
Cross-lingual Search in
Pre-processed Archival Facsimile

Documents

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering und Internet Computing

eingereicht von

David Banyasz, BSc
Matrikelnummer 01426657

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dr. Allan Hanbury
Mitwirkung: Dipl.-Ing. Dr.techn. Sebastian Hofstätter

Wien, 9. Juli 2023
David Banyasz Allan Hanbury

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Cross-lingual Search in
Pre-processed Archival Facsimile

Documents

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

David Banyasz, BSc
Registration Number 01426657

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dr. Allan Hanbury
Assistance: Dipl.-Ing. Dr.techn. Sebastian Hofstätter

Vienna, 9th July, 2023
David Banyasz Allan Hanbury

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

David Banyasz, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 9. Juli 2023
David Banyasz

v

Acknowledgements

I would like to express my gratitude to my advisors Sebastian Hofstätter and Prof. Allan
Hanbury for their guidance, invaluable feedback and seemingly endless patience with me.

I would also like to thank my close friends and family for their support, and lastly, my
girlfriend Jennifer, for encouraging me from start to finish and keeping me motivated on
countless occasions along the way.

This thesis contributes to the research project “Visual History of the Holocaust: Rethink-
ing Curation in the Digital Age” (www.vhh-project.eu). This project has received
funding from the European Union’s Horizon 2020 research and innovation programme
under grant agreement No 822670.

vii

www.vhh-project.eu

Kurzfassung

Jüngste Fortschritte in der Textdigitalisierung und -verarbeitung haben eine Vielzahl
von Möglichkeiten eröffnet, historische Archive effizient und automatisiert zu bearbei-
ten und zu digitalisieren. Verarbeitungsschritte, die auch Spracherkennung, optische
Zeichenerkennung (optical character recognition - OCR), Named Entity Recognition
(NER), Markierung von Erkennungsfehlern und automatische oder manuelle Korrekturen
umfassen, können zu digitalisierten Archiven führen, die sowohl qualitativ hochwerti-
ge Faksimile-Darstellungen von gescannten Originaldokumenten als auch extrahierte
Text-Metadaten nahe am Originaltext in einem maschinenfreundlichen Format liefern.

Im Rahmen des Forschungsprojekts “Visual History of the Holocaust” (VHH) ist die
Erforschung digital aufbereiteter Archive ein wichtiger Schritt für den zukünftigen Ar-
beitsablauf von Archivaren und Historikern gleichermaßen. Nach einer Analyse und
Kategorisierung der Anforderungen der Mitarbeiter des VHH-Projekts schlagen wir
eine neuartige, semantisch erweiterte Suchabfrage-Methode und ein Konzept zur dyna-
mischen Generierung von suchrelevanten Faksimile-Bildausschnitten vor. Diese Arbeit
demonstriert einen auf diesen Methoden basierenden Human-in-the-Loop Such- und
Recherchearbeitsablauf, indem sie einen Prototyp einer Suchbenutzeroberfläche bereit-
stellt, die auf die intuitive Erkundung von Themen in einem mehrsprachigen historischen
Faksimile-Archivkorpus ausgerichtet ist.

ix

Abstract

Recent advances in text digitization and processing have opened up plenty of possibilities
for historical archives to be processed and digitized in an efficient and automated
manner. Processing steps, also involving language detection, optical character recognition
(OCR), named entity recognition (NER), recognition error detection, and automated or
manual correction can result in digitized archives providing both high-quality facsimile
representations of original document scans and extracted text metadata close to the
original text in a machine-friendly format.

In the context of the research project “Visual History of the Holocaust” (VHH), exploration
of digitally enhanced archives is an important step forward in the future workflow of
archivists and historians alike. After analysing and categorizing the requirements of
collaborators in the VHH project, we propose a novel semantically extended retrieval
method and a concept for dynamically generating retrieval-relevant facsimile image
snippets. This work demonstrates a Human-in-the-Loop retrieval and research workflow
based on these methods by providing a search user interface prototype geared towards
intuitively exploring topics across a multilingual historical facsimile archive corpus.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Contributions of the Work . 2
1.2 Structure of the Thesis . 4

2 Analysis of the Requirements of Historians 7
2.1 Input Processing . 8
2.2 Search Experience . 10
2.3 Design & Architecture . 13
2.4 Summary . 15

3 Background and Related Work 17
3.1 Text Document Processing & Correction 17
3.2 Search Result Visualization . 19
3.3 Digital Archive Visualization . 20
3.4 Multilingual Search User Interfaces . 22

4 Import Process for Annotated PDF Facsimile Documents 25
4.1 Image Extraction . 26
4.2 Text & Layout Data Processing . 27

5 Query Processing 31
5.1 Query Structure . 31
5.2 Semantic Query Extension . 32

6 Dynamic Generation of Relevant Facsimile Page Snippets 37
6.1 Preliminary Measures . 38
6.2 Candidate Collection . 39
6.3 Snippet Candidate Pooling . 40

xiii

6.4 Performance Sampling . 41

7 Conclusion 47
7.1 Requirements Review . 47
7.2 Limitations & Future Work . 48

A Implementation Details 51
A.1 Architecture . 51
A.2 Indexing . 51

B User Interface Prototype 55

List of Figures 61

Bibliography 63

CHAPTER 1
Introduction

Historical archives contain a wealth of information that is only starting to be leveraged
in the digital realm. The physical process of accessing all historical documents pertaining
to a specific topic in itself can be quite time-consuming, tedious, and costly. Relevant
documents can be scattered across the globe in various archive locations, and documents
are potentially accessed throughout several research projects by multiple researchers –
each time creating this overhead of time for each interested individual. To reduce this
overhead, and also to make historic documents more accessible to a broader audience, the
process of digitizing and enriching documents is an established practice in the community
of historical research. This has led to a high demand for more efficient solutions in
digitizing, preserving, processing, and curating historical documents.

Digitization typically starts by taking high-resolution scans or photographs of a document.
This represents a digital facsimile – a digitized high-quality visual reproduction that
is as faithful to the original document as possible. For documents portraying mainly
visual information in the form of pictures, film or illustrations, the next processing
steps might involve automated classification of the contents. In the case of mainly text-
based documents, their digital facsimiles initially come with no metadata and therefore
need to be further processed to make the contained information digitally accessible.
Thankfully, recent advances in text digitization and processing make it a very streamlined
process to automate text recognition and annotation in such documents. These advances
include language detection, optical character recognition (OCR), automated correction of
recognition errors resulting from OCR, and named entity recognition (NER) to pinpoint
names, locations, and events which might not be recognized first-hand by relying solely
on grammar and sentence structure of analysed document text. This puts researchers in
the favourable position of having access to digitized and annotated facsimile documents
from archive locations worldwide and being able to curate diverse digital archives. While
having access to a curation of digitized archive documents might be overall beneficial, it
may also come with its downsides. For instance, searching such a digitized document

1

1. Introduction

corpus without the proper interface can become a daunting task and might not yield
satisfying results, since the corpus might contain highly domain-specific keywords and
could feature documents written in a multitude of source languages. For instance, Citavi1,
a tool for literature and knowledge management, enables researchers to upload documents,
and collaboratively extract relevant segments as well as annotate them. This and similar
tools help alleviate the challenge of working with an extensive digital document corpus,
but still requires researchers to actively find and subsequently link, and highlight parallels
between documents.

As part of the Visual History of the Holocaust Project2 (VHH project), researchers work
on preserving, curating, and showcasing historical records of the Holocaust in the form
of audiovisual and written documents by exploring digital technologies that increase the
mass appeal and access of broader audiences to the historic source material and also help
expert researchers interact with the material in a unique way. As has been previously
stated, digital preservation tools have been rapidly improving and have also led to an
influx of post-processed and annotated digitized facsimile text documents within the
VHH project.

In an effort to prevent the pitfalls of being overwhelmed by a huge amount of digitized
archive data and also to improve the work process of researchers, we identify the core
workflows and unmet requirements of the researchers involved in the VHH project when
it comes to working with digitized documents. We conduct an initial analysis and
categorization of the gathered requirements and based on that, we devise a dynamic
search user interface prototype geared towards intuitive navigation and deep exploration
of topics across a digital corpus of multilingual text-based facsimile. By involving the
researchers in our iterative design and development process, we ensure that all the
high-level requirements are in line with our proposed technical solutions and are adjusted
and improved throughout incremental feedback loops. The proposed prototype aims to
enable semantic search by extending user search queries with domain-specific synonyms,
while also extending the search area to all languages within the digitized document
corpus. Based on query-relevant terms in a document, our tool presents dynamically
generated image snippets of the facsimile document, which are fully interactive via the
positional OCR metadata extracted from all documents when being imported into our
tool. Therefore, text passages within a facsimile can be manually marked and can then
be used to kick off new search queries or refine previous queries.

1.1 Contributions of the Work
The main contributions presented in this work are as follows:

1https://www.citavi.com/de
2https://www.vhh-project.eu/

2

https://www.citavi.com/de
https://www.vhh-project.eu/

1.1. Contributions of the Work

• Evaluating the Requirements of Researchers for Search Workflows on
Digitized Document Corpora - Even though our contributions as computer
scientists are of a mainly technical nature, the requirements that inform our decision-
making stem from the historians involved in the VHH project. More specifically,
the requirements are first formulated from the typical workflow of the researchers
and of course any desired improvements that are made possible by then applying
these high-level specifications to technical requirements. The requirements should
result in contributions that try to replicate the positive aspects of established search
workflows, while leveraging the digitization of the document corpora and therefore
aiding the researchers in their search tasks. The formed requirements are also
adjusted in a close direct feedback loop with the involved researchers.

• Processing Annotated PDF Facsimile Documents - Document processing is
a vital aspect of building an extensible digitized document corpus for later search
and exploration. Our processing interface accepts PDF documents in general, but is
tailored towards digitized facsimile documents that were annotated by OCR tooling
before being fed to our interface. It is a common step in a typical researcher’s
digitization workflow to run OCR on freshly digitized facsimiles and receive a
versatile annotated PDF file.

Input documents contain two major categories of data, which are each extracted
and processed separately. Firstly, the visual information of the facsimiles is ex-
tracted in the form of image files, which are later used for generating dynamic
snippets. Additionally, we extract all the OCR annotation data to determine the
text contained within a document and also where all the words and symbols are
placed within a document’s page. The gathered words are processed and grouped
based on their according word families and are mapped to their layout coordinates
within a page. All the extracted information is additionally stored in a search index
to be accessible for search queries. Our index is organized in single document pages,
which allows us to retrieve relevant pages instead of full documents to improve
overall performance.

• Extending Search Queries Through Translation and Synonyms - Historical
documents pertaining to World War II and the Holocaust are written in a multitude
of diverse languages. While historians might be fluent in different languages, it can
be quite cumbersome to have to translate and repeatedly launch the same search
task if the goal is to retrieve all documents linked to a specific topic, regardless of
source language.

To ensure a seamless multilingual workflow for researchers, we devise two query
extensions that are applied to search tasks launched against our index. All terms
within an incoming search query are extended by being separately translated into an
extensible set of (currently 10) languages. Additionally, we match the queried terms
to a map of researcher-curated domain-specific phrases that represent synonyms to
common search phrases in a multitude of languages. With both these measures

3

1. Introduction

combined, we extend the search area across languages while refining the specificity
of the query within the given domain.

• Generating Image Snippets of Query-Relevant Document Sections Dy-
namically - As a brief reminder, we extract both the visual representation of the
facsimile and also the OCR metadata of all recognized text, including the layout
position within a document. We can use this information as part of our search
workflow concept to display documents that are relevant to a search task in the form
of their digitized facsimile representation. Additionally, thanks to the positional
information, relevant documents can interactively be annotated and searched and
show highlighted phrases that are relevant to the search upfront. Another advantage
granted by the OCR metadata is the ability to determine which sections inside a
document page are relevant. We leverage this knowledge by providing tooling to
dynamically crop relevant image snippets that can highlight the most important
sections of retrieved document pages.

