (A.24)

with A = C−1
k|k−1, U = HT

k , B = C−1
w,k, and V = Hk to Equation (A.21), which gives

Ck|k = Ck|k−1 −Ck|k−1H
T
k (Cw,k +HkCk|k−1H

T
k)

−1HkCk|k−1

= I−Ck|k−1H
T
k (Cw,k +HkCk|k−1H

T
k)

−1Hk Ck|k−1

= (I−KkHk)Ck|k−1, (A.25)

with the Kalman gain matrix

Kk ≜ Ck|k−1H
T
k (Cw,k +HkCk|k−1H

T
k)

−1. (A.26)

Next, inserting expression (A.25) for Ck|k into Equation (A.20), the posterior mean θ̂k|k
can be written as

θ̂k|k = (I−KkHk)Ck|k−1(C
−1
k|k−1θ̂k|k−1 +HT

k C
−1
w,kyk)

= θ̂k|k−1 −KkHkθ̂k|k−1 + (I−KkHk)Ck|k−1H
T
k C

−1
w,kyk. (A.27)

The last term of Equation (A.27) can be rewritten as

(I−KkHk)Ck|k−1H
T
k C

−1
w,kyk

= (Ck|k−1H
T
k C

−1
w,k −KkHkCk|k−1H

T
k C

−1
w,k)yk

= Ck|k−1H
T
k (Cw,k +HkCk|k−1H

T
k)

−1

Kk

(Cw,k +HkCk|k−1H
T
k)C

−1
w,k

−KkHkCk|k−1H
T
k C

−1
w,k yk

= Kk(I+HkCk|k−1H
T
k C

−1
w,k)−KkHkCk|k−1H

T
k C

−1
w,k yk

62

= Kkyk. (A.28)

Inserting the last expression back into (A.27) finally gives

θ̂k|k = θ̂k|k−1 −KkHkθ̂k|k−1 +Kkyk

= θ̂k|k−1 +Kk(yk −Hkθ̂k|k−1). (A.29)

In the prediction step, we made the assumption that the posterior pdf at time step k−1

follows a Gaussian distribution. This will be satisfied if the initial state θ0 is Gaussian

as we assumed in Equation (4.17). More specifically, we initialize the KF recursion with

posterior mean and posterior covariance given by

θ̂0|0 = µθ and C0|0 = Cθ, (A.30)

where µθ and Cθ are the mean and covariance matrix of the initial state θ0 respectively.

We conclude by summarizing the KF equations.

1. KF Prediction step:

a) Predicted posterior mean: θ̂k|k−1 = Akθ̂k−1|k−1

b) Predicted posterior covariance: Ck|k−1 = AkCk−1|k−1A
T
k +BkCu,kB

T
k

2. KF Update step:

a) Kalman gain matrix: Kk = Ck|k−1H
T
k (HkCk|k−1H

T
k +Cw,k)

−1

b) Posterior mean: θ̂k|k = θ̂k|k−1 +Kk(yk −Hkθ̂k|k−1)

c) Posterior covariance: Ck|k = (I−KkHk)Ck|k−1

3. Initialization:

θ̂0|0 = µθ, C0|0 = Cθ

63

64

Bibliography

[1] I. Neutelings, Plot Fully Connected Neural Net. https://tikz.net/neural_networks/.

[2] S. Särkkä and L. Svensson, Bayesian Filtering and Smoothing. Cambridge University Press,

2023.

[3] H. Iqbal, Plot Neural Net. https://github.com/HarisIqbal88/PlotNeuralNet/.

[4] L. V. Jospin, H. Laga, F. Boussaid, W. Buntine, and M. Bennamoun, “Hands-on bayesian

neural networks—a tutorial for deep learning users,” IEEE Computational Intelligence Mag-

azine, vol. 17, no. 2, pp. 29–48, 2022.

[5] J. E. van Engelen and H. H. Hoos, “A survey on semi-supervised learning,”Machine Learn-

ing, vol. 109, pp. 373–440, 2020.

[6] X. Yang, Z. Song, I. King, and Z. Xu, “A survey on deep semi-supervised learning,” IEEE

Transactions on Knowledge and Data Engineering, vol. 35, pp. 8934–8954, sep 2023.