• Intuitive Document Search User Interface Prototype - Our proposed search
user interface prototype combines a lot of the previously introduced contributions.
Based on the information gathered during requirements collection and refinement,
we devise a search workflow that incorporates facsimile representations as the
primary way of interacting with the underlying digitized document corpus. We use
the proposed query extension to enable multilingual exploration focused on the
domain of World War II and the Holocaust. Resulting search hits show relevant
image snippets from select document pages. The user experience is aimed at
enabling exploratory search. Our navigation shortcuts and the interactive facsimile
allow users to quickly jump between searches and documents, launch a new search
task or refine a search task to dive deeper into a specific topic. All of these
measures are intended to replicate the intuitive workflow of piling through a stack
of documents and leafing through individual pages, while fully leveraging the
extracted and processed data to enhance the process of researching a topic and
finding links across documents.

1.2 Structure of the Thesis
Chapter 2 categorizes and summarizes the requirements reached in conclusion with the
involved archivists and historians. We cover existing approaches in the form of tools and
applications as well as prior research in Chapter 3.

Our proposed import workflow for extracting positional and text metadata from annotated
PDF documents is detailed in Chapter 4. The different components of the search query
extension, ranging from a language-independent search index and term-based search
query translation to synonym extension, are discussed in Chapter 5. Chapter 6 highlights
how we combine query result data and extracted positional metadata to determine, pool
and generate relevant facsimile image snippets.

4

1.2. Structure of the Thesis

We conclude this work by proposing topics for future work in addition to defining the
limitations of the thesis and summarize our contributions in Chapter 7.

Appendix A elaborates on implementation and software architecture details, whereas
Appendix B introduces our user interface concept prototype which is intended for
showcasing an intuitive search workflow in digital archive data.

5

CHAPTER 2
Analysis of the Requirements of

Historians

To be able to provide approaches for digitized historical archives in tune with the actual
requirements of the domain, we had to familiarize ourselves with the working routine of
active historians. Our proposed work needs to match the latest historian workflow and
future potential requirements as closely as possible. Oberbichler et al. [1] for example,
explore interdisciplinary collaboration in digital historical newspaper archives and argue
that reciprocal understanding of the involved workflows in the different disciplines ranging
from computer science, to digital cultural heritage curation, and also to digital humanities
studies, only serve to improve research sprouting from these collaborative efforts.

Therefore, we set up an initial digital work group meeting with historians involved in the
VHH project and collaboratively worked out the first requirements for our digital archive
exploration concept. The requirements of the concept were refined in incremental steps
with successive meetings, at times aided by an early visual prototype and in later stages
by functional prototypes in varying grades of completion throughout our feedback-based
iterative development process.

There are various tools for annotating and searching through digitized domain-specific
document corpora and, more specifically, digitized historical archives. In contrast to
existing solutions, the general goal reached in cooperation with our historian stakeholders
was to digitally replicate the intuitive workflow of leafing through documents and discov-
ering connections between different documents and even throughout archives. With this
in mind, the conventional workflow is extended through extracted textual and positional
data to build an intuitive search and exploration tool, that allows direct interaction with
enhanced digitized facsimile across multiple archive sources.

7

2. Analysis of the Requirements of Historians

The list directly below briefly summarizes the categorized requirements, while the following
subsections elaborate on each individual requirement:

• Input Processing

– Archival Facsimile Documents Leverage and preserve input facsimile
quality

– Source-agnostic Unify input process for annotated PDFs regardless of pre-
processing source

– Language Support Support growing number of document input languages
from various archive sources

• Search Experience

– Replicate Archival Exploration Digitally Create a digital search experi-
ence close to physically exploring topics in an archive

– Extending search requests Increase search recall by translating search
queries and finding synonyms for searched terms

– Enhanced Facsimile Use the digital replicas as an interactive tool for
navigating through a reconstructed historic archive

– Human-in-the-Loop Workflow Facilitate an intuitive participation-based
exploration workflow

• Design & Architecture

– Explainable Results Highlight the underlying search query modifications
– Modular & Expandable Tooling Create a stable and easily adaptable set

of tools surrounding the proposed prototype
– Performance Observe and improve various performance metrics throughout

the development and evaluation process

2.1 Input Processing
One implicit requirement arising during the conceptualization of an archive search tool
is the general question of processing input data. The proposed tool should provide an
interface for receiving and processing documents for later retrieval purposes. Beyond the
question of designing an input interface, in the following subsections, we want to highlight
the assessed challenges and goals regarding expected traits of the input documents
and which traits are beneficial for further processing. For instance, challenges such as
preferable formats and post-processing states in which data should ideally be delivered in
and language support in a research project with ever expanding historic archive sources.
Digital archives often are ’quietly incomplete’, meaning that not all documents and

8

2.1. Input Processing

resources in a physical archive location will be digitally processed and therefore only a
subsection of the actual archive can be interacted with digitally. Such archives, where
researchers can’t be certain, which documents are missing from the digital archive
representation, are a major reason why some historians tend to prefer physical archive
visits to digital archive exploration tools despite the convenience of digital archives and
the travel expenses for cross-globe archive trips [2]. Therefore, it is of utmost importance
to make the barrier of entry to include an archive document into a digital archive as low
as possible.

2.1.1 Archival Facsimile Documents

Digital facsimile documents, which should be as true to the original document as possible,
play a vital role in the preservation, curation, and exploration of historical archives.
Therefore, such documents represent the basis of any visual interaction concepts presented
in this work. By letting users directly interact with these documents and digitally
augmenting the possibilities to interact with them, we strive to replicate the authentic
experience of looking through documents in a physical archive.

For any facsimile input we receive in our application prototype, we intend to preserve
the quality where possible and only scale down resolution or other aspects temporarily if
required due to performance and usability considerations.

2.1.2 Source-agnostic

The laborious process of digitizing historic documents can start anywhere across the globe
in one of numerous archives. Documents can be – based on their individual condition
and archive restrictions – photographed or scanned. There are a multitude of tools
for curating, annotating, extracting text information and processing archive documents.
Historians and archivists can incorporate several of these tools in their digitization and
curation workflow, i.e., for manual transcription or automated text recognition. While
many documents are digitized facsimile representations, some additions to future archives
could possibly be born-digital and therefore lack any additional visual indicators apart
from the rendered text.

Accordingly, it can be a gargantuan task to support several input formats and even harder
to maintain them. Our goal is to cover the largest area of potential processing outputs
by supporting post-processed or born-digital PDF input files. Whether an incoming
document has been merely manually annotated, or was sent through a sophisticated
OCR pipeline, the necessary metadata can be extracted and processed from an input
PDF in a fairly streamlined manner. Even though inputs and outputs throughout the
workflow can be scattered across various file formats, we make the educated assumption,
that born-digital files or digitized documents post-processing can be delivered to our tool
in the form of a PDF. Further processing steps and challenges involving input PDFs are
discussed in Chapter 4.

9

2. Analysis of the Requirements of Historians

2.1.3 Language Support
Archives, where new digitization candidates are sourced, can span the whole globe.
Historic documents, in case of the overarching VHH research project generally pertaining
to the Holocaust and World War II, are preserved in various countries on different
continents and were written in a multitude of diverse languages and scripts. This
also does not account for future excursions into different topics and subtopics or the
exploitation of new archive collections potentially containing a whole new set of languages
and scripts.

As a result of this wealth of diverse inputs, an open challenge is to support the parsing and
processing of most, if not all languages, that the tool is confronted with. Only with this
goal in mind, the application and underlying tooling can fully represent and leverage the
provided archive data. As a consequence, incoming archive documents are to be assigned
their most likely source language based on a language detection tool, which in turn allows
extracted text segments to be handled with the appropriate language pre-processing
mechanisms and categorized before being integrated into our language-agnostic search
index.

Aside from language support as a vital sub-task of input processing, there are also some
considerations to make during the search process. Subsection 2.2.2 among other topics
highlights the tasks surrounding language support during the search process.

2.2 Search Experience
An intuitive yet in-depth search experience should be an essential aspect of an archive
exploration tool. Even though the requirements were worked out together with and
mainly for historians, people with varying levels of expertise from students interested in
the topic to experts should be able to capably use future tools derived from our proposed
concepts and prototypes.

The following subsections highlight some important aspects we incorporated into our
development of a search user interface (UI) prototype. The properties of the UI prototype
are expanded on in Appendix B.

2.2.1 Replicate Archival Exploration Digitally
The physical experience of exploring an archive is something we strive to replicate
digitally as closely as possible. After interviewing a sample group of historians from a
research group, Force & Wiles [2] find that the queried historians seem to prefer physical
documents to digital archives to – among other reasons – be able to turn the pages
themselves. This notion was in turn echoed by the historians involved in the VHH project.
Therefore, this work seeks to incorporate the extracted data in its entirety and replicate
the feeling of physically exploring an archive as closely as possible. To achieve a similar
experience, the proposed search prototype will visualize documents only through their

10

2.2. Search Experience

facsimile representation. By only interacting with the digitized archive through facsimile
documents, we aim to create an involvement and immersion with the source data, which
could not be achieved through interfaces based on text alone. This way, users can leaf
through document pages and look at the written documents in a manner close to the
physical experience.

While the use of facsimile to interact with archive documents is essential for our concept,
it is not a completely novel approach. Existing digital archive user interfaces, which we
review in Chapter 3 are for the most part designed for digitized newspaper corpora and
display facsimile article clippings in search result pages. The novelty of our concept comes
not from merely visually displaying facsimile, but rather by extending the classic digital
facsimile capabilities of passively inspecting documents and allow users to investigate
different topics across the whole document corpus and also across various source languages.
Topics can be explored through explicit search commands or implicitly by interacting
with the facsimile. Facsimile documents containing similar topics are laid out next to
each other, and a previous search can easily be brought back to focus. In conclusion, all
measures combined strive to replicate the experience of delving into an archive, chasing
down documents pertaining to a specific area of interest, but additionally having digital
amenities like automated multilingual archive-wide search, search backtracking and
highlighting of relevant sections.

2.2.2 Extending search requests

One major assessed requirement for the resulting exploration concept prototype is the
intuitive browsing of topics across a multilingual historical archive. Historians, archivists,
and other interested parties alike should be able to launch a search request and cast a
wide net for further investigation. With exploration at the forefront, the recall of relevant
documents from the archive index becomes crucial. Incoming search requests should
therefore be extended to increase recall, through various means.

Since we are dealing with a multilingual document corpus, we must account for language
discrepancies between the query language and document languages. Consequently,
language support is not only an important factor when processing input documents, but
is also essential for the search experience. Search queries, similar to input documents,
need to be run through language detection. Additional steps should involve query term
translation to the most likely translation candidates across different languages present
in the corpus. We can therefore use this extended multilingual query to allow for a
more comprehensive ranking of document pages in other languages and an increased
cross-language retrieval.

Aside from language-specific query extensions, we aim to increase recall by leveraging a
project internal dataset of domain-specific synonyms. As one might expect, this synonym
dataset contains terms and sayings phrased differently, but also occasionally provides
translations for concepts that are hard to directly translate in other languages. These

11

2. Analysis of the Requirements of Historians

terms can be incorporated into the query process by searching for base concepts and
extending them with their synonyms from the dataset.

Both proposed measures of increasing the overall recall are discussed in-depth in Chapter
5.

2.2.3 Enhanced Facsimile
As previously mentioned, historical archive digitization is an enormous interdisciplinary
undertaking involving multiple stakeholders across several gathering and processing steps,
each with their challenges and pitfalls. At the end of this arduous process typically lies
the question of how to further exploit the gathered data. The gathered data, in our
specific case, written documents, can yield a high-quality facsimile representation of the
original and extracted or manually annotated or corrected text. In one additional step,
these documents can potentially yield semantic metadata in the form of dates and names
of specific events, places, and people. Hawkins [3] even argues that the wealth of digitized
archives is no use without properly incorporating and dealing with linked open data
across archives, and we also see this as an important aspect to be covered in future work.

Digital facsimile documents on their own are great tools for introducing interested parties
to the original source material and allowing domain experts to interact with archives
by proxy. Still, we want to allow more ways of interacting with the source material,
by extending the basic form of facsimile documents. During the archive document
import, any embedded text fragments – either through manual annotation or automated
recognition – are extracted with their specific position inside the respective document
page’s boundaries. Together with the historians and archivists, we assessed possible use
cases in the search interface concept for enhancing facsimile documents with bounded
text metadata.