[7] R. Kunwar, U. Pal, and M. Blumenstein, “Semi-supervised online bayesian network learner

for handwritten characters recognition,” in 2014 22nd International Conference on Pattern

Recognition, pp. 3104–3109, 2014.

[8] N. Shlezinger, J. Whang, Y. C. Eldar, and A. G. Dimakis, “Model-based deep learning:

Key approaches and design guidelines,” in 2021 IEEE Data Science and Learning Workshop

(DSLW), pp. 1–6, 2021.

[9] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time

object detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2016.

[10] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate

object detection and semantic segmentation,” in 2014 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), vol. 00, pp. 580–587, June 2014.

65

https://tikz.net/neural_networks/
https://github.com/HarisIqbal88/PlotNeuralNet/

[11] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image

recognition,” in 3rd International Conference on Learning Representations (ICLR 2015),

pp. 1–14, Computational and Biological Learning Society, 2015.

[12] X. Weng, J. Wang, D. Held, and K. Kitani, “3d multi-object tracking: A baseline and new

evaluation metrics,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), IEEE, Oct. 2020.

[13] S. Shi, X. Wang, and H. Li, “Pointrcnn: 3d object proposal generation and detection from

point cloud,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 770–779, 2019.

[14] F. Meyer and J. L. Williams, “Scalable detection and tracking of geometric extended ob-

jects,” IEEE Transactions on Signal Processing, vol. 69, pp. 6283–6298, 2021.

[15] B. Zhu, Z. Jiang, X. Zhou, Z. Li, and G. Yu, “Class-balanced grouping and sampling for

point cloud 3d object detection,” 2019.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolu-

tional neural networks,” in Advances in Neural Information Processing Systems (F. Pereira,

C. Burges, L. Bottou, and K. Weinberger, eds.), vol. 25, Curran Associates, Inc., 2012.

[17] C. Michoski, M. Milosavljević, T. Oliver, and D. R. Hatch, “Solving differential equations

using deep neural networks,”Neurocomputing, vol. 399, pp. 193–212, 2020.

[18] J. Jumper, R. Evans, A. Pritzel, and et al., “Highly accurate protein structure prediction

with alphafold,”Nature, vol. 596, pp. 583–589, 2021.

[19] P. Petersen, Neural Network Theory. University of Vienna, 2021.

[20] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016. http:

//www.deeplearningbook.org.

[21] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning: From theory to

algorithms. Cambridge University Press, 2014.

[22] J. Berner, P. Grohs, G. Kutyniok, and P. Petersen, Mathematical Aspects of Deep Learning.

Cambridge University Press, 2022.

[23] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine Learning, second

edition. Adaptive Computation and Machine Learning series, MIT Press, 2018.

66

http://www.deeplearningbook.org
http://www.deeplearningbook.org

[24] D.-H. Lee, “Pseudo-label : The simple and efficient semi-supervised learning method for

deep neural networks,” ICML 2013 Workshop : Challenges in Representation Learning

(WREPL), 07 2013.

[25] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.

[26] D. Rumelhart, G. Hinton, and R. Williams, “Learning representations by back-propagating

errors,”Nature, vol. 323, no. 6088, pp. 533–536, 1986.

[27] S. M. Kay, Fundamentals of Statistical Signal Processing, Volume 1: Estimation Theory.

Pearson Education.

[28] R. P. Mahler, Statistical Multisource-Multitarget Information Fusion, vol. 685. Artech

House, 2007.

[29] C. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[30] P. C. Mahalanobis, “On the generalised distance in statistics,” Proceedings of the National

Institute of Sciences of India, vol. 2, no. 1, pp. 49–55, 1936. Retrieved 2016-09-27.

[31] R. De Maesschalck, D. Jouan-Rimbaud, and D. Massart, “The mahalanobis distance,”

Chemometrics and Intelligent Laboratory Systems, vol. 50, no. 1, pp. 1–18, 2000.

[32] J. Dorazil, private conversation, February 2023.