One major benefit of having both a detailed digital facsimile representation and exact
text positions for each document page can be gained by combining them. Overlaying
the facsimile with properly placed invisible text-boxes opens up several interaction
possibilities and yields much needed context that can save time compared to splitting
OCR and facsimile representations [4]. Firstly, the interface can automatically visually
highlight text sections that are relevant to the user’s search query, but most notably,
users can mark and highlight sections themselves. Manually marked sections can in turn
be used as a steppingstone to search for a new topic or refine existing searches.

This enhancement concept can not only be applied to full document views, where users
can explore facsimile documents page by page in their original scale. Search result
views could also benefit from this, even though showing full document pages for each
individual entry on the result page would potentially take up too much screen space and
not give a proper overview. Accordingly, one additional challenge pertaining to facsimile
enhancement is the adjusted presentation in search results. More specifically, we want to
retain the interactive functions of auto-highlighting and manual marking, but only show
specific relevant excerpts from single document pages. This way, users still get to interact

12

2.3. Design & Architecture

with facsimiles, while getting a good overview of several relevant document pages. We
present our considerations and findings regarding facsimile enhancement in Chapter 6.

2.2.4 Human-in-the-Loop Workflow
Adhering to the previous and subsequent requirements, we strive to provide an intuitive
and helpful archive search and exploration concept with this work that hopefully inspires
further research in this area. Still, it is vital to properly convey – through this work and
by extension in the prototype and accompanying tools – the reliance on the user as the
main component in what basically is a Human-in-the-loop workflow concept. All tools
necessary for digitally exploring the historical archive data are provided, but it is the
user’s responsibility to start with a research topic and work out dynamic links inside the
corpus along the way.

Users are encouraged and required to work out their search goals themselves and are
guided by a search interface promoting this workflow through the following steps:

• Cast a wide net Start search with an initial topic showing many tangentially
relevant results aided by query extensions

• Side-by-Side Look at several documents or search topics simultaneously to detect
new links between them

• In-Document search Manually highlight text sections in documents and search
result snippets

– Deep dive Find new topics inside another document
– Refine Filter the current search topic by adding new parameters and change

the found results

• Search history Revisit prior searches not to lose fleeting thoughts or branch into
another search direction from previous search paths

2.3 Design & Architecture
In the following subsections, we elaborate on any additional agreed-upon design or
architecture considerations involving our presented concept. These considerations, while
mentioned in early meetings, were refined and iterated over throughout the development
process. Therefore, the subsequent sections also mention more implementation-specific
aspects than the preceding requirement sections.

2.3.1 Explainable Results
Any outputs of our work should be reproducible, easily interpretable, and, in case of the
prototype, aided by visual representations of the relations between different query terms.

13

2. Analysis of the Requirements of Historians

It was also an explicit requirement of the historians to provide means to visualize the
internal query modifications, which we will further elaborate on in Chapter 5. Based on
this requirement, we also provide an optional view for each query, that demonstrates
the natural language processing steps (NLP) conducted on the query terms, as well as
query extensions based on language translations and synonym dataset matches. The
manual modification of the native underlying query, which is internally created after a
user launches a search query, was brought up during requirements elaborations to support
expert users. As of this writing, this remains an open challenge, but we argue that our
concept strikes a good balance between query transparency and usability and urge future
work to provide more concepts also geared towards expert users.

2.3.2 Modular & Expandable Tooling
As a direct result of our requirements analysis, we aim to produce a prototype encompass-
ing all gathered and discussed goals and providing a visual representation for the discussed
concepts. The resulting search prototype draws upon an orchestrated multi-container
architecture. As a consequence of the orchestration, existing services can be easily scaled
up from a prototype trial setting to production requirements.

Each microservice contained in the architecture deals with different areas of concern and
can be used independently. The modular nature also allows to decouple different steps in
the input processing and visualization process, which opens up a multitude of expansion
options. For example, while our current input method of choice relies on annotated PDFs,
future additional modules could support new input types, or use the underlying data for
an entirely different search interface. This reinforces both feature robustness, because
of the possibility to focus on core capabilities, but also allows for flexibility to adapt to
future requirements.

2.3.3 Performance
As previously described, the prototype development process is intended to be of incre-
mental nature, interlaced with stakeholder feedback for various milestones. This process
based on various iterations is vital to keep the actual implementation aligned with the
defined requirements. Equally important is that the fulfilment of requirements may
be grasped differently by some parties, or the perception of the defined requisites may
change in light of actually implemented features.

One aspect of the essential takeaways from feedback in incremental steps should be
performance considerations. Since one vital component of our work is to develop and
evaluate a search interface prototype including the necessary backbone architecture,
performance needs to be monitored along the way and improved, where possible.

During input document handling and dynamic query-time snippet generation, computing-
and memory-intensive image editing and PDF parsing processes are at work, which need
to be kept at minimum loads to maintain server stability and support request scalability
and overall response times.

14

2.4. Summary

While response times might be a universal requirement, the user interface needs to
provide a fluid search experience across all different modes of interaction. Given the
decision to develop our prototype user interface as a web application, miniscule changes
in visualization can lead to incompatibilities in any of the popular browser stacks.

2.4 Summary
To conclude, we gathered the requirements of the historians involved in the VHH project
for a novel user interface concept focused on exploring digitized historical archives
containing written documents. Over the span of several meetings and discussions, we
established the importance of digital facsimile documents as the foundation of our search
experience. On top of working with digitized representations of the source material
to provide an authentic experience, we devise an interactive user-driven workflow for
investigating topics and navigating diverse and multilingual document corpora. This
workflow is supported by enhancing the facsimile documents with positional and textual
metadata to allow users to highlight and search sections directly inside the visual
representation of the documents. By enhancing facsimile documents in our user interface
concept and translating search requests to find relevant documents across languages, we
hope to mimic the process of physically exploring an archive, while providing helpful
digitally aided improvements.

15

CHAPTER 3
Background and Related Work

Within the sections in this chapter, we aim to present prior research and approaches
that either serve as a basis for our methodology in this work and its findings or provide
interesting parallels to our prototype implementation.

Since our approach significantly benefits from pre-processed archive documents, Section
3.1 introduces some methods for processing text in facsimile documents. We explore
various endeavours of experimenting with different ways of visualizing information in
user interfaces packed with dense information in Section 3.2. Digitized historical archives
can contain various kinds of source data ranging from film material, and metadata of
past events, to digitized newspapers and written documents or manuscripts. Some ways
to go about presenting extensive archive corpora are highlighted in Section 3.3. As a
consequence of the multilingual nature of our archive corpus, we briefly inspect findings
surrounding multi- and cross-lingual user interfaces in Section 3.4.

3.1 Text Document Processing & Correction
Accurate and efficient text processing represents a vital step in the process of bringing
digital archives to life. As previously mentioned, Oberbichler et al. [1] examine workflows
and communication inside digital archive project spaces across disciplines. They argue
that poor initial OCR results should be viewed as a beginning stage to build upon.
Fixing poor OCR results can take different forms, from manual correction workflows, to
re-OCRing digitized documents and employing OCR post-correction pipelines.

Looking back almost a decade, Tranouez et al. [5] present DocExplore, a unified tool
for manuscript management. DocExplore is meant to assist users as early as uploading
facsimile manuscripts, manually annotating or transcribing them combined with OCR-
guided suggestions. While the tool allows search based on OCR, word spotting and
additional indexing metadata and features a functional facsimile viewer, its focus lies

17

3. Background and Related Work

on its curation and authoring capabilities, which enable users to create multimedia
presentations straight from the archive.

3.1.1 Re-OCRing
As early as 2011, in an attempt to improve existing solutions in the field, Marx et al.
[6] look at an established web portal containing over 250,000 OCRed facsimile archive
documents. They notice slow loading speeds due to full documents being downloaded to
just view them and no meaningful query-relevant snippets being shown in the results
list. With this in mind, they build a tool which reconstructs the PDFs together with
the OCR data into more manageable file sizes and also succeeds to increase readability
for blurred text passages. They also propose to add an intermediate solution between
generic document summaries and the full document, by showing a quick view containing
the OCRed text without layout information.

With Tranksribus 1, Colutto et al. [7] provide a comprehensive tool for automated
manuscript processing, text recognition with manual transcription or correction, and
subsequent document search. The automated text recognition pipeline based on layout
analysis and handwritten text recognition (HTR) provides pre-trained neural models out
of the box, but the models can also be individualized by training on custom datasets.
While initially intended for HTR, the OCR process behind Tranksribus proved to also
work considerably well for printed text recognition and re-OCRing of already digitized
texts and was therefore extended and incorporated into the NewsEye project2, which
aims to improve digital cultural heritage mainly in the form of newspaper archives.

Staying in the topic of neural models for manuscripts, Wilkinson et al. [8] propose a deep
neural network approach for word spotting, i.e., detecting word segments and putting
them into a word embedding space, where similar words can be searched and highlighted
based on their similarity to the original query. The tool provides some transparency to
the embedding proximities between matches based on the intensity of the highlighting
colour.

3.1.2 OCR Post-Correction
For large archive corpora, re-OCRing can be a very daunting task. In these cases, measures
to improve OCR output by employing post-correction workflows can be essential. OCR-D
proposed by Neudecker et al. [9] is an extensive open source OCR framework. While
containing conventional OCR capabilities, it also features an unsupervised neural OCR
post-correction model trained on historical German ground truth data. Their model is
based on the noisy channel concept, which aims at finding correct versions of scrambled
words in the context of surrounding text. Even though such post-correction measures
can greatly reduce spelling errors and wrongly recognized words or characters in a target

1https://readcoop.eu/transkribus/?sc=Transkribus
2https://www.newseye.eu/

18

https://readcoop.eu/transkribus/?sc=Transkribus
https://www.newseye.eu/

3.2. Search Result Visualization

corpus, Neudecker et al. also supply the option of manually reviewing corrections to
mitigate false positives in automated corrections.

Hämäläinen and Hengchen [10] devise a similar unsupervised neural post-correction
method leveraging neural machine translation. To train their model, they create a
method of extracting parallel training data from OCRed corpora by grouping and
comparing semantically similar words with their respectively found OCR errors. This
model is not language-specific and can therefore be trained to support other languages
than English, as in their published model.

3.2 Search Result Visualization
How to present information from a diverse and complex archive corpus is an essential
part of enabling interaction with the underlying source material.

Théron et al. [11] survey the development of different visualization methodologies in
historical lexicography, based on tools employed by the Royal Spanish Academy (REA).
Reviewed approaches range from exploring the use of a word across history shown in
snippets in a simplistic text-based interface, to word-stem trees and geographically
pinpointed uses of words over time optionally aided by natural user interfaces based
on gesture navigation. In their findings, they emphasize a core concept of information
visualization, namely ’Information Overload’. Given the wealth of possibilities to visualize
digitized data, designers, and engineers alike might be prone to over-stimulating users with
too many data points and a multitude of complex ways to interact with the information.
Yet, it is highly advisable to constrain information visualization to the range of human
capabilities when it comes to ingesting information and the focus and the attention
required to properly processing relationships between data points.
In the same vein, Chen et al. [12] conduct an empirical study on multi-view visualizations
across numerous publications to figure out positive patterns and negative trends among
data visualization interfaces. Amid many other discoveries, they find that too many
sub-views in an interface go hand in hand with decreased usability, and most surveyed
interfaces resort to two- or three-panel views at most in their interfaces to keep things
simple.
On the opposite end of the spectrum of information visualization, Windhager et al. [13]
review and categorize information visualization tools and research projects, that don’t go
the conventional retrieval route of employing grid-based search result pages and allow
more innovative interactions with the underlying source material. As a result of their
findings, they produce design principles for cultural heritage visualization and, aside from
other suggestions, advise tailoring tools specifically to the structure of the underlying
source data and the tasks and requirements in the local space of each project.

Hoeber [14] further punctuates the importance of an expressive visualization language for
interactive information retrieval and conducts a brief survey into past interface approaches
he himself was involved in. Take for example the search UI concept HotMap [15], which

19

3. Background and Related Work

presents a search user interface that shows an occurrence frequency heatmap for each
query term and lets users sort based on individual query term frequencies.

Another approach comes in the form of Bow Tie, where Khazaei et al. [16] suggest
a library search application, which visualizes backward and forward citations next to
search results by using citation metadata mappings between documents. This citation
visualization, presented – as the name suggests – as bow ties, also grants the ability of
lateral navigation between these documents.

Another feature is the possibility of query refinement. By looking at a keyword histogram
of articles of interest, users can toggle relevant keywords for future searches. While
citation-based visualization and refinement may not be directly applicable to OCRed
facsimile archive documents, the process of moving laterally through a document corpus
by intuitively refining query parameters is highly reminiscent of workflows we propose in
our prototype in Appendix B. Providing more refinement through metadata is of course
in high contention to be a useful feature update in future iterations.

With KLink, Shukla et al. [17] propose a search user interface that explores a novel way of
helping users navigate digital academic libraries. Next to each search result, users can see
keywords provided by the authors, which can be easily used as facets to visually enhance
the search. By toggling these facets, users can visually highlight other documents tagged
with this keyword and filter existing results. In addition to that, documents can be placed
in individual modifiable workspaces to be able to revisit and extend previously explored
topics. Even though KLink uses workspaces and search facets to allow backtracking and
exploration, we argue that this approach follows a similar philosophy to our combination
of search refining and convenient search history navigation.
In terms of faceted search, di Sciascio et al. [18] go a step further with their proposed tool
uRank. Search result pages can be fully customized by users by adjusting the relative
relevance of each single term from the initial query through intuitive weighing sliders.
Adjustments don’t alter the result page instantly, but rather highlight the affected result
items and how they are going to move in the ranking if the change is propagated. An
additional sidebar with summarized keywords extracted from the results can be used
to add keywords to the ranking on the go. With these features, uRank offers result
transparency and fine-tuning to users.

Discourse surrounding digitized material can get very complex and requires tools sup-
porting the analysis and recording of narratives and arguments arising from prior text
analysis. Viscourse, a tool proposed by Martin-Rodilla and Sánchez [19], provides a novel
take on extracting and linking text segments from digital documents and visually linking
them to support an argument or capture a discussion.

3.3 Digital Archive Visualization
Historical archives can cover a large timespan, cross the boundaries of language, and
often consist of several distinct types of input formats that each benefit from different

20

3.3. Digital Archive Visualization

ways of presenting them.

3.3.1 Newspaper Archives
One highly researched subsection of digitized archives involves historical newspaper
collections. Through their findings, Ehrmann et al. [20] bring out an interesting parallel
between historical newspaper archives and our endeavours to visualize historical archives
with a more diverse corpus. They conduct a survey of interfaces for digitized historical
newspapers and gather the various features available in these interfaces. One significant
aspect in the context of our work is how many interfaces deal with facsimile display and
OCR text. Most surveyed interfaces provide some form of snippet previews and search-
relevant highlighting in facsimiles (83% and 79% respectively) and over half of them
offer the option of displaying OCR text in some shape or form. Concerning post-OCR
features, automatic post-OCR-correction as well as user-suggested corrections seem to
be an emerging trend by the time of this article (2017), but have not yet fully caught
on. To conclude, Ehrmann et al. show several well-established and emerging trends in
visualizing and interacting with facsimile in digitized historical newspaper archives.

Late & Kumpulainen [4] supplement these previous findings by carrying out a qualitative
study with historians that mainly use digital newspapers during their research process.
They interview the involved historians on their workflow when dealing with digital
surrogates. One remarkable finding is how the historic scholars deal with digitized
OCRed manuscripts or generally hard to read documents. In exemplary tools, that offer
both a facsimile view and OCR text, scholars tend to switch back and forth continuously,
since the facsimile view provides great insight for article boundaries, while the OCR text
can at times supply better context for unreadable passages, while at other times only the
combination of both views gives enough context to comprehend the articles.

We find that interactive digital facsimile in archive search are not yet fully leveraged in
more general historical document archive tools, and hope to learn from problems detected
in the newspaper archive space and finally provide inspiration for future research in that
area by presenting our facsimile- and OCR-focused prototype.

Hebert et al. [21] devise a Platform for Indexing and Valorizing Journal Archives (PIVAJ).
To put it more simply, PIVAJ employs a pipeline that takes archive newspaper facsimile
pages, extracts text through a collaborative OCR correction tool and automatically
segments pages into separate articles [22] via supervised machine learning modelling
techniques (i.e., conditional random fields). The collected and categorized data is finally
presented in a search user interface, which contains a few interesting ideas. While having
features such as ad-hoc recognition error corrections and adaptive zoom resolution for
facsimile detail views, it still employs conventional text-based document summaries in
the search result list and lacks depth in terms of search exploration user experience.

Kettunen et al. [23] take PIVAJ a step further and leverage its capabilities by allowing
users to store and catalogue newspaper clippings dynamically, including extracted and
potentially corrected text created from the previously automatically segmented articles.

21

3. Background and Related Work

NewsEye [24] is a research project dedicated to discovering new ways of interacting with
digital newspaper archives. Under the umbrella of this project, Jean-Caurant and Doucet
[25] introduce a proof of concept user interface. What ties in to our proposed prototype
is the incorporation of facsimile snippets in the search results. While the snippets are not
dynamically created, but rather represent article segments, using the facsimile directly
as surrogates in the search result is akin to our philosophy of interacting with the source
upfront instead of hiding it behind extracted text. Aside from that, the concept offers
interesting features, such as a customizable user workspace, where inserted articles can
be manually labelled based on relevance, and trained topic models that distil topics from
datasets. These topic models enable the discovery of new topics and the consecutive
creation of fully automated topic distribution reports in natural language.

3.3.2 Spatial Archive Data
Caserio et al. [26] demonstrate an archival exploration interface built on top of semantic
metadata. This enables users to investigate historic individuals, events, and places
through interactive maps and cross-linked entries, which further promote exploration.

SpaceWars, proposed by Gutehrlé et al. [27] provides a related map-like exploration of
historical events but achieves it through different means. Instead of relying on semantic
metadata, the pipeline behind SpaceWars searches through digitized text from historical
newspaper archives (NewsEye) to find historical geospatial references and link the source
articles to the visual map locations.

3.4 Multilingual Search User Interfaces
The digitized historic archives processed in this work span a range of different languages.
While in their work Chu & Komlodi [28] stress the distinction between cross-lingual and
multilingual retrieval to signify the user’s multilingual skills or a tool’s capabilities to
translate queries, we use the terms synonymously to indicate both retrieval of documents
in languages apart from the query language and the support of multiple languages
when formulating a search query. Aside from that, Chu & Komlodi devise TranSearch,
a multilingual search interface concept offering automated query translation, manual
translation reformulations for polyglots, and a highly customizable result layout. Based
on their concept, they evaluate different layout options in a qualitative study and find
that simplicity, visibility of result item language, and layout customizability are useful
aspects in multilingual search interfaces.

Similarly, Steichen & Freund [29] conduct a crowdsourced evaluation with over 800
participants and later on, Ling et al. [30] conduct a lab-based user study with 25
participants with both studies evaluating the same multilingual search interface layout
archetypes. Participants had a choice of four layouts, a tabbed interface to switch between
languages, a panel interface showing all result languages in distinct panels side-by-side,
and two interfaces with single lists, a fully interleaved option, and one with languages

22

3.4. Multilingual Search User Interfaces

being grouped in the single list. Both studies found clear language separation to be
preferable to mixed language results, and participants overall had the best experience
with a single list containing separate groups of languages.

23

CHAPTER 4
Import Process for Annotated

PDF Facsimile Documents

The importing and processing of input documents represents an integral step in making
our digital archive exploration concept possible. As elaborated in Chapter 2, our import
workflow is currently built to be able to process PDF files specifically. Incoming PDF
files are digitized facsimile documents originally from historical archives. During the
import process, no optimizations are employed that are geared towards documents from
such archives specifically, but the synonym mappings used to extend the search query
contain domain-specific phrases and are briefly mentioned in Section 5.2.2. Additionally,
to be able to offer all features in our user interface prototype, documents should also be
processed in an OCR tool, or otherwise annotated with positional and textual metadata,
before feeding them to our import tool. The metadata contained within the resulting

Figure 4.1: Facsimile PDF Import Process Steps

25

4. Import Process for Annotated PDF Facsimile Documents

PDFs, which we intend to use as input for our search application, should then contain
information about the recognized or transcribed document text and where each character
of a word is located inside the digital facsimile’s bounds. Once our import process is
kicked off with an input document according to the previously established specifications,
there are several steps to be taken. Figure 4.1 showcases the different processing steps.

We take deliberate measures during the import process in preparation to make further
processing more convenient and efficient because we front-load some of the most resource-
intensive tasks such as parsing the PDF files and extracting images from them. PDF
files are parsed page by page, as source documents could potentially contain dozens or
hundreds of pages. Since we treat document pages separately, this can be a low effort
mitigation technique against exceeding potential memory limits for large files loaded and
parsed all at once, while still allowing for future distributed approaches, or approaches
aimed at higher resource capacities, to scale up our existing process.

4.1 Image Extraction
After an individual document page is parsed and loaded into the runtime, we need to
convert the page to an image. Based on how our user interface prototype is designed in
accordance with the requirement to digitally replicate archive exploration, the facsimile
representations of the documents are a vital component of interacting with search results
and the relevant documents themselves. With our plans to dynamically crop relevant
page sections into image snippets, we have to run several file modifications on each page
during runtime. To reduce the overhead of these file operations, rather than working
with the source PDFs directly, we convert the individual PDF pages into an image file
format such as JPEG, even though we initially lose the inherent interaction capabilities
of already textually annotated PDFs.

The first step includes a direct conversion from the singled out document page to a JPEG
file in the source file’s native resolution. As we have previously stressed in Chapter 2 when
talking about performance requirements, the development process contained periodic
performance assessments throughout various aspects of our prototype design. One of
the results from initial dynamic snippet creation testing showed a noticeable increase in
response time and peak memory load for extracted images with higher native resolutions.
To reduce the required resources for post-import snippet generation, we added another
processing step to scale down the image resolution for all processed pages. Images are
scaled down to 25% of the native resolution up to a lower threshold of either the width or
height reaching 1500 pixels, while still preserving the aspect ratio. An example facsimile
document page can be seen before and after scaling down in Figure 4.2. Even though
at a glance, both versions provide a similar level of readability, the magnified sections
show visibly blurrier line edges in the scaled down page. Still, the reduced resolution and
resulting file size leads to faster load times and a significantly lower processing footprint
for snippet generation, and therefore greatly outweighs the slight step-down in sharpness.
In our tests throughout development, we found this scale factor to strike an acceptable

26

4.2. Text & Layout Data Processing

(a) Original resolution (2656 x 4288) (b) Scaled down resolution (1328 x 2144)

Figure 4.2: Example document before and after downscale

balance between improved performance and quality preservation.

The higher quality image is still widely used in our prototype to display full document
pages, while the lower resolution version is used solely for snippet generation purposes.
The snippet creation performance is described in more detail in Chapter 6.

4.2 Text & Layout Data Processing
If the imported PDF is the result of OCR processing, or was annotated through other
means, the loaded and parsed PDF page should contain a collection of the recognized
characters and their respective position on the page. With PDFMiner1, the PDF parsing
tool chosen for this work, we can extract the full text and all character positions from
each individual document page. The page text is in turn used for building our text-based
search index, which generates the search results that serve as the baseline for query
extensions (Chapter 5) and dynamic snippet generation (Chapter 6).

1https://github.com/pdfminer/pdfminer.six

27

https://github.com/pdfminer/pdfminer.six

4. Import Process for Annotated PDF Facsimile Documents

The initial composition of the character position data is structured in boxes representing
lines or layout regions detected based on layout analysis ordered from top to bottom and
the characters inside the line boxes ordered based on the reading direction (default: left
to right). This mostly flat and ordered structure is beneficial for efficiently constructing
an interactive visual overlay of our facsimiles because we want to allow users to manually
highlight text sections in the correct reading order in our interface. However, another
goal is the automated highlighting of relevant sections in the document pages from the
search result. An inverted mapping from the words to the respective positions in the
text lets us retrieve relevant words and text sections more efficiently.

For this purpose, we iterate through the line boxes and construct word boxes from the
character boxes that constitute a word. We tokenize the list of characters into words
based on whitespace characters pre-established as likely word separation signals, and
also choose to filter out special characters, such as dashes, slashes, and ampersands, that
hinder indexing and retrieval of similar word constructions. In the next step, we use the
detected language resulting from analysing the full-page text to be able to categorize
morphologically similar words in the text. According to the detected language, we strip
down the tokenized words by stemming them to the most likely morphological root
form and normalizing any format inconsistencies. Once the words are in their respective
base forms, we distribute all collected word positions to the appropriate word roots to
create our inverted mapping. Listing 4.1 shows a simplified approach for the previously
described process in Python language notation. In Chapter 6 we go into more detail on
how we leverage this data structure to quickly visualize relevant text sections.