[33] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle filters for

online nonlinear/non-gaussian bayesian tracking,” IEEE Transactions on Signal Processing,

vol. 50, no. 2, pp. 174–188, 2002.

[34] H. Masnadi-Shirazi, A. Masnadi-Shirazi, and M.-A. Dastgheib, “A step by step mathemat-

ical derivation and tutorial on kalman filters,” in arXiv, 2019.

[35] X. Rong Li and V. Jilkov, “Survey of maneuvering target tracking. part i. dynamic models,”

IEEE Transactions on Aerospace and Electronic Systems, vol. 39, no. 4, pp. 1333–1364,

2003.

[36] R. Ganz, Object Localization using Keras. https://medium.com/analytics-vidhya/

object-localization-using-keras-d78d6810d0be.

67

https://medium.com/analytics-vidhya/object-localization-using-keras-d78d6810d0be
https://medium.com/analytics-vidhya/object-localization-using-keras-d78d6810d0be

[37] D. P. Kingma and J. Ba,“Adam: A method for stochastic optimization,” in 3rd International

Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,

Conference Track Proceedings, 2015.

[38] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang, “On large-

batch training for deep learning: Generalization gap and sharp minima,” in International

Conference on Learning Representations, 2017.

[39] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan,

J. Quan, T. Ramalho, A. Grabska-Barwinska, D. Hassabis, C. Clopath, D. Kumaran, and

R. Hadsell, “Overcoming catastrophic forgetting in neural networks,” Proceedings of the

National Academy of Sciences, vol. 114, pp. 3521–3526, mar 2017.

[40] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal

approximators,”Neural Networks, vol. 2, no. 5, pp. 359–366, 1989.

[41] G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Mathematics of

Control, Signals, and Systems, vol. 2, pp. 303–314, 1989.

[42] D. Yarotsky, “Error bounds for approximations with deep relu networks,”Neural Networks,

vol. 94, pp. 103–114, 2017.

[43] H. V. Henderson and S. R. Searle, “On deriving the inverse of a sum of matrices,” SIAM

Review, vol. 23, pp. 53–60, Jan. 1981.

68

Eidesstattliche Erklärung

Hiermit erkläre ich, dass die vorliegende Arbeit gemäß dem Code of Conduct – Regeln zur

Sicherung guter wissenschaftlicher Praxis (in der aktuellen Fassung des jeweiligen Mitteilungs-

blattes der TU Wien), insbesondere ohne unzulässige Hilfe Dritter und ohne Benutzung anderer

als der angegebenen Hilfsmittel, angefertigt wurde. Die aus anderen Quellen direkt oder indirekt

übernommenen Daten und Konzepte sind unter Angabe der Quelle gekennzeichnet.

Die Arbeit wurde bisher weder im In– noch im Ausland in gleicher oder in ähnlicher Form in

anderen Prüfungsverfahren vorgelegt.

. .

Ort, Datum

. .

Unterschrift

	Introduction
	Motivation
	State of the Art
	Contribution and Outline

	Deep Learning
	Deep Neural Networks
	Supervised and Semi-Supervised Learning
	Training

	Deep Neural Network Aided Bayesian Estimation
	Motivation
	Serial Setup
	Feedback of Pseudo-Labels
	Hard Pseudo-Labels
	Semi-Soft Pseudo-Labels
	Soft Pseudo-Labels

	Deep Neural Network Aided Sequential Bayesian Estimation
	State-Space Model
	Sequential Bayesian Estimation
	Kalman Filter
	Error Covariance

	Feedback of Pseudo-Labels
	Hard Pseudo-Labeling
	Semi-Soft Pseudo Labeling
	Soft Pseudo-Labeling

	Application to Target Tracking
	Motion and Observation Model
	Deep Neural Network for Position Prediction
	Feedback of Position Estimates
	Hard Pseudo-Labels
	Semi-Soft Pseudo-Labels
	Soft Pseudo-Labels

	Kalman Filter for Position and Velocity Estimation

	Simulations
	DNN Localization Performance Evaluation
	Tracking Performance
	Robustness Analysis
	Driving Noise and Object Shape Variation
	Image Noise
	Outlier Detection

	Conclusion
	Derivation of Kalman Filter
	Bibliography