Listing 4.1: Tokenization and inverse position map construction
word_position_map = {}
F i l l above d i c t i o n a r y /map with a mapping from word stems
to l i s t s o f o r i g i n a l words and t h e i r bounding box
for l i n e in l i n e s :

for character_data in l i n e :
Extrac t char and char p o s i t i o n
character , character_box = character_data
word = ’ ’
word_box = (0 , 0 , 0 , 0) # Bounding box coord ina t e s
i f cha rac t e r not in s epara to r_charac t e r s :

word += charac t e r
Create new box bounds i n c l u d i n g new charac t e r
extend_word_box (word_box , character_box)

else :
End of word reached
Normalize and stem word
word_stem = normalize_and_stem (word)
Map word stem to the o r i g i n a l word and i t s p o s i t i o n
word_position_map [word_stem] . append (word , word_box)

28

4.2. Text & Layout Data Processing

We make a deliberate decision to logically separate the extracted data. This decision
results in different storage mechanisms for the raw page text data and the processed
bounding box data. This allows the text-based index to provide a fully functional search
experience without being coupled to our visual concept. Our facsimile-based visual
approach can build upon results from the text-based index, but in partially decoupling
these two sets of data, we leave the possibility of future work leveraging our search index
and query processing, while potentially pursuing a novel visualization approach.

29

CHAPTER 5
Query Processing

After introducing our document import process, we elaborate how the gathered data
is persisted and queried. Our earlier established goals are to support several languages
for incoming documents, and for user queries launched in our search prototype. We
present our approach to support multiple input and query languages and different modes
of search in our prototype in the following subsections.

5.1 Query Structure
Our proposed query process allows two basic modes of operation. Either mode A, a
simple search query that contains a single search phrase, or mode B, a query composed
of multiple independent search phrases. The distinction behind these two modes can be
observed on the user-facing side and also how they are handled internally in our query
processing and during query extension.

The intention behind a simple single phrase query is to start a new independent search.
While the query phrase can contain several words, partial matches of the whole phrase
are enough for documents to be ranked and retrieved. Each word from the query can,
but does not have to be included in the retrieved documents, even though any matched
word contributes to the overall ranking of the documents. Retrieval ranking currently
uses BM25, a ranking function that relates the frequency of relevant terms in a document
to the overall occurrence frequency of the terms across all documents in the index, which
in our case contains individual pages of digitized archive documents. Query mode A can
therefore be equated to placing each word in a query phrase into a logical disjunction.

On the other hand, query mode B comes with the intention to let users refine existing
searches of mode A. When users have already launched a query but find an interesting
new topic they want to search within the bounds of the existing query, they can fine-tune
the query with an additional subquery. Mode B queries therefore are composed of mode

31

5. Query Processing

A subqueries. While internally, the subqueries are handled like mode A queries, each
individual subquery needs to have at least one corresponding match in the retrieved
documents. This choice leads to the retrieved documents always being a subset of either
subquery and an intersection of all provided subqueries, which in turn equates to a logical
conjunction.

Figure 5.1 shows a comparison of the two query modes based on how they would match
the same document page. In the first scenario, we have a single query in query mode A,
searching the phrase ’ambush attack’, while the second query builds on the first phrase to
build a composite query in query mode B adding the phrase ’night’. Due to the permissive
nature of query mode A, the document page would result in a match based on several
terms matching with ’attack’, even though no mention of ’ambush’ is present. While
this suffices for the first scenario, the restrictive nature of query mode B filters out the
page, since no match for the second part of the composite query can be found, which
in turn makes sense when a user wants to refine the initial query by potentially finding
documents that report on ambush attacks happening at night.

On top of both query modes, our query processing offers the ability to apply property
filters based on metadata properties stored alongside the indexed page text. Such filters
can be appended to existing queries through a simple conjunction, and therefore it is
easy to extend the current query structure with additional filters in the future. Currently,
this includes the option to filter based on the document source language or to restrict the
search to one single document altogether. Restricting the search to a single document
can be helpful in exploring topics within a large document consisting of several dozens of
pages.

5.2 Semantic Query Extension
As we have detailed in Chapter 4, our import process detects the most likely language of
a document page before feeding the page text into our search index. This source language
information is also persisted to the index as part of the metadata registered for each page.
Aside from this information being used for enabling user-driven result filtering based
on preferred languages, it can also be used to weave in language-specific and synonym
extensions into the previously described query structure. We do not further distinguish
between different source languages when feeding documents to the index. In Appendix
B, we demonstrate how we highlight query extension mechanisms in our user interface
prototype.

5.2.1 Term-based Translation
One measure to increase our recall across a multilingual document corpus is to extend the
basic structure described in Section 5.1 with term translations. In place of the basic query
terms in the initial structure, we set a list of translations of the term, which are in turn
equivalently ranked during retrieval. For this purpose, incoming query phrases are run

32

5.2. Semantic Query Extension

Figure 5.1: Match comparison of query modes based on a common document page

through language detection to determine how to translate the query terms. Longer queries
yield an increase in detection accuracy, but the translation process falls back to English
as a starting language. Each term in a query is translated individually into all available
languages and added to the list of the equivalent term translations that are considered for
finding matching document pages. Our translation process is based on a lexicon extraction
model devised by Choe et al. [31] that yields a dataset of over 3500 bilingual lexicon
language pairs. Within our solution, we have chosen to support 10 languages, which
were extracted from a digitized archive test data excerpt used throughout development.
While it would be ideal to support all possible language pairs to enable direct translation
between all languages, we have resorted to using a reduced set of languages pairs. With
word2word 1, the tool wrapping the previously mentioned lexicon dataset, each language
pair can be loaded separately into memory. Each additional language pair constructs
an interactive data structure during runtime that in turn increases the runtime memory
load, and the intention to support all bidirectional language pairs to directly translate
between 10 languages increases the memory overhead and the initial loading time of the
translations service. The number of overall language pairs can be calculated through
combinatorics, by viewing the process of pairing languages in one translation direction as
a variation without repetition. With our base set to choose from being 10 languages and
our choice containing 2 languages for each pair in one direction, we have the following

1https://github.com/kakaobrain/word2word

33

https://github.com/kakaobrain/word2word

5. Query Processing

Figure 5.2: Supported language translation pairs for query extension

result:
n!

(n − k)! = 10!
(10 − 2)! = 90

This means a full adoption of all possible pairs between the 10 languages would result
in 90 pairs. Our reduced variant using only bidirectional language pairs from and to
English results in 18 language pairs and an overall memory overhead reduction of 80%
compared to a full adoption. Figure 5.2 shows the supported bidirectional translation
pairs. With this approach, at the cost of having to translate incoming terms to English
first before further translating them to the target language, we can reduce the needed
memory overhead significantly.

Keeping the index mostly language independent creates the possibility to handle translation-
based query extension in two different ways. More precisely, the discussion revolves
around whether to indiscriminately retrieve all translated terms from documents in all
indexed source languages, or to target each specific source document language with the
translated terms in that respective language. Both options come with their benefits
and disadvantages. The language-independent variant greatly benefits in cases, where
documents contain foreign language words or phrases, that otherwise would not be
retrieved. On the other hand, there is a high potential for retrieving false positives,
where phrases in foreign languages have a matching word stem, but an entirely different
meaning. One such example that surfaced during a prototype test iteration was the
English noun ’war’ matching with the conjugated form of the German verb ’sein’, ’war’,
which equates to the past tense form of ’to be’. This effect could be counteracted by
letting users manually strike such false positives dynamically in query results and adjust
the query accordingly, or by defining a blacklist of cross-retrieved words beforehand.
In contrast, the language-specific version yields a higher rate of true in-language matches,
while losing the ability to retrieve terms in different languages than the document language.
To pick up the previous example, an English input query containing ’war’ would search
for ’war’ in English document pages exclusively, while the German translation ’Krieg’
would be retrieved from German documents only. Such a language-specific approach
requires some additional query extension overhead. The produced overhead consists of
the requirement to branch up each individual translated term and pair it up with a
document language filter, and finally extend the query with each term-filter-pair through
a conjunction. This proposed language-specific approach serves as mitigation to prevent
users from having to circumvent internal query issues by having to manually strike bad
cross-language matches, even if they miss an occasional fringe document with this variant.

34

5.2. Semantic Query Extension

5.2.2 Synonym Extension
The synonym data structure is represented as a collection of base phrases, which are
each in turn mapped to a collection of domain-specific multilingual synonyms of the base
phrase. Similar to the approach for extending terms with their translations, terms within
the query are compared against synonymized phrases. Any synonym matches result in
an extension of the query structure. Synonyms of terms are combined with their source
terms in the query, and any detected matches in target documents are ranked equivalently
to a source term match. Multilingual synonym extension, next to the term translations,
provides an additional layer of increased recall across document source languages, but, in
this instance, is aimed at domain-specific phrases, which we could not account for through
conventional translation alone. In our user interface prototype, synonym matches are
highlighted in a specific manner to visually distinguish them from terms and translations.
This visual design choice, and also the way we inform the user of query extensions, are
showcased in Appendix B. All term translations and found synonyms are subsequently
passed on as metadata in the search results, since this information is vital for snippet
generation and highlighting.

35

CHAPTER 6
Dynamic Generation of Relevant

Facsimile Page Snippets

Digitized facsimile are the foundation of our visualization concept and as such can be fully
viewed and explored in our user interface prototype. However, utilizing high-resolution
facsimile in a user interface that should ideally feel quick and responsive can have its
downsides. In Chapter 4, we detailed how we prepare and visually downgrade the gathered
facsimile data to remedy later processing bottlenecks. This chapter in turn covers the
processing of these prepared facsimiles. The core idea of our processing is to dynamically
crop snippets from relevant document pages that contain the most important sections
of a page, instead of rendering full pages for relevant result hits. This step is taken to
visually declutter the search result overview by preventing a noisy result view containing
full document pages. Additionally, we can defer rendering the high-resolution original
facsimile to an optional detail view that can be reached via the individual search result
snippets.

There are several steps that comprise the snippet generation process. Starting with a
user query, we retrieve a list of relevant document pages and query extension metadata
during the index polling step. Based on the relevant pages, we load and restructure the
previously stored page images and mappings from document words to box positions in the
page during the next step. During snippet candidate collection, we find relevant terms
and phrases that match the query terms, their translations or any relevant synonyms. We
construct boxes that wrap the candidate word boxes with a vertical padding and spanning
the document width. In the following step, we combine any overlapping or adjacent
candidate boxes to prevent redundancy in the finally generated and presented snippets.
Figure 6.1 shows an overview of the mentioned steps, while the following Sections will
highlight each step of the process in detail.

37

6. Dynamic Generation of Relevant Facsimile Page Snippets

Figure 6.1: Steps in the snippet generation process

6.1 Preliminary Measures
The initial two steps described in this section are intended to gather and prepare the
data required for the snippet generation.

6.1.1 Index Polling
The process of creating page snippets on the fly starts by launching a query at our
previously introduced search index. We briefly outline our querying and ranking process
in Section 5.1 and provide a description of our index in Appendix A. Since our index is
structured in a way to catalogue individual pages of each recorded facsimile document, a
search query results in a ranked paginated list of relevant document pages. While the
index stores the text of the document page and additional information for the snippet
generation, we use the ranked pages as a starting point to further retrieve page-specific
OCR metadata that is extracted during the document import phase. Even though our
chosen search engine, vespa1, features the ability to return highlighted sections in the
retrieved documents, we do not leverage this feature for our prototype. We opt not to
utilize or adapt such built-in functions in favour of implementing our own highlighting
solution based on the translation and synonym query metadata provided in the search
result.

6.1.2 Metadata Reconstruction
Based on the search result from our index, we want to construct snippet-based result
entries for each relevant document page. As previously noted in Section 4.2, we extract
OCR metadata during the facsimile PDF import process that contains bounding boxes

1https://vespa.ai/

38

https://vespa.ai/

6.2. Candidate Collection

which surround recognized words. We create an inverted mapping that groups all
bounding box positions based on word stems present on the given page. These mappings
and also the scaled down page images are loaded for each retrieved page individually.
Aside from the page-specific mappings, we have the query metadata at our disposal. The
metadata contains all translated terms and found synonyms that were used in extending
the initial search query. All these terms are stemmed and normalized according to
their assigned language to easier find matching stems in the word boxes created during
document import. Additionally, the mapped word boxes are re-linearized into an ordered
list, again ordered from top to bottom and left to right based on their positions in the
document page. In a later stage, this ordered list lets us generate word boxes that give
users of our UI prototype the possibility to mark text across these boxes in the natural
flow of the source text.

6.2 Candidate Collection
A single page can contain several relevant hits and therefore needs to be examined for
every possible relevant word or phrase based on the initial search query. This requires
iterating through the list of ordered words of each page and trying to gather all relevant
words. Whether a word or phrase is relevant can be determined based on three criteria,
either they can be directly matched to a query term or one of the translated terms, or
the query page text contains synonyms of pre-defined domain-specific terms as explained
in Section 5.2.2. Matching based on a query term is quite straightforward because
all page words as well as the terms and translations of a query are available in their
language-processed stemmed form and can be compared quite effortlessly.

Contrary to that, found synonyms can come in any of several supported languages, are
potentially not fully normalized, or can contain several equivalent sub-phrases which
need to be considered and matched as separate phrases. For instance, some phrases
have the same synonyms linked to them and are grouped together in the synonym data
source (e.g. ’university/academy/college’). Synonyms also do not need to be of equivalent
length to their matched original phrases, meaning single words can be synonymized into
phrases consisting of several words. Based on the synonym data structure, we do not
have access to the definitive source language of the provided synonyms. Due to the short
phrase length of the provided synonyms and translation inaccuracies that come with
short translation sources, we do not attempt to determine the source language of the
phrases and therefore do not apply any language-specific normalization before gathering
matches in the relevant page texts. Given these circumstances, we conduct a best effort
approach to find matches based on synonyms by processing sub-phrases within synonyms
separately and comparing synonyms both against the normalized terms of a page, as well
as the original page text.

Each word or full phrase that is matched in any of the previously described ways, is
further processed. Here, our previously described inverted mapping from single terms
to the respective bounding boxes comes into play. Using this mapping, we can quickly

39

6. Dynamic Generation of Relevant Facsimile Page Snippets

retrieve all positions of relevant terms and consider these relevant boxes as snippet
candidates. Even though such terms can be part of a longer relevant phrase, we treat
each bounding box individually at first. This is because adjacent boxes that we view
as neighbouring bounding boxes in a text sequence can have slightly different positions
and might not even be on the same text line. Snippet candidate boxes start with an
area surrounding the relevant word box. As a measure to provide uniform snippet sizes
across a single page, the width of the candidate boxes are extended to the whole width
of the surrounding page. The candidate boxes are padded with 3% of the overall page
height above and below the relevant word box. Figure 6.2a demonstrates a document
page excerpt after the initial candidate collection process, with all the candidate boxes
(outlined with green borders) repeatedly overlapping.

6.3 Snippet Candidate Pooling
After our candidate collection process, we are faced with a list of horizontal page slices
surrounding relevant words. Since all candidates are also padded and a single horizontal
slice can represent a text line, which might contain several relevant words, individual
relevant boxes can overlap or otherwise be very close to each other on the page. However,
our snippet generation is intended to declutter the search results, therefore displaying a
number of potentially overlapping or even duplicated sections would not contribute to the
goal of having a clear result overview. Accordingly, we want to examine the candidate
boxes including their paddings for overlapping sections and combine them into larger
snippets, until we are left with a set of distinct boxes that do not overlap any more.
By also considering the padding of the candidate boxes, we ensure that relevant word
boxes, which are vertically very close to each other without overlapping, also are pooled
together into a combined snippet. Through this measure, we prevent generating several
adjacent snippets which on the original page are only separated by negligible amounts of
vertical white space. Listing 6.1 describes an approach by iterating over all candidate
boxes and finding overlapping or adjacent bounding boxes and combining them into a
pooled box that surrounds several relevant terms. To visually demonstrate the candidate
pooling process, Figure 6.2 shows a processed excerpt of an example document page
based on the query "combat activity during war". More specifically, Figure 6.2a displays
the initial candidate boxes enveloping relevant terms (additionally highlighted in green)
and the surrounding horizontal slices that are vertically padded and span the whole
document width (outlined with green borders). Here we can clearly see one example,
where multiple terms are located in the same line of the document and would therefore
lead to a duplicate snippet. Additionally, we can see multiple cases in which the padded
space around terms is overlapping or where adjacent padded candidate boxes are only
separated by a small amount of vertical white space. If we employ a process as seen in
Listing 6.1, the resulting pooled boxes for the same document and query can be seen in
Figure 6.2b. We can see that the described process leads to a reduced number of snippet
boxes and additionally removes any redundancy within the combined subset. Once we
have eliminated any snippet overlaps, the created snippet dimensions are finally cropped

40

6.4. Performance Sampling

out of the rendered image of the respective document page. We can see the resulting
cropped snippets for the previously described query example in Figure 6.3b, while Figure
6.3a shows the overlapping and redundant snippets that would result from a process
without candidate pooling. Snippet results contain all word boxes within their bounds,
with the relevant word boxes being highlighted accordingly. Due to the padding being
relative to the page height and not based on individual line height, some word boxes that
are partially visible within the visual snippet are cut off from the provided list of word
bounding boxes.

Listing 6.1: Pooling of overlapping or nearby candidate boxes
word_position_map = {}
checked_boxes = []
candidate_boxes . s o r t () # s o r t based on ascending y−p o s i t i o n
for candidate in candidate_boxes :

for checked in checked_boxes :
check i f boxes are ove r l app ing
or wi th in a lower_bound d i s t ance from each o ther

i f (checked . y0 <= candidate . yo <= checked . y1) or
(candidate . y0 <= checked . yo <= candidate . y1) or
(abs (candidate . y0 − checked . y1) <= lower_bound) or
(abs (checked . y0 − candidate . y1) <= lower_bound) :

combine boxes t h a t are ove r l app ing or nearby
combined = Box(

candidate . x0 ,
candidate . x1 ,
min(candidate . y0 , checked . y0) ,
max(candidate . y1 , checked . y1)

)
checked_boxes . pop (checked)
checked_boxes . append (combined)

else :
checked_boxes . append (candidate)

6.4 Performance Sampling
One concern when generating snippets from the source documents is the processing
speed and the memory overhead during processing. As has been previously mentioned
in Chapter 4, we create scaled down copies of the page images created from the source
documents. Working with smaller images in cases where the quality downgrade can
be tolerated grants us the possibility to improve the response times and generates less
memory overhead while analysing and cropping the pages into snippets.

For this purpose, we created a test setup that allows us to monitor the isolated snippet

41

6. Dynamic Generation of Relevant Facsimile Page Snippets

(a) Overlapping candidate boxes (green highlight) including padding (dark green border & arrows)

(b) Combined term boxes with surrounding padding after candidate pooling

Figure 6.2: Relevant term boxes with paddings before (a) and after (b) pooling for
example query and document page42

6.4. Performance Sampling

(a) Overlapping and redundant snippets

(b) Pooled snippets

Figure 6.3: Generated snippets for same query and document page without (a) and with
(b) candidate pooling enabled

43

6. Dynamic Generation of Relevant Facsimile Page Snippets

Table 6.1: Runtime and peak memory usage for snippet generation with different source
resolution

sample resolution filesize runtime (ms) peak memory
A (original) 2672×4272 1.28 MB 98 – 155 107.4 MiB
A (downgrade) 1336×2135 335.6 kB 27 – 42 69.2 MiB
B (original) 3905×5007 2.48 MB 133 – 174 136.6 MiB
B (downgrade) 1952×2503 689.62 kB 30 – 71 76.5 MiB

generation process and fetches only a singular relevant document page for a given query.
Within each test run, we can toggle between working with the original page in its original
resolution or the downscaled version. This allows us to compare performance metrics
between two versions of the same document page and query. Among the used tools to
evaluate performance are the Werkzeug Application Profiler Middleware2 to capture the
overall endpoint response time and gain insight into runtime distribution, and filprofiler
3 to record peak memory usage. We evaluated the performance for a sample of two
document pages out of the collection of documents that we had at our disposal during
development and testing. These two pages are among a sub-collection of documents
captured at a high resolution, and could therefore benefit greatly from being processed in
a scaled down version for snippet generation. For each profiling tool and both versions of
both sampled pages, we ran our isolated query setup for 10 iterations. Table 6.1 contains
details for the inspected document pages and the metrics observed during testing.

6.4.1 Sample A

Comparing both versions of sample A, we are looking at an average response time
reduction of 72.73% from 126.5 ms to 34.5 ms and a median reduction of 70.59% from
102 ms to 30 ms. Response time improvements for sample A range from 82.58% in the
best-case scenario to 57.14% in the worst-case. The peak memory consumption could be
reduced by 35.57% from 107.4 MiB to 69.2 MiB.

6.4.2 Sample B

Response times for Sample B could be reduced by 67.1% from 153.5 ms to 50.5 ms on
average and by 76.17% from 138.5 ms to 33 ms when looking at the sample medians.
The improvements range from 133 ms – 71 ms (46.62%) in the worst case to 174 ms – 30
ms (82.76%) in the best case. Peak memory consumption sampled across 10 iterations
could be reduced from 136.6 MiB to 76.5 MiB (44%).

2https://werkzeug.palletsprojects.com/en/2.2.x/middleware/profiler/
3https://pythonspeed.com/fil/

44

https://werkzeug.palletsprojects.com/en/2.2.x/middleware/profiler/
https://pythonspeed.com/fil/

6.4. Performance Sampling

6.4.3 Performance Summary
By halving both width and height for source images with high resolutions and therefore
working with a fourth of the source resolution, we manage to cut down response times
for snippet generation by up to 82% in ideal conditions and roughly 70% on average
for our two sampled document pages. Additionally, peak memory consumption can be
reduced by over a third in both cases. This can be achieved while also preserving a
resolution that provides enough quality for the contents to be properly grasped in smaller
document page surrogates in the search result. On the other side of the spectrum, source
documents with low resolutions only are scaled down to a lower bound of 1500×1500,
since they already inherently are being processed faster than documents captured in
higher resolutions and should also not be downgraded beyond legibility.

45

CHAPTER 7
Conclusion

Given the recent improvements in text digitization and post-processing, which in turn leads
to a higher throughput of digitized historic documents, researchers are investigating how
to improve their research and exploration of archival documents in a digital environment.
Together with researchers of the Visual History of the Holocaust project, we discussed the
requirements for a research workflow that involves the use of digitized facsimile documents
in an initial meeting. After analysing the received input from the initial meeting, we
fleshed out specific requirements to adhere to throughout our work. By involving the
researchers in a recurring feedback loop during our iterative design and development
process, we ensured that the initial high-level requirements were properly applied and
adjusted in our resulting technical implementation. As a consequence, we proposed
several tools and components that together aim to satisfy the established requirements,
which were described extensively in Chapter 2.

7.1 Requirements Review
One category, namely input processing, covered the requirements of preserving digitized
archival facsimile quality, providing language support and a source-agnostic interface.
Instead of using an input format of a specific digitization tool, our input processing
workflow supports all text-annotated PDF files, which allows imports regardless of the
source tool and also to optionally support digital-born documents in addition to digitized
archival documents. Processed documents are preserved and stored in their original
quality and in a downgraded version to allow better performance for our dynamic snippet
generation. Additionally, extracted text inputs and OCR-based layout data are processed
and indexed for later search in 10 different languages.

Another discussed and agreed-upon important aspect was the overall search experience
provided by our solution. One core demand from the historians in that category was to
make the research workflow as intuitive and fluent as possible, while trying to replicate

47

7. Conclusion

the experience of exploring topics in an archive with several documents at hand by using
digital facsimile as an interactive starting point for exploration. By adhering to these
requirements, we implemented a search user interface prototype. Searches launched in our
prototype are passed through a query extension mechanism that translates search requests
into 10 languages and additionally enriches the query with domain-specific synonyms
of search terms. Our prototype uses dynamically generated and auto-highlighted image
snippets of facsimile documents, which are relevant to the search. These snippets and also
full-page views of documents are fully interactive via the positional metadata extracted
during the input processing. This means that all facsimile representations in the prototype
can be manually marked to create excerpts and also be used to start new searches or
refine searches to dive deeper into a topic. Users can also quickly navigate between past
searches to change topics. Phrases that are automatically highlighted provide tooltips
to show the linguistic base (stem) form of a relevant word, and info-boxes show the
translations and found synonyms of a search task to provide further explanation to the
found results and highlighted phrases.

Each component within our solution stands on its own, and we have also been asked
by VHH project partners at some point in our recurring feedback loop to provide a
self-contained UI-independent version of our solution to allow leveraging our process
for use in other user-facing tools. The feedback rounds and internal testing rounds
have also yielded some performance observations that we were able to address along the
development process. Among other small improvements, the facsimile scaling ratio for
dynamic snippet generation has been adjusted for the best tradeoff between quality and
response times and the generation process modified to be rendered on the server-side.
Additionally, the input processing was adjusted to load and process document pages one
by one to prevent memory spikes for single-machine setups.

7.2 Limitations & Future Work
The form of input data tokenization and the defaulting to parsing PDFs from left to right
described in Chapter 4, of course, relies very heavily on input text in languages, where
words can easily be determined and separated based on whitespace placement and are
not read from right to left. As our work is heavily focused on the visualization aspect of
the proposed concept and only represents an initial prototype aimed at inspiring further
research, we leave specific tokenization refinements for advancements in language support
in the import process up to future work.

Moreover, our input processing has some additional drawbacks when dealing with other
specific layout circumstances. Hyphenated words that span multiple lines from an OCR
standpoint are treated as separate entities, and can therefore sometimes lead to cases
where words are not properly normalized and fed to the index. Multi-column layouts,
such as newspaper columns or scans of book spreads with both the left and right page
visible, would require additional layout analysis steps to prevent grouping such columns
together logically and interpreting them as single cohesive lines.

48

7.2. Limitations & Future Work

While we managed to satisfy most of the established requirements with our UI prototype,
there are still some open challenges that we suggest future contributors to pursue. Our
query translation mechanism picks the best match out of several translation suggestions
for each query term. Given the complexity and inconsistencies of natural languages and
the fact that we translate word by word in a phrase, we cannot ensure that the translation
will always capture the full context of the source query. Therefore, we propose to enable
the option to let users alter translated query terms on the go. In Section 2.3.1 we even
go a step further and suggest exposing the native vespa YQL1 query and letting expert
users modify the query parameters on the lowest level. Our prototype would also benefit
from additional performance improvements such as more efficient result item and list
caching and the implementation of some UI shortcuts to improve overall research fluidity.

As we have mentioned in Section A.2.2, we have laid the foundation for a more experi-
mental retrieval method involving the representation of words in the form of neurally
trained word embeddings in vector space. These word embeddings and the relations
between different embeddings in vector space allow for a more context-based approach to
information retrieval than conventional word stem matches.

In the form of BERT, Devlin et al. [32] introduce an approach for transformer-based
language representation pre-training. BERT manages powerful bidirectional context
through a masked language model and next sentence prediction in pre-training. The
model’s very task-specific approach to fine-tuning allows BERT to be at the forefront of
tasks in the areas of natural language processing and, consequently, information retrieval.
Multilingual BERT (M-BERT)2 is a modified version of traditional BERT pre-trained
on Wikipedia in over 100 languages, without any language-specific identifiers, but still
performs well with translated as well as zero-shot fine-tuning approaches. For future
research building on our contributions, we suggest to use Multilingual BERT as a starting
point to incorporate neural context-based re-ranking.

1https://docs.vespa.ai/en/reference/query-language-reference.html
2https://github.com/google-research/bert

49

https://docs.vespa.ai/en/reference/query-language-reference.html
https://github.com/google-research/bert

APPENDIX A
Implementation Details

A.1 Architecture
Figure A.1 shows a visual overview of the ArchAIvist prototype project architecture.
Users solely interact with the platform through our Angular-based search frontend
(5). This module forwards user queries to the backend and visualizes the resulting
relevant facsimile documents. All the following backend modules are docker containers
orchestrated in a docker-compose configuration (1). The processing service, a lightweight
Flask Python API, (2) parses the incoming user query for our vespa search index (3)
and is responsible for creating query-relevant snippets from the facsimile document
images. An additional endpoint processes import data for the search index while also
extracting image representations and OCR data for query-time retrieval. Our search index
application (3) is built on top of the scalable and extensible vespa engine. Customized
search components enrich the query terms with translations into multiple languages and
by matching semantically related phrases through a synonym map. Our last backend
container serves as an API for single-term translations through the word2word1 Python
library, built on top of a Flask Python web service (4).

A.2 Indexing
The document indexing process is made up of several steps. This process can be set
into operation by either feeding input documents (in PDF format) via an API endpoint
or an internal import script. Subsequently, all information needed for later overlaying
(highlighted) text over relevant snippets and full document pages is extracted and stored.
Finally, the document text is fed into our search engine of choice, vespa2. Vespa is a

1https://github.com/kakaobrain/word2word
2https://vespa.ai/

51

https://github.com/kakaobrain/word2word
https://vespa.ai/

A. Implementation Details

Figure A.1: Architectural overview

flexible tool with well-documented support for neural language models, and therefore
suits both a traditional approach with an inverted index and more complex natural
language processing (NLP) approaches potentially employed in future work.

A.2.1 Text Overlay Preparation
The following steps work for PDF files with existing OCR information, but can be
adjusted to different input configurations. The input documents are split up into their
individual pages to then be converted and stored as image files via the pdf2image3 library.
These images are important for the frontend visualization, as they act as a background
for the OCR overlay and are the basis for the snippet generation. Additionally, we
use PDFMiner4 to extract terms and their bounding box positions for each individual
document page. A language detect method is applied on the whole page corpus to reduce
the words to their proper linguistic word stem. Next, the bounding boxes are stored in

3https://github.com/Belval/pdf2image
4https://github.com/pdfminer/pdfminer.six

52

https://github.com/Belval/pdf2image
https://github.com/pdfminer/pdfminer.six

A.2. Indexing

an inverse index style mapping from stemmed document terms to bounding boxes on
the document page. As a result, we can later on quickly retrieve all positions of relevant
terms on a page or in a snippet.

A.2.2 Baseline Index & Retrieval
The baseline index and the resulting retrieval method serve as a strong initial basis
for users looking for more conventional results based on term matches. Moreover, as
the name suggests, it can also be used as a performance baseline for evaluating a more
experimental concept based on neural dense retrieval that we propose and discuss in
Section 7.2. Vespa provides a very hands-off approach for automatically building a
basic inverted index for bag-of-words style retrieval, such as BM25. Part of the vespa
configuration process is defining a schema for the processed documents. Our schema is
intentionally kept simple and represents a single document page:

• id

• language: allows for language-based filtering

• parent_doc: document title reference to group individual pages

• page: incremental page numbers inside documents

• body: fully extracted text content of a document page

• collection: semantically group different documents into separate collections

Automatic indexing of such fields can be enabled through the ‘indexing’ attribute. Of
these fields, currently only the ‘body’ field is indexed for BM25 retrieval. BM25 is a
ranking algorithm which scores documents based on the frequency of occurrences of query
terms (= term frequency), but favours rare terms through an inverse document frequency
(IDF) calculated across the whole document corpus.

Since we are dealing with a multilingual document corpus, we must account for language
discrepancies between the query language and document languages. To this end, we have
implemented a custom searcher component in our vespa application that extends the
original incoming query thanks to the translation API mentioned in the architecture
section. When processing a query in our backend, our custom searcher tries to detect
the source language and translates all query terms into all other supported document
corpus languages. We can therefore use this extended multilingual query to allow for a
more accurate ranking of document pages in other languages. In addition to translating
all query terms, they are matched against a synonym data structure that maps domain-
specific base terms to synonyms in different languages. The custom searcher returns a
result very similar to the default vespa JSON result format5, which additionally contains
translations and synonym metadata collected during query extension.

5https://docs.vespa.ai/en/reference/default-result-format

53

https://docs.vespa.ai/en/reference/default-result-format

APPENDIX B
User Interface Prototype

We present our user experience concept and the resulting prototype based on a typical
user workflow: Our user wants to delve into a specific topic from the historic documents
that were previously digitized and handled by our import process. After typing in a
search phrase, the application starts working away in the background and promptly
presents a list of results. An example result list can be seen in Figure B.1. Each item
in this list represents a document page from the archive that matches the given query –
either through exact term overlaps or synonym phrases across various languages. The
results inform the user, which document the relevant pages are from and show cropped
snippets from a digitized facsimile representation of the page with relevant passages
already highlighted. After clicking on one of the result items, the user is now confronted
with a high-resolution facsimile view of the full page with all relevant text passages
already visually highlighted B.2. The page detail view contains a shortcut to all other
relevant pages from the parent document, and also navigation buttons to leaf through
the document page by page. Any potentially interesting text passage can be marked (via
an invisible overlay of OCR-extracted plain text placed on top of the facsimile image).
After marking a text section, a context tooltip is displayed on top of the selection, which
lets users copy, search, or filter the marked text passage (Figure B.3). Like the initial
query from the beginning of our example scenario, our prototype takes this passage, and
launches a new search or filters the existing search based on the marked passage. The
difference between searching or filtering based on a manually marked passage are the two
different query modes explained in Chapter 5. Where the tooltip ’search’ launches a new
query in mode A, the ’filter’ option launches a query in mode B that refines the current
query results based on the marked passage. As previously mentioned, ArchAIvist both
looks for exact or translated term matches across languages and tries to find matches in
a pre-compiled selection of multilingual synonyms and again returns a new result list of
relevant document snippets. These snippets, like the full facsimile pages, contain fully
selectable text that can again lead to the contextual tooltip, which allows new searches

55

B. User Interface Prototype

Figure B.1: Search result list containing relevant pages with facsimile snippets

and refinement. All search result lists can be individually filtered via the initially detected
document language and sorted based on their relevance ranking or document name. The
prototype’s search history, lets users trace back past searches and explored documents,
and users can also swiftly scroll horizontally through their history at any time. The text
contents of the dynamically generated snippets can be copied and saved elsewhere and
each search result also lets users download the original PDF document that was imported.
Additionally, the application features an ‘explore’ mode, which shows several searches or
document pages side-by-side, or ‘focus’ mode where each search result or detail view is
scaled to the available screen width (Figure B.4).

Finally, we will revisit parts of the described user workflow to summarize the inner
workings of the query process in combination with the UI prototype in light of all
explained processes from previous chapters and the implementation details highlighted in
Appendix A. Once the user has typed in a query, a request to our processing service gets
launched. This service serves as a slimmed down intermediary to the very comprehensive

56

Figure B.2: Clicking a specific page in the result list opens a detail view of the full page
side-by-side

API vespa applications provide out of the box. The parsed request gets forwarded to
our multilingual search chain. As previously touched on, our custom searcher builds an
extended multilingual query from the search terms and also includes matching synonym
phrases. This extended query and the ranked relevant document pages are then returned
to our intermediary service API. With the inverted index of stemmed query terms to
positional bounding boxes, we can quickly locate the exact positions of relevant terms
on a document page and cut out snippets around these terms. The service API then
returns all retrieved information, including IDs for the server-side generated snippets in
the response and relevant bounding box data, to the frontend. From here on, the frontend
can start with visualizing the query results. Relevant document pages are displayed in a
vertical list with an infinite scroll feature, incrementally loading the latest items when
the bottom is reached. The result items are cards containing the document name, the
page number and a collection of query-relevant interactive snippets. Clicking on one
of the result cards lets the user delve deeper into a single document or page on a new
horizontal search beam next to the previous beams. Every search or document detail
exploration adds on to the chain of search history items, that can always be examined on
the left, and lets users quickly horizontally navigate to previous searches or documents
(Figure B.5). Document detail beams display a full image of the facsimile document
page for more thorough examinations. Moreover, these detail views of single pages can
serve as a stepping stone to extend the user’s search chain. To further encourage archive
exploration, our angular application renders an invisible overlay of term bounding boxes
on top of the image snippets and full-page images. These bounding boxes show a tooltip
with the characters recognized by OCR at the position when hovering over them (Figure
B.6). For instance, this can be useful to sift through hardly legible text passages, or

57

B. User Interface Prototype

(a) Launch new search based on the marked text passage

(b) Refine the previous search based on the marked text passage

Figure B.3: Continue searching or refine searches through a context tooltip after manually
marking text sections

58

(a) Focus – Scales the contents to the fully available width to investigate single results or documents

(b) Explore – Gives an overview of the past searches and documents to promote extending the
search chain

Figure B.4: Comparison of the two layout modes

59

B. User Interface Prototype

Figure B.5: Interactive history results Figure B.6: OCR box overlay text tooltip

simply to detect OCR misses and errors. Additionally, these bounding boxes enable the
user to mark text passages directly in the facsimile renderings. Our application also
visually highlights term boxes that are relevant to the current search. Upon marking a
text passage, a tooltip opens positioned just above the passage, which enables the user to
either start a new search query with the text selection or copy the text to the clipboard.

60

List of Figures

4.1 Facsimile PDF Import Process Steps . 25
4.2 Example document before and after downscale 27

5.1 Match comparison of query modes based on a common document page . . 33
5.2 Supported language translation pairs for query extension 34

6.1 Steps in the snippet generation process . 38
6.2 Relevant term boxes with paddings before (a) and after (b) pooling for example

query and document page . 42
6.3 Generated snippets for same query and document page without (a) and with

(b) candidate pooling enabled . 43

A.1 Architectural overview . 52

B.1 Search result list containing relevant pages with facsimile snippets 56
B.2 Clicking a specific page in the result list opens a detail view of the full page

side-by-side . 57
B.3 Continue searching or refine searches through a context tooltip after manually

marking text sections . 58
B.4 Comparison of the two layout modes . 59
B.5 Interactive history results . 60
B.6 OCR box overlay text tooltip . 60

61

Bibliography

[1] S. Oberbichler, E. Boroş, A. Doucet, J. Marjanen, E. Pfanzelter, J. Rauti-
ainen, H. Toivonen, and M. Tolonen, “Integrated interdisciplinary workflows
for research on historical newspapers: Perspectives from humanities scholars,
computer scientists, and librarians,” Journal of the Association for Informa-
tion Science and Technology, vol. 73, no. 2, pp. 225–239, 2022. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/asi.24565.

[2] D. Force and B. Wiles, ““Quietly Incomplete”: Academic Historians, Digital Archival
Collections, and Historical Research in the Web Era,” Journal of Contemporary
Archival Studies, vol. 8, Dec. 2021.

[3] A. Hawkins, “Archives, linked data and the digital humanities: increasing access to
digitised and born-digital archives via the semantic web,” Arch Sci, Dec. 2021.

[4] E. Late and S. Kumpulainen, “Interacting with digitised historical newspapers:
understanding the use of digital surrogates as primary sources,” JD, vol. 78, pp. 106–
124, Sept. 2021.

[5] P. Tranouez, S. Nicolas, V. Dovgalecs, A. Burnett, L. Heutte, Y. Liang, R. Guest,
and M. Fairhurst, “DocExplore: overcoming cultural and physical barriers to access
ancient documents,” in Proceedings of the 2012 ACM symposium on Document
engineering, DocEng ’12, (New York, NY, USA), pp. 205–208, Association for
Computing Machinery, Sept. 2012.

[6] M. Marx and T. Gielissen, “Digital weight watching: reconstruction of scanned
documents,” IJDAR, vol. 14, pp. 229–239, June 2011.

[7] S. Colutto, P. Kahle, H. Guenter, and G. Muehlberger, “Transkribus. A Platform
for Automated Text Recognition and Searching of Historical Documents,” in 2019
15th International Conference on eScience (eScience), pp. 463–466, Sept. 2019.

[8] T. Wilkinson, J. Lindström, and A. Brun, “Neural Word Search in Histori-
cal Manuscript Collections,” Tech. Rep. arXiv:1812.02771, arXiv, Mar. 2020.
arXiv:1812.02771 [cs] type: article.

63

[9] C. Neudecker, K. Baierer, M. Federbusch, M. Boenig, K.-M. Würzner, V. Hartmann,
and E. Herrmann, “OCR-D: An end-to-end open source OCR framework for historical
printed documents,” in Proceedings of the 3rd International Conference on Digital
Access to Textual Cultural Heritage, (Brussels Belgium), pp. 53–58, ACM, May 2019.

[10] M. Hämäläinen and S. Hengchen, “From the Paft to the Fiiture: a Fully Automatic
NMT and Word Embeddings Method for OCR Post-Correction,” in Proceedings -
Natural Language Processing in a Deep Learning World, pp. 431–436, Oct. 2019.
arXiv:1910.05535 [cs].

[11] R. Therón, C. Seguín, L. de la Cruz, and M. Vaquero, “Highly interactive and natural
user interfaces: enabling visual analysis in historical lexicography,” in Proceedings of
the First International Conference on Digital Access to Textual Cultural Heritage,
DATeCH ’14, (New York, NY, USA), pp. 153–158, Association for Computing
Machinery, May 2014.

[12] X. Chen, W. Zeng, Y. Lin, H. M. AI-maneea, J. Roberts, and R. Chang, “Composition
and Configuration Patterns in Multiple-View Visualizations,” IEEE Transactions on
Visualization and Computer Graphics, vol. 27, pp. 1514–1524, Feb. 2021. Conference
Name: IEEE Transactions on Visualization and Computer Graphics.

[13] F. Windhager, P. Federico, G. Schreder, K. Glinka, M. Dörk, S. Miksch, and E. Mayr,
“Visualization of Cultural Heritage Collection Data: State of the Art and Future
Challenges,” IEEE Transactions on Visualization and Computer Graphics, vol. 25,
pp. 2311–2330, June 2019. Conference Name: IEEE Transactions on Visualization
and Computer Graphics.

[14] O. Hoeber, “Information Visualization for Interactive Information Retrieval,” in
Proceedings of the 2018 Conference on Human Information Interaction & Retrieval,
CHIIR ’18, (New York, NY, USA), pp. 371–374, Association for Computing Machin-
ery, Mar. 2018.

[15] O. Hoeber and X. D. Yang, “HotMap: Supporting visual exploration
of Web search results,” Journal of the American Society for Informa-
tion Science and Technology, vol. 60, no. 1, pp. 90–110, 2009. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/asi.20957.

[16] T. Khazaei and O. Hoeber, “Supporting academic search tasks through citation
visualization and exploration,” Int J Digit Libr, vol. 18, pp. 59–72, Mar. 2017.

[17] S. Shukla and O. Hoeber, “Visually Linked Keywords to Support Exploratory
Browsing,” in Proceedings of the 2021 Conference on Human Information Interaction
and Retrieval, CHIIR ’21, (New York, NY, USA), pp. 273–277, Association for
Computing Machinery, Mar. 2021.

[18] C. di Sciascio, V. Sabol, and E. E. Veas, “Rank As You Go: User-Driven Exploration
of Search Results,” in Proceedings of the 21st International Conference on Intelligent

64

User Interfaces, IUI ’16, (New York, NY, USA), pp. 118–129, Association for
Computing Machinery, Mar. 2016.

[19] P. Martin-Rodilla and M. Sánchez, “Software Support for Discourse-Based Textual
Information Analysis: A Systematic Literature Review and Software Guidelines in
Practice,” Information, vol. 11, p. 256, May 2020.

[20] M. Ehrmann, E. Bunout, and M. During, “Historical Newspaper User Interfaces: A
Review,” 2017.

[21] D. Hebert, T. Palfray, S. Nicolas, P. Tranouez, and T. Paquet, “PIVAJ: displaying
and augmenting digitized newspapers on the web experimental feedback from the
"Journal de Rouen" collection,” in Proceedings of the First International Conference
on Digital Access to Textual Cultural Heritage, DATeCH ’14, (New York, NY, USA),
pp. 173–178, Association for Computing Machinery, May 2014.

[22] D. Hebert, T. Palfray, S. Nicolas, P. Tranouez, and T. Paquet, “Automatic article
extraction in old newspapers digitized collections,” in Proceedings of the First
International Conference on Digital Access to Textual Cultural Heritage - DATeCH
’14, (Madrid, Spain), pp. 3–8, ACM Press, 2014.

[23] K. Kettunen, T. Pääkkönen, and E. Liukkonen, “Clipping the Page – Automatic
Article Detection and Marking Software in Production of Newspaper Clippings of a
Digitized Historical Journalistic Collection,” in Digital Libraries for Open Knowledge
(A. Doucet, A. Isaac, K. Golub, T. Aalberg, and A. Jatowt, eds.), Lecture Notes in
Computer Science, (Cham), pp. 356–360, Springer International Publishing, 2019.

[24] A. Doucet, M. Gasteiner, M. Granroth-Wilding, M. Kaiser, M. Kaukonen, R. Labahn,
J.-P. Moreux, G. Muehlberger, E. Pfanzelter, M.- Thérenty, H. Toivonen, and
M. Tolonen, “NewsEye: A digital investigator for historical newspapers,” in 15th
Annual International Conference of the Alliance of Digital Humanities Organizations,
DH 2020, (Ottawa, Canada), July 2020.

[25] A. Jean-Caurant and A. Doucet, “Accessing and Investigating Large Collections
of Historical Newspapers with the NewsEye Platform,” in Proceedings of the
ACM/IEEE Joint Conference on Digital Libraries in 2020, (Virtual Event China),
pp. 531–532, ACM, Aug. 2020.

[26] M. Caserio, A. Goy, and D. Magro, “Smart Access to Historical Archives based on
Rich Semantic Metadata:,” in Proceedings of the 9th International Joint Confer-
ence on Knowledge Discovery, Knowledge Engineering and Knowledge Management,
(Funchal, Madeira, Portugal), pp. 93–100, SCITEPRESS - Science and Technology
Publications, 2017.

[27] N. Gutehrlé, O. Harlamov, F. Karimi, H. Wei, A. Jean-Caurant, and L. Pivovarova,
“SpaceWars: A Web Interface for Exploring the Spatio-temporal Dimensions of WWI

65

Newspaper Reporting,” CEUR Workshop Proceedings, Oct. 2021. Publisher: CEUR
Workshop Proceedings.

[28] P. Chu and A. Komlodi, “TranSearch: A Multilingual Search User Interface Ac-
commodating User Interaction and Preference,” in Proceedings of the 2017 CHI
Conference Extended Abstracts on Human Factors in Computing Systems, CHI EA
’17, (New York, NY, USA), pp. 2466–2472, Association for Computing Machinery,
May 2017.

[29] B. Steichen and L. Freund, “Supporting the Modern Polyglot: A Comparison of
Multilingual Search Interfaces,” in Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems, CHI ’15, (New York, NY, USA), pp. 3483–
3492, Association for Computing Machinery, Apr. 2015.

[30] C. Ling, B. Steichen, and A. G. Choulos, “A Comparative User Study of Interactive
Multilingual Search Interfaces,” in Proceedings of the 2018 Conference on Human
Information Interaction & Retrieval, CHIIR ’18, (New York, NY, USA), pp. 211–220,
Association for Computing Machinery, Mar. 2018.

[31] Y. J. Choe, K. Park, and D. Kim, “word2word: A collection of bilingual lexicons for
3, 564 language pairs,” CoRR, vol. abs/1911.12019, 2019.

[32] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding,” arXiv:1810.04805 [cs],
May 2019. arXiv: 1810.04805.

66

	Kurzfassung
	Abstract
	Contents
	Introduction
	Contributions of the Work
	Structure of the Thesis

	Analysis of the Requirements of Historians
	Input Processing
	Search Experience
	Design & Architecture
	Summary

	Background and Related Work
	Text Document Processing & Correction
	Search Result Visualization
	Digital Archive Visualization
	Multilingual Search User Interfaces

	Import Process for Annotated PDF Facsimile Documents
	Image Extraction
	Text & Layout Data Processing

	Query Processing
	Query Structure
	Semantic Query Extension

	Dynamic Generation of Relevant Facsimile Page Snippets
	Preliminary Measures
	Candidate Collection
	Snippet Candidate Pooling
	Performance Sampling

	Conclusion
	Requirements Review
	Limitations & Future Work

	Implementation Details
	Architecture
	Indexing

	User Interface Prototype
	List of Figures
	Bibliography

